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Abstract

The e�orts of the past decade to provide database designers and users with more

powerful tools for both modeling the considered application domain and manipulat-

ing this model, has resulted in a variety of declarative data languages of usually high

complexity. In view of the implementation and optimization of such languages, it is

often bene�cial to use a second language as an intermediate, machine independent

implementation platform. In this paper, we describe the mapping of the GOOD

(graph- and object-oriented database) language to such an intermediate platform;

as the GOOD language is based on graph rewriting, we use the novel graph grammar

formalism of GRASPs (attributed programmed graph grammars with set produc-

tions) for this purpose.

1 Introduction

The unability to adequately model in a database complex con�gurations of the real-world

entities relevant to some application domain, is since long being considered as one of the

major drawbacks of the relational database model. This observation caused the emergence

of a variety of new paradigms and models, including nested relations, semantic and object-

oriented database models. Soon it was recognized that the data representation part of

these novel models allowed for a natural graphical representation in the spirit of the Entity

Relationship model, by representing entities as nodes and relationships as edges [5, 12]. In
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the late eighties, this in turn inspired a number of researchers to develop graph-oriented

database models, in which notions from graph theory are used to uniformly de�ne not only

the data representation part of the model, but also their data manipulation languages [4,

7, 8, 13, 14, 18].

If data is modeled by means of graphs, manipulating data turns down to graph rewrit-

ing. Hence, graph grammars [16] o�er themselves as a natural framework for the ma-

nipulation of graph-modeled data. The set of graph-oriented database operations to be

presented in this paper, is derived from the graph- and object-oriented database model

GOOD [13, 17]. In [3, 20], the graph grammar-like language of GOOD was shown to satisfy

the well established completeness and consistency criterion for database manipulation lan-

guages called BP-completeness [6]. Briey, a language that satis�es this criterion is capable

of expressing exactly all database transformations that manipulate data items (i.e., nodes

of the database graph) only on the basis of their relationships to other data items which

are explicitly represented in the database (by means of the edges of the database graph).

The principle of BP-completeness is related to the typical set-oriented and associative

nature of database query languages. This nature has its implications on the semantics that

should be assigned to graph grammar productions in the context of databases. Usually,

data retrieval and update operations take the form of \apply retrieval/update to all

<data> satisfying <condition>" (cfr. the syntax of SQL-operations). In terms of the

pattern matching paradigm underlying graph grammar productions, this becomes \apply

retrieval/update to all matchings of <pattern> in parallel".

Attributing such a fully deterministic semantics to graph grammar productions unfortu-

nately results in operations of high complexity, at least when compared to the \local" (and

hence non-deterministic) semantics commonly used in graph grammar models. In view of

the implementation of graphical database enduser interface tools, supporting language con-

structs providing manipulation facilities along the lines of graph-oriented database models

like GOOD, this complexity calls for the introduction of an intermediate implementation

level, e.g., for purposes of optimization. The fact that general purpose graph storage sys-

tems are beginning to emerge (see e.g., [15]), allows us to stay within the realm of graph
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rewriting systems for our choice of this intermediate level. Hence, in this paper we use

attributed programmed graph grammars with set productions (GRASPs), an extended

version of the model of attributed programmed graph grammars introduced in [9].

Attributed programmed graph grammars are a universal graph programming language.

The programmed use of only a few types of locally operating graph productions allows e�-

cient implementations of this graph grammar model. In [10] attributed programmed graph

grammars have already been proved to be an adequate tool for user interface development.

The correctness of the examples described there as well as of the examples presented in

this paper was tested by using an interpreter for GRASPs written in SMALLTALK.

The rest of this paper is organized as follows. In Section 2 we introduce the concepts

adapted fromGOOD. In Section 3, we introduce the concepts of the new model of GRASPs.

In Section 4, the simulations of the GOOD operations by equivalent GRASPs are outlined.

In Section 5, we elaborate on the handling of node attributes (used to represent atomic

values in the database), and briey consider the matter of GRASP optimization. Finally,

Section 6 contains conclusions and aspects of future work.

2 The Graph- and Object-Oriented Database Model

GOOD

In this section, we present a simpli�ed version of a subset of GOOD, concentrating only

on those concepts required for the outline of the mapping to GRASPs.

A database scheme is typically used to specify a number of structural constraints on

the actual contents of the database, which in turn is commonly referred to as the database

instance. In GOOD, both scheme and instance are represented as directed, labeled graphs.

