
Atmosphere and Ocean Circulation Simulation

on Massively Parallel Computers

Lex Wolters

�

High Performance Computing Division,

Department of Computer Science, Leiden University,

P.O. Box 9512, 2300 RA Leiden, The Netherlands

Abstract

In this paper we present some results on the implementation of atmosphere and ocean

circulation models on massively parallel computers. These circulation models are enor-

mous computationally demanding tasks and play an indispensable role in climate mod-

elling. Therefore they have an important impact on society.

After a brief introduction on the physics behind the circulation models based on geo-

physical uid dynamics, the di�erences between the simulation of atmosphere circulation

and ocean circulation are outlined. Next we discuss the numerical techniques applied in

the models to solve the partial di�erential equations. Performance results of di�erent

implementations of a simple, theoretical model on parallel architectures are presented, as

well as preliminary results for the implementation of a very computational intensive task

in a numerical weather forecasting model. Finally, ideas are outlined on the development

of a distributed library for the type of calculations in the models concerned.

1 General circulation models

Atmospheric and ocean circulation models describe the circulation of heat, air/water and

chemicals in the atmosphere and world oceans or smaller basins. In coupled models also the

exchange between oceans and the atmosphere is taken into account. These circulations have a

major impact on climate and climate change. The strong relation to the behaviour of climate

means that a computer model designed to predict climate changes, must include the ocean

circulation and mixing, as well as the atmospheric circulation and physics of clouds, radiation

and precipitation. The atmospheric component is relatively well advanced, because of the

economical importance of numerical weather prediction, which started in the 1950s. The �rst

numerical ocean models were developed in the 1970s, so this research area is relatively new,

and as a result lays behind the atmospheric component. Ocean Circulation Modelling and

Climate Modelling are considered as two of the `Grand Challenges' in computational sciences,

as is outlined in a report by the Executive O�ce of the President of the USA [1], and in more

detail in a report by the Committee on Physical, Mathematical and Engineering Sciences of

the National Science Foundation [2]. In Europe the importance of these research areas has

been recognized by the Commission of the European Communities in [3].

�

Support was provided by the Esprit EC Agency under Grant No. APPARC 6634 BRA III.

1

2 Description of the models

2.1 Primitive equations

This section is based on [4] and [5]. We present only a global overview of some theoretical

aspects of circulation modelling, so the reader can get an idea about the kind of physics

behind these models. For more details the reader is referred to [4, 5, 6].

The basis of the general circulation models is stated by the theory of geophysical uid

dynamics. The Navier-Stokes equations are the starting point to create a model. However,

since one wants to concentrate on the essential physics and to make the models not too

complicated, the Navier-Stokes equations are approximated in several ways. By applying the

thin-shell approximation, the hydrostatic assumption, the Boussinesq approximation, and

considering scale analysis, one derives the so-called primitive equations. The exact form of

these equations di�ers depending on the applied approximations. For a global ocean model

they are given by (see e.g., [5]):

two momentum equations:

du

dt

�

uv tan�

a

� fv = �

1

�a cos�

@p

@�

+ F

�

; (1)

dv

dt

+

u

2

tan�

a

+ fu = �

1

�a

@p

@�

+ F

�

; (2)

the hydrostatic equation:

@p

@z

= ��g ; (3)

the continuity equation:

1

a cos�

�

@u

@�

+

@(v cos�)

@�

�

+

@w

@z

= 0 ; (4)

an equation of state:

� = � (T; p; : : :) ; (5)

and a thermodynamic equation:

dT

dt

= f (T; : : :) ; (6)

with in all equations

d

dt

�

@

@t

+

u

a cos�

@

@�

+

v

a

@

@�

+w

@

@z

:

In these equations a is the earth radius,
 the angular speed, � the longitude, � the

latitude, z the height, f = 2
 sin� the Coriolis parameter, and F

�

, F

�

the friction forces.

