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Abstract. The n-pebble tree transducer was recently proposed as a model
for XML query languages. The four main results on deterministic trans-
ducers are: First, (1) the translation 7 of an n-pebble tree transducer can
be realized by a composition of n 4+ 1 0-pebble tree transducers. Next, the
pebble tree transducer is compared with the macro tree transducer, a well-
known model for syntax-directed semantics, with decidable type checking.
The 0-pebble tree transducer can be simulated by the macro tree trans-
ducer, which, by the first result, implies that (2) 7 can be realized by an
(n+1)-fold composition of macro tree transducers. Conversely, every macro
tree transducer can be simulated by a composition of 0-pebble tree trans-
ducers. Together these simulations prove that (3) the composition closure of
n-pebble tree transducers equals that of macro tree transducers (and that of
0-pebble tree transducers). Similar results hold in the nondeterministic case.
Finally, (4) the output languages of deterministic n-pebble tree transducers
form a hierarchy with respect to the number n of pebbles.

1 Introduction

Trees appear in science in many contexts. For instance, they are used to represent
the structure of a composed object: the object is obtained by applying a certain
operation (at the root of the tree) to its components (represented by the subtrees);
such a tree corresponds to the derivation tree of a grammar generating the object.
Another more recent example is XML, a general data format for structured docu-
ments; there, the interest is in the structure of the tree itself. Natural application
areas of trees are (we mention only four) (i) linguistics (phrase structure), (ii) com-
pilers (derivation trees, or parse trees), (iii) functional programming (terms), and
(iv) databases (XML documents).

Let us now consider the translation of trees into other trees. It plays an im-
portant role in each of the four areas: (i) for natural language translation (see,
e.g., [KMMM,MMMO1]) (ii) for the specification of the syntax-directed semantics
of a programming language, and its implementation in a compiler, cf. [Iro61,Knu68,
KV97,WM95], (iii) for functional programs working on tree structured data, cf.,
e.g., [Vog9l], and (iv) for the specification and implementation of XML transfor-
mation (e.g., XSLT; cf. [MN00,BMNO02]) and XML query languages [Via01]. Now,
consider the (sequential) composition of tree translations. It appears in applica-
tions in a natural way: e.g., as multi-pass compilers, as model for deforestation in
functional languages [Kiih98,V0i02] and as implementation of queries to a (possibly
iterated) view of an (XML) database.

This paper is concerned with tree translations and compositions of them. In par-
ticular, we study the relationship between the n-pebble tree transducer, introduced
in [MSV00,MSV] as a model for XML query languages (cf. also [Via01]), and the
macro tree transducer [Eng80,Eng81,CF82,EV85,EV86,FV98] which is a model for



syntax-directed semantics. We first discuss the pebble tree transducer (in the ter-
minology used within this paper, which differs slightly from that in [MSV00,MSV])
and then the macro tree transducer.

An n-pebble tree transducer (n-ptt) is a finite state device that translates or-
dered ranked trees (which might be codings of XML documents). Its reading head
is a pointer to a node of the input tree and can be moved to another node along
the edges of the input tree. The n-ptt is equipped with n pebbles, marked 1, ..., n,
which can be dropped at or lifted from the current node (pointed at by the read-
ing head). A computation starts in the initial state with the reading head at the
root node, and no pebbles on the input tree. The ptt can test (in its current state)
the label of the current node, its “position” (i.e., whether it is the root node or
the jth child of a node, j > 1), and the presence of the pebbles at the current
node. Depending on the test, it generates an output tree, at the leaves of which
new computations can be spawned (which will each have their “own” copy of the
input tree, with pebbles and reading head). This means that, in terms of the output
tree, the basic operation inherent in a computation step of an n-ptt is the replace-
ment of leaves by trees (“first order tree substitution”). When a new computation
is spawned, the ptt can change its state and either move the reading head to a
neighboring node, or lift/drop a pebble at the current node. Pebbles must be used
in a stack-like fashion: if I < n pebbles are on the tree, then pebble [ can be lifted
(if it is present at the current node) or pebble [ + 1 can be dropped at the current
node (if I +1 < n). We note here that in the model of [MSV00,MSV,Via0l] the
reading head is considered to be a pebble too; thus, our n-pebble tree transducer is
there called an (n + 1)-pebble tree transducer.

As observed in [MSVO00], the pebble tree transducer can be obtained from
the tree-walking automaton of [AUT71] (see also [ERS80]) by adding pebbles and
the ability to generate output trees rather than strings. We observe here that
the deterministic pebble tree transducer without pebbles, i.e., the 0-ptt, is very
closely related to the attribute grammar: a well-known compiler writing formal-
ism (see, e.g., [DJL88,AM91,Paa95]). Here, the attributes of the attribute grammar
should have trees as values (in which case it is also called an attributed tree trans-
ducer [EF81,Fiil81,FV98]). This relationship was discussed in [Eng86], where the
0-ptt is called an RT(Tree-walk) transducer (see also [EV86]). Thus, 0-ptts are es-
sentially attribute grammars, and n-ptts could be viewed as “attribute grammars
with pebbles”. If we further restrict the O-ptt in such a way that the reading head
may only move down in each computation step, then we obtain the classical top-
down tree transducer [Rou70,Tha70,GS97], as mentioned in [MSV00].

For a pebble tree transducer, the restriction of input and output to monadic
trees gives rise to a natural transducer model for string translation which was con-
sidered in [EMO02b]. For some of the results of the present paper we will mention the
corresponding results for pebble string transducers, but for more details the reader
is referred to [EMO02b]. String automata that use pebbles in a stack-like fashion
(which basically means that the pebbles have nested life times) were introduced
in [GH96] and extended to trees in [EH99] (see also [NSV01]).

The macro tree transducer (mtt) is also a finite state device that translates trees
into trees. It can be obtained by combining the top-down tree transducer and the
macro grammar [Fis68], i.e., the states of the top-down tree transducer may have
parameters of type output tree, and thus computations can be spawned at non-leaf
nodes of the output tree. Now, when the mtt executes a move at such a node v, it
is replaced by an output tree which may spawn new computations, and in which
each leaf labeled by the formal parameter y; is replaced by the corresponding actual
parameter, i.e., the jth subtree of v (“second-order tree substitution”). Just as for
the top-down tree transducer, the reading head of the macro tree transducer can



only move down. This implies that deterministic macro tree transducers do not have
nonterminating computations, as opposed to deterministic pebble tree transducers.

Note that it is well known that (in the total deterministic case) all attributed tree
transducers can be simulated by macro tree transducers [Fra82,CF82,FV99,EM99],
and that the composition closures of the two coincide (cf., e.g., Chapter 6 of [FV98]).
This suggests that (in the deterministic case) 0-ptts can be simulated by mtts, and
that their composition closures coincide: one of our results. Macro tree transducers
are well studied in tree transducer theory, and about their composition closure many
attractive properties are known; for instance: it has decidable type checking [EV85],
the translations can be computed in linear time (in the sum of the sizes of input and
output tree) [Man02], and the output languages form a full AFL and have decidable
emptiness and finiteness problems [DE9S].

Before we discuss our results, let us consider the relationship of tree transducers
to (XML based) databases, cf. [Via01,MSV00]. In terms of databases, tree trans-
ducers can be seen as a query language: the input tree is the current content of
the database and the output tree is a result of the query that is computed by the
transducer. Of course the result can be input to another query; this corresponds
to the sequential composition of two tree transducers. In fact, the application of a
query ¢ to a database D (a set of inputs) is often used to define a derived version
of the database, called the “view of D under ¢”. This corresponds to the output
language T(R) of a tree transducer 7 taking a set R of input trees. We will assume
(as in [MSV00]) that R is a regular tree language (corresponding to a database type
constraint as defined, e.g., by a DTD or a specialized DTD in XML).

Our first main result is completely independent of macro tree transducers. It
is a result about pebble tree transducers only: The translation of an n-pebble tree
transducer can be realized by the composition of n + 1 zero-pebble tree transducers.
In fact, the use of the first pebble can be simulated by (pre-)composing with the
translation of a deterministic zero-pebble tree transducer. In terms of databases this
means that a user who understands the concept of a view and that of a O-pebble
query (computed by a 0-ptt) need not be bothered with queries of n-pebble tree
transducers for n > 0, i.e., need not know about pebbles at all. Moreover, we observe
that it is a desirable property of a query language to be closed under composition:
it means that querying a view (i.e., the result of a previous query) gives a result for
which there is a direct query on the original database. Thus, it is natural to define
the query language of a class of tree translations as its composition closure. Note
that the class of pebble tree translations is not closed under composition (both in
the deterministic and the nondeterministic case). For the composition closure of
pebble tree transducers the first result implies that it is equal to the composition
closure of zero-pebble tree transducers. Hence, as query languages in the above
sense, the pebble tree transducer and the zero-pebble tree transducer are equally
expressive.

Our second main result is that every pebble tree transducer can be simulated
by a composition of macro tree transducers. In the nondeterministic case, to sim-
ulate n pebbles, n + 1 mtts are needed in the composition and the mtts must be
extended by the ability to remain at a node, instead of strictly moving down in each
step. Since such a transducer can loop, it can have nonterminating computations.
In the deterministic case, n pebbles can be simulated by the composition of n + 1
(conventional) deterministic mtts. Also, a simulation in the converse direction is
possible: for every macro tree transducer there is a composition of 0-pebble tree
transducers which realizes the same translation. This gives our third main result:
the composition closure of n-pebble tree transducers equals that of macro tree trans-
ducers, i.e., as query languages both formalisms have the same power. Since mtts
always terminate, the simulations prove that compositions of deterministic pebble



tree transducers can be transformed into ones that always terminate. Technically
speaking, this is one of the key results of this paper.

Our fourth main result concerns the power of defining views, or, equivalently, the
power to generate output languages (for deterministic transducers): n + 1 pebbles
give strictly more views than n pebbles, i.e., there is a hierarchy with respect to the
number n of pebbles, of the output languages of n-pebble tree transducers. The proof
is based on the “mtt-hierarchy” of (string) output languages of n-fold compositions
of mtts that was recently proved in [EMO02a]. The result strengthens the hierarchy
of translations of n-pebble tree transducers, which follows from an obvious size-
to-height relationship for such translations (viz., the height of the output tree is
polynomially bounded in the size of the input tree, with exponent n + 1). The
proof uses counter examples that are monadic, and thus also proves that there is a
hierarchy of output languages of n-pebble string transducers, as already presented
in [EMO02b]. Moreover, it is shown that nondeterminism gives more views: even
without pebbles a nondeterministic (0-)ptt can compute a view that cannot be
computed by any composition of deterministic pebble tree transducers.

Finally, we address the type checking problem for compositions of pebble tree
transducers; it is the question whether all output documents in a view satisfy a
given type (i.e., a regular tree language). Since it is well known that inverse type
inference for compositions of macro tree transducers is solvable [EV85], our second
main result provides an alternative proof of the main result of [MSV00] that type
checking for pebble tree transducers is decidable. We also obtain an extension from
[DE98]: “almost always” type checking is solvable for compositions of pebble tree
transducers; it is the question whether all output documents in a view, except
finitely many, satisfy a given type (and if so, to produce the list of exceptions).

The structure of this paper is as follows. The Preliminaries (Section 2) fix ba-
sic notations and definitions, mainly concerning trees, tree substitution, and tree
grammars. Section 3 presents the definition of the n-pebble tree transducer (with
a comparison to the original definition of [MSVO00] in Subsection 3.1), and proves
some of its elementary properties. In particular, the size-to-height relationship for
ptts is proved, and then applied to show that there is a proper hierarchy of transla-
tions and that the class of pebble tree translations is not closed under composition.
Subsections 3.2 and 3.3 compare ptts to attribute grammars and to the RT(S)
transducers of [Eng86,EV86] (with S = Tree-walk). Section 4 proves our first re-
sult, the decomposition of an n-pebble tree translation into n + 1 zero-pebble tree
translations. In Section 5 pebble tree transducers are compared with macro tree
transducers. In particular, our second and third main results are proved there. In
Section 6 the output languages of pebble tree transducers are investigated; it is
proved that these languages form a proper hierarchy with respect to the number of
pebbles. Section 7 discusses type checking, and almost always type checking. The
paper ends with conclusions and suggestions for further research in Section 8.

Even when not explicitly mentioned in the lemmas and theorems, all our results
are effective.

2 Preliminaries

The set {0,1,...} of natural numbers is denoted by N. The empty set is denoted by
&. For k,l € N, [k] denotes the set {1,...,k} and [k,!] denotes the set {k,...,l}.
For a set A, |A| is the cardinality of A, P(A) is the set of subsets of A, A* is the
set of all strings over A, and AT is the set of nonempty strings over A. The empty
string is denoted by . If the elements of A are strings themselves, then we might
write a string w € A* as w = [a1;a9;...;a,] With a; € A; in particular, we will
then use A to denote the empty string (of strings), i.e., A has a different type than



. The length of a string w is denoted |w]|, and the ith symbol in w is denoted by
w(i). For n > 0, AS™ denotes the set {w € A* | |w| < n}.

For sets A and B, their cartesian product is A x B = {(a,b) | a € A,b € B}.
An ordered pair (a,b) will also be denoted (a,b), and A x B will also be denoted
by (A, B).

For a binary relation R and a set A, R(A) denotes the set {y | 3z € A :
(z,y) € R} and R *(A) denotes the set {z | Jy € A : (z,y) € R}. Moreover,
for a class R of binary relations and a class of sets A, R(A) denotes the class of
sets {R(A) | R € R,A € A}. The composition of two (binary) relations R and
S, denoted by R o S, is the set of pairs {(z,z) | there is a y with (z,y) € R and
(y,2z) € S}. For n > 0, the n-fold composition of R with itself is denoted R™. The
reflexive, transitive closure and the transitive closure of R are denoted R* and R™,
respectively. For classes of relations R and S, R o S denotes the class of relations
{RoS|R€eR,S €S} Forn>1,R" denotes Ro---0oR (n times) and R* denotes
the class (J,,»; R™.

For a binary relation = C A x A over a set A, we will call, for a,a’ € A, a
derivation a =* a' a computation (by = starting with a). Moreover, a computation
starting with a can also be infinite. A computation is complete if it is either infinite
or of the form a =* a’ #, i.e., there is no a” € A such that o’ = a”; in the latter
case, a’ is the result of the computation.

2.1 Ranked Sets and Trees

A set X together with a mapping ranky: ¥ — N is called a ranked set. For k >
0, Z*) is the set {0 € ¥ | rankx(0) = k}; we also write o(¥) to indicate that
ranky (o) = k. For a set A, (¥, A) is the ranked set ¥ x A with rank s 4y((0,a)) =
ranky (o) for every (o,a) € (X, A).

Let X be a ranked set. The set of trees over X, denoted by Ty, is the smallest
set of strings T C (Z U{(, ), , })* such that ¥(© C T and if 0 € Z*) k& > 1, and
t1,...,tr € T, then o(t1,...,t;) € T. For a set A, the set of trees over X indezed
by A, denoted by T'x;(A), is the set T's;ya, where for every a € A, rank4(a) = 0.
For the rest of this paper we choose the set of parameters to be Y = {y1,y2,... }.
For m > 0, Y;;, denotes the set {y1,...,ym}- Thus, Tx(Y") is the set of trees over X
with parameters.

For every tree t € Ty, the set of nodes of t, denoted by V' (t), is the subset of N*
that is inductively defined as follows: if t = o'(t1,...,t;) with 0 € £*) | k> 0, and
t; € T, for all 7 € [k], then V(¢) = {e} U {iu | u € V(;),7 € [k]}. Thus, € represents
the root of a tree and for a node u the ith child of u is represented by ui. The size
of ¢ is its number of nodes, i.e., size(t) = |V (t)|, and the height of ¢ is the number of
nodes on a longest path of ¢, i.e., height(a(¢1, . ..,t;)) = 1+max{height(¢;) | i € [k]}.

The label of t at node u is denoted by t[u]; we also say that ¢[u] occurs in ¢ (at
u). The rank of u is the rank of its label ¢[u]; in particular, u is a leaf if it has no
children, i.e., if it has rank zero. If v = vw with w € N*, then v is an ancestor of
u and u is a descendant of v; if w # €, then v is a proper ancestor of u and u is
a proper descendant of v. The subtree of ¢ at node u is denoted by ¢/u; a subtree
t/wi is called a subtree of node u. The substitution of the tree s € T’x; at node u in
t is denoted by t[u « s]; it means that the subtree t/u is replaced by s. Formally,
these notions can be defined as follows: t[e] is the first symbol of ¢ (in X)), t/e = ¢,
tle < s] = s, and if t = o(t1,...,8), @ € [k], and w € V(¢t;), then tiu] = ¢;[u],
t/iu = t;/u, and t[iu < s] = o(t1,...,t;[u < s],...,tg)-

Let u € N*. For every j > 1, u is the parent of uj, denoted by parent(uj), and j is
the child number of uj, denoted by childno(uj). Moreover, we define childno(e) = 0.