De�nition 2.1 (Scheme) A scheme is a quadruple S = (V;W;A;F ) with V a �nite set

of node labels, W a �nite set of edge labels, A a set of attribute values, and F � V �W�V .

If F = V �W � V , we write S = (V;W;A). If, moreover, A = ;, we write S = (V;W ).
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The elements of V may be considered to represent class names, while the elements of

W represent names for properties and relationships. F then speci�es what relationships

are allowed to exist between members of certain classes.

De�nition 2.2 ((Attributed) Graph) Let V and W be sets of labels and A a set of

values (including the value nil). A graph over (V;W ) is a triple g = (N;n;E) where N

is a �nite set of nodes, n : N ! V is the node-labeling function, and E � N �W � N

is a �nite set of directed, labeled edges. The set of all graphs over (V;W ) is denoted

by (V;W ). An attributed graph over (V;W;A) is a quadruple g = (N;n; a;E), where

g

�

= (N;n;E) 2 (V;W ) is the underlying graph and a : N ! A is the attribution

function. The set of all attributed graphs over (V;W;A) is denoted (V;W;A).

Example 2.1 Let S = (V;W;A;F ) be a scheme. Then F can be naturally represented as

the graph (V; id

V

; F ) over (V;W ), where id

V

is the identity function on V .

De�nition 2.3 (Instance) Let S = (V;W;A;F ) be a scheme. An instance over S

is an attributed graph I = (N;n; a;E) 2 (V;W;A), such that (x; �; y) 2 E implies

(n(x); �; n(y)) 2 F .

Note that the requirement that (n(x); �; n(y)) be an element of F ensures that an

instance satis�es the structural constraints of the scheme.

We now de�ne syntax and semantics of the GOOD-operations to be used in this paper.

De�nition 2.4 (Pattern) A pattern over a scheme S is an instance over S that may

contain nodes without speci�ed attribute value.

De�nition 2.5 (Matching) Let S be a scheme, let I be an instance over S and let J

be a pattern over S. A matching of J in I is an injective mapping from the nodes in J

to the nodes in I preserving labels and edges, as well as the attributes speci�ed in J .

Example 2.2 In order to elucidate the concepts presented in this paper, we shall use a

simple example database containing information about operas, their title, their composer
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and the year of their world premiere. The graph representation of a possible scheme S for

such a database is presented in Figure 1, while a (very small) instance over this scheme is

shown in Figure 2.

The pattern of Figure 3 represents the operas composed by Mozart. The reader can

easily verify that this pattern has two matchings in the instance of Figure 2.

Date Info

String

Composer

prem

�

name

-

composed by

?

��

?

rel

Figure 1: Opera Database Scheme

Date

1853

Info

String

La Traviata

Composer

Verdi

prem

�

name

-

composed by

?

Date

1787

Info

String

Don Giovanni

Composer

Mozart

prem

�

name

-

composed by

?

Date

1896

Info

La Boheme

String

Composer

Puccini

prem

�

name

-

composed by

?

Date

1786

Info

String

Le Nozze di Figaro

Composer

Mozart

prem

�

name

-

composed by

?

Figure 2: Opera Database Instance

Date Info

String

Composer

Mozart

prem

�

name

-

composed by

?

Figure 3: Pattern over the Opera Database
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De�nition 2.6 (GOOD operation) Let S = (V;W;A;F ) be a scheme, let I = (N;n; a;

E) be an instance over S and let J = (N

0

; n

0

; a

0

; E

0

) be a pattern over S. LetM be the set

of all matchings of J in I. Four types of GOOD operations can be speci�ed on a pattern.

For each type, we now state the required parameters, as well as an algorithm that should

be applied to I to obtain the result of the operation

Node Addition: Parameters: x

1

; : : : ; x

k

2 N

0

; K 2 V ; a 2 A; �

1

; : : : ; �

m

2 W .

Algorithm:

for each matching e 2 M do

if not exists a node y labeled K attributed a in I with edges (y; �

`

; e(x

`

)),

(1 � ` � k)

then add a new node y

0

labeled K attributed a to I with edges (y

0

; �

`

; e(x

`

)),

(1 � ` � k).

Edge Addition: Parameters: x; x

0

2 N

0

; � 2 W .

