
Compilation Techniques for Sparse Matrix Computations

�

Aart J.C. Bik and Harry A.G. Wijsho�

High Performance Computing Division

Department of Computer Science

Leiden University

P.O. Box 9512, 2300 RA Leiden

ajcbik@cs.leidenuniv.nl and harryw@cs.leidenuniv.nl

Abstract

The problem of compiler optimization of sparse codes

is well known and no satisfactory solutions have been

found yet. One of the major obstacles is formed by

the fact that sparse programs deal explicitly with the

particular data structures selected for storing sparse

matrices. This explicit data structure handling ob-

scures the functionality of a code to such a degree that

the optimization of the code is prohibited, e.g. by the

introduction of indirect addressing. The method pre-

sented in this paper postpones data structure selection

until the compile phase, thereby allowing the compiler

to combine code optimization with explicit data struc-

ture selection. Not only enables this method the com-

piler to generate e�cient code for sparse computations,

also the task of the programmer is greatly reduced in

complexity.

Index Terms: CompilationTechniques, Optimiza-

tion, Program Transformations, Restructuring Com-

pilers, Sparse Computations, Sparse Matrices.

1 Introduction

A signi�cant part of scienti�c codes consists of sparse

matrix computations which show notoriously bad e�-

ciency on today's supercomputers. Mostly only a small

fraction of the computing power of these computers

can be utilized. There are many reasons for this. First,

sparse matrix computations induce irregular data ac-

cess which can signi�cantly reduce memory bandwidth

and cache utilization, e.g. spatial locality cannot al-

ways be exploited as e�ciently. Secondly, the amount

�

Support was provided by the Foundation for Computer Sci-

ence (SION) of the Netherlands Organization for the Advance-

ment of Pure Research (NWO) and the EC Esprit Agency DG

XIII under Grant No. APPARC 6634 BRA III. This paper is

an extended abstract of [2].

of possible reuse of data (temporal locality), is limited

due to the fact that many operations are nulli�ed mak-

ing the ratio computations performed over the size of

data sets very small. Not only prevents this data lo-

cality optimizations, also the communication overhead

when these codes are executed on distributed memory

computers can be substantial.

The third problem is caused by the fact that sparse

matrices need to be represented in a compact way so

that the storage requirements and computational time

are kept to reasonable levels. This causes the represen-

tation of a sparse code in either FORTRAN with the

occurrence of indirect addressing or in another lan-

guage with pointer structures to be very distorted.

This is probably the most important problem of the

ones listed above, because it does not only compli-

cate software maintenance and the e�ort of produc-

ing sparse computation codes, but also most compiler

optimizations get disabled.

The latter problem has been recognized for a long

time now and there have been many e�orts to over-

come this problem. Most of the methods proposed

in the past rely on pre{evaluation of the index sets

of indirect addressed loops [8], possibly followed by

reordering of the index set [9]. A problem of these

methods is that the data structure as selected by the

programmer cannot be changed. As di�erent architec-

tural features might favor di�erent data structures for

sparse matrices, the code will stay ine�cient regard-

less of the optimizations performed if the sparse code is

not speci�cally targeted for the architectural features

of a particular machine. So, in e�ect, to overcome the

problem of sparse matrix computations the compiler

should not only be able to perform program transfor-

mations but also transformations on data structures

themselves.

In order to tackle this sparse data structure prob-

lem, examination of the following generic de�nition

is useful: sparse computations are computations that

compute on sparse data structures and sparse data struc-

tures (i.e. sparse matrices) are data structures that are

logically contained in enveloping data structures (i.e.

dense matrices). The underlying problem for sparse

computations now is where to deal with the fact that

1

only parts of the enveloping data structures are com-

puted on. The common approach is to deal with this

at the programming level. However, it is also possi-

ble to deal with this issue at a lower level, i.e. at the

compilation level.

This implies that the computation is de�ned on en-

veloping data structures, i.e. dense matrices, and that

the compiler transforms the code to execute on sparse

data structures. This has the advantage that the com-

piler does not need to extract program knowledge from

an obscured code, but is presented with a much cleaner

program on which regular data dependence checking

and standard optimizations can be performed. An-

other advantage is that the compiler performs the �nal

data structure selection, possibly in combination with

standard program transformations if this selection can-

not be resolved e�ciently. Saving the initial program

de�ned on the enveloping data structures enables the

compiler to retarget the same code to other machines.

A user de�ned annotation is used to identify which

of the declared dense data structures of the program

are actually sparse. This annotation only needs to oc-

cur in the declarative part of the program and as such

is not intrusive. The compiler can also prompt the

programmer with the data structures declared in the

program and inquire explicitly about the sparsity of

each of them. After the sparse data structures are

identi�ed, the compiler might need speci�c informa-

tion about the sparsity structure of these data struc-

tures, e.g. the density or bandwidth, to make e�-

cient data structure selection. This can be obtained

by interactive inquiries, user de�ned annotation, or by

automatic evaluation of these characteristics using a

library function which reads the sparse data structure

from �le, and performs the necessary statistics. Note

that if sparse data structures are on �le then speci�c

input/output routines have to be inserted in the code.