Let X be a ranked alphabet. For a tree t € Ty, yt denotes the yield of t, i.e.,
the string in (2(® — {e})* obtained by reading the leaves of ¢ from left to right,



omitting nodes labeled by the special symbol e of rank 0 (e.g., for t = o(a,o(e, b)),
yt = t[1]¢t[22] = ab). The string yt can be obtained recursively as follows; if t = e
then yt = ¢, if t € X — {e} then yt = ¢, and if t = o(ty,...,t), k> 1,0 € XF),
and t1,...,tx € T, then yt = yty - - - ytg.-

A ranked alphabet X' is monadic if all its symbols are of rank one, except the
special symbol e of rank zero, i.e., if ¥ = 2 U {e®}; a tree in T is a monadic
tree. For a monadic tree t = ai(a2(---am(€))), pt denotes the path of t, i.e., the
string aj -+ - ay, € (Z(M)*,

2.2 Tree Substitution

First, we define string substitution: For strings v,ws,...,w, € A* and distinct
a,...,a, € A, we denote by v[a; < wi,...,a, < w,] the result of (simultane-
ously) substituting w; for every occurrence of a; in v. Note that the substitution
[ar + wi,...,a, + wy] is a homomorphism on strings. Let P be a condition on
a and w such that {(a,w) | P} is a partial function. Then we use, similar to set
notation, [a + w | P] to denote the substitution [L], where L is the list of all
a  w for which condition P holds. Since trees are strings, we can use ordinary
string substitution to replace leaves in a tree: for a of rank zero, tfa < s] is the
tree obtained from t by replacing each node labeled a by the tree s. This type of
tree substitution (i.e., replacing leaves) is often called “first-order tree substitution”;
note that top-down tree transducers and also pebble tree transducers are based on
this type of substitution.

Recall from the previous subsection that for a node u of ¢, t{u < s] is the tree
obtained by replacing in ¢ the subtree rooted at u by s. This type of tree substitution
(i.e., replacing a subtree) is also often called first-order tree substitution. Note that
if {u1,...,u,} is the set of all a-labeled nodes in ¢ and « is of rank zero, then
tla « 8] = tlug < 8]+ [up < s].

We now turn to a different type of substitution, which is used in macro tree
transducers: “second-order tree substitution”. It means to replace in a tree a symbol
of arbitrary rank by a tree s. Here, the question arises how to deal with the subtrees
of a symbol of rank k > 1 that is replaced. We use, at leaves of s, the (formal)
parameters yi,...,yx as placeholders for the 1st, ..., kth subtrees of the symbol
being replaced.

As for first-order tree substitution, let us first define the explicit replacement of
a node u in t. Let k be the rank of u, ie., tfu] € X*), and let s be a tree with
parameters in Yy, i.e., s € T (Yy). Then the second-order substitution of s at u in
t, denoted by t[u < s], is the tree obtained by replacing in ¢ the subtree rooted at
u by s, in which each y; is replaced by the jth subtree ¢/uj of u in ¢; thus, t[u < 3]
can be defined in terms of first-order substitution as

tlu « s] = t{u « s[y; < t/uj | j € [K]]]-

Note, by the way, that tJu < s] = t[u < s] in the case that s does not contain
parameters.

Next, we define the second-order tree substitution of all ¢’s (of rank k) in ¢ by the
tree s € T (Yy). Let 01, .. ., 0y, be distinct elements of X', n > 1, and for each i € [n]
let s; be a tree in Ty (Y%, ), where k; = rank s (0;). The second-order tree substitution
of o; by s; in t, denoted by t[o1 + $1,...,0n < $p] is inductively defined as follows
(abbreviating [0 < s1,...,0, « su] by [...]). For t = o(t1,...,t;) with o € Z*)
k>0, and t1,...,t € Tx, (i) if 0 = o; for an i € [n], then ¢[...] = s;[y;
ti[---117 €[] and (ii) otherwise ¢[...] = o(t1[.-.],---,t&[.--]). We will say that
[o1 < s1,...,04 < sp] is a second-order tree substitution over X. Note that it is
a mapping from Tz to Tx. In fact, it is a tree homomorphism [GS84]. Let P be



a condition on o and s such that {(o,s) | P} is a partial function. Then we use
[c + s | P] to denote the substitution [L], where L is the list of all o < s for
which condition P holds. In second-order tree substitutions we use for the relabeling
o 6(y1,...,yx) of o® by 6(¥) the abbreviation ¢ < §; note that this is, in fact,
a string substitution.

We will use elementary properties of second-order substitution (both tJu « s]
and tJoy < s1,...,0, < $,]) without proof. For instance, (just as ordinary substi-
tution) second-order tree substitution is associative (by the closure of tree homo-
morphisms under composition, cf. Theorem IV.3.7 of [GS84)), i.e., t[o < s][o +
s'] = tfo « s[o « s']] and if ¢’ # o then t[o « s]|[o’ + §'] = t[o’' + s',0 «
s[o’ « s']], and similarly for the general case (cf. Sections 3.4 and 3.7 of [Cou83]).

It should be clear that t[o; < s1,...,0, ¢ S,] can be obtained from ¢ by
the iterative application of one-node substitutions t'[u < s;]. More precisely, let
¢ =t[oy « s1,...,0, < S,] and define the binary relation =g on trees as follows:
t1 =@ t2if to = t1]u < s;] for some i € [n] and some u € V(1) with ¢ [u] = ;. Note
that =% is a congruence, i.e., if t; =% t; then o(t1,...,tx) =% o(t},...,t}). Using
this and the definition of the second-order tree substitution @, it is straightforward
to show (by induction on the structure of ¢) that ¢t =% t&.

2.3 Tree Languages and Tree Grammars

Let X be a ranked alphabet. A tree language (over X)) is a subset of T'x;. Both yield
and path (defined in Subsection 2.1) are extended to tree languages in the obvious
way, i.e., for L C Ty, yL = {yt |t € L} and pL = {pt | t € L} (note that pL is only
defined if X' is monadic). For a class £ of tree languages, y£ = {yL | L € L} and
pL={pL|L € L}.

A regular tree grammar is a tuple G = (N, X, Sy, P) where N is a finite set of
nonterminals, X' is a ranked alphabet, Sy € P is the initial nonterminal, and P is a
finite set of productions of the form A — ¢ with A € N and ¢ € T (N). For trees
£, € Tu(N), £ =¢ & if & = ¢u « (] for a leaf u of £ labeled by A € N and a
production A — ¢ in P. The tree language generated by G is L(G) = {t € Ty |
So =& t}. The class of all regular tree languages is denoted by REGT.

We assume the reader to be familiar with the elementary properties of the regular
tree languages (see, e.g., [GS84,GS97]).

3 Pebble Tree Transducers

In this section the m-pebble tree transducer (n-ptt) is defined, and two easy re-
sults about them are proved. The first one is a normal form for the rules of n-ptts
(Lemma 2). After that, we give several examples of n-ptts. Then the second result
is proved: a size-to-height relationship for translations of n-ptts (Lemma 7). Using
this relationship (and the examples of before), it is shown that there is a proper
hierarchy of translations of n-ptts, with respect to the number n of pebbles, and
that the class of ptt translations is not closed under composition. In Subsection 3.1
the differences between our definition of n-pebble tree transducer and the original
one of [MSV00] are discussed. In Subsection 3.2 it is shown that, under certain
conditions, O-pebble tree transducers are attribute grammars; to be precise, that
noncircular deterministic 0-pebble tree transducers compute the same total func-
tions as attribute grammars. Finally, in Subsection 3.3, we explain how n-ptts fit
into the framework of RT(S) transducers of [Eng86,EV86]. These subsections are
independent from the rest of the paper, and therefore can be skipped.

An n-pebble tree transducer is a finite state device that takes an (ordered,
ranked) tree as input and generates a tree as output. It processes the input tree



starting in the initial state with its reading head at the root node (i.e., with the
root node as “current node”). It then walks on the input tree, from node to node,
using n pebbles to find its way. Depending on the current state, the label of the
current node and its child number (that is, 0 for the root and j > 1 for a node
that is the jth child of its parent), and on the presence of the pebbles 1,...,n
at the current node, the transducer can generate a tree as output; the leaves of
that tree may contain state-instruction pairs that determine how to proceed. The
possible instructions are to move to one of the neighbors of the current node (i.e.,
to a parent or a child) or to stay there, or to lift or drop a pebble. The pebbles
1,...,n are used in a stack-like fashion, i.e., if [ < n pebbles are on the tree, then
at most two instructions concerning pebbles are available: either drop pebble [ + 1
(if I+ 1 < n) or lift pebble I (if it is present at the current node).

An n-ptt can be seen as a particular type of functional program: each state
is a function with one parameter. The parameter is the “input configuration” h
which contains the current node of the input tree and the positions of the pebbles.
The function body consists of a case distinction on the input configuration h; more
precisely, the case distinction is on test(h), see below, which is a triple consisting
of the label of the current node, the information about which pebbles are at the
current node, and the child number of the current node. The function body may
contain recursive calls to other functions, and generates output of type output tree.

Definition 1. For n > 0, an n-pebble tree transducer (for short, n-ptt) is a tuple
M = (X, A,Q,q, R), where ¥ and A are ranked alphabets of input and output
symbols, respectively, @ is a finite set of states, qo € @ is the initial state, and R is
a finite set of rules. A rule is of the form (g, 0,b, 7} — ¢ where ( is of one of the two

forms
‘= {(q’,<p>
0({q1,stay),. .., (g, stay))

forqe Q,o0 € X,be {0,1}=" j €]0,J] with J = max{ranks(c) |0 € ¥}, ¢' € Q,
p € Isp5,0 € A®) k>0, and ¢1,...,q, € Q. The set I, ; of instructions is
defined as

{stay} U{up | j # 0} U {down; | i € [v]} U{drop | I < n}uU{lift |1 > 1,b() = 1}

where v = rankx (o) and [ = |b|. A rule r as above is called (g, 0, b, j)-rule or ¢-rule,
and its right-hand side ¢ is denoted by rhs(r). For a subset @' of @, a g-rule with
q € Q' is also called Q'-rule.

If ¥ and A are monadic then M is monadic. If for every ¢, o, b, and j there is at
most one (g, 0,b, j)-rule in R, then M is deterministic (for short, M is an n-dptt).
If there is at least one such rule then M is total. O

If an n-ptt M is monadic (recall the definition of monadic trees from Subsec-
tion 2.1) and if we view monadic trees as strings, then the resulting string-to-string
translations realized by monadic n-ptts are the same as those realized by the two-
way n-pebble string transducers of [EMO02b] (and similarly for the deterministic
transducers). Viewing a monadic tree ¢ as a string corresponds to taking its path
pt, i.e., the string a; - - - a,, for t = a1 (az(---am(e)---)).

Let us now discuss how, for a given input tree s € T, the n-ptt M computes
an output tree. An (n-pebble) input configuration (on s) is a pair h = (u, 7), where
u € V(s) and m € V(s)S". The set of all n-pebble input configurations on s is
denoted by IC,, s. The input configuration (u,7) means that the reading head of M
is at node u, that there are [ = |7| pebbles on the tree, and that the pebbles 1,...,1
are present at the nodes 7(1),...,7(l), respectively.

By ‘testing’ the configuration h, M can determine the label ¢ of the current
node u, the bit string b (of length [) that has the ith bit set iff the ith pebble is at



u, and the child number j of u (see Subsection 2.1 for the notion of child number).
Thus, we define test(h) as the triple (o,b,j), where o = s[u], b(i) = (7 (i) = u) for
i € [l], and j = childno(u). For test(h) = (o,b, j) and an instruction ¢ € I, ;, the
execution of ¢ on h, denoted by (h), is the input configuration defined as

(u,m) if ¢ = stay
(parent(u), ) if p =up
o(h) = ¢((u,m)) = { (ui,7) if ¢ = down;
(u, Tu) if ¢ = drop
(u, [r(1);...;w(l = 1)] if p = lift

Note that 7 is a string of strings and that [7(1);...;7(l — 1)] is the string consist-
ing of the strings m(1),...,m(I — 1); cf. the beginning of the Preliminaries. Thus,
[7(1);...;7(l —1)] is the unique 7" such that = = 7'u.

A configuration of M on s is a pair (g, h) € (Q,IC, s). It means that ¢ is the
current state and h is the current input configuration. The set (@Q,IC,, s) of all con-
figurations of M on s is denoted Cs 5. A rule {(g,0,b,7) = ¢ of M is applicable to
(g,h) if (0,b,7) = test(h). A sentential form (of M on s) is a tree in Ta(Cus),
containing the already produced output and the configurations at which the com-
putation of M may continue.

The computation relation of M on s, denoted by =7 s, is the binary relation
over TA(Chr,s) defined as follows: for &,&" € Ta(Cums), € = m,s & iff there are

(N) aleaf v of £ labeled by (g, h) € Cpy,s, and
(R) arule (¢q,0,b,7) — (¢ in R applicable to (g, h)

such that & = £[v < n] where 7 equals

— {d',¢(h))
- 6(<q17h>77<qkah>)

Note that ' = £[v < ([h]a,s] where

[hars = [{d', @) = {d',0(h)) | ¢ € Q¢ € Liesy(n))- (#)

A computation of M on an input tree s always starts at the root node ¢ of s, and
with no pebbles present; in other words, the initial configuration is {(qo, ho), where
the initial input configuration hg is defined as (g, \). Recall, from the beginning of
the Preliminaries, that ¢ denotes the empty string, and that X is used to denote the
empty string of strings. The translation realized by M, denoted by Ty, is defined as

(¢',¢), and

it ¢ = (¢
if C = 6(<qlasta‘Y>7 R <Qk,Stay>)-

™ = {(Svt) €Tx xTa | <q07h0> i}k\/Ls t}'

Two transducers are equivalent, if they realize the same translation. The class
of all translations realized by n-ptts is denoted by n-PTT, and in the deterministic
case by n-DPTT. The unions |J,,»,n-PTT and |J,,», n-DPTT are denoted by PTT
and DPTT, respectively. It should be clear that for a deterministic n-ptt M, 7y,
is a function (cf. Lemma 20 where this fact is proved for the more general case of
deterministic n-pebble macro tree transducers).

Note that for n > 0, n-PTT(REGT) denotes the class of all tree languages
™m(R) = {t | (s,t) € i for some s € R} where M is an n-ptt and R is a regular
tree language. This is the class of output languages of n-PTT. From the point of
view of databases it is the class of views corresponding to queries realized by n-ptts
(on some type R). In fact, we will use similar terminology for any class of tree
transducers.

Since pebble tree transducers, just as regular tree grammars, are based on first-
order tree substitution, it is quite obvious to see that for a fixed input tree the



computations of an n-ptt can be simulated by a regular tree grammar. Formally,
let M = (X,A,Q,q0, R) be an n-ptt and let s € Ty be an input tree. As stated
in Proposition 3.5 of [MSV00], there is a regular tree grammar Gps,s such that its
derivations correspond to the computations by =>as ;. In fact, the nonterminals of
G s are the configurations (g, h) in Car s, with initial nonterminal (go, ho}, and if
(g, h) =m,s & then G s has the production (g, h) — £. Clearly, G s generates the
tree language 7ps(s) C Ta.

PTTs with general rules. When constructing the rules of a ptt, it is convenient
not to be restricted to the two forms of possible right-hand sides of Definition 1, i.e.,
either “navigation” (viz. (g, ¢)) or “output one symbol” (viz. 6({q1,stay),..., (g,
stay))). It should be intuitively clear that we can allow any tree ¢ over output sym-
bols and symbols (g, @) as right-hand side of a rule, without changing the expres-
siveness of the model. Roughly speaking, such a right-hand side ¢ can be simulated
by a subprogram that generates (, using only rules with right-hand sides of the
above two kinds (navigation or output).

A rule of the form (g, 0,b,j) — ¢ with ( € TA((Q, Ir;)) is a general rule, and
an n-ptt with general rules is a tuple M = (X, A, Q, qo, R) where R is a finite set
of general rules (and the rest is as for an n-ptt). For M, the notions ‘determinis-
tic’, ‘total’, and ‘monadic’ are defined in the same way as for an n-ptt. Recall the
definition of the computation of an n-ptt. The computation relation for a ptt with
general rules is defined as follows: £ =y 5 & iff there are (N) a leaf v of £ labeled
by (g,h) € Cu,s, and (R) a rule {(g,0,b,j) — ¢ in R applicable to (g, h), such that

¢ = ¢&v « (s,
where [h]ar,s is defined in equation (#) above.

Lemma 2. For every n-ptt M with general rules there is an equivalent n-ptt M'.
If M is deterministic, then so is M.