Algorithm:

for each matching e 2 M do

E(I) := E(I) [ f(e(x); �; e(x

0

))g.

Node Deletion: Parameters: x 2 N .

Algorithm:

for each matching e 2 M do

E (I) := E (I)� f(e(x); �; e(y)); (e(y); �; e(x)) j � 2W ; y 2 N g;

N (I) := N (I) � fe(x)g.

Edge Deletion: Parameters: (x; �; x

0

) 2 E

0

.

Algorithm:

for each matching e 2 M do

E (I) := E (I)� f(e(x); �; e(x

0

))g.
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By means of the examples presented in Section 5, the reader is invited to verify that

the semantics of these four operations is well-de�ned, and deterministic up to the choice

of new nodes in the resulting instance of a node addition.

3 GRASPs { Attributed Programmed Graph Gram-

mars with Set Productions

The model of attributed elementary programmed graph grammars was introduced in [9].

It is based on the programmed use of elementary local graph productions, i.e., the in-

sertion or deletion of nodes or edges, and the renaming of nodes and edges, chosen non-

deterministically on the basis of as little context as possible. In the same article, the

model was shown a universal graph programming language in the sense that the model is

su�ciently powerful to generate any recursively enumerable language of attributed graphs

In this section, we introduce the new model of attributed programmed graph grammars

with set productions (GRASPs for short), which is based on the programmed use of sets

of these elementary graph productions.

De�nition 3.1 (Set Production) Let � be a special (blank) symbol, and let V;W be

alphabets. Then we de�ne V

�

:= V [f�g and W

�

:= W [f�g. The set of node productions

over (V;W ) is de�ned as R

N

(V;W ) := V

2

�

�f�g

2

. The set of edge productions over (V;W )

is de�ned as R

E

(V;W ) := (V �W

�

� V )

2

� (V � f�g � V )

2

.

An element of R(V;W ) := R

N

(V;W ) [ R

E

(V;W ) is called a graph production, while

any subset of R(V;W ) is called a set of graph productions (or set production for short).

A set production p 2 R(V;W ) is said to be applicable to a graph g 2 (V;W ), if there

exists a graph production q 2 p that is applicable to the graph g. The applicability of such

a production q and the result of applying q to g | yielding a new graph g

0

2 (V;W ) |

depends on the form of q:

1. (�;L): add a new node with label L;
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2. (K;L): change the label of a node from K to L;

3. (K;�): delete an isolated node (i.e., without edges ending at it or leaving it) with

label K;

4. (K;�;L;C; k;D): add an edge with label k between a node x with label K and a

node y with label L and change these node labels to C and D respectively, but only

if (x; k; y) is not already an edge in g;

5. (K; j; L;C; k;D): change the label of an edge with label j between a node x with

label K and a node y with label L to k and change these node labels to C and D

respectively, but only if (x; k; y) is not already an edge in g;

6. (K; j; L;C; �;D): delete an edge with label j between a node with label K and a

node with label L and change these node labels to C and D respectively.

Observe that in the case of the edge productions of the form (K; j; L;C; k;D), we may

choose the same node x and y if K = L, but only if C = D too.

De�nition 3.2 (Attributed Programmed Graph Grammar with Set Produc-

tions) An attributed programmed graph grammar with set productions (GRASP) is a 6-

tuple G = (V;W;A; P; r

0

; R

f

) where

� V and W are alphabets for labeling nodes and edges, respectively, and A is a set of

attributes;

� P is a �nite set of rules (r : p; �(r); '(r)), where r is a label for the set production

p � R(V;W ), '(r) � Lab(P ) and �(r) � Lab(P )� F

jpj

, F is a �nite set of (partial

recursive) functions with arguments in A, and Lab(P ) = fr j (r : p; �(r); '(r)) 2 Pg;

if p = fq

i

j 1 � i � mg, then the function f

i

in an element (r; f

1

; : : : ; f

m

) of �(r) is

said to be assigned to the production q

i

;

� r

0

2 Lab(P ) is the initial label (of the initial rule);
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� R

f

� Lab(P ) is a set of �nal labels (of �nal rules).

We de�ne }(r) := p for each rule in P .

