
A LOTOS speci�cation of a CSCW tool

J. Rekers I. Sprinkhuizen-Kuyper

Department of Computer Science, Leiden University

P.O.Box 9512, 2300 RA Leiden, The Netherlands

Email: rekers@rulwi.leidenuniv.nl, phone: +31 71 277092, fax: +31 71 276985

ABSTRACT

CSCW systems provide computer mediated support for

the collaboration of people working in a group. We in-

vestigate whether a speci�cation formalism for commu-

nicating processes can be used to describe the commu-

nicative aspects of these systems. Such a speci�cation

should make the communication patterns evident and

should allow for automatic generation of a computer

program that implements it.

In this paper we apply this approach on a simple ex-

ample: we develop a lotos speci�cation of the CSCW

tool We-Met and check whether the resulting speci�ca-

tion meets the objectives above.

1 INTRODUCTION

Tools which provide high level support for the communi-

cation between members of a group need to be tailored

towards the speci�c needs of that group. It is the aim of

the MOCCA group (Modeling Of Coordinated Collabo-

rative Activities) at Leiden University to develop a spe-

ci�cation language to de�ne the communicative needs

of groups. It should be possible to generate the cor-

responding CSCW (Computer Supported Cooperative

Work) tool from such a speci�cation.

The focus of this speci�cation language will be on

communication and the language should allow for math-

ematical reasoning about it. We intend to look at the

members of a group as a set of cooperating processes

which communicate through a certain protocol. Such a

protocol might range from highly structured (as will be

the case with form processing in o�ce environments) to

o�ering no structure at all (as would be more appropri-

ate for design discussions).

1.1 A classi�cation of CSCW tools

In order to specify the communicative aspects of CSCW

tools, we need an overview of the existing tools �rst.

We consider the following notions important for such a

speci�cation and will use these to classify CSCW tools

with: 1) does the tool o�er synchronous or asynchronous

communication, and 2) does it structure the communi-

cation or not. We explain these notions and give some

examples.

synchronous communication If a tool o�ers syn-

chronous communication, everything a participant

utters will available to the other participants im-

mediately. Messages are not send or received ex-

plicitly. The chunks of information will in this case

generally be small and there will be something like

a common data object which is edited concurrently

by all participants.

asynchronous communication In tools which o�er

asynchronous communication participants prepare

messages in isolation, and, when �nished, they send

it out explicitly. Receivers of a message are noti�ed

and they perform an explicit action to receive the

message. The chunks of information will generally

be larger. This kind of communication is less ap-

propriate for editing a common data object jointly.

structured communication There are cases in which

the communication among the members of a group

follows clear and prede�ned paths. An example is

the routing of a purchase request through an or-

ganization. Tools which support this kind of com-

munication know these paths and will perform the

routing automatically. These tools structure the

communication.

unstructured communication Communication as it

occurs in, for example, brainstorm sessions is inher-

ently unstructured. Contributions are distributed

to every participant and who react to what is un-

predictable. Tools which support this kind of dis-

cussions only support the communication, they do

not structure it. Unstructured communication and

synchronous communication often go together.

We classify a few CSCW tools according to these no-

tions.

Page 1

We-Met (IBM { [27])

This is a pen-based tool which supports the com-

munication and information retrieval needs of small

group meetings. It is primary meant to support

design discussions. If o�ers synchronous communi-

cation on broadcast basis and does not impose any

structuring on the communication.

Object Lens, Information Lens (Xerox { [19, 22])

A mail based system with objects and agents. Ob-

jects are �les which may contain references to other

objects. Agents are user-de�ned and are triggered

by events to execute their procedure on objects.

A very
exible system, more concerned with the

individual users than with the group as a whole.

Asynchronous communication, amount of structur-

ing depends on the agents applied.