In this paper, a short outline of the data struc-

ture selection and transformation method as described

in [2] is given. This method is based on a bottom-up

approach and consists of a three phase process. In the

�rst phase the instructions in the code are identi�ed

which will be a�ected by the sparsity of data struc-

tures and transformations are applied to make fully

use of these statements. In the second phase the data

structure selection is performed and con
icts are re-

solved. In the third phase the actual transformations

are performed to generate the resulting code.

The paper is organized as follows. In section 2 some

background is given. In section 3, a small description

of the bottom-up approach is presented which is fur-

ther elaborated in section 4 with an example. Many

details have been omitted. For a more comprehensive

description see [2].

2 Preliminaries

In this section we present some notational conventions

and terminology.

2.1 Sparse Matrices

A dense m � n matrix A is de�ned as a set of m � n

elements a

ij

, where (i; j) 2 I

A

� J

A

(the index set

of A), I

A

= f1; : : : ;mg and J

A

= f1; : : : ; ng. If many

elements are zero, the matrix is said to be sparse. A

sparse matrix can be de�ned by its nonzero structure:

Nonz(A) = f(i; j) 2 I

A

� J

A

ja

ij

6= 0g. The size of this

set is the number of nonzero elements.

For a sparse matrix A sparsity can be exploited to

save storage requirements by only storing the nonzero

elements. Storage required to store the numerical val-

ues is called primary storage, while storage that is

necessary to reconstruct the underlying matrix is re-

ferred to as overhead storage. In some cases, it

is practical to store some zeros too, since usage of

a simpler storage scheme with less overhead storage

might compensate for the increase in the amount of

primary storage and results in less run-time overhead.

Elements that are stored explicitly are called entries.

The set E

A

with Nonz(A) � E

A

� (I

A

�J

A

) indicates

the indices of the entries. Therefore, 8

(i;j)2(I

A

�J

A

)nE

A

:

a

ij

= 0 necessarily holds. If the maximum nonzero

structure of A can be determined at compile-time, E

A

can be chosen accordingly and a static data structure

for A can be used. If E

A

changes during program exe-

cution, a dynamic data structure is required to handle

the insertion of a new entry (creation) and the dele-

tion of an entry that becomes a zero element (can-

cellation). In the case of LU-factorization the term

�ll-in is used to refer to creation. Since some problems

are only feasible if compact storage is used, the storage

requirements of the data structure must be O(jE

A

j).

2.2 Indexed Statements

A FORTRAN-like language, extended with mathemat-

ical constructs, is used throughout this paper to illus-

trate analysis and transformations on the source code.

The following construct, for example, is used to indi-

cate a loop, where the loop-control variable I iterates

over all values in execution set V . The execution or-

der is speci�ed by the natural ordering, unless stated

otherwise. In this manner, it is possible to deal with

an irregular stride.

DO I 2 V

S

1

(I)

S

2

(I)

ENDDO

Statements that appear in a loop body at nest-

ing depth d are called indexed statements of de-

gree d, and are denoted S(I

1

; : : : ; I

d

). Such statements

2

have di�erent instances, where each instance is ob-

tained by substitution of a corresponding value for ev-

ery surrounding loop-control variable. The concept of

static dependences [7, 8, 13], formed by dependences

on statement instances, is used where required.

3 Data Structure Selection and

Transformation

The computation in the original program is de�ned on

a two dimensional array REAL A(M,N) as enveloping

data structure for every sparse m � n matrix A. The

kind of statements in this dense program that can ex-

ploit sparsity to save computational time can be iden-

ti�ed with the following observation:

Observation: Instances of statements

where a zero is assigned to a non-entry or

where an arbitrary variable is updated with

a zero can be eliminated.

We will exploit this observation for zeros that result

from constants or sparse data structures. Consider,

for example, the following fragment, in which a sparse

matrix A is used. The nonzero structure of A is given,

in which every `x' indicates an entry:

DO I = 1, 3

DO J = 1, 3

S

1

: ACC = ACC + A(I,J)

S

2

: A(I,J) = A(I,J) * 2.0

ENDDO

ENDDO

A 1 2 3

1 x x

2 x

3 x

It is clear, that only the following statement instances

need to be executed, since S

1

updates a variable with

elements of A, while S

2

manipulates elements of A re-

spectively:

S

1

(1; 1) : ACC = ACC + A(1,1)

S

2

(1; 1) : A(1,1) = A(1,1) * 2.0

S

1

(1; 3) : ACC = ACC + A(1,3)

S

2

(1; 3) : A(1,3) = A(1,3) * 2.0

S

1

(2; 3) : ACC = ACC + A(2,3)

S

2

(2; 3) : A(2,3) = A(2,3) * 2.0

S

1

(3; 2) : ACC = ACC + A(3,2)

S

2

(3; 2) : A(3,2) = A(3,2) * 2.0

A property in common for this kind of statements

is that usually the instances of these statements can

be executed in arbitrary order. This is certainly true

if no cross-iteration dependences hold, which occurs

frequently for manipulating statements (e.g. S

2

). If

cross-iteration dependences exist, the original execu-

tion order must be preserved. However, if all cross-

iterations dependences are caused by an accumulation

(e.g. S

1

) the ordering may change if it is allowed that

roundo� errors, due to inexact computer arithmetic,

might accumulate in a di�erent way.

