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Abstra
t. The n-pebble tree transdu
er was re
ently proposed as a model

for XML query languages. The four main results on deterministi
 trans-

du
ers are: First, (1) the translation � of an n-pebble tree transdu
er 
an

be realized by a 
omposition of n + 1 0-pebble tree transdu
ers. Next, the

pebble tree transdu
er is 
ompared with the ma
ro tree transdu
er, a well-

known model for syntax-dire
ted semanti
s, with de
idable type 
he
king.

The 0-pebble tree transdu
er 
an be simulated by the ma
ro tree trans-

du
er, whi
h, by the �rst result, implies that (2) � 
an be realized by an

(n+1)-fold 
omposition of ma
ro tree transdu
ers. Conversely, every ma
ro

tree transdu
er 
an be simulated by a 
omposition of 0-pebble tree trans-

du
ers. Together these simulations prove that (3) the 
omposition 
losure of

n-pebble tree transdu
ers equals that of ma
ro tree transdu
ers (and that of

0-pebble tree transdu
ers). Similar results hold in the nondeterministi
 
ase.

Finally, (4) the output languages of deterministi
 n-pebble tree transdu
ers

form a hierar
hy with respe
t to the number n of pebbles.

1 Introdu
tion

Trees appear in s
ien
e in many 
ontexts. For instan
e, they are used to represent

the stru
ture of a 
omposed obje
t: the obje
t is obtained by applying a 
ertain

operation (at the root of the tree) to its 
omponents (represented by the subtrees);

su
h a tree 
orresponds to the derivation tree of a grammar generating the obje
t.

Another more re
ent example is XML, a general data format for stru
tured do
u-

ments; there, the interest is in the stru
ture of the tree itself. Natural appli
ation

areas of trees are (we mention only four) (i) linguisti
s (phrase stru
ture), (ii) 
om-

pilers (derivation trees, or parse trees), (iii) fun
tional programming (terms), and

(iv) databases (XML do
uments).

Let us now 
onsider the translation of trees into other trees. It plays an im-

portant role in ea
h of the four areas: (i) for natural language translation (see,

e.g., [KMMM,MMM01℄) (ii) for the spe
i�
ation of the syntax-dire
ted semanti
s

of a programming language, and its implementation in a 
ompiler, 
f. [Iro61,Knu68,

KV97,WM95℄, (iii) for fun
tional programs working on tree stru
tured data, 
f.,

e.g., [Vog91℄, and (iv) for the spe
i�
ation and implementation of XML transfor-

mation (e.g., XSLT; 
f. [MN00,BMN02℄) and XML query languages [Via01℄. Now,


onsider the (sequential) 
omposition of tree translations. It appears in appli
a-

tions in a natural way: e.g., as multi-pass 
ompilers, as model for deforestation in

fun
tional languages [K�uh98,Voi02℄ and as implementation of queries to a (possibly

iterated) view of an (XML) database.

This paper is 
on
erned with tree translations and 
ompositions of them. In par-

ti
ular, we study the relationship between the n-pebble tree transdu
er, introdu
ed

in [MSV00,MSV℄ as a model for XML query languages (
f. also [Via01℄), and the

ma
ro tree transdu
er [Eng80,Eng81,CF82,EV85,EV86,FV98℄ whi
h is a model for



syntax-dire
ted semanti
s. We �rst dis
uss the pebble tree transdu
er (in the ter-

minology used within this paper, whi
h di�ers slightly from that in [MSV00,MSV℄)

and then the ma
ro tree transdu
er.

An n-pebble tree transdu
er (n-ptt) is a �nite state devi
e that translates or-

dered ranked trees (whi
h might be 
odings of XML do
uments). Its reading head

is a pointer to a node of the input tree and 
an be moved to another node along

the edges of the input tree. The n-ptt is equipped with n pebbles, marked 1; : : : ; n,

whi
h 
an be dropped at or lifted from the 
urrent node (pointed at by the read-

ing head). A 
omputation starts in the initial state with the reading head at the

root node, and no pebbles on the input tree. The ptt 
an test (in its 
urrent state)

the label of the 
urrent node, its \position" (i.e., whether it is the root node or

the jth 
hild of a node, j � 1), and the presen
e of the pebbles at the 
urrent

node. Depending on the test, it generates an output tree, at the leaves of whi
h

new 
omputations 
an be spawned (whi
h will ea
h have their \own" 
opy of the

input tree, with pebbles and reading head). This means that, in terms of the output

tree, the basi
 operation inherent in a 
omputation step of an n-ptt is the repla
e-

ment of leaves by trees (\�rst order tree substitution"). When a new 
omputation

is spawned, the ptt 
an 
hange its state and either move the reading head to a

neighboring node, or lift/drop a pebble at the 
urrent node. Pebbles must be used

in a sta
k-like fashion: if l � n pebbles are on the tree, then pebble l 
an be lifted

(if it is present at the 
urrent node) or pebble l + 1 
an be dropped at the 
urrent

node (if l + 1 � n). We note here that in the model of [MSV00,MSV,Via01℄ the

reading head is 
onsidered to be a pebble too; thus, our n-pebble tree transdu
er is

there 
alled an (n+ 1)-pebble tree transdu
er.

As observed in [MSV00℄, the pebble tree transdu
er 
an be obtained from

the tree-walking automaton of [AU71℄ (see also [ERS80℄) by adding pebbles and

the ability to generate output trees rather than strings. We observe here that

the deterministi
 pebble tree transdu
er without pebbles, i.e., the 0-ptt, is very


losely related to the attribute grammar: a well-known 
ompiler writing formal-

ism (see, e.g., [DJL88,AM91,Paa95℄). Here, the attributes of the attribute grammar

should have trees as values (in whi
h 
ase it is also 
alled an attributed tree trans-

du
er [EF81,F�ul81,FV98℄). This relationship was dis
ussed in [Eng86℄, where the

0-ptt is 
alled an RT(Tree-walk) transdu
er (see also [EV86℄). Thus, 0-ptts are es-

sentially attribute grammars, and n-ptts 
ould be viewed as \attribute grammars

with pebbles". If we further restri
t the 0-ptt in su
h a way that the reading head

may only move down in ea
h 
omputation step, then we obtain the 
lassi
al top-

down tree transdu
er [Rou70,Tha70,GS97℄, as mentioned in [MSV00℄.

For a pebble tree transdu
er, the restri
tion of input and output to monadi


trees gives rise to a natural transdu
er model for string translation whi
h was 
on-

sidered in [EM02b℄. For some of the results of the present paper we will mention the


orresponding results for pebble string transdu
ers, but for more details the reader

is referred to [EM02b℄. String automata that use pebbles in a sta
k-like fashion

(whi
h basi
ally means that the pebbles have nested life times) were introdu
ed

in [GH96℄ and extended to trees in [EH99℄ (see also [NSV01℄).

The ma
ro tree transdu
er (mtt) is also a �nite state devi
e that translates trees

into trees. It 
an be obtained by 
ombining the top-down tree transdu
er and the

ma
ro grammar [Fis68℄, i.e., the states of the top-down tree transdu
er may have

parameters of type output tree, and thus 
omputations 
an be spawned at non-leaf

nodes of the output tree. Now, when the mtt exe
utes a move at su
h a node v, it

is repla
ed by an output tree whi
h may spawn new 
omputations, and in whi
h

ea
h leaf labeled by the formal parameter y

j

is repla
ed by the 
orresponding a
tual

parameter, i.e., the jth subtree of v (\se
ond-order tree substitution"). Just as for

the top-down tree transdu
er, the reading head of the ma
ro tree transdu
er 
an
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only move down. This implies that deterministi
 ma
ro tree transdu
ers do not have

nonterminating 
omputations, as opposed to deterministi
 pebble tree transdu
ers.

Note that it is well known that (in the total deterministi
 
ase) all attributed tree

transdu
ers 
an be simulated by ma
ro tree transdu
ers [Fra82,CF82,FV99,EM99℄,

and that the 
omposition 
losures of the two 
oin
ide (
f., e.g., Chapter 6 of [FV98℄).

This suggests that (in the deterministi
 
ase) 0-ptts 
an be simulated by mtts, and

that their 
omposition 
losures 
oin
ide: one of our results. Ma
ro tree transdu
ers

are well studied in tree transdu
er theory, and about their 
omposition 
losure many

attra
tive properties are known; for instan
e: it has de
idable type 
he
king [EV85℄,

the translations 
an be 
omputed in linear time (in the sum of the sizes of input and

output tree) [Man02℄, and the output languages form a full AFL and have de
idable

emptiness and �niteness problems [DE98℄.

Before we dis
uss our results, let us 
onsider the relationship of tree transdu
ers

to (XML based) databases, 
f. [Via01,MSV00℄. In terms of databases, tree trans-

du
ers 
an be seen as a query language: the input tree is the 
urrent 
ontent of

the database and the output tree is a result of the query that is 
omputed by the

transdu
er. Of 
ourse the result 
an be input to another query; this 
orresponds

to the sequential 
omposition of two tree transdu
ers. In fa
t, the appli
ation of a

query q to a database D (a set of inputs) is often used to de�ne a derived version

of the database, 
alled the \view of D under q". This 
orresponds to the output

language �(R) of a tree transdu
er � taking a set R of input trees. We will assume

(as in [MSV00℄) that R is a regular tree language (
orresponding to a database type


onstraint as de�ned, e.g., by a DTD or a spe
ialized DTD in XML).

Our �rst main result is 
ompletely independent of ma
ro tree transdu
ers. It

is a result about pebble tree transdu
ers only: The translation of an n-pebble tree

transdu
er 
an be realized by the 
omposition of n+1 zero-pebble tree transdu
ers.

In fa
t, the use of the �rst pebble 
an be simulated by (pre-)
omposing with the

translation of a deterministi
 zero-pebble tree transdu
er. In terms of databases this

means that a user who understands the 
on
ept of a view and that of a 0-pebble

query (
omputed by a 0-ptt) need not be bothered with queries of n-pebble tree

transdu
ers for n > 0, i.e., need not know about pebbles at all. Moreover, we observe

that it is a desirable property of a query language to be 
losed under 
omposition:

it means that querying a view (i.e., the result of a previous query) gives a result for

whi
h there is a dire
t query on the original database. Thus, it is natural to de�ne

the query language of a 
lass of tree translations as its 
omposition 
losure. Note

that the 
lass of pebble tree translations is not 
losed under 
omposition (both in

the deterministi
 and the nondeterministi
 
ase). For the 
omposition 
losure of

pebble tree transdu
ers the �rst result implies that it is equal to the 
omposition


losure of zero-pebble tree transdu
ers. Hen
e, as query languages in the above

sense, the pebble tree transdu
er and the zero-pebble tree transdu
er are equally

expressive.

Our se
ond main result is that every pebble tree transdu
er 
an be simulated

by a 
omposition of ma
ro tree transdu
ers. In the nondeterministi
 
ase, to sim-

ulate n pebbles, n + 1 mtts are needed in the 
omposition and the mtts must be

extended by the ability to remain at a node, instead of stri
tly moving down in ea
h

step. Sin
e su
h a transdu
er 
an loop, it 
an have nonterminating 
omputations.

In the deterministi
 
ase, n pebbles 
an be simulated by the 
omposition of n + 1

(
onventional) deterministi
 mtts. Also, a simulation in the 
onverse dire
tion is

possible: for every ma
ro tree transdu
er there is a 
omposition of 0-pebble tree

transdu
ers whi
h realizes the same translation. This gives our third main result:

the 
omposition 
losure of n-pebble tree transdu
ers equals that of ma
ro tree trans-

du
ers, i.e., as query languages both formalisms have the same power. Sin
e mtts

always terminate, the simulations prove that 
ompositions of deterministi
 pebble
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tree transdu
ers 
an be transformed into ones that always terminate. Te
hni
ally

speaking, this is one of the key results of this paper.

Our fourth main result 
on
erns the power of de�ning views, or, equivalently, the

power to generate output languages (for deterministi
 transdu
ers): n + 1 pebbles

give stri
tly more views than n pebbles, i.e., there is a hierar
hy with respe
t to the

number n of pebbles, of the output languages of n-pebble tree transdu
ers. The proof

is based on the \mtt-hierar
hy" of (string) output languages of n-fold 
ompositions

of mtts that was re
ently proved in [EM02a℄. The result strengthens the hierar
hy

of translations of n-pebble tree transdu
ers, whi
h follows from an obvious size-

to-height relationship for su
h translations (viz., the height of the output tree is

polynomially bounded in the size of the input tree, with exponent n + 1). The

proof uses 
ounter examples that are monadi
, and thus also proves that there is a

hierar
hy of output languages of n-pebble string transdu
ers, as already presented

in [EM02b℄. Moreover, it is shown that nondeterminism gives more views: even

without pebbles a nondeterministi
 (0-)ptt 
an 
ompute a view that 
annot be


omputed by any 
omposition of deterministi
 pebble tree transdu
ers.

Finally, we address the type 
he
king problem for 
ompositions of pebble tree

transdu
ers; it is the question whether all output do
uments in a view satisfy a

given type (i.e., a regular tree language). Sin
e it is well known that inverse type

inferen
e for 
ompositions of ma
ro tree transdu
ers is solvable [EV85℄, our se
ond

main result provides an alternative proof of the main result of [MSV00℄ that type


he
king for pebble tree transdu
ers is de
idable. We also obtain an extension from

[DE98℄: \almost always" type 
he
king is solvable for 
ompositions of pebble tree

transdu
ers; it is the question whether all output do
uments in a view, ex
ept

�nitely many, satisfy a given type (and if so, to produ
e the list of ex
eptions).

The stru
ture of this paper is as follows. The Preliminaries (Se
tion 2) �x ba-

si
 notations and de�nitions, mainly 
on
erning trees, tree substitution, and tree

grammars. Se
tion 3 presents the de�nition of the n-pebble tree transdu
er (with

a 
omparison to the original de�nition of [MSV00℄ in Subse
tion 3.1), and proves

some of its elementary properties. In parti
ular, the size-to-height relationship for

ptts is proved, and then applied to show that there is a proper hierar
hy of transla-

tions and that the 
lass of pebble tree translations is not 
losed under 
omposition.

Subse
tions 3.2 and 3.3 
ompare ptts to attribute grammars and to the RT(S)

transdu
ers of [Eng86,EV86℄ (with S = Tree-walk). Se
tion 4 proves our �rst re-

sult, the de
omposition of an n-pebble tree translation into n + 1 zero-pebble tree

translations. In Se
tion 5 pebble tree transdu
ers are 
ompared with ma
ro tree

transdu
ers. In parti
ular, our se
ond and third main results are proved there. In

Se
tion 6 the output languages of pebble tree transdu
ers are investigated; it is

proved that these languages form a proper hierar
hy with respe
t to the number of

pebbles. Se
tion 7 dis
usses type 
he
king, and almost always type 
he
king. The

paper ends with 
on
lusions and suggestions for further resear
h in Se
tion 8.

Even when not expli
itly mentioned in the lemmas and theorems, all our results

are e�e
tive.

2 Preliminaries

The set f0; 1; : : :g of natural numbers is denoted by N. The empty set is denoted by

?. For k; l 2 N, [k℄ denotes the set f1; : : : ; kg and [k; l℄ denotes the set fk; : : : ; lg.

For a set A, jAj is the 
ardinality of A, P(A) is the set of subsets of A, A

�

is the

set of all strings over A, and A

+

is the set of nonempty strings over A. The empty

string is denoted by ". If the elements of A are strings themselves, then we might

write a string w 2 A

�

as w = [a

1

; a

2

; : : : ; a

n

℄ with a

i

2 A; in parti
ular, we will

then use � to denote the empty string (of strings), i.e., � has a di�erent type than
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". The length of a string w is denoted jwj, and the ith symbol in w is denoted by

w(i). For n � 0, A

�n

denotes the set fw 2 A

�

j jwj � ng.

For sets A and B, their 
artesian produ
t is A � B = f(a; b) j a 2 A; b 2 Bg.

An ordered pair (a; b) will also be denoted ha; bi, and A � B will also be denoted

by hA;Bi.

For a binary relation R and a set A, R(A) denotes the set fy j 9x 2 A :

(x; y) 2 Rg and R

�1

(A) denotes the set fx j 9y 2 A : (x; y) 2 Rg. Moreover,

for a 
lass R of binary relations and a 
lass of sets A, R(A) denotes the 
lass of

sets fR(A) j R 2 R; A 2 Ag. The 
omposition of two (binary) relations R and

S, denoted by R Æ S, is the set of pairs f(x; z) j there is a y with (x; y) 2 R and

(y; z) 2 Sg. For n � 0, the n-fold 
omposition of R with itself is denoted R

n

. The

re
exive, transitive 
losure and the transitive 
losure of R are denoted R

�

and R

+

,

respe
tively. For 
lasses of relations R and S, R Æ S denotes the 
lass of relations

fRÆS j R 2 R; S 2 Sg. For n � 1, R

n

denotes RÆ� � � ÆR (n times) and R

�

denotes

the 
lass

S

n�1

R

n

.

For a binary relation ) � A � A over a set A, we will 
all, for a; a

0

2 A, a

derivation a)

�

a

0

a 
omputation (by ) starting with a). Moreover, a 
omputation

starting with a 
an also be in�nite. A 
omputation is 
omplete if it is either in�nite

or of the form a )

�

a

0

6), i.e., there is no a

00

2 A su
h that a

0

) a

00

; in the latter


ase, a

0

is the result of the 
omputation.

2.1 Ranked Sets and Trees

A set � together with a mapping rank

�

:� ! N is 
alled a ranked set. For k �

0, �

(k)

is the set f� 2 � j rank

�

(�) = kg; we also write �

(k)

to indi
ate that

rank

�

(�) = k. For a set A, h�;Ai is the ranked set ��A with rank

h�;Ai

(h�; ai) =

rank

�

(�) for every h�; ai 2 h�;Ai.

Let � be a ranked set. The set of trees over �, denoted by T

�

, is the smallest

set of strings T � (� [ f(; ); ; g)

�

su
h that �

(0)

� T and if � 2 �

(k)

, k � 1, and

t

1

; : : : ; t

k

2 T , then �(t

1

; : : : ; t

k

) 2 T . For a set A, the set of trees over � indexed

by A, denoted by T

�

(A), is the set T

�[A

, where for every a 2 A, rank

A

(a) = 0.

For the rest of this paper we 
hoose the set of parameters to be Y = fy

1

; y

2

; : : : g.

For m � 0, Y

m

denotes the set fy

1

; : : : ; y

m

g. Thus, T

�

(Y ) is the set of trees over �

with parameters.

For every tree t 2 T

�

, the set of nodes of t, denoted by V (t), is the subset of N

�

that is indu
tively de�ned as follows: if t = �(t

1

; : : : ; t

k

) with � 2 �

(k)

, k � 0, and

t

i

2 T

�

for all i 2 [k℄, then V (t) = f"g[ fiu j u 2 V (t

i

); i 2 [k℄g. Thus, " represents

the root of a tree and for a node u the ith 
hild of u is represented by ui. The size

of t is its number of nodes, i.e., size(t) = jV (t)j, and the height of t is the number of

nodes on a longest path of t, i.e., height(�(t

1

; : : : ; t

k

)) = 1+maxfheight(t

i

) j i 2 [k℄g.

The label of t at node u is denoted by t[u℄; we also say that t[u℄ o

urs in t (at

u). The rank of u is the rank of its label t[u℄; in parti
ular, u is a leaf if it has no


hildren, i.e., if it has rank zero. If u = vw with w 2 N

�

, then v is an an
estor of

u and u is a des
endant of v; if w 6= ", then v is a proper an
estor of u and u is

a proper des
endant of v. The subtree of t at node u is denoted by t=u; a subtree

t=ui is 
alled a subtree of node u. The substitution of the tree s 2 T

�

at node u in

t is denoted by t[u  s℄; it means that the subtree t=u is repla
ed by s. Formally,

these notions 
an be de�ned as follows: t["℄ is the �rst symbol of t (in �), t=" = t,

t["  s℄ = s, and if t = �(t

1

; : : : ; t

k

), i 2 [k℄, and u 2 V (t

i

), then t[iu℄ = t

i

[u℄,

t=iu = t

i

=u, and t[iu s℄ = �(t

1

; : : : ; t

i

[u s℄; : : : ; t

k

).

Let u 2 N

�

. For every j � 1, u is the parent of uj, denoted by parent(uj), and j is

the 
hild number of uj, denoted by 
hildno(uj). Moreover, we de�ne 
hildno(") = 0.

Let � be a ranked alphabet. For a tree t 2 T

�

, yt denotes the yield of t, i.e.,

the string in (�

(0)

� feg)

�

obtained by reading the leaves of t from left to right,
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omitting nodes labeled by the spe
ial symbol e of rank 0 (e.g., for t = �(a; �(e; b)),

yt = t[1℄t[22℄ = ab). The string yt 
an be obtained re
ursively as follows; if t = e

then yt = ", if t 2 �

(0)

� feg then yt = t, and if t = �(t

1

; : : : ; t

k

), k � 1, � 2 �

(k)

,

and t

1

; : : : ; t

k

2 T

�

, then yt = yt

1

� � � yt

k

.

A ranked alphabet � is monadi
 if all its symbols are of rank one, ex
ept the

spe
ial symbol e of rank zero, i.e., if � = �

(1)

[ fe

(0)

g; a tree in T

�

is a monadi


tree. For a monadi
 tree t = a

1

(a

2

(� � � a

m

(e))), pt denotes the path of t, i.e., the

string a

1

� � � a

m

2 (�

(1)

)

�

.

2.2 Tree Substitution

First, we de�ne string substitution: For strings v; w

1

; : : : ; w

n

2 A

�

and distin
t

a

1

; : : : ; a

n

2 A, we denote by v[a

1

 w

1

; : : : ; a

n

 w

n

℄ the result of (simultane-

ously) substituting w

i

for every o

urren
e of a

i

in v. Note that the substitution

[a

1

 w

1

; : : : ; a

n

 w

n

℄ is a homomorphism on strings. Let P be a 
ondition on

a and w su
h that f(a; w) j Pg is a partial fun
tion. Then we use, similar to set

notation, [a  w j P ℄ to denote the substitution [L℄, where L is the list of all

a  w for whi
h 
ondition P holds. Sin
e trees are strings, we 
an use ordinary

string substitution to repla
e leaves in a tree: for � of rank zero, t[�  s℄ is the

tree obtained from t by repla
ing ea
h node labeled � by the tree s. This type of

tree substitution (i.e., repla
ing leaves) is often 
alled \�rst-order tree substitution";

note that top-down tree transdu
ers and also pebble tree transdu
ers are based on

this type of substitution.

Re
all from the previous subse
tion that for a node u of t, t[u  s℄ is the tree

obtained by repla
ing in t the subtree rooted at u by s. This type of tree substitution

(i.e., repla
ing a subtree) is also often 
alled �rst-order tree substitution. Note that

if fu

1

; : : : ; u

n

g is the set of all �-labeled nodes in t and � is of rank zero, then

t[� s℄ = t[u

1

 s℄ � � � [u

n

 s℄.

We now turn to a di�erent type of substitution, whi
h is used in ma
ro tree

transdu
ers: \se
ond-order tree substitution". It means to repla
e in a tree a symbol

of arbitrary rank by a tree s. Here, the question arises how to deal with the subtrees

of a symbol of rank k � 1 that is repla
ed. We use, at leaves of s, the (formal)

parameters y

1

; : : : ; y

k

as pla
eholders for the 1st, : : : , kth subtrees of the symbol

being repla
ed.

As for �rst-order tree substitution, let us �rst de�ne the expli
it repla
ement of

a node u in t. Let k be the rank of u, i.e., t[u℄ 2 �

(k)

, and let s be a tree with

parameters in Y

k

, i.e., s 2 T

�

(Y

k

). Then the se
ond-order substitution of s at u in

t, denoted by t[[u s℄℄, is the tree obtained by repla
ing in t the subtree rooted at

u by s, in whi
h ea
h y

j

is repla
ed by the jth subtree t=uj of u in t; thus, t[[u s℄℄


an be de�ned in terms of �rst-order substitution as

t[[u s℄℄ = t[u s[y

j

 t=uj j j 2 [k℄℄℄:

Note, by the way, that t[[u  s℄℄ = t[u  s℄ in the 
ase that s does not 
ontain

parameters.

Next, we de�ne the se
ond-order tree substitution of all �'s (of rank k) in t by the

tree s 2 T

�

(Y

k

). Let �

1

; : : : ; �

n

be distin
t elements of �, n � 1, and for ea
h i 2 [n℄

let s

i

be a tree in T

�

(Y

k

i

), where k

i

= rank

�

(�

i

). The se
ond-order tree substitution

of �

i

by s

i

in t, denoted by t[[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ is indu
tively de�ned as follows

(abbreviating [[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ by [[: : :℄℄). For t = �(t

1

; : : : ; t

k

) with � 2 �

(k)

,

k � 0, and t

1

; : : : ; t

k

2 T

�

, (i) if � = �

i

for an i 2 [n℄, then t[[: : :℄℄ = s

i

[y

j

 

t

j

[[: : :℄℄ j j 2 [k℄℄ and (ii) otherwise t[[: : :℄℄ = �(t

1

[[: : :℄℄; : : : ; t

k

[[: : :℄℄). We will say that

[[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ is a se
ond-order tree substitution over �. Note that it is

a mapping from T

�

to T

�

. In fa
t, it is a tree homomorphism [GS84℄. Let P be

6



a 
ondition on � and s su
h that f(�; s) j Pg is a partial fun
tion. Then we use

[[�  s j P ℄℄ to denote the substitution [[L℄℄, where L is the list of all �  s for

whi
h 
ondition P holds. In se
ond-order tree substitutions we use for the relabeling

�  Æ(y

1

; : : : ; y

k

) of �

(k)

by Æ

(k)

the abbreviation �  Æ; note that this is, in fa
t,

a string substitution.

We will use elementary properties of se
ond-order substitution (both t[[u  s℄℄

and t[[�

1

 s

1

; : : : ; �

n

 s

n

℄℄) without proof. For instan
e, (just as ordinary substi-

tution) se
ond-order tree substitution is asso
iative (by the 
losure of tree homo-

morphisms under 
omposition, 
f. Theorem IV.3.7 of [GS84℄), i.e., t[[�  s℄℄[[�  

s

0

℄℄ = t[[�  s[[�  s

0

℄℄℄℄ and if �

0

6= � then t[[�  s℄℄[[�

0

 s

0

℄℄ = t[[�

0

 s

0

; �  

s[[�

0

 s

0

℄℄℄℄, and similarly for the general 
ase (
f. Se
tions 3.4 and 3.7 of [Cou83℄).

It should be 
lear that t[[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ 
an be obtained from t by

the iterative appli
ation of one-node substitutions t

0

[[u  s

i

℄℄. More pre
isely, let

� = t[[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ and de�ne the binary relation)

�

on trees as follows:

t

1

)

�

t

2

if t

2

= t

1

[[u s

i

℄℄ for some i 2 [n℄ and some u 2 V (t

1

) with t

1

[u℄ = �

i

. Note

that )

�

�

is a 
ongruen
e, i.e., if t

i

)

�

�

t

0

i

then �(t

1

; : : : ; t

k

))

�

�

�(t

0

1

; : : : ; t

0

k

). Using

this and the de�nition of the se
ond-order tree substitution �, it is straightforward

to show (by indu
tion on the stru
ture of t) that t)

�

�

t�.

2.3 Tree Languages and Tree Grammars

Let � be a ranked alphabet. A tree language (over �) is a subset of T

�

. Both yield

and path (de�ned in Subse
tion 2.1) are extended to tree languages in the obvious

way, i.e., for L � T

�

, yL = fyt j t 2 Lg and pL = fpt j t 2 Lg (note that pL is only

de�ned if � is monadi
). For a 
lass L of tree languages, yL = fyL j L 2 Lg and

pL = fpL j L 2 Lg.

A regular tree grammar is a tuple G = (N;�; S

0

; P ) where N is a �nite set of

nonterminals, � is a ranked alphabet, S

0

2 P is the initial nonterminal, and P is a

�nite set of produ
tions of the form A ! � with A 2 N and � 2 T

�

(N). For trees

�; �

0

2 T

�

(N), � )

G

�

0

if �

0

= �[u  �℄ for a leaf u of � labeled by A 2 N and a

produ
tion A ! � in P . The tree language generated by G is L(G) = ft 2 T

�

j

S

0

)

�

G

tg. The 
lass of all regular tree languages is denoted by REGT.

We assume the reader to be familiar with the elementary properties of the regular

tree languages (see, e.g., [GS84,GS97℄).

3 Pebble Tree Transdu
ers

In this se
tion the n-pebble tree transdu
er (n-ptt) is de�ned, and two easy re-

sults about them are proved. The �rst one is a normal form for the rules of n-ptts

(Lemma 2). After that, we give several examples of n-ptts. Then the se
ond result

is proved: a size-to-height relationship for translations of n-ptts (Lemma 7). Using

this relationship (and the examples of before), it is shown that there is a proper

hierar
hy of translations of n-ptts, with respe
t to the number n of pebbles, and

that the 
lass of ptt translations is not 
losed under 
omposition. In Subse
tion 3.1

the di�eren
es between our de�nition of n-pebble tree transdu
er and the original

one of [MSV00℄ are dis
ussed. In Subse
tion 3.2 it is shown that, under 
ertain


onditions, 0-pebble tree transdu
ers are attribute grammars; to be pre
ise, that

non
ir
ular deterministi
 0-pebble tree transdu
ers 
ompute the same total fun
-

tions as attribute grammars. Finally, in Subse
tion 3.3, we explain how n-ptts �t

into the framework of RT(S) transdu
ers of [Eng86,EV86℄. These subse
tions are

independent from the rest of the paper, and therefore 
an be skipped.

An n-pebble tree transdu
er is a �nite state devi
e that takes an (ordered,

ranked) tree as input and generates a tree as output. It pro
esses the input tree
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starting in the initial state with its reading head at the root node (i.e., with the

root node as \
urrent node"). It then walks on the input tree, from node to node,

using n pebbles to �nd its way. Depending on the 
urrent state, the label of the


urrent node and its 
hild number (that is, 0 for the root and j � 1 for a node

that is the jth 
hild of its parent), and on the presen
e of the pebbles 1; : : : ; n

at the 
urrent node, the transdu
er 
an generate a tree as output; the leaves of

that tree may 
ontain state-instru
tion pairs that determine how to pro
eed. The

possible instru
tions are to move to one of the neighbors of the 
urrent node (i.e.,

to a parent or a 
hild) or to stay there, or to lift or drop a pebble. The pebbles

1; : : : ; n are used in a sta
k-like fashion, i.e., if l � n pebbles are on the tree, then

at most two instru
tions 
on
erning pebbles are available: either drop pebble l + 1

(if l + 1 � n) or lift pebble l (if it is present at the 
urrent node).

An n-ptt 
an be seen as a parti
ular type of fun
tional program: ea
h state

is a fun
tion with one parameter. The parameter is the \input 
on�guration" h

whi
h 
ontains the 
urrent node of the input tree and the positions of the pebbles.

The fun
tion body 
onsists of a 
ase distin
tion on the input 
on�guration h; more

pre
isely, the 
ase distin
tion is on test(h), see below, whi
h is a triple 
onsisting

of the label of the 
urrent node, the information about whi
h pebbles are at the


urrent node, and the 
hild number of the 
urrent node. The fun
tion body may


ontain re
ursive 
alls to other fun
tions, and generates output of type output tree.

De�nition 1. For n � 0, an n-pebble tree transdu
er (for short, n-ptt) is a tuple

M = (�;�;Q; q

0

; R), where � and � are ranked alphabets of input and output

symbols, respe
tively, Q is a �nite set of states, q

0

2 Q is the initial state, and R is

a �nite set of rules. A rule is of the form hq; �; b; ji ! � where � is of one of the two

forms

� =

�

hq

0

; 'i

Æ(hq

1

; stayi; : : : ; hq

k

; stayi)

for q 2 Q, � 2 �, b 2 f0; 1g

�n

, j 2 [0; J ℄ with J = maxfrank

�

(�) j � 2 �g, q

0

2 Q,

' 2 I

�;b;j

, Æ 2 �

(k)

, k � 0, and q

1

; : : : ; q

k

2 Q. The set I

�;b;j

of instru
tions is

de�ned as

fstayg [ fup j j 6= 0g [ fdown

i

j i 2 [�℄g [ fdrop j l < ng [ flift j l � 1; b(l) = 1g

where � = rank

�

(�) and l = jbj. A rule r as above is 
alled hq; �; b; ji-rule or q-rule,

and its right-hand side � is denoted by rhs(r). For a subset Q

0

of Q, a q-rule with

q 2 Q

0

is also 
alled Q

0

-rule.