ICICLE (Bellcore { [6])

Icicle supports code inspection, which is a phase

in the software development cycle between imple-

mentation and testing. This task is performed by

a group of which the members have well de�ned

tasks and roles. Icicle has strongly structured

procedures and applies both synchronous and asyn-

chronous communication.

gIBIS (MCC - [9])

This tool supports the software design methodol-

ogy Issue Based Information Systems (IBIS). The

methodology is �xed but allows quite general com-

munication. Although the communication is asyn-

chronous (based on mail), all messages are com-

posed in a single common design document, which

is inspected by all participants.

Quilt (Bell { [20])

A hypertext system for collaborative writing and

reviewing of papers. It supports the communica-

tion and information sharing among the collabo-

rators on a document. The main structuring it

puts on the communication are the privileges of

who may read or write what information. Asyn-

chronous communication.

X-Work
ow (Olivetti { refs?)

This is a form routing system. The communica-

tion is structured by procedures which are written

as Petri nets. These procedures are normally not

adapted by users of the tool. Asynchronous com-

munication.

1.2 Speci�cation formalisms for communicat-

ing processes

There are two major directions in this �eld: Process

algebra's and Nets.

There are several speci�cation languages for concur-

rent, communicating systems which work according to

the process algebra approach. These are all formal rea-

soning systems in which variables represent processes.

Processes can be composed by operators like sequence,

alternative and parallel, and the communication be-

tween processes is synchronous. The best known ex-

amples of this approach are:

� Communication Sequential Processes (CSP) [16]

� Calculus of Communicating Systems (CCS) [23]

� Language of Temporal Ordering Systems (LOTOS)

[4]

� Algebra of Communicating Processes (ACP) [2]

Nets are extended �nite state machines. The best

known example of this approach is Petri Nets [24, 25].

Petri Nets represent a system by a directed bipartite

graph of channels (or places) and agencies (or transi-

tions). Channels passively store tokens. Agencies ac-

tively consume, transport, change and produce tokens.

An agency may be activated if every of its input chan-

nels contains an token. The agency then consumes these

tokens, processes them internally, and generates an to-

ken at each of its output channels. Communication is

based on queueing and thus asynchronous.

It is often considered as a disadvantage that Petri

Nets do not support any kind of modularity and are

monolithic. In view of this several approaches have been

proposed, like Statecharts [15] and Paradigm [14], aim-

ing at, among other things, support of modularity. Both

approaches are based upon a vector of �nite state ma-

chines. Both are mainly graphical, although speci�ca-

tions can be purely represented by formulas. The com-

munication between the various �nite state machines in

Statecharts is synchronous, whereas in Paradigm it can

be synchronous or asynchronous.

If we compare the process algebra and the Nets, we

see that process algebra's are quite formal. They al-

low for mathematical reasoning, but have as drawback

that the speci�cations are hard to comprehend at a �rst

glance. Net-like approaches have appealing graphical

representations, but are quite often much harder to rea-

son about.

1.3 An instance of the general idea

We verify our idea of specifying the communicative part

of CSCW tools by writing an example speci�cation of

one of these tools. This means that we have to commit

Page 2

ourselves to a speci�c formalism and to a single tool. It

is already quite clear that CSCW tools which o�er asyn-

chronous communication and structure the communica-

tion in a rigid manner can be speci�ed easily by petri

net like approaches, as demonstrated by X-Work
ow

(Olivetti). We will therefore concentrate on the other

side of the spectrum: on tools which are based on syn-

chronous communication and do not structure the com-

munication. We-Met is a good representative here. For

these kind of tools it is plausible to apply a speci�cation

formalismwhich already o�ers synchronous communica-

tion. We choose here for lotos, as it even has multi-

way synchronization. Furthermore, lotos is quite pop-

ular and a large number of supporting tools is available.

Lotos has already been used to specify large, real-life,

systems. To mention a few application �elds: several

OSI layers, telephone systems [12, 5], power plants [3]

and software process modeling [26]. The language is

starting to be used in industrial environments also.