Proof. Let M = (X, A,Q, qo, R) be an n-ptt with general rules. The construction of
the rules of the n-ptt M’ is similar to the construction of productions in normal form
for a regular tree grammar (cf. Lemma 3.4 of [GS84]). Let M' = (X, A, QUQ:, qo, R')
be defined as follows. Consider a rule (g,0,b,j) = ¢ in R. Let ({,e) be a state in
Q@: and let the rule

(g,0,b,7) = ((C,€),stay)
be in R'. For every w € V(() let ({,w) be a state in @, and let the rule

(¢ w), 0,6, 5) = C[w](((¢, w),stay), ..., (¢, wk), stay))

be in R', where k is the rank of the label ([w] of w. Obviously, M’ is an n-ptt and
™' = TM-

Actually, this lemma is just an easy special case of Theorem 16 in Section 5
(more precisely, the case that all states of the “n-pmtt” M have rank zero; then M
is an n-ptt with general rules). Thus, the proof of Theorem 16 contains a formal
correctness proof of the above construction. O

Convention 3. From now on, when defining an n-ptt (or n-dptt) we tacitly give
the definition of one with general rules, without explicitly mentioning that Lemma 2
should be applied in order to obtain an equivalent n-ptt (or n-dptt). Note that from
this point of view Lemma 2 is a normal form result.
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Examples. We now give several examples of pebble tree transducers. We start with
deterministic transducers without pebbles: In Example 4 two deterministic 0-pebble
tree transducers are defined, such that their composition has an exponential size-
to-height relationship; this will be used later in this section to prove that PTT and
DPTT are not closed under composition. In Example 5, a deterministic monadic n-
ptt, n € N, is defined which has polynomial size increase with exponent n+ 1; it will
be used later in this section to prove that the translations of n-ptts and of n-dptts
form hierarchies with respect to the number n of pebbles. Finally, in Example 6,
an example of a nondeterministic 0-pebble transducer is given that translates each
input tree into infinitely many different output trees; this example will play a special
role in Section 5.

Ezample 4. Let ¥ = {a(V,e®} and A = {5, e(®}. The first 0-dptt M; translates
a monadic tree (in T's;) of size m + 1 (i.e., a tree s with ps = a™, cf. the definition
of the “path” ps of a monadic tree s in Subsection 2.1) into a full binary tree (in
TA) with 2™ leaves. Let My = (X, A, {q}, q, R1) where, for j € {0,1}, R consists of
the following (general) rules

(g,a,\, 7y — o({qg,downy ), {(q,down; })
(g,e,\, j) — e.

Obviously, the tree t,, = Tar, (a™(e)) is a full binary tree with 2™ leaves, i.e., with
yield yt,, = e2" .

The next 0-dptt M> translates a binary tree (in T'4) with m leaves into a monadic
tree (in Tx;) of size m+ 1, i.e., into the tree a™(e). Let My = (A, X, {d,d',u},d, R»)
and let the following (general) rules be in Rs.

(d,o,),7) — (d,downy) for j € [0,2]
(d,e, A\, 1) — a({(d',up))

(d' o,),7) = (d,downy) for j € [0,2]
(d,e,\,2) — a({u,up))

(d,e,\,0) — a(e)

<u7 07 A’ 1> % (dl,up>

(u,0,X,2) — {(u,up)

(u,0,1,0) — e

Obviously, My performs a depth-first left-to-right tree traversal on its input tree
s € T's;, outputting an a for each leaf (labeled e) of s. Each o-labeled node is visited
three times by M, (in states d, d’, and u, respectively) and each e-labeled node is
visited once (in state d).

Finally, consider the composition

T=TM OTM, = {(am(e),aw(e)) | m € N}

The size of 7(s) is 257¢(5)=1 4 1 i.e., 7 is of exponential size increase. Thus, 7 has
a non-polynomial size-to-height relationship (because the height of a monadic tree
equals its size). 0

Recall from Definition 1 that an n-ptt is monadic if its input and output alpha-
bets are monadic. The next example presents, for n € N, the monadic n-dptt M,
such that

v, = {(a" 7 (e),a" (e)) | k = m"TY,

i.e., it has polynomial size increase with exponent n + 1. It will be proved later
(Lemma 7) that this is indeed the maximal size increase of a monadic n-ptt.
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Ezample 5. Let ¥ = A = {a()),e(O}. Let My be a 0-dptt that realizes the identity
on all input trees in T's;: My has set of states Qo = {qo} and, for j € {0,1}, it has
the rules

(20, a, A, j) = a({qo, downy))

<QOa €, Aa]) — e

For every n > 0 we now define inductively the (n 4+ 1)-dptt M, which, above
each symbol in an output tree of M, inserts a copy of the corresponding input tree
(more precisely, of the monadic piece ™! of the input tree a™ ! (e)). The idea of
the construction is as follows. Whenever M,, generates an output symbol §, the new
(n+1)-dptt M,,+; instead drops a pebble at the current node u, and changes into a
new state g,p. In state g,p it moves to the root of the input tree s. Then it changes
into the state gqown in which it moves down to the leaf of s, copying each a of the
input tree. Finally, it changes into the state ganq and searches for the node with the
most recently placed pebble, i.e., the node u. Once at u, it lifts the pebble, outputs
d, and proceeds according to the rules of M,, (doing the same as above whenever
output is generated).
For n > 0 define M, 11 = (X, A, Qn+1, o, Rny1) with

— Qn+1 = QnU{q: | ¢ € Qn,c € {up,down, find, back}}
— For every rule r = ({(g,0,b,5) = () in Ry: if ( € (Qn,I5p,;) then let r be in
R, 11, and otherwise (i.e., { = e or { = a((¢’,stay)) with ¢’ € Q) let the rules

(qa Ua b7 ]> — <q11pa dr0p>
(qbacka a, b7 .7> — C

bein R, 1. Forevery ¢ € Q,, b € {0,1}<"*! and b’ € {0,1}<" let the following
rules be in R,,41:

<QUp7 07 ba 1) — <qup7 'llp> fOI‘ (S E
(Qup,0,0,0) = (gdown, stay) foroce X

<qdown,a b .7> — a((‘]dowm dOWn1>) for j € {07 1}

<qdown, e,b, .7> - <(Iﬁnd, StaY> for j € {07 1}

(Qfind, 0,0'0,1) = (Gfind, up) foroce X

(qfind, 7,0'1, J) = (qoack, lift) foroce X,je{0,1}.

Clearly, M4, is deterministic, i.e., 7as,,, € (n + 1)-DPTT. Let us now show
that M,,;1 has polynomial size increase with exponent n+ 2. Consider an input tree
s =a™ '(e), m > 1. Then 13/,(s) = s. The 1-dptt M; inserts a™~! above each of
the m symbols of Tz, (s), i.e., Tar, (s) has k — 1 = (m — 1)m + (m — 1) occurrences
of a, and thus its size is k = m? = size(s)2. In general we get

) — 1) - size(7a, (8)) + size(rar, (5))

) - size(Ta,, (5))
)

size(Tar, ., (5)) = (size(
= size(s
= size(s)" 2.

Finally note that instead of defining M, recursively, it would have also been
possible to give a direct construction of an n-dptt that realizes the same translation
as M,y it systematically generates all possible configurations in which all n pebbles
are present, starting with all the pebbles and the reading head at the root node and
ending with all the pebbles and the reading head at the leaf, generating an a for
each such configuration. Obviously, there are size(s)"*! such configurations. O

Ezample 6. Let ¥ be a ranked alphabet, J = max{ranky(c) | ¢ € X}, and let
A=XU{c) | o€ X}. Let mony C Tx x Tx be the translation consisting of all
pairs (s,t) such that ¢ is obtained from s by inserting, above each o-labeled node
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in s, an arbitrary number of unary symbols & (we use ‘mon’ to stand for “monadic
insertion”). The following nondeterministic 0-ptt My realizes the translation mony;.

Let My = (X, A, {q},q, R) where, for every o € X¥) k>0, and j € [0, .J], the
following rules are in R.

(¢,0,1,5) = a((g;stay))
<Qa g, Aa]) - U((Qa dOWH1>, RS <Qa downk))

It should be clear that indeed 75, = mony.

Note that mony is an instance of a “regular insertion” (see, e.g., Section 2.3
of [Eng82]), which inserts strings (seen as monadic trees) of an arbitrary regular
language R, above each symbol ¢ of an input tree. O

Size-to-Height Relationship of PTT Translations. In the next lemma we
show an elementary property of the translation realized by an n-ptt: for a given
input tree, the height of an output tree is either unbounded or it is polynomially
bounded by the size of the input tree, where the exponent of the polynomial is n+1.
This is due to the fact that the number of possible configurations on the input tree
is polynomially bounded by its size.

Lemma 7. Let M be an n-ptt. There is a ¢ > 0 such that for every input tree s,
if 7p7(s) is finite then height(t) < c - size(s)"*! for every output tree t € 73/(s).

Proof. Let M = (X, A,Q,qo, R) and s € Ts;. We claim that if 7a/(s) is finite then
height(t) < |Car,s| for every ¢t € Ta7(s). Since the number of configurations of M on
s is at most |Q] - size(s) - (size(s) + 1)™ (state, current node, and the position of the
n pebbles), this shows the lemma for, e.g., ¢ = |Q] - 2™.

To prove the claim, consider the regular tree grammar GMS with set of nontermi-
nals Cpr,s, initial nonterminal (qo, ho), and all productions (g, h) = §({q1,h1),.- .,
(qr,ht)) such that 6 € A® k> 0, and (g, h) =irs 0Uar, ha)y ooy (g, he)). Tt
should be clear that the language L(G', ) generated by G, equals 7/(s). It
should also be clear, by the usual pumping argument (see, e.g., Proposition 5.2
of [GSIT7]), that if t € L(GY, ,) has height larger than |C 5|, which is the number
of nonterminals of G, ., then L(GY, ,) is infinite.

We note that the proof would work as well with G/ 5, discussed above after the
definition of 757, but is even more apparent with GQ\/‘,’S which generates exactly one
output symbol at each derivation step (and thus corresponds to a nondeterministic
finite state tree automaton). O

The fact that translations of n-ptts have polynomial size-to-height relationship
of input to output tree (Lemma 7), has two immediate consequences:

(1) Hierarchies of Translations. Recall from Example 5 the deterministic monadic
n-ptt My11, n € N, and note that height(t) = size(t) for every monadic tree ¢. As
was shown in the example, height(ras, ., (s)) = size(s)"*?, which means that there is
no ¢ such that height(ras, ,, (s)) < ¢-size(s)"*! for every input tree s. By Lemma 7
we obtain that 7j7, , cannot be realized by any n-dptt, i.e., 7ar,,, € n-DPTT. This
proves that

TMy,, € (4 1)-DPTT — n-DPTT,

i.e., there is a proper hierarchy of translations of deterministic n-ptts with respect
to the number n of pebbles.
In fact, by Lemma 7, even

(n+ 1)-DPTT — n-PTT # 2,

which means that also the translations of nondeterministic n-ptts form a proper
hierarchy with respect to the number n of pebbles.
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(2) Nonclosure under Composition. Recall from Example 4 the two 0-dptts
M, and M>. As was shown in the example, the composition 7 = 7, o Taz, has
exponential size-to-height relationship. Thus, by Lemma 7, 7 cannot be realized by
any n-ptt, and therefore 0-DPTT o 0-DPTT ¢ PTT which means that

DPTT and PTT are not closed under composition.

As discussed in the Introduction, it is an undesirable property of a query lan-
guage not to be closed under composition: it means that querying a view (i.e., the
result of a previous query) might give a result for which there is no direct query on
the original database. For this reason, one may argue that the query language of peb-
ble tree transducers determines the classes DPTT* and PTT* of (deterministic and
nondeterministic) queries, rather than DPTT and PTT, respectively. Note further,
that in the case of monadic trees, the class of two-way pebble string translations
corresponding to DPTT is closed under composition, as was shown in Theorem 2
of [EMO02b] (and so is the class corresponding to 0-DPTT).

3.1 Comparison with the Model of Milo, Suciu, and Vianu

In this subsection our definition of n-pebble tree transducer (Definition 1) is com-
pared to the original definition of [MSV00]. This comparison is not needed in order
to understand the remainder of the paper, and hence can be skipped.

The n-pebble tree transducer of [MSV00] translates binary trees, using n pebbles
named 1,...,n. The pebbles are put on the input tree in the order of their names,
i.e., if there are [ pebbles on the tree, then pebble [ is the most recently placed
pebble, called the current pebble. It acts as the reading head and moves according
to the label of the node on which it is (the current node), the current state, and
the absence or presence of the various other pebbles on the current node. In other
words, there are up to n — 1 “real” pebbles that are tested in the transitions, plus
the additional current pebble (the “reading-head-pebble”). To place a new pebble
means that the current pebble  remains at the current node, and pebble [+ 1, which
now becomes the current pebble, is placed on the root of the input tree. To pick the
current pebble [ + 1 means to remove it, making pebble [ the current one. In terms
of a model with a reading head in place of the current pebble these two operations
can be seen as follows: (1) first a pebble is dropped at the node of the reading head,
and then the reading head jumps to the root and (2) the reading head jumps to the
node of the highest numbered pebble, and then this pebble is lifted.

Our model of n-pebble tree transducer (Definition 1) has a reading head and
additionally has n pebbles, that it may drop/lift at the current node, which is the
node pointed at by the reading head. Moreover, our transducer has the ability to
check whether the current node is the root node, viz. checking, in the left-hand side
of a rule, whether the child number equals zero: “is the current node the child of no
node?”, i.e., “is it the root node?”. This is a natural choice because the transducer
can check whether the current node is a leaf (by the rank of the node label), i.e., it
can recognize the bottom boundary of the input tree, so it should also be able to
recognize the top boundary of the input tree, i.e., its root. In the model of [MSV00]
a root check can be implemented by placing an extra pebble on the root (or by
having a special root symbol). Note that the explicit test for the child number j
that is present in the left-hand side of a rule of our transducer, is also present in the
model of [MSV00] for j # 0: it occurs when the applicability of an up;-instruction
(with j = 1,2) is determined. Since we are particularly interested in deterministic
transducers, it seems more appropriate to explicitly include this test in the left-
hand side of a rule, because it leads to a natural definition of determinism: for each
left-hand side there should be at most one rule.
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Let n-MSV denote the class of tree translations realized by the (n + 1)-pebble
tree transducers of [MSVO00] (i.e., having n “real” pebbles), where we drop the
restriction to binary ranked alphabets. Denote by n-PTTo.00t the class of tree
translations that can be realized by the n-pebble tree transducers obtained from
Definition 1 by removing the root-check, i.e., by requiring that if (¢,,b,0) — ( is
a rule, then (q,0,b,j) — ( is also a rule, for all possible j > 1. Below we prove the
following inclusions, for n > 0:

n-MSV C n-PTT C (n + 1)-PTThoro0r C (n + 1)-MSV, (%)

also for the deterministic case.

First inclusion of (x): the move transition (g, place-new-pebble) of an n-MSV
transducer can be simulated by an n-ptt by first dropping a pebble and chang-
ing into a new state r, and then in r to move up to the root node (recognized
by the root-check), at which we change into the state g. The move transition
(¢, pick-current-pebble) is simulated by changing into state r and then, as before,
to move to the root node. Now we search the tree for the highest numbered pebble,
which can be realized by a depth-first left-to-right traversal of the tree (cf., e.g.,
Example 3.3 of [MSV00], and our Example 4). Once arrived at the node that has
the highest numbered pebble, we lift it and change to state q.

Second inclusion of (x): To simulate the root-check of an n-PTT, the (n + 1)-
PTTy0-r00t drops a pebble in its initial configuration, i.e., at the root node; then
the root-check is simply realized by checking the presence of this pebble.

Third inclusion of (x): A (g, drop) transition of an (n+1)-PT Ty root can be sim-
ulated by an (n+1)-MSV transducer in the following way. First place a new pebble,
by a transition (r, place-new-pebble). This means that current pebble [ remains at
the current node, and the new current pebble [ + 1 (the reading-head-pebble) will
be at the root. Now search for the pebble [ and move to state g once it is found. A
(¢,lift) transition of an (n+ 1)-PTTheroot is simulated by a (g, pick-current-pebble)
transition of an (n + 1)-MSV transducer.

Clearly, the above implies that MSV = |J,,~on-MSV = PTT and hence our
results about the class PTT directly carry over to the class MSV (and similarly in
the deterministic case). On the other hand, our results that depend on the number
n of pebbles, i.e., results about the classes n-PTT and n-DPTT, should be handled
with care when translating them into the model of [MSV00].

3.2 0-PTTs are Attribute Grammars

In this subsection it is shown that 0-dptts and attribute grammars are closely related
formalisms and, under certain conditions, realize the same class of translations. Since
we do not use this in the remainder of the paper, the subsection can be skipped.