The unknowns variables are the velocity components u, v, w, the pressure p, the density �,

and the temperature T . For atmospheric models usually a moisture equation is added, while

for ocean models a salinity equation is common, which results in another unknown variable

for each type of model: the moisture � and the salinity S, respectively. If desired this set of

equations can be extended with other equations and their corresponding unknowns. Together

with proper boundary conditions and initial values the equations 1{6 form the minimal set

used in physical oceanography or meteorology for global circulation models.

2

2.2 Solving partial di�erential equations

The primitive equations are a set of partial di�erential equations (PDEs). To solve PDEs

numerically one can choose between three methods:

I. Finite di�erence methods (FDM). These methods are very important for ocean models,

and are applied in atmospheric models too.

II. Spectral methods (SM). They are often implemented in global atmospheric models. The

complex geometry of the world ocean prevents a selection of suitable basis functions for

these methods. So they are less appropriated for ocean modelling.

III. Finite element methods (FEM). The big advantage of these methods is that the res-

olution can be increased at regions of interest. However, the implementation of these

kind of models is time-consuming and non trivial. First attempts of formulating at-

mospheric and ocean models in terms of �nite element methods appear gradually, and

it is expected that these methods will become more important in the near future.

At the moment we mainly concentrate on FDM, because they are applied both in mete-

orology and in physical oceanography. In FDM space and time are divided in discrete space

and time intervals (�x and �t, respectively). In this way one obtains a 3-dimensional grid in

space, and then the method consists of updating the variables associated with the gridpoints,

where the derivatives are approximated by �nite di�erences.

2.3 Subgrid processes

The equations resulting from FDM describe a model for grid scale motion and larger. However,

nature contains also processes evolving faster than the time step �t or on a smaller scale than

the space interval �x. These processes are called subgrid processes and they are too important

be neglected. One obvious way to remove this processes is to increase the resolution of the

model. Unfortunately in general this is impossible for computational reasons. As a result

one has to accept the so-called parameterization assumption, which assumes that the e�ect of

such processes can be expressed entirely in terms of the large scale variables. Two additional

problems related to this assumption are:

1. There exists no simple truncation at these scales. This means that in contrast with

numerical analysis, where in the limit of �x ! 0, convergence to the exact solution

can be proven, this does not hold for the parameterization of subgrid processes. In the

limit �x ! 0 the parameterization can change the convergence rate or even prevents

convergence.

2. The separation of scales is not clear. There exists no clear division between the processes

that are resolved by the grid and those that are not.

These problems make the correct inclusion of subgrid processes an important and essential

aspect of the numerical modelling of general atmospheric and ocean circulation models.

2.4 Di�erences in atmosphere and ocean modelling

So far we did not discuss the di�erences between atmosphere and ocean modelling. The main

di�erences can be summarized by the following items:

3

� The atmosphere includes more physical processes (e.g., cloud physics).

� The range of spatial scales of processes in the oceans is larger than those in the at-

mosphere: O(10)�O(1000) km for the ocean compared to O(100)�O(1000) km in the

atmosphere.

� The total time scales of the processes taken place vary in the ocean from weeks to

centuries, in the atmosphere from hours to years.

However, both areas are computationally intensive. As an illustration we present some

numbers of the work by Andrich et al. [7]. They estimated the computational costs of a study

of the dynamics of the climate. The general oceanic circulation model in this study was made

up of 400 � 400 � 16 gridpoints. For the general atmospheric circulation they used a model

with 64� 50� 11 gridpoints. The time step was 10 minutes for the atmospheric model, while

for the oceanographic model 1 hour was su�cient. These models took approximately 40 hours

of CPU per year's simulation on one processor of a Cray-2 for the ocean and 10 hours for

the atmosphere. The memory requirements were 150 Mwords and 4 Mwords, respectively.

Despite the fact that one deals here with relatively coarse resolution models, it is clear how

tremendous the computational problems already are.

2.5 Massively parallel computing

So the scales in space and time of the circulation models require an immense computer power.

With the currently available supercomputers it is not possible to run ocean models and/or

climate models with the required resolutions in a reasonable time. Also, producing faster

chips will �nally reach the physical limits. Therefore, one has to switch to massively parallel

computing. First steps in this directions for numerical weather forecasting can be found in [8].