If � and � are monadi
 thenM is monadi
. If for every q, �, b, and j there is at

most one hq; �; b; ji-rule in R, then M is deterministi
 (for short, M is an n-dptt).

If there is at least one su
h rule then M is total. ut

If an n-ptt M is monadi
 (re
all the de�nition of monadi
 trees from Subse
-

tion 2.1) and if we view monadi
 trees as strings, then the resulting string-to-string

translations realized by monadi
 n-ptts are the same as those realized by the two-

way n-pebble string transdu
ers of [EM02b℄ (and similarly for the deterministi


transdu
ers). Viewing a monadi
 tree t as a string 
orresponds to taking its path

pt, i.e., the string a

1

� � � a

m

for t = a

1

(a

2

(� � � a

m

(e) � � � )).

Let us now dis
uss how, for a given input tree s 2 T

�

, the n-ptt M 
omputes

an output tree. An (n-pebble) input 
on�guration (on s) is a pair h = (u; �), where

u 2 V (s) and � 2 V (s)

�n

. The set of all n-pebble input 
on�gurations on s is

denoted by IC

n;s

. The input 
on�guration (u; �) means that the reading head ofM

is at node u, that there are l = j�j pebbles on the tree, and that the pebbles 1; : : : ; l

are present at the nodes �(1); : : : ; �(l), respe
tively.

By `testing' the 
on�guration h, M 
an determine the label � of the 
urrent

node u, the bit string b (of length l) that has the ith bit set i� the ith pebble is at
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u, and the 
hild number j of u (see Subse
tion 2.1 for the notion of 
hild number).

Thus, we de�ne test(h) as the triple (�; b; j), where � = s[u℄, b(i) = (�(i) = u) for

i 2 [l℄, and j = 
hildno(u). For test(h) = (�; b; j) and an instru
tion ' 2 I

�;b;j

, the

exe
ution of ' on h, denoted by '(h), is the input 
on�guration de�ned as

'(h) = '((u; �)) =

8

>

>

>

>

<

>

>

>

>

:

(u; �) if ' = stay

(parent(u); �) if ' = up

(ui; �) if ' = down

i

(u; �u) if ' = drop

(u; [�(1); : : : ;�(l � 1)℄ if ' = lift

Note that � is a string of strings and that [�(1); : : : ;�(l � 1)℄ is the string 
onsist-

ing of the strings �(1); : : : ; �(l � 1); 
f. the beginning of the Preliminaries. Thus,

[�(1); : : : ;�(l � 1)℄ is the unique �

0

su
h that � = �

0

u.

A 
on�guration of M on s is a pair hq; hi 2 hQ; IC

n;s

i. It means that q is the


urrent state and h is the 
urrent input 
on�guration. The set hQ; IC

n;s

i of all 
on-

�gurations of M on s is denoted C

M;s

. A rule hq; �; b; ji ! � of M is appli
able to

hq; hi if (�; b; j) = test(h). A sentential form (of M on s) is a tree in T

�

(C

M;s

),


ontaining the already produ
ed output and the 
on�gurations at whi
h the 
om-

putation of M may 
ontinue.

The 
omputation relation of M on s, denoted by )

M;s

, is the binary relation

over T

�

(C

M;s

) de�ned as follows: for �; �

0

2 T

�

(C

M;s

), � )

M;s

�

0

i� there are

(N) a leaf v of � labeled by hq; hi 2 C

M;s

, and

(R) a rule hq; �; b; ji ! � in R appli
able to hq; hi

su
h that �

0

= �[v  �℄ where � equals

� hq

0

; '(h)i if � = hq

0

; 'i; and

� Æ(hq

1

; hi; : : : ; hq

k

; hi) if � = Æ(hq

1

; stayi; : : : ; hq

k

; stayi):

Note that �

0

= �[v  �[h℄

M;s

℄ where

[h℄

M;s

= [hq

0

; 'i  hq

0

; '(h)i j q

0

2 Q;' 2 I

test(h)

℄: (#)

A 
omputation ofM on an input tree s always starts at the root node " of s, and

with no pebbles present; in other words, the initial 
on�guration is hq

0

; h

0

i, where

the initial input 
on�guration h

0

is de�ned as ("; �). Re
all, from the beginning of

the Preliminaries, that " denotes the empty string, and that � is used to denote the

empty string of strings. The translation realized by M , denoted by �

M

, is de�ned as

�

M

= f(s; t) 2 T

�

� T

�

j hq

0

; h

0

i )

�

M;s

tg:

Two transdu
ers are equivalent, if they realize the same translation. The 
lass

of all translations realized by n-ptts is denoted by n-PTT, and in the deterministi



ase by n-DPTT. The unions

S

n�0

n-PTT and

S

n�0

n-DPTT are denoted by PTT

and DPTT, respe
tively. It should be 
lear that for a deterministi
 n-ptt M , �

M

is a fun
tion (
f. Lemma 20 where this fa
t is proved for the more general 
ase of

deterministi
 n-pebble ma
ro tree transdu
ers).

Note that for n � 0, n-PTT(REGT) denotes the 
lass of all tree languages

�

M

(R) = ft j (s; t) 2 �

M

for some s 2 Rg where M is an n-ptt and R is a regular

tree language. This is the 
lass of output languages of n-PTT. From the point of

view of databases it is the 
lass of views 
orresponding to queries realized by n-ptts

(on some type R). In fa
t, we will use similar terminology for any 
lass of tree

transdu
ers.

Sin
e pebble tree transdu
ers, just as regular tree grammars, are based on �rst-

order tree substitution, it is quite obvious to see that for a �xed input tree the
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omputations of an n-ptt 
an be simulated by a regular tree grammar. Formally,

let M = (�;�;Q; q

0

; R) be an n-ptt and let s 2 T

�

be an input tree. As stated

in Proposition 3.5 of [MSV00℄, there is a regular tree grammar G

M;s

su
h that its

derivations 
orrespond to the 
omputations by )

M;s

. In fa
t, the nonterminals of

G

M;s

are the 
on�gurations hq; hi in C

M;s

, with initial nonterminal hq

0

; h

0

i, and if

hq; hi )

M;s

� then G

M;s

has the produ
tion hq; hi ! �. Clearly, G

M;s

generates the

tree language �

M

(s) � T

�

.

PTTs with general rules. When 
onstru
ting the rules of a ptt, it is 
onvenient

not to be restri
ted to the two forms of possible right-hand sides of De�nition 1, i.e.,

either \navigation" (viz. hq; 'i) or \output one symbol" (viz. Æ(hq

1

; stayi; : : : ; hq

k

;

stayi)). It should be intuitively 
lear that we 
an allow any tree � over output sym-

bols and symbols hq; 'i as right-hand side of a rule, without 
hanging the expres-

siveness of the model. Roughly speaking, su
h a right-hand side � 
an be simulated

by a subprogram that generates �, using only rules with right-hand sides of the

above two kinds (navigation or output).

A rule of the form hq; �; b; ji ! � with � 2 T

�

(hQ; I

�;b;j

i) is a general rule, and

an n-ptt with general rules is a tuple M = (�;�;Q; q

0

; R) where R is a �nite set

of general rules (and the rest is as for an n-ptt). For M , the notions `determinis-

ti
', `total', and `monadi
' are de�ned in the same way as for an n-ptt. Re
all the

de�nition of the 
omputation of an n-ptt. The 
omputation relation for a ptt with

general rules is de�ned as follows: � )

M;s

�

0

i� there are (N) a leaf v of � labeled

by hq; hi 2 C

M;s

, and (R) a rule hq; �; b; ji ! � in R appli
able to hq; hi, su
h that

�

0

= �[v  �[h℄

M;s

℄;

where [h℄

M;s

is de�ned in equation (#) above.

Lemma 2. For every n-ptt M with general rules there is an equivalent n-ptt M

0

.

If M is deterministi
, then so is M

0

.

Proof. LetM = (�;�;Q; q

0

; R) be an n-ptt with general rules. The 
onstru
tion of

the rules of the n-pttM

0

is similar to the 
onstru
tion of produ
tions in normal form

for a regular tree grammar (
f. Lemma 3.4 of [GS84℄). LetM

0

= (�;�;Q[Q

r

; q

0

; R

0

)

be de�ned as follows. Consider a rule hq; �; b; ji ! � in R. Let (�; ") be a state in

Q

r

and let the rule

hq; �; b; ji ! h(�; "); stayi

be in R

0

. For every w 2 V (�) let (�; w) be a state in Q

r

and let the rule

h(�; w); �; b; ji ! �[w℄(h(�; w1); stayi; : : : ; h(�; wk); stayi)

be in R

0

, where k is the rank of the label �[w℄ of w. Obviously, M

0

is an n-ptt and

�

M

0

= �

M

.

A
tually, this lemma is just an easy spe
ial 
ase of Theorem 16 in Se
tion 5

(more pre
isely, the 
ase that all states of the \n-pmtt" M have rank zero; then M

is an n-ptt with general rules). Thus, the proof of Theorem 16 
ontains a formal


orre
tness proof of the above 
onstru
tion. ut

Convention 3. From now on, when de�ning an n-ptt (or n-dptt) we ta
itly give

the de�nition of one with general rules, without expli
itly mentioning that Lemma 2

should be applied in order to obtain an equivalent n-ptt (or n-dptt). Note that from

this point of view Lemma 2 is a normal form result.
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Examples. We now give several examples of pebble tree transdu
ers. We start with

deterministi
 transdu
ers without pebbles: In Example 4 two deterministi
 0-pebble

tree transdu
ers are de�ned, su
h that their 
omposition has an exponential size-

to-height relationship; this will be used later in this se
tion to prove that PTT and

DPTT are not 
losed under 
omposition. In Example 5, a deterministi
 monadi
 n-

ptt, n 2 N, is de�ned whi
h has polynomial size in
rease with exponent n+1; it will

be used later in this se
tion to prove that the translations of n-ptts and of n-dptts

form hierar
hies with respe
t to the number n of pebbles. Finally, in Example 6,

an example of a nondeterministi
 0-pebble transdu
er is given that translates ea
h

input tree into in�nitely many di�erent output trees; this example will play a spe
ial

role in Se
tion 5.

Example 4. Let � = fa

(1)

; e

(0)

g and� = f�

(2)

; e

(0)

g. The �rst 0-dpttM

1

translates

a monadi
 tree (in T

�

) of size m+ 1 (i.e., a tree s with ps = a

m

, 
f. the de�nition

of the \path" ps of a monadi
 tree s in Subse
tion 2.1) into a full binary tree (in

T

�

) with 2

m

leaves. Let M

1

= (�;�; fqg; q; R

1

) where, for j 2 f0; 1g, R 
onsists of

the following (general) rules

hq; a; �; ji ! �(hq; down

1

i; hq; down

1

i)

hq; e; �; ji ! e:

Obviously, the tree t

m

= �

M

1

(a

m

(e)) is a full binary tree with 2

m

leaves, i.e., with

yield yt

m

= e

2

m

.

The next 0-dpttM

2

translates a binary tree (in T

�

) withm leaves into a monadi


tree (in T

�

) of size m+1, i.e., into the tree a

m

(e). LetM

2

= (�;�; fd; d

0

; ug; d; R

2

)

and let the following (general) rules be in R

2

.

hd; �; �; ji ! hd; down

1

i for j 2 [0; 2℄

hd; e; �; 1i ! a(hd

0

; upi)

hd

0

; �; �; ji ! hd; down

2

i for j 2 [0; 2℄

hd; e; �; 2i ! a(hu; upi)

hd; e; �; 0i ! a(e)

hu; �; �; 1i ! hd

0

; upi

hu; �; �; 2i ! hu; upi

hu; �; �; 0i ! e

Obviously, M

2

performs a depth-�rst left-to-right tree traversal on its input tree

s 2 T

�

, outputting an a for ea
h leaf (labeled e) of s. Ea
h �-labeled node is visited

three times by M

2

(in states d, d

0

, and u, respe
tively) and ea
h e-labeled node is

visited on
e (in state d).

Finally, 
onsider the 
omposition

� = �

M

1

Æ �

M

2

= f(a

m

(e); a

2

m

(e)) j m 2 Ng:

The size of �(s) is 2

size(s)�1

+ 1, i.e., � is of exponential size in
rease. Thus, � has

a non-polynomial size-to-height relationship (be
ause the height of a monadi
 tree

equals its size). ut

Re
all from De�nition 1 that an n-ptt is monadi
 if its input and output alpha-

bets are monadi
. The next example presents, for n 2 N, the monadi
 n-dptt M

n

su
h that

�

M

n

= f(a

m�1

(e); a

k�1

(e)) j k = m

n+1

g;

i.e., it has polynomial size in
rease with exponent n + 1. It will be proved later

(Lemma 7) that this is indeed the maximal size in
rease of a monadi
 n-ptt.
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Example 5. Let � = � = fa

(1)

; e

(0)

g. Let M

0

be a 0-dptt that realizes the identity

on all input trees in T

�

: M

0

has set of states Q

0

= fq

0

g and, for j 2 f0; 1g, it has

the rules

hq

0

; a; �; ji ! a(hq

0

; down

1

i)

hq

0

; e; �; ji ! e

For every n � 0 we now de�ne indu
tively the (n + 1)-dptt M

n+1

whi
h, above

ea
h symbol in an output tree ofM

n

, inserts a 
opy of the 
orresponding input tree

(more pre
isely, of the monadi
 pie
e a

m�1

of the input tree a

m�1

(e)). The idea of

the 
onstru
tion is as follows. WheneverM

n

generates an output symbol Æ, the new

(n+1)-dpttM

n+1

instead drops a pebble at the 
urrent node u, and 
hanges into a

new state q

up

. In state q

up

it moves to the root of the input tree s. Then it 
hanges

into the state q

down

in whi
h it moves down to the leaf of s, 
opying ea
h a of the

input tree. Finally, it 
hanges into the state q

�nd

and sear
hes for the node with the

most re
ently pla
ed pebble, i.e., the node u. On
e at u, it lifts the pebble, outputs

Æ, and pro
eeds a

ording to the rules of M

n

(doing the same as above whenever

output is generated).

For n � 0 de�ne M

n+1

= (�;�;Q

n+1

; q

0

; R

n+1

) with

{ Q

n+1

= Q

n

[ fq




j q 2 Q

n

; 
 2 fup; down; �nd; ba
kgg

{ For every rule r = (hq; �; b; ji ! �) in R

n

: if � 2 hQ

n

; I

�;b;j

i then let r be in

R

n+1

, and otherwise (i.e., � = e or � = a(hq

0

; stayi) with q

0

2 Q) let the rules

hq; �; b; ji ! hq

up

; dropi

hq

ba
k

; �; b; ji ! �

be in R

n+1

. For every q 2 Q

n

, b 2 f0; 1g

�n+1

, and b

0

2 f0; 1g

�n

let the following

rules be in R

n+1

:

hq

up

; �; b; 1i ! hq

up

; upi for � 2 �

hq

up

; �; b; 0i ! hq

down

; stayi for � 2 �

hq

down

; a; b; ji ! a(hq

down

; down

1

i) for j 2 f0; 1g

hq

down

; e; b; ji ! hq

�nd

; stayi for j 2 f0; 1g

hq

�nd

; �; b

0

0; 1i ! hq

�nd

; upi for � 2 �

hq

�nd

; �; b

0

1; ji ! hq

ba
k

; lifti for � 2 �; j 2 f0; 1g:

Clearly, M

n+1

is deterministi
, i.e., �

M

n+1

2 (n + 1)-DPTT. Let us now show

thatM

n+1

has polynomial size in
rease with exponent n+2. Consider an input tree

s = a

m�1

(e), m � 1. Then �

M

0

(s) = s. The 1-dptt M

1

inserts a

m�1

above ea
h of

the m symbols of �

M

0

(s), i.e., �

M

1

(s) has k � 1 = (m� 1)m+ (m� 1) o

urren
es

of a, and thus its size is k = m

2

= size(s)

2

. In general we get

size(�

M

n+1

(s)) = (size(s)� 1) � size(�

M

n

(s)) + size(�

M

n

(s))

= size(s) � size(�

M

n

(s))

= size(s)

n+2

:

Finally note that instead of de�ning M

n

re
ursively, it would have also been

possible to give a dire
t 
onstru
tion of an n-dptt that realizes the same translation

as M

n

: it systemati
ally generates all possible 
on�gurations in whi
h all n pebbles

are present, starting with all the pebbles and the reading head at the root node and

ending with all the pebbles and the reading head at the leaf, generating an a for

ea
h su
h 
on�guration. Obviously, there are size(s)

n+1

su
h 
on�gurations. ut

Example 6. Let � be a ranked alphabet, J = maxfrank

�

(�) j � 2 �g, and let

� = � [ f��

(1)

j � 2 �g. Let mon

�

� T

�

� T

�

be the translation 
onsisting of all

pairs (s; t) su
h that t is obtained from s by inserting, above ea
h �-labeled node

12



in s, an arbitrary number of unary symbols �� (we use `mon' to stand for \monadi


insertion"). The following nondeterministi
 0-pttM

�

realizes the translation mon

�

.

Let M

�

= (�;�; fqg; q; R) where, for every � 2 �

(k)

, k � 0, and j 2 [0; J ℄, the

following rules are in R.

hq; �; �; ji ! ��(hq; stayi)

hq; �; �; ji ! �(hq; down

1

i; : : : ; hq; down

k

i)

It should be 
lear that indeed �

M

�

= mon

�

.

Note that mon

�

is an instan
e of a \regular insertion" (see, e.g., Se
tion 2.3

of [Eng82℄), whi
h inserts strings (seen as monadi
 trees) of an arbitrary regular

language R

�

above ea
h symbol � of an input tree. ut

Size-to-Height Relationship of PTT Translations. In the next lemma we

show an elementary property of the translation realized by an n-ptt: for a given

input tree, the height of an output tree is either unbounded or it is polynomially

bounded by the size of the input tree, where the exponent of the polynomial is n+1.

This is due to the fa
t that the number of possible 
on�gurations on the input tree

is polynomially bounded by its size.

Lemma 7. Let M be an n-ptt. There is a 
 > 0 su
h that for every input tree s,

if �

M

(s) is �nite then height(t) � 
 � size(s)

n+1

for every output tree t 2 �

M

(s).

Proof. Let M = (�;�;Q; q

0

; R) and s 2 T

�

. We 
laim that if �

M

(s) is �nite then

height(t) � jC

M;s

j for every t 2 �

M

(s). Sin
e the number of 
on�gurations of M on

s is at most jQj � size(s) � (size(s) + 1)

n

(state, 
urrent node, and the position of the

n pebbles), this shows the lemma for, e.g., 
 = jQj � 2

n

.

To prove the 
laim, 
onsider the regular tree grammarG

0

M;s

with set of nontermi-

nals C

M;s

, initial nonterminal hq

0

; h

0

i, and all produ
tions hq; hi ! Æ(hq

1

; h

1

i; : : : ;

hq

k

; h

k

i) su
h that Æ 2 �

(k)

, k � 0, and hq; hi )

�

M;s

Æ(hq

1

; h

1

i; : : : ; hq

k

; h

k

i). It

should be 
lear that the language L(G

0

M;s

) generated by G

0

M;s

equals �

M

(s). It

should also be 
lear, by the usual pumping argument (see, e.g., Proposition 5.2

of [GS97℄), that if t 2 L(G

0

M;s

) has height larger than jC

M;s

j, whi
h is the number

of nonterminals of G

0

M;s

, then L(G

0

M;s

) is in�nite.

We note that the proof would work as well with G

M;s

, dis
ussed above after the

de�nition of �

M

, but is even more apparent with G

0

M;s

whi
h generates exa
tly one

output symbol at ea
h derivation step (and thus 
orresponds to a nondeterministi


�nite state tree automaton). ut

The fa
t that translations of n-ptts have polynomial size-to-height relationship

of input to output tree (Lemma 7), has two immediate 
onsequen
es:

(1) Hierar
hies of Translations. Re
all from Example 5 the deterministi
 monadi


n-ptt M

n+1

, n 2 N, and note that height(t) = size(t) for every monadi
 tree t. As

was shown in the example, height(�

M

n+1

(s)) = size(s)

n+2

, whi
h means that there is

no 
 su
h that height(�

M

n+1

(s)) � 
 � size(s)

n+1

for every input tree s. By Lemma 7

we obtain that �

M

n+1


annot be realized by any n-dptt, i.e., �

M

n+1

62 n-DPTT. This

proves that

�

M

n+1

2 (n+ 1)-DPTT� n-DPTT;

i.e., there is a proper hierar
hy of translations of deterministi
 n-ptts with respe
t

to the number n of pebbles.

In fa
t, by Lemma 7, even

(n+ 1)-DPTT� n-PTT 6= ?;

whi
h means that also the translations of nondeterministi
 n-ptts form a proper

hierar
hy with respe
t to the number n of pebbles.

13



(2) Non
losure under Composition. Re
all from Example 4 the two 0-dptts

M

1

and M

2

. As was shown in the example, the 
omposition � = �

M

1

Æ �

M

2

has

exponential size-to-height relationship. Thus, by Lemma 7, � 
annot be realized by

any n-ptt, and therefore 0-DPTT Æ 0-DPTT * PTT whi
h means that

DPTT and PTT are not 
losed under 
omposition.

As dis
ussed in the Introdu
tion, it is an undesirable property of a query lan-

guage not to be 
losed under 
omposition: it means that querying a view (i.e., the

result of a previous query) might give a result for whi
h there is no dire
t query on

the original database. For this reason, one may argue that the query language of peb-

ble tree transdu
ers determines the 
lasses DPTT

�

and PTT

�

of (deterministi
 and

nondeterministi
) queries, rather than DPTT and PTT, respe
tively. Note further,

that in the 
ase of monadi
 trees, the 
lass of two-way pebble string translations


orresponding to DPTT is 
losed under 
omposition, as was shown in Theorem 2

of [EM02b℄ (and so is the 
lass 
orresponding to 0-DPTT).

3.1 Comparison with the Model of Milo, Su
iu, and Vianu

In this subse
tion our de�nition of n-pebble tree transdu
er (De�nition 1) is 
om-

pared to the original de�nition of [MSV00℄. This 
omparison is not needed in order

to understand the remainder of the paper, and hen
e 
an be skipped.

The n-pebble tree transdu
er of [MSV00℄ translates binary trees, using n pebbles

named 1; : : : ; n. The pebbles are put on the input tree in the order of their names,

i.e., if there are l pebbles on the tree, then pebble l is the most re
ently pla
ed

pebble, 
alled the 
urrent pebble. It a
ts as the reading head and moves a

ording

to the label of the node on whi
h it is (the 
urrent node), the 
urrent state, and

the absen
e or presen
e of the various other pebbles on the 
urrent node. In other

words, there are up to n� 1 \real" pebbles that are tested in the transitions, plus

the additional 
urrent pebble (the \reading-head-pebble"). To pla
e a new pebble

means that the 
urrent pebble l remains at the 
urrent node, and pebble l+1, whi
h

now be
omes the 
urrent pebble, is pla
ed on the root of the input tree. To pi
k the


urrent pebble l+1 means to remove it, making pebble l the 
urrent one. In terms

of a model with a reading head in pla
e of the 
urrent pebble these two operations


an be seen as follows: (1) �rst a pebble is dropped at the node of the reading head,

and then the reading head jumps to the root and (2) the reading head jumps to the

node of the highest numbered pebble, and then this pebble is lifted.

Our model of n-pebble tree transdu
er (De�nition 1) has a reading head and

additionally has n pebbles, that it may drop/lift at the 
urrent node, whi
h is the

node pointed at by the reading head. Moreover, our transdu
er has the ability to


he
k whether the 
urrent node is the root node, viz. 
he
king, in the left-hand side

of a rule, whether the 
hild number equals zero: \is the 
urrent node the 
hild of no

node?", i.e., \is it the root node?". This is a natural 
hoi
e be
ause the transdu
er


an 
he
k whether the 
urrent node is a leaf (by the rank of the node label), i.e., it


an re
ognize the bottom boundary of the input tree, so it should also be able to

re
ognize the top boundary of the input tree, i.e., its root. In the model of [MSV00℄

a root 
he
k 
an be implemented by pla
ing an extra pebble on the root (or by

having a spe
ial root symbol). Note that the expli
it test for the 
hild number j

that is present in the left-hand side of a rule of our transdu
er, is also present in the

model of [MSV00℄ for j 6= 0: it o

urs when the appli
ability of an up

j

-instru
tion

(with j = 1; 2) is determined. Sin
e we are parti
ularly interested in deterministi


transdu
ers, it seems more appropriate to expli
itly in
lude this test in the left-

hand side of a rule, be
ause it leads to a natural de�nition of determinism: for ea
h

left-hand side there should be at most one rule.
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Let n-MSV denote the 
lass of tree translations realized by the (n + 1)-pebble

tree transdu
ers of [MSV00℄ (i.e., having n \real" pebbles), where we drop the

restri
tion to binary ranked alphabets. Denote by n-PTT

no-root

the 
lass of tree

translations that 
an be realized by the n-pebble tree transdu
ers obtained from

De�nition 1 by removing the root-
he
k, i.e., by requiring that if hq; �; b; 0i ! � is

a rule, then hq; �; b; ji ! � is also a rule, for all possible j � 1. Below we prove the

following in
lusions, for n � 0:

n-MSV � n-PTT � (n+ 1)-PTT

no-root

� (n+ 1)-MSV; (�)

also for the deterministi
 
ase.

First in
lusion of (�): the move transition (q; pla
e-new-pebble) of an n-MSV

transdu
er 
an be simulated by an n-ptt by �rst dropping a pebble and 
hang-

ing into a new state r, and then in r to move up to the root node (re
ognized

by the root-
he
k), at whi
h we 
hange into the state q. The move transition

(q; pi
k-
urrent-pebble) is simulated by 
hanging into state r and then, as before,

to move to the root node. Now we sear
h the tree for the highest numbered pebble,

whi
h 
an be realized by a depth-�rst left-to-right traversal of the tree (
f., e.g.,

Example 3.3 of [MSV00℄, and our Example 4). On
e arrived at the node that has

the highest numbered pebble, we lift it and 
hange to state q.

Se
ond in
lusion of (�): To simulate the root-
he
k of an n-PTT, the (n + 1)-

PTT

no-root

drops a pebble in its initial 
on�guration, i.e., at the root node; then

the root-
he
k is simply realized by 
he
king the presen
e of this pebble.

Third in
lusion of (�): A (q; drop) transition of an (n+1)-PTT

no-root


an be sim-

ulated by an (n+1)-MSV transdu
er in the following way. First pla
e a new pebble,

by a transition (r; pla
e-new-pebble). This means that 
urrent pebble l remains at

the 
urrent node, and the new 
urrent pebble l + 1 (the reading-head-pebble) will

be at the root. Now sear
h for the pebble l and move to state q on
e it is found. A

(q; lift) transition of an (n+1)-PTT

no-root

is simulated by a (q; pi
k-
urrent-pebble)

transition of an (n+ 1)-MSV transdu
er.

Clearly, the above implies that MSV =

S

n�0

n-MSV = PTT and hen
e our

results about the 
lass PTT dire
tly 
arry over to the 
lass MSV (and similarly in

the deterministi
 
ase). On the other hand, our results that depend on the number

n of pebbles, i.e., results about the 
lasses n-PTT and n-DPTT, should be handled

with 
are when translating them into the model of [MSV00℄.

3.2 0-PTTs are Attribute Grammars

In this subse
tion it is shown that 0-dptts and attribute grammars are 
losely related

formalisms and, under 
ertain 
onditions, realize the same 
lass of translations. Sin
e

we do not use this in the remainder of the paper, the subse
tion 
an be skipped.

Attribute grammars were introdu
ed by Knuth in [Knu68℄ to model syntax-

dire
ted semanti
s. They are now the basis of many 
ompiler-
ompiler systems

(see, e.g., [DJL88℄). An attribute grammar 
an be seen as a devi
e whi
h translates

the set of trees (i.e., the free algebra) over a many-sorted signature. This is, in fa
t,

the set of derivation trees of a 
ontext-free grammar G: the sorts are the nontermi-

nals of G and the symbols are the produ
tions of G (see Se
tion 3 of [GTWW77℄).

The output trees are interpreted in a semanti
 domain, i.e., they are viewed as

expressions denoting obje
ts in that domain. Thus, an attribute grammar de�nes

a tree-to-obje
t translation. If the interpretation of the output trees is dropped,

then an attribute grammar de�nes a tree-to-tree translation [EF81℄. We will only


onsider one-sorted signatures from now on, for the sake of simpli
ity. Then the

resulting (uninterpreted) attribute grammars are also 
alled attributed tree trans-

du
ers [F�ul81,FV98℄.
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The table in Figure 1 shows the 
orresponden
e between deterministi
 zero peb-

ble tree transdu
ers and attribute grammars (seen as attributed tree transdu
ers).

0-dptt attribute grammar

states attributes

initial state designated attribute at the root

rules semanti
 rules that de�ne the attributes

Fig. 1. Corresponden
e between 0-dptts and attribute grammars.

Attribute grammars (for short, AGs) are total deterministi
, and even required

to have no in�nite 
omputations starting with any sentential form, i.e., they are

\non
ir
ular", whi
h, in the 0-ptt notation, means that there is no 
omputation

hq; hi )

+

M;s

� where hq; hi o

urs in �. This implies that AGs de�ne total fun
tions.

Formally, a 0-ptt M is non
ir
ular, if there are no input tree s, 
on�guration 
 2

C

M;s

, and sentential form � of M on s su
h that 
 )

+

M;s

� and 
 o

urs in � (su
h

a 
on�guration 
 will also be 
alled \
ir
ular", 
f. Se
tion 5.2).

To understand the formal de�nition of an attribute grammar as a spe
ial type

of 0-dptt, we �rst extend the 0-ptt formalism to have rules with left-hand side

hq; �; �; �; ji where � is the label of the parent of the 
urrent node (or `�' if j = 0).

Clearly, this extension does not 
hange the power of 0-dptts (a 0-dptt M

0


an

simulate an extended one M , be
ause in state q at node u, M

0


an visit u's parent

u

0

, move down to u into state (q; �) where � is the label of u

0

, and then apply

the hq; �; �; �; ji-rule of M). Furthermore, we allow the extended 0-dptts to use

in the right-hand side of a hq; �; �; �; ji-rule the new instru
tion updown

i

, with

1 � i � rank

�

(�), whi
h is simply a subroutine for moving to the parent of the


urrent node u and then to the ith 
hild (i.e., to the ith sibling of u).

Next we restri
t the extended 0-dptts: The attributes (states) are divided into

inherited attributes (i-states) and synthesized attributes (s-states). Now the restri
-

tion says that the

{ rules for s-states are: hq; �; �; �; ji-rules that disregard � and j and have no up

instru
tion in the right-hand side (and no updown

i

), and

{ rules for i-states are: hq; �; �; �; ji-rules that disregard �, have no down

i

instru
-

tion in the right-hand side, but are allowed to use updown

i

.

The extended 0-ptts that ful�ll the above two 
onditions and additionally are total

deterministi
 and non
ir
ular, are 
alled attributed tree transdu
ers (for short att).

Note that for the hq; �; �; �; ji-rules to disregard, e.g., the symbol �, means that

all hq; �; �; �; ji-rules for � 2 � have the same right-hand side. Note also that,

intuitively, the �rst 
ondition means that for ea
h s-state, at a �-labeled node,

there is a unique appli
able rule, and the se
ond 
ondition means that for ea
h i-

state, at a jth 
hild of a � -labeled node, there is a unique appli
able rule. Moreover,

from an s-state it is not possible to move up, and from an i-state it is not possible

to move down, respe
tively.

Finally note that an attribute grammar is usually spe
i�ed by giving for ea
h

input symbol � (i.e., ea
h produ
tion of the underlying 
ontext-free grammar)

�

all rules h q ; � ; [� ; � ; j℄ i ! � q synthesized

all rules h q ; [�

0

℄ ; � ; [�℄ ; j i ! � q inherited

where the bra
kets `[' and `℄' around the symbols mean that they are not present

in the a
tual left-hand side of the attribute grammar rule (whi
h is the same as
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hd; �i ! hd; down

1

i ht; �; 1i ! a(hd; updown

2

i) hu; �; 1i ! hd; updown

2

i

hd; ei ! ht; stayi ht; �; 2i ! a(hu; upi) hu; �; 2i ! hu; upi

ht; ; 0i ! a(e) hu; ; 0i ! e

Fig. 2. An att (with s-state d and i-states t and u) equivalent to M

2

of Example 4.

disregarding it). Figure 2 shows the rules, in this attribute grammar notation, of an

att that 
omputes the same translation as the 0-dptt M

2

of Example 4, in a similar

way.