Attribute grammars were introduced by Knuth in [Knu68] to model syntax-
directed semantics. They are now the basis of many compiler-compiler systems
(see, e.g., [DJL8S]). An attribute grammar can be seen as a device which translates
the set of trees (i.e., the free algebra) over a many-sorted signature. This is, in fact,
the set of derivation trees of a context-free grammar G: the sorts are the nontermi-
nals of G and the symbols are the productions of G (see Section 3 of [GTWW77]).
The output trees are interpreted in a semantic domain, i.e., they are viewed as
expressions denoting objects in that domain. Thus, an attribute grammar defines
a tree-to-object translation. If the interpretation of the output trees is dropped,
then an attribute grammar defines a tree-to-tree translation [EF81]. We will only
consider one-sorted signatures from now on, for the sake of simplicity. Then the
resulting (uninterpreted) attribute grammars are also called attributed tree trans-
ducers [Fiil81,FV98].
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The table in Figure 1 shows the correspondence between deterministic zero peb-
ble tree transducers and attribute grammars (seen as attributed tree transducers).

0-dptt | attribute grammar

states attributes

initial state designated attribute at the root

rules semantic rules that define the attributes

Fig. 1. Correspondence between 0-dptts and attribute grammars.

Attribute grammars (for short, AGs) are total deterministic, and even required
to have no infinite computations starting with any sentential form, i.e., they are
“noncircular”, which, in the 0-ptt notation, means that there is no computation
(g, h) :>']t[7s & where (g, h) occurs in £. This implies that AGs define total functions.
Formally, a 0-ptt M is noncircular, if there are no input tree s, configuration ¢ €
Chr,s, and sentential form & of M on s such that ¢ :>X/I,s ¢ and c occurs in £ (such
a configuration ¢ will also be called “circular”, cf. Section 5.2).

To understand the formal definition of an attribute grammar as a special type
of O-dptt, we first extend the 0-ptt formalism to have rules with left-hand side
(q,0,7, )\, j) where 7 is the label of the parent of the current node (or ‘-’ if j = 0).
Clearly, this extension does not change the power of 0-dptts (a 0-dptt M’ can
simulate an extended one M, because in state ¢ at node u, M’ can visit u’s parent
u', move down to u into state (q,7) where 7 is the label of v/, and then apply
the (q,0,7,\, j)-rule of M). Furthermore, we allow the extended 0O-dptts to use
in the right-hand side of a (g,0,7, A, j)-rule the new instruction updown;, with
1 < i < ranky(7), which is simply a subroutine for moving to the parent of the
current node u and then to the ith child (i.e., to the ith sibling of u).

Next we restrict the extended 0-dptts: The attributes (states) are divided into
inherited attributes (i-states) and synthesized attributes (s-states). Now the restric-
tion says that the

— rules for s-states are: (g, 0,7, A, j)-rules that disregard 7 and j and have no up
instruction in the right-hand side (and no updown;), and

— rules for i-states are: (g, 0,7, A, j)-rules that disregard o, have no down; instruc-
tion in the right-hand side, but are allowed to use updown,.

The extended 0-ptts that fulfill the above two conditions and additionally are total
deterministic and noncircular, are called attributed tree transducers (for short att).
Note that for the (g,o, 7, A, j)-rules to disregard, e.g., the symbol o, means that
all (¢,0,7,\,j)-rules for ¢ € X have the same right-hand side. Note also that,
intuitively, the first condition means that for each s-state, at a o-labeled node,
there is a unique applicable rule, and the second condition means that for each i-
state, at a jth child of a 7-labeled node, there is a unique applicable rule. Moreover,
from an s-state it is not possible to move up, and from an i-state it is not possible
to move down, respectively.

Finally note that an attribute grammar is usually specified by giving for each
input symbol o (i.e., each production of the underlying context-free grammar)

all rules (¢,0 ,[7,X ,j])—=¢(C q synthesized
all rules {q,[0'] ,0 ,[A],7 )= ¢ ¢ inherited

where the brackets ‘[" and ‘]” around the symbols mean that they are not present
in the actual left-hand side of the attribute grammar rule (which is the same as
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(d,o) — (d,down;) (t,0,1) = a((d,updown,)) (u,0,1) = (d,updown,)
(d,e) — (t,stay) (t,0,2) = a((u,up)) (u,0,2) = (u,up)
(t,-,0) — a(e) (u,-,0) —>e

Fig. 2. An att (with s-state d and i-states ¢t and u) equivalent to M> of Example 4.

disregarding it). Figure 2 shows the rules, in this attribute grammar notation, of an
att that computes the same translation as the 0-dptt Ms of Example 4, in a similar
way.

Clearly, for every att there is an equivalent noncircular O-dptt, because an att is
an extended O-dptt. We now show that also the converse holds, i.e., that for every
noncircular O-dptt M that realizes a total function, there is an equivalent att; this
proves that such 0-dptts and atts have the same power.

Theorem 8. A total function from T's; to T4 can be realized by an attributed tree
transducer iff it can be realized by a noncircular 0-dptt.

Proof. As stated before, every att is an (extended) noncircular 0-dptt, by definition.
It remains to show that for every noncircular 0-dptt M that realizes a total function,
there is an equivalent att A. Since 737 is a total function, we may assume that M is
total: this can be achieved by simply adding (dummy) rules for the left-hand sides
that do not have a rule (note that these rules will never be applied).

Let M = (X, A,Q, qo, R) and let J = max{rankx (o) | ¢ € X'}. Note that M is
not extended. The att A is constructed as follows:

— s-states: (¢,j) with ¢ € @ and j € [0, J]; initial state: (qo,0)
— i-states: (¢, ¢) with ¢ € Q and ¢ € {stay,up}
— rules for s-states:
For every (q,0,\,j) = (in R and (7,5') € (¥ x [J]) U{(—,0)}, let
((q7j)70-77—7 A7‘7") % CI

be a rule of A, where

6(<(qlaj)7 Stay): RN <(qkaj)7Sta‘Y>) if C = 5((q1,stay>, T (qk,stay>)

= ((d',7),stay) if ¢ = (¢, stay)
((qla Z)a dOWIli) if C = <qla dOWHi)
((¢', stay), stay) if ¢ = (¢',up)

— rules for i-states:
For every ¢ € Q, 0 € X, and (1,7) € (¥ x [J]) U{(-,0)}, let

((g,stay),o,7,A, ) = ((¢,up),up) for j #0
((g;up), 0,7, A, 5)  — ((g,7),stay)

be rules of A. Furthermore, A has the (dummy) rule ((q,stay),o, —, A,0) —
(p, stay) where p is an arbitrary state of A.

Note that the rules of A even disregard 7, and do not contain the updown, instruc-
tions. It should be clear that A is equivalent to M, i.e., T4 = 7p;. Intuitively, when-
ever M is in state ¢ at node u, the att A will be in s-state (g, childno(u)) at the same
node u. This property is obviously preserved by down and stay moves: If M moves
down to its ith child ui into state ¢', then A moves down to ui into s-state (¢, %),
and if M stays at u in state ¢', then A stays at u in s-state (¢', childno(u)). Now, if
M moves up into state ¢', then A cannot move up directly, because (g, childno(u))
is an s-state (only i-states are allowed to move up). Thus, A first changes into the
i-state (¢, stay), then moves up into the i-state (¢', up), and finally does a stay move
into the s-state (¢',7), where j = childno(parent(u)). It is not difficult to see that
A is noncircular, because M is. O

17



Note that for an attributed tree transducer it is well known that the height of the
output tree is linear in the size of the input tree (cf., e.g., Lemma 5.40 of [FV98]);
this corresponds to the case n = 0 of Lemma 7.

Attribute grammars can also be defined as nondeterministic and partial devices.
In fact, the attributed tree transducer of [Fiil81] is defined nondeterministically.
In [Kam83,FMO0] it is shown that domains of (deterministic) partial AGs are the
languages recognized by universal tree-walking automata, which, essentially, are the
acceptor version of 0-dptts. We finally note that the relationship between 0-ptts and
attribute grammars was already pointed out in Section 3 of [Eng86], where 0-ptts
are called RT(Tree-walk) transducers; these transducers are discussed in the next
subsection.

3.3 Relationship to Grammars with Storage

In this subsection we explain that the n-ptt is an instance of the regular tree S
transducer, for a storage type S. This is only needed to understand some of our
references to the literature, and hence can be skipped.

Grammars, automata, and transducers with storage have been considered in
[Eng86,EV86,EV88], both for strings and for trees. The special case of string au-
tomata with storage was extensively investigated in AFL and AFA theory [Gin75].
Here we discuss the regular tree transducers with storage, or RT(S) transduc-
ers, where S is an arbitrary storage type (such as the Counter, the Pushdown,
or the Stack). Basically, an RT(S) transducer is a regular tree grammar (see Sub-
section 2.3) of which the nonterminals are viewed as the states of the transducer.
Moreover, with each occurrence of a nonterminal in a sentential form a storage
configuration of S is associated, and the productions of the grammar are extended
with tests and instructions of S that operate on these configurations. Thus, the
derivations of the grammar are controlled by the storage configurations. The RT(S)
transducer receives one of a set of designated initial storage configurations of S as
input (associated with the initial nonterminal), and produces the generated tree as
output. This means that it translates initial configurations into trees.

As observed already in the Introduction (and at the end of the previous sub-
section), the 0-ptt is the same as the RT(Tree-walk) transducer of [Eng86], i.e., the
RT(S) transducer where S is the storage type Tree-walk. A storage configuration of
Tree-walk consists of an input tree s, together with an input configuration on s, as
defined for the 0-ptt, i.e., a node u of s; it is an initial storage configuration if u is the
root, of s, in which case it is identified with s (and thus, the RT(Tree-walk) trans-
ducer indeed translates trees into trees). The tests of the storage type Tree-walk
allow to test the label and child number of the node u, and its instructions are the
instructions of the 0-ptt, i.e., up, stay, and down;. As an example of a production
of an RT(Tree-walk) transducer, consider

Allabel = g?childno = 3?] — 4(a, B[downs], Cup]).

Intuitively, this production means that a nonterminal (or state) A which has storage
configuration (s,u) where s is an input tree and u a node of s with label o and child
number 3, can be replaced by the right-hand side, in which the nonterminals (or
states) B and C' have storage configurations (s,u2) and (s, parent(u)), respectively.
Thus, it corresponds to the rule (4,0, A,3) — d(a, (B,down,), (C,up)) of a 0-ptt.

It should now be clear to the reader that the storage type Tree-walk can easily be
extended to the storage type n-Pebble, for every n € N, such that the RT (n-Pebble)
transducer is precisely the n-ptt. Hence, all results for RT(S) transducers proved
in, e.g., [Eng86,EV86,EV88] hold in particular for n-ptts.
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Another storage type of interest is Tree (denoted TR in [EV86,EV88]): it is
Tree-walk without the instructions stay and up, and without the test on child num-
ber. We observe here that the RT(Tree) transducer is precisely the top-down tree
transducer.

In [EV86,EV88], also context-free tree transducers with storage, or CFT(S)
transducers, are investigated. They are defined in the same way as RT(S) trans-
ducers, except that context-free tree grammars rather than regular tree grammars
are used. In particular, the CFT(Tree) transducer is (a notational variant of) the
macro tree transducer. Thus, in this paper, we compare RT(n-Pebble) transducers
with CFT(Tree) transducers.

We finally note that with every storage type S is associated the storage type
P(S) of pushdowns of S-configurations. It is easy to see (see Section 6(7) of [Eng86])
that every RT(Tree-walk) transducer, i.e., every 0-ptt, can be simulated by an
RT(P(Tree)) transducer: roughly speaking, the nodes that are on the path from
the root to the current node are pushed on the stack; thus, a down; instruction is
simulated by a push(down;) instruction, which pushes node ui on the pushdown (if
u was the node on top of the pushdown), and an up instruction is simulated by
popping the pushdown. It is shown in [EV86] that, under certain conditions, the
RT(P(S)) transducer has the same power as the CFT(S) transducer.

4 Decomposition of Pebble Tree Transducers

In this section it is proved that each n-pebble tree transducer M can be decomposed
into the (n+1)-fold composition of 0-pebble tree transducers; more precisely, the first
n 0-ptts of the composition are deterministic, and the last one is nondeterministic
(and they are all deterministic if M is). This means that for a pebble transducer,
a pebble can be simulated by the application of a translation of a deterministic
0-ptt. Thus, instead of taking care of many pebbles at the same time (viz. program-
ming an n-ptt) one can simply consider pebble transducers without pebbles, and
sequentially compose them. Note that in the string case an analogous result holds,
but with one pebble rather than zero: each n-pebble string transducer can be real-
ized by the composition of n 1-pebble string transducers (Theorem 1 of [EMO02b]).
The idea of the proof in the string case is similar to, but easier than, the one for
trees in this section. The one pebble is really needed: deterministic O-pebble string
transducers are closed under composition (because they are the two-way finite state
transducers [CJ77]).

Let us sketch the proof of this decomposition. Let M be an n-ptt, n > 1. We
want to discuss how to decompose M’s translation 73, into the composition of a
fixed total function EncPeb, realized by a deterministic 0-ptt, and an (n — 1)-ptt
M'. The idea of the function EncPeb is to add information about the position of
the first pebble of M to the input tree. More precisely, the input tree is enlarged
by adding to each node, as an additional (last) subtree, a copy of the input tree in
which that node is marked. The computation of M on an input tree s is simulated
by the (n — 1)-ptt M’ on the input tree EncPeb(s). As long as M has no pebbles
on s, M’ simulates it on the original nodes of s, of which the labels are primed to
distinguish them from the new nodes of EncPeb(s). However, when M drops the
first pebble on node v of s, M instead enters the new subtree of v and walks to the
marked node, corresponding to v. In that subtree M’ behaves just like M, using
pebble i as pebble i + 1 of M. If M checks for the presence of its first pebble, then
M' checks whether the current node is marked. If M lifts its first pebble, then M’
returns to v by walking up to the first primed node.

There is one difficulty in the construction sketched above, and that is the precise
definition of EncPeb(s). Suppose that, as suggested above, each additional subtree
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is indeed a precise copy of the input tree, with one node marked by barring its label.
Then it is easy to see that EncPeb can be realized by a dptt M; with one pebble.
In fact, M, has states qo, ¢1, and ¢o, and the following rules (with o € X(®), j >0,
j'>0,and b e {0,1}):

(qo0,0, A, ) — o' ({go,downy), ..., (go,downy), (g1, drop})
(QhU b .7 ) — qlaup>

(q1,0,b0,0) — (g=,stay)

(q2,0,0,7) = o({gz,downy), ..., (gz,downy))

(g2,0,1,5) = ({g2,downy), ..., (g2, downy))

Thus, to generate the additional tree, M; drops its pebble at the current node,
walks to the root, and copies the input tree, putting a bar on the label of the node
that carries the pebble.

However, it can be proved that this mapping EncPeb cannot be realized by a
zero-pebble ptt. For this reason, we instead define EncPeb in such a way that the
new subtree of node v is a “folded” copy of the input tree s, obtained from s by
turning v into the root node. This is done by reversing the direction of the edges on
the path from the root to v, i.e., by inverting the parent-child relationship between
all ancestors of v. It is not difficult to see that this EncPeb can be realized by a
zero-pebble ptt (see also Example 3.7 of [MSV]): to generate the new subtree it can
just copy the input tree starting at the current node v and “walking away” from v.
It should also be clear that the (n—1)-ptt M’ can still simulate M on this folding of
s, provided some additional information is added to the labels of the (ex-)ancestors
of v that allows M’ to reconstruct the form of s, and, thus, to turn a walk on s
into a walk on the folding of s. This information can easily be produced by the
zero-pebble ptt. Note that the simulation of the dropping and lifting of the first
pebble has even become easier: when it is dropped, M’ just moves down one step
(to the root of the new subtree), and when it is lifted, M’ just moves up one step.

We now give a more precise description of the mapping EncPeb, to prepare
for its formal definition. For every input tree s of M, EncPeb(s) has all nodes of
the original tree s, but additionally each node v of rank k in the tree s, has rank
k 4+ 1 in EncPeb(s) and its (k + 1)th subtree is the tree s!¥, obtained by adding
the “redirection information” mentioned above to the labels of the folding s, of
the input tree s at v. We first describe how the intermediate tree s, is constructed
from s, and then show how to relabel it in order to obtain the tree s‘hr The tree s,
is obtained from s by inverting the parent-child relationship of all ancestors of w.
More precisely, if u is an ancestor of v in s, then, in s,, the parent of u is swapped
with its ith child, where i = swap, (u) and

swap, (1) = k+1 ifu=wv
Py 11 if v = ulv' for I € N and some v’ € N*

with k& = rankx(s[v]). Since v itself has no child that is an ancestor of v, its parent
is added as a new, (k + 1)th child. If u is the root node, then it has no parent, but
in order to keep the ranks of the new symbols in sd" as uniform as possible, we
assume an imaginary parent of u, labeled by a dummy symbol §. Clearly M’ will
never visit these $-labeled nodes in EncPeb(s), because that would correspond to
an up instruction of M at the root node, which does not exist.