We understand that general conclusions cannot be

drawn from this single example, but still, such a spe-

ci�cation might give an indication of the feasibility of

our ideas and provides the experience necessary to judge

speci�cation formalisms.

1.4 Overview of the paper

Section 2 and 3 contain respectively an overview of lo-

tos and a description of We-Met. Having provided this

basis, we develop in section 4 the actual lotos speci�-

cation of We-Met. We propose some extensions to this

speci�cation in section 5 and in section 6 we evaluate

our work and set some directions for further research.

2 LOTOS

We mention some of the main keywords of lotos here

but we must refer to other sources for a real introduc-

tion: a good start is [21] which illustrates most features

of the formalism with example speci�cations. [4] is an

already more formal approach to lotos, but still easy to

read. The complete description of lotos can be found

in [17].

Lotos consists of two clearly separated sub-

formalisms. The part that deals with processes and

their interaction is in
uenced by both ccs [23] and csp

[16]. The part that deals with the declaration of datas-

tructures and the operations on them is the algebraic

speci�cation formalism act one [11]. We hardly need

the data part for the de�nition of We-Met in lotos and

will elaborate on the process part mainly.

A lotos speci�cation consists of processes which

communicate over gates. The entities communicated

are events (also called actions) which are the atomic

units of interaction and synchronization between pro-

cesses. A process consists of behaviour expressions of

A B E�ect

a !i a ?j:Int Processes A and B synchronize

over action a and the value in

variable i of process A is trans-

mitted to variable j of process

B.

a ?i:Int a !j The value in j is transmitted to

i.

a !i a !j The synchronization over action

a can only occur if the values in

i and j match.

a ?i:Int a ?j:Int The variables i and j will after

the synchronization contain an

equal, but unspeci�ed, value.

Figure 1: Di�erent combinations of \!" and \?"

which the simplest ones are events, internal actions and

calls to other processes. Behaviour expressions can be

composed by several operators. The most important

ones are \;" and \�" for sequential composition and

\[]" for choice. Lotos has three operators for parallel

composition: \jj", \j[g

1

:::g

n

]j" and \jjj".

Processes which are composed by \jj" run indepen-

dently and do not synchronize at all. If two processes

are composed by \j[g

1

:::g

n

]j", they only synchronize over

gates g

1

:::g

n

. This means that if one of the processes

wishes to perform action g

i

, that it will have to wait

for the other process to perform g

i

also. Actions which

are not in g

1

:::g

n

are performed independently of the

other processes. Processes which are composed by \jjj"

synchronize on all actions.

An important aspect of the synchronization in lotos

is the fact that it is non-directional and that it is not lim-

ited to two processes; any number of processes can par-

ticipate in a single synchronization over an event. This

allows for a constraint oriented speci�cation style, which

stands for a style where di�erent processes put their

own constraints on the possible sequences of events. If

processes are composed, these constraints are composed

also. This makes it possible to specify low-level compo-

nents without knowledge of the environment in which

they will be used.

If processes synchronize over an event they can also

exchange data. There are two constructs for this ex-

change \action !value" to provide a value and \action

?variable:type" to receive a value. Figure 1 above gives

an overview of the di�erent combinations in which these

construct can be used and explains the meaning of those

combinations. Several values may be exchanged dur-

ing a single synchronization point and these values may

oat in any direction.

Page 3

Figure 2: A We-Met screen

3 WE-MET

We-Met { which stands for Window Environment {

Meeting Enhancement Tools { has been designed and

implemented at IBM { Yorktown Heights and is a pro-

totype pen-based tool designed to support both the

communication and information retrieval needs of small

group meetings [27].

We-Met provides a shared drawing area in which sev-

eral users can work at the same time. When one per-

son writes, the other participants see each stroke as it

is completed. The system preserves temporal informa-

tion, allowing users to travel backwards and forwards

in time as they review a meeting. We-Met is a syn-

chronous communication device, which means that the

grain size of the actions is small and that participants

see actions of others immediately without having to ask

for it explicitly. It is We-Met's intention to support the

communication process, not to structure it. For exam-

ple, it does not impose
oor control on the access to

the drawing area or interface control. Figure 2 above

contains a screen dump of a We-Met display.