Clearly, for every att there is an equivalent non
ir
ular 0-dptt, be
ause an att is

an extended 0-dptt. We now show that also the 
onverse holds, i.e., that for every

non
ir
ular 0-dptt M that realizes a total fun
tion, there is an equivalent att; this

proves that su
h 0-dptts and atts have the same power.

Theorem 8. A total fun
tion from T

�

to T

�


an be realized by an attributed tree

transdu
er i� it 
an be realized by a non
ir
ular 0-dptt.

Proof. As stated before, every att is an (extended) non
ir
ular 0-dptt, by de�nition.

It remains to show that for every non
ir
ular 0-dpttM that realizes a total fun
tion,

there is an equivalent att A. Sin
e �

M

is a total fun
tion, we may assume that M is

total: this 
an be a
hieved by simply adding (dummy) rules for the left-hand sides

that do not have a rule (note that these rules will never be applied).

Let M = (�;�;Q; q

0

; R) and let J = maxfrank

�

(�) j � 2 �g. Note that M is

not extended. The att A is 
onstru
ted as follows:

{ s-states: (q; j) with q 2 Q and j 2 [0; J ℄; initial state: (q

0

; 0)

{ i-states: (q; ') with q 2 Q and ' 2 fstay; upg

{ rules for s-states:

For every hq; �; �; ji ! � in R and (�; j

0

) 2 (� � [J ℄) [ f(�; 0)g, let

h(q; j); �; �; �; j

0

i ! �

0

be a rule of A, where

�

0

=

8

>

>

<

>

>

:

Æ(h(q

1

; j); stayi; : : : ; h(q

k

; j); stayi) if � = Æ(hq

1

; stayi; : : : ; hq

k

; stayi)

h(q

0

; j); stayi if � = hq

0

; stayi

h(q

0

; i); down

i

i if � = hq

0

; down

i

i

h(q

0

; stay); stayi if � = hq

0

; upi

{ rules for i-states:

For every q 2 Q, � 2 �, and (�; j) 2 (� � [J ℄) [ f(�; 0)g, let

h(q; stay); �; �; �; ji ! h(q; up); upi for j 6= 0

h(q; up); �; �; �; ji ! h(q; j); stayi

be rules of A. Furthermore, A has the (dummy) rule h(q; stay); �;�; �; 0i !

hp; stayi where p is an arbitrary state of A.

Note that the rules of A even disregard � , and do not 
ontain the updown

i

instru
-

tions. It should be 
lear that A is equivalent to M , i.e., �

A

= �

M

. Intuitively, when-

everM is in state q at node u, the att A will be in s-state (q; 
hildno(u)) at the same

node u. This property is obviously preserved by down and stay moves: If M moves

down to its ith 
hild ui into state q

0

, then A moves down to ui into s-state (q

0

; i),

and if M stays at u in state q

0

, then A stays at u in s-state (q

0

; 
hildno(u)). Now, if

M moves up into state q

0

, then A 
annot move up dire
tly, be
ause (q; 
hildno(u))

is an s-state (only i-states are allowed to move up). Thus, A �rst 
hanges into the

i-state (q

0

; stay), then moves up into the i-state (q

0

; up), and �nally does a stay move

into the s-state (q

0

; j), where j = 
hildno(parent(u)). It is not diÆ
ult to see that

A is non
ir
ular, be
ause M is. ut
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Note that for an attributed tree transdu
er it is well known that the height of the

output tree is linear in the size of the input tree (
f., e.g., Lemma 5.40 of [FV98℄);

this 
orresponds to the 
ase n = 0 of Lemma 7.

Attribute grammars 
an also be de�ned as nondeterministi
 and partial devi
es.

In fa
t, the attributed tree transdu
er of [F�ul81℄ is de�ned nondeterministi
ally.

In [Kam83,FM00℄ it is shown that domains of (deterministi
) partial AGs are the

languages re
ognized by universal tree-walking automata, whi
h, essentially, are the

a

eptor version of 0-dptts. We �nally note that the relationship between 0-ptts and

attribute grammars was already pointed out in Se
tion 3 of [Eng86℄, where 0-ptts

are 
alled RT(Tree-walk) transdu
ers; these transdu
ers are dis
ussed in the next

subse
tion.

3.3 Relationship to Grammars with Storage

In this subse
tion we explain that the n-ptt is an instan
e of the regular tree S

transdu
er, for a storage type S. This is only needed to understand some of our

referen
es to the literature, and hen
e 
an be skipped.

Grammars, automata, and transdu
ers with storage have been 
onsidered in

[Eng86,EV86,EV88℄, both for strings and for trees. The spe
ial 
ase of string au-

tomata with storage was extensively investigated in AFL and AFA theory [Gin75℄.

Here we dis
uss the regular tree transdu
ers with storage, or RT(S) transdu
-

ers, where S is an arbitrary storage type (su
h as the Counter, the Pushdown,

or the Sta
k). Basi
ally, an RT(S) transdu
er is a regular tree grammar (see Sub-

se
tion 2.3) of whi
h the nonterminals are viewed as the states of the transdu
er.

Moreover, with ea
h o

urren
e of a nonterminal in a sentential form a storage


on�guration of S is asso
iated, and the produ
tions of the grammar are extended

with tests and instru
tions of S that operate on these 
on�gurations. Thus, the

derivations of the grammar are 
ontrolled by the storage 
on�gurations. The RT(S)

transdu
er re
eives one of a set of designated initial storage 
on�gurations of S as

input (asso
iated with the initial nonterminal), and produ
es the generated tree as

output. This means that it translates initial 
on�gurations into trees.

As observed already in the Introdu
tion (and at the end of the previous sub-

se
tion), the 0-ptt is the same as the RT(Tree-walk) transdu
er of [Eng86℄, i.e., the

RT(S) transdu
er where S is the storage type Tree-walk. A storage 
on�guration of

Tree-walk 
onsists of an input tree s, together with an input 
on�guration on s, as

de�ned for the 0-ptt, i.e., a node u of s; it is an initial storage 
on�guration if u is the

root of s, in whi
h 
ase it is identi�ed with s (and thus, the RT(Tree-walk) trans-

du
er indeed translates trees into trees). The tests of the storage type Tree-walk

allow to test the label and 
hild number of the node u, and its instru
tions are the

instru
tions of the 0-ptt, i.e., up, stay, and down

i

. As an example of a produ
tion

of an RT(Tree-walk) transdu
er, 
onsider

A[label = �?
hildno = 3?℄ ! Æ(�;B[down

2

℄; C[up℄):

Intuitively, this produ
tion means that a nonterminal (or state) A whi
h has storage


on�guration (s; u) where s is an input tree and u a node of s with label � and 
hild

number 3, 
an be repla
ed by the right-hand side, in whi
h the nonterminals (or

states) B and C have storage 
on�gurations (s; u2) and (s; parent(u)), respe
tively.

Thus, it 
orresponds to the rule hA; �; �; 3i ! Æ(�; hB; down

2

i; hC; upi) of a 0-ptt.

It should now be 
lear to the reader that the storage type Tree-walk 
an easily be

extended to the storage type n-Pebble, for every n 2 N, su
h that the RT(n-Pebble)

transdu
er is pre
isely the n-ptt. Hen
e, all results for RT(S) transdu
ers proved

in, e.g., [Eng86,EV86,EV88℄ hold in parti
ular for n-ptts.
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Another storage type of interest is Tree (denoted TR in [EV86,EV88℄): it is

Tree-walk without the instru
tions stay and up, and without the test on 
hild num-

ber. We observe here that the RT(Tree) transdu
er is pre
isely the top-down tree

transdu
er.

In [EV86,EV88℄, also 
ontext-free tree transdu
ers with storage, or CFT(S)

transdu
ers, are investigated. They are de�ned in the same way as RT(S) trans-

du
ers, ex
ept that 
ontext-free tree grammars rather than regular tree grammars

are used. In parti
ular, the CFT(Tree) transdu
er is (a notational variant of) the

ma
ro tree transdu
er. Thus, in this paper, we 
ompare RT(n-Pebble) transdu
ers

with CFT(Tree) transdu
ers.

We �nally note that with every storage type S is asso
iated the storage type

P(S) of pushdowns of S-
on�gurations. It is easy to see (see Se
tion 6(7) of [Eng86℄)

that every RT(Tree-walk) transdu
er, i.e., every 0-ptt, 
an be simulated by an

RT(P(Tree)) transdu
er: roughly speaking, the nodes that are on the path from

the root to the 
urrent node are pushed on the sta
k; thus, a down

i

instru
tion is

simulated by a push(down

i

) instru
tion, whi
h pushes node ui on the pushdown (if

u was the node on top of the pushdown), and an up instru
tion is simulated by

popping the pushdown. It is shown in [EV86℄ that, under 
ertain 
onditions, the

RT(P(S)) transdu
er has the same power as the CFT(S) transdu
er.

4 De
omposition of Pebble Tree Transdu
ers

In this se
tion it is proved that ea
h n-pebble tree transdu
erM 
an be de
omposed

into the (n+1)-fold 
omposition of 0-pebble tree transdu
ers; more pre
isely, the �rst

n 0-ptts of the 
omposition are deterministi
, and the last one is nondeterministi


(and they are all deterministi
 if M is). This means that for a pebble transdu
er,

a pebble 
an be simulated by the appli
ation of a translation of a deterministi


0-ptt. Thus, instead of taking 
are of many pebbles at the same time (viz. program-

ming an n-ptt) one 
an simply 
onsider pebble transdu
ers without pebbles, and

sequentially 
ompose them. Note that in the string 
ase an analogous result holds,

but with one pebble rather than zero: ea
h n-pebble string transdu
er 
an be real-

ized by the 
omposition of n 1-pebble string transdu
ers (Theorem 1 of [EM02b℄).

The idea of the proof in the string 
ase is similar to, but easier than, the one for

trees in this se
tion. The one pebble is really needed: deterministi
 0-pebble string

transdu
ers are 
losed under 
omposition (be
ause they are the two-way �nite state

transdu
ers [CJ77℄).

Let us sket
h the proof of this de
omposition. Let M be an n-ptt, n � 1. We

want to dis
uss how to de
ompose M 's translation �

M

into the 
omposition of a

�xed total fun
tion En
Peb, realized by a deterministi
 0-ptt, and an (n � 1)-ptt

M

0

. The idea of the fun
tion En
Peb is to add information about the position of

the �rst pebble of M to the input tree. More pre
isely, the input tree is enlarged

by adding to ea
h node, as an additional (last) subtree, a 
opy of the input tree in

whi
h that node is marked. The 
omputation of M on an input tree s is simulated

by the (n � 1)-ptt M

0

on the input tree En
Peb(s). As long as M has no pebbles

on s, M

0

simulates it on the original nodes of s, of whi
h the labels are primed to

distinguish them from the new nodes of En
Peb(s). However, when M drops the

�rst pebble on node v of s, M

0

instead enters the new subtree of v and walks to the

marked node, 
orresponding to v. In that subtree M

0

behaves just like M , using

pebble i as pebble i+1 of M . If M 
he
ks for the presen
e of its �rst pebble, then

M

0


he
ks whether the 
urrent node is marked. If M lifts its �rst pebble, then M

0

returns to v by walking up to the �rst primed node.

There is one diÆ
ulty in the 
onstru
tion sket
hed above, and that is the pre
ise

de�nition of En
Peb(s). Suppose that, as suggested above, ea
h additional subtree
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is indeed a pre
ise 
opy of the input tree, with one node marked by barring its label.

Then it is easy to see that En
Peb 
an be realized by a dptt M

1

with one pebble.

In fa
t, M

1

has states q

0

, q

1

, and q

2

, and the following rules (with � 2 �

(k)

, j � 0,

j

0

> 0, and b 2 f0; 1g):

hq

0

; �; �; ji ! �

0

(hq

0

; down

1

i; : : : ; hq

0

; down

k

i; hq

1

; dropi)

hq

1

; �; b; j

0

i ! hq

1

; upi

hq

1

; �; b; 0i ! hq

2

; stayi

hq

2

; �; 0; ji ! �(hq

2

; down

1

i; : : : ; hq

2

; down

k

i)

hq

2

; �; 1; ji ! �(hq

2

; down

1

i; : : : ; hq

2

; down

k

i)

Thus, to generate the additional tree, M

1

drops its pebble at the 
urrent node,

walks to the root, and 
opies the input tree, putting a bar on the label of the node

that 
arries the pebble.

However, it 
an be proved that this mapping En
Peb 
annot be realized by a

zero-pebble ptt. For this reason, we instead de�ne En
Peb in su
h a way that the

new subtree of node v is a \folded" 
opy of the input tree s, obtained from s by

turning v into the root node. This is done by reversing the dire
tion of the edges on

the path from the root to v, i.e., by inverting the parent-
hild relationship between

all an
estors of v. It is not diÆ
ult to see that this En
Peb 
an be realized by a

zero-pebble ptt (see also Example 3.7 of [MSV℄): to generate the new subtree it 
an

just 
opy the input tree starting at the 
urrent node v and \walking away" from v.

It should also be 
lear that the (n�1)-pttM

0


an still simulateM on this folding of

s, provided some additional information is added to the labels of the (ex-)an
estors

of v that allows M

0

to re
onstru
t the form of s, and, thus, to turn a walk on s

into a walk on the folding of s. This information 
an easily be produ
ed by the

zero-pebble ptt. Note that the simulation of the dropping and lifting of the �rst

pebble has even be
ome easier: when it is dropped, M

0

just moves down one step

(to the root of the new subtree), and when it is lifted, M

0

just moves up one step.

We now give a more pre
ise des
ription of the mapping En
Peb, to prepare

for its formal de�nition. For every input tree s of M , En
Peb(s) has all nodes of

the original tree s, but additionally ea
h node v of rank k in the tree s, has rank

k + 1 in En
Peb(s) and its (k + 1)th subtree is the tree s

dir

v

, obtained by adding

the \redire
tion information" mentioned above to the labels of the folding s

v

of

the input tree s at v. We �rst des
ribe how the intermediate tree s

v

is 
onstru
ted

from s, and then show how to relabel it in order to obtain the tree s

dir

v

. The tree s

v

is obtained from s by inverting the parent-
hild relationship of all an
estors of u.

More pre
isely, if u is an an
estor of v in s, then, in s

v

, the parent of u is swapped

with its ith 
hild, where i = swap

v

(u) and

swap

v

(u) =

�

k + 1 if u = v

l if v = ulv

0

for l 2 N and some v

0

2 N

�

with k = rank

�

(s[v℄). Sin
e v itself has no 
hild that is an an
estor of v, its parent

is added as a new, (k + 1)th 
hild. If u is the root node, then it has no parent, but

in order to keep the ranks of the new symbols in s

dir

v

as uniform as possible, we

assume an imaginary parent of u, labeled by a dummy symbol $. Clearly M

0

will

never visit these $-labeled nodes in En
Peb(s), be
ause that would 
orrespond to

an up instru
tion of M at the root node, whi
h does not exist.

We now dis
uss how to relabel s

v

in order to obtain the tree s

dir

v

. Let u be

an an
estor of v. Sin
e in s

v

the parent of u was swapped with its ith 
hild, i =

swap

v

(u), also the 
orresponding move instru
tions of the (n � 1)-ptt M

0

have to

be swapped. We 
apture this \swapping information" by the set d

i

, de�ned as

d

i

= f(up; down

i

); (down

i

; up)g:

20



Also, the 
hild number j of u (in s) may have 
hanged in s

v

. Thus, for M

0

to have


omplete information about the original order of the an
estors of v, we in
lude both

d

i

and the original 
hild number j of u in the label of the 
orresponding node in

s

dir

v

. Hen
e, s

dir

v

is obtained from s

v

by relabeling, for every an
estor u of v, the

node 
orresponding to u by (s[u℄; 
hildno(u); d

swap

v

(u)

).

Note that the node of s

dir

v


orresponding to v, i.e., its root, is marked in the sense

that it is the unique node of s

dir

v

with label (�; j; d

i

) su
h that i = rank

�

(�) + 1.

Note also that, in fa
t, the 
hild number information is super
uous: if a node of

s

dir

v

has label (�; j; d

i

) and its ith 
hild has label (�

0

; j

0

; d

i

0

), then j = i

0

(and if its

ith 
hild has label $, then j = 0). Moreover, even the d

i

information is super
uous,

be
ause i is the number of the unique 
hild that is an (ex-)an
estor of v (or has

label $). Thus, it would have suÆ
ed to mark all (ex-)an
estors of v. However, the

addition of this information simpli�es the formal de�nition of M

0

.

�

�a g

� 
 


Æ f

d e

v

b

Æ

e 


� f

� 
 �

a g$b

d

�

(Æ; 1; d

3

)

d e

f




a g$b

(
; 3; d

1

)

(�; 2; d

3

)

(�; 0; d

2

)

Fig. 3. The trees s, s

v

, and s

dir

v

.

Figure 3 shows a tree s in whi
h the node v = 231 is en
ir
led, the 
orresponding

tree s

v

whi
h is obtained from s by turning v into the root node and reversing the

order of the an
estors of v, as des
ribed above, and the tree s

dir

v

obtained from s

v

by relabeling ea
h an
estor of v by the 
orre
t triple (�; j; d

i

). As an example of the

translation En
Peb, 
onsider Figure 4 whi
h shows the tree s = �(�; 
(Æ)) together

with the tree En
Peb(s).

Formally, the tree En
Peb(s) is de�ned as follows. First, de�ne for every v 2 V (s)

the fun
tion en


v

that maps every u 2 V (s) to the 
orresponding node in the subtree

s

dir

v

of En
Peb(s). Let w be the longest 
ommon an
estor of u and v, let u

0

2 N

�

su
h that u = wu

0

, and let w

1

= v; w

2

; : : : ; w

m

= w, m � 1, be the nodes on the

path from v to w (i.e., w

i

is a 
hild of w

i+1

for 1 � i < m). Then

en


v

(u) = v(k + 1)swap

v

(w

1

) � � � swap

v

(w

m�1

)u

0

with k = rank

�

(s[v℄). Figure 5 shows the nodes u, v, and w

i

in the tree s. Obviously,

en


v

is an en
oding, i.e., for every u; u

0

2 V (s)

(P0) en


v

(u) = en


v

(u

0

) i� u = u

0

.

Using en


v

(u) we 
an de�ne the set of nodes of En
Peb(s) as

V (En
Peb(s)) = V (s) [ fen


v

(u) j u; v 2 V (s)g

[ fen


v

(")swap

v

(") j v 2 V (s)g:

The labels of the nodes of En
Peb(s) are as follows. Note that nodes in V (s) are

labeled by primed 
opies of the 
orresponding symbols of �, be
ause their rank in
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Fig. 4. The trees s = �(�; 
(Æ)) and En
Peb(s).

w
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w

2

w

1
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u

0

w

m�1

.

.
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"

Fig. 5. The nodes u, v, and w

i

in the tree s.
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En
Peb(s) has in
reased by one. Denote the tree En
Peb(s) by s

0

. Then, for every

u; v 2 V (s),

(P1) s

0

[u℄ = �

0

where � = s[u℄

(P2) if u is not an an
estor of v then s

0

[en


v

(u)℄ = s[u℄

(P3) if u is an an
estor of v then s

0

[en


v

(u)℄ = (s[u℄; 
hildno(u); d

swap

v

(u)

)

(P4) s

0

[en


v

(")swap

v

(")℄ = $.

Note that the information 
hildno(u) is available at node en


v

(u) of s

0

. If u is

an an
estor of v this is by de�nition of the relabeling, viz. P3, and otherwise, by

the de�nition of en


v

(u), we get

(P5) if u is not an an
estor of v then 
hildno(u) = 
hildno(en


v

(u)).

In the next lemma the 0-dptt M

En
Peb

realizing En
Peb is 
onstru
ted, and, for

a given n-ptt M , the (n � 1)-ptt M

0

is 
onstru
ted su
h that the 
omposition of

�

M

En
Peb

and �

M

0

equals the translation �

M

realized by M .

Lemma 9. For every n � 1, n-PTT � 0-DPTT Æ (n� 1)-PTT and

n-DPTT � 0-DPTT Æ (n� 1)-DPTT.

Proof. Let M = (�;�;Q; q

0

; R) be an n-ptt, and let J = maxfrank

�

(�) j � 2 �g.

We will de�ne the deterministi
 0-ptt M

En
Peb

and the (n � 1)-ptt M

0

su
h that

�

M

= �

M

En
Peb

Æ �

M

0

. The 0-ptt M

En
Peb

realizes the mapping En
Peb des
ribed

above this lemma, i.e., it adds to ea
h node v of rank k of an input tree s, as

(k + 1)th subtree, the tree s

dir

v

(
f. Figure 3). It has initial state q whi
h 
opies the


urrent node v of rank k (adding a prime to its label), and spawns the generation

of s

dir

v

as (k+1)th subtree, in state q

1

. In the subtree s

dir

v

, M

En
Peb

uses states q

�

,

� 2 [J ℄, to denote that the previously pro
essed node had 
hild number �. Finally,

it has a state q

id

that realizes the identity.

De�ne M

En
Peb

= (�;�; S; q; P ) with

� = � [ f�

0

(k+1)

j � 2 �

(k)

; k � 0g

[ f(�; j; d

i

)

(k)

j � 2 �

(k)

; k � 0; i 2 [k℄; j 2 [0; J ℄g

[ f(�; j; d

k+1

)

(k+1)

j � 2 �

(k)

; k � 0; j 2 [0; J ℄g

[ f$

(0)

g

and S = fq; q

1

; q

1

; : : : ; q

J

; q

id

g. For every � 2 �

(k)

, k � 0, j 2 [0; J ℄, and � 2 [k℄

let the following rules be in P .

hq; �; �; ji ! �

0

(hq; down

1

i; : : : ; hq; down

k

i; hq

1

; stayi)

hq

1

; �; �; ji ! (�; j; d

k+1

)(hq

id

; down

1

i; : : : ; hq

id

; down

k

i; �

j

)

hq

�

; �; �; ji ! (�; j; d

�

)(hq

id

; down

1

i; : : : ; hq

id

; down

��1

i; �

j

;

hq

id

; down

�+1

i; : : : ; hq

id

; down

k

i)

hq

id

; �; �; ji ! �(hq

id

; down

1

i; : : : ; hq

id

; down

k

i)

where �

j

= $ if j = 0, and �

j

= hq

j

; upi if j 2 [J ℄. This ends the 
onstru
tion of

M

En
Peb

. It should be 
lear that indeed �

M

En
Peb

(s) = En
Peb(s) for every s 2 T

�

.

In parti
ular this implies that the properties P1 { P5 (stated before the lemma)

hold for s

0

= �

M

En
Peb

(s).

We now de�ne the (n � 1)-ptt M

0

= (�;�;Q; q

0

; R

0

). Sin
e, in the 
orre
tness

proof, we will need to know whi
h rules r

0

in R

0

were 
onstru
ted from the rule

r 2 R, we will 
all r

0

related to r if it is 
onstru
ted from r. Then R

0

is de�ned as

fr

0

j 9r 2 R : r

0

is related to rg.

Let q 2 Q, � 2 �

(k)

, k � 0, b 2 f0; 1g

�n

, j 2 [0; J ℄, and let r = (hq; �; b; ji ! �)

be a rule in R. The new rules of M

0

are de�ned by the following 
ase distin
tion on

the bit string b.
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{ (zero pebbles) b = �: If � 6= hq

0

; dropi for any q

0

2 Q then let the rule

hq; �

0

; �; ji ! � be related to r, and otherwise let the rule hq; �

0

; �; ji !

hq

0

; down

k+1

i be related to r.

{ (�rst pebble not at 
urrent node) b = 0b

0

for some b

0

2 f0; 1g

�n�1

: Let the rule

hq; �; b

0

; ji ! � be related to r, and, for every i 2 [k℄ and j

0

2 [J + 1℄, let the

rule

hq; (�; j; d

i

); b

0

; j

0

i ! �[hq

0

; 'i  hq

0

; '

0

i j q

0

2 Q; ('; '

0

) 2 d

i

℄

be related to r.

{ (�rst pebble at 
urrent node) b = 1b

0

for some b

0

2 f0; 1g

�n�1

: If b

0

= � and � =

hq

0

; lifti for q

0

2 Q, then let, for every j

0

2 [J+1℄, the rule hq; (�; j; d

k+1

); b

0

; j

0

i !

hq

0

; upi be related to r, and otherwise let, for every j

0

2 [J + 1℄, the rule

hq; (�; j; d

k+1

); b

0

; j

0

i ! �[hq

0

; 'i  hq

0

; '

0

i j q

0

2 Q; ('; '

0

) 2 d

k+1

℄

be related to r. (Remark: the rules with j

0

6= k+1 are useless, but their presen
e

simpli�es the 
orre
tness proof.)

This 
on
ludes the 
onstru
tion of M

0

. Clearly, M

0

is deterministi
 if M is.

Let s 2 T

�

and s

0

= �

M

En
Peb

(s). In order to prove the 
orre
tness of the


onstru
tion, we extend the notion of relatedness from rules to sentential forms:

For � 2 T

�[C

M;s

and �

0

2 T

�[C

M

0

;s

0

: � is related to �

0

if �

0

= �[en
℄, where [en
℄

is the substitution [hq; hi  hq; en
(h)i j q 2 Q; h 2 IC

n;s

℄ and the \en
oded"

input 
on�guration en
(h) 2 IC

n�1;s

of M

0

is de�ned as follows: if h = (u; �) with

u 2 V (s) then en
(h) = h, and if h = (u; vv

1

� � � v

l

) with u; v; v

1

; : : : ; v

l

2 V (s) and

l 2 [0; n� 1℄ then

en
(h) = en
(u; vv

1

� � � v

l

) = (en


v

(u); en


v

(v

1

) � � � en


v

(v

l

)):

Note that for every rule r

0

2 R

0

there is pre
isely one rule r in R related to r

0

whi
h we denote by rel(r

0

). We �rst show, in Claim 1, that if a rule is appli
able

to a 
on�guration, then there is related rule appli
able to the related 
on�guration,

and vi
e versa.

Claim 1: Let hq; hi 2 C

M;s

and r 2 R.

r is appli
able to hq; hi i� there is a rule r

0

2 R

0

su
h that

rel(r

0

) = r and r

0

is appli
able to hq; en
(h)i.

Case 1, h = (u; �) for u 2 V (s): Let � = s[u℄ and j = 
hildno(u). Then, r is

appli
able to hq; hi i� its left-hand side is hq; �; �; ji. By the de�nition of R

0

this is i�

there is an r

0

2 R

0

with rel(r

0

) = r and left-hand side hq; �

0

; �; ji. Sin
e en
(h) = h

and, by P1, s

0

[u℄ = �

0

, this is i� r

0

is appli
able to hq; en
(h)i.

Case 2, h = (u; vv

1

� � � v

l

) for u; v; v

1

; : : : ; v

l

2 V (s) and l 2 [0; n�1℄: Let � = s[u℄,

p 2 f0; 1g with p = 1 i� v = u, b

0

2 f0; 1g

l

with b

0

(�) = 1 i� v

�

= u for � 2 [l℄, and

j = 
hildno(u). We distinguish two sub
ases.

Case (i), u is not an an
estor of v: Sin
e p = 0 (be
ause u 6= v), r is appli
a-

ble to hq; hi i� its left-hand side is hq; �; 0b

0

; ji. By the de�nition of R

0

this is i�

there is an r

0

2 R

0

with rel(r

0

) = r and left-hand side hq; �; b

0

; ji. Sin
e en
(h) =

(en


v

(u); en


v

(v

1

) � � � en


v

(v

l

)), s

0

[en


v

(u)℄ = s[u℄ by P2, 
hildno(en


v

(u)) = 
hildno

(u) by P5, and en


v

(v

�

) = en


v

(u) i� v

�

= u for � 2 [l℄ by P0, this is i� r

0

is appli-


able to hq; en
(h)i.

Case (ii), u is an an
estor of v: Let j

0

= 
hildno(en


v

(u)) and i = swap

v

(u). Now

r is appli
able to hq; hi i� its left-hand side is hq; �; pb

0

; ji. By the de�nition of R

0

this is i� there is an r

0

in R

0

with rel(r

0

) = r and left-hand side hq; (�; j; d

i

); b

0

; j

0

i

(note that, by the de�nition of swap

v

(u), i 2 [k℄ if p = 0 and i = k + 1 otherwise).
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Sin
e en
(h) = (en


v

(u); en


v

(v

1

) � � � en


v

(v

l

)), s

0

[en


v

(u)℄ = (�; j; d

i

) by P3, and

en


v

(v

�

) = en


v

(u) i� v

�

= u for � 2 [l℄ by P0, this is i� r

0

is appli
able to

hq; en
(h)i, whi
h 
on
ludes the proof of Claim 1.

Next we prove a 
laim about the result of applying related rules r and r

0

to re-

lated 
on�gurations. More pre
isely, the 
laim shows that the appli
ation of related

rules to related 
on�gurations yields related sentential forms. Re
all, for an input


on�guration h, the de�nition (#) of the substitution [h℄

M;s

at the end of Se
tion 3;

we will denote it here by [h℄, and similarly we denote [en
(h)℄

M

0

;s

0

by [en
(h)℄.

Claim 2: Let hq; hi 2 C

M;s

, r 2 R appli
able to hq; hi, and r

0

2 R

0

appli
able to

hq; en
(h)i, with r = rel(r

0

). Then rhs(r

0

)[en
(h)℄ = rhs(r)[h℄[en
℄.

Let � 2 �

(k)

, k � 0, b 2 f0; 1g

�n

, and j 2 [0; J ℄ su
h that (�; b; j) = test(h).

Thus, r is a hq; �; b; ji-rule.

If rhs(r) 2 T

�[hQ;stayi

then rhs(r

0

) = rhs(r) and, sin
e there are only stay

instru
tions, applying the substitution [h℄[en
℄ is equivalent to applying [hq; stayi  

hq; en
(h)i j q 2 Q℄ whi
h, for the same reason, is equivalent to applying [en
(h)℄.

If rhs(r) = hq

0

; 'i with ' 2 I

�;b;j

�fstayg then we distinguish the following three


ases. Let u 2 V (s).

Case 1, ' = drop: If h = (u; �) then en
(h) = h and rhs(r

0

) = hq

0

; down

k+1

i.

Thus, rhs(r

0

)[en
(h)℄ = hq

0

; down

k+1

(h)i = hq

0

; (u(k + 1); �)i whi
h, by the def-

inition of en
, equals hq

0

; en
(u; u)i = hq

0

; drop(h)i[en
℄ = rhs(r)[h℄[en
℄. If h =

(u; vv

1

� � � v

l

) for v; v

1

; : : : ; v

l

2 V (s) and l � 0, then rhs(r

0

) = rhs(r). Thus,

rhs(r

0

)[en
(h)℄ = hq

0

; drop(en


v

(u); en


v

(v

1

) � � � en


v

(v

l

))i = hq

0

; (en


v

(u); en


v

(v

1

)

� � � en


v

(v

l

)en


v

(u))i = hq

0

; en
(u; vv

1

� � � v

l

u)i = hq

0

; drop(h)i[en
℄ = rhs(r)[h℄[en
℄.

Case 2, ' = lift: If h = (u; u) then rhs(r

0

) = hq

0

; upi and en
(h) = (en


u

(u); �) =

(u(k + 1); �). Consequently, rhs(r

0

)[en
(h)℄ = hq

0

; up(u(k + 1); �)i = hq

0

; (u; �)i =

hq

0

; en
(u; �)i = hq

0

; lift(h)i[en
℄ = rhs(r)[h℄[en
℄.

If h = (u; vv

1

� � � v

l

u) for v; v

1

; : : : ; v

l

2 V (s) and l � 0 then rhs(r

0

) = rhs(r).

Hen
e, rhs(r

0

)[en
(h)℄ = hq

0

; lift(en


v

(u); en


v

(v

1

) � � � en


v

(v

l

)en


v

(u))i = hq

0

; (en


v

(

u); en


v

(v

1

) � � � en


v

(v

l

))i = hq

0

; en
(u; vv

1

� � � v

l

)i = hq

0

; lift(h)i[en
℄ = rhs(r)[h℄[en
℄.

Case 3, ' 2 fup; down

1

; : : : ; down

k

g: If h = (u; �) then rhs(r

0

) = rhs(r),

en
(h) = h, and en
('(h)) = '(h). Thus, on rhs(r), [en
(h)℄ = [h℄ = [h℄[en
℄. If

h = (u; vv

1

� � � v

l

) for v; v

1

; : : : ; v

l

2 V (s) and l � 0 then we distinguish the following

two 
ases, where p denotes the string vv

1

� � � v

l

and p

0

denotes en


v

(v

1

) � � � en


v

(v

l

).