3.1 First Phase

The identi�cation of statements that can exploit spar-

sity enables the compiler to take a bottom-up approach

to program restructuring. First, every statement in the

program is checked whether it contains an occurrence

of a dense matrix A (e.g. A(I,J)) which in fact is

sparse. If so, guards are created for such statements to

di�erentiate between code that operates on entries and

zero elements, and a two-way IF-statement results:

IF (I,J) 2 E

A

THEN

..A(I,J).. operation on an entry

ELSEIF (I,J) =2 E

A

THEN

..A(I,J).. operation on a zero element

ENDIF

The resulting code is called a guarded block, in which

the `2 E

A

'- and `=2 E

A

'-tests are referred to as guards.

Every di�erent occurrence of a sparse matrix (i.e. the

same matrix with di�erent subscript functions or an-

other matrix) in a statement introduces two additional

guards in the guarded block. Such a guarded block is

usually presented as a multiway IF-statement with a

branch for every possible conjunction of the guards.

This kind of code is highly ine�cient, but re
ects the

overhead that will be introduced by the usage of a

compact data structure, and o�ers the possibility to

examine in which branches sparsity can be exploited.

In order to reason about a compact data structure

for a sparse matrix A, still independent of its actual

implementation, an abstract data structure A

0

is used

in the description of the guarded block. Every entry

a

ij

of matrix A is stored at A

0

[�

A

(i; j)] with a bijective

storage function �

A

: E

A

! AD

A

, that maps the in-

dices of entries to addresses in AD

A

. The computation

of such an address will be referred to as a �

A

-lookup.

The following statement, for instance, is transformed

into the given guarded block, where the second branch

is eliminated because it can exploit sparsity:

ACC = ACC + A(I,2*J) !

IF (I,2*J) 2 E

A

THEN

ACC = ACC + A

0

[�

A

(I;2 � J)]

ENDIF

If matrixA occurs at the left-hand side and an arbi-

trary expression at the right-hand side, then sparsity

cannot be exploited because the two branches must

handle the alternation of the value of an entry, or cre-

ation respectively:

A(I,J) = EXPR !

IF (I,J) 2 E

A

THEN

A

0

[�

A

(I;J)] = EXPR

ELSEIF (I,J) =2 E

A

THEN

A

0

[new

A

(I;J)] = EXPR

ENDIF

(�)

Due to the fact that the nonzero structure of A changes

in the second branch, function new

A

is introduced. It

returns the address of a new entry a

ij

, and adapts �

A

,

E

A

and AD

A

accordingly as a side-e�ect. Assigning a

zero to an element of a sparse matrix only requires an

action for entries:

3

A(I,J) = 0.0 !

IF (I,J) 2 E

A

THEN

CALL del

A

(I;J)

ENDIF

Cancellation is indicated with subroutine del

A

. The

knowledge in which branches the right-hand side ex-

pression is zero will be based on the sparsity of arrays

and constants only, i.e. it is assumed that the con-

tents of dense variables and entries is always nonzero.

Otherwise additional tests on the value of expressions

are required. For example, the following guarded block

results if matrix B is also sparse, while (�) is used oth-

erwise:

A(I,J) = B(I,J)

#

IF (I,J) 2 E

A

^ (I,J) 2 E

B

THEN

A

0

[�

A

(I; J)] = B

0

[�

B

(I;J)]

ELSEIF (I,J) 2 E

A

^ (I,J) =2 E

B

THEN

CALL del

A

(I;J)

ELSEIF (I,J) =2 E

A

^ (I,J) 2 E

B

THEN

A

0

[new

A

(I;J)] = B

0

[�

B

(I;J)]

ENDIF

Because guards introduce a lot of unwanted over-

head, actions are taken to eliminate this overhead.

A basic technique consists of including a guard that

dominates its guarded block, which means that it is

satis�ed by the condition in every branch that remains,

in the execution set of a surrounding loop, referred to

as guard encapsulation. For example, guard `(I; J) 2

E

A

' dominates the following guarded block, and is a

candidate for encapsulation in the execution set of the

J-loop:

DO I = 1, M

DO J = 1, N

IF (I,J) 2 E

A

THEN

A

0

[�

A

(I;J)] = A

0

[�

A

(I;J)] * 10.0

ENDIF

ENDDO

ENDDO

Guard encapsulation results in an irregular index

set, that corresponds to those iterations in which en-

tries (elements for which the guard holds) are used.