Evaluating We-Met, we would say that it is a com-

puterized version of a blackboard, with advantages and

disadvantages over a real one. Its paper-like interface,

its possibility to review a meeting and the ease of re-

treating on ones steps make it a very desirable commu-

nication device. The possibility to start a new scene or

to return to an old one seems super
uous, as the time

scroller can do it all, although the user interface of We-

Met would then have to provide some tree-like scroller.

Scrolling away for making private notes or to discuss

something in a smaller group is a bad work-around for

a real problem in the We-Met interface. We-Met needs

elaboration on this point.

4 WE-MET IN LOTOS

In order to be able to describe We-Met in lotos we

simplify its functionality to two commands: A user may

draw a stroke or may go back in time.

4.1 The basic processes of We-Met

Figure 3 on the next page shows the intended layout of

a We-Met system with two users. The idea is that a

user process and its display synchronize fully on the ac-

tion performed by the user, ud stroke and ud back. A

single display and the central We-Met system synchro-

nize on the display actions dw stroke and dw back. All

displays synchronize on the action the We-Met system

broadcasts, stroke. As We-Met is a communication

device for synchronous communication, its implemen-

tation should enforce that all displays show the same

information at all times. It is therefore that we request

all displays to synchronize on broadcasted strokes, al-

though this implies that the speed of the entire system

is determined by the slowest display.

A stroke can both represent a stroke to add (to

implement a drawing action) as one to delete (to im-

plement scrolling back in time). Users may, for now,

draw positive strokes only. We discuss extensions to our

model of We-Met in Section 5, where we allow negative

user strokes also.

4.1.1 The user and the display process

The processes user and display and their interaction

are quite straightforward to describe in lotos.

process user [ud_stroke,ud_back] :noexit :=

i; ud_stroke; user[ud_stroke,ud_back]

[]

Page 4

user
 A

display
 A

dw_stroke

dw_back

stroke

We-Met

user
 B

display
 B

dw_stroke

dw_back

stroke

ud_stroke ud_back

ud_stroke ud_back

Figure 3: The layout of a We-Met system with two users

i; ud_back; user[ud_stroke,ud_back]

endproc

The user process can at each invocation perform the

action ud stroke or ud back. In this choice, both ac-

tions are preceded by indistinguishable internal actions

i. By doing so, we force that the user process alone

determines which choice it makes. It can never be the

case that some other process, with which the user pro-

cess synchronizes over ud stroke and ud back, forces

the actions to happen in a certain order. In other words,

we speci�ed that the user process alternates at its own

pace between drawing a stroke and going back in time.

process display [ud_stroke,ud_back,

dw_stroke,dw_back,

stroke]

:noexit :=

ud_stroke; dw_stroke;

display[ud_stroke,ud_back,dw_stroke,dw_back,stroke]

[]

ud_back; dw_back;

display[ud_stroke,ud_back,dw_stroke,dw_back,stroke]

[]

stroke; i;

display[ud_stroke,ud_back,dw_stroke,dw_back,stroke]

endproc

The display simply passes user commands through to

the central We-Met system, and reacts to strokes from

We-Met with an internal action which represents the

actual drawing or removing of a stroke on the physical

display.

process one_display[dw_stroke,dw_back,stroke] :noexit :=

hide ud_stroke, ud_back in

display[ud_stroke,ud_back,

dw_stroke,dw_back,

stroke]

|[ud_stroke,ud_back]|

user[ud_stroke,ud_back]

endproc

Process one display takes the processes user and

display together and lets them communicate internally

over their gates ud stroke and ud back. The whole

can synchronize with the external world over the gates

dw stroke, dw back and stroke.