The kind of function that can be assigned to a production depends on the type of

production:

� For any q

i

2 }(r) of the form (�;L), we allow only constant functions to be assigned;

� For any q

i

2 }(r) of the form (K;L) with K;L 2 V; we assign functions f

i

: A! A

for every (r

0

; f

1

; : : : ; f

m

) 2 �(r);

� For any q

i

2 }(r) of the form (K;�), no functions need to be assigned, hence we

assume f

i

= ; for every (r

0

; f

1

; : : : ; f

m

) 2 �(r);

� For any q

i

2 }(r) which is in R

E

(V;W ), we assign functions f

i

= (f

i;1

; f

i;2

) with

f

i;1

; f

i;2

: A

2

! A. Function f

i;1

(resp. f

i;2

) computes the new attribute of the target

(resp. source) of the edge a�ected by q

i

, using the old attributes of both source and

target of this edge.

For each g; g

0

2 (V;W;A), the pair (g

0

; r

0

) is said to be directly derivable from (g; r) in

G | abbreviated (g; r) `

G

(g

0

; r

0

) | if either

1. g

0

= g, none of the productions in }(r) can be applied to the graph g, and r

0

2 '(r)

(we denote this as (g; r) `

N

G

(g

0

; r

0

)), or

2. g

0

�

is obtained from g

�

by applying a graph production q

i

2 }(r); (r

0

; f

1

; : : : ; f

m

) 2

�(r), and the attributes of the nodes a�ected by the application of the graph pro-

duction q

i

to g can be changed by the function f

i

(i.e., they are in the domain of f

i

),

thus yielding g

0

(we denote this as (g; r) `

(Y;f

i

)

G

(g

0

; r

0

)).

If for every graph production in }(r) which is applicable to g

�

, the assigned attribution

function is not de�ned for the attributes under consideration, no further derivation from

the pair (g; r) is possible.
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An attributed graph g

0

is said to be derivable from an attributed graph g in G, if there

exists a sequence of subsequent direct derivations, starting with the pair (g; r

0

), and ending

in (g

0

; r

f

) with r

f

2 R

f

.

A GRASP can easily be described by a control diagram, in which each rule (r :

p; �(r); '(r)) is represented by a node labeled r : p and edges leaving this node; these

are either labeled by Y(es) and the corresponding attribution functions (unless these func-

tions do not a�ect the attributes, in which case we omit them), or N(o), and end in the

nodes representing the rules in �(r) and '(r) respectively. In addition, we use the special

labels begin resp. end to replace the initial resp. the �nal rule.

Example 3.1 Let f be the identity function de�ned on the singleton fcg, where c is some

given attribute value. Let g be the identity function de�ned on A � fcg. Then we can

detect every node having c as attribute value, using the GRASP corresponding to the

control diagram of Figure 4. These nodes are marked with an asterisk in rule m

1

, while

the same rule marks all other nodes with a quote. These quotes are subsequently removed

in rule m

2

.

begin

-

m

1

: f(X;X

�

); (X;X

0

) j X 2 V g

��

?

(Y; f; g)

-

N

m

2

: f(X

0

; X) j X 2 V g

��

?

Y

-

N

end

Figure 4: GRASP detecting a given attribute

4 Mapping GOOD to GRASP

In this section, we describe the simulation of GOOD operations by graph grammars in the

model of GRASPs, by mapping each of the GOOD operations to a GRASP.

The �rst problem is to determine all matchings of a given pattern J with nodes

fu

1

; : : : ; u

n

g in the following way: for each matching e, we add a new node labeled S with
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outgoing edges labeled 1 through n, leading to the nodes e(u

1

) through e(u

n

) respectively.

The simulation of this operation by means of a GRASP is tedious but straightforward,

and hence ommitted. The main idea is to pick a \candidate" matching from the instance

for the nodes u

1

: : : u

n

and then to check the presence of the required edges between the

chosen nodes. If this check fails, we backtrack and undo the last choice. Eventually, a

viable candidate matching for each node is found and marked with an S-node as described

above. The process is then iterated until no more matchings can be found. In the sequel,

we shall denote the GRASP that looks for all matchings of a given pattern J by G

J

. For

illustrations, we refer to Example 5.1 in Section 5.

We now outline how each of the four GOOD-operations can be translated into a corre-

sponding GRASP.