Finite di�erence methods provide in principle an ideal way to use the massively parallel

computers e�ciently. This idea is not new: already in 1922 L.F. Richardson described a

way to make a numerical weather forecast by means of 64,000 human computers [9]. An

e�cient implementation of �nite di�erence methods can be achieved by the technique of

data decomposition. However, the e�ects of a choice between explicit (nearest neighbour

communications) versus implicit (faster convergence) solutions and iterative methods versus

direct methods are not clear.

3 Parallel machines

In this section we will sketch briey the two parallel machines used in our investigation.

3.1 MasPar MP{1 system (SIMD)

The MasPar MP{1 system has a SIMD architecture and consists of the following parts [10]:

{ The Processor Element (PE) array, which includes up to 16,384 PEs. Each PE is a

register-based RISC processor with 16 or 64 Kbyte data memory. They can perform

both 32 and 64-bits oating point arithmetic. The peak performance of a fully con�gured

MP{1 system is 26,000 Mips, and 550 Mops (64-bits) or 1,200 Mops (32-bits).

4

{ The Array Control Unit (ACU), which contains a 12 Mips RISC processor for operations

on scalar data. Its main task is instruction decode and broadcast to and within the PE

array.

{ A Unix Subsystem or Front End acting as an interface to MP{1, and as a host for

the MasPar Programming Environment (MPPE), compilers (i.e., Fortran90), and other

tools.

{ A high-speed I/O Subsystem.

3.2 Transputer network

Our MIMD platform is based on the transputer [11]. This is a complete computer on one

chip with a processing unit, 4Kb static RAM, two timers, four DMA bidirectional links, a

memory interface for up to 4 Gbyte external memory, a performance of 1.5 Mops (for the

T800) and 5{10 Mips, a communication mechanism based on the rendez-vous principle, and

internal (on chip, virtual) and external (o� chip, physical) channels.

4 Shallow water model

To investigate the suitability of parallel computing for atmospheric and ocean circulation

models, we implemented a simple, but representative model on a transputer network. The

FORTRAN code for this model is used as a benchmark program in numerical weather pre-

diction. It is written by P. Swarztrauber at the National Center for Atmospheric Research

(NCAR), Boulder, USA. The code is very simple and primitive, and based on a �nite di�er-

ence model for the shallow water equations [12]. The model is typical for computations found

in atmospheric and ocean models.

4.1 Description of the model

The shallow water model is a simpli�cation of the real world, in which the atmosphere or

ocean is represented as a one layer of gas or uid with a constant and uniform density. The

height or thickness of the layer is given by h(x; y; t), where the surface of the earth or sea

bottom is equal to h

B

(x; y). Furthermore the layer is assumed to be at instead of being

spherical. For this model one can derived (see e.g., [6]) the so-called shallow water equations

given by:

@u

@t

+ u

@u

@x

+ v

@u

@y

� fv = �g

@h

@x

; (7)

@v

@t

+ u

@v

@x

+ v

@v

@y

+ fu = �g

@h

@y

; (8)

@h

@t

+

@

@x

f(h� h

B

)ug+

@

@y

f(h� h

B

)vg = 0 ; (9)

with as Coriolis parameter f = 2
, the thickness of the layer given by h� h

B

, and the other

variables as in section 2.1. If the characteristic value for the thickness is equal to D and

the characteristic length scale for the horizontal motion is equal to L, the model is valid if

� =

D

L

� 1.

5

The benchmark developed by P. Swarztrauber is a further simpli�cation. Firstly, the

Coriolis term is neglected. Secondly, the domain is a simple rectangle with a � x � b and

c � y � d. Finally, the benchmark model has periodic boundary conditions. This means that

the equations 7{9 can be rewritten as:

@u

@t

� ZV +

@H

@x

= 0 ; (10)

@v

@t

+ ZU +

@H

@y

= 0 ; (11)

@P

@t

+

@U

@x

+

@V

@y

= 0 ; (12)

where P = p=g, U = Pu, V = Pv, H = P +

1

2

(u

2

+ v

2

), Z = �=p, and � =

@v

@x

�

@u

@y

. It should

be clear that this �nal model is just a theoretical model concentrating more on the types of

calculations than on the physics.