Case (i), u is not an an
estor of v: Then rhs(r

0

) = rhs(r), i.e., it suÆ
es to show

that '(en
(h)) = en
('(h)). Now en
(h) = (en


v

(u); p

0

) = (v(k

0

+ 1)swap

v

(w

1

) � � �

swap

v

(w

m�1

)u

0

; p

0

), where k

0

is the rank of s[v℄, w

1

= u;w

2

; : : : ; w

m

are the nodes on

the path from v to the longest 
ommon an
estor w

m

of u and v, and u = w

m

u

0

. Sin
e

u is not an an
estor of v, u

0

2 N

+

. Thus, applying ' to en
(h) amounts to applying it

to u

0

, and hen
e to u. For a node z, de�ne '(z) = parent(z) if ' = up, and '(z) = zi

if ' = down

i

. Then '(en
(h)) = (v(k

0

+ 1)swap

v

(w

1

) � � � swap

v

(w

m�1

)'(u

0

); p

0

) =

en
(w

m

'(u

0

); p) = en
('(w

m

u

0

); p) = en
('(u); p) = en
('(h)).

Case (ii), u is an an
estor of v: If ' = up then rhs(r

0

) = hq

0

; down

i

i where

i = swap

v

(u) by P3 and the de�nition of r

0

. Thus, we must show that en
(up(h)) =

down

i

(en
(h)). Now up(h) = (�u; p) where �u = parent(u). Thus, en


v

(�u) = v(k

0

+

1)swap

v

(w

1

) � � � swap

v

(w

m�1

), where w

1

= v; : : : ; w

m

= �u are the nodes on the path

from v to �u. This implies that w

m�1

= u and swap

v

(w

m�1

) = i, i.e., en
(�u; p) =

down

i

(v(k

0

+ 1)swap

v

(w

1

) � � � swap

v

(w

m�2

); p

0

) = down

i

(en
(h)).

If ' = down

i

for i 2 [k℄, then we distinguish whether or not ui is an an
es-

tor of v. If ui is not an an
estor of v, then rhs(r

0

) = rhs(r) and we must show

that en
('(h)) = '(en
(h)). Sin
e en


v

(ui) = en


v

(u)i we get en
(down

i

(h)) =

en
(ui; p)=(en


v

(ui); p

0

)=(en


v

(u)i; p

0

)= down

i

(en


v

(u); p

0

) = down

i

(en
(h)).

If ui is an an
estor of v, then rhs(r

0

) = hq

0

; upi, i.e., we must show that

en
(down

i

(h)) = up(en
(h)). Now down

i

(h) = (ui; p) and en
(h) = (v(k

0

+1)swap

v

(
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w

1

) � � � swap

v

(w

m�1

); p

0

), where k

0

is the rank of s[v℄ and w

1

= v; : : : ; w

m

= u are

the nodes on the path from v to u; thus, up(en
(h)) = (v(k

0

+1)swap

v

(w

1

) � � � swap

v

(

w

m�2

); p

0

). Sin
e w

m�1

= ui, this equals en
(ui; p) = down

i

(en
(h)).

This 
on
ludes the proof of Claim 2.

The next 
laim shows that the appli
ation of related rules to the same node

in related sentential forms (i.e., � and �

0

with �

0

= �[en
℄), yields again related

sentential forms. Re
all the de�nition of )

M;s

from Se
tion 3: If � )

M;s

~

� then

there is a leaf � in � su
h that

~

� = �[� �[h℄℄, where �[�℄ = hq; hi 2 C

M;s

and � is

the right-hand side of a rule r of M appli
able to hq; hi; we say that \� )

M;s

~

� by

rule r at node �".

Claim 3: Let � 2 T

�[C

M;s

and � 2 T

�[C

M

0

;s

0

with � = �[en
℄. If � )

M;s

~

� by

rule r 2 R at node � 2 V (�) and � )

M

0

;s

0

~� by rule r

0

at node �, with r = rel(r

0

),

then ~� =

~

�[en
℄.

Note that if �[�℄ = hq; hi then, by the de�nition of [en
℄, �[�℄ = hq; en
(h)i. Now

Claim 3 
an be proved using Claim 2 as follows:

~� = �[en
℄[� rhs(r

0

)[en
(h)℄℄

= �[en
℄[� rhs(r)[h℄[en
℄℄ (by Claim 2)

= �[� rhs(r)[h℄℄[en
℄ (asso
iativity of substitution)

=

~

�[en
℄:

Last but not least, it is shown in the �nal 
laim of this proof that relatedness

(viz. the appli
ation of [en
℄) is preserved in arbitrary 
omputations of M and M

0

.

Claim 4: Let l � 0 and � 2 T

�[C

M

0

;s

0

. Then

hq

0

; h

0

i )

l

M

0

;s

0

� i� 9� : hq

0

; h

0

i )

l

M;s

� and �[en
℄ = �:

The proof of Claim 4 is by indu
tion on the length l of the 
omputations. For

l = 0 the statement is obvious be
ause hq

0

; h

0

i[en
℄ = hq

0

; h

0

i. Let us now prove the

indu
tion step.

First, the `if' part: Let �;

~

� be sentential forms of M on s su
h that

hq

0

; h

0

i )

l

M;s

� )

M;s

~

�;

and let � 2 V (�), hq; hi 2 C

M;s

, and r 2 R be the involved node, 
on�guration,

and rule, respe
tively, of the last step of the 
omputation. Let ~� =

~

�[en
℄. By

indu
tion, hq

0

; h

0

i )

l

M

0

;s

0

� with � = �[en
℄. It follows from the de�nition of [en
℄

that �[�℄ = hq; en
(h)i. By Claim 1 there is a rule r

0

appli
able to hq; en
(h)i with

rel(r

0

) = r. Hen
e � )

M

0

;s

0

~

�[en
℄ = ~� by Claim 3.

Se
ond, the `only if' part: Let �; ~� be sentential forms of M

0

on s

0

su
h that

hq

0

; h

0

i )

l

M

0

;s

0

� )

M

0

;s

0

~�;

and let � 2 V (�), hq; h

0

i 2 C

M

0

;s

0

, and r

0

2 R

0

be the involved node, 
on�guration,

and rule, respe
tively, of the last step of the 
omputation. By indu
tion, there

exists � su
h that hq

0

; h

0

i )

l

M;s

� and �[en
℄ = �. Hen
e, by the de�nition of [en
℄,

h

0

= en
(h) for some h 2 IC

n;s

and, using Claim 1, rel(r

0

) is appli
able to hq; hi at

node � of �. Let

~

� be the result of that appli
ation. Then

~

�[en
℄ = ~� by Claim 3.

This ends the proof of Claim 4.

Sin
e �[en
℄ = t i� � = t, for t 2 T

�

, it follows immediately from Claim 4 that

�

M

0

(s

0

) = �

M

(s). Furthermore, sin
e s

0

= �

M

En
Peb

(s) we obtain that �

M

En
Peb

Æ�

M

0

=

�

M

. ut
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From Lemma 9 we obtain the de
omposition result of this se
tion, our �rst main

theorem: every n-ptt 
an be de
omposed into the 
omposition of n+ 1 0-ptts, and

similarly in the deterministi
 
ase. In more detail, the �rst n translations of this


omposition are in fa
t (very simple) deterministi
 transdu
ers: they all realize the

total fun
tion En
Peb.

Theorem 10. For every n � 1, n-PTT � 0-PTT

n+1

and n-DPTT � 0-DPTT

n+1

.

A 
onsequen
e of Theorem 10 is the equality of the 
omposition 
losure of all

ptts with the 
omposition 
losure of all 0-ptts, and similarly in the deterministi



ase.

Corollary 11. PTT

�

= 0-PTT

�

and DPTT

�

= 0-DPTT

�

.

In terms of databases, Corollary 11 means that the query language of pebble

tree transdu
ers, i.e., the 
omposition 
losure PTT

�

(DPTT

�

), is equal to the query

language of 0-pebble tree transdu
ers.

We note here that the key result of [MSV00℄ is that inverse n-ptt translations

preserve the regular tree languages, i.e., if � 2 n-PTT and R 2 REGT, then

�

�1

(R) 2 REGT. It follows from Theorem 10 that, in fa
t, it suÆ
es to show

this for 0-ptts.

5 Pebble Tree Transdu
ers and Ma
ro Tree Transdu
ers

In this se
tion we 
ompare the model of pebble tree transdu
ers with that of ma
ro

tree transdu
ers, well known from tree language theory [Eng80,CF82,EV85,FV98℄.

Sin
e, a

ording to Subse
tion 3.2, 0-pebble tree transdu
ers 
an be thought of as

attribute grammars, the (total deterministi
) zero pebble 
ase is 
losely related to

the well-known 
omparison of attributed tree transdu
ers with ma
ro tree trans-

du
ers (see, e.g., [Eng81,CF82,EM99,FV99℄).

The main result is that an n-pebble tree transdu
er 
an be simulated by the


omposition of n+1 ma
ro tree transdu
ers (for short, mtts). Moreover, it is shown

that mtts 
an be simulated by 
ompositions of ptts. Thus, the 
omposition 
losure

of all ptts is equal to the 
omposition 
losure of all mtts. To be pre
ise, in the

nondeterministi
 
ase, the mtts must additionally be allowed to use stay instru
tions

(\stay-mtts"). These are the se
ond and third main results of this paper.

Let us now dis
uss these results in more detail. The ma
ro tree transdu
er 
an

be obtained from the 0-ptt in the following way: First, 
onsider a 0-pttM that uses

no up or stay instru
tions, i.e., only down instru
tions. If we additionally allowM to

have general rules (with arbitrary right-hand sides in T

�[hQ;downi

), thenM is a top-

down tree transdu
er [Rou70,Tha70,AU71,Eng82,GS97℄ (
f. also the dis
ussion on

top-down tree transdu
ers in Subse
tion 3.1 of [MSV℄). Now, by adding parameters

(of type output tree) to the states of the top-down tree transdu
er, we obtain the

ma
ro tree transdu
er (for short, mtt). A ni
e 
onsequen
e of the fa
t that mtts have

no stay and up instru
tions, is that they have no in�nite 
omputations, i.e., they

terminate for every input tree. It was proved in the previous se
tion (Corollary 11)

that the 
omposition 
losure of all ptts is equal to the 
omposition 
losure of all

0-ptts. Hen
e, in order to prove the equivalen
e to the 
omposition 
losure of all

mtts, it suÆ
es to show how to simulate 0-ptts by mtts and vi
e versa.

In order to formalize the simulation of 0-ptts by mtts, we �rst de�ne a more

general model whi
h is of interest on its own: the n-pebble ma
ro tree transdu
er

(for short, n-pmtt). It is obtained from the n-ptt by adding parameters to the states.

Then, an mtt is a 0-pmtt that uses only down instru
tions. In order to prove that

a 0-ptt 
an be simulated by an mtt we �rst eliminate the up instru
tions by the
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use of parameters (Lemma 34), thus obtaining a 0-pmtt without up instru
tions,

but whi
h still uses stay instru
tions: a \stay-mtt". Using Theorem 10, this shows

that n-PTT � sMTT

n+1

, where sMTT denotes the 
lass of translations realized by

stay-mtts (and similarly for the deterministi
 
lasses).

In the deterministi
 
ase we prove, in Theorem 31, that stay moves 
an be elim-

inated from deterministi
 stay-mtts, i.e., the translation of a 0-dptt 
an be realized

by a deterministi
 ma
ro tree transdu
er, and hen
e an n-dptt 
an be realized by the

(n+ 1)-fold 
omposition of deterministi
 ma
ro tree transdu
ers (Theorem 35). As

suggested in the Introdu
tion, Theorem 31 is, te
hni
ally speaking, one of the key

results of this paper: it involves removing nonterminating 
omputations (whi
h stay

at a node of the input tree) from the stay-mtt; this is done in several intermediate

stages in the proof of Theorem 31.

In the nondeterministi
 
ase it 
an be shown that stay-mtts are \
lose" to mtts,

in parti
ular that they have the same output languages (whi
h is of interest for the

type 
he
king problem) and that in a 
omposition of stay-mtts, all ex
ept the �rst


an be mtts (Theorems 30 and 29, respe
tively). The reason why a nondeterministi


stay-mtt 
annot always be simulated by an mtt is that �

M

(s) may be in�nite, i.e.,

there are stay-mttsM that generate in�nitely many output trees for one input tree

s. A prototypi
 example of su
h a transdu
er is the nondeterministi
 0-ptt M

�

of

Example 6 that realizes the translation mon

�

: it inserts above ea
h �-labeled node u

of the input tree s 2 T

�

, arbitrarily many nodes labeled by the (unary) symbol ��. In

fa
t, this translation 
an be used in order to simulate an arbitrary stay-mttM by an

mtt: �rstM

�

translates s into the \(arbitrarily) blown up" version s

0

2 mon

�

(s) of

s by inserting unary nodes, and then a ma
ro tree transdu
erM

0


an be 
onstru
ted

that on s

0

simulates the stay-mtt M (on s): If M does a stay move, then M

0

moves

down on the unary (barred) nodes. Thus, sMTT � MONÆMTT (Lemma 27), where

MON is the 
lass of all translations mon

�

.

The stru
ture of this se
tion is as follows. In Subse
tion 5.1, pebble ma
ro tree

transdu
ers are de�ned and some of their basi
 properties are proved. Subse
tion 5.2

deals in parti
ular with properties of deterministi
 pmtts. Subse
tion 5.3 de�nes

ma
ro tree transdu
ers and stay-mtts, and investigates their relationship. Subse
-

tion 5.4 presents the simulation of ptts by 
ompositions of (stay-) ma
ro tree trans-

du
ers. Finally, in Subse
tion 5.5 the simulation of (stay-) ma
ro tree transdu
ers

by 
ompositions of ptts is presented, and it is proved that the 
omposition 
losures

of ptts and (stay-) mtts 
oin
ide.

5.1 Pebble Ma
ro Tree Transdu
ers

The n-pebble ma
ro tree transdu
er (for short, n-pmtt) is obtained from the n-ptt

by allowing ea
h state to have a �nite number of parameters y

1

; : : : ; y

m

of type

output tree (in addition to the, impli
it, parameter of type \input 
on�guration").

Moreover, the right-hand side of a rule of an n-pmtt is an arbitrary tree over output

symbols, state-instru
tion pairs hq

0

; 'i of the same rank as q

0

, and parameters. For

instan
e, hq; upi(�; �(y

1

; hq

0

; down

1

i)) is a possible right-hand side (for a state of

rank � 1), where q and q

0

are of rank 2 and 0, respe
tively. Viewing an n-pmtt as a

fun
tional program this means that ea
h state (of rank m) is a fun
tion with m+1

parameters, and in the fun
tion body ea
h 
ase of the 
ase distin
tion 
onsists of

an arbitrary expression over output symbols, fun
tion 
alls, and parameters. Re
all

from Subse
tion 2.1 that Y

m

denotes the set fy

1

; : : : ; y

m

g.

De�nition 12. For n � 0, an n-pebble ma
ro tree transdu
er is a tuple M =

(�;�;Q; q

0

; R), where � and � are ranked alphabets of input and output symbols,

respe
tively, Q is a ranked alphabet of states, q

0

2 Q

(0)

is the initial state, and R
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is a �nite set of rules of the form

hq; �; b; ji(y

1

; : : : ; y

m

)! �;

where q 2 Q

(m)

, m � 0, � 2 �, b 2 f0; 1g

�n

, j 2 [0; J ℄ with J = maxfrank

�

(�) j

� 2 �g, and � 2 T

�[hQ;I

�;b;j

i

(Y

m

). A rule r as above is 
alled hq; �; b; ji-rule or

q-rule, and its right-hand side � is denoted by rhs(r). For a subset Q

0

of Q, a q-rule

with q 2 Q

0

is also 
alled Q

0

-rule.

If for every q, �, b, and j there is at most one hq; �; b; ji-rule in R, then M is

deterministi
 (for short, M is an n-dpmtt). If there is at least one su
h rule then

M is total. ut

Note that an n-ptt with general rules (
f. Lemma 2) is the spe
ial 
ase of an

n-pmtt in whi
h ea
h state has rank zero, i.e., has no parameters. For an n-pmtt

M , the ranked set of all 
on�gurations of M on s, denoted by C

M;s

, is de�ned

as hQ; IC

n;s

i (re
all, from the beginning of Subse
tion 2.1, that this means that

hq; hi 2 hQ; IC

n;s

i has the same rank as q). A rule hq; �; b; ji(y

1

; : : : ; y

m

)! � of M

is appli
able to a 
on�guration hq; hi if (�; b; j) = test(h). A sentential form (of M

on s) is a tree over � [ C

M;s

.

Let � be a sentential form and u 2 V (�). Then u is outside in � if no proper

an
estor of u is labeled by a 
on�guration. The 
omputation relation ofM on s 2 T

�

is de�ned as follows: For �; �

0

2 T

�[C

M;s

, � )

M;s

�

0

i� there are

(N) a node v outside in � labeled by hq; hi 2 C

(m)

M;s

, m � 0, and

(R) a rule hq; �; b; ji(y

1

; : : : ; y

m

)! � in R appli
able to hq; hi

su
h that �

0

= �[[v  �[[h℄℄

M;s

℄℄ where

[[h℄℄

M;s

= [[hq

0

; 'i  hq

0

; '(h)i j q

0

2 Q;' 2 I

test(h)

℄℄: (#)

Re
all from Subse
tion 2.2 that �[[v  �℄℄ denotes �[v  �[y

j

 t=vj j j 2 [m℄℄℄.

Re
all also that the substitution [[h℄℄

M;s

is just a relabeling: every node labeled

hq

0

; 'i is relabeled by hq

0

; '(h)i.

The translation �

M

realized by M is de�ned in the same way as for an n-ptt. The


lass of all translations realized by n-pmtts is denoted by n-PMTT. If the trans-

du
ers are deterministi
, then the respe
tive 
lass is denoted by n-DPMTT. The

unions of these 
lasses over n 2 N are denoted PMTT and DPMTT, respe
tively.

Note that n-PTT � n-PMTT, and similarly for the deterministi
 
ase.

Example 13. In order to demonstrate that the addition of parameters gives a proper

extension to pebble tree transdu
ers, we 
onstru
t a deterministi
 0-pebble ma
ro

tree transdu
er that realizes a translation that has an exponential size-to-height

relationship, and therefore 
annot be realized by any pebble tree transdu
er by

Lemma 7. Let M = (�;�; fq

(0)

0

; q

(1)

g; q

0

; R) where � = fa

(1)

; e

(0)

g and let R


onsist of the following four rules.

hq

0

; a; �; 0i ! hq; down

1

i(hq; down

1

i(e))

hq

0

; e; �; 0i ! a(e)

hq; a; �; 1i(y

1

) ! hq; down

1

i(hq; down

1

i(y

1

))

hq; e; �; 1i(y

1

) ! a(e)

Now, let us 
onsider how M 
omputes the output tree �

M

(s), for the input tree

s = a(a(e)):

hq

0

; h

0

i = hq

0

; ("; �)i )

M;s

hq; (1; �)i(hq; (1; �)i(e))

)

M;s

hq; (2; �)i(hq; (2; �)i(hq; (1; �)i(e)))

)

M;s

a(hq; (2; �)i(hq; (1; �)i(e)))

)

M;s

a(a(hq; (1; �)i(e)))

)

M;s

a(a(hq; (2; �)i(hq; (2; �)i(e))))

)

2

M;s

a(a(a(a(e)))):
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It should be 
lear that �

M

= f(a

m

(e); a

2

m

(e)) j m 2 Ng. Thus, �

M

is not of

polynomial size-to-height in
rease and therefore

0-DPMTT� PTT 6= ?:

ut

In the sequel we will also apply )

M;s

to trees with parameters, i.e, trees in

T

�[C

M;s

(Y ); then, the parameters are just viewed as output symbols of rank zero.

Note that, by the requirement in (N) that v is outside, the order in whi
h


on�gurations in a tree � 2 T

�[C

M;s

are repla
ed is top-down; in other words, � is

evaluated in a \
all-by-name" (or \lazy") fashion: the value of an a
tual parameter

is not evaluated until the \fun
tion-
all" has been evaluated and the parameter

is needed. In terms of ma
ro tree grammars this order of repla
ement is 
alled

\outside-in", or \OI" for short (
f., e.g., [Fis68,ES77℄). Ma
ro tree grammars (also


alled 
ontext-free tree grammars) 
an be obtained from a pmtt by removing the

tree-walk fa
ility (then the 
on�gurations be
ome the states, viz. the nonterminals).

Just as the 
omputations of an n-ptt 
an be simulated by a regular tree grammar, as

shown in the beginning of Se
tion 3, it is possible to obtain, for a �xed input tree s,

a 
omputation by )

M;s

(for a pmtt M) as the derivation of a ma
ro tree grammar

G

M;s

: The (ranked) nonterminals of G

M;s

are the 
on�gurations hq; hi in C

M;s

and

if hq; hi(y

1

; : : : ; y

m

) )

M;s

� then G

M;s

has the produ
tion hq; hi(y

1

; : : : ; y

m

) ! �.

For ma
ro tree grammars the OI requirement is super
uous, i.e., the same tree

language is generated with unrestri
ted order of repla
ement (see Theorem 4.1.2

of [Fis68℄; see also Se
tion 3.2 of [EV85℄). This implies that also for pmtts the

outside-in requirement in (N) 
an be dropped, without 
hanging �

M

. We keep the

restri
tion be
ause it is te
hni
ally more 
onvenient.

As explained in Subse
tion 3.3, n-ptts are the same as RT(n-Pebble) transdu
ers.

From the previous paragraph it should be 
lear that we just have to repla
e the

regular tree grammar (RT) by the 
ontext-free tree grammar (CFT) in order to

obtain a formalism that is equivalent to the n-pmtt: the CFT(n-Pebble) transdu
er.

In parti
ular, the 0-pmtt is the same as the CFT(Tree-walk) transdu
er, whi
h is

related to the so-
alled ma
ro attributed tree transdu
er of [KV94,FV98℄ in the

same way as the 0-ptt is related to the attribute grammar (see Subse
tion 3.2).

Convention 14. In order to make the rules of n-pmtts more readable, we �x the


onvention (both for the n-ptts of De�nition 1 and the n-pmtts of De�nition 12)

that stay instru
tions may be omitted, i.e., instead of hq; stayi for a state q, we may

simply write q.

Sin
e pmtts have stay moves, their rules hq; �; b; ji(y

1

; : : : ; y

m

) ! � 
an be re-

stri
ted in su
h a way that ea
h � has one of the forms

�=

8

<

:

hq

0

; 'i(hq

1

; stayi(y

1

; : : : ; y

m

); : : : ; hq

k

; stayi(y

1

; : : : ; y

m

)) (navigation)

Æ(hq

1

; stayi(y

1

; : : : ; y

m

); : : : ; hq

k

; stayi(y

1

; : : : ; y

m

)) (output)

y

�

(parameter sele
tion)

A pmtt is in normal form if the right-hand side of ea
h of its rules has one of the

above three forms. Using Convention 14, this means that the right-hand side of an

n-pmtt rule is either a parameter, or of one of the following two forms:

{ hq

0

; 'i(q

1

(y

1

; : : : ; y

m

); : : : ; q

k

(y

1

; : : : ; y

m

)) or

{ Æ(q

1

(y

1

; : : : ; y

m

); : : : ; q

k

(y

1

; : : : ; y

m

)).

It will be proved in the next theorem (Theorem 16) that every pmtt 
an be put

into normal form. This shows that the pmtt 
an also be viewed as a very simple

extension of the ptt in its original form (i.e., without general rules).
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To prove Theorem 16 we will use the following basi
 lemma (also to be used

in the proof of Theorem 31). It shows that a stay instru
tion in the right-hand

side of a rule 
an be expanded by \applying" an appropriate rule. This is similar

to the well-known te
hnique of applying a produ
tion of a 
ontext-free grammar

to the right-hand side of another produ
tion. Note that the o

urren
e of the stay

instru
tion need not be outside.

Lemma 15. Let M = (�;�;Q; q

0

; R) be an n-pmtt M , n � 0, let

r

1

= hq

1

; �; b; ji(y

1

; : : : ; y

m

1

)! �

1

and

r

2

= hq

2

; �; b; ji(y

1

; : : : ; y

m

2

)! �

2

be rules of M , and let u 2 V (�

1

) have label �

1

[u℄ = hq

2

; stayi. Assume, moreover,

that r

2

is the unique rule in R with left-hand side hq

2

; �; b; ji(y

1

; : : : ; y

m

2

). Let

M

0

= (�;�;Q; q

0

; R

0

) be the n-pmtt with R

0

= fr

0

j r 2 Rg where r

0

= r for

r 6= r

1

, and

r

0

1

= hq

1

; �; b; ji(y

1

; : : : ; y

m

1

)! �

1

[[u �

2

℄℄

(i.e., M

0

is obtained from M by 
hanging rule r

1

into r

0

1

).

Then �

M

0

= �

M

.

Proof. We may assume that q

1

6= q

2

, that u 2 V (�

1

) in r

1

is the unique o

urren
e

of the state q

2

in the right-hand sides of the rules ofM , that r

2

is the unique q

2

-rule

in R, and that q

2

is not the initial state. In fa
t, if this is not the 
ase, then 
hange

�

1

[u℄ into h�q

2

; stayi, and add the rule h�q

2

; �; b; ji(y

1

; : : : ; y

m

2

) ! �

2

to R, where �q

2

is a new state.

Note that, 
onsequently, if hq

0

; h

0

i )

�

M;s

� and hq

2

; hi o

urs in �, then test(h) =

(�; b; j), as 
an easily be shown by indu
tion on the length of the derivation. This

means that r

2

is appli
able to hq

2

; hi.

We also note that r

1

6= r

2

and hen
e q

2

does not o

ur in �

2

. This implies that

for every � 2 T

�[C

M;s

there exists

~

� 2 T

�[C

M;s

su
h that � )

�

M;s

~

� by q

2

-rules only

(i.e., by appli
ations of r

2

) and

~

� has no outside o

urren
es of 
on�gurations hq

2

; hi,

h 2 IC

n;s

. To see this, let us say that an o

urren
e of hq

2

; hi in a sentential form

is almost outside if none of its an
estors is labeled hq; h

0

i with q 6= q

2

. It should

now be 
lear that after applying r

2

to all outside o

urren
es of 
on�gurations

hq

2

; hi in the sentential form �, the maximal number of almost outside o

urren
es

of 
on�gurations hq

2

; hi on a path of the sentential form has de
reased. Thus,

~

� is

obtained after repeating this pro
ess at most height(�) times.

Let s 2 T

�

. In order to prove the 
orre
tness of M

0

, i.e., that �

M

0

(s) = �

M

(s),

�rst a 
laim is proved. Part (1) of the 
laim shows how to simulate M by M

0

: if a

rule r other than r

2

is applied by M then M

0


an apply the 
orresponding rule r

0

,

and if rule r

2

is applied thenM

0

need not apply a rule, be
ause the involved trees are

equal under the substitution 	 (de�ned in the Claim); intuitively, 	 
arries out all

M 's 
omputation steps for 
on�gurations hq

2

; hi, h 2 IC

n;s

. The se
ond part of the

Claim shows how to simulate M

0

by M ; it uses the fa
t mentioned above: starting

with any sentential form � of M , there is a 
omputation by )

M;s

(using rule r

2

only) su
h that the resulting tree

~

� has no outside o

urren
es of 
on�gurations

hq

2

; hi.

Claim: Let the substitution 	 be de�ned as

	 = [[hq

2

; hi  �

2

[[h℄℄ j h 2 IC

n;s

℄℄

where [[h℄℄ = [[h℄℄

M;s

= [[h℄℄

M

0

;s

is de�ned as in (#) above (below De�nition 12).

(1) Let �; �

0

2 T

�[C

M;s

su
h that � )

M;s

�

0

by the rule r at node v of �. If r = r

2

then �	 = �

0

	 , and if r 6= r

2

then �	 )

M

0

;s

�

0

	 by the rule r

0

at node v of �	 .

31



(2) For �; �

0

2 T

�[C

M

0

;s

and � 2 T

�[C

M;s

, if � )

M

0

;s

�

0

and �	 = � then there

exists �

0

su
h that � )

�

M;s

�

0

and �

0

	 = �

0

.

Proof of part (1): � )

M;s

�

0

by r at v. By the de�nition of )

M;s

this means

that v is outside in � and has label hq; hi 2 C

M;s

, su
h that �

0

= �[[v  �[[h℄℄℄℄ where

� is the right-hand side of the rule r, whi
h is appli
able to hq; hi.

If r = r

2

, then q = q

2

and � = �

2

, and so �

0

	 = �[[v  �

2

[[h℄℄℄℄	 = �	 , be
ause v

has label hq

2

; hi and q

2

does not o

ur in �

2

.

If r 6= r

2

then q 6= q

2

be
ause r

2

is the only q

2

-rule. Note that sin
e v is outside

in �, it is also outside in �	 and �	=v = (�=v)	 . This implies that (�	)[v℄ = �[v℄ =

hq; hi. Thus, the rule r

0

of M

0

, whi
h has the same left-hand side as r, is appli
able

to �	 at v. Let �

0

be the result of that appli
ation. Hen
e, �	 )

M

0

;s

�

0

. Note also

that �

0

	 = �[[v  �[[h℄℄℄℄	 = �	 [[v  �[[h℄℄	 ℄℄ be
ause v is outside and does not have

label hq

2

; hi. We now distinguish two 
ases.

If r 6= r

1

, then r

0

= r and �

0

	 = �	 [[v  �[[h℄℄℄℄ be
ause q

2

does not o

ur in �.

Sin
e this equals �

0

, �	 )

M

0

;s

�

0

	 .

If r = r

1

, then q = q

1

and � = �

1

, and r

0

= r

0

1

. In this 
ase we obtain that

�

0

	 = �	 [[v  �

1

[[h℄℄	 ℄℄ = �	 [[v  (�

1

[[u �

2

℄℄)[[h℄℄℄℄ = �

0

.

Proof of part (2): If � )

M

0

;s

�

0

then there is a node v outside in � su
h that

�[v℄ = hq; hi 2 C

M;s

and there is a rule r

0

in R

0

with right-hand side � that is

appli
able to hq; hi su
h that �

0

= �[[v  �[[h℄℄℄℄. If � 2 T

�[C

M;s

su
h that �	 = �,

then, by the remark above this Claim, there exists

~

� su
h that � )

�

M;s

~

� only by

q

2

-rules, and

~

� has no outside o

urren
es of 
on�gurations hq

2

; h

0

i, h

0

2 IC

n;s

. By

part (1) of this Claim,

~

�	 = �	 = �. Consider the outside o

urren
e v of hq; hi

in �. Sin
e the appli
ation of 	 to

~

� does not repla
e any outside o

urren
es of


on�gurations hq

2

; h

0

i (be
ause there are none),

~

�	 [v℄ =

~

�[v℄. Let �

0

be the result

of applying the rule r of M to

~

� at v. Then � =

~

�	 )

M

0

;s

�

0

	 by applying r

0

at v,

a

ording to part (1) of this Claim. Hen
e �

0

	 = �

0

, whi
h 
on
ludes the proof of

the Claim.

We are now ready to prove that �

M

0

= �

M

. First, �

M

(s) � �

M

0

(s): If hq

0

; h

0

i )

�

M;s

t 2 T

�

then, by part (1) of the Claim above, hq

0

; h

0

i = hq

0

; h

0

i	 )

�

M

0

;s

t	 = t

(where 	 is as in the Claim). Se
ond, �

M

0

(s) � �

M

(s): Assume that hq

0

; h

0

i )

�

M

0

;s

t 2 T

�

. Then, by part (2) of the Claim, hq

0

; h

0

i )

�

M;s

� for some � 2 T

�[C

M;s

with

�	 = t. As mentioned before the Claim, there exists a

~

� su
h that � )

�

M;s

~

� by q

2

-

rules,

~

� has no outside o

urren
es of 
on�gurations hq

2

; hi, and

~

�	 = �	 by part (1)

of the Claim. Sin
e

~

�	 2 T

�

,

~

� has no outside o

urren
es of 
on�gurations hq; hi

with q 6= q

2

(by the de�nition of 	). Hen
e,

~

� 2 T

�

and hq

0

; h

0

i )

�

M;s

~

� =

~

�	 = t.

ut

In the next theorem we prove that for every pmttM there is an equivalent pmtt

M

0

in normal form. In parti
ular, if all states of M are of rank 0 (i.e., M is an

n-ptt with general rules), then M

0

is a ptt (without general rules). Thus, this result

en
ompasses Lemma 2.

Theorem 16. For every n-pmtt M there is an equivalent n-pmtt M

0

in normal

form. If M is deterministi
, then so is M

0

. If all states of M are of rank 0, then M

0

is an n-ptt.