4.1.2 The application process

The behaviour that has to be performed by We-Met

as a reaction to the actions of the displays can also be

speci�ed as follows:

process application[dw_stroke,dw_back,stroke] :noexit :=

dw_stroke; stroke;

application[dw_stroke,dw_back,stroke]

[]

dw_back; stroke;

application[dw_stroke,dw_back,stroke]

[]

stroke;

application[dw_stroke,dw_back,stroke]

endproc

The process application reacts to the user action

dw stroke by echoing the stroke, it reacts to dw back

by echoing a negative stroke, and is willing to synchro-

nize on stroke's issued by eventual other application

processes.

How this process application can be taken together

with multiple display processes will be discussed in

section 4.3. We �rst concentrate on an extension of the

above with the actual strokes communicated.

4.2 The stack of strokes

The \back" command can be implemented by using a

stack to store the strokes drawn. The back command

then causes the last stroke to be popped from the stack

and to be broadcasted as negative stroke.

This extension mainly concern the actions ud stroke,

dw stroke and stroke, which have to be provided with

act one terms that represent the strokes drawn or re-

moved. The most interesting work on these strokes is

performed by process application, which we present

in more detail:

type Stroke_stack is Booleans, Naturals

sorts STROKE, STACK

opns stroke: NAT, NAT, NAT, NAT, BOOL -> STROKE

empty_stack: -> STACK

push: STROKE, STACK -> STACK

endtype

process application[dw_stroke,dw_back,stroke]

(stack: STACK)

:noexit :=

dw_stroke ?s:STROKE ;

stroke !s ;

application[dw_stroke,dw_back,stroke]

(push(s,stack))

Page 5

one_display one_display

dw_
back

dw_
stroke

stroke
dw_
back

dw_
stroke

application application

Figure 4: The localized solution

[]

dw_back;

[stack = empty_stack] ->

application[dw_stroke,dw_back,stroke]

(stack)

[stack = push(stroke(n1,n2,n3,n4,true),stack')] ->

stroke !stroke(n1,n2,n3,n4,false) ;

application[dw_stroke,dw_back,stroke]

(stack')

[]

stroke ?s:STROKE ;

application[dw_stroke,dw_back,stroke]

(stack)

endproc

The data types STROKE and STACK are declared and

process application is modi�ed to handle the data.

Process application now receives strokes, stores them

on its internal stack and redistributes them. If it re-

ceives a dw back action, it broadcasts the stroke which

was most recently pushed on the stack as a negative

stroke. Note that we have modi�ed the behaviour of

the process for the case that the stack is empty: in that

case the \back" command is just ignored.

4.3 The We-Met process itself

Now that we have de�ned the basic processes, we have

to tie them together in the We-Met process itself. There

are (at least) two possibilities for doing so which we will

pursue in the sequel.

4.3.1 A localized solution

The synchronization between processes one display

and application is di�cult to specify, due to the

fact that application needs to synchronize with sin-

gle displays on some actions and with all displays

on other actions. We solve this by having one pro-

cess application per display which handles the ac-

tions emitted by a display and which synchronizes with

the other application processes over the broadcasted

strokes. Figure 4 above depicts this architecture.

one_display one_display

application

stroke

dw_
back

dw_
stroke

Figure 5: The centralized solution

process We_Met [stroke] : noexit :=

We_Met_unit[stroke]

|[stroke]|

We_Met_unit[stroke]

|[stroke]|

We_Met_unit[stroke]

endproc

process We_Met_unit[stroke] :noexit :=

hide dw_stroke, dw_back in

one_display[dw_stroke,dw_back,stroke]

|[dw_stroke,dw_back,stroke]|

application[dw_stroke,dw_back,stroke]

(empty_stack)

endproc

This solution does not have a central control, and

we call it a localized solution. The semantics of the

back command will in this solution be biased towards a

solution where each user can remove strokes of his own

only. If a user were to be allowed to remove strokes of

other users also (as actually is the case in the We-Met

system), each application process would have to store an

own copy of the complete stroke history, and would have

to keep this history up-to-date with the other stores.