We now discuss how to relabel s, in order to obtain the tree s‘hr Let u be
an ancestor of v. Since in s, the parent of u was swapped with its ¢th child, i =
swap, (u), also the corresponding move instructions of the (n — 1)-ptt M’ have to
be swapped. We capture this “swapping information” by the set d;, defined as

d; = {(up, down;), (down;, up)}.
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Also, the child number j of u (in s) may have changed in s,. Thus, for M’ to have
complete information about the original order of the ancestors of v, we include both
d; and the original child number j of u in the label of the corresponding node in
sdi*. Hence, sd'* is obtained from s, by relabeling, for every ancestor u of v, the
node corresponding to u by (s[u], childno(u), dswap, (u))-

Note that the node of s corresponding to v, i.e., its root, is marked in the sense
that it is the unique node of sdi* with label (o, j,d;) such that i = ranks (o) + 1.
Note also that, in fact, the child number information is superfluous: if a node of
sdI* has label (o, j,d;) and its ith child has label (¢/,5,d;y), then j =i’ (and if its
ith child has label $, then 5 = 0). Moreover, even the d; information is superfluous,
because i is the number of the unique child that is an (ex-)ancestor of v (or has
label §). Thus, it would have sufficed to mark all (ex-)ancestors of v. However, the
addition of this information simplifies the formal definition of M’.

%) (6,1,d3)
T I -
a/L\g d e /’y\ d e (v,3,dy)
U/\v po 1 (6,2,d5) f
| é\ I e
b v f o c a o ¢ (a,0,dy)
VAN I N R N
d e b a $ q b a $ g

Fig. 3. The trees s, sy, and s,

Figure 3 shows a tree s in which the node v = 231 is encircled, the corresponding
tree s, which is obtained from s by turning v into the root node and reversing the
order of the ancestors of v, as described above, and the tree sdi* obtained from s,
by relabeling each ancestor of v by the correct triple (o, j,d;). As an example of the
translation EncPeb, consider Figure 4 which shows the tree s = a(8,7(d)) together
with the tree EncPeb(s).

Formally, the tree EncPeb(s) is defined as follows. First, define for every v € V (s)
the function enc, that maps every u € V (s) to the corresponding node in the subtree
sdir of EncPeb(s). Let w be the longest common ancestor of u and v, let u' € N*
such that v = wu’, and let wy = v,ws,...,w, = w, m > 1, be the nodes on the
path from v to w (i.e., w; is a child of w;41 for 1 <i < m). Then

enc, (1) = v(k + 1)swap, (1) - swap, (w1 '

with k = rank s (s[v]). Figure 5 shows the nodes u, v, and w; in the tree s. Obviously,
enc, is an encoding, i.e., for every u,u’ € V(s)

(P0) ency(u) = ency(u') iff uw=u'.
Using enc,(u) we can define the set of nodes of EncPeb(s) as

V(EncPeb(s)) = V(s) U {enc,(u) | u,v € V(s)}
U {enc,(g)swap,(e) | v € V(s)}.

The labels of the nodes of EncPeb(s) are as follows. Note that nodes in V' (s) are
labeled by primed copies of the corresponding symbols of X', because their rank in
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Fig. 4. The trees s = a(8,7(d)) and EncPeb(s).

Fig. 5. The nodes u, v, and w; in the tree s.
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EncPeb(s) has increased by one. Denote the tree EncPeb(s) by s’. Then, for every
u,v € V(s),

(P1) s'[u] = o' where o = s[u]

(P2) if u is not an ancestor of v then s'[enc, (u)] = s[u]

(P3) if u is an ancestor of v then s'[enc, (u)] = (s[u], childno(u), dswap, (u))

(P4) s'[ency (e)swap, (¢)] = $.

Note that the information childno(u) is available at node enc,(u) of s'. If u is
an ancestor of v this is by definition of the relabeling, viz. P3, and otherwise, by
the definition of enc, (u), we get

(P5) if w is not an ancestor of v then childno(u) = childno(enc,(u)).

In the next lemma the 0-dptt Mg,cpeb realizing EncPeb is constructed, and, for
a given n-ptt M, the (n — 1)-ptt M’ is constructed such that the composition of
TMgoepor ad Tarr equals the translation mas realized by M.

Lemma 9. For every n > 1, n-PTT C 0-DPTT o (n — 1)-PTT and
n-DPTT C 0-DPTT o (n — 1)-DPTT.

Proof. Let M = (X, A, Q, qo, R) be an n-ptt, and let J = max{ranky (o) | 0 € X'}.
We will define the deterministic 0-ptt Mgncpenr and the (n — 1)-ptt M’ such that
TM = TMgpepen © TM'- The 0-ptt Myncpen realizes the mapping EncPeb described
above this lemma, i.e., it adds to each node v of rank k of an input tree s, as
(k + 1)th subtree, the tree sd'* (cf. Figure 3). It has initial state ¢ which copies the
current node v of rank k¥ (adding a prime to its label), and spawns the generation
of sgir as (k + 1)th subtree, in state ¢o. In the subtree s‘jir, Mgncpeb uses states q,,,
v € [J], to denote that the previously processed node had child number v. Finally,
it has a state g;q that realizes the identity.

Define Mgneper, = (X, I, S, q, P) with

r=xuf{c'*M|sex® >0}
U {(0,j,d))*) | o € ) k> 0,i € [k],j €[0,J]}
U {(0,j,diy1) "D | o € XK k> 0,5 € [0, ]}
U {$(0)}

and S = {q, ¢oo, q1,---,qs,Gia}. For every 0 € %) k>0, j € [0,.J], and v € [k]
let the following rules be in P.

(q,0,\,7) — d'({g,downy), ..., {q,downg), (¢eo, stay})
<q00707 )‘a.7> — (Uajadk+1)(<qid7down1>a ey (qida dOWHk),fj)
<qtla g, Aa]) — (Uaja dV)((Qida dOWIl1>, ey <Qid7 dOWIlyfl), fja

(Gia,down, 1), ..., (¢ia, downy))
(Gia,0, A, 7)) — o({gia,downy), ..., {giq, downy))

where £ = $if j = 0, and & = (g;,up) if j € [J]. This ends the construction of
Myncpen- It should be clear that indeed Tasg, .., () = EncPeb(s) for every s € T’
In particular this implies that the properties P1 — P5 (stated before the lemma)
hold for s' = Tass, oo, (9)-

We now define the (n — 1)-ptt M’ = (I, A,Q, go, R'). Since, in the correctness
proof, we will need to know which rules »’ in R’ were constructed from the rule
r € R, we will call ' related to r if it is constructed from r. Then R’ is defined as
{r' | 3r € R : v is related to r}.

Let €Q,0€ X% k>0,be{0,1}=", 5 €0,J], and let r = ((g,0,b, ) = ()
be a rule in R. The new rules of M’ are defined by the following case distinction on
the bit string b.
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zero pebbles) b = X If ¢ # (¢’',drop) for any ¢' € @ then let the rule

first pebble not at current node) b = 0b" for some b’ € {0, 1}<” L. Let the rule
q,0,b',7) = ¢ be related to r, and, for every i € [k] and j' € [J + 1], let the
rule

= (
(
(¢, downkH) be related to r.
= (
(

(q,(0,4,di), 0, 3"y = CUd, ) < (d,¢") 1 4 € Q,(p,¢") € di]

be related to r.

— (first pebble at current node) b = 1’ for some b’ € {0,1}<""L: If o’ = A and ( =
(¢',lift) for ¢' € @, then let, for every j' € [J+1], the rule (q, (0, j, dk+1),0,7") =
(¢',up) be related to r, and otherwise let, for every j' € [J + 1], the rule

(q,(0,4,dry1),0',5") = Cl{d',0) < (d',¢") | ¢ € Q,(p,¢") € dpyi]

be related to r. (Remark: the rules with j' # k+1 are useless, but their presence
simplifies the correctness proof.)

This concludes the construction of M’. Clearly, M’ is deterministic if M is.

Let s € Ty and s’ = Tafg,p. (). In order to prove the correctness of the
construction, we extend the notion of relatedness from rules to sentential forms:
For £ € Tauc,,, and ¢ € Tauvc,, € is related to ¢ if & = Elenc], where [enc]
is the substitution [{g,h) (q,enc( ) | ¢ € Q,h € IC, 5] and the “encoded”
input configuration enc(h) € IC,,_1 5 of M' is defined as follows: if h = (u, \) with
u € V(s) then enc(h) = h, and if h = (u,vvy - --v;) with u,v,v1,...,v € V(s) and
[ €[0,n —1] then

enc(h) = enc(u,vvy -+ v;) = (ency(u), ency(vy) - - - ency (vy)).

Note that for every rule r' € R’ there is precisely one rule r in R related to r'
which we denote by rel(r’). We first show, in Claim 1, that if a rule is applicable
to a configuration, then there is related rule applicable to the related configuration,
and vice versa.

Claim 1: Let (q,h) € Cpr,s and r € R.

r is applicable to (g, h) iff there is a rule r' € R such that
rel(r') = r and 7' is applicable to {g,enc(h)).

Case 1, h = (u,\) for u € V(s): Let 0 = s[u] and j = childno(u). Then, r is
applicable to (g, h) iff its left-hand side is (g, o, A, j). By the definition of R’ this is iff
there is an ' € R' with rel(r') = r and left-hand side (g,0’, A, j). Since enc(h) = h
and, by P1, s'[u] = o', this is iff 7’ is applicable to {(g,enc(h)).

Case 2, h = (u,vvy - - vp) foru,v,vy,...,v € V(s) and !l € [0,n—1]: Let 0 = s[u],
p € {0,1} with p =1 iff v = u, b’ € {0,1} with b'(u) = 1 iff v, = u for p € [I], and
j = childno(u). We distinguish two subcases.

Case (i), u is not an ancestor of v: Since p = 0 (because u # v), r is applica-
ble to (g, h) iff its left-hand side is (g, 0,00, 7). By the definition of R' this is iff
there is an ' € R’ with rel(r') = r and left-hand side (g,o,b’, j). Since enc(h) =
(ency (u), ency(v1) - - - ency(vy)), s'[ency (u)] = s[u] by P2, childno(enc,(u)) = childno
(u) by P5, and enc,(v,,) = enc,(u) iff v, = u for p € [I] by PO, this is iff #' is appli-
cable to (g,enc(h)).

Case (ii), u is an ancestor of v: Let j° = childno(enc,(u)) and i = swap,, (u). Now
r is applicable to (g, h) iff its left-hand side is (g, o, pb’, 7). By the definition of R’
this is iff there is an 7’ in R’ with rel(r') = r and left-hand side (q, (7, 7,d;),b’, ")
(note that, by the definition of swap,(u), ¢ € [k] if p =0 and ¢ = k + 1 otherwise).
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Since enc(h) = (ency(u),ency,(vy)---ency(vy)), s'[ency(u)] = (o, j,d) by P3, and
enc,(v,) = ency(u) iff v, = u for p € [I] by PO, this is iff r' is applicable to
(g, enc(h)), which concludes the proof of Claim 1.

Next we prove a claim about the result of applying related rules r and r' to re-
lated configurations. More precisely, the claim shows that the application of related
rules to related configurations yields related sentential forms. Recall, for an input
configuration h, the definition (#) of the substitution [h]as s at the end of Section 3;
we will denote it here by [h], and similarly we denote [enc(h)]ar s by [enc(h)].

Claim 2: Let (q,h) € Cpr,5, r € R applicable to (g, h), and ' € R" applicable to
(g,enc(h)), with r = rel(r'). Then rhs(r')[enc(h)] = rhs(r)[h][enc].

Let 0 € X% k& >0,b¢ {0,1}=", and j € [0,.J] such that (0,b,j) = test(h).
Thus, r is a (g, o, b, j)-rule.

If rhs(r) € Tau(Q,stay) then rhs(r’) = rhs(r) and, since there are only stay
instructions, applying the substitution [h][enc] is equivalent to applying [(g, stay) <
(g,enc(h)) | ¢ € Q] which, for the same reason, is equivalent to applying [enc(h)].

If rhs(r) = (¢', ) with ¢ € I, 5 ; — {stay} then we distinguish the following three
cases. Let u € V(s).

Case 1, ¢ = drop: If h = (u, A) then enc(h) = h and rhs(r’) = (¢', downg1).
Thus, rhs( Nenc(h)] = (¢',downgi1(h)) = (¢, (u(k + 1),\)) which, by the def-
inition of enc, equals (¢',enc(u,u)) = (¢, drop(h))[enc] = rhs(r)[h]lenc]. If h =
(u,vvq -+ vp) for v,v,...,up € V(s) and I > 0, then rhs(r') = rhs(r). Thus,
rhs(r')[enc(h)] = (q’,drop(encv(u),encv(vl)---encv(vl))) = (¢, (enc, (u), ency(vy1)

--ency(vy)ency (u))) = (¢, enc(u, vvy - - - vju)) = {¢',drop(h))[enc] = rhs(r)[h][enc].

Case 2, ¢ = lift: If h = (u, u) then rhs(r') = (¢’, up) and enc(h) = (enc,(u), A) =
(u(k + 1), A). Consequently, rhs(r')[enc(h)] = (¢',up(u(k + 1),\)) = (¢, (u,\)) =
(¢, enc(u, A)) = (¢, lift(h))[enc] = rhs(r)[h][enc].

If h = (u,vvy ---vu) for v,vy,...,09 € V(s) and I > 0 then rhs(r') = rhs(r).
Hence, rhs(r')[enc(h)] = (¢',lift(enc, (u), enc, (v1) - - - ency (vy)enc, (w))) = {¢', (ency(
w),ency(vy) -+ -ency(vy))) = {¢',enc(u, vvy - - -vp)) = (¢, lift(h))[enc] = rhs(r)[h][enc].

Case 3, ¢ € {up,downy,...,downg}: If h = (u,\) then rhs(r') = rhs(r),
enc(h) = h, and enc(p(h)) = p(h). Thus, on rhs(r), [enc(h)] = [h] = [h][enc]. If
h = (u,vvy ---vyp) for v,vy,...,u € V(s) and [ > 0 then we distinguish the following
two cases, where p denotes the string vvy - - v; and p’ denotes enc, (v1) - - - enc, (vy)-

Case (i), u is not an ancestor of v: Then rhs(r') = rhs(r), i.e., it suffices to show
that @(enc(h)) = enc(p(h)). Now enc(h) = (enc,(u),p') = (v(k' + 1)swap, (wy) -
swap, (wy—1)u',p’), where k' is the rank of s[v], w; = u,ws, ..., w,, are the nodes on
the path from v to the longest common ancestor w,, of v and v, and u = w,,u’. Since
u is not an ancestor of v, v’ € N¥. Thus, applying ¢ to enc(h) amounts to applying it
to u', and hence to u. For a node z, define ¢(z) = parent(z) if ¢ = up, and ¢(z) = zi
if ¢ = down;. Then ¢(enc(h)) = (v(k' + 1)swap, (w1) - - - swap, (Wm—1)(u'),p’) =
enc(wmp(u'), p) = enc(p(wmu'),p) = enc(p(u),p) = enc(p(h)).

Case (ii), » is an ancestor of v: If ¢ = up then rhs(r') = (¢/, down;) where
i = swap, (u) by P3 and the definition of 7. Thus, we must show that enc(up(h)) =
down;(enc(h)). Now up(h) = (4, p) where u = parent(u). Thus, enc,(u) = v(k' +
1)swap, (wy) - - - swap, (wp,—1), where wy = v, ..., wy, = @ are the nodes on the path
from v to @. This implies that wy,—1 = u and swap,(wm,-1) = 14, i.e., enc(a,p) =
down; (v(k' + 1)swap,, (w1) - - - swap,, (wm—2),p") = down,(enc(h)).

If ¢ = down; for i € [k], then we distinguish whether or not i is an ances-
tor of v. If wi is not an ancestor of v, then rhs(r’) = rhs(r) and we must show
that enc(p(h)) = ¢(enc(h)). Since enc,(ui) = enc,(u)i we get enc(down;(h)) =
enc(ui, p) = (enc, (ui), p') = (enc, (u)i, p') = down;(enc, (u),p") = down;(enc(h)).

If wi is an ancestor of v, then rhs(r’) = (¢’,up), i.e., we must show that
enc(down;(h)) = up(enc(h)). Now down;(h) = (ui,p) and enc(h) = (v(k'+1)swap,(
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wy) - - -swap, (Wm—1),p'), where k' is the rank of s[v] and wy = v,...,wy, = u are
the nodes on the path from v to u; thus, up(enc(h)) = (v(k'+1)swap, (wy) - - - swap, (
Wm_2),p'). Since wy,_1 = wi, this equals enc(ui, p) = down;(enc(h)).

This concludes the proof of Claim 2.

The next claim shows that the application of related rules to the same node
in related sentential forms (i.e., £ and ¢ with £ = &[enc]), yields again related
sentential forms. Recall the definition of =y s from Section 3: If £ =7 € then
there is a leaf p in & such that € = £[p < ([h]], where £[p] = (g, h) € Cprs and C is
the right-hand side of a rule r of M applicable to (g, h); we say that “¢ =5 éby
rule 7 at node p”.