Consequently, encapsulation is only feasible if the ad-

dresses of these entries can be easily generated. This

is true if, for example, these addresses are contiguous,

which also improves locality. In general, if an invert-

ible subscript function f

2

is used, and the set PAD

i

A

contains the addresses of all entries referenced in itera-

tion i, the following conversion results in semantically

equivalent code:

1

DO I 2 V

DO J 2 V

I

IF (f

1

(I);f

2

(J)) 2 E

A

THEN

S(I,J): : : :A

0

[�

A

(f

1

(I); f

2

(J))] : : :

ENDIF

ENDDO

ENDDO

1

If cancellation or creation along the access pattern occurs

complex code is required to deal with a variable execution set

PAD

i

A

.

#

DO I 2 V

DO JA 2 PAD

I

A

S(I; f

�1

2

(�

2

� �

�1

A

(JA))) : : : : A

0

[JA] : : :

ENDDO

ENDDO

Test overhead is eliminated from the loop-body, and

jPAD

i

A

j � jV

i

j. Computation of �

2

� �

�1

A

(ad), where

ad 2 PAD

i

A

and �

i

� ~x = x

i

, is necessary if the value

of J, i.e. the original iteration, must be reconstructed

(similarly �

1

� �

�1

A

(ad) is required if the roles of I and

J are interchanged). If an ordering constraint on the

statement instances of one execution of the J-loop must

be satis�ed, the order in which the addresses are gener-

ated must correspond to the original execution order.

Otherwise, this order might be arbitrary.

Note that if an access pattern P

i

A

of one partic-

ular occurrence of a sparse matrix is de�ned as the

indices of all the elements operated on in one itera-

tion of the I-loop, then PAD

i

A

contains the addresses

of the elements with indices in P

i

A

\ E

A

. Since some

access patterns are very likely going to be subsets of

other access patterns in di�erent parts of the program,

and every entry is preferred to be stored only once,

usually address set PAD

i

A

is considered which consist

of addresses of all entries that correspond to an access

pattern contained in the same row or column that en-

velops the actual access pattern of the loop. In this

case an additional test is required to check whether

addresses belong to entries of the original access pat-

tern: f

�1

2

(�

2

� �

�1

A

(JA)) 2 V

i

. However, the overhead

of this test is small.

Further steps are taken to optimize the resulting

code: guard manipulations. Some of these manipula-

tions resemble standard program transformation (loop

distribution, loop fusion, expression splitting and state-

ment reordering), while others are speci�cally for guards

(guard collapsing, movement and absorption in user-

supplied conditionals). The most important goal of

these manipulations is to increase the potential of guard

encapsulation, because the resulting loops fully exploit

sparsity. Reduction of test and lookup overhead is an-

other important goal. Some examples are given in sec-

tion 4, while the manipulations are presented in more

detail in [2].

3.2 Second Phase

In the second phase, all access patterns through the

matrices are examined. With knowledge of the prop-

erties of sparse vector storage schemes [4, 12], certain

constraints are imposed on the storage of the entries

along access patterns that belong to one particular oc-

currence of a matrix, (1) to enable guard encapsula-

tion, or (2) to make the innermost operations fast.

The following data structure, based on existing data

structures [3, 4, 6, 11, 12, 14], is one of the possible

data structures for general sparse matrices that might

be selected:

4

ALOWAHIGH

AVALAIND

Entries belonging to one access pattern are stored

consecutively as a sparse vector in two parallel arrays

AVAL and AIND, in which the numerical values and

�

2

� �

�1

A

-values are stored. For every access pattern

there is a corresponding element in arrays ALOW and

AHIGH to record the �rst and last index used. Note

that all PAD

i

A

can be easily generated since addresses

can be referred to by their index, and that all �

2

��

�1

A

-

values are available, which makes guard encapsulation

for the corresponding access patterns feasible. A possi-

ble ordering constraint on the generation of addresses

in PAD

i

A

imposes an ordering requirement on the en-

tries within one access pattern. Insertions and dele-

tions of entries along unordered access patterns is fast

if there is some surrounding working space, but re-

quires some extra data movement otherwise.

2

Another

advantage of this data structure is that a dense rep-

resentation of the access pattern can be constructed

before it is operated on, by expanding the sparse stor-

age. With a scatter-operation all entries along the

access pattern are copied to their real position in a

dense array AP, on which all operations can be per-

formed without the lookup overhead inherent to sparse

representations. Insertion is accounted for whenever a

zero element in AP changes into a nonzero element.

If assignments to elements of AP are done, a gather-

operation is required afterwards.

For every sparse matrix A, the constraints imposed

by all relevant occurrences are collected, i.e. it is exam-

ined if particular (enveloping) access patterns through

a sparse matrix in a program can be stored consis-

tently. If an element appears in two di�erent access

patterns, then a con
ict results, since single storage

of every element is preferred to prevent redundancy.

Conventional restructuring techniques, e.g. loop inter-

changing or index set splitting, can assist in reshaping

some access patterns to achieve consistency. Some-

times, con
icts cannot be solved. In this case a data

structure has to be selected that does not match all ac-

cess patterns. Access patterns that are traversed many

times, take precedence in this decision.

3.3 Third Phase

Finally, in the last phase, the data structure transfor-

mations are applied, i.e. the code is converted into a

format that operates on the selected data structures.