4.2 Finite di�erence

For a �nite di�erence description one starts to divide the rectangular domain (a � x � b,

c � y � d) into gridpoints by de�ning x

i

= i�x+a with i = 0;

1

2

; 1; � � � ;M+1, and y

j

= j�y+b

with j = 0;

1

2

; 1; � � � ; N + 1, where �x = (b � a)=(M + 1) and �y = (d � c)=(N + 1). The

half-valued numbers are necessary, since the grid is a staggered grid, which means that not

all variables are associated with each gridpoint [13]. The reason for staggering the grid is

to remove the computational mode in the �nite di�erence formulation. As an example the

equation U = Pu is transformed to U

i+

1

2

;j

=

1

2

(P

i+1;j

+ P

i;j

)u

i+

1

2

;j

.

The time di�erence scheme applied in this model is a leap-frog scheme plus an additional

time �lter.

To spread the work over the transputers we applied the technique of data decomposition.

In this way each transputer is running the same program on di�erent data, where the total

data is divided equally over all transputers.

4.3 Structure of the program

The global structure of the program is shown in �gure 1. We have implemented this program

on the transputer network. The parts where the periodic continuations are carried out and

where the copy routine is called, require communications between the transputers. The others

parts contain only local, on chip calculations.

Our implementation of this program exists of 10 processes per transputer: the actual DYN

process, a router, four multiplexers, and four demultiplexers. See �gure 2 for a schematic dis-

play of these processes on a transputer. The (de)multiplexers are necessary to share the

physical link between the communication channels of di�erent processes on neighbouring

transputers. The router process is responsible for global communication between the trans-

puters via the (de)multiplexers, in particular for the data distribution and data collection

through the network. Finally, the DYN process performs the actual calculations, and is

able to communicate with the neighbouring DYN processes via the (de)multiplexers in case

of nearest neighbour communications. For all other types of communication DYN uses the

router process.

6

Program Shallow ;

Initialization ;

While (nstep <= max_steps) Do

Compute U, V, Z, & H from u, v & P ;

Periodic continuation (U, V, Z, H) ;

Compute unew, vnew & Pnew from

uold, vold, Pold, U, V, Z & H ;

Periodic continuation (unew, vnew, Pnew) ;

Update old values from old, current and new values ;

Copy new values to current values

End While.

Figure 1: Global structure of the parallel shallow water benchmark program.

4.4 Results

In table 1 we show some results of the implementation of a 64� 64 grid on a network of 4� 4

transputers. The calculations are performed with 64-bit precision. The timing are only based

on the pure calculations. The collection of the calculated results is not implemented in our

model. From table 1 we see that the obtained speed-ups vary from 7.5 to 14.4 depending

on the scheduling of the processes and the organisation of the communication steps. The

implementation methods II and III contain multiplex and demultiplex processes running with

high priority. The high priority of the (de)multiplex processes (a process on a transputer can

have either a high or a low priority) guarantees that the communication steps are performed

as fast as possible, since as soon as the two necessary processes (a multiplex process on

one transputer and a demultiplex process on the second one) are ready to send or receive a

message, respectively, this will happen. The other processes with low priority cannot interrupt

these high priority processes. The e�ect of neglecting this issue can be seen in table 1 from

the disappointing result for method I.

In our implementation of the benchmark program the communication steps between trans-

puter A and transputer B exist always of a several pairs of send and receive commands: a

Table 1: Some results of the Shallow Water benchmark (64 � 64 grid)

on a network of 16 transputers. For the explanation of the di�erent

methods, see text.

Method 1 T800 16 T800 Speed up

I. all processes 1200 s 159 s 7.5

same priority

II. mux and demux 1195 s 93 s 12.4

high priority

III. as II, but with 1195 s 83 s 14.4

`block' send and receive

7

MUX DMX

MUX

DMX

DMX MUX

DMX

MUX

�

�

�

�

�

�

DYN

ROUTER

6

?