Claim 3: Let £ € Tauc,,,, and n € Tauc,,, , with n = Elenc]. f &€ =5 £ by
rule € R at node p € V(§) and n = s 1 by rule r' at node p, with r = rel(r'),
then 77 = £[enc].

Note that if £[p] = (g, h) then, by the definition of [enc], n[p] = (g, enc(h)). Now
Claim 3 can be proved using Claim 2 as follows:

7 = €lenc][p  ths(r)[enc(h)]
= ¢[enc][p « rhs(r)[h][enc]] (by Claim 2)
= {[p ¢ rhs(r)[h]][enc] (associativity of substitution)
= ¢[enc].

Last but not least, it is shown in the final claim of this proof that relatedness
(viz. the application of [enc]) is preserved in arbitrary computations of M and M'.

Claim 4: Let I > 0 and n € TAUCMr,s/- Then

{(qo, ho) :>lM,73, n iff 3¢:{(qo, ho) :>IM75 ¢ and &[enc] = 1.

The proof of Claim 4 is by induction on the length [ of the computations. For
[ = 0 the statement is obvious because (qo, ho)[enc] = (qo, ho). Let us now prove the
induction step.

First, the 4if’ part: Let &, & be sentential forms of M on s such that

(q0, ho) =hrs € =s 3

and let p € V(§), {g,h) € Cu,s, and 7 € R be the involved node, configuration,
and rule, respectively, of the last step of the computation. Let 77 = ¢ [enc]. By
induction, (go, ho) =%y n with n = &[enc]. Tt follows from the definition of [enc]
that n[p] = (g,enc(h)). By Claim 1 there is a rule r’ applicable to (g, enc(h)) with
rel(r') = r. Hence 5 =y o Elenc] = 7j by Claim 3.

Second, the ‘only if” part: Let 1,7 be sentential forms of M’ on s’ such that

<q07h0> ilJ\/I’7s’ n iMﬂS’ ﬁ:

and let p € V(n), (¢,h') € Capr s, and ' € R' be the involved node, configuration,
and rule, respectively, of the last step of the computation. By induction, there
exists £ such that (go, ho) :>lM’s & and [enc] = 7. Hence, by the definition of [enc],
h' = enc(h) for some h € IC,, 5 and, using Claim 1, rel(r') is applicable to (g, h) at
node p of ¢. Let € be the result of that application. Then & [enc] = 77 by Claim 3.
This ends the proof of Claim 4.

Since &[enc] =t iff £ = ¢, for ¢t € Ta, it follows immediately from Claim 4 that
v (8") = T (s). Furthermore, since s’ = Targ, ., ($) We obtain that Tz, ., 0Ta =
T™ - O
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From Lemma 9 we obtain the decomposition result of this section, our first main
theorem: every n-ptt can be decomposed into the composition of n 4+ 1 0-ptts, and
similarly in the deterministic case. In more detail, the first n translations of this
composition are in fact (very simple) deterministic transducers: they all realize the
total function EncPeb.

Theorem 10. For everyn > 1,n-PTT C 0-PTT"™! and n-DPTT C 0-DPTT"*!.

A consequence of Theorem 10 is the equality of the composition closure of all
ptts with the composition closure of all 0-ptts, and similarly in the deterministic
case.

Corollary 11. PTT* = 0-PTT* and DPTT* = 0-DPTT".

In terms of databases, Corollary 11 means that the query language of pebble
tree transducers, i.e., the composition closure PTT* (DPTT?Y), is equal to the query
language of 0-pebble tree transducers.

We note here that the key result of [MSVO00] is that inverse n-ptt translations
preserve the regular tree languages, i.e., if 7 € n-PTT and R € REGT, then
771(R) € REGT. It follows from Theorem 10 that, in fact, it suffices to show
this for 0-ptts.

5 Pebble Tree Transducers and Macro Tree Transducers

In this section we compare the model of pebble tree transducers with that of macro
tree transducers, well known from tree language theory [Eng80,CF82,EV85,FV98].
Since, according to Subsection 3.2, O-pebble tree transducers can be thought of as
attribute grammars, the (total deterministic) zero pebble case is closely related to
the well-known comparison of attributed tree transducers with macro tree trans-
ducers (see, e.g., [Eng81,CF82,EM99,FV99]).

The main result is that an n-pebble tree transducer can be simulated by the
composition of n + 1 macro tree transducers (for short, mtts). Moreover, it is shown
that mtts can be simulated by compositions of ptts. Thus, the composition closure
of all ptts is equal to the composition closure of all mtts. To be precise, in the
nondeterministic case, the mtts must additionally be allowed to use stay instructions
(“stay-mtts”). These are the second and third main results of this paper.

Let us now discuss these results in more detail. The macro tree transducer can
be obtained from the 0-ptt in the following way: First, consider a 0-ptt M that uses
no up or stay instructions, i.e., only down instructions. If we additionally allow M to
have general rules (with arbitrary right-hand sides in T's (@, down) ), then M is a top-
down tree transducer [Rou70,Tha70,AU71,Eng82,GS97] (cf. also the discussion on
top-down tree transducers in Subsection 3.1 of [MSV]). Now, by adding parameters
(of type output tree) to the states of the top-down tree transducer, we obtain the
macro tree transducer (for short, mtt). A nice consequence of the fact that mtts have
no stay and up instructions, is that they have no infinite computations, i.e., they
terminate for every input tree. It was proved in the previous section (Corollary 11)
that the composition closure of all ptts is equal to the composition closure of all
0-ptts. Hence, in order to prove the equivalence to the composition closure of all
mtts, it suffices to show how to simulate O-ptts by mtts and vice versa.

In order to formalize the simulation of 0-ptts by mtts, we first define a more
general model which is of interest on its own: the n-pebble macro tree transducer
(for short, n-pmtt). It is obtained from the n-ptt by adding parameters to the states.
Then, an mtt is a 0-pmtt that uses only down instructions. In order to prove that
a 0-ptt can be simulated by an mtt we first eliminate the up instructions by the
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use of parameters (Lemma 34), thus obtaining a 0-pmtt without up instructions,
but which still uses stay instructions: a “stay-mtt”. Using Theorem 10, this shows
that n-PTT C sMTT""!, where SMTT denotes the class of translations realized by
stay-mtts (and similarly for the deterministic classes).

In the deterministic case we prove, in Theorem 31, that stay moves can be elim-
inated from deterministic stay-mtts, i.e., the translation of a 0-dptt can be realized
by a deterministic macro tree transducer, and hence an n-dptt can be realized by the
(n 4+ 1)-fold composition of deterministic macro tree transducers (Theorem 35). As
suggested in the Introduction, Theorem 31 is, technically speaking, one of the key
results of this paper: it involves removing nonterminating computations (which stay
at a node of the input tree) from the stay-mtt; this is done in several intermediate
stages in the proof of Theorem 31.

In the nondeterministic case it can be shown that stay-mtts are “close” to mtts,
in particular that they have the same output languages (which is of interest for the
type checking problem) and that in a composition of stay-mtts, all except the first
can be mtts (Theorems 30 and 29, respectively). The reason why a nondeterministic
stay-mtt cannot always be simulated by an mtt is that 7a/(s) may be infinite, i.e.,
there are stay-mtts M that generate infinitely many output trees for one input tree
s. A prototypic example of such a transducer is the nondeterministic 0-ptt My of
Example 6 that realizes the translation mony;: it inserts above each o-labeled node u
of the input tree s € T's;, arbitrarily many nodes labeled by the (unary) symbol &. In
fact, this translation can be used in order to simulate an arbitrary stay-mtt M by an
mtt: first My, translates s into the “(arbitrarily) blown up” version s’ € mony(s) of
s by inserting unary nodes, and then a macro tree transducer M’ can be constructed
that on s’ simulates the stay-mtt M (on s): If M does a stay move, then M' moves
down on the unary (barred) nodes. Thus, sMTT C MONoMTT (Lemma 27), where
MON is the class of all translations mony;.

The structure of this section is as follows. In Subsection 5.1, pebble macro tree
transducers are defined and some of their basic properties are proved. Subsection 5.2
deals in particular with properties of deterministic pmtts. Subsection 5.3 defines
macro tree transducers and stay-mtts, and investigates their relationship. Subsec-
tion 5.4 presents the simulation of ptts by compositions of (stay-) macro tree trans-
ducers. Finally, in Subsection 5.5 the simulation of (stay-) macro tree transducers
by compositions of ptts is presented, and it is proved that the composition closures
of ptts and (stay-) mtts coincide.

5.1 Pebble Macro Tree Transducers

The n-pebble macro tree transducer (for short, n-pmtt) is obtained from the n-ptt
by allowing each state to have a finite number of parameters yy,...,ymn of type
output tree (in addition to the, implicit, parameter of type “input configuration”).
Moreover, the right-hand side of a rule of an n-pmtt is an arbitrary tree over output
symbols, state-instruction pairs (¢’, p) of the same rank as ¢’, and parameters. For
instance, (g, up)(a,o(y1,{q,down;))) is a possible right-hand side (for a state of
rank > 1), where ¢ and ¢’ are of rank 2 and 0, respectively. Viewing an n-pmtt as a
functional program this means that each state (of rank m) is a function with m + 1
parameters, and in the function body each case of the case distinction consists of
an arbitrary expression over output symbols, function calls, and parameters. Recall
from Subsection 2.1 that Y}, denotes the set {y1,...,ym}-

Definition 12. For n > 0, an n-pebble macro tree transducer is a tuple M =

(X, A,Q,q, R), where X and A are ranked alphabets of input and output symbols,
respectively, @ is a ranked alphabet of states, go € Q(® is the initial state, and R
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is a finite set of rules of the form

<anabaj>(yla"'aym) - Ca

where ¢ € QU™ m > 0,0 € X, b e {0,1}=", j € [0,.J] with .J = max{ranks(c) |
o € X}, and ¢ € TauQ,1,.,,;)(Ym)- A rule r as above is called (g, 0,b, j)-rule or
g-rule, and its right-hand side ( is denoted by rhs(r). For a subset Q' of @, a g-rule
with ¢ € Q' is also called Q'-rule.

If for every ¢, o, b, and j there is at most one (g, 0,b, j)-rule in R, then M is
deterministic (for short, M is an n-dpmtt). If there is at least one such rule then
M is total. O

Note that an n-ptt with general rules (cf. Lemma 2) is the special case of an
n-pmtt in which each state has rank zero, i.e., has no parameters. For an n-pmtt
M, the ranked set of all configurations of M on s, denoted by Chs,s, is defined

s (@,IC, s) (recall, from the beginning of Subsection 2.1, that this means that
(g,h) € (Q,IC, ) has the same rank as ¢). A rule (q,0,b,5)(y1,...,Ym) = C of M
is applicable to a configuration (g, h) if (o,b,j) = test(h). A sentential form (of M
on s) is a tree over AU Cjy 5.

Let & be a sentential form and u € V(&). Then u is outside in & if no proper
ancestor of u is labeled by a configuration. The computation relation of M on s € T’
is defined as follows: For £,¢" € Taucy,,, £ = m,s & iff there are

(N) a node v outside in £ labeled by (g, h) € C'j(\ffn), m > 0, and
(R) arule {(q,0,b,5)(y1,...,ym) = ¢ in R applicable to (q, h)

such that & = &Jv < ([h]r,s] where

[PIns = [{d', ) < (d', 0(h)) | 4" € Q¢ € Liesy(n)]- (#)

Recall from Subsection 2.2 that {[v < n] denotes &[v < nly; < t/vj | j € [m]]]
Recall also that the substitution [h]ar,s is just a relabeling: every node labeled
(¢', ) is relabeled by (¢', ¢(h)).

The translation Ty; realized by M is defined in the same way as for an n-ptt. The
class of all translations realized by n-pmtts is denoted by n-PMTT. If the trans-
ducers are deterministic, then the respective class is denoted by n-DPMTT. The
unions of these classes over n € N are denoted PMTT and DPMTT, respectively.
Note that n-PTT C n-PMTT, and similarly for the deterministic case.

Ezample 13. In order to demonstrate that the addition of parameters gives a proper
extension to pebble tree transducers, we construct a deterministic 0-pebble macro
tree transducer that realizes a translation that has an exponential size-to-height
relationship, and therefore cannot be realized by any pebble tree transducer by
Lemma 7. Let M = (E,E,{q(()o),q(l)},qo,R) where ¥ = {a",e(®} and let R
consist of the following four rules.

(90,a,1,0)  — (g,downi)({(g,downy)(e))
(qo,€,\,0 — af(e)
— (g, downy)({g,down;)(y1))

)
(qaaaA71>(y1)
(qaea)‘a 1)(y1) - a(e)

Now, let us consider how M computes the output tree 7ps(s), for the input tree

s = a(a(e)):
(90, ho) = (a0, (£, N)) =15 (0, (1, 1)) (g, (1, M) (e))
=5 (0, (2, M) (g, (2, ) (g, (1, A))(e)))
>Ms @ al(a, (2, 0) (g, (1, )}(e))
=5 ala({g, (1, 1)) (e)))
=5 a(a((g, (2, 1)) ((g, (2, 1)) (e))))
=115 ala(a(ale)))).



It should be clear that 7y = {(a™(e),a®" (e)) | m € N}. Thus, 73 is not of
polynomial size-to-height increase and therefore

0-DPMTT — PTT # o.
O

In the sequel we will also apply =ar,s to trees with parameters, i.e, trees in
Taucy,, (Y); then, the parameters are just viewed as output symbols of rank zero.

Note that, by the requirement in (N) that v is outside, the order in which
configurations in a tree { € Tauc,,,, are replaced is top-down; in other words, ¢ is
evaluated in a “call-by-name” (or “lazy”) fashion: the value of an actual parameter
is not evaluated until the “function-call” has been evaluated and the parameter
is needed. In terms of macro tree grammars this order of replacement is called
“outside-in”, or “OI” for short (cf., e.g., [Fis68,ES77]). Macro tree grammars (also
called context-free tree grammars) can be obtained from a pmtt by removing the
tree-walk facility (then the configurations become the states, viz. the nonterminals).
Just as the computations of an n-ptt can be simulated by a regular tree grammar, as
shown in the beginning of Section 3, it is possible to obtain, for a fixed input tree s,
a computation by =s s (for a pmtt M) as the derivation of a macro tree grammar
Gr,s: The (ranked) nonterminals of G ps,s are the configurations (g, h) in Cir,s and
if (¢,h)(y1,-.,Ym) =um,s @ then Gy s has the production (q, h)(y1,...,ym) — a.
For macro tree grammars the OI requirement is superfluous, i.e., the same tree
language is generated with unrestricted order of replacement (see Theorem 4.1.2
of [Fis68]; see also Section 3.2 of [EV85]). This implies that also for pmtts the
outside-in requirement in (N) can be dropped, without changing 7,. We keep the
restriction because it is technically more convenient.

As explained in Subsection 3.3, n-ptts are the same as RT (n-Pebble) transducers.
From the previous paragraph it should be clear that we just have to replace the
regular tree grammar (RT) by the context-free tree grammar (CFT) in order to
obtain a formalism that is equivalent to the n-pmtt: the CFT(n-Pebble) transducer.
In particular, the O-pmtt is the same as the CFT(Tree-walk) transducer, which is
related to the so-called macro attributed tree transducer of [KV94,FV98] in the
same way as the 0-ptt is related to the attribute grammar (see Subsection 3.2).

Convention 14. In order to make the rules of n-pmtts more readable, we fix the
convention (both for the n-ptts of Definition 1 and the n-pmtts of Definition 12)
that stay instructions may be omitted, i.e., instead of (g, stay) for a state ¢, we may
simply write q.

Since pmtts have stay moves, their rules (q,0,b,7)(y1,.-.,ym) — ¢ can be re-
stricted in such a way that each ( has one of the forms

(d,0)({qr,stay)(yr, - ym), - -, {ar,stay) (Y1, .. ., ym)) (navigation)

(=1 0({q1,stay)(yi,--->Ym),-- -, (qk,stay) (Y1, - - -, ym)) (output)
Yu (parameter selection)

A pmtt is in normal form if the right-hand side of each of its rules has one of the
above three forms. Using Convention 14, this means that the right-hand side of an
n-pmtt rule is either a parameter, or of one of the following two forms:

— (' oMy, ym)s - ak(yr, - ym)) or
= (@5 Ym)s e k(Y15 Ym))-

It will be proved in the next theorem (Theorem 16) that every pmtt can be put
into normal form. This shows that the pmtt can also be viewed as a very simple
extension of the ptt in its original form (i.e., without general rules).
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To prove Theorem 16 we will use the following basic lemma (also to be used
in the proof of Theorem 31). It shows that a stay instruction in the right-hand
side of a rule can be expanded by “applying” an appropriate rule. This is similar
to the well-known technique of applying a production of a context-free grammar
to the right-hand side of another production. Note that the occurrence of the stay
instruction need not be outside.