Algorithm 4.1 (Node Addition) Let J be a pattern with nodes fu

1

; : : : ; u

n

g with

labels n(u

i

) = l

i

(1 � i � n) (for simplicity, we assume i 6= j ) l

i

6= l

j

). Let

u

1

; : : : ; u

m

(m � n) be the nodes in the images of which the edges labeled �

1

; : : : ; �

m

should arrive. For a particular matching e, the subgraph isomorphic to J is supposed to

be marked previously by a node s

e

labeled S with outgoing edges (s

e

; k; e(u

k

)); 1 � k � n.

na

7

: f(S

0

; �

j

; l

0

j

;S

0

; �; l

j

) j 1 � j � mg


	

6

Y

-

N

na

8

: f(S

0

; j; l

j

;S

0

; �; l

j

) j m+ 1 � j � ng

6

N


	

6

Y

na

6

: f(K

0

; �

j

; l

00

j

;K

0

; �; l

0

j

) j 1 � j � mg

�




-

Y na

5

: f(K

0

; �; l

0

j

;K

0

; �

j

; l

00

j

) j 1 � j � mg

?

Y

?

N

na

9

: f(S

0

; �)g

-

Y

na

12

: f(K

0

;K)g

$

%

�

N

?


	

6Y

na

4

: f(K;K

0

)g

?

Y

-

N

na

10

: f(S

0

; i; l

i

;S

0

; �; l

i

); (l

0

i

; l

i

) j 1 � i � ng


	

6Y

-

N

na

11

: f(S

0

;K)g

?

Y

na

3

: f(S

0

; j; l

j

;S

0

; �

j

; l

0

j

) j 1 � j � mg

N


	

6

?

Y

begin

-

na

1

: f(S; S

0

)g

-

end

?

Y

Figure 5: GRASP simulating a node addition

Using rule na

3

of the GRASP of Figure 5, we introduce new edges �

j

by relabeling the

corresponding edges leading from the node s

e

to the node e(u

j

) and then, by rule na

5

we
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check whether a new node with label K has to be inserted or not. If no new node has

to be inserted because the subgraph we would insert is already part of the instance (e.g.,

because the desired node addition has already been performed by a previous matching),

we use rules na

7

through na

9

to delete the edges leaving the node s

e

and this node itself.

Otherwise the addition is completed by rules na

10

through na

12

.

Algorithm 4.2 (Node Deletion) For the GRASP for node deletion depicted in Fig-

ure 6, we assume the nodes to be deleted have been marked with an edge labeled 1, leaving

the nodes s

e

representing the matchings e. By rule nd

1

these edges are deleted and the

selected nodes are marked with a prime. Then all edges leaving resp. ending in such a

selected node are deleted by rule nd

2

, and by rule nd

3

the selected nodes are deleted them-

selves. Finally, rules nd

4

and nd

5

eliminate the remaining edges leaving the nodes s

e

as

well as these nodes themselves.

nd

3

: f(l

0

1

; �)g


	

6

Y

-

N

nd

4

: f(S; i; l

i

;S; �; l

i

) j 2 � i � ng


	

6

Y

-

N

nd

5

: f(S; �)g


	

6

Y

-

N

end

nd

2

: f(l

0

1

; �; Y ; l

0

1

; �; Y ); (Y; �; l

0

1

;Y; �; l

0

1

) j � 2W;Y 2 V g


	

6

Y

?

N

nd

1

: f(S; 1; l

1

;S; �; l

0

1

)g


	

6

Y

?

N

begin

-

Figure 6: GRASP simulating a node deletion

Algorithm 4.3 (Edge Addition/Deletion) The GRASPs for edge addition and dele-

tion are quite similar; they only di�er in the single rule which executes the desired edge

operation. We assume the edge to be added resp. deleted in each matching e leads from

the node marked by an edge labeled 1 (leaving the corresponding node s

e

marked S) to the

node which is marked by an edge labeled 2 (also leaving s

e

). In the GRASP of Figure 7

(showing the GRASP for edge addition) the rules 4 and 5 delete the edges labeled 1 and

2 and mark the corresponding nodes, which allows us to apply the desired edge operation

in rule 6 (the GRASP for edge deletion is obtained by interchanging in this rule the role

of � and �). When this rule cannot be applied, it means that the desired edge operation
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has already been caused by another matching, or that the edge already existed (in case

of an addition). After having handled all matchings in this way, we delete the remaining

edges labeled i; 3 � i � n by using rule 2, and �nally by rule 3 we delete the nodes s

e

. Ob-

serve that in order to deal with loops, the GRASP has to be altered slightly. The obvious

changes to the diagram are left as an exercise to the reader.

ea

4

: f(S

0

; 1; l

1

;S

0

; �; l

0

1

)g

-

Y

ea

5

: f(S

0

; 2; l

2

;S

0

; �; l

00

2

)g

-

Y

ea

6

: f(l

0

1

; �; l

00

2

; l

1

; �; l

2

)g

begin

-

ea

1

: f(S; S

0

)g

?