6

�

�

�3Q

Q

Qs

?

l

l

l

6

�

�

�=

@

@

@R

H

H

Hj

�

�

�	

�

�

��

6

?

�

�

��

H

H

HY

@

@

?

�

��

�

�

�*

@

@

@I

J

J

Ĵ

�

�

�

�+Q

Q

Qk

J

J

J]

�

south

north

west east

Figure 2: The ten processes on one network transputer.

send and a receive on A and B, respectively, should be followed by a receive and a send on A

and B, respectively. The sequence of these pairs of sends and receives di�er in the methods

II and III presented in table 1. In method II a send on transputer A to transputer B is

followed immediately by a receive on transputer A from transputer B, followed by a second

pair of send/receive to/from transputer C, and so on till the complete communication step is

�nished. However, in method III we perform within one communication step �rst all the nec-

essary sends or receives on one transputer, followed by all receives or sends, or vice versa. So

one creates a block of sends and a block of receives. This organisation of the communication

results in an improvement of the e�ciency by 10%, going up from 80% to 90%.

We have also implemented other methods, which are not described in this paper, and each

of them resulted in a di�erent speed-up.

As a conclusion it follows that a very e�cient implementation of this benchmark program

on a transputer network can be achieved, but that this depends on several non-trivial factors.

5 HIRLAM

In this section we present some results on the implementation of a real production code on

parallel systems. This code is a numerical weather forecast program called HIRLAM.

We started a collaboration between Leiden University and the Royal Netherlands Mete-

orological Institute (KNMI) to see if their weather forecast model for the near future can

be implemented e�ciently on massively parallel computer systems. In this section we will

present some �rst results on the implementation of a very computational intensive component

in the HIRLAM model on a transputer network and on a MasPar system.

8

Program HIRLAM ;

Read data ;

Initialization ;

For each time step

DYN; { dynamical part }

PHYS; { physics part }

6 hourly input of new boundary data

End For ;

Output results.

Figure 3: Global structure of HIRLAM.

5.1 Some properties of HIRLAM

HIRLAM [14] stands for High Resolution Limited Area Model and is the result of a develop-

ment project aiming at a state-of-the-art analysis and forecast system for numerical weather

forecasts up to +48 hours. The countries participating in this project are Denmark, Finland,

Iceland, Ireland, the Netherlands, Norway, and Sweden. HIRLAM will be or is already used

for routine forecasting at several of the participating weather services. It is a production code

running on several machines/architectures.

As an example of the computational demands we present some numbers of the model

at KNMI. This model uses a 92 � 81 � 16 grid. The applied time step is 6 minutes, and

the goal is to produce a 36 hours forecast. At the moment it takes 21 s per time step on a

Convex C210, which results in 2 hours for the complete forecast. Taken into account that

KNMI has to produce each 6 hours a new forecast, this leaves only 4 hours for analyzing the

observations (the input of the forecast model) and making a actual forecast from the output

of the numerical model. It should be remarked that the analysis part of the observations is

at least as computational demanding as the forecast, but is not taken into account in our

investigations until now.

5.2 The discrete HIRLAM model

The discrete HIRLAM model is based on �nite di�erence methods. The horizontal grid

is a so-called staggered Arakawa C-grid [13]. As space di�erence scheme a second order

centered space di�erencing is applied, while for the time di�erence scheme a second order

leap-frog time di�erencing is used. In this last scheme the technique of explicit splitting is

implemented, while a semi-implicit correction is optional together with an Asselin time-�lter.

The boundaries are treated by a form of boundary relaxation.

In �gure 3 we present the global structure of HIRLAM. The routine DYN performs one

time step in solving the primitive equations and takes about 30% of the total execution time.

The other routine PHYS deals with all subgrid processes and consumes nearly 50% of the

total time. The variables at one gridpoint in DYN mainly depends on the variables at the

other gridpoints in the horizontal plane. For the variables in PHYS the dependency is mainly

in vertical direction. Since PHYS is more time consuming than DYN the most natural way

to decompose the data is in the horizontal plane. This will minimize the required commu-

nications in the most time consuming routine PHYS. On the other hand the decomposition

9

results in more communications in DYN, which makes this routine more interesting from a

computational point of view. Therefore we will concentrate on DYN in this paper.