4.3.2 A centralized solution

It is also possible to start just one process application,

which handles the actions of all users. This solution is

more biased towards the situation as it is in the real We-

Met system, where each user can remove strokes of other

users. Figure 5 above depicts the architecture intended,

which we state in lotos as follows:

process We_Met [stroke] : noexit :=

hide dw_stroke,dw_back in

((one_display[dw_stroke,dw_back,stroke]

|[stroke]|

one_display[dw_stroke,dw_back,stroke]

|[stroke]|

one_display[dw_stroke,dw_back,stroke])

|[dw_stroke,dw_back,stroke]|

application[dw_stroke,dw_back,stroke]

(empty_stack))

endproc

Page 6

The processes one-display, which can all �re the

actions dw stroke, dw back and stroke, are composed

by |[stroke]| only. This means that they perform

dw stroke and dw back independently of the others.

These processes one-display are at an outer level com-

posed with the application process with the operator

|[dw stroke, dw back, stroke|]. This means that

if any of the processes one-display wants to perform

dw stroke or dw back, it needs to synchronize with pro-

cess application. This is exactly as we wanted the

synchronization to be.

Generalizing, in the localized speci�cation strokes re-

main property of the user who issued them, where in

the centralized version strokes become property of the

group immediately.

In fact, the localized version of We-Met is formu-

lated somewhat cumbersome, towards the derivation

of the centralized version. The processes display and

application can in the localized version be taken to-

gether without any loss of functionality. The display

process becomes the application in that case.

Again, this centralized solution could also implement

a semantics of the back command where a user can only

remove strokes of its own. This would however induce a

much more complicated data part. Strokes would need

an identi�cation of their issuer and the stack would have

to be replaced by a linked list.

5 EXTENSIONS

We depart from the centralized version of We-Met

(where users can discard strokes of anybody by going

back in time) and discuss some possible extensions to

it.

5.1 Deletion of selected strokes

Currently, users can only remove parts of the drawing

by going back in time until some moment before that

part was drawn. This also deletes anything drawn af-

terwards. If users should also be able to delete one or

more selected strokes, we can model this by allowing the

user process to send negative strokes as well.

Process application should then broadcast and

stack these negative strokes, just like the ordinary

strokes. The only modi�cation necessary would be in

the handling of the back command, which should send

out a negated version of the last stroke on stack, as

opposed to a negative stroke. This treats deletion of

strokes just like addition: going back in time will reveal

discarded strokes again.

5.2 Adding new users

Till now, we have assumed a �xed number of users. In

a real system it should be possible for a user to enter a

session after it started and to leave a session before it

ends. We extend our speci�cation with the possibility

for users to ask for access. If they do, they receive the

picture drawn till now, and are added to the session.

Most of the speci�cation can be re-used to realize this

extension of the functionality. The actions which can be

performed by a user process are extended with start.

The extended user process performs this action when it

wants to join a We-Met session and next starts the ordi-

nary user process. The actions of a display are extended

with actions start, nw display and comm stack. The

action nw display is �red as soon as the display re-

ceives the action start of the user. The application

process of the We-Met system will react on nw display

by communicating the stack to the display via the ac-

tion comm stack.

In order to obtain the possibility to add an at fore-

hand unknown number of users, we introduce a process

more displays. This process is de�ned recursively and

it starts a new process one display ext each time an

action start is �red by a user process. In lotos

1

:

process more_displays[nw_display,comm_stack,

dw_stroke,dw_back,stroke]

:noexit :=

one_display_ext[nw_display,comm_stack,

dw_stroke,dw_back,stroke]

|[stroke]|

more_displays[nw_display,comm_stack,

dw_stroke,dw_back,stroke]

endproc

5.3 Reviewing a meeting

Another important feature of the We-Met system is the

possibility to review a meeting. We can add this func-

tionality to the current speci�cation of We-Met by in-

troducing a separate archiver process.