Y

-

N

ea

2

: f(S

0

; i; l

i

;S

0

; �; l

i

) j 3 � i � ng


	

6

Y

-

N

ea

3

: f(S

0

; �)g


	

6

Y

-

N

end

� �

�

�

��

Y;N

Figure 7: GRASP simulating an edge addition

5 Applications

In this section, we illustrate by means of examples on the Opera database introduced in

Section 2, the handling of attributes by GRASPs, and show how matchings of arbitrary

patterns may be marked, as described in the previous section. We also consider the matter

of optimizing GRASP simulations.

For GOOD operations, we use the following simple graphical conventions: patterns are

indicated in plain line, what is added is indicated with bold lines, and what is deleted is

indicated with double lines.

Info

-

composed by

Composer

Mozart

Info

Mozart's work

Info

Mozart's work

-

rel

Figure 8: A Node Addition (left) and Deletion (right)

Example 5.1 Consider the node addition of Figure 8, left. The pattern of this operation

selects all Info-nodes, linked by a composed by-edge to a Composer-node with attribute
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Mozart. For each such node, a new Info-node is added with attribute Mozart's work,

linked to the existing Info-node with a rel-edge. Figure 9 shows the GRASP that marks all

matchings of the given pattern. The following functions are used: f is the identity function

de�ned on the singleton fMozartg, g is the identity function de�ned on A�fMozartg, h is

the constant function mapping all attributes of A to Mozart's work, and � is the function

with empty domain.

begin

-

ma

1

: f(Info; Info

�

)g

-

N

@

@

@

@R

Y

ma

10

: f(Info

��

; Info)g


	

6

Y

-

N

end
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�
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��

)g

6

N
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3

: f(Composer";Composer)g


	

6(Y; f)

6

N

ma

2

: f(Composer;Composer'); (Composer;Composer")g

�

N


	

6(Y;�; g)

?

(Y; f;�)

ma

5

: f(Info

�

; composed by;Composer'; Info

�

; composed by;Composer')g

?

Y

-

N

ma

6

: f(Composer';Composer")g

6Y

ma

7

: f(�; S

0

)g

-

(Y; h)

ma

8

: f(S

0

; �; Info

�

;S

0

; 1; Info

�

)g

-

Y

ma

9

: f(S

0

; �;Composer';S; 2;Composer")g

$

%

�

Y

Figure 9: GRASP marking all matchings of a pattern

We �rst mark an Info-node with one asterisk by rule ma

1

. Then by rule ma

2

we

search for a Composer-node and mark it with one prime if it is attributed Mozart. The

other Composer-nodes are marked with two primes. If the attribute is indeed Mozart,

the pair of functions (f;�) takes care that control shifts to ma

5

, otherwise we stay at

rule ma

2

. If moreover, a composed by- edge leads from the selected Info

�

-node to the

selected Composer-node, the rules ma

7

through ma

9

add a new S-node with the attribute

Mozart's work, and with outgoing edges labeled 1 and 2 to respectively the chosen Info- and

Composer-node. Combining this GRASP with an appropriate version of the GRASP for

node addition of Figure 5, we �nally get the GRASP for the GOOD-operation of Figure 8,

left.

We can optimize the previous solution considerably in a similar way as selections can be

pushed through joins in relational query optimization. Observing that for the node addition

of Figure 8, left, we only have to select all the Info-nodes connected by a composed by-

edge to a Composer-node with attribute Mozart, we get the GRASP of Figure 10. The
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attribution functions in this GRASP are f

2

, which is the identity de�ned on A�fMozartg,

g

2

, which is the identity de�ned on A� (A� fMozartg), f

3

, which is the identity de�ned

on fMozart's workg �A, g

3

, which is the identity de�ned on (A� fMozart's workg)�A,

and h, the constant function mapping all attributes of A to Mozart's work. The \correct"

Info-nodes are marked with an asterisk by rule a

1

(the other Info-nodes are marked with a

prime and are relabeled by rule a

2

). Rule a

3

relabels those Info

�

-nodes already related to

an Info-node attributed Mozart's work by a preceding node addition. Finally, by rules a

4

through a

6

, for each Info

�

-node n a new S-node m is added with attribute Mozart's work,

as well as an edge (n; rel;m).

begin

-

a

1

: f(Info; composed by;Composer; Info

�

; composed by;Composer);

(Info; composed by;Composer; Info'; composed by;Composer)g
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�
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)g


	

6(Y; f

3

; g

3

)

?