Proof. Let M = (�;�;Q; q

0

; R) be an n-pmtt. Intuitively, M

0

uses stay moves to

generate the right-hand side � of a q-rule ofM node by node (in states (�; w;m) for

node w of �, where m is the rank of q). Note that if M

0

simulates a 
omputation of

M , then parts of the right-hand sides of the rules ofM might never be generated by

M

0

, be
ause of the outside-in order of applying rules. This is, however, no problem,

due to Lemma 15.
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De�ne M

0

= (�;�;Q [Q

r

[Q

p

; q

0

; R

0

) as follows. Consider a rule

� = hq; �; b; ji(y

1

; : : : ; y

m

)! � in R:

For every � 2 [m℄, let p

m

�

be a state in Q

p

of rank m and let the rule

hp

m

�

; �; b; ji(y

1

; : : : ; y

m

)! y

�

be in R

0

. Let (�; ";m) be a state in Q

r

of rank m and let the rule

�

0

= hq; �; b; ji(y

1

; : : : ; y

m

)! h(�; ";m); stayi(p

m

1

(y

1

; : : : ; y

m

); : : : ; p

m

m

(y

1

; : : : ; y

m

))

be in R

0

. For every w 2 V (�) let (�; w;m) be a state in Q

r

of rank m and let the

rule

h(�; w;m); �; b; ji(y

1

; : : : ; y

m

)!

�[w℄((�; w1;m)(y

1

; : : : ; y

m

); : : : ; (�; wk;m)(y

1

; : : : ; y

m

))

be in R

0

, where k is the rank of �[w℄. Obviously, M

0

is in normal form (note that

we have used Convention 14).

The 
orre
tness of M

0

, i.e., the equality �

M

0

= �

M

, is based on Lemma 15. In

fa
t, it should be 
lear that if Lemma 15 is applied iteratively to a rule r

1

= �

0

for

all appropriate (Q

r

[Q

p

)-rules r

2

, the original rule � is reobtained. More pre
isely,

by �rst applying m Q

p

-rules the rule �

0

is transformed into the rule

hq; �; b; ji(y

1

; : : : ; y

m

)! h(�; ";m); stayi(y

1

; : : : ; y

m

);

and then size(�) appli
ations of Q

r

-rules transform this rule into � (generating � in

a way similar to a regular tree grammar).

Thus, by Lemma 15, M

0

is equivalent with the n-pmtt M

00

= (�;�;Q [ Q

r

[

Q

p

; q

0

; R

00

) where R

00

is the union of R and all (Q

r

[Q

p

)-rules ofM

0

. Sin
e, obviously,

the states in Q

r

[Q

p

do not o

ur in the sentential forms of M

00

that are generated

from hq

0

; h

0

i, M

00

is equivalent to M . ut

In some proofs it will be 
onvenient to deal with total transdu
ers. Therefore, we

show in the next lemma that every transdu
er 
an be made total, without 
hanging

the translation; this is done by simply adding, for ea
h missing q-rule, a rule with

hq; stayi as (root of the) right-hand side.

Lemma 17. For every n-pmtt M , n � 0, there is an equivalent total n-pmtt M

0

.

If M is deterministi
, then so is M

0

.

Proof. Let M = (�;�;Q; q

0

; R) and let J = maxfrank

�

(�) j � 2 �g. De�ne

M

0

= (�;�;Q; q

0

; R

0

), where R

0

= R [ C and for every � 2 �, q 2 Q

(m)

, m � 0,

b 2 f0; 1g

�n

, and j 2 [0; J ℄ su
h that there is no hq; �; b; ji-rule in R, let the rule

hq; �; b; ji(y

1

; : : : ; y

m

)! hq; stayi(y

1

; : : : ; y

m

)

be in C. Clearly, M

0

is equivalent to M : �

M

� �

M

0

be
ause R � R

0

. To see that

�

M

0

� �

M

, let s 2 T

�

and let �; �

0

2 T

�[C

M

0

;s

= T

�[C

M;s

. If � )

M

0

;s

�

0

by a rule in

R then also � )

M;s

�

0

by the same rule, and if � )

M

0

;s

�

0

by a rule in C, then �

0

= �

and thus, � )

�

M;s

�

0

. Hen
e, hq

0

; h

0

i )

�

M

0

;s

t 2 T

�

implies that hq

0

; h

0

i )

�

M;s

t and

thus �

M

0

� �

M

. ut
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5.2 Deterministi
 Pebble Ma
ro Tree Transdu
ers

In this subse
tion some basi
 properties of deterministi
 pmtts are proved. First,

a general lemma about binary relations that are \one-step 
on
uent" is proved.

Then it is shown that the 
omputation relation of a dpmtt M is one-step 
on
uent.

Together this implies thatM either halts or 
omputes forever on a given input tree,

and that �

M

is a fun
tion. Finally it is proved that a 
omputation of M is in�nite

if it has a \
y
le".

Consider a deterministi
 pmtt M and an input tree s. It should be intuitively


lear that for a sentential form � of M on s, either all 
omplete 
omputations by

)

M;s

starting with � are in�nite, or they are all �nite, of the same length, and

with the same result (re
all, from the Preliminaries, the de�nition of a 
omplete


omputation). This is proved in the following two lemmas, based on the fa
t that

)

M;s

is one-step 
on
uent. A binary relation) is one-step 
on
uent if � ) �

1

and

� ) �

2

for �

1

6= �

2

implies that there is a �

0

with �

1

) �

0

and �

2

) �

0

. This is a par-

ti
ular 
on
uen
e property whi
h implies, e.g., that ) is sub
ommutative [Klo92℄

(
alled `strongly 
on
uent' in [DJ90℄). Though not expli
itly mentioned, the result

that one-step 
on
uen
e implies the statement of the following lemma, seems to be

folklore within the area of term rewriting; nevertheless, we present a formal proof.

Lemma 18. Let A be a set,)� A�A a binary relation that is one-step 
on
uent,

and let � 2 A. Either the 
omplete 
omputations by) starting with � are all in�nite,

or they are all �nite, of the same length, and with the same result.

Proof. Consider two 
omplete 
omputations, both starting with � 2 A. If one of the


omputations is �nite, then by Claim 1 the other 
omputation is also �nite, and

has the same length and the same result.

Claim 1: If � )

i

�

1

and � )

j

�

2

for 0 � i � j, �

1

; �

2

2 A, and �

1

6) (i.e., there

is no

~

� 2 A su
h that �

1

)

~

�), then j = i and �

2

= �

1

.

We prove Claim 1 by indu
tion on i. For i = 0, � 6) and thus j = i and

�

2

= �

1

= �. For i+1 � 1, � )

i+1

�

1

means that there is a �

0

su
h that � ) �

0

)

i

�

1

.

Sin
e j � i+1, there is a �

00

su
h that � ) �

00

)

j�1

�

2

. If �

00

= �

0

then, by indu
tion,

j � 1 = i, i.e., j = i+1, and �

2

= �

1

. Now let �

00

6= �

0

. By one-step 
on
uen
e there

is a

�

� su
h that �

0

)

�

� (whi
h implies i � 1) and �

00

)

�

�. By Claim 2,

�

� )

i�1

�

1

and thus �

00

)

i

�

1

. Then, by indu
tion (applied to �

00

), j� 1 = i, i.e., j = i+1, and

�

2

= �

1

, whi
h 
on
ludes the proof of Claim 1.

Claim 2: Let k � 1 and �; �

0

; � 2 A. If � )

k

�

0

6) and � ) � then � )

k�1

�

0

.

The 
laim is proved by indu
tion on k. For k = 1 it follows from the one-step


on
uen
e of ) that � = �

0

and thus � )

0

�

0

. For k + 1, there is a �

1

su
h that

� ) �

1

)

k

�

0

. If � = �

1

then the 
laim holds. Otherwise, by one-step 
on
uen
e,

there must be an �

1

su
h that �

1

) �

1

and � ) �

1

. By indu
tion �

1

)

k�1

�

1

and

thus � )

k

�

0

. ut

The following easy lemma shows that, for a dpmtt M and an input tree s, the


omputation relation )

M;s

is one-step 
on
uent.

Lemma 19. For every dpmtt M and input tree s, )

M;s

is one-step 
on
uent.

Proof. We have to show that for �; �

1

; �

2

2 T

�[C

M;s

with �

1

6= �

2

:

if � )

M;s

�

1

and � )

M;s

�

2

; then 9�

0

with �

1

)

M;s

�

0

and �

2

)

M;s

�

0

:

If � )

M;s

�

l

for l 2 [2℄ then there are v

1

; v

2

2 V (�) and �

1

; �

2

2 T

�[C

M;s

su
h

that �

l

= �[v

l

 �

l

℄ for l 2 [2℄. Sin
e M is deterministi
 there is at most one rule

appli
able to �[v

l

℄. Thus, v

1

= v

2

would imply the 
ontradi
tion �

1

= �

2

. Hen
e,
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v

1

6= v

2

. Moreover, by the \outside" requirement in (N), v

2

is not an an
estor of v

1

,

and v

1

is not an an
estor of v

2

. Hen
e �

1

=v

2

= �=v

2

and �

2

=v

1

= �=v

1

and thus, for

l 2 [2℄, �

l

)

M;s

�

0

, where �

0

= �[v

l

 �

l

j l 2 [2℄℄. ut

An immediate 
onsequen
e of Lemmas 18 and 19 is that �

M

is a (partial) fun
-

tion, be
ause if (s; t); (s; t

0

) 2 �

M

, then hq

0

; h

0

i )

�

M;s

t is a �nite 
omplete 
ompu-

tation and therefore, by Lemma 18, t

0

= t.

Lemma 20. For every dpmtt M , �

M

is a fun
tion.

In fa
t, Lemmas 19 and 20 were already proved for a more general formalism (see

Subse
tion 3.3): In the proof of Lemma 3.14 of [EV86℄ it is shown that the derivation

relation of a deterministi
 CFT(S) transdu
er (where S is an arbitrary storage

type) is one-step 
on
uent. Thus, Lemma 19 is the spe
ial 
ase that S = n-Pebble.

Similarly, Lemma 20 is a spe
ial 
ase of Theorem 3.15 of [EV86℄.

Sin
e the number of 
on�gurations of a dpmtt M is �nite, every in�nite 
om-

putation by M must have repetitions of a 
on�guration. In fa
t the repetitions will

be in su
h a way that a 
on�guration 
 will \
y
le", i.e., it will 
ompute a tree that


ontains 
 itself at an outside o

urren
e (
 is \
ir
ular"). The next easy lemma

states that 
ir
ular 
on�gurations lead to in�nite 
omputations.

Consider a deterministi
 n-pmtt M and an input tree s of M . A 
on�guration


 2 C

(m)

M;s

, m � 0, is 
ir
ular if there is a t 2 T

�[C

M;s

(Y

m

) su
h that

{ 
(y

1

; : : : ; y

m

))

+

M;s

t and

{ 
 o

urs outside in t.

We now show how to apply a 
omputation starting with some 
on�guration, to

an outside o

urren
e of that 
on�guration in a sentential form. Then, the iterative

appli
ation of su
h 
omputations, applied to a node generated by the previous


omputation, is formalized (\pumping").

Appli
ation of a 
omputation: Consider a 
omputation 
(y

1

; : : : ; y

m

) )

+

M;s

t

(where t not ne
essarily 
ontains 
) and 
onsider a tree � 2 T

�[C

M;s

(Y

m

) that has

an outside o

urren
e v of 
. It follows from the de�nition of)

M;s

and by indu
tion,

that � )

+

M;s

�[[v  t℄℄. (In fa
t, if u is outside in t

0

, then vu is outside in �[[v  t

0

℄℄

and �[[v  t

0

℄℄[[vu �[[h℄℄

M;s

℄℄ = �[[v  t

0

[[u �[[h℄℄

M;s

℄℄℄℄.)

Iteration of appli
ations: If a sentential form �

0

(of M on s) has an outside

o

urren
e v

0

of 


1

2 C

(m

1

)

M;s

, m

1

� 0, and for every i � 1 there are t

i

and




i+1

2 C

(m

i+1

)

M;s

, m

i+1

� 0, su
h that 


i

(y

1

; : : : ; y

m

i

) )

+

M;s

t

i

and t

i

has an out-

side o

urren
e v

i

of 


i+1

, then by 
omposing the 
orresponding 
omputations of

the form � )

+

M;s

[[v  t℄℄, we obtain the in�nite 
omputation

�

0

)

+

M;s

�

0

[[v

0

 t

1

℄℄

| {z }

�

1

)

+

M;s

�

1

[[v

0

v

1

 t

2

℄℄

| {z }

�

2

)

+

M;s

� � �

)

+

M;s

�

i

[[v

0

v

1

� � � v

i

 t

i+1

℄℄

| {z }

�

i+1

)

+

M;s

� � � : ($)

Lemma 21. LetM be a dpmtt, s an input tree ofM , and � a sentential form ofM

on s. If there exists a �

0

su
h that � )

�

M;s

�

0

and �

0


ontains an outside o

urren
e

of a 
ir
ular 
on�guration 
, then every 
omplete 
omputation by )

M;s

starting

with � is in�nite.

Proof. Let v be the outside o

urren
e of 
 in �

0

. Sin
e 
 is 
ir
ular, there exists a t

su
h that 
(y

1

; : : : ; y

m

))

+

M;s

t and t has an outside o

urren
e v of 
. Let �

0

= �

0

,

v

0

= v, and, for i � 1, let t

i

= t, 


i

= 
, and v

i

= v. Then there is an in�nite
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omputation of the form ($), displayed above. Thus there is an in�nite 
omputation

starting with �

0

and hen
e one starting with �. This implies, by Lemmas 18 and 19,

that every 
omputation by )

M;s

starting with � is in�nite. ut

It 
an be shown that, in fa
t, the impli
ation in this lemma is an equivalen
e,

i.e., if a 
omplete 
omputation of M starting with � is in�nite, then � leads to a


ir
ular 
on�guration. Thus, in�nite 
omputations are due to \
y
les".

5.3 Ma
ro Tree Transdu
ers (with and without stay moves)

An obvious way to make sure that a 0-pebble ma
ro tree transdu
er M has no

in�nite 
omputations, is to disallow up and stay instru
tions, or, in other words, to

only allow down instru
tions. The transdu
er model obtained from the 0-pmtt in

this way, is the ma
ro tree transdu
er of [Eng80,Eng81,CF82,EV85℄, de�ned next.

De�nition 22. LetM be a 0-pmtt su
h that the rules ofM 
ontain no up instru
-

tions. Then M is a stay-ma
ro tree transdu
er (for short, stay-mtt). If, moreover,

the rules of M 
ontain no stay instru
tions (i.e., there are only down instru
tions)

then M is a ma
ro tree transdu
er (for short mtt, and dmtt if M is deterministi
).

If all states of an mtt are of rank zero, then it is a top-down tree transdu
er.

As an example of a (deterministi
) ma
ro tree transdu
er, re
onsider the 0-dpmtt

M of Example 13: it has no up and no stay moves, i.e., it is a dmtt.

The 
lass of all translations realized by stay-mtts is denoted sMTT, and DsMTT

for deterministi
 stay-mtts. The 
lass of all translations realized by mtts is denoted

by MTT, and DMTT for deterministi
 mtts. The 
lass of all translations realized by

total deterministi
 mtts is denoted by D

t

MTT. Note that translations realized by

total deterministi
 mtts are total fun
tions. Note also that the analogue of Lemma 17

does not hold for mtts. In fa
t, D

t

MTT is the 
lass of all total fun
tions in DMTT.

We denote by T and DT (D

t

T) the 
lasses of translations realized by top-down tree

transdu
ers and (total) deterministi
 top-down tree transdu
ers, respe
tively.

It follows from the de�nition that top-down tree transdu
ers are 0-ptts (with

general rules) that only use down instru
tions. Thus, by Lemma 2, we obtain the

obvious fa
t that top-down tree transdu
ers 
an be simulated by 0-ptts, as observed

in [MSV00℄ and stated in the next lemma.

Lemma 23. T � 0-PTT and DT � 0-DPTT.

Usually (see, e.g., [EV85,FV98℄) the rules of an mtt are de�ned as rewrite rules

in whi
h variables of the form x

i

represent the down

i

instru
tions. Also, the 
hild

number j is not present in the left-hand sides of mtt rules; 
learly this information


an be in
orporated into the states of an mtt, i.e., in order to transform an mtt

M de�ned in the pmtt formalism as above into one de�ned in the 
onventional

way, new states (q; j) would be introdu
ed, for every state q of M and possible


hild number j, and the initial state would be (q

0

; 0). From this it also follows, as

observed in Subse
tion 3.3, that the mtt is in fa
t the CFT(Tree) transdu
er, and

that the top-down tree transdu
er is the RT(Tree) transdu
er.

Sin
e, in the de�nition of the 
omputation relation of an n-pmtt, we have �xed

in (N) the order in whi
h rules are applied to be outside-in (OI), this also �xes the

order for an mtt to be OI (or, equivalently, unrestri
ted; see Corollary 3.13 of [EV85℄

and 
f. the dis
ussion after Example 13). Ma
ro tree transdu
ers with the inside-out

(IO) order of rule appli
ation have also been studied in the literature. In the total

deterministi
 
ase there is no di�eren
e between the OI and IO translations. We also

note that MTT

�

= MTT

�

IO

, where MTT

IO

denotes the 
lass of all IO translations

realized by ma
ro tree transdu
ers (
f. Theorem 7.3 of [EV85℄), and similarly in the

deterministi
 
ase.

We now 
ite two well-known fa
ts about ma
ro tree transdu
ers.
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Fa
t 24. Inverses of (
ompositions of) ma
ro tree transdu
ers preserve the regular

tree languages, i.e., if � 2 MTT

�

and R 2 REGT, then �

�1

(R) 2 REGT.

Fa
t 25. For an output language K of a 
omposition of ma
ro tree transdu
ers,

i.e., for K 2 MTT

�

(REGT),

(i) it is de
idable whether or not K is empty, and

(ii) it is de
idable whether or not K is �nite; moreover, if the answer is yes, the list

of elements of K 
an be 
omputed.

Fa
t 24 is proved in Theorem 7.4 of [EV85℄. It immediately implies Fa
t 25(i):

sin
e K = �(R) is empty i� �

�1

(T

�

) \ R is empty, the result follows from the

fa
t that REGT is 
losed under interse
tion, and that emptiness of regular tree

languages is de
idable (
f. [GS84℄). Fa
t 25(ii) is shown in Theorem 4.5 of [DE98℄.

In the remainder of this subse
tion, we relate the new 
lass sMTT to the well-

known 
lass MTT of translations realized by mtts. In parti
ular, it is proved in

Theorem 31 that, in the deterministi
 
ase, stay-mtts realize the same 
lass of

translations as mtts, i.e., DsMTT = DMTT, and it is proved in Theorem 29 that,

in the nondeterministi
 
ase, 
ompositions of n stay-mtts 
an be realized by the


omposition of one stay-mtt and n�1 mtts, i.e., sMTT

n

� sMTTÆMTT

n�1

. In the

nondeterministi
 
ase, whi
h is proved �rst, the main proof is rather straightforward

(Lemma 27), while the deterministi
 
ase (Theorem 31) has a quite involved proof.

Due to nondeterminism and the presen
e of stay moves, a stay-mtt M 
an gen-

erate in�nitely many output trees for one parti
ular input tree (see Example 6).

This implies that M 's translation 
annot be realized by an mtt, be
ause, due to

the absen
e of stay moves, in every 
omputation step of an mtt a node of the input

tree is \
onsumed"; hen
e, an mtt translates ea
h input tree into a �nite number

of output trees. In order to eliminate stay moves from nondeterministi
 stay-mtts,

we 
onsider the translation mon

�

(of Example 6) that inserts unary ��'s above ea
h

symbol � of a tree. Then, we 
an de
ompose M into mon

�

followed by an mtt M

0

.

Notation 26. Let MON be the 
lass of all mon

�

for all ranked alphabets �.

Note that the 0-ptt M

�

of Example 6 that realizes mon

�

is also a stay-mtt.

Thus, MON � 0-PTT and MON � sMTT.

In the next lemma it is shown how to remove the stay instru
tions from a stay-

mtt, by pre-
omposing with a translation in MON.

Lemma 27. sMTT � MON ÆMTT.

Proof. LetM = (�;�;Q; q

0

; R) be a 0-pmtt without up instru
tions. We 
onstru
t

a ma
ro tree transdu
erM

0

su
h that mon

�

Æ�

M

0

= �

M

. The idea of the 
onstru
tion

of M

0

is as follows. Instead of staying at some �-labeled node u of the input tree

s, the new transdu
er M

0

will move down on the monadi
 pie
e of ��-labeled nodes

that are present above the �-labeled node v in mon

�

(s) that 
orresponds to u. In

order to know, until we arrive at v, the 
hild number of v in the original tree s, we

keep this information in the states of M

0

. That is, states of the form (q; j) are used

to simulate sequen
es of stay moves; this is done only on barred symbols, i.e., there

are no rules for states of the form (q; j) and input symbols �. As soon as there is

a non-stay instru
tion, i.e., a down

i

instru
tion into state q, we 
hange into a state

of the form (q; down

i

). Su
h a state will move down the remaining monadi
 pie
e

of ��'s, and at the �-labeled node v it will exe
ute the down

i

move into state q.

Let M

0

= (�;�;Q [ Q

0

; q

0

; R

0

) with � = � [

�

�,

�

� = f��

(1)

j � 2 �g, and

Q

0

= Q[hQ; [0; J ℄i[ hQ; downi, where `down' denotes the set fdown

i

j i 2 [J ℄g and

J = maxfrank

�

(�) j � 2 �g.
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Let hq; �; �; ji(y

1

; : : : ; y

m

)! � be a rule in R. Then let the rules

hq; ��; �; ji(y

1

; : : : ; y

m

) ! ��

j

	

h(q; j); ��; �; 1i(y

1

; : : : ; y

m

)! ��

j

	

be in R

0

, where the substitutions �

j

and 	 are de�ned as

�

j

= [[hq

0

; stayi  h(q

0

; j); down

1

i j q

0

2 Q℄℄

	 = [[hq

0

; down

i

i  h(q

0

; down

i

); down

1

i j q

0

2 Q; i 2 [J ℄℄℄:

Moreover, for every q 2 Q

(m)

, m � 0, � 2 �

(k)

, k � 1, and i 2 [k℄, let the rules

h(q; down

i

); ��; �; 1i(y

1

; : : : ; y

m

)! h(q; down

i

); down

1

i(y

1

; : : : ; y

m

)

h(q; down

i

); �; �; 1i(y

1

; : : : ; y

m

) ! hq; down

i

i(y

1

; : : : ; y

m

)

be in R

0

. Obviously, the rules of M

0

do not 
ontain stay instru
tions anymore, and

thus M

0

is an mtt.

Before we prove the 
orre
tness of the 
onstru
tion ofM

0

, we need some auxiliary

notions. Let s 2 T

�

and s

0

2 mon

�

(s). Re
all that s

0

is obtained from s by inserting

above ea
h �-labeled node u, an arbitrary number of nodes u

0

labeled �� (of rank

1), whi
h are \asso
iated" with u. We now de�ne the fun
tion de
, whi
h maps

ea
h node u

0

of s

0

to the asso
iated node u of s: Let u

0

= i

1

� � � i

m

2 V (s

0

) with

i

1

; : : : ; i

m

2 [J ℄ and m � 0. De�ne de
(u

0

) = i

�

1

� � � i

�

n

, where �

1

< � � � < �

n

,

n � 0, are all indi
es � 2 [m℄ su
h that s

0

[i

1

� � � i

��1

℄ 2 �. Finally, we de�ne the

substitution [[de
℄℄ whi
h 
hanges a sentential form ofM

0

into one ofM by relabeling

the 
on�gurations of M

0

appropriately. Let [[de
℄℄ = [[Q℄℄[[down℄℄ where [[Q℄℄ denotes

the substitution

[[hr; (u

0

; �)i  hq

0

; (de
(u

0

); �)i j q

0

= r for r 2 Q and

q

0

= q for r = (q; j) 2 Q� [0; J ℄℄℄

and

[[down℄℄ = [[h(q; down

i

); (u

0

; �)i  hq; (de
(u

0

)i; �)i j q 2 Q; i 2 [J ℄℄℄:

In the sequel, we will also apply de
 to input 
on�gurations h

0

of M

0

, i.e., if h

0

=

(u

0

; �) then de
(h

0

) = (de
(u

0

); �).

Next we state, without proof, two obvious properties about 
on�gurations that

o

ur in sentential forms � of M

0

on an input tree s

0

2 T

�

with s

0

2 mon

�

(s) and

s 2 T

�

. Sin
e both properties are about (the 
hild numbers in s) of nodes of s

0

, we


all them N1 and N2. Let hq

0

; h

0

i )

�

M

0

;s

0

� and let hp; (u

0

; �)i be a 
on�guration

that o

urs in �. Then

(N1) if p = (q; j) 2 (Q� [0; J ℄) then 
hildno(de
(u

0

)) = j; and

(N2) if p 2 Q then 
hildno(de
(u

0

)) = 
hildno(u

0

):

Before it is proved, in Claims 2 and 3 thatM

0

is 
orre
t, i.e., that mon

�

Æ �

M

0

=

�

M

, we �rst relate in Claim 1 the right-hand side ��

j

	 of a (Q[Q� [0; J ℄)-rule of

M

0

to the right-hand side � of the 
orresponding rule of M .

Claim 1: Let s 2 T

�

, s

0

2 mon

�

(s), h = (u; �) 2 IC

0;s

, and h

0

= (u

0

; �) 2 IC

0;s

0

su
h that de
(h

0

) = h and s

0

[u

0

℄ 2

�

�. Let [[h℄℄ denote [[h℄℄

M;s

, and let [[h

0

℄℄ denote

[[h

0

℄℄

M

0

;s

0

. Finally, let � = s[u℄ and j = 
hildno(u). For every � 2 T

�[I

�;�;j

(Y

m

),

m � 0,

��

j

	 [[h

0

℄℄[[de
℄℄ = �[[h℄℄:

The proof of Claim 1 is by indu
tion on the stru
ture of �. If � = y 2 Y

m

then

��

j

	 [[h

0

℄℄[[de
℄℄ = y = �[[h℄℄, be
ause none of the substitutions repla
es parameters.

Let l � 0 and �

1

; : : : ; �

l

2 T

�[I

�;�;j

(Y

m

).
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If � = Æ(�

1

; : : : ; �

l

) with Æ 2 �

(l)

, then ��

j

	 [[h

0

℄℄[[de
℄℄ = Æ(�

1

�

j

	 [[h

0

℄℄[[de
℄℄; : : : ;

�

l

�

j

	 [[h

0

℄℄[[de
℄℄) whi
h, by indu
tion, is Æ(�

1

[[h℄℄; : : : ; �

l

[[h℄℄) = Æ(�

1

; : : : ; �

l

)[[h℄℄ = �[[h℄℄.

If � = hq; stayi(�

1

; : : : ; �

l

) with q 2 Q

(l)

then

��

j

	 = h(q; j); down

1

i(�

1

�

j

	; : : : ; �

l

�

j

	) and

��

j

	 [[h

0

℄℄[[de
℄℄ = hq; de
(down

1

(h

0

))i(�

1

�

j

	 [[h

0

℄℄[[de
℄℄; : : : ; �

l

�

j

	 [[h

0

℄℄[[de
℄℄):

By indu
tion, and sin
e de
(down

1

(h

0

)) = de
(h

0

) = h (note that s

0

[u

0

℄ = ��), this

equals hq; hi(�

1

[[h℄℄; : : : ; �

l

[[h℄℄) = �[[h℄℄.

If � = hq; down

i

i(�

1

; : : : ; �

l

) then

��

j

	 = h(q; down

i

); down

1

i(�

1

�

j

	; : : : ; �

l

�

j

	) and

��

j

	 [[h

0

℄℄[[de
℄℄ = hq; down

i

(de
(down

1

(h

0

)))i(�

1

�

j

	 [[h

0

℄℄[[de
℄℄; : : : ; �

l

�

j

	 [[h

0

℄℄[[de
℄℄):

By indu
tion, and sin
e de
(down

1

(h

0

)) = h, this is hq; down

i

(h)i(�

1

[[h℄℄; : : : ; �

l

[[h℄℄) =

�[[h℄℄, whi
h 
on
ludes the proof of Claim 1.

Next, it is proved that mon

�

Æ �

M

0

� �

M

. In fa
t, sin
e hq

0

; h

0

i[[de
℄℄ = hq

0

; h

0

i

and t[[de
℄℄ = t for t 2 T

�

, this follows by indu
tion from Claim 2.

Claim 2: Let s 2 T

�

and s

0

2 mon

�

(s). For every �; �

0

2 T

�[C

M

0

;s

0

with

hq

0

; h

0

i )

�

M

0

;s

0

�, if � )

M

0

;s

0

�

0

by a (Q[Q� [0; J ℄)-rule then �[[de
℄℄)

M;s

�

0

[[de
℄℄,

and if � )

M

0

;s

0

�

0

by a hQ; downi-rule then �[[de
℄℄ = �

0

[[de
℄℄.

Let v 2 V (�) with �[v℄ = hp; h

0

i and h

0

= (u

0

; �), u

0

2 V (s

0

), su
h that �

0

=

�[[v  �

0

[[h

0

℄℄℄℄ where �

0

is the right-hand side of a rule appli
able to hp; h

0

i. Let

u = de
(u

0

).

Case p 2 (Q [ Q � [0; J ℄): Then s

0

[u

0

℄ = �� with � = s[u℄, be
ause p-rules

are only de�ned for barred input symbols. If p = (q; j) 2 Q � [0; J ℄ then, by N1,


hildno(u) = j. If p = q 2 Q then, by N2, 
hildno(u) = 
hildno(u

0

). This means that

in both 
ases �

0

= ��

j

	 where � is the right-hand side of a hq; �; �; ji-rule r ofM and

j = 
hildno(u). Sin
e [[de
℄℄ is a relabeling of 
on�gurations, v is outside in �[[de
℄℄

and labeled by the 
on�guration hq; (u; �)i. Thus, r 
an be applied to v: �[[de
℄℄)

M;s

�[[de
℄℄[[v  �[[h℄℄℄℄. By Claim 1 the latter equals �[[de
℄℄[[v  �

0

[[h

0

℄℄[[de
℄℄℄℄ = �[[v  

�

0

[[h

0

℄℄℄℄[[de
℄℄ = �

0

[[de
℄℄, whi
h proves the 
laim for this 
ase.

Case p = (q; down

i

) 2 hQ

(m)

; downi, m � 0: By the de�nition of [[de
℄℄ this im-

plies that �[[de
℄℄[v℄ = hq; (ui; �)i. Moreover, �

0

[[h

0

℄℄ is either equal to h(q; down

i

); (u

0

1;

�)i(y

1

; : : : ; y

m

), with s

0

[u

0

℄ 2

�

�, or equal to hq; (u

0

i; �)i(y

1

; : : : ; y

m

), with s

0

[u

0

℄ 2 �.

In both 
ases, the appli
ation of [[de
℄℄ gives hq; (ui; �)i(y

1

; : : : ; y

m

), whi
h proves

that �[[de
℄℄ = �

0

[[de
℄℄. This ends the proof of Claim 2.

It remains to prove that �

M

� mon

�

Æ�

M

0

. This will follow from Claim 3. Denote

byM

0

(Q) the restri
tion ofM

0

to (Q[Q� [0; J ℄)-rules and denote byM

0

(Q; down)

its restri
tion to hQ; downi-rules. Intuitively, to simulate a 
omputation step of M ,

M

0

�rst applies all possible hQ; downi-rules, and then it applies a (Q [Q� [0; J ℄)-

rule. Let ) denote

)

�

M

0

(Q;down);s

0

Æ )

M

0

(Q);s

0

:

Claim 3: Let n � 0, s 2 T

�

, and s

0

2 mon

�

(s) su
h that for every u 2 V (s)

jde


�1

(u)j � n + 1. Let � 2 T

�[C

M;s

. If hq

0

; h

0

i )

n

M;s

� then there exists an

� 2 T

�[C

M

0

;s

0

su
h that

1. hq

0

; h

0

i )

n

� and

2. �[[de
℄℄ = �.

The proof of Claim 3 is by indu
tion on n. If n = 0 then the statement holds

for � = hq

0

; h

0

i. Now 
onsider the following 
omputation of length n+ 1.

hq

0

; h

0

i )

n

M;s

� )

M;s

�

0

:
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By indu
tion there exists an � su
h that hq

0

; h

0

i )

n

� and �[[de
℄℄ = �. Let v 2 V (�)

and hq; hi 2 C

(m)

M;s

, m � 0, su
h that �[v℄ = hq; hi and �

0

= �[[v  �[[h℄℄℄℄ where � is

the right-hand side of a rule of M appli
able to hq; hi. By the de�nition of [[de
℄℄,

�[v℄ = hp; h

0

i with (i) p = q, or (ii) p = (q; j) with j 2 [0; J ℄, or (iii) p = (q; down

i

).