Lemma 15. Let M = (X, A, Q, o, R) be an n-pmtt M, n > 0, let

r = <q1,0',b,j>(y1,---,ym1) - Cl and
ro = (Q2,Uab,j)(y1,---,ym2) — <2

be rules of M, and let u € V({1) have label (;[u] = (g2, stay). Assume, moreover,
that 7o is the unique rule in R with left-hand side {(g2,0,b,)(y1,..,Ym,). Let
M' = (¥,A,Q,q,R") be the n-pmtt with R’ = {r' | r € R} where r' = r for
r # ry, and

rll = <q170-7bvj>(y17' . '7y1’7’L1) - <1[[U, « CQ]]

(i.e., M’ is obtained from M by changing rule r; into r}).
Then ™' = TM.

Proof. We may assume that g1 # g2, that w € V({;) in 71 is the unique occurrence
of the state g2 in the right-hand sides of the rules of M, that rs is the unique gy-rule
in R, and that ¢» is not the initial state. In fact, if this is not the case, then change
(1[u] into (o, stay), and add the rule (G2, 0,b,j)(y1,-.-,Ym,) = (2 to R, where G
is a new state.

Note that, consequently, if (g0, ho) =7/,, € and (ga, h) occurs in £, then test(h) =
(0,b,7), as can easily be shown by induction on the length of the derivation. This
means that ro is applicable to (g2, h).

We also note that r; # ro and hence g2 does not occur in (5. This implies that
for every £ € Tauc,,,, there exists fe Taucyy,, such that £ =7 € by ¢o-rules only

(i.e., by applications of r2) and € has no outside occurrences of configurations (g2, h),
h € IC,, 5. To see this, let us say that an occurrence of (g2, h) in a sentential form
is almost outside if none of its ancestors is labeled (g, h') with ¢ # ¢2. It should
now be clear that after applying r, to all outside occurrences of configurations
(g2, b} in the sentential form &, the maximal number of almost outside occurrences
of configurations (ga, h) on a path of the sentential form has decreased. Thus, €is
obtained after repeating this process at most height(&) times.

Let s € Ts;. In order to prove the correctness of M’ i.e., that mas (s) = Tar(s),
first a claim is proved. Part (1) of the claim shows how to simulate M by M': if a
rule r other than r» is applied by M then M’ can apply the corresponding rule r’,
and if rule r5 is applied then M’ need not apply a rule, because the involved trees are
equal under the substitution ¥ (defined in the Claim); intuitively, ¥ carries out all
M’s computation steps for configurations (g2, h), h € IC,, 5. The second part of the
Claim shows how to simulate M' by M; it uses the fact mentioned above: starting
with any sentential form £ of M, there is a computation by =>ar s (using rule rs
only) such that the resulting tree € has no outside occurrences of configurations

(q?: h) .
Claim: Let the substitution ¥ be defined as

U = [(q2,h) < G[h] | b € IC, 4]
where [h] = [h]ar,s = [P]ar s is defined as in (#) above (below Definition 12).
(1) Let &,&' € Taucy,., such that & =75 £ by the rule r at node v of £. If 7 =1y
then &@ = ¢&'W, and if r # ro then {¥ =)y s ' by the rule r' at node v of £@.
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(2) For n,n' € TAUCM/,S and & € Tauvcy,.,, f n = 0’ and @ = n then there
exists ¢’ such that { =73, ¢ and {'¥ =7

Proof of part (1): & =5 & by r at v. By the definition of =/ s this means
that v is outside in £ and has label (g, h) € Cas,s, such that £ = £[v < ([h]] where
¢ is the right-hand side of the rule r, which is applicable to (g, h).

If r = rq, then ¢ = g2 and ¢ = (3, and so '¥ = v + ([h]]¥ = &P, because v
has label {(ga2, h) and ¢ does not occur in (s.

If r # r5 then g # g2 because r» is the only gs-rule. Note that since v is outside
in ¢, it is also outside in ¥ and &P /v = (£/v)W¥. This implies that (§&)[v] = E[v] =
(g, h). Thus, the rule r' of M', which has the same left-hand side as r, is applicable
to & at v. Let i’ be the result of that application. Hence, {¥ =57 s n'. Note also
that &'U = £Jv « ([h]]¥ = £P[v + ([h]¥] because v is outside and does not have
label (ga, h). We now distinguish two cases.

If r # ry, then ' =r and 'V = &P [v + ([h]] because g2 does not occur in (.
Since this equals n', £ =y 5 €'P.

If r =y, then ¢ = ¢1 and ¢ = (i, and ' = r{. In this case we obtain that
§0 =0[v « GPIP] = &P [v < (Guu < DI =7'.

Proof of part (2): If » = s ' then there is a node v outside in n such that
nv] = (g,h) € Cps and there is a rule ' in R’ with right-hand side ¢ that is
applicable to (g, h) such that ' = nfv < ([A]]. If £ € Tauc,,, such that £ = n,
then, by the remark above this Claim, there exists & such that & =>M.s ¢ only by
¢-rules, and € has no outside occurrences of configurations (g2, 1"y, W' € 1C, . By
part (1) of this Claim, &0 = &¥ = 1. Consider the outside occurrence v of (q,h)
in 7. Since the application of ¥ to ¢ does not replace any outside occurrences of
configurations (g2, k') (because there are none), é¥[v] = £[v]. Let & be the result
of applying the rule 7 of M to & at v. Then 1 = ¥ =  €'W by applying ' at v,
according to part (1) of this Claim. Hence £'? = ', which concludes the proof of
the Claim.

We are now ready to prove that 7 = 7ar. First, 7ar(s) € 7ar (5): If (qo, ho) =3/
t € Ta then, by part (1) of the Claim above, (go, ho) = (g0, ho)¥ =3, ¥ =t
(where ¥ is as in the Claim). Second, 7 (s) C 7ar(s): Assume that (o, ho) =73
t € Ta. Then, by part (2) of the Claim, (go, ho) =75 & for some £ € Tauc,,,, with
&0 = t. As mentioned before the Claim, there exists a & such that & =>M.s € by ¢o-

rules, € has no outside occurrences of configurations (g2, h), and EU = & by part (1)
of the Claim. Since £&¥ € T, £ has no outside occurrences of configurations (g, )
with ¢ # g2 (by the definition of ¥). Hence, £ € Ta and (qo, ho) =73, § = &P =1t

O

In the next theorem we prove that for every pmtt M there is an equivalent pmtt
M'" in normal form. In particular, if all states of M are of rank 0 (i.e., M is an
n-ptt with general rules), then M’ is a ptt (without general rules). Thus, this result
encompasses Lemma 2.

Theorem 16. For every n-pmtt M there is an equivalent n-pmtt M’ in normal
form. If M is deterministic, then so is M'. If all states of M are of rank 0, then M’
is an n-ptt.

Proof. Let M = (X, A,Q, qo, R) be an n-pmtt. Intuitively, M’ uses stay moves to
generate the right-hand side ¢ of a ¢g-rule of M node by node (in states (¢, w,m) for
node w of ¢, where m is the rank of ¢). Note that if M’ simulates a computation of
M, then parts of the right-hand sides of the rules of M might never be generated by
M', because of the outside-in order of applying rules. This is, however, no problem,
due to Lemma 15.
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Define M' = (X, A,Q U Q: U Qp, qo, R') as follows. Consider a rule

p: <q70-7b7j>(y17"‘7ym) %‘Cin R'

For every u € [m], let p,; be a state in (), of rank m and let the rule

<an,U,b,j>(y1,---,ym) _>ypt

be in R'. Let (¢,e,m) be a state in @, of rank m and let the rule

pl = (qaaabaj>(yla"'aym) - <(<787m)75taY>(pT(y17"'7ym)a--.apm(y17"'7ym))

be in R'. For every w € V(() let ({,w,m) be a state in @, of rank m and let the
rule

<(va7m)7avbaj>(y1a---:ym) -
Cwl((¢wl,m)(yr, ..o ym)s -5 (Gwk,m) (Y1, -+ -, Ym))

be in R', where k is the rank of ([w]. Obviously, M’ is in normal form (note that
we have used Convention 14).

The correctness of M', i.e., the equality Tpy = 77, is based on Lemma 15. In
fact, it should be clear that if Lemma 15 is applied iteratively to a rule ry = p’ for
all appropriate (Qr U Qp)-rules ro, the original rule p is reobtained. More precisely,
by first applying m @Qp-rules the rule p' is transformed into the rule

(q,O’, bvj>(y17 s ;ym) - (((:&m):StaW(Z/la s 7ym)7

and then size(() applications of @,-rules transform this rule into p (generating ¢ in
a way similar to a regular tree grammar).

Thus, by Lemma 15, M' is equivalent with the n-pmtt M" = (X, A, Q U Q. U
Q@p,qo, R"") where R" is the union of R and all (Q.UQp)-rules of M. Since, obviously,
the states in @, U@, do not occur in the sentential forms of M" that are generated
from {qo, ho), M" is equivalent to M. O

In some proofs it will be convenient to deal with total transducers. Therefore, we
show in the next lemma that every transducer can be made total, without changing
the translation; this is done by simply adding, for each missing g-rule, a rule with
(g, stay) as (root of the) right-hand side.

Lemma 17. For every n-pmtt M, n > 0, there is an equivalent total n-pmtt M'.
If M is deterministic, then so is M'.

Proof. Let M = (¥,4,Q,q,R) and let J = max{ranks(c) | ¢ € X}. Define
M' = (%, A,Q,q,R'), where R = RUC and for every o € X, ¢ € Q™ m > 0,
b€ {0,1}=", and j € [0,.J] such that there is no (g,o,b, j)-rule in R, let the rule

<q707b7j>(y17"'7yM) — (qasta‘Y>(y17"'7yM)

be in C. Clearly, M' is equivalent to M: 75y C 7p because R C R'. To see that
T C 7o, let s € Ty and let €, € Tauvc,,, = Tavcw,,- & =m s & by a rule in
R then also £ =7 s £ by the same rule, and if £ = 5 & by arulein C, then ¢’ = ¢
and thus, § =73, , {'. Hence, (qo, ho) =} 5 t € Ta implies that (qo, ho) =}/, t and
thus 0 C 1. O
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5.2 Deterministic Pebble Macro Tree Transducers

In this subsection some basic properties of deterministic pmtts are proved. First,
a general lemma about binary relations that are “one-step confluent” is proved.
Then it is shown that the computation relation of a dpmtt M is one-step confluent.
Together this implies that M either halts or computes forever on a given input tree,
and that 7,7 is a function. Finally it is proved that a computation of M is infinite
if it has a “cycle”.

Consider a deterministic pmtt M and an input tree s. It should be intuitively
clear that for a sentential form £ of M on s, either all complete computations by
=u,s starting with ¢ are infinite, or they are all finite, of the same length, and
with the same result (recall, from the Preliminaries, the definition of a complete
computation). This is proved in the following two lemmas, based on the fact that
= u,s is one-step confluent. A binary relation = is one-step confluent if £ = & and
& = & for & # & implies that there is a &' with & = & and & = ¢'. This is a par-
ticular confluence property which implies, e.g., that = is subcommutative [K1092]
(called ‘strongly confluent’ in [DJ90]). Though not explicitly mentioned, the result
that one-step confluence implies the statement of the following lemma, seems to be
folklore within the area of term rewriting; nevertheless, we present a formal proof.

Lemma 18. Let A be a set, = C A x A a binary relation that is one-step confluent,
and let £ € A. Either the complete computations by = starting with £ are all infinite,
or they are all finite, of the same length, and with the same result.

Proof. Consider two complete computations, both starting with £ € A. If one of the
computations is finite, then by Claim 1 the other computation is also finite, and
has the same length and the same result.

Claim 1: If £ =" & and € =7 & for 0 < i < j, &,& € A, and & # (i.e., there
is no £ € A such that & = §~), then j =i and & = &

We prove Claim 1 by induction on 4. For i = 0, £ # and thus j = ¢ and
& =& =& Fori+1>1, & =1 ¢ means that there is a £’ such that £ = ¢ =7 ;.
Since j > i+1, there is a ¢’ such that ¢ = ¢" =J~1 &. If ¢ = ¢’ then, by induction,
j—1l=i,ie,j=1i+1,and & = &. Now let £" # £'. By one-step confluence there
is a ¢ such that ¢’ = ¢ (which implies i > 1) and ¢" = £. By Claim 2, £ =71 &
and thus ¢ =% £;. Then, by induction (applied to ¢"), j —1 =14, i.e., j =i+ 1, and
& = &, which concludes the proof of Claim 1.

Claim 2: Let k> 1 and £,&',n € A. If £ =F ¢ % and € = 5 then n =k~ ¢,

The claim is proved by induction on k. For k¥ = 1 it follows from the one-step
confluence of = that n = ¢ and thus n =° ¢'. For k + 1, there is a & such that
&= & =k ¢ If np = & then the claim holds. Otherwise, by one-step confluence,
there must be an n; such that & = 7, and n = ;. By induction n; =+~ ¢ and
thus n =+ ¢ O

The following easy lemma shows that, for a dpmtt M and an input tree s, the
computation relation =7, is one-step confluent.

Lemma 19. For every dpmtt M and input tree s, = jr,s is one-step confluent.
Proof. We have to show that for &,&1,& € Tauc,,,, with & # &:
if € =ps & and € =5 &, then 3¢ with & = € and & =5 €

If £ =ms & for I € [2] then there are vi,v2 € V(§) and (1, € Tauc,,, such
that & = &Ju; « (] for [ € [2]. Since M is deterministic there is at most one rule
applicable to £[v]. Thus, v; = vy would imply the contradiction & = &. Hence,
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vy # vy. Moreover, by the “outside” requirement in (N), vy is not an ancestor of vy,
and vy is not an ancestor of vs. Hence & /vy = /vy and & /vy = £/v; and thus, for
le [2],& =M,s f’,where flzf[’l}l — ( |l€ [2]] O

An immediate consequence of Lemmas 18 and 19 is that 7 is a (partial) func-
tion, because if (s,t), (s,t') € Tar, then (go, ho) =}/, t is a finite complete compu-
tation and therefore, by Lemma 18, t' = t.

Lemma 20. For every dpmtt M, 7as is a function.

In fact, Lemmas 19 and 20 were already proved for a more general formalism (see
Subsection 3.3): In the proof of Lemma 3.14 of [EV86] it is shown that the derivation
relation of a deterministic CFT(S) transducer (where S is an arbitrary storage
type) is one-step confluent. Thus, Lemma, 19 is the special case that S = n-Pebble.
Similarly, Lemma 20 is a special case of Theorem 3.15 of [EV86].

Since the number of configurations of a dpmtt M is finite, every infinite com-
putation by M must have repetitions of a configuration. In fact the repetitions will
be in such a way that a configuration ¢ will “cycle”, i.e., it will compute a tree that
contains ¢ itself at an outside occurrence (¢ is “circular”). The next easy lemma
states that circular configurations lead to infinite computations.

Consider a deterministic n-pmtt M and an input tree s of M. A configuration

cé€ Cﬁ?g, m > 0, is circular if there is a t € Tayc,, , (Ym) such that

—c(y1,--,ym) =4, t and
— ¢ occurs outside in .

We now show how to apply a computation starting with some configuration, to
an outside occurrence of that configuration in a sentential form. Then, the iterative
application of such computations, applied to a node generated by the previous
computation, is formalized (“pumping”).

Application of a computation: Consider a computation ¢(y1, ..., ¥m) ﬁXLS t
(where ¢ not necessarily contains c) and consider a tree { € Tauc,, , (Ym) that has
an outside occurrence v of c. It follows from the definition of =, s and by induction,
that & :>X/I,s &Jv + t]. (In fact, if u is outside in #', then vu is outside in EJv + t']
and £[v < t'JJvu « ([h]ar,s] = &[v < t'[u « ([h]ars]]-)

Iteration of applications: If a sentential form &, (of M on s) has an outside
occurrence vy of ¢; € C(Mn?;), my1 > 0, and for every i > 1 there are ¢; and

ciy1 € C’%;*l), m;y1 > 0, such that ¢;(y1,-. ., Ym,;) :>X,[,S t; and t; has an out-

side occurrence v; of ¢;y1, then by composing the corresponding computations of
the form ¢ #j[,ﬂs [v « t], we obtain the infinite computation

o :>+M7s &olvo + t1] =>—]\t[,s & [uovy + t2] =>}t[75
S——— S——
&1 1P
+ . s — + ... $
=015 Silvovs v = b ] = - ()

-~

Eit1

Lemma 21. Let M be a dpmtt, s an input tree of M, and ¢ a sentential form of M
on s. If there exists a &’ such that & =>M.s & and ¢ contains an outside occurrence
of a circular configuration ¢, then every complete computation by =), starting
with ¢ is infinite.

Proof. Let v be the outside occurrence of ¢ in £’. Since ¢ is circular, there exists a ¢
such that c(y1,- .-, yYm) :>X,[7s t and ¢ has an outside occurrence v of c. Let & = £,
vg = v, and, for ¢ > 1, let t; = ¢, ¢; = ¢, and v; = v. Then there is an infinite
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computation of the form ($), displayed above. Thus there is an infinite computation
starting with ¢ and hence one starting with £. This implies, by Lemmas 18 and 19,
that every computation by = s starting with ¢ is infinite. ad

It can be shown that, in fact, the implication in this lemma is an equivalence,
i.e., if a complete computation of M starting with £ is infinite, then ¢ leads to a
circular configuration. Thus, infinite computations are due to “cycles”.