2

In this paper we will assume that access patterns can al-

ways be moved to the end of the array where most working

space is kept in order to limit the e�ect of address alteration,

which e.g. complicates guard encapsulation. In general, how-

ever, garbage collection is occasionally required, possibly a�ect-

ing the addresses of all entries.

3.3.1 Encapsulated Guards

If a guard has been encapsulated in the execution set

of a directly surrounding loop, the following construct

is generated, where ~{ indicates the index in ALOW and

AHIGH that is associated to access pattern P

i

A

. The

bounds of the J-loop are possibly dependent on sur-

rounding loop-control variable I, and f

2

(J) has the

form a

2

+ b

2

� J. Note that the computation of the

inverse of f

2

might be required to perform the loop

bounds checking (�):

: : :

DO J = L

I

, U

I

: : :A(f

1

(I); f

2

(J)) : : :

ENDDO

: : :

#

: : :

DO JA = ALOW(

~

I), AHIGH(

~

I)

J = AIND(JA) - a

2

IF (J MOD b

2

= 0) THEN

J = J DIV b

2

o

 required if b

2

6= 1

IF ((L

I

�J) AND (J� U

I

)) THEN (�)

: : :AVAL(JA):: : "

ENDIF if a compare value coincides with a bound

ENDIF of all stored (enveloping) access patterns,

ENDO the corresponding compare is eliminated

: : :

3.3.2 Scatter and Gather Operations

If many operations are performed along a certain ac-

cess pattern, it can be expanded to a dense vector

before it is operated on. This temporary dense rep-

resentation can be accessed without lookup overhead.

The following framework is constructed:

DO I = 1, M

CALL SCATTER(AVAL,AIND,ALOW(

~

I),AHIGH(

~

I),AP)

DO J = 1, N

IF (AP(f

2

(J)) = 0.0) THEN

CALL INSERT(AVAL,AIND,ALOW(

~

I),AHIGH(

~

I),

+ f

2

(J),0.0,ALAST,ADIM)

ENDIF

AP(f

2

(J)) = : : :AP(f

2

(J)) : : :

ENDDO

CALL GATHER(AVAL,AIND,ALOW(

~

I),AHIGH(

~

I),AP)

ENDDO

Subroutine INSERT inserts a new entry in the access

pattern without a check if this entry is already present

to keep the operation fast, and requires some addi-

tional information to support data movement.

3

Con-

sequently, if a zero element is stored as an entry and

becomes nonzero, a redundant insertion results. Sub-

routine GATHER stores the value of every entry, found

in AP, back in the data structure, while cancellation

based on the actual values is accounted for e�ciently.

Used elements of array AP are directly reset to zero,

to support the next SCATTER operation and to ensure

that redundant inserted entries are further ignored.

3

Small modi�cations to some constructs in this section are

required if an ordering on entries must be imposed.

5

3.3.3 Remaining Occurrences

After code has been generated for occurrences with en-

capsulated guards or along expanded access patterns,

code is generated for the remaining occurrences.

Function LOOKUP returns the address of an element

if it is an entry, or ? otherwise. The implementation is

such that AVAL(?)=0.0 holds. The following function

call is substituted for an occurrence A(f

1

(I); f

2

(J)) at

the right-hand side without dominating guard:

AVAL(LOOKUP(AIND,ALOW(

~

I),AHIGH(

~

I),f

2

(J)))

Assignment of a zero to an occurrence results in

cancellation if the corresponding element is an entry,

while no action is performed otherwise:

IND = LOOKUP(AIND,ALOW(

~

I),AHIGH(

~

I),f

2

(J))

IF (IND 6= ?) THEN

CALL DELETE(AVAL,AIND,ALOW(

~

I),AHIGH(

~

I),IND)

ENDIF

The following code results for an occurrence with a

dominating guard that has not been encapsulated:

IND = LOOKUP(AIND,ALOW(

~

I),AHIGH(

~

I),f

2

(J))

IF (IND 6= ?) THEN

: : : AVAL(IND) : : :

ENDIF

If a loop invariant guard has been hoisted out a loop,

the call to LOOKUP with following test is generated

at the corresponding position, although care must be

taken that address IND does not change as a result of

data movement. Similarly, the lookup overhead can be

shared if identical guards have been collapsed.

For an occurrence at the left-hand side without

dominating guard, the following construct is gener-

ated, where AVAL(IND) can be used if the occurrence

also appears at the right-hand side:

IND = LOOKUP(AIND,ALOW(

~

I),AHIGH(

~

I),f

2

(J))

EXPR = : : : right hand side expression : : :

IF (IND 6= ?) THEN

AVAL(IND) = EXPR

ELSE

CALL INSERT(AVAL,AIND,ALOW(

~

I),AHIGH(

~

I),

+ f

2

(J),EXPR,ALAST,ADIM)

ENDIF

If there are multiple occurrences of sparse matri-

ces in one guarded block, combinations of the previ-

ous codes are generated. Unique INDi are used when

necessary. If code generation starts with occurrences

that have dominating guards, most combinations are

straightforward to construct. However, some combi-

nations with an occurrence without dominating guard

coerce further distinction, as is illustrated below:

A(I,J) = A(I,J) * B(I,J)

#

IND1 = LOOKUP(AIND,ALOW(

~

I),AHIGH(

~

I),J)

IF (IND1 6= ?) THEN

IND2 = LOOKUP(BIND,BLOW(

~

I),BHIGH(

~

I),J)

IF (IND2 6= ?) THEN

AVAL(IND1) = AVAL(IND1) * BVAL(IND2)

ELSE

CALL DELETE (AVAL,AIND,ALOW(

~

I),AHIGH(

~

I),IND1)

ENDIF

ENDIF

4 Example

The whole data structure selection and transformation

method is illustrated with the following version of LU-

factorization without pivoting, where matrix A is in

fact sparse. Its di�erent occurrences are subscripted

accordingly in the code:

DO I = 1, N - 1

DO J = I + 1, N

S

1

: A

1

(J,I) = A

1

(J,I) / A

2

(I,I)

DO K = I + 1, N

S

2

: A

3

(J,K) = A

3

(J,K) - A

4

(J,I) * A

5

(I,K)

ENDDO

ENDDO

ENDDO

(1)

In the �rst phase, guarded blocks for S

1

and S

2

are

generated with guards for every di�erent occurrence of

the sparse matrix, and it is determined which branches

can be eliminated. The following code results, because

S

1

manipulates A

1

and S

2

is an updating statement on

A

3

. Because the value of A

2

is invariant in one execu-

tion of the J-loop, the corresponding guarded block is

hoisted out this loop, and the computed value is saved

in a temporary variable PIV. The occurrences of ab-

stract data structure A

0

are subscripted to re
ect the

correspondence with the original occurrences of matrix

A:

DO I = 1, N - 1

IF (I,I) 2 E

A

THEN

PIV = A

0

2

[�

A

(I;I)]

ELSEIF (I,I) =2 E

A

THEN

PIV = 0.0

ENDIF

DO J = I + 1, N

IF (J,I) 2 E

A

THEN

A

0

1

[�

A

(J;I)] = A

0

1

[�

A

(J;I)] / PIV

ENDIF

DO K = I + 1, N

IF (J;K) 2 E

A

^ (J; I) 2 E

A

^ (I;K) 2 E

A

THEN

A

0

3

[�

A

(J; K)] = A

0

3

[�

A

(J;K)] - A

0

4

[�

A

(J;I)] * A

0

5

[�

A

(I;K)]

ELSEIF (J;K) =2 E

A

^ (J;I) 2 E

A

^ (I;K) 2 E

A

THEN

A

0

3

[new

A

(J;K)] = 0.0 - A

0

4

[�

A

(J;I)] * A

0

5

[�

A

(I;K)]

ENDIF

ENDDO

ENDDO

ENDDO

(2)

Guard `(J; I) 2 E

A

' can be hoisted out the K-loop,

because the value of this guard is invariant over the

iterations of one execution of this loop. This hoisted

guard can be collapsed with the identical remaining

guard of S

1

because S

1

cannot change its value. The

following code results, where occurrences belonging to

the collapsed guards are considered equal:

6

DO I = 1, N - 1

IF (I,I) 2 E

A

THEN

PIV = A

0

2

[�

A

(I;I)]

ELSEIF (I,I) =2 E

A

THEN

PIV = 0.0

ENDIF

DO J = I + 1, N

IF (J;I) 2 E

A

THEN

A

0

1

[�

A

(J;I)] = A

0

1

[�

A

(J;I)] / PIV

DO K = I + 1, N

IF (J;K) 2 E

A

^ (I;K) 2 E

A

THEN

A

0

3

[�

A

(J;K)] = A

0

3

[�

A

(J;K)] - A

0

1

[�

A

(J;I)] * A

0

5

[�

A

(I;K)]

ELSEIF (J;K) =2 E

A

^ (I;K) 2 E

A

THEN

A

0

3

[new

A

(J;K)] = 0.0 - A

0

1

[�

A

(J;I)] * A

0

5

[�

A

(I;K)]

ENDIF

ENDDO

ENDIF

ENDDO

ENDDO

(3)

Guards `(J; I) 2 E

A

' and `(I; K) 2 E

A

' dominate their

guarded blocks, and have the potential of encapsula-

tion in the execution sets of the J- and K-loop. Oc-

currence A

3

is a suited candidate for expansion of its

access pattern.

In the second phase, access patterns through the

matrix are considered: P

i

A

1

= f(j; i)ji < j � Ng for

1 � i � N, P

A

2

= f(i; i)j1 � i � Ng, P

j

A

3

= f(j; k)ji <

k � Ng for i < j � N and P

i

A

5

= f(i; k)ji < k � Ng for

1 � i � N. Sparse row-wise storage is consistent with

enveloping access patterns of P

j

A

3

and P

i

A

5

. Simple

guard encapsulation in the execution set of the K-loop

is possible, because no assignments to elements of row

I are done in one execution of the K-loop. Genera-

tion of scatter- and gather-operations for A

3

become

feasible. No ordering is required on the storage of el-

ements in every row, since there are no cross-iteration

dependences carried by the K-loop. The disadvantage

of inconsistency with access pattern P

i

A

1

is that encap-

sulation of guard `(J; I) 2 E

A

' is disabled.