Let h = (u; �) and h

0

= (u

0

; �). We now show that there exists an �

0

su
h that

� ) �

0

and �

0

[[de
℄℄ = �

0

.

Cases (i) and (ii): Then de
(u

0

) = u. In 
ase (i) it follows from N2 that 
hildno(

u

0

) = 
hildno(u), and in 
ase (ii), i.e., p = (q; j), it follows from N1 that j =


hildno(u). Sin
e, in the 
omputation hq

0

; h

0

i )

n

� exa
tly n steps by )

M

0

(Q);s

0

have been applied, s

0

[u

0

℄ must be a barred symbol, be
ause there are � n + 1 of

them, by the 
ondition jde


�1

(u)j � n + 2. Thus, s

0

[u

0

℄ = �� with � = s[u℄. Hen
e

M

0

has a rule with right-hand side �

0

= ��

j

	 whi
h is appli
able to hp; h

0

i. We

obtain � )

M

0

(Q);s

0
�[[v  �

0

[[h

0

℄℄℄℄ = �

0

. The appli
ation of [[de
℄℄ to �

0

gives, using

Claim 1, �[[de
℄℄[[v  �

0

[[h

0

℄℄[[de
℄℄℄℄ = �[[v  �[[h℄℄℄℄ = �

0

. This ends the proof of the


laim for this 
ase.

Case (iii) p = (q; down

i

): Then � )

+

M

0

(Q;down);s

0

�

00

where �

00

is the same as �

ex
ept that �

00

[v℄ = hq; (u

00

i; �)i with s

0

[u

00

℄ 2 �, de
(u

00

) = de
(u

0

), and de
(u

00

i) =

de
(u

0

)i = u. By Claim 2, �

00

[[de
℄℄ = �[[de
℄℄ = � and hq

0

; h

0

i )

n

�

00

. Now, to the


on�guration hq; (u

00

i; �)i of �

00

we 
an apply one step of )

M

0

(Q);s

0

, as shown in


ase (i), to obtain �

00

)

M

0

(Q);s

0

�

0

with �

0

[[de
℄℄ = �

0

. This 
on
ludes the proof of

Claim 3.

It should be obvious how to show that for every s 2 T

�

there exists s

0

2 mon

�

(s)

su
h that �

M

(s) � �

M

0

(s

0

): If hq

0

; h

0

i )

n

M;s

t 2 �

M

(s), n � 1, then let s

0

2 mon

�

(s)

be as required in Claim 3. By Claim 3, applied to � = t, there exists � su
h that

hq

0

; h

0

i )

�

M

0

;s

0

� (be
ause ) � )

�

M

0

;s

) and �[[de
℄℄ = t. Sin
e t 2 T

�

, � = t. Hen
e

t 2 �

M

0

(s

0

). ut

The next small lemma shows that sMTT is 
losed under post-
omposition with

MON. It will be needed to prove Theorems 29 and 30.

Lemma 28. sMTT ÆMON � sMTT.

Proof. Let M = (�;�;Q; q

0

; R) be a stay-mtt. We will 
onstru
t the stay-mtt M

0

su
h that �

M

0

= �

M

Æ mon

�

. The idea of de�ning M

0

is to repla
e ea
h output

symbol Æ (of rank m) in the right-hand side of a rule of M by a new state q

Æ

(of

rank m), whi
h will generate an arbitrary number of

�

Æ's followed by the Æ, i.e., a

tree of the form

�

Æ(� � �

�

Æ(Æ(y

1

; : : : ; y

m

))).

Let M

0

= (�;� [ f

�

Æ j Æ 2 �g; Q

0

; q

0

; R

0

) where Q

0

= Q [ fq

(m)

Æ

j Æ 2 �

(m)

;m �

0g. For every rule hq; �; b; ji(y

1

; : : : ; y

m

)! � in R, let the rule

hq; �; �; ji(y

1

; : : : ; y

m

)! �	

be in R

0

, where the substitution 	 is de�ned as

	 = [[Æ  hq

Æ

; stayi j Æ 2 �℄℄:

Moreover, for every Æ 2 �

(m)

, m � 0, � 2 �, and j 2 [0; J ℄ let the rules

hq

Æ

; �; �; ji(y

1

; : : : ; y

m

)!

�

Æ(q

Æ

)

hq

Æ

; �; �; ji(y

1

; : : : ; y

m

)! Æ(y

1

; : : : ; y

m

)

be in R

0

.

A formal proof of the 
orre
tness of M

0

is left to the reader. ut

For 
ompositions of stay-mtts we obtain, from Lemmas 27 and 28, that stay

moves 
an be removed from all transdu
ers in the 
ompositions, ex
ept the �rst

one, as stated in the next theorem.
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Theorem 29. For every n � 1, sMTT

n+1

= sMTT ÆMTT

n

.

Proof. By indu
tion on n. For n = 1, sMTT

2

� sMTTÆMONÆMTT by Lemma 27,

whi
h is in
luded in sMTT Æ MTT by Lemma 28. Now for n + 1, sMTT

n+2

=

sMTT Æ sMTT

n+1

is in
luded in sMTT

2

ÆMTT

n

by indu
tion. By the 
ase n = 1

the latter is in
luded in sMTT ÆMTT ÆMTT

n

= sMTT ÆMTT

n+1

. ut

It should be 
lear that the 
lass REGT of regular tree languages is 
losed under

MON, i.e., that MON(REGT) � REGT (take the regular tree grammar in normal

form, i.e., with at most one terminal symbol in the right-hand side of ea
h pro-

du
tion; for every produ
tion A ! �(A

1

; : : : ; A

k

) add all produ
tions A ! ��(A

�

),

A

�

! ��(A

�

), and A

�

! �(A

1

; : : : ; A

k

).) Thus we obtain from Theorem 29 and

Lemma 27 that (
ompositions of) stay-mtts de�ne the same output languages as

(
ompositions of) mtts.

Theorem 30. For every n � 1, sMTT

n

(REGT) = MTT

n

(REGT).

Sin
e MON � sMTT, we also obtain from Theorem 29 and Lemma 27 that

sMTT

�

= MON ÆMTT

�

.

For deterministi
 stay-mtts we prove in the next theorem (and in the remainder

of this subse
tion) that stay moves 
an be removed, i.e., the respe
tive 
lasses of

translations 
oin
ide. As mentioned before, sin
e the proof involves the nontrivial

task of removing in�nite 
omputations, it is a key result of this paper.

Theorem 31. DsMTT = DMTT.

Proof. We have to show that DsMTT � DMTT. Let M = (�;�;Q; q

0

; R) be a

0-dpmtt without up instru
tions and let J = maxfrank

�

(�) j � 2 �g. We will 
on-

stru
t the 0-dpmtt M

0

that has down instru
tions only, i.e., a dmtt, by removing

the stay instru
tions that appear in the right-hand sides of the rules ofM . Roughly

speaking, this is done by applying rules to the stay instru
tions in a right-hand

side, while keeping tra
k of possible 
ir
ular 
on�gurations, and for
ing �

M

0

(s) to

be unde�ned if in the 
omputation hq

0

; h

0

i )

�

M;s

there is a sentential form that

has an outside o

urren
e of a 
ir
ular 
on�guration (re
all the notion of a 
ir
ular


on�guration from Subse
tion 5.2, and see Lemma 21). Before M

0

is de�ned, we


onstru
t several intermediate 0-dpmtts: �rst N whi
h has information about 
ir-


ular 
on�gurations, then N

0

whi
h does not have 
ir
ular 
on�gurations anymore,

then N

00

whi
h does not exe
ute stay instru
tions anymore, and �nally M

0

whi
h

has only down instru
tions.

By Lemma 17 we may assume that M is total. First, we 
onstru
t the 0-dpmtt

N whi
h is equivalent to M , but additionally keeps information in its states about

whi
h states have been passed, while staying at a parti
ular node of the input tree.

De�ne N = (�;�;Q

N

; (q

0

;?); R

N

) where Q

N

= hQ;P(Q)i and for every

(q; F ) 2 Q

(m)

N

, m � 0, � 2 �, j 2 [0; J ℄, and rule hq; �; �; ji(y

1

; : : : ; y

m

) ! � in

R, the rule

h(q; F ); �; �; ji(y

1

; : : : ; y

m

)! �[[stay

q;F

℄℄[[down℄℄

is in R

N

, where the substitutions [[stay

q;F

℄℄ and [[down℄℄ are de�ned as

[[stay

q;F

℄℄ = [[hq

0

; stayi  h(q

0

; F [ fqg); stayi j q

0

2 Q℄℄;

[[down℄℄ = [[hq

0

; down

i

i  h(q

0

;?); down

i

i j q

0

2 Q; i 2 [J ℄℄℄:

Sin
e N has, besides the additional sets F in its states, exa
tly the same rules

as M , it obviously realizes the same translation as M , i.e., �

N

= �

M

. In fa
t, it 
an

be shown easily that for all �

1

; �

2

2 T

�[C

N;s

(Y ),

(C1) if �

1

)

N;s

�

2

then �

1

[[no F's℄℄)

M;s

�

2

[[no F's℄℄;
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and for all �

1

; �

2

2 T

�[C

M;s

(Y ), and �

1

2 T

�[C

N;s

(Y ) with �

1

[[no F's℄℄ = �

1

,

(C2) if �

1

)

M;s

�

2

then 9�

2

2 T

�[C

N;s

(Y ) : �

2

[[no F's℄℄ = �

2

and �

1

)

N;s

�

2

;

where the substitution [[no F's℄℄ is de�ned as

[[h(q; F ); hi  hq; hi j h(q; F ); hi 2 C

N;s

℄℄:

By indu
tion on the length of the 
omputations, C1 implies �

N

� �

M

and C2 implies

�

M

� �

N

. Note that N is total be
ause M is total.

The following 
laim expresses that the sets F in the states of N 
ontain the

intended states of M , i.e., those that were entered while staying at a parti
ular

node.

Claim: Let s 2 T

�

. If h(q

0

;?); h

0

i )

�

N;s

� 2 T

�[C

N;s

and h(q; F ); hi 2 C

N;s

o

urs outside in �, then for every r 2 F of rank m � 0,

(a) there is an � 2 T

�[C

M;s

su
h that hq

0

; h

0

i )

�

M;s

� and hr; hi o

urs outside in

�, and

(b) there is an �

0

2 T

�[C

M;s

(Y

m

) su
h that hr; hi(y

1

; : : : ; y

m

) )

+

M;s

�

0

and hq; hi

o

urs outside in �

0

.

Sin
e this 
laim is intuitively obvious, but its proof is te
hni
ally rather involved,

we postpone its proof until after the present proof.

We now use the information in the states of N to remove its 
ir
ular 
on�g-

urations, i.e., its in�nite 
omputations (
f. Lemma 21). De�ne Q


y
le

= f(q; F ) 2

Q

N

j q 2 Fg. We remove all rules for (q; F ) 2 Q


y
le

from R

N

, thus obtaining the

0-dpmtt N

0

.

Formally, let N

0

= (�;�;Q

N

; (q

0

;?); R

N

0

), where R

N

0

is the set of all p-rules

in R

N

with p 2 Q

N

�Q


y
le

.

It is straightforward to prove the 
orre
tness of the de�nition of N

0

, i.e., that

�

N

0

= �

N

: Sin
e R

N

0

� R

N

, it 
learly holds that �

N

0

� �

N

. To prove that �

N

� �

N

0

,

let s 2 T

�

and 
onsider a 
omplete 
omputation �

0

= h(q

0

;?); h

0

i )

N;s

�

1

)

N;s

� � � )

N;s

�

n

2 T

�

. Then, for i 2 [0; n℄, �

i

has no outside o

urren
e of hp; hi 2

C

N;s

with p 2 Q


y
le

. To see this, assume to the 
ontrary that some �

i

has an

outside o

urren
e of h(q; F ); hi 2 C

(m)

N;s

with q 2 F and m � 0. Then by the

Claim above, there are �; �

0

2 T

�[C

M;s

(Y ) su
h that hq

0

; h

0

i )

�

M;s

�, hq; hi o

urs

outside in �, hq; hi(y

1

; : : : ; y

m

) )

+

M;s

�

0

, and hq; hi o

urs outside in �

0

, i.e., hq; hi

is 
ir
ular. By Lemma 21 this implies that the 
omplete 
omputations by )

M;s

starting with hq

0

; h

0

i are in�nite, and hen
e that �

M

(s) is unde�ned. Sin
e �

N

= �

M

this 
ontradi
ts the existen
e of the �nite 
omplete 
omputation �

0

)

�

N;s

�

n

. Thus,

only rules of N

0

are applied in the 
omputation �

0

)

�

N;s

�

n

, whi
h means that

�

0

)

�

N

0

;s

�

n

, and therefore �

N

� �

N

0

. This ends the proof of the 
orre
tness of N

0

.

Next, the 0-dpmtt N

00

= (�;�;Q

N

; (q

0

;?); R

N

00

) is de�ned by iteratively ap-

plying rules to the stay instru
tions that appear in the right-hand side of ea
h rule

r of N

0

. This is done with the use of Lemma 15, 
hanging N

0

gradually into N

00

by iterating the following pro
edure. Initially, N

00

= N

0

and R

N

00

= R

N

0

. Now 
on-

sider a rule r = h(q; F ); �; �; ji(y

1

; : : : ; y

m

)! � in R

N

00

and 
hange it into the rule

�r = h(q; F ); �; �; ji(y

1

; : : : ; y

m

)! ��

�;j

where

�

�;j

= [[h(q

0

; F

0

); stayi  �

0

j h(q

0

; F

0

); �; �; ji(y

1

; : : : ; y

m

0

)! �

0

is in R

N

00

℄℄:

Note that if h(q

0

; F

0

); stayi o

urs in the right-hand side � of r, then F

0

has larger


ardinality than the F in the left-hand side of r (and thus the same holds for �r).

Clearly, the new rule �r 
an be obtained from the old rule r by iterated appli
ation

of Lemma 15 (see the last paragraph of Subse
tion 2.2). Thus, by that lemma, an

equivalent 0-dpmtt is obtained. After 
hanging, in this way, every rule r into �r, the
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minimal 
ardinality of all state sets F su
h that h(q; F ); stayi o

urs in a right-hand

side of a rule in R

N

00

for some q with (q; F ) =2 Q


y
le

has in
reased. Hen
e, after

repeating this pro
ess at most jQj times, the only h(q; F ); stayi that o

ur in right-

hand sides of rules satisfy (q; F ) 2 Q


y
le

(for whi
h there are no rules in R

N

00

). The

resulting 0-dpmtt is, by de�nition, N

00

.

Last but not least, we de�ne the dmtt M

0

. This is done by removing the stay

instru
tions that appear in the rules of N

00

. Sin
e N

00

has no rules for states in

Q


y
le

, we 
an, in order to 
onstru
t M

0

, repla
e ea
h stay instru
tion in a rule of

N

00

by a down

1

instru
tion (or remove the rule, if the input symbol has rank zero).

Formally, Let M

0

= (�;�;Q

N

; (q

0

;?); R

0

) where R

0

is de�ned as follows. Let

r = hp; �; �; ji(y

1

; : : : ; y

m

)! � with � 2 �

(k)

and k � 0 be a rule in R

N

00

. If k = 0

and � 2 T

�

(Y

m

) then let r be in R

0

. If k � 1 then let the rule

hp; �; �; ji(y

1

; : : : ; y

m

)! �[[hp

0

; stayi  hp

0

; down

1

i j p

0

2 Q


y
le

℄℄

be in R

0

. Obviously, M

0

is a dmtt. It is straightforward to show that �

M

0

= �

N

00

=

�

M

. ut

In the remainder of this subse
tion, the Claim in the proof of Theorem 31 is

proved. The uninterested reader 
an skip dire
tly to Subse
tion 5.4.

For the proof of the Claim we need two te
hni
al lemmas, whi
h are presented

now. They state two general fa
ts about pmtts. The �rst one is about the de
om-

position of 
omputations, and the se
ond one is about how to �nd the rule that

generated a parti
ular symbol during a 
omputation. The �rst is needed to prove

the se
ond.

Consider a pmttM , an input tree s, and a sentential form � = �(�

1

; : : : ; �

n

) with

� 2 C

(n)

M;s

. The �rst lemma states that a 
omputation � )

�

M;s

� 
an be de
omposed

into m + 1 
omputations by )

M;s

starting with �(y

1

; : : : ; y

n

) and with �

1

; : : : ; �

n

(for some m � 0). A similar result holds for ma
ro grammars (
f. Theorem 4.1.1

of [Fis68℄, where only the 
ase that � is terminal is 
onsidered). Note that the se
ond

item of Lemma 32 implies that

�(�

1

; : : : ; �

n

))

k

0

M;s

�

lin

[y

j

 �

�(j)

j j 2 [m℄℄

and that the third item implies that

�

lin

[y

j

 �

�(j)

j j 2 [m℄℄)

k

1

+���+k

m

M;s

�

lin

[y

j

 �

j

j j 2 [m℄℄ = �:

Lemma 32. Let M = (�;�;Q; q

0

; R) be a pmtt. Let � 2 (� [ C

M;s

)

(n)

, n � 1,

and �; �

1

; : : : ; �

n

2 T

�[C

M;s

(Y ). If �(�

1

; : : : ; �

n

) )

k

M;s

�, k � 0, then there exists a

tree �

lin

2 T

�[C

M;s

(Y

m

), m � 0, su
h that �

lin

is linear in Y

m

(i.e., ea
h y 2 Y

m

appears at most on
e in �

lin

), and there exist a mapping � : [m℄ ! [n℄, trees

�

1

; : : : ; �

m

2 T

�[C

M;s

(Y ), and k

0

; k

1

; : : : ; k

m

2 N su
h that

{ � = �

lin

[y

j

 �

j

j j 2 [m℄℄,

{ �(y

1

; : : : ; y

n

))

k

0

M;s

�

lin

[y

j

 y

�(j)

j j 2 [m℄℄,

{ for every j 2 [m℄, �

�(j)

)

k

j

M;s

�

j

,

{ k

0

+ k

1

+ � � �+ k

m

= k, and

{ for every j 2 [m℄, if y

j

does not o

ur outside in �

lin

then k

j

= 0.

Proof. The proof is by indu
tion on the length k of the 
omputation of �. It is

obvious for k = 0: take �

lin

= �(y

1

; : : : ; y

n

), m = n, � is the identity on [n℄, �

j

= �

j

and k

j

= 0 for j 2 [0; n℄. Now 
onsider the following 
omputation of length k + 1

�(�

1

; : : : ; �

n

))

k

M;s

� )

M;s

�

0

: (�)
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By indu
tion, � = �

lin

[y

j

 �

j

j j 2 [m℄℄ where �

lin

and �

1

; : : : ; �

m

satisfy the


onditions of the lemma, for 
ertain � : [m℄! [n℄ and k

0

; : : : ; k

m

2 N. Let v be the

node in � to whi
h a rule is applied in the last step of the 
omputation (�).

Case 1: v 2 V (�

lin

) and �

lin

[v℄ 62 Y

m

. Hen
e, �

lin

[v℄ = �[v℄ and therefore we


an apply the rule of the last step in (�) to �

lin

: �

lin

)

M;s

~� with �

0

= ~�[y

j

 

�

j

j j 2 [m℄℄. Let m

0

be the number of o

urren
es of parameters in the tree ~�.

Next, we \linearize" (in the parameters) the tree ~�: let �

0

lin

2 T

�[C

M;s

(Y

m

0

) and

~� : [m

0

℄! [m℄ su
h that

~� = �

0

lin

[y

j

 y

~�(j)

j j 2 [m

0

℄℄:

Note that for every j 2 [m℄, if ~�

�1

(j) is not a singleton (i.e., if y

j

does not o

ur

exa
tly on
e in ~�) then y

j

o

urs at a des
endant of v in �

lin

, and so, by the last


ondition of the lemma, k

j

= 0. This shows that k

~�(1)

+ � � �+k

~�(m

0

)

= k

1

+ � � �+k

m

.

Now de�ne �

0

j

= �

~�(j)

and k

0

j

= k

~�(j)

for j 2 [m

0

℄, and de�ne k

0

0

= k

0

+ 1 and

�

0

= ~� Æ � : [m

0

℄! [n℄. Then

�

0

= �

0

lin

[y

j

 y

~�(j)

j j 2 [m

0

℄℄[y

j

 �

j

j j 2 [m℄℄

= �

0

lin

[y

j

 �

~�(j)

|{z}

=�

0

j

j j 2 [m

0

℄℄

and �(y

1

; : : : ; y

n

) )

k

0

M;s

�

lin

[y

j

 y

�(j)

j j 2 [m℄℄ )

M;s

~�[y

j

 y

�(j)

j j 2 [m℄℄.

The latter tree equals �

0

lin

[y

j

 y

~�(j)

j j 2 [m

0

℄℄[y

j

 y

�(j)

j j 2 [m℄℄ = �

0

lin

[y

j

 

y

�(~�(j))

j j 2 [m

0

℄℄ whi
h is equal to �

0

lin

[y

j

 y

�

0

(j)

j j 2 [m

0

℄℄. Thus, the \primed

versions" of the �rst four 
onditions of the lemma hold. It remains to prove the last


ondition of the lemma. Let j 2 [m

0

℄. Clearly, if y

j

does not o

ur outside in �

0

lin

then y

~�(j)

does not o

ur outside in �

lin

and hen
e k

~�(j)

= 0 by the last 
ondition

for �

lin

.

Case 2: v 62 V (�

lin

) or �

lin

[v℄ 2 Y

m

. This means that there is a j

0

2 [m℄ su
h that

y

j

0

o

urs outside in �

lin

, �

j

0

)

M;s

�

0

j

0

, and �

0

= �

lin

[y

j

 �

j

j j 2 [m℄�fj

0

g℄[y

j

0

 

�

0

j

0

℄. Hen
e, for k

0

j

0

= k

j

0

+ 1 (and everything else the same) the statement of the

lemma holds. ut

The se
ond lemma is based on the following te
hni
al notions. LetM = (�;�;Q;

q

0

; R) be a pmtt and let s 2 T

�

. For a symbol �

{ � 2 T

�[C

M;s

(Y ) 
omputes � if there is a �

0

su
h that � )

�

M;s

�

0

and �

0

has an

outside o

urren
e of �, and

{ 
 2 C

(m)

M;s

(with m � 0) dire
tly 
omputes � if there is a � 2 T

�[C

M;s

(Y

m

) su
h

that 
(y

1

; : : : ; y

m

))

M;s

�, � o

urs in �, and � 
omputes �.

If, in the �rst de�nition, � )

k

M;s

�

0

then we say that � k-
omputes �. If �

k-
omputes � for � = 
(y

1

; : : : ; y

m

), 
 2 C

(m)

N;s

, and m � 0, then we say that 


k-
omputes �. Clearly, 
omputing 
on�gurations is transitive, that is, for 
on�gu-

rations a, b, and 
 and k

1

; k

2

2 N, if a k

1

-
omputes b and b k

2

-
omputes 
, then a

(k

1

+ k

2

)-
omputes 
 (and similarly, for a repla
ed by a tree �).

Consider now Lemma 33. Intuitively, the lemma states that if 
on�guration


 
omputes another 
on�guration d, then a rule r must have been applied, whi
h


ontains d in its right-hand side � (in the lemma, r is the rule ofM that is appli
able

to 


0

). To be more pre
ise, d is in �[[h℄℄

M;s

where h is the input 
on�guration of 
.

Re
all the Claim in the proof of Theorem 31. In the proof of that 
laim we

will apply Lemma 33 to d = h(q; F ); hi with F 6= ?; then, by the de�nition of the

rules of M , r must have h(q; F ); stayi in its right-hand side, and thus 


0

must equal

h(q

0

; F

0

); hi for some (q

0

; F

0

) 2 Q

M

. Note that, in Lemma 33, 


0

is not ne
essarily

di�erent from 
.
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Lemma 33. Let M be a pmtt and let s be an input tree of M . Let 
; d 2 C

M;s

with 
 6= d and let k

0

2 N. If 
 k

0

-
omputes d, then there are 


0

2 C

M;s

and k

00

< k

0

su
h that (1) 
 k

00

-
omputes 


0

and (2) 


0

dire
tly 
omputes d.

Proof. The proof is by indu
tion on k

0

. Let m be the rank of 
. Sin
e 
 6= d, k

0

� 1,

i.e., there is a 
omputation


(y

1

; : : : ; y

m

))

M;s

� )

k

M;s

�

0

where k = k

0

� 1, �; �

0

2 T

�[C

M;s

(Y

m

), and d o

urs outside in �

0

. If d o

urs in

� then the lemma holds for 


0

= 
 and k

00

= 0. Consider now the 
ase that d does

not o

ur in �. Sin
e � k-
omputes d, we 
an apply the 
laim below to obtain a


on�guration ~
 in � and

~

k; l 2 N su
h that �

~

k-
omputes ~
, ~
 l-
omputes d, and

~

k + l � k. Now, ~
 6= d be
ause ~
 o

urs in � and d does not. Sin
e l < k

0

, we 
an

apply the indu
tion hypothesis (to ~
, l, and d). Hen
e, there are ~


0

and l

0

< l su
h

that ~
 l

0

-
omputes ~


0

and ~


0

dire
tly 
omputes d. Sin
e 
(y

1

; : : : ; y

m

))

M;s

� and �

~

k-
omputes ~
, 
 (

~

k+1)-
omputes ~
. By the transitivity of 
omputing 
on�gurations

we obtain that 
 (

~

k + 1 + l

0

)-
omputes ~


0

. It follows from

~

k + l � k and l

0

< l that

~

k+ l

0

< k = k

0

� 1, and therefore

~

k+1+ l

0

< k

0

. Thus, the lemma holds for 


0

= ~


0

and k

00

=

~

k + 1 + l

0

. It remains to prove the 
laim.

Claim: Let � 2 T

�[C

M;s

(Y ) and k 2 N. If � k-
omputes d, then there are

~

k; l 2 N

and a 
on�guration ~
 in � su
h that

~

k+ l � k, �

~

k-
omputes ~
, and ~
 l-
omputes d.

The proof is by indu
tion on the stru
ture of �. Sin
e � k-
omputes d there

is an � su
h that � )

k

M;s

� and � has an outside o

urren
e of d. This implies

that � 62 Y , i.e., � is of the form �(�

1

; : : : ; �

n

) for � 2 (� [ C

M;s

)

(n)

, n � 0, and

�

1

; : : : ; �

n

2 T

�[C

M;s

(Y ).

We now apply Lemma 32 to the 
omputation �(�

1

; : : : ; �

n

))

k

M;s

�, and obtain

a tree �

lin

2 T

�[C

M;s

(Y

m

), m � 0, whi
h is linear in Y

m

, a mapping � : [m℄ ! [n℄,

�

1

; : : : ; �

m

2 T

�[C

M;s

(Y ), and k

0

; k

1

; : : : ; k

m

2 N su
h that (1) � = �

lin

[y

j

 �

j

j

j 2 [m℄℄, (2) �(y

1

; : : : ; y

n

) )

k

0

M;s

�

lin

[y

j

 y

�(j)

j j 2 [m℄℄, (3) for every j 2 [m℄,

�

�(j)

)

k

j

M;s

�

j

, and (4) k

0

+ k

1

+ � � �+ k

m

= k.

Case (i): d o

urs outside in �

lin

. Then � 2 C

M;s

and � k

0

-
omputes d. Hen
e,

for

~

k = 0, l = k

0

, and ~
 = � the 
laim holds.

Case (ii): d does not o

ur outside in �

lin

. Sin
e d o

urs outside in �, there

must be a j 2 [m℄ su
h that y

j

o

urs outside in �

lin

and d o

urs outside in

�

j

. This implies that �

�(j)

k

j

-
omputes d. By indu
tion there are

~

k; l 2 N and a


on�guration ~
 in �

�(j)

su
h that

~

k+ l � k

j

, �

�(j)

~

k-
omputes ~
, and ~
 l-
omputes d.

Sin
e � = �(�

1

; : : : ; �

n

))

k

0

M;s

�

lin

[y

j

 �

�(j)

j j 2 [m℄℄ = �

00

and y

j

o

urs outside in

�

lin

(at �), every outside node (v) in �

�(j)

is also outside in �

00

(at �v). Hen
e, sin
e

�

�(j)

~

k-
omputes ~
, we obtain that �

00

~

k-
omputes ~
 and so � (k

0

+

~

k)-
omputes

~
. It follows from

~

k + l � k

j

that (k

0

+

~

k) + l � k

0

+ k

j

, whi
h is � k be
ause

P

�2[m℄

k

�

= k. This 
on
ludes the proof of the 
laim and hen
e of the lemma.

Proof of the Claim in the proof of Theorem 31. For ease of referen
e we

repeat the 
laim.

Claim: Let s 2 T

�

. If h(q

0

;?); h

0

i )

�

N;s

� 2 T

�[C

N;s

and h(q; F ); hi 2 C

N;s

o

urs outside in �, then for every r 2 F of rank m � 0,

(a) there is an � 2 T

�[C

M;s

su
h that hq

0

; h

0

i )

�

M;s

� and hr; hi o

urs outside in

�, and

(b) there is an �

0

2 T

�[C

M;s

(Y

m

) su
h that hr; hi(y

1

; : : : ; y

m

) )

+

M;s

�

0

and hq; hi

o

urs outside in �

0

.
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The proof is by indu
tion on the length k of the given 
omputation. Assume it

holds for all i < k and 
onsider a state r 2 F . The appli
ation of Lemma 33 to


 = h(q

0

;?); h

0

i, d = h(q; F ); hi, and k

0

= k gives an i < k and a 
on�guration 


0

su
h that 
 i-
omputes 


0

and 


0

dire
tly 
omputes d. Sin
e h(q; F ); stayimust appear

in the right-hand side of the rule appli
able to 


0

, it follows from the de�nition of

the rules of N that 


0

is of the form h(q

0

; F

0

); hi with F = fq

0

g [ F

0

. It follows

from C1 (in the proof of Theorem 31) that there is an ~� su
h that hq

0

; h

0

i )

�

M;s

~� and ~� has an outside o

urren
e of hq

0

; hi, and that there is an ~�

0

su
h that

hq

0

; hi(y

1

; : : : ; y

n

) )

+

M;s

~�

0

and hq; hi o

urs outside (at �) in ~�

0

(where n is the

rank of q

0

). If q

0

= r, then the 
laim holds for � = ~� and �

0

= ~�

0

.

Consider now the 
ase that q

0

6= r. Sin
e F = F

0

[fq

0

g, r must be in F

0

. We apply

the indu
tion hypothesis to h(q

0

;?); h

0

i, i, and h(q

0

; F

0

); hi to obtain an � su
h that

hq

0

; h

0

i )

�

M;s

� and hr; hi o

urs outside in �, and an �� with hr; hi(y

1

; : : : ; y

m

))

+

M;s

�� and hq

0

; hi o

urs outside in �� (at v). Thus, part (a) of the 
laim holds. Sin
e

hq

0

; hi(y

1

; : : : ; y

n

) )

+

M;s

~�

0

, there is a 
omputation �� )

+

M;s

��[[v  ~�

0

℄℄ = �

0

and

hq; hi o

urs outside in �

0

(at v�). This proves (b) and 
on
ludes the proof of the

Claim. ut

5.4 Simulation of PTTs by Ma
ro Tree Transdu
ers

In this subse
tion it is proved that, by the use of parameters, we 
an remove all

up instru
tions from a 0-ptt M , thus obtaining a stay-mtt that realizes the same

translation as M .

In fa
t, this result is already known. It was proved in [EV86℄ in the setting

of transdu
ers with storage. As dis
ussed at the end of Subse
tion 3.3, 0-PTT =

RT(Tree-walk) and hen
e 0-PTT � RT(P(Tree)). By Theorem 5.14, Corollary 5.21,

and Theorem 4.18 of [EV86℄, RT(P(Tree)) � CFT(Tree

id

). Here, `id' indi
ates the

addition of an identity instru
tion (De�nition 3.7 of [EV86℄) and thus the possibility

to stay at a node. Sin
e, as observed in Subse
tion 3.3, CFT(Tree) = MTT, it should

be 
lear that CFT(Tree

id

) is pre
isely the 
lass sMTT. In the same way it follows

that 0-DPTT � DsMTT, be
ause the proofs preserve determinism. Sin
e the proof

in [EV86℄ is 
ompli
ated by the fa
t that it is shown for arbitrary storage types, we

present here a dire
t proof for 
ompleteness sake.