This archiver has two phases, one to record a meet-

ing and one to play it back again. While recording,

it synchronizes on the strokes broadcasted by the We-

Met process and stores these in a linear fashion. In

the playback phase it accepts two commands, forward

and backward, and uses the linear store of strokes as

a vector with a pointer indicating where it currently

is. On forward, the player emits the stroke under the

pointer and restarts itself with an increased pointer.

On backward, the player decreases the pointer, emits

a negated version of the stroke pointed at, and restarts

itself.

On having this functionality, a reviewer can scroll for-

ward and backward through the entire meeting. We

1

We use the same technique as demonstrated in the speci�ca-

tion of the daemon game in [4, 8], but we are not entirely con�dent

in it. The implementation of this process will in each case have to

be lazy, as otherwise in�nitely many processes more display are

started.

Page 7

leave the actual lotos speci�cation of this archiver to

the imagination of the reader.

6 EVALUATION AND FUTURE WORK

The objective of this paper was to study whether speci-

�cation formalisms for concurrent systems can also be

used to specify the communicative aspects of CSCW

systems in. Our �rst attempt to reach this objective

was to develop a lotos speci�cation of the CSCW tool

We-Met.

We have indeed been able to describe di�erent ver-

sions of We-Met in a clear and concise manner. These

speci�cations describe the
ow of information and the

internal synchronization in an exact and high-level fash-

ion. The synchronization primitives �nally applied are

however quite tricky; whether a casual reader of the spe-

ci�cation understands all subtilities is questionable. It

took us about two months to learn enough of lotos to

be able to develop the �nal speci�cation and to write

this paper. Whether we judge lotos as an appropriate

formalismto specify the behaviour of CSCW systems re-

mains questionable, as lotos speci�cations turned out

to be hard to develop and interpret.

We propose to continue this research by looking into

more graphically oriented formalisms, like Graphical

LOTOS (as used in [18]), SDL[1, 13], Estelle [7, 10]

or Paradigm[14]. Speci�cations in these formalism will

hopefully be easier to develop and interpret, but we will

loose some of the possibilities to reason formally about

speci�cations, what will make it harder to derive im-

plementations from such speci�cations. We will also

specify a CSCW tool that structures the communication

and applies asynchronous communication in formalisms

of both families.

After having performed this, we will be better quali-

�ed to judge the value of our initial idea's and will be

better equiped to develop our own speci�cation forma-

lism, if necessary.

REFERENCES

[1] F. Belina and D. Hogrefe. Introduction to SDL. In

FORTE'88 proceedings, September 1988.

[2] J.A. Bergstra and J-W. Klop. Process algebra

for synchronous communication. Information and

Control, 60(1-3):109{137, 1984.

[3] T. Bolognesi. The electric power of LOTOS {

results of a joint academic/industrial experience.

Presentation given at the FORTE'92 conference,

no paper, October 1992.

[4] T. Bolognesi and E. Brinksma. Introduction to the

ISO speci�cation language LOTOS. Computer Net-

works and ISDN Systems, 14:25{59, 1987.

[5] R. Boumezbeur and L. Logripppo. Speci�cation

and validation of telephone systems in LOTOS.

Technical Report TR-91-23, University of Ottawa,

1991.

[6] L. Brothers, V. Sembugamoorthy, and M Muller.

ICICLE: Groupware for code inspection. In

CSCW'90 proceedings, pages 169{181, October

1990.

[7] S. Budkowski and P. Dembinski. An introduction

to Estelle: a speci�cation language for distributed

systems. Computer Networks and ISDN systems,

14, 1988.

[8] W.F. Chan and K. Turner. The daemon

game in LOTOS. In ESTELLE, LOTOS, SDL

Draft Examples. ISO, Turin, December 1986.

ISO/TC97/SC21/WG1/FFDT { CCITT X/3.

[9] J. Conclin and M.L. Begeman. gIBIS: a hyper-

text tool for exploratory policy discussion. In

CSCW'88 proceedings, pages 140{152, Portland,

Oregon, September 1988.