As said before DYN performs one time step in solving the primitive equations. It is a

64-bits precision routine written in Fortran77. For a 50� 50� 16 grid it has to perform � 12

Million oating point operations.

5.3 Preliminary performance results

In this section we present some preliminary results for the implementation of the DYN routine

on the transputer network and the MasPar system.

We start with the results for the transputer network, which is the same network as de-

scribed in section 3.2. Analyzing the DYN routine one can observe that all calculated variables

are a function of a set input variables. As a result during initialisation one can distribute the

values of the input variables on the borders of each transputer to some extra bu�ers of the

neighbouring transputers and perform the necessary calculations on these bu�ers too. In this

way the number of communications decreases, while the number of computations increases.

The balance between these numbers has to be found.

Table 2 shows the �rst results obtained by adding the extra bu�ers. If we take into

account only the pure calculations we obtain a speed-up of 7.5 on 16 transputers compared

to 1 transputer. At �rst sight this seems to be a disappointing result. However, due to

memory limitations of the transputer it was only possible to use a relative small grid size

(12 � 12 � 16 gridpoints). This means that each transputer has a local grid of 3 � 3 � 16

points. Since each transputer needs two extra bu�ers the maximum theoretical speed-up is

given by

3�3

3�3+2�3

� 16 = 9:6. The reason that this number is not achieved, is caused by the

fact that in our implementation still some communication step are involved, because some

variables need two extra boundaries for each border, which would be a little bit overdone for

the small grid size.

The second result in table 2 shows that the distribution of data over the network during

initialisation and the collection of data (the output results) counter nearly all the gain obtained

during the pure calculations. Fortunately, in practice it will not be necessary to collect the

results each time step. In a typical case one needs the calculated results once each ten time

steps. This results in a total speed-up of 5.0 (see table 2).

As a last point concerning the implementation on transputers, we want to emphasize the

fact that the presented results are preliminary. Our research on this topic is still going on at

the moment. We have implemented a version with all communications included, so without

Table 2: Preliminary performance results for the implementation of the

DYN routine with a 12 � 12 � 16 grid on a 4 � 4 transputer network.

See text for the explanation of the di�erent speed-ups.

Speed up (16 T800s)

pure calculations 7.5

1 step + data 1.25

distribution/collection

10 steps + data 5.0

distribution/collection

10

the extra bu�ers. This makes it possible to �nd the balance (if it exists) between communi-

cations and extra computations. Furthermore, the grid sizes and number of processors have

been varied. Finally, a more detailed performance analysis has been made. All these options

show that an e�cient implementation depends on many non-trivial issues.

The DYN routine has been implemented on a MasPar system too. The MasPar system which

we used, consists of 4K processors with 4Kbyte memory each. As a front-end a DEC sta-

tion 5000/200 was installed. The MasPar Fortran compiler and operating system versions

were 1.2.2 and 1.2.35, respectively. Utilized software tools were the MasPar Programming

Environment (MPPE) for execution, debugging and pro�ling, and the Vast-II compiler for

transformation from Fortran77 to Fortran90 source code. The last tool is important, since

only parts of the code written in Fortran90 vector syntax are executed in parallel on the

PE-array. The other parts run sequentially on the front-end.

We will now discuss some results. Firstly, the actual performance achieved is � 35 Mops

for a 50�50�16 grid. Since only 50�50 processors are e�ectively utilized (the variables in the

vertical direction are all processed by the same processor element), the theoretical maximum

performance for a 4K processor machine in 64-bits precision is given by 137:5 �

50�50

4096

=

84 Mops. Taken into account this maximum theoretical performance, the obtained 35 Mops

means an e�ciency of about 42%, which is typical for routines extracted from real applications

running on MasPar systems (average between 40%{60%).