Sin
e DsMTT = DMTT by Theorem 31, the fa
t that 0-DPTT � DsMTT

proves that 0-DPTT � DMTT (and this is a new result). For total fun
tions this

result was also proved in [EV86℄ (Theorem 5.16); in the non
ir
ular 
ase (see Sub-

se
tion 3.2) it is the well-known fa
t that attribute grammars 
an be simulated by

ma
ro tree transdu
ers [Fra82,CF82,FV99,EM99℄.

Lemma 34. 0-PTT � sMTT and 0-DPTT � DsMTT.

Proof. Let M = (�;�;Q; q

0

; R) be a 0-ptt and let q

1

; : : : ; q

m

be the states in Q.

We want to 
onstru
t a 0-pmtt M

0

without up instru
tions that realizes the same

translation as M . The idea of M

0

is to repla
e ea
h up instru
tion into state q

�

,

by the sele
tion of the parameter y

�

. Hen
e, if the 
urrent node is v, then in the

�th parameter position of a state of M

0

, we have to 
ompute what M does at the

parent of v. Obviously, if v is the root node, then there is no parent, and therefore

the 
orresponding states of M

0

have no parameters. More pre
isely, M

0

has states

(q; 0) of rank zero whi
h are used if the 
urrent node is the root node, and if the


urrent node is not the root node, then M

0

uses states (q;m) of rank m. For every

move of M from v to its jth 
hild vj, M

0


omputes in the �th parameter position

of the new state (q;m) what happens if M moves ba
k to v into state q

�

. Thus, the

parameters are used in a sta
k-like fashion, to keep a history of the 
omputations

of all states for all an
estors of the 
urrent node; in that way moving up into state
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q

�

is realized by M

0

by sele
ting the parameter y

�

, and therefore M

0

has no up

instru
tions. Note that this kind of sta
k te
hnique was invented by Rounds (
f.

Theorem 7 of [Rou70℄, whi
h was generalized in Lemma 5.4 of [EV86℄).

Let us now de�ne M

0

. Let M

0

= (�;�;Q

0

; (q

0

; 0); R

0

), where Q

0

= f(q; �)

(�)

j

q 2 Q;� 2 f0;mgg and R

0

= frel(r) j r 2 Rg. For every rule r 2 R the related

rule rel(r) is de�ned as follows. Let r = (hq; �; �; ji ! �) with q 2 Q, � 2 �, and

j 2 [0; J ℄. Then

rel(r) =

�

h(q; 0); �; �; 0i ! trans

0

(�); if j = 0

h(q;m); �; �; ji(y

1

; : : : ; y

m

)! trans

m

(�); otherwise

where, for � 2 f0;mg, trans

�

(�) =

{ y

�

if � = hq

�

; upi

{ Æ((r

1

; �)(y

1

; : : : ; y

�

); : : : ; (r

k

; �)(y

1

; : : : ; y

�

)) if � = Æ(r

1

; : : : ; r

k

) with Æ 2 �

(k)

,

k � 0, and r

1

; : : : ; r

k

2 Q,

{ and if � = hq

0

; 'i with ' 2 fdown

i

j i 2 [J ℄g [ fstayg then it equals

� h(q

0

;m); down

i

i((q

1

; �)(y

1

; : : : ; y

�

); : : : ; (q

m

; �)(y

1

; : : : ; y

�

)) if ' = down

i

� h(q

0

; �); stayi(y

1

; : : : ; y

�

) if ' = stay.

Obviously, if M is deterministi
, then so is M

0

.

Let s 2 T

�

. Before we prove the 
orre
tness of the 
onstru
tion of M

0

we need

some auxiliary notions. De�ne the full m-ary \sta
k tree" (fmt) that is generated

byM

0

in order to keep tra
k of the 
omputations at an
estors as follows. For a 
on-

�guration hq; (u; �)i of M , the tree fmt(hq; (u; �)i) 2 T

C

M

0

;s

is de�ned as h(q; 0); hi

if u = ", and otherwise as h(q;m); hi(fmt(hq

1

; up(h)i); : : : ; fmt(hq

m

; up(h)i)), where

h = (u; �). We 
an now de�ne the substitution �, that allows us to extend the

notion of relatedness from rules to sentential forms:

� = [hq; (u; �)i  fmt(hq; (u; �)i) j q 2 Q; u 2 V (s)℄:

Two sentential forms � 2 T

�[C

M;s

and �

0

2 T

�[C

M

0

;s

are related, if �

0

= ��.

Claim 1: For 
 2 C

M;s

and r 2 R, r is appli
able to 
 i� rel(r) is appli
able to


�["℄.

Let 
 = hq; (u; �)i and r = hq; �; �; ji ! �. The rule r is appli
able to 
 i�

s[u℄ = � and j = 
hildno(u) i� rel(r) is appli
able to 
�["℄ be
ause, for u = ",

hq; (u; �)i�["℄ = h(q; 0); (u; �)i and the left-hand side of rel(r) is h(q; 0); �; �; 0i,

and for u 6= ", hq; (u; �)i�["℄ = h(q;m); (u; �)i and the left-hand side of rel(r) is

h(q;m); �; �; ji(y

1

; : : : ; y

m

). This proves Claim 1.

By Claim 2 below, the appli
ation of related rules to the same node in related

sentential forms yields again related sentential forms. Now, if �

1

)

M;s

�

2

by rule r at

node � and �

0

1

is related to �

1

, then by Claim 1 rel(r) is appli
able to �

0

1

at � be
ause

�

0

1

[�℄ = (�

1

[�℄)�["℄, and, by Claim 2, �

0

2

is related to �

2

where �

0

1

)

M

0

;s

�

0

2

by rel(r).

Thus, if hq

0

; h

0

i )

�

M;s

t 2 T

�

, then h(q

0

; 0); h

0

i )

�

M

0

;s

t be
ause hq

0

; h

0

i is related

to h(q

0

; 0); h

0

i. This means that �

M

� �

M

0

. Similarly, h(q

0

; 0); h

0

i )

�

M

0

;s

t 2 T

�

implies that hq

0

; h

0

i )

�

M;s

t and thus �

M

0

� �

M

. It remains to prove Claim 2.

Claim 2: Let �

1

; �

2

2 T

�[C

M;s

and �

0

1

; �

0

2

2 T

�[C

M

0

;s

su
h that �

1

and �

0

1

are

related. If �

1

)

M;s

�

2

by rule r 2 R at node � in �

1

and �

0

1

)

M

0

;s

�

0

2

by rule rel(r)

at node � in �

0

1

, then �

2

and �

0

2

are related.

Let �

1

[�℄ = hq; (u; �)i and r = hq; �; �; ji ! �. Let � = 0 if u = " and

otherwise � = m. Then �

0

1

=� = fmt(hq; (u; �)i) = h(q; �); (u; �)i(t

1

; : : : ; t

�

) with

t

i

= fmt(hq

i

; up(u; �)i) for i 2 [�℄.

If � = hq

0

; stayi then �

2

= �

1

[�  hq

0

; (u; �)i℄ and rel(r) has right-hand side

h(q

0

; �); stayi(y

1

; : : : ; y

�

). Then �

0

1

)

M

0

;s

�

0

2

= �

0

1

[�  h(q

0

; �); (u; �)i(t

1

; : : : ; t

�

)℄ =

�

0

1

[� fmt(hq

0

; (u; �)i)℄ = �

1

[� hq

0

; (u; �)i℄� = �

2

�.

47



If � = Æ(r

1

; : : : ; r

k

) then �

2

= �

1

[�  Æ(hr

1

; (u; �)i; : : : ; hr

k

; (u; �)i)℄ and rel(r)

has right-hand side Æ((r

1

; �)(y

1

; : : : ; y

�

); : : : ; (r

k

; �)(y

1

; : : : ; y

�

)). Then �

0

1

)

M

0

;s

�

0

2

= �

0

1

[� Æ(h(r

1

; �); (u; �)i(t

1

; : : : ; t

�

); : : : ; h(r

k

; �); (u; �)i(t

1

; : : : ; t

�

))℄

= �

0

1

[� Æ(fmt(hr

1

; (u; �)i); : : : ; fmt(hr

k

; (u; �)i))℄

= �

1

[� Æ(hr

1

; (u; �)i; : : : ; hr

k

; (u; �)i)℄� = �

2

�.

If � = hq

0

; down

i

i then �

2

= �

1

[�  hq

0

; (ui; �)i℄ and rel(r) has right-hand side

h(q

0

;m); down

i

i((q

1

; �)(y

1

; : : : ; y

�

); : : : ; (q

m

; �)(y

1

; : : : ; y

�

)). Then �

0

1

)

M

0

;s

�

0

2

=

�

0

1

[� h(q

0

;m); (ui; �)i(h(q

1

; �); (u; �)i(t

1

; : : : ; t

�

); : : : ; h(q

m

; �); (u; �)i(t

1

; : : : ; t

�

))℄

= �

0

1

[� fmt(hq

0

; (ui; �)i)℄ = �

1

[� hq

0

; (ui; �)i℄� = �

2

�.

If � = hq

0

; upi then u = u

0

i for some u

0

2 V (s) and i 2 [J ℄, and �

2

= �

1

[�  

hq

0

; (u

0

; �)i℄. The right-hand side of rel(r) is y

�

for � 2 [m℄ su
h that q

�

= q

0

. Thus

�

0

1

)

M

0

;s

�

0

2

= �

0

1

[� t

�

℄ = �

0

1

[� fmt(hq

�

; (u

0

; �)i)℄ = �

1

[� hq

0

; (u

0

; �)i℄� = �

2

�.

ut

Now, from Theorem 10 together with Lemma 34 and Theorem 31 we obtain

our se
ond main result: every n-ptt 
an be simulated by the 
omposition of n + 1

stay-mtts (mtts in the deterministi
 
ase). Note that, as for Theorem 10, the �rst n

translations are realized by (very simple) total deterministi
 mtts: they all realize

En
Peb 2 D

t

MTT.

Theorem 35. For every n � 1, n-PTT � sMTT

n+1

and n-DPTT � DMTT

n+1

.

By Theorem 29 and Lemma 27 the nondeterministi
 part of this theorem implies

that n-PTT � MON ÆMTT

n+1

. The deterministi
 part of Theorem 35 is, in fa
t,

optimal, i.e., n-DPTT is not in
luded in DMTT

n

. This will follow immediately from

Theorem 41 in Se
tion 6.

5.5 Simulation of Ma
ro Tree Transdu
ers by PTTs

In the previous subse
tion it was shown how to simulate n-ptts by 
ompositions of

stay-mtts, and by 
ompositions of dmtts in the deterministi
 
ase. Now we show the


onverse dire
tion, namely, how to simulate a stay-mtt by a 
omposition of 0-ptts,

and a deterministi
 mtt by a 
omposition of 0-dptts. This result, together with the


onverse simulation of the previous subse
tion, proves that ptts and stay-mtts have

the same 
omposition 
losure (and that dptts and dmtts have the same 
omposition


losure). Hen
e, the 
lasses of output languages of 
ompositions of ptts and of mtts


oin
ide.

Re
all that by Lemma 27, sMTT � MON Æ MTT. Sin
e MON � 0-PTT by

Example 6, this means that sMTT � 0-PTTÆMTT. Thus, it will suÆ
e to 
onsider

the simulation of mtts by ptts.

In order to prove that an mtt 
an be simulated by 
ompositions of ptts, we use

a well-known de
omposition result of (total deterministi
) mtts into 
ompositions of

top-down tree transdu
ers and so-
alled \YIELDmappings" (see, e.g., [ES77,Eng80℄).

Re
all from De�nition 22 that a top-down tree transdu
er is an mtt M without pa-

rameters, i.e., with ea
h state of rank zero. The 
on�gurations of a top-down tree

transdu
er are always at the leaves of a sentential form, in 
ontrast to an mtt whose


on�gurations 
an also be at non-leaf nodes of a sentential form. This means that

a top-down tree transdu
er 
an simulate the state behavior of an mtt, but only

at the leaves of its sentential forms, be
ause it 
annot 
arry out the se
ond-order

tree substitution inherent in a 
omputation step of an mtt (viz. applying a rule

to a 
on�guration of rank > 0). Now, YIELD mappings 
arry out se
ond-order

tree substitution. Altogether, a total deterministi
 mtt M 
an be simulated by �rst

running a (total deterministi
) top-down tree transdu
er that realizes M 's state

behavior and generates a spe
ial intermediate tree, and then applying a YIELD

mapping to that tree (realizing the se
ond-order tree substitution inherent in M 's
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omputation). In other words, D

t

MTT � D

t

TÆYIELD (Proposition 4.17 of [CF82℄;


f. also Theorem 4.8 of [EV85℄). Partialness and nondeterminism of an mtt 
an be

handled by post-
omposing a total deterministi
 mtt with a 
orresponding top-

down tree transdu
er (Corollary 6.12 of [EV85℄), i.e., MTT � D

t

MTT Æ T and

DMTT � D

t

MTT ÆDT. Thus, we obtain (
f. also Theorem 7.3 of [EV85℄)

MTT � (T [ YIELD)

3

and DMTT � (DT [ YIELD)

3

:

As stated in Lemma 23, top-down tree transdu
ers 
an be realized by 0-ptts;

we now prove, in Lemma 36, that YIELD mappings 
an be realized by 0-ptts.

For attribute grammars (see Subse
tion 3.2) these results are well known: top-

down tree transdu
ers 
an be simulated by attribute grammars [CF82℄ and so 
an

YIELD mappings (shown in Theorem 1.3 of [Eng81℄, without 
orre
tness proof,

and in Corollary 6.24 of [FV98℄, using an indire
t proof). Together with the above

de
omposition result this will allow us to prove the equality of the 
omposition


losure of ptts and stay-mtts, in Theorem 38.

Let us now de�ne YIELD mappings and show that they 
an be realized by 0-

ptts. A YIELD mapping Y

f

is a mapping from T

�

to T

�

(Y ) de�ned by a mapping

f from �

(0)

to T

�

(Y ), for ranked alphabets � and �. It realizes the semanti
s of

�rst-order tree substitution in the following way:

(i) for � 2 �

(0)

, Y

f

(�) = f(�) and

(ii) for � 2 �

(k)

, s

1

; : : : ; s

k

2 T

�

, and k � 1,

Y

f

(�(s

1

; : : : ; s

k

)) = Y

f

(s

1

)[y

�

 Y

f

(s

�+1

) j � 2 [k � 1℄℄.

The 
lass of all YIELD mappings is denoted by YIELD.

Intuitively, to 
ompute the tree Y

f

(s) for some s = �(s

1

; : : : ; s

k

) 2 T

�

, the

mapping Y

f

has to be applied to the �rst subtree s

1

, and in the resulting tree ea
h

parameter y

�

, � 2 [k� 1℄, has to be repla
ed by Y

f

applied to the (�+1)th subtree

s

�+1

. Note that if f is a mapping from �

(0)

to T

�

(Y

m

), m � 0, then Y

f

is a mapping

from T

�

to T

�

(Y

m

).

As a small example of a YIELD mapping, 
onsider the ranked alphabet � with

�

(0)

= fa; b; 
g, �

(2)

= f�g and the mapping f from �

(0)

to T

�

(Y

1

) with � =

fa

(1)

; b

(1)

; 


(1)

; e

(0)

g, and f(a) = a(y

1

), f(b) = b(y

1

), and f(
) = 
(e). Now let

s = �(a; �(b; 
)). Then Y

f

(s) is a (monadi
 tree) representation of the yield ab
 of

the tree s, namely,

Y

f

(s) = f(a)[y

1

 Y

f

(�(b; 
))℄

= a(y

1

)[y

1

 f(b)[y

1

 
(e)℄

| {z }

b(
(e))

℄

= a(b(
(e))):

Note that, in general, a YIELD mapping Y

f

is realized by a dmtt M

f

with one

state q and rules

hq; �; �; ji(y

1

; : : : ; y

m

)! f(�)

hq; �; �; ji(y

1

; : : : ; y

m

) ! hq; down

1

i(hq; down

2

i(y

1

; : : : ; y

m

); : : : ;

hq; down

k

i(y

1

; : : : ; y

m

); y

k

; : : : ; y

m

);

where f is a mapping from �

(0)

to T

�

(Y

m

), and y

k

; : : : ; y

m

is empty if m < k.

We now show that YIELD mappings 
an be realized by 0-dptts.

Lemma 36. YIELD � 0-DPTT.

Proof. Let � and � be ranked alphabets, J = maxfrank

�

(�) j � 2 �g, m � 0,

and let f be a mapping from �

(0)

to T

�

(Y

m

). We now de�ne the determinis-

ti
 0-ptt M = (�;� [ fy

(0)

�

j � 2 [m℄g; Q; q; R) su
h that �

M

= Y

f

. Let Q =
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fq; q

1

; : : : ; q

m

; q

0

1

; : : : ; q

0

m

g. For the state q, let the following rules be in R.

hq; �; �; ji ! hq; down

1

i for � 2 �

(k)

; k � 1, and j 2 [0; J ℄

hq; �; �; ji ! f(�)[y

�

 hq

�

; stayi j � 2 [m℄℄ for � 2 �

(0)

and j 2 [0; J ℄:

Intuitively, starting in a 
on�guration hq; (u; �)i, M will 
ompute the tree Y

f

(s=u)

when restri
ted to input 
on�gurations (v; �) where v is a des
endant of u, i.e.,

v = uv

0

with v

0

2 V (s=u). However, in pla
e of a parameter y

�

this tree will have a


on�guration hq

�

; (u; �)i; su
h a 
on�guration 
omputes the a
tual parameter tree

whi
h should repla
e y

�

during M 's 
omputation of Y

f

(s). For every � 2 [m℄ let

the rules

hq

�

; �; �; 1i ! hq

0

�

; upi for � 2 �

hq

�

; �; �; ji ! hq

�

; upi for � 2 � and j 2 [2; J ℄

hq

�

; �; �; 0i ! y

�

for � 2 �

hq

0

�

; �; �; ji ! hq; down

�+1

i for � 2 �

(k)

; �+ 1 � k; and j 2 [0; J ℄

hq

0

�

; �; �; ji ! hq

�

; stayi for � 2 �

(k)

; �+ 1 > k; and j 2 [0; J ℄

be in R. Intuitively, in a 
on�guration hq

�

; (u; �)i, M 
omputes for y

�

the a
tual

parameter tree at u, whi
h is the (�+1)th 
hild of u's parent u

0

if u is a �rst 
hild

and u

0

has a (� + 1)th 
hild, and otherwise is the a
tual parameter tree at u

0

(
f.

the rules of the dmtt M

f

shown below the de�nition of YIELD).

We now prove the 
orre
tness of the 
onstru
tion of M . Let s 2 T

�

. It must

be shown that �

M

(s) = Y

f

(s). In what follows, let )

M;s

be denoted by ). By the


laim below, hq; h

0

i )

�

Y

f

(s)[y

�

 hq

�

; h

0

i j � 2 [m℄℄ = �. Sin
e hq

�

; h

0

i ) y

�

for

every � 2 [m℄, � )

�

Y

f

(s)[y

�

 y

�

j � 2 [m℄℄ = Y

f

(s). Thus, hq; h

0

i )

�

Y

f

(s).

In the remainder of this proof we will write hq; ui instead of hq; (u; �)i.

Claim: For every u 2 V (s), hq; ui )

�

Y

f

(s=u)[y

�

 hq

�

; ui j � 2 [m℄℄.

The proof of the 
laim is by indu
tion on the size of s=u.

Case 1, u is a leaf: Let � = s[u℄. Then hq; ui ) f(�)[y

�

 hq

�

; ui j � 2 [m℄℄. By

the de�nition of Y

f

, f(�) = Y

f

(�), and, sin
e u is a leaf, Y

f

(�) = Y

f

(s=u), whi
h

proves the 
laim for this 
ase.

Case 2, u is not a leaf: By the de�nition of the q-rule ofM for symbols of positive

rank, hq; ui ) hq; u1i. By indu
tion

hq; u1i )

�

Y

f

(s=u1)[y

�

 hq

�

; u1i j � 2 [m℄℄ = �:

What M 
omputes in a 
on�guration hq

�

; u1i depends on the numbers � + 1 and

k, where k is the rank of s[u℄: If �+ 1 > k then

hq

�

; u1i ) hq

0

�

; ui ) hq

�

; ui;

and if �+ 1 � k then

hq

�

; u1i ) hq

0

�

; ui

) hq; u(�+ 1)i

)

�

Y

f

(s=u(�+ 1))[y

�

 hq

�

; u(�+ 1)i j � 2 [m℄℄ (by indu
tion)

)

�

Y

f

(s=u(�+ 1))[y

�

 hq

�

; ui j � 2 [m℄℄ (be
ause �+ 1 � 2):

Thus, there is a 
omputation starting from � (displayed above), of the form

� )

�

Y

f

(s=u1) [y

�

 Y

f

(s=u(�+ 1))	 j � 2 [m℄; �+ 1 � k℄

[y

�

 hq

�

; ui j � 2 [m℄; �+ 1 > k℄;

where 	 = [y

�

 hq

�

; ui j � 2 [m℄℄. This is equal to

Y

f

(s=u1)[y

�

 Y

f

(s=u(�+ 1)) j � 2 [m℄; �+ 1 � k℄	:
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Sin
e \� 2 [m℄; � + 1 � k" means the same as \� 2 [k � 1℄" we obtain, by the

de�nition of Y

f

, that the above equals Y

f

(s=u)	 . This 
on
ludes the proof of the


laim and of the lemma. ut

Consider again the example of a YIELD mapping Y

f

given above the previ-

ous lemma and the tree s = �(a; �(b; 
)). Let M be the 0-dptt obtained by the


onstru
tion in the proof of the previous lemma (and let ) denote )

M;s

). Then

hq; "i ) hq; 1i ) a(hq

1

; 1i)) a(hq

0

1

; "i)) a(hq; 2i))

a(hq; 21i)) a(b(hq

1

; 21i))) a(b(hq

0

1

; 2i))) a(b(hq; 22i))) a(b(
(e)));

whi
h is the 
orre
t tree Y

f

(s), as shown in the example.

Lemma 37. sMTT � 0-PTT

4

and DMTT � 0-DPTT

3

.

Proof. By Lemma 27, sMTT � MON ÆMTT whi
h is in
luded in 0-PTT ÆMTT

by Example 6. As mentioned above, MTT � (T [ YIELD)

3

whi
h is in
luded in

0-PTT

3

by Lemmas 23 and 36. Hen
e sMTT � 0-PTT

4

. In the deterministi
 
ase,

DMTT � (DT[YIELD)

3

whi
h is in
luded in 0-DPTT

3

by Lemmas 23 and 36. ut

It was proved at the end of Se
tion 4 that the 
omposition 
losure of n-ptts

equals the one of 0-ptts, i.e., PTT

�

= 0-PTT

�

(and DPTT

�

= 0-DPTT

�

in the

deterministi
 
ase). We are now ready to prove our third main result, namely, that

these 
lasses equal the 
omposition 
losure of stay-mtts (and of dmtts in the deter-

ministi
 
ase).

Theorem 38. PTT

�

= 0-PTT

�

= sMTT

�

and

DPTT

�

= 0-DPTT

�

= DMTT

�

:

Proof. By Corollary 11, PTT

�

= 0-PTT

�

and DPTT

�

= 0-DPTT

�

. We now show

that 0-PTT

�

= sMTT

�

and 0-DPTT

�

= DMTT

�

. By Theorem 35 and Lemma 37,

0-PTT � sMTT � 0-PTT

�

and 0-DPTT � DMTT � 0-DPTT

�

. This implies the

required equalities. ut

In terms of databases Theorem 38 shows that, as query languages, ptts and mtts

have the same expressiveness. For total fun
tions, it was already known that total

deterministi
 ma
ro tree transdu
ers and (non
ir
ular) attributed tree transdu
ers

have the same 
omposition 
losure (see Chapter 6 of [FV98℄).

In the deterministi
 
ase, we have also proved that DPTT

�

� 0-DPTT

�

term

,

where the latter is the 
lass of translations realized by 0-dptts that have no in�nite


omputations, i.e., they are terminating: �rst simulate the dptts by (
ompositions

of) dmtts, then de
ompose the dmtts into (deterministi
) top-down tree transdu
ers

and YIELD mappings following the results in [EV85℄, and �nally simulate those

by (
ompositions of) 0-ptts, using Lemmas 23 and 36, respe
tively (obviously, the


onstru
tions in the proofs of these two lemmas give terminating 0-dptts; in fa
t,

they are even non
ir
ular, see Subse
tion 3.2). Note that it is not 
lear whether or

not in�nite 
omputations 
an be removed dire
tly from an n-dptt, i.e., whether or

not DPTT � DPTT

term

.

In [MSV00℄ it is stated as an open problem whether PTT 
ontains all bottom-

up tree translations (denoted B, and DB in the deterministi
 
ase). Note that we

obtain from Lemmas 23, 36, and 37 that DB � 0-DPTT

3

and B � 0-PTT

2

be
ause

DB � DMTT (Corollary 6.16 of [EV85℄) and B � T Æ YIELD (Theorem 5.16 and

Lemma 5.5 of [EV85℄).

If we 
onsider the 
lass of output languages of PTT

�

, then by the previous theo-

rem, PTT

�

(REGT) = sMTT

�

(REGT) and by Theorem 30 this equals MTT

�

(REGT).

Thus, PTT

�

and MTT

�

de�ne the same 
lass of output languages.
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Corollary 39. PTT

�

(REGT) = MTT

�

(REGT).

As stated in Fa
t 25, emptiness and �niteness of tree languages in MTT

�

(REGT)

are de
idable. In Se
tion 7 on type 
he
king we will use these fa
ts to show that

\type 
he
king" and \almost always type 
he
king" are de
idable for languages in

MTT

�

(REGT). Through Corollary 39 this provides an alternative proof of the main

result of [MSV00℄ that type 
he
king is de
idable for languages in PTT

�

(REGT).

6 Pebble Hierar
hies for Deterministi
 PTTs

In this se
tion we 
onsider for deterministi
 pebble tree transdu
ers the following

question: Is the (deterministi
) pebble tree transdu
er with n + 1 pebbles more

powerful than the one with n pebbles? As the power of the pebble tree transdu
er

we 
onsider its ability

(i) to translate,

(ii) to generate output tree languages, and

(iii) to generate output string languages.

The �rst two aspe
ts are important for database theory (translations are queries,

and output tree languages are views) and the third one is mainly of interest for

formal language theory. Note that an output string language is obtained from an

output tree language by taking the yields of its trees; thus, it is of the form y�

M

(R) =

fyt j (s; t) 2 �

M

for some s 2 Rg where M is a pebble tree transdu
er and R 2

REGT.

In Se
tion 3 it was shown already that the number n of pebbles gives rise to

a proper hierar
hy of translations; in other words, with respe
t to (i), the dptt

with n + 1 pebbles is stri
tly more powerful than the one with n pebbles. In this

se
tion we show that also with respe
t to (iii), and hen
e also (ii), n+1 pebbles are

stri
tly more powerful than n. More pre
isely, for the 
lasses y(n-DPTT(REGT))

of output string languages of n-dptts, there is a proper hierar
hy with respe
t to n,

i.e., y((n�1)-DPTT(REGT)) ( y(n-DPTT(REGT)) for all n � 1. We 
all this the

\dptt-hierar
hy".

Re
all from Theorem 35 that (n� 1)-DPTT � DMTT

n

. The properness of the

dptt-hierar
hy will be proved using a `bridge theorem' for the 
lasses yD

t

MTT

n

(

REGT), viz. Theorem 18 of [EM02a℄. This bridge theorem provides a method

to obtain languages that are not in yD

t

MTT

n

(REGT). In [EM02a℄ it was used

to prove that the \(total) dmtt-hierar
hy" is proper, i.e., yD

t

MTT

n

(REGT) (

yD

t

MTT

n+1

(REGT): Theorem 23 of [EM02a℄. Here we will use it to show that

y(n-DPTT(REGT)) 
ontains languages not in yDMTT

n

(REGT), and hen
e not in

y((n�1)-DPTT(REGT)). Sin
e the dptt-hierar
hy involves non-total fun
tions, we

�rst prove that totality is irrelevant for output languages of DMTT

n

, i.e., that for

every n � 1,

yDMTT

n

(REGT) = yD

t

MTT

n

(REGT): (�)

We show, by indu
tion on n, that DMTT

n

(REGT) = D

t

MTT

n

(REGT), i.e., even

the 
orresponding 
lasses of tree languages 
oin
ide. The proof is based on Theo-

rem 6.18 of [EV85℄ whi
h says that DMTT = FTA Æ D

t

MTT, where FTA is the


lass of identity fun
tions restri
ted to regular tree languages, i.e., applying a fun
-

tion in FTA is the same as taking the interse
tion with a regular tree language.

For n = 1 this implies that DMTT(REGT) = D

t

MTT(FTA(REGT)). Sin
e regu-

lar tree languages are 
losed under interse
tion (
f., e.g., [GS84℄), FTA(REGT) =

REGT and hen
e D

t

MTT(FTA(REGT)) = D

t

MTT(REGT). For n + 1, it fol-

lows from Theorem 6.18 of [EV85℄ and by indu
tion that DMTT

n+1

(REGT) =

D

t

MTT(FTA(D

t

MTT

n

(REGT))). Now FTA(D

t

MTT

n

(REGT)) equals D

t

MTT

n

(
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REGT): for R

in

; R

out

2 REGT and � 2 D

t

MTT

n

, �(R

in

) \ R

out

= �(R

in

\

�

�1

(R

out

)) and R

in

\ �

�1

(R

out

) is in REGT by Fa
t 24 and the fa
t that REGT is


losed under interse
tion.

Let us now state the bridge theorem of [EM02a℄, in terms of non-total dmtts.

To do this we �rst de�ne the notion of Æ-
ompleteness. Let A and B be disjoint

alphabets. Consider a string w of the form

w = w

1

a

1

w

2

a

2

� � �a

l�1

w

l

a

l

w

l+1

with l � 0, a

1

; : : : ; a

l

2 A, and w

1

; : : : ; w

l+1

2 B

�

. De�ne the string res

A

(w) 2 A

�

as a

1

� � � a

l

. If all w

2

; : : : ; w

l

are pairwise di�erent, then w is a Æ-string for a

1

� � � a

l

.

Let L � A

�

and L

0

� (A [ B)

�

. If L

0


ontains, for every w 2 L, a Æ-string for w,

then L

0

is 
alled Æ-
omplete for L.

Lemma 40. (Theorem 18 of [EM02a℄) Let A and B be disjoint alphabets, and let

L � A

�

and L

0

� (A [ B)

�

be languages su
h that L

0

is Æ-
omplete for L and

res

A

(L

0

) = L.

(a) For every n � 1, if L

0

2 yDMTT

n+1

(REGT), then L 2 yDMTT

n

(REGT).

(b) If L

0

2 yDMTT(REGT), then L 2 yDT(REGT).

The next theorem (Theorem 41, whi
h is the main result of this se
tion) proves

that there is an n-dptt that generates an output string language whi
h is not in

yDMTT

n

(REGT). Re
all from De�nition 1 that an n-ptt is monadi
 if its input

and output alphabets � and � are monadi
, and that the 
orresponding string-

to-string translations are those realized by two-way n-pebble string transdu
ers.

The �rst part of the proof of Theorem 41 was already presented in (the proof of)

Theorem 5 of [EM02b℄: with one pebble more, there is a monadi
 (n+1)-dptt that

generates an output language whi
h is not in yDMTT

n

(REGT) when viewed as a

string language (through paths). Together with the fa
t that the output languages of

monadi
 n-dptts (viewed as string languages) are output string languages of n-fold


ompositions of total deterministi
 mtts (Theorem 4 of [EM02b℄) this proves that

the output tree languages of monadi
 n-dptts form a proper hierar
hy with respe
t

to the number n of pebbles: the \pebble string transdu
er hierar
hy" (Theorem 5

of [EM02b℄). The se
ond part of the proof of Theorem 41 shows that without the

monadi
 restri
tion the extra pebble is not needed.

Note that, in terms of the translations, this result implies immediately that

n-DPTT * DMTT

n

, whi
h 
annot be proved using size-height properties of trans-

lations of dmtts. Thus, the in
lusion n-DPTT � DMTT

n+1

of Theorem 35 is opti-

mal.

Theorem 41. For every n � 1, y(n-DPTT(REGT))� yDMTT

n

(REGT) 6= ?.

Proof. The inequality will be proved using the `bridge theorem' Lemma 40. First,

let n = 1 and let � = fa

(1)

; e

(0)

g. It is well known that the language K =

f(a

m

b)

m

j m � 0g is not in yDT(REGT) (see Theorem 3.16 of [Eng82℄). This

means, by Lemma 40(b), that K 
an be used in order to 
onstru
t languages K

0

not in yDMTT(REGT).