In the third phase, code is generated. Code gener-

ation starts with encapsulation of guard `(I; K) 2 E

A

'

in the execution set of K. A single compare su�ces to

test for inclusion in the old execution set. After that,

scatter- and gather-operations for A

3

, with outermost

controlling J-loop, are generated. Because no ordering

is required, subroutine INSERT is generated. All refer-

ences and assignment to elements on this access pat-

terns are replaced by corresponding operations on the

expanded access pattern AP, because this dense vector

contains the most recent values. This a�ects A

1

, for

which a test is generated at the position of its guard.

Finally, the lookup code for remaining occurrence A

2

is generated before the J-loop, and the following code

results:

DO I = 1, N - 1

PIV = AVAL(LOOKUP(AIND,ALOW(I),AHIGH(I),I))

DO J = I + 1, N

CALL SCATTER(AVAL,AIND,ALOW(J),AHIGH(J),AP)

IF (AP(I) 6= 0.0) THEN

AP(I) = AP(I) / PIV

DO KA = ALOW(I), AHIGH(I)

K = AIND(KA)

IF (I + 1 � K) THEN

IF (AP(K) = 0.0) THEN

CALL INSERT(AVAL,AIND,ALOW(J),AHIGH(J),

+ K,0.0,ALAST,ADIM)

ENDIF

AP(K) = AP(K) - AP(I) * AVAL(KA)

ENDIF

ENDDO

ENDIF

CALL GATHER(AVAL,AIND,ALOW(J),AHIGH(J),AP)

ENDDO

ENDDO

(4)

As an illustration of the
exibility of automatic

code generation, code that results if column-wise stor-

age is selected as implementation of A

0

in version (3)

is also presented. Because this storage is consistent

with an enveloping access pattern of P

i

A

1

, and no as-

signments to column I are done during one execution

of the J-loop, simple guard encapsulation in the exe-

cution set of the J-loop is possible, which reduces the

number of iterations of a loop at higher level than in

version (4). No ordering constraint is imposed on the

elements stored in one column. However, this choice

disables guard encapsulation and scatter- and gather-

operations for the innermost loop. The result is listed

below, in which array AIND is now used to store row

numbers:

DO I = 1, N - 1

PIV = AVAL(LOOKUP(AIND,ALOW(I),AHIGH(I),I))

DO JA = ALOW(I),AHIGH(I)

J = AIND(JA)

IF (I + 1 � J) THEN

AVAL(JA) = AVAL(JA) / PIV

DO K = I + 1, N

IND1 = LOOKUP(AIND,ALOW(K),AHIGH(K),I)

IF (IND1 6= ?) THEN

IND2 = LOOKUP(AIND,ALOW(K),AHIGH(K),J)

EXPR = AVAL(IND2) - AVAL(JA) * AVAL(IND1)

IF (IND2 6= ?) THEN

AVAL(IND2) = EXPR

ELSE

CALL INSERT(AVAL,AIND,ALOW(K),AHIGH(K),

+ J,EXPR,ALAST,ADIM)

ENDIF

ENDIF

ENDDO

ENDIF

ENDDO

ENDDO

(5)

The compiler can also decide to interchange the

I- and J-loops in version (2). This transformation is

valid, as can be concluded from dependence analysis

on the original code (1). Because the execution set of

the innermost loop depends on the loop-control vari-

able of the outermost loop, so-called triangular loop

interchanging is done [13]. Guard `(J; I) 2 E

A

' can be

7

hoisted out the K-loop and is collapsed with the same

guard of S

1

. This results in the following code, where

dominating guard `(J; I) 2 E

A

' has been lifted to avoid

the notational need for an additional branch:

DO J = 2, N

DO I = 1, J - 1

IF (J;I) 2 E

A

THEN

IF (I;I) 2 E

A

THEN

A

0

1

[�

A

(J;I)] = A

0

1

[�

A

(J; I)] / A

0

2

[�

A

(I;I)]

ELSEIF (I;I) =2 E

A

THEN

A

0

1

[�

A

(J;I)] = A

0

1

[�

A

(J; I)] / 0.0 (error)

ENDIF

DO K = I + 1, N

IF (J;K) 2 E

A

^ (I;K) 2 E

A

THEN

A

0

3

[�

A

(J;K)] = A

0

3

[�

A

(J;K)] - A

0

1

[�

A

(J;I)] * A

0

5

[�

A

(I;K)]

ELSEIF (J;K) =2 E

A

^ (I;K) 2 E

A

THEN

A

0

3

[new

A

(J;K)] = 0.0 - A

0

1

[�

A

(J;I)] * A

0

5

[�

A

(I;K)]

ENDIF

ENDDO

ENDIF

ENDDO

ENDDO

(6)