[10] J-P. Courtiat. Estelle*: A powerfull dialect of Es-

telle for OSI protocol description. In S. Aggarwal

and K. Sabani, editors, Protocol Speci�cation, Test-

ing and Veri�cation VIII, pages 171{179. Elsevier

Science Publishers, 1988.

[11] H. Ehrig and B. Mahr. Fundamentals of Algebraic

Speci�cation 1, volume 6 of EACTS Monographs

on Theoretical Computer Science. Springer-Verlag,

1985.

[12] P. Ernberg, T. Hovander, and F. Monfort. Speci-

�cation and implementation of an ISDN telephone

system using LOTOS. In FORTE'92 proceedings,

pages 179{194, Lanion, France, October 1992.

[13] O. F�rgemand and A. Olsen. Tutorial on new fea-

tures in SDL-92. In FORTE'92 tutorials, pages

151{174, Lanion, France, October 1992.

[14] L.P.J. Groenewegen. Object-oriented cooperation

control. Technical Report 91-03, Department of

Computer Science, Leiden University, P.O. Box

9512, 2300 RA Leiden, the Netherlands, 1991.

[15] D Harel. Statecharts: A visual formalism for com-

plex systems. Science of Computer Programming,

8:231{274, 1987.

[16] C.A.R. Hoare. Communication Sequential Pro-

cesses. Prentice-Hall, 1985.

[17] ISO { Information Processing Systems { Open Sys-

tems Interconnection. LOTOS { a formal descrip-

tion technique based on the temporal ordering of

Page 8

observational behaviour. Technical Report DIS

8807, ISO, 1987.

[18] H. Kremer, J. v.d. Lagemaat, A. Rennoch, and

G. Scollo. Protocol design using LOTOS: A crit-

ical synthesis of a standardization experience. In

FORTE'92 proceedings, pages 225{240, Lanion,

France, October 1992.

[19] K-Y. Lai and T.W. Malone. Object-lens: A

\spreadsheet" for cooperative work. In CSCW'88

proceedings, pages 115{124, Portland, Oregon,

September 1988.

[20] M.D.P. Leland, R.S. Fish, and R.E. Kraut. Col-

laborative document production using Quilt. In

CSCW'88 proceedings, pages 206{215, Portland,

Oregon, September 1988.

[21] L. Logrippo, M. Faci, and M. Haj-Hussein. An

introduction to LOTOS: Learning by examples.

Computer Networks and ISDN Systems, 23(5):325{

344, February 1992.

[22] T.W. Malone, K.R. Grant, F.A. Turbak, S.A.

Brobst, and M.D. Cohen. Intelligent information

sharing systems. Communications of the ACM,

30:390{402, 1987.

[23] R. Milner. Communcation and Concurrency.

Prentice-Hall, 1989.

[24] S.A. Petri. Interpretations of net theory. Techni-

cal Report 75-07, Gesellschaft f�ur Mathematic und

Datenverarbeitung, 1976. Second, revised edition.

[25] W. Reisig. Petri nets in software engeneering. In

W. Brauwer, W. Reisig, and G. Rozenberg, editors,

LNCS 255 { Petri Nets: Applications and Relation-

ships to other Models of Concurrency, pages 63{96.

Springer-Verlag, 1986.

[26] M. Saeki, T. Kaneko, and M. Sakamoto. A method

for software process modeling and description using

LOTOS. In M. Dowson, editor, First international

conference of the Software Process { Manufacturing

Comples Systems, pages 90{104. IEEE computer

society press, October 1991.

[27] C.G. Wolf, J.R. Rhyne, and L.K. Briggs. Commu-

nication and information retrieval with a pen-based

meeting support tool. Technical Report RC 17842,

IBM T.J.Watson Research Center, P.O.Box 704,

Yorktown Heights, NY 10598, USA, 1992.

Page 9