Before it is shown how to obtain a 1-dptt su
h that the yield of its output

language is su
h a K

0

, we show how to 
onstru
t a monadi
 1-dptt M

K

with

p�

M

K

(T

�

) = f(a

m

b)

m

j m � 0g = K (re
all the de�nition of p from Subse
-

tion 2.1, e.g., for the tree s = a(a(b(e))), ps is the string aab). The idea of M

K

is

straightforward: M

K

uses the pebble as a 
ounter to make m 
opies of the input

tree a

m

(e). On input tree a

m

e, it drops the pebble at the root node, 
opies the

input tree top-down, repla
ing the e by b, thus generating a

m

b as output. Then

it sear
hes the pebble, moves it one node down, and then again generates another
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opy of a

m

b. This is repeated until the pebble has rea
hed the leaf of the input tree,

thus generating the monadi
 tree (a

m

b)

m

e. It should be obvious how to de�ne the

rules of M

K

.

Given a monadi
 n-dptt M (with arbitrary input and output alphabets � and

�, respe
tively) we will 
onstru
t below the

{ n-dptt split(M) and the

{ monadi
 (n+ 1)-dptt 
onf(M)

(with the same input alphabet �) su
h that for L = p�

M

(T

�

) and A = �

(1)

:

{ L

0

= y�

split(M)

(T

�

) is Æ-
omplete for L and

{ L

0

= p�


onf(M)

(T

�

) is Æ-
omplete for L,

and res

A

(L

0

) = L in both 
ases, whi
h will be proved in Claims 2 and 1, respe
tively.

Let now, again, n = 1 and � = fa

(1)

; e

(0)

g. Consider the 1-dptt split(M

K

)

obtained from the monadi
 1-dptt M

K

of above. Then K

0

= y�

split(M

K

)

(T

�

) is

Æ-
omplete for p�

M

K

(T

�

) = K and res

A

(K

0

) = K, where A = �

(1)

and � is the

output alphabet ofM

K

. Sin
e K 62 yDT(REGT) we apply Lemma 40(b) in order to

\bridge"K

0

out of the 
lass yDMTT(REGT); we obtain thatK

0

62 yDMTT(REGT)

whi
h proves the theorem for n = 1 (be
ause T

�

2 REGT).

Now let n > 1. De�ne indu
tively the monadi
 n-dptt N

n

= 
onf(N

n�1

) and

N

1

=M

K

. We will prove by indu
tion on n that

p�

N

n

(T

�

) 62 yDMTT

n�1

(REGT):

As stated above, L

0

= p�

N

n

(T

�

) is Æ-
omplete for L = p�

N

n�1

(T

�

) and res

A

(L

0

) =

L, where A = �

(1)

and � is the output alphabet of N

n�1

.

For n = 2, L = K 62 yDT(REGT) whi
h implies by Lemma 40(b) that L

0

62

yDMTT(REGT).

For n > 2 assume that L = p�

N

n�1

(T

�

) 62 yDMTT

n�2

(REGT). Then L

0

=

p�

N

n

(T

�

) is not in yDMTT

n�1

(REGT) by Lemma 40(a).

Note that, sin
e monadi
 n-ptts are the same as n-pebble string transdu
ers,

p�

N

n

(T

�

) is an output language of an n-pebble string transdu
er; as mentioned

above the theorem, the fa
t that p�

N

n

(T

�

) 62 yDMTT

n�1

(REGT) was used in

Theorem 5 of [EM02b℄ to prove the properness of the pebble string transdu
er

hierar
hy.

We now apply the 
onstru
tion split to N

n

, to obtain the n-dptt split(N

n

).

Take L = p�

N

n

(T

�

) and L

0

= y�

split(N

n

)

(T

�

). Then, by the above, L

0

is Æ-
omplete

for L and res

A

(L

0

) = L, where A = �

(1)

and � is the output alphabet of N

n

.

Hen
e, sin
e L 62 yDMTT

n�1

(REGT) by the indu
tive proof above, we obtain from

Lemma 40(a) that L

0

62 yDMTT

n

(REGT). Sin
e L

0

2 y(n-DPTT(REGT)), this

proves the theorem.

LetM = (�;�;Q; q

0

; R) be an arbitrary monadi
 n-dptt, n � 1. In what follows,

we 
onstru
t the monadi
 (n+1)-dptt 
onf(M) and the n-dptt split(M), and prove

in Claims 1 and 2 that their 
orresponding output languages are Æ-
omplete for

p�

M

(T

�

). First we de�ne the monadi
 (n + 1)-dptt 
onf(M): The 
onstru
tion of


onf(M) is similar to the 
onstru
tion of M

n+1

in Example 5. The idea is that


onf(M) simulates M , and additionally inserts above ea
h unary symbol of the

output tree of M a 
oding w




of the 
urrent 
on�guration 
 2 C

M;s

. This 
oding is

obtained as follows. If the 
urrent 
on�guration is 
 = hq; (u; �)i, then 
onf(M) �rst

moves from u up to the root (in state q

up

). From there (in state q

down

) it moves to

the leaf of the input tree s, outputting at ea
h node v the symbol (q; �; b), where �

is the label of v and b is the information on the pebbles at v. After this, 
onf(M)

needs to move ba
k to the node u to 
ontinue the 
omputation of M . This is done
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by dropping, before the 
oding is generated, an extra pebble at u. After the 
oding

is generated, 
onf(M) 
hanges into the state q

�nd

and moves to the node with the

most re
ently dropped pebble, i.e., to u. Note that the symbol (q; �; b) generated by


onf(M) at v also 
ontains the information about the position of the reading head:

if b indi
ates that the most re
ently dropped pebble is present, then the reading

head is at v (i.e., v = u). It should now be 
lear that w




is indeed a 
oding of 
, i.e.,

w




6= w




0

for 
 6= 


0

.

De�ne 
onf(M) = (�;�;Q

0

; q

0

; R

0

) with

{ � = � [ f(q; �; b)

(1)

j q 2 Q; � 2 �; b 2 f0; 1g

�n+1

g

{ Q

0

= Q [ fq




j q 2 Q; 
 2 fup; down; �nd; ba
kgg

{ For every rule r = (hq; �; b; ji ! �) in R: if � 2 hQ; I

�;b;j

i or � = e, then let r

be in R

0

; if � = a(q

0

) with a 2 �

(1)

and q

0

2 Q, then let the rules

hq; �; b; ji ! hq

up

; dropi

hq

ba
k

; �; b; ji ! a(q

0

)

be in R

0

. For every q 2 Q, b 2 f0; 1g

�n+1

, and b

0

2 f0; 1g

�n

let the following

rules be in R

0

:

hq

up

; �; b; 1i ! hq

up

; upi for � 2 �

hq

up

; �; b; 0i ! hq

down

; stayi for � 2 �

hq

down

; �; b; ji ! (q; �; b)(hq

down

; down

1

i) for � 2 �

(1)

; j 2 f0; 1g

hq

down

; e; b; ji ! (q; e; b)(hq

�nd

; stayi) for j 2 f0; 1g

hq

�nd

; �; b

0

0; 1i ! hq

�nd

; upi for � 2 �

hq

�nd

; �; b

0

1; ji ! hq

ba
k

; lifti for � 2 �; j 2 f0; 1g:

Note that � should be de�ned in su
h a way that the set f(q; �; b)

(1)

j q 2

Q; � 2 �; b 2 f0; 1g

�n+1

g is disjoint with �. In that way we will be able to apply

Lemma 40 for A = �

(1)

and B = � ��.

Clearly, �


onf(M)

2 (n+ 1)-DPTT and res

�

(1)

(p�


onf(M)

(T

�

)) = p�

M

(T

�

).

Claim 1: Let M be a monadi
 n-dptt with input ranked alphabet �. Then

p�


onf(M)

(T

�

) is Æ-
omplete for p�

M

(T

�

).

Let M

0

denote 
onf(M). Sin
e both M and M

0

are monadi
, we will drop the

parentheses and the symbol e when we show 
omputations. It has to be shown that

for every w 2 L = p�

M

(T

�

) there is a w

0

2 L

0

= p�

M

0

(T

�

) su
h that w

0

is a Æ-string

for w. Let s 2 T

�

. If w = p�

M

(s) is de�ned, then there is a 
omputation

hq

0

; h

0

i = 


0

)

�

M;s

d

0

)

M;s

a

0




1

)

�

M;s

a

0

d

1

)

M;s

a

0

a

1




2

)

�

M;s

� � �

)

�

M;s

a

0

� � �a

m�1

d

m

)

M;s

a

0

� � � a

m




m+1

)

�

M;s

a

0

� � � a

m

= w;

where a

0

; : : : ; a

m

2 �

(1)

and 


0

; d

0

; : : : ; 


m

; d

m

; 


m+1

2 C

M;s

. Then, all 
on�gura-

tions d

0

; : : : ; d

m

are pairwise di�erent be
auseM is deterministi
. Take w

0

= �

M

0

(s).

Now, if 
 )

M;s

d then 
 )

M

0

;s

d, be
ause M

0

has the same rules as M for right-

hand sides that do not 
ontain an output symbol. If d)

M;s

a
, then d)

�

M

0

;s

w

d

a


where w

d

is the 
oding of d dis
ussed above. Applied to the 
omputation of w by

)

M;s

, we obtain




0

)

�

M

0

;s

d

0

)

�

M

0

;s

w

d

0

a

0




1

)

�

M

0

;s

w

d

0

a

0

d

1

)

�

M

0

;s

w

d

0

a

0

w

d

1

a

1




2

)

�

M

0

;s

� � �

)

�

M

0

;s

w

d

0

a

0

w

d

1

a

1

� � �w

d

m

a

m




m+1

)

�

M

0

;s

w

d

0

a

0

w

d

1

a

1

� � �w

d

m

a

m

= w

0

:

All the strings w

d

i

are pairwise di�erent be
ause the d

i

are. This implies that w

0

is

a Æ-string for w, whi
h ends the proof of Claim 1.
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Se
ond, we 
onstru
t the n-dptt split(M). The idea of split(M) is as follows:

just as 
onf(M), split(M) simulates M and additionally outputs before ea
h unary

output symbol generated by M a 
oding of the 
urrent 
on�guration that M is in.

However, this time we do not want to use an extra pebble to do this, but rather

generate the 
orresponding string as yield and use split(M)'s ability to generate

non-monadi
 output in order to `split' the 
omputation, i.e., to initiate parallel


omputations (whi
h start with the same input 
on�gurations) in order to insert

the 
urrent 
on�guration of M before an output symbol. More pre
isely, if M , in


on�guration 
, outputs a unary symbol a and 
hanges into 
on�guration 


0

, then

split(M), in 
, 
omputes a tree with yield w




a 


0

, where w




is a 
oding of the


on�guration 
. The 
oding is similar to the one of 
onf(M): split(M) moves from

the 
urrent node u up to the root of the input tree s and then down to the leaf of

s, outputting at every node v a symbol (q; �; b), where 
 = hq; hi for some h, � is

the label of v, and b is the information of the pebbles at v. It should be 
lear that

in this way the 
urrent 
on�guration is 
oded in a unique way. Note that split(M)

also produ
es output when moving up; this takes 
are of the 
oding of the position

u of the reading head. Thus w




is a 
oding of 
, i.e., w




6= w




0

for 
 6= 


0

.

De�ne split(M) = (�;�;Q

0

; q

0

; R

0

) with

{ � = f�

(3)

;  

(2)

; e

(0)

g [ fa

(0)

j a 2 �

(1)

g [ f(q; �; b)

(0)

j q 2 Q; � 2 �; b 2

f0; 1g

�n

g;

{ Q

0

= Q [ fq

up

j q 2 Qg [ fq

down

j q 2 Qg

{ For every rule r = (hq; �; b; ji ! �) in R: if � 2 hQ; I

�;b;j

i or � = e, then let r

be in R

0

; if � = a(q

0

) with a 2 �

(1)

and q

0

2 Q then let the rule

hq; �; b; ji ! �(hq

up

; stayi; a; hq

0

; stayi)

be in R

0

.

For every q 2 Q and b 2 f0; 1g

�n

let the following rules be in R

0

:

hq

up

; �; b; 1i !  ((q; �; b); hq

up

; upi) for � 2 �

hq

up

; �; b; 0i !  ((q; �; b); hq

down

; stayi) for � 2 �

hq

down

; �; b; ji !  ((q; �; b); hq

down

; down

1

i) for � 2 �

(1)

; j 2 f0; 1g

hq

down

; e; b; ji ! (q; e; b) for j 2 f0; 1g:

As before for 
onf(M), � should be de�ned in su
h a way that A = �

(1)

is

disjoint with B = � ��.

Clearly, �

split(M)

2 n-DPTT and res

�

(1)

(y�

split(M)

(T

�

)) = p�

M

(T

�

).

Claim 2: LetM be a monadi
 n-dptt with input alphabet�. Then y�

split(M)

(T

�

)

is Æ-
omplete for p�

M

(T

�

).

Let M

0

denote split(M) and let s 2 T

�

. If w = p�

M

(s) is de�ned, then there is

a 
omputation by)

M;s

as displayed in the proof of Claim 1. Now, if 
)

M;s

d then


 )

M

0

;s

d, be
ause M

0

has the same rules as M for right-hand sides that do not


ontain an output symbol. If d)

M;s

a
, then there is a 
omputation (showing only

the yields of the respe
tive sentential forms) d)

�

M

0

;s

w

d

a
 where w

d

is the 
oding

of d des
ribed above. This means that there is the 
omputation by)

M

0

;s

displayed

in the proof of Claim 1, generating as yield the string w

0

whi
h is Æ-
omplete for w.

This proves Claim 2. ut

It follows immediately from Theorem 41 and the in
lusion n-DPTT � DMTT

n+1

in Theorem 35, that the dptt-hierar
hy is proper: our fourth main result.

Theorem 42. The dptt-hierar
hy is proper, i.e., for n � 0,

y(n-DPTT(REGT)) ( y((n+ 1)-DPTT(REGT)):
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The fa
t that y(n-DPTT(REGT))�yDMTT

n

(REGT) 6= ? (Theorem 41) means

that 
ounter examples of the dmtt-hierar
hy 
an already be found in the dptt-

hierar
hy. Thus, if we additionally knew that yDMTT(REGT)�yDPTT(REGT) 6=

?, then the in
lusion diagram in Figure 6 would be a Hasse diagram. We 
onje
ture

.

.

.

.

.

.

.

.

.

.

.

.

yDPTT(REGT)

yn-DPTT(REGT)

y0-DPTT(REGT)

yDMTT

n

(REGT)

yDMTT

�

(REGT)

yDMTT(REGT)

yDMTT

n+1

(REGT)

y(n� 1)-DPTT(REGT)

Fig. 6. In
lusion diagram relating the dptt-hierar
hy to the dmtt-hierar
hy

that this is the 
ase.

Note that, with respe
t to the 
orresponding 
lasses of translations the �gure

is a Hasse diagram be
ause, as shown in Example 13, DMTT�DPTT 6= ? (M of

Example 13 is a dmtt).

In the 
ase of nondeterministi
 n-pebble tree transdu
ers (and also for 
ompo-

sitions of nondeterministi
 mtts) it is open whether there is a proper hierar
hy of

output languages. If we 
ompare the output languages of nondeterministi
 ptts with

those of deterministi
 ones, then it 
an be shown that even at the lowest level (i.e.,

without pebbles), nondeterminism is more powerful than determinism: There is a

language generated by a nondeterministi
 0-ptt, whi
h is not in DPTT

�

(REGT),

and hen
e

DPTT(REGT) ( PTT(REGT):

In terms of databases this means that, for queries realized by pebble transdu
ers,

nondeterminism gives stri
tly more views than determinism. It follows from the fa
t

that there is a language L generated by a (nondeterministi
) top-down tree trans-

du
er, i.e., whi
h is in yT(REGT), and whi
h 
annot be generated by 
ompositions

of deterministi
 mtts, i.e., whi
h is not in yDMTT

�

(REGT). This was proved in

Theorem 25 of [EM02a℄, as another appli
ation of the bridge theorem (Lemma 40).

Sin
e T � 0-PTT by Lemma 23, and DPTT

�

= DMTT

�

by Theorem 38, we obtain

that L 2 y(0-PTT(REGT))� yDPTT

�

(REGT).

7 Type Che
king

As mentioned in the Introdu
tion, the appli
ation of a query q to a database D

(a set of inputs) de�nes a derived version of the database: the view of D under

q. Now if q is 
omputed by the tree transdu
er M , and D is represented by the

regular tree language R, then the view of D under q is equal to the output language

�

M

(R). An important issue in XML-based query languages is type 
he
king of views

(see, e.g., [MSV00,PV00,Via01,AMN

+

01a,AMN

+

01b,Toz01,Su
02℄). The main re-

sult of [MSV00℄ is that type 
he
king is de
idable for pebble tree transdu
ers. For a


lassX of tree translations, the type 
he
king problem (for X) is de�ned in Figure 7.
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input: types R

in

; R

out

2 REGT, translation � 2 X

output:

�

\yes" if � (R

in

) � R

out

\no" otherwise.

Fig. 7. Type 
he
king for translations in X.

If the output of type 
he
king is \yes", i.e., the view �(R

in

) is in
luded in R

out

, then

we say that � type 
he
ks for (R

in

; R

out

).

Intuitively, type 
he
king means to verify whether or not all do
uments in a

view 
onform to a 
ertain type. As a typi
al s
enario of type 
he
king, imagine that

� translates XML do
uments into HTML do
uments. Thus, for a set R of XML

do
uments �(R) is an \HTML-view" of the do
uments in R. Now, a parti
ular

user might be interested only in very parti
ular XML do
uments, for instan
e,

do
uments that have no nested lists, represented by the type XML

no-nest

. Sin
e

XML do
uments are unranked trees, this type 
orresponds to a string, or, rather,

a forest a

1

; : : : ; a

k

of one node trees a

i

; using the usual en
oding of unranked trees

by binary trees, this 
orresponds to `
ombs' of the form �(a

1

; �(a

2

; � � ��(a

k

; e) � � � )),

where � has rank 2. Obviously, this is a regular tree language. Then, the user wants

to verify that also the 
orresponding HTML do
uments �(XML

no-nest

) do not have

nested lists, i.e, are of type HTML

no-nest

. Thus, he wants to know whether or not

� type 
he
ks for (XML

no-nest

;HTML

no-nest

). As mentioned above, this problem is

de
idable if � is de�ned by a ptt.

It is well known in tree transdu
er theory that type 
he
king is de
idable for

translations in MTT

�

, i.e., it is de
idable for an output language in MTT

�

(REGT)

whether or not it is in
luded in a given regular tree language.

Proposition 43. Type 
he
king of 
ompositions of ma
ro tree transdu
ers is de-


idable.

This 
an be seen as follows. The translation � 2 MTT

�

type 
he
ks for (R

in

; R

out

)

i� K = �(R

in

) \ R




out

is empty, where R




out

denotes the 
omplement of R

out

. Sin
e

REGT is e�e
tively 
losed under 
omplement and MTT

�

(REGT) is e�e
tively


losed under interse
tion with regular tree languages, the tree language K is in

MTT

�

(REGT). This implies, by Fa
t 25(i), that K's emptiness is de
idable whi
h

gives Proposition 43. Note that it is obvious that MTT

�

(REGT) is 
losed under

interse
tion with a regular tree language R, be
ause that is the same as applying

the partial identity for R, i.e., a mapping in FTA (
f. the dis
ussion in the beginning

of Se
tion 6), whi
h is a top-down tree translation and hen
e is in MTT.

Together with Theorem 30, Proposition 43 implies that even for 
ompositions

of stay-mtts, type 
he
king is de
idable.

Corollary 44. Type 
he
king of 
ompositions of stay-mtts is de
idable.

Sin
e PTT

�

(REGT) = MTT

�

(REGT) by Corollary 39, Proposition 43 gives an

alternative proof of the main result of [MSV00℄. We 
an now strengthen this result,

based on the fa
t that the �niteness of languages in MTT

�

(REGT) is de
idable by

Fa
t 25(ii). More pre
isely, we 
an solve almost always type 
he
king, whi
h is a

weaker variation of type 
he
king, de�ned in Figure 8. Intuitively, almost always

type 
he
king means to 
he
k whether or not all output do
uments in the view

�(R

in

), ex
ept �nitely many ex
eptions, satisfy the output type R

out

. Moreover, if

the answer is yes, the list of ex
eptions is produ
ed.
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input: types R

in

; R

out

2 REGT, translation � 2 X

output:

�

\yes"; � (R

in

)�R

out

if � (R

in

)�R

out

is �nite

\no" otherwise.

Fig. 8. Almost always type 
he
king for translations in X.

Sin
eK = �(R

in

)�R

out

is in MTT

�

(REGT), as shown above, Fa
t 25(ii) implies

that its �niteness is de
idable, and if so, that the �nitely many ex
eptions 
an be


omputed. By Corollary 39, this proves the next theorem.

Theorem 45. Almost always type 
he
king of 
ompositions of pebble tree trans-

du
ers is solvable.

Note that in the aÆrmative 
ase, � type 
he
ks for (R

in

; R

out

[ F ) where F =

�(R

in

)�R

out

is the �nite set of ex
eptions. The new output type R

out

[F is indeed

a regular tree language and 
an be determined e�e
tively.

In the remainder of this se
tion we present a straightforward type 
he
king al-

gorithm for translations realized by (
ompositions of) deterministi
 mtts. As shown

below Proposition 43, type 
he
king for 
ompositions of dmtts 
an be solved using

Fa
t 25(i), and as dis
ussed below Fa
t 25, the proof of Fa
t 25(i) uses inverse type

inferen
e (for � and R

out

); this means to determine the set of input trees of � whi
h

generate output in R

out

, i.e., to determine the regular tree language �

�1

(R

out

). Re-


all the example XML to HTML translation � of before. Now imagine that the

generated HTML do
uments should 
onform to a 
ertain type R

out

, and one wants

to know whi
h XML do
uments are admissible as input of � , in order to generate

do
uments of the required type R

out

: just do inverse type inferen
e for � and R

out

.

Clearly, for a fun
tion �

� type
he
ks for (R

in

; R

out

) i� R

in

� �

�1

(R

out

):

Sin
e 
he
king the in
lusion of two regular tree languages is well known, we 
on-


entrate on the inverse type inferen
e problem. Note that also in [MSV00℄ type


he
king is solved by inverse type inferen
e (using MSO logi
 to represent types).

If � is a 
omposition �

1

Æ �

2

Æ � � � Æ �

n

of translations, then

�

�1

(R

out

) = �

�1

1

(�

�1

2

(� � � �

�1

n

(R

out

))):

Thus, to solve the type inferen
e problem for X

�

(where X is a 
lass of translations)

it suÆ
es to solve it for X .

We now dis
uss an algorithm that performs inverse type inferen
e for �

M

and

R

out

, for a deterministi
 mtt M and an output type R

out

. Hen
e, the algorithm


onstru
ts a des
ription of the regular tree language �

�1

M

(R

out

). Note that the ex-

isten
e of su
h an algorithm follows from the fa
ts that DMTT � (DT [YIELD)

3

,

see Subse
tion 5.5, and that the inverses of DT and YIELD both (e�e
tively) pre-

serve the regular tree languages (
f. the proof of Fa
t 24 in Theorem 7.4 of [EV85℄).

From the proofs of these results in the literature it is straightforward, but rather

awkward, to extra
t the algorithm. Sin
e, in fa
t, a dire
t algorithm is quite easy

to understand, we present it here. As des
ription for a regular tree language we use

the deterministi
 bottom-up �nite state tree automaton, de�ned next.

A deterministi
 bottom-up �nite state tree automaton (for short, dbfta) is a tuple

B = (P; P

�n

; �; Æ) where P is a �nite set of states, P

�n

� P is the set of �nal states,

� is a ranked alphabet, and Æ is the 
olle
tion (Æ

�

)

�2�

of transition fun
tions su
h
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that for every � 2 �

(k)

, k � 0, Æ

�

is a mapping from P

k

to P . The tree language

L(B) � T

�

re
ognized by B is fs 2 T

�

j Æ(s) 2 P

�n

g where Æ is the extension of

Æ

�

to trees in T

�

whi
h is re
ursively de�ned as follows. For every � 2 �

(k)

, k � 0,

and s

1

; : : : ; s

k

2 T

�

, Æ(�(s

1

; : : : ; s

k

)) = Æ

�

(Æ(s

1

); : : : ; Æ(s

k

)).

Let M = (�;�;Q; q

0

; R) be a deterministi
 mtt. For te
hni
al reasons we as-

sume M to be total. Clearly, this is not a restri
tion: just add a new \unde�ned"

symbol ? and for ea
h left-hand side that has no rule, add a rule with right-hand

side ?. Moreover, we assume that the hq; �; �; ji-rules of M disregard j, i.e., all

hq; �; �; ji-rules for j 2 [0; J ℄ have the same right-hand side. (Obviously this is not

a restri
tion, be
ause the j 
an be in
orporated into the states; 
f. the dis
ussion

below Lemma 23.)

We are now ready to 
onstru
t the dbfta A with L(A) = �

�1

M

(R

out

). Let B =

(P; P

�n

; �; �) be a deterministi
 bottom-up �nite state tree automaton with L(B) =

R

out

. De�ne A = (D;D

�n

; �; Æ) where D 
onsists of all mappings d su
h that for

every q 2 Q

(m)

and m � 0, d(q) is a mapping from P

m

to P , and D

�n


onsists of

all d 2 D su
h that d(q

0

)() 2 P

�n

.

For every � 2 �

(k)

, k � 0, and d

1

; : : : ; d

k

2 D, let Æ

�

(d

1

; : : : ; d

k

) = d where

d is de�ned as follows. For every q 2 Q

(m)

, m � 0, p

1

; : : : ; p

m

2 P , and rule

hq; �; �; ji(y

1

; : : : ; y

m

)! � in R, let

d(q)(p

1

; : : : ; p

m

) = �

0

(�[y

j

 p

j

j j 2 [m℄℄);

where �

0

is the following extension of � to trees over hQ; fdown

i

j i 2 [k℄gi[�[fp

(0)

j

p 2 Pg. For every hq

0

; down

i

i 2 hQ; fdown

i

j i 2 [k℄gi

(m

0

)

, m

0

� 0, and p

0

1

; : : : ; p

0

m

0

,

let

�

0

hq

0

;down

i

i

(p

0

1

; : : : ; p

0

m

) = d

i

(q

0

)(p

0

1

; : : : ; p

0

m

0

);

and let �

0

p

() = p for p 2 P . This ends the 
onstru
tion of A.

Intuitively, the idea of A is to run the dbfta B on the right-hand sides of the

rules of M . In order to do this, B has to be extended appropriately, be
ause the

right-hand side � of a q-rule of M might 
ontain parameters y

j

or instru
tions of

the form hq; down

i

i. Sin
e the state p

j

in whi
h B arrives after pro
essing the a
tual

parameter tree t

j

of y

j

is not determined, a state d of A will 
ontain all possible


hoi
es of states of B for the parameters, i.e., d(q) is a fun
tion from P

m

to P

and d(q)(p

1

; : : : ; p

m

) = p means that, assuming state p

�

for t

�

, � 2 [m℄, B will

arrive in p after pro
essing �. The hq

0

; down

i

i in � are handled by applying d

i

(q

0

),

where d

i

is the state in whi
h A arrives at the ith input subtree. In fa
t, for s 2 T

�

,

Æ(s)(q)(p

1

; : : : ; p

m

) is the state in P in whi
h B arrives on the output tree generated

by q on input s assuming that it arrives in p

�

for the parameter y

�

. More pre
isely,

if hq; h

0

i(y

1

; : : : ; y

m

) )

�

M;s

t 2 T

�

(Y

m

) then Æ(s)(q)(p

1

; : : : ; p

m

) = �(t[y

�

 t

�

℄)

where, for � 2 [m℄, t

�

is an arbitrary tree in T

�

with �(t

�

) = p

�

. From this it

should be 
lear that indeed

L(A) = fs 2 T

�

j �

M

(s) \ R

out

6= ?g = �

�1

M

(R

out

):

This 
on
ludes the 
onstru
tion of the dbfta A and our inverse type inferen
e

algorithm.

8 Con
lusions and Problems

In this paper we have shown that n-ptts 
an be de
omposed into 
ompositions of 0-

ptts and 
ompositions of mtts, respe
tively: (1) n-PTT � 0-PTT

n+1

and n-DPTT �

0-DPTT

n+1

and (2) n-PTT � sMTT

n+1

and n-DPTT � DMTT

n+1

. It was shown

that (3) PTT

�

= 0-PTT

�

= sMTT

�

and DPTT

�

= 0-DPTT

�

= DMTT

�

, i.e., as
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query languages all three models, n-ptt, mtt, and 0-ptt, have the same expressive-

ness. The output languages of dptts form a proper hierar
hy with respe
t to the

number of pebbles: (4) n-DPTT(REGT) ( (n+1)-DPTT(REGT) whi
h even holds

for the yields of these tree languages. Finally, (5) almost always type 
he
king for

n-ptts is de
idable.

We now dis
uss some topi
s for further resear
h. It was shown in Subse
tion 3.2

that (deterministi
) zero-pebble tree transdu
ers are, essentially, attribute gram-

mars. This implies that the implementation te
hniques known for attribute gram-

mars (see, e.g., [DJL88,AM91,Paa95℄) 
arry over to zero-pebble tree transdu
ers.

The question arises, whether and how these te
hniques 
an be generalized to the

n-pebble 
ase.

In Se
tion 6 it was proved that the output languages of deterministi
 n-ptts form

a proper hierar
hy with respe
t to n, see (4) above. The proof is similar to (and

uses parts of) the proof in [EM02a℄ of the fa
t that the output languages of n-fold


ompositions of deterministi
 ma
ro tree transdu
ers give rise to a proper hierar
hy,

with respe
t to n. As observed in Se
tion 6, the exa
t Hasse diagram for these

hierar
hies (see Fig. 6) has not yet been determined. It would also be interesting

to know whether or not the hierar
hy of output languages of nondeterministi
 n-

pebble tree transdu
ers is proper. Note that also for output languages of ma
ro tree

transdu
ers the properness of the nondeterministi
 hierar
hy is an open problem

(stated in [EM02a℄).

In Se
tion 5 the n-pebble ma
ro tree transdu
er was de�ned, but not investi-

gated. It is straightforward to extend the de
omposition result of Se
tion 4 to the

ma
ro 
ase, in the following way:

n-PMTT � 0-PTT

n

Æ 0-PMTT:

For the deterministi
 
ase a similar result 
an be proved. Now note that the transla-

tion �

M

of the 0-dpmttM of Example 13 is equal to the 
omposition �

M

1

Æ�

M

2

of the

two deterministi
 0-ptts M

1

and M

2

of Example 4. We suspe
t that every (deter-

ministi
) 0-pebble ma
ro tree transdu
er 
an be realized by the 
omposition of two

(deterministi
) 0-ptts. In fa
t, by Subse
tion 3.2, 0-ptts are essentially attributed

tree transdu
ers; the addition of parameters to the attributes of the attributed tree

transdu
er gives the ma
ro attributed tree transdu
er of [KV94℄ whi
h 
an be simu-

lated by the 
omposition of two attributed tree transdu
ers (to be pre
ise, the 
lass

of translations realized by ma
ro attributed tree transdu
ers equals the 
lass of

two-fold 
ompositions of attributed tree transdu
ers; 
f. Corollary 7.30 of [FV98℄).

For the pebble formalism this suggests that 0-PMTT � 0-PTT

2

and 0-DPMTT �

0-DPTT

2

; does this a
tually hold? As a spe
ial 
ase of Corollary 3.27 of [EV86℄ (viz.

the 
ase that S = Tree-walk) we obtain that 0-PMTT � 0-PTT ÆMTT and hen
e

n-PMTT � sMTT

n+2

and PMTT

�

= PTT

�

. Is it true that 0-DPMTT � DMTT

2

?

If so, then we would obtain that n-DPMTT � DMTT

n+2

and DPMTT

�

= DPTT

�

.

Using the results of [EV86℄ it 
an be shown that the total fun
tions in 0-DPMTT

are also in DMTT

2

.

Furthermore, it 
an probably be shown that n-PTT � (n � 1)-PMTT, i.e., a

pebble 
an be avoided by the addition of parameters, in a similar way as the removal

of the tree-walk fa
ility of the reading-head (whi
h 
an be seen as a pebble), in the

proof of Lemma 34.

Last but not least, we 
onje
ture that the 
lass DPTT of deterministi
 pebble

tree translations 
an be 
hara
terized inside the 
lass DPTT

�

as those translations

for whi
h the number of di�erent subtrees in the output tree is polynomial in the

size of the input tree (
f. [EM01℄, where the MSO de�nable tree translations are


hara
terized inside the 
lass DMTT as those translations for whi
h the size of the

output tree is linear in the size of the input tree).
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