N

a

4

: f(Info

�

; Info")g

-

Y

�

N

end a

5

: f(�; Info')g

?

(Y; h)

a

6

: f(Info'; �; Info"; Info; rel; Info)g

6Y

Figure 10: Optimized GRASP

In support of our claim that reorganizing a GRASP on the basis of structural informa-

tion about the patterns of the simulated GOOD operation (as we did when transforming

the combination of the GRASPs of Figures 5 and 9 into the single GRASP of Figure 10)

may imply a relevant performance optimization, we now briey make some considerations

on the time-complexity of GRASPs.

Let n be the number of nodes in the instance graph. Then it can easily be veri�ed that

(using a standard representation for directed labeled graphs) productions in R

N

(V;W )

(a�ecting a single node) have complexityO(n), productions in R

E

(V;W ) (a�ecting a single

edge and the adjacent nodes ) have complexity O(n

2

).
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Applying these observations, it may be veri�ed that the GRASP in Figure 9 has com-

plexity O(n

4

) and therefore also the combination of the GRASPs of the Figures 5 and 9

has complexity O(n

4

), while the single (equivalent) GRASP of Figure 10 has complexity

O(n

2

) only.

In essence, this considerable decrease in complexity is caused by the fact that we are

dealing here with an operation on a simple pattern J (only one edge and its adjacent

nodes), which allows us to search for an edge and its adjacent nodes only instead of choosing

all possible combinations of two nodes and testing all the edges between these two nodes as

has to be done in the general algorithm G

J

for the pattern J . In a similar way, for special

patterns occurring in GOOD operations the corresponding GRASPs can be optimized in

order to increase e�ciency. E.g., for patterns consisting of a chain of edges only, similar

improvements as described above may be obtained.

Other, more heuristic rules may be used in the construction of more e�cient GRASPs

for the execution of GOOD-operations:

� Based on the number of objects per class in the database under consideration (which

is typical statistical information for OODBs), the node set of the pattern of the

GOOD operation may be ordered such that objects of a class with few objects are

looked for �rst. Otherwise, these \rare" nodes would have to be looked for over and

over again, once for each node of a class with numerous objects;

� Another relevant statistical parameter is the expected number of relationships in

which objects from a given class will participate (i.e., the number of edges leaving

from or ending in nodes with a given label). The node set of the pattern should then

be ordered such that nodes for which this number is small, are looked for �rst, which

will minimize the total number of edges to be checked for;

� Similar statistical information may be used in conjunction with the above principle

of optimization to scan for an edge and its adjacent nodes. Applying this principle

implies the need to look for an ordering of the edges (instead of the nodes, as in the

�rst item of this list), which may well be done on the basis of some statistics.
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In conclusion, the translation of the high level GOOD operations into GRASPs allows

the analysis of the complexity of database operations on a much more elementary formal

level, yet without relying on a speci�c physical implementation.

6 Conclusions and Further Research

In this paper, we have shown that the strictly locally operating graph rewriting model of

attributed programmed graph grammars with set productions (GRASPs) is capable of serv-

ing as an implementation platform for high level, set-oriented and deterministic database

operations like those of the GOOD (graph- and object-oriented database) language. More-

over, we have explicated how, argumenting on a formal basis, the performance of GOOD

operations can be optimized by investigating the control ow in the corresponding GRASP

diagrams. Taking into account the results of this paper, the precompiler for GRASPs we

have started to implement will also allow us to build up a prototype for a database man-

aging system based on GOOD operations. This work should be seen in view of ongoing

research at the University of Antwerp (UIA). A mapping of GOOD onto the relational

model and algebra is serving as the basis for a prototype implementation of an actual user

interface, based on GOOD [2, 11]. In our view, as mentioned in the Introduction, the

graph-oriented nature of GOOD makes the choice of a graph-grammar model like GRASP

as an implementation platform more natural.
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