Secondly, one could ask what can be gained by connecting the MasPar system to the front-

end, a DEC station, which is already a fast workstation. The obtained speed-up is 15 � 16

using the MasPar compiler. Compiling the program with the DEC Fortran77 compiler on the

front-end instead of the MasPar compiler reduces the speed-up to 9� 10.

Finally, an important topic is the location of the data. On the MasPar system the data

arrays are placed either on the front-end or on the back-end. The location is speci�ed on a

compiler directive given by the user, or automatically determined by the compiler. In the

latter case the compiler looks for Fortran90 syntax. If the data array is used in Fortran90

vector syntax, the location of the array will be on the back-end. If no Fortran90 vector

syntax is applied for the array, it is placed on the front-end. In case an array is placed on the

front-end in one routine and on the back-end in another routine, it has to be copied between

front-end and back-end, when the �rst routine calls the second one. And the array will be

copied back when the second routine returns to the �rst one. This is called sloshing and can

reduce the e�ciency dramatically: the speed-up obtained by the parallel computations can

be vanished completely or even turned into a speed-down.

Currently we are porting the complete HIRLAM code to the MasPar system. In the near

future other compute platforms will be investigated for the implementation of the HIRLAM

model, but also for porting the GFDL Modular Ocean Model (MOM) [15]. MOM is a result

of a collaborative e�ort at the National Oceanographic and Atmospheric Administration's

Geophysical Fluid Dynamics Laboratory in Princeton, New Jersey, USA. MOM is a primitive

equation general ocean circulation model intended to be a exible tool for exploring ocean

and coupled air-sea applications over a wide range of space and time scales.

11

6 Distributed libraries

The research described above should not only result in e�cient implementations of atmosphere

and ocean models on di�erent parallel architectures, but moreover in the creation of so-called

distributed libraries. The last decade a dramatic increase of vector and parallel architectures

could be observed. To simplify the creation of e�cient algorithms on these di�erent architec-

tures computational primitives have been developed like the basic linear algebra subroutines

(BLAS): BLAS1, BLAS2, and BLAS3 [16]. Recently the BLAS 3 standard was fully exploited

in the de�nition of the LAPACK library [17].

The arrival of parallel distributed memory architectures increased the complexity of de�n-

ing numerical libraries which can be e�ciently exploited by these architectures. In fact it is

well-known that just a few complete application codes are ported to these new architectures,

because of the added complexity of developing distributed memory programs. To overcome

the burden of developing application programs for these architectures one could make use

of restructuring compilers [18], shared virtual memory support for distributed memory ma-

chines [19], annotations for explicit data distribution [20, 21], and problem solving environ-

ments to provide a higher level of abstraction for expressing problem instances [22]. Several

research projects deal with one or more of these topics. Beside these tools to develop new

application packages one needs libraries to ensure easy portability of the codes. Also some of

the above mentioned tools, e.g. restructuring compilers and problem solving environments,

are depended upon these libraries.

It is our belief that for speci�c application areas larger grain computational tasks need to

be de�ned and characterized in order to provide the means for achieving e�cient implementa-

tions on parallel distributed memory architectures. Therefore, the main topic of our research

is to identify the actual granularity needed for libraries so that an e�cient implementation

across a wide variety of architectures can be ensured. This involves a detailed study into the

application areas as well as an extended experimentation of the e�ciency of the developed

library routines on the various architectures available and the dependence of each of these

library routines on the context from which they are called. An example of the latter is formed

by the occurrence of a call to a library routine which manipulates the same datastructure as a

previous called library routine, but requires a di�erent data distribution scheme. In this case

it has to be investigated whether the granularity of the library is high enough to compensate

for the overhead of a redistribution of the data or whether another library routine should be

called to ensure overall e�ciency of the code. By starting from an application area directly,

our research e�ort can be seen as the counterpart of an e�ort which is underway in the parallel

numerical algorithm community to group numerical algebra routines together [23, 24], so that

e�cient implementations can be devised. Both ways form starting points for programming

environments and later on for problem solving environments.