Access patterns P

j

A

1

= f(j; i)j1 � i < jg for 2 � j � N,

P

A

2

= f(i; i)j1 � i � Ng, P

j

A

3

= f(j; k)ji < k � Ng

for 2 � j � N, and P

i

A

5

= f(i; k)ji < k � Ng for

1 � i < j result. Clearly, sparse row-wise storage

scheme is suited, since it matches enveloping access

patterns of P

j

A

1

, P

A

3

and P

i

A

5

. This storage scheme

favors scatter- and gather-operations for A

j

3

, while loop

interchanging has increased the number of operations

performed on one expanded access pattern. Because

assignments to elements of row J are done in one exe-

cution of the I-loop, this a�ects A

1

and disables simple

encapsulation of guard `(J; I) 2 E

A

'. However, encap-

sulation of guard `(I; K) 2 E

A

' is possible:

DO J = 2, N

CALL SCATTER(AVAL,AIND,ALOW(J),AHIGH(J),AP)

DO I = 1, J - 1

IF (AP(I) 6= 0.0) THEN

AP(I) = AP(I) /

+ AVAL(LOOKUP(AIND,ALOW(I),AHIGH(I),I))

DO KA = ALOW(I), AHIGH(I)

K = AIND(KA)

IF (I + 1 � K) THEN

IF (AP(K) = 0.0) THEN

CALL INSERT(AVAL,AIND,ALOW(J),AHIGH(J),

+ K,0.0,ALAST,ADIM)

ENDIF

AP(K) = AP(K) - AP(I) * AVAL(KA)

ENDIF

ENDDO

ENDIF

ENDDO

CALL GATHER(AVAL,AIND,ALOW(J),AHIGH(J),AP)

ENDDO

(7)

Running these di�erent sparse versions (4), (5) and

(7) on one CPU of a CRAY-YMP gave easily perfor-

mance variations of up to a factor of 60. This clearly

indicates that the transformations as described in this

paper should be very carefully handled.

5 Conclusions

In this paper, a short outline was given of a method [2]

that enables restructuring compilers to get a grip on

sparse matrix computations. The method relies on the

fact that the code information being obscured in sparse

matrix code by indirect addressing and complicated

branch structures, for example, can be presented in a

much cleaner form to the compiler by a corresponding

dense program. The method not only produces e�-

cient sparse matrix code, but also allows enough
ex-

ibility to retarget the code to di�erent architectures.

In forthcoming papers we will describe implementa-

tion issues that arise if this method is embedded in an

existing prototype compiler and how data dependence

analysis on the original dense code can be used to op-

timize the resulting code on sparse data structures.

Knowledge of which data dependences are una�ected

by the generation of the presented code will turn out

to be essential.

References

[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compil-

ers Principles, Techniques and Tools. Addison-

Wesley publishing company, 1986.

[2] Aart J.C. Bik and Harry A.G. Wijsho�. Auto-

matic data structure selection and transformation

for sparse matrix computations. Technical Report

no. 92-25, Dept. of Computer Science, Leiden Uni-

versity, 1992.

[3] Jack J. Dongarra, Iain S. Du�, Danny C.

Sorensen, and Henk A. van der Vorst. Solving Lin-

ear Systems on Vector and Shared Memory Com-

puters. Society for Industrial and Applied Math-

ematics, 1991.

[4] I.S. Du�, A.M. Erisman, and J.K. Reid. Direct

Methods for Sparse Matrices. Oxford Science Pub-

lications, 1990.

[5] K.A. Gallivan, B.A. Marsolf, and H.A.G. Wi-

jsho�. Mcsparse: A parallel sparse unsymmetric

linear system solver. Technical Report no. 1142,

Center for Supercomputing Research and Devel-

opment, University of Illinios, 1991.

[6] Alan George and Joseph W. Liu. Computer So-

lution of Large Sparse Positive De�nite Systems.

Prentice-Hall Inc., 1981.

[7] David A. Padua and Michael J. Wolfe. Advanced

compiler optimizations for supercomputers. Com-

munications of the ACM, pages 1184{1201, 1986.

[8] C.D. Polychronoupolos. Parallel Programming

and Compilers. Kluwer Academic Publishers,

Boston, 1988.

8

[9] Joel H. Saltz, Ravi Mirchandaney, and Kathleen

Crowley. The doconsider loop. In ACM Confer-

ence Proceedings, 3

th

International Conference of

Supercomputing, pages 29{40, 1989.

[10] Joel H. Saltz, Ravi Mirchandaney, and Kathleen

Crowley. Run-time parallelization and scheduling

of loops. IEEE Transactions on Computers, pages

603{612, 1991.

[11] Reginal P. Tewarson. Sparse Matrices. Academic

Press, New York, 1973.

[12] Harry A.G. Wijsho�. Implementing sparse blas

primitives on concurrent/vector processors: a case

study. Technical Report no. 843, Center for Super-

computing Research and Development, University

of Illinios, 1989.

[13] Michael J. Wolfe. Optimizing Supercompilers for

Supercomputers. Pitman, London, 1989.

[14] Zahari Zlatev. Computational Methods for Gen-

eral Sparse Matrices. Kluwer Academic Publish-

ers, 1991.

9