References

[1] Executive O�ce of the President: O�ce of Science and Technology, The High-

Performance Computing Initiative, September 1989.

[2] Committee on Physical, Mathematical, and Engineering Sciences, Grand Challenges:

High Performance Computing and Communications, National Science Foundation, Wash-

ington, 1991.

12

[3] Commission of the European Communities, Report of the EEC Working Group on High-

Performance Computing, Geneva, 1990.

[4] Mark A. Cane, Introduction to Ocean Modeling, in [25].

[5] A.J. Semtner Jr., Finite-Di�erence Formulation of a World Ocena Model, in [25].

[6] Joseph Pedlosky, Geophysical Fluid Dynamics, second edition, Springer-Verlag, New

York, 1987.

[7] Patrick Andrich, Gurvan Madec, and Didier L'Hostis: Performance Evaluation for an

Ocean General Circulation Model: Vectorization and Multitasking, in proceedings 1988

International conference on supercomputing, ACM, St. Malo, France, July 1988, pp 295{

302.

[8] G.-R. Ho�mann and D.K. Maretis (editors), The Dawn of Massively Parallel Process-

ing in Meteorology, Proceedings of the 3rd Workshop on Use of Parallel Processors in

Meteorology, Springer-Verlag, Berlin, 1990.

[9] L.F. Richardson,Weather Prediction by Numerical Process, Cambridge University Press,

Cambridge, 1922.

[10] MasPar, MasPar MP{1 Hardware Manuals, July 1992.

[11] INMOS, Transputer Reference Manual, 1986.

[12] R. Sadourny, The Dynamics of Finite-Di�erence Models of the Shallow-Water Equations,

Journal of the Atmospheric Sciences 32 (1975) 680-689.

[13] A. Arakawa, Design of the UCLA General Circulation Model, Department of Meteorol-

ogy, University of California, Los Angeles, Technical Report No. 7, 1972.

[14] P. Kallberg (editor), Documentation Manual of the Hirlam Level 1 Analysis-Forecast

System, June 1990.

[15] R. Pacanowski, K. Dixon, and A. Rosati, The G.F.D.L. Modular Ocean Model Users

Guide version 1.0, GFDL Ocean Group Technical Report #2, Geophysical Fluid Dy-

namics Laboratory, Princeton, 1991.

[16] J. Dongarra, J. Bunch, C. Moler, and G.W. Stewart, LINPACK User's Guide, SIAM

Publications, Philadelphia, 1979.

[17] J. Demmel, LAPACK: a Portable Linear Algebra Library for High-Performance Com-

puters, Concurrency: Practice and Experience, vol. 3(6) (1991), 655{666.

[18] H. Zima, and B. Chapman, Supercompilers for Parallel and Vector Computers, Frontier

series, ACM Press, New York, 1991.

[19] T. Priol, and Z. Lahjomri, Trade-o�s Between Shared Virtual Memory and Message-

passing on an iPSC/2 Hypercube, Technical Report 637, IRISA, 1992.

[20] E. Paalvast, A. Gemund, and H. Sips, A Method for Parallel Program Generation with

an Application to the Booster Language, in proceedings of the 1990 ACM Conference on

Supercomputing, ACM Press, 457{469.

13

[21] Proceedings of the High Performance Fortran Forum, Houston, Texas, January 27{28,

1992.

[22] E. Houstis, J. Rice, and T. Papatheodorou, //Ellpack: An Expert System for the Parallel

Processing of Partial Di�erential Equations, Math. and Comp. in Simulation, 31 (1989),

497{507.

[23] A.T. Chronopoulos, and C.W. Gear, s-Step iterative methods for symmetric linear sys-

tems, J. on Comp. and Appl. Math., 25 (1989), 153{168.

[24] J. Dongarra, I. Du�, D. Sorensen, and H. van der Vorst, Solving Linear Systems on

Vector and Shared Memory Computers, SIAM Publishers, 1991.

[25] James J. O'Brien (editor), Advanced Physical Oceanographic Numerical Modelling, Pro-

ceedings, NATO ASI Series, Reidel Dordrecht, 1986.

14