5.3 Macro Tree Transducers (with and without stay moves)

An obvious way to make sure that a 0-pebble macro tree transducer M has no
infinite computations, is to disallow up and stay instructions, or, in other words, to
only allow down instructions. The transducer model obtained from the O-pmtt in
this way, is the macro tree transducer of [Eng80,Eng81,CF82,EV85], defined next.

Definition 22. Let M be a 0-pmtt such that the rules of M contain no up instruc-
tions. Then M is a stay-macro tree transducer (for short, stay-mtt). If, moreover,
the rules of M contain no stay instructions (i.e., there are only down instructions)
then M is a macro tree transducer (for short mtt, and dmtt if M is deterministic).
If all states of an mtt are of rank zero, then it is a top-down tree transducer.

As an example of a (deterministic) macro tree transducer, reconsider the 0-dpmtt
M of Example 13: it has no up and no stay moves, i.e., it is a dmtt.

The class of all translations realized by stay-mtts is denoted SMTT, and DsMTT
for deterministic stay-mtts. The class of all translations realized by mtts is denoted
by MTT, and DMTT for deterministic mtts. The class of all translations realized by
total deterministic mtts is denoted by DyMTT. Note that translations realized by
total deterministic mtts are total functions. Note also that the analogue of Lemma 17
does not hold for mtts. In fact, DiMTT is the class of all total functions in DMTT.
We denote by T and DT (DyT) the classes of translations realized by top-down tree
transducers and (total) deterministic top-down tree transducers, respectively.

It follows from the definition that top-down tree transducers are 0-ptts (with
general rules) that only use down instructions. Thus, by Lemma 2, we obtain the
obvious fact that top-down tree transducers can be simulated by 0-ptts, as observed
in [MSV00] and stated in the next lemma.

Lemma 23. T C0-PTT and DT CO0-DPTT.

Usually (see, e.g., [EV85,FV98]) the rules of an mtt are defined as rewrite rules
in which variables of the form z; represent the down; instructions. Also, the child
number j is not present in the left-hand sides of mtt rules; clearly this information
can be incorporated into the states of an mtt, i.e., in order to transform an mtt
M defined in the pmtt formalism as above into one defined in the conventional
way, new states (¢q,j) would be introduced, for every state g of M and possible
child number j, and the initial state would be (go,0). From this it also follows, as
observed in Subsection 3.3, that the mtt is in fact the CFT(Tree) transducer, and
that the top-down tree transducer is the RT(Tree) transducer.

Since, in the definition of the computation relation of an n-pmtt, we have fixed
in (N) the order in which rules are applied to be outside-in (OI), this also fixes the
order for an mtt to be OI (or, equivalently, unrestricted; see Corollary 3.13 of [EV85]
and cf. the discussion after Example 13). Macro tree transducers with the inside-out
(TIO) order of rule application have also been studied in the literature. In the total
deterministic case there is no difference between the OI and IO translations. We also
note that MTT* = MTT],, where MTT|o denotes the class of all IO translations
realized by macro tree transducers (cf. Theorem 7.3 of [EV85]), and similarly in the
deterministic case.

We now cite two well-known facts about macro tree transducers.
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Fact 24. Inverses of (compositions of) macro tree transducers preserve the regular
tree languages, i.e., if 7 € MTT* and R € REGT, then 7 '(R) € REGT.

Fact 25. For an output language K of a composition of macro tree transducers,
ie., for K € MTT*(REGT),

(i) it is decidable whether or not K is empty, and
(ii) it is decidable whether or not K is finite; moreover, if the answer is yes, the list
of elements of K can be computed.

Fact 24 is proved in Theorem 7.4 of [EV85]. It immediately implies Fact 25(i):
since K = 7(R) is empty iff 771(Th) N R is empty, the result follows from the
fact that REGT is closed under intersection, and that emptiness of regular tree
languages is decidable (cf. [GS84]). Fact 25(ii) is shown in Theorem 4.5 of [DE9S].

In the remainder of this subsection, we relate the new class sMTT to the well-
known class MTT of translations realized by mtts. In particular, it is proved in
Theorem 31 that, in the deterministic case, stay-mtts realize the same class of
translations as mtts, i.e., DsMTT = DMTT, and it is proved in Theorem 29 that,
in the nondeterministic case, compositions of n stay-mtts can be realized by the
composition of one stay-mtt and n — 1 mtts, i.e., SMTT™ C sSMTToMTT" ', In the
nondeterministic case, which is proved first, the main proof is rather straightforward
(Lemma 27), while the deterministic case (Theorem 31) has a quite involved proof.

Due to nondeterminism and the presence of stay moves, a stay-mtt M can gen-
erate infinitely many output trees for one particular input tree (see Example 6).
This implies that M’s translation cannot be realized by an mtt, because, due to
the absence of stay moves, in every computation step of an mtt a node of the input
tree is “consumed”; hence, an mtt translates each input tree into a finite number
of output trees. In order to eliminate stay moves from nondeterministic stay-mtts,
we consider the translation mony; (of Example 6) that inserts unary ’s above each
symbol o of a tree. Then, we can decompose M into mony followed by an mtt M'.

Notation 26. Let MON be the class of all mony for all ranked alphabets X.

Note that the 0-ptt My of Example 6 that realizes mony is also a stay-mtt.
Thus, MON C 0-PTT and MON C sMTT.

In the next lemma it is shown how to remove the stay instructions from a stay-
mtt, by pre-composing with a translation in MON.

Lemma 27. sMTT C MON o MTT.

Proof. Let M = (X, A,Q, qo, R) be a 0-pmtt without up instructions. We construct
a macro tree transducer M’ such that monyx o7y = 737. The idea of the construction
of M’ is as follows. Instead of staying at some o-labeled node u of the input tree
s, the new transducer M’ will move down on the monadic piece of g-labeled nodes
that are present above the o-labeled node v in monjy;(s) that corresponds to . In
order to know, until we arrive at v, the child number of v in the original tree s, we
keep this information in the states of M’. That is, states of the form (g, j) are used
to simulate sequences of stay moves; this is done only on barred symbols, i.e., there
are no rules for states of the form (g, j) and input symbols . As soon as there is
a non-stay instruction, i.e., a down; instruction into state ¢, we change into a state
of the form (¢,down;). Such a state will move down the remaining monadic piece
of @’s, and at the o-labeled node v it will execute the down; move into state g.

Let M' = (IA,QUQ',q,R) with ' = YU X, ¥ = {6() | ¢ € ¥}, and
Q'=QU(Q,[0,J]) U(Q,down), where ‘down’ denotes the set {down; | ¢ € [J]} and
J = max{ranky (o) | 0 € X}.
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Let (q,0,\,7)(Y1,-.-,Ym) = ¢ be a rule in R. Then let the rules

<q,&,A,j>(y1’---,ym) %‘C@]!p
<(q7j)76-7A7 1>(y17"‘7ym) % <¢]!p

be in R', where the substitutions #; and ¥ are defined as

®; = [(¢',stay) < ((¢',j),downy) | ¢' € Q]
v = [[(ql,dOWIli> <~ ((q',downi),down1> | ql € Qal € [J]]]

Moreover, for every ¢ € Q™), m >0, 0 € ¥*) k> 1, and i € [k], let the rules

<(q7 dOWnZ’), o, A: 1>(y17 N 7ym) — ((q7 dOWnZ’), down1>(y1, .. 7ym)
((q,down;),a, A, 1) (Y1, - -, Ym) — (g, down;}(y1, ..., Ym)

be in R'. Obviously, the rules of M’ do not contain stay instructions anymore, and
thus M’ is an mtt.

Before we prove the correctness of the construction of M’, we need some auxiliary
notions. Let s € Ty and s’ € monyx(s). Recall that s’ is obtained from s by inserting
above each o-labeled node u, an arbitrary number of nodes ' labeled & (of rank
1), which are “associated” with u. We now define the function dec, which maps
each node u' of s’ to the associated node u of s: Let u' = iy ---i,, € V(s") with
i1y...,0m € [J] and m > 0. Define dec(u’) = iy, -4y, where v; < -+ < vy,
n > 0, are all indices p € [m] such that s'[¢1 ---i,—1] € X. Finally, we define the
substitution [dec] which changes a sentential form of M’ into one of M by relabeling
the configurations of M' appropriately. Let [dec] = [Q][down] where [Q] denotes
the substitution

[(r, (u',N))y < (¢, (dec(u'),N)) | ¢ =r for r € Q and
¢ =qforr=(q,j) €QxI0,J]]

and
[down] = [{(g, down;), (u', X)) <= (g, (dec(u')i,N)) | ¢ € Q,i € [J]].

In the sequel, we will also apply dec to input configurations h' of M’', i.e., if b’ =
(u', \) then dec(h') = (dec(u'), A).

Next we state, without proof, two obvious properties about configurations that
occur in sentential forms n of M’ on an input tree s’ € Tr with s’ € monyx(s) and
s € T's;. Since both properties are about (the child numbers in s) of nodes of s', we
call them N1 and N2. Let (go, ho) =} & 1 and let (p, (u’,A)) be a configuration
that occurs in 7. Then

(N1) ifp=(q,j) € (Q x[0,J]) then childno(dec(u')) = j, and

(N2) if p € @ then childno(dec(u’)) = childno(u').

Before it is proved, in Claims 2 and 3 that M’ is correct, i.e., that mony oy =
T, we first relate in Claim 1 the right-hand side (@;¥ of a (Q U@ x [0, J])-rule of
M' to the right-hand side ¢ of the corresponding rule of M.

Claim 1: Let s € T, s' € monsx;(s), h = (u,A) € ICy 4, and h' = (u', A) € ICq &
such that dec(h') = h and s'[u'] € X. Let [h] denote [Ah]r,s, and let [h'] denote
[W'1ar,s - Finally, let 0 = s[u] and j = childno(u). For every ¢ € Taur Yin),
m >0,

a,A,j(

(@0 T[dec] = CTA].

The proof of Claim 1 is by induction on the structure of (. If { = y € Y,,, then
¢®;¥[h' [dec] = y = C[h], because none of the substitutions replaces parameters.
Let I >0and (,...,( € TAUIU,A,,' (V).
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If ¢ = 6(C1y---,¢) with 6 € AW then (&;@[h'][dec] = 6(¢1 ;¥ [h'][dec], ...,
G @;%[h'][dec]) which, by induction, is 6(¢1[A], ..., G[R]) = 6(é, ..., G)[R] = ¢[R].
If ¢ = (g,stay)((1,. .., () with ¢ € Q) then

C¢jﬂp = <(q,]), down1>(C1€15j!l7, ceey Cl¢]!p) and
(P;¥[h][dec] = (g,dec(downy (h")))(¢1 @;¥[h'][dec], ..., P;@[h'][dec]).

By induction, and since dec(down; (k")) = dec(h') = h (note that s'[u'] = &), this

equals (g, h)(C1[A]; - ., G[h]) = ¢[A]-
If ¢ = (q,down;)(¢1, ..., () then

C¢]W = ((q,downi),dowm)(cld%w,. . .,ClquW) and
(&, w[h][dec] = (g, down;(dec(downy (h')))) (¢ B, @[h][dec], .. ., B, @ [h'][dec]).

By induction, and since dec(down; (h')) = h, this is (g, down;(h))(¢i [h], .- ., G[h]) =
¢[R], which concludes the proof of Claim 1.

Next, it is proved that mony o 7as C 7ar. In fact, since (qgo, ho)[dec] = (qo, ho)
and t[dec] =t for t € Tx, this follows by induction from Claim 2.

Claim 2: Let s € Ty and s’ € monyx(s). For every n,n' € TAUCM/,SI with
(90, ko) =3 o My i =0 ' by @ (QUQ x [0, J])-rule then ndec] = nr,s n'[dec],
and if n = & 0’ by a (@, down)-rule then n[dec] = n'[dec].

Let v € V(n) with n[v] = (p,h') and b’ = (u',N), ' € V(s'), such that ' =
nlv < ('[A']] where ¢’ is the right-hand side of a rule applicable to (p,h'). Let
u = dec(u').

Case p € (QU Q x [0,J]): Then s'[u'] = 6 with 0 = s[u], because p-rules
are only defined for barred input symbols. If p = (¢,5) € @ x [0, J] then, by N1,
childno(u) = j. If p = ¢ € Q then, by N2, childno(u) = childno(u'). This means that
in both cases (' = (@;¥ where ( is the right-hand side of a (g, o, A, j)-rule r of M and
j = childno(u). Since [dec] is a relabeling of configurations, v is outside in n[dec]
and labeled by the configuration (g, (u, A)). Thus, r can be applied to v: n[dec] = ar,s
nldec][v < ¢[R]]. By Claim 1 the latter equals n[dec][v < ('[A'][dec]] = n]v
¢'[W'T][dec] = n'[dec], which proves the claim for this case.

Case p = (¢, down;) € (Q™ down), m > 0: By the definition of [dec] this im-
plies that n[dec][v] = (g, (ui, \)). Moreover, ('[h'] is either equal to ((¢, down;), (u'l,
YY1, -, ym), with s'[u'] € X, or equal to (g, (u'i, \))(y1, - - -, ym), with s'[u'] € X.
In both cases, the application of [dec] gives (g, (ui, \))(y1,-.-,Ym), which proves
that n[dec] = n’[dec]. This ends the proof of Claim 2.

It remains to prove that 75y C monjy o7y . This will follow from Claim 3. Denote
by M'(Q) the restriction of M’ to (QUQ x [0, J])-rules and denote by M'(Q, down)
its restriction to (@), down)-rules. Intuitively, to simulate a computation step of M,
M’ first applies all possible (@), down)-rules, and then it applies a (Q U @ x [0, J])-
rule. Let = denote

*
=M1 (Q,down),s’ O T M'(Q),s -

Claim 3: Let n > 0, s € Ty, and s’ € mony(s) such that for every u € V(s)
|dec ™ "(u)] > n+ 1. Let € € Tavcy.- If {qo,ho) =75 € then there exists an
n € TAUCM/,SI such that

1. {(qo, ho) =™ n and
2. n[dec] = ¢.

The proof of Claim 3 is by induction on n. If n = 0 then the statement holds
for n = {(qo, ho)- Now consider the following computation of length n + 1.

(90, ho) =hrs & =mrs €
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By induction there exists an 7 such that (go, ho) =" n and n[dec] = £. Let v € V(£)
and (q,h) € 01(\2727 m > 0, such that £[v] = (g, h) and &' = £Jv « ([h]] where ( is
the right-hand side of a rule of M applicable to (g, h). By the definition of [dec],
n[v] = (p, 1) with (i) p = g, or (ii) p = (g, ) with j € [0, J], or (iii) p = (¢, down;).
Let h = (u,A) and A’ = (v',\). We now show that there exists an i’ such that
n = n' and n'[dec] = ¢'.

Cases (i) and (ii): Then dec(u') = u. In case (i) it follows from N2 that childno(
u') = childno(u), and in case (ii), i.e., p = (g,7), it follows from N1 that j =
childno(u). Since, in the computation (go,ho) =" 1 exactly n steps by = (),
have been applied, s'[u’] must be a barred symbol, because there are > n + 1 of
them, by the condition |dec™"(u)| > n + 2. Thus, §'[u'] = & with o = s[u]. Hence
M’ has a rule with right-hand side ¢’ = (@;¥ which is applicable to (p,h’). We
obtain 0 =y (@), nfv < ('[R']] = n'. The application of [dec] to 5’ gives, using
Claim 1, n[dec]|[v < ¢'[R'][dec]] = &[v « ([h]] = &'. This ends the proof of the
claim for this case.

Case (iii) p = (¢, down;): Then 7 #L,(Q,down),s, n' where 1" is the same as 7
except that n"[v] = (g, (u"i, \)) with s'[u"] € X, dec(u") = dec(u’), and dec(u"i) =
dec(u')i = u. By Claim 2, n"[dec] = n[dec] = £ and (qo, ho) =" n". Now, to the
configuration (g, (u"i,A)) of " we can apply one step of =y (@) s, as shown in
case (i), to obtain 1" = (q),s¢ 7' with n'[dec] = ¢'. This concludes the proof of
Claim 3.

It should be obvious how to show that for every s € T's; there exists s’ € monx(s)
such that 7as(s) C 7ar (s'): If {qo, ho) =% t € Tm(s), n > 1, then let s" € mony:(s)
be as required in Claim 3. By Claim 3, applied to £ = t, there exists n such that
(90, ho) =3y ¢ 0 (because = C =73, ) and ndec] = ¢. Since t € Ta, n = t. Hence
t € (s). 0

The next small lemma shows that sSMTT is closed under post-composition with
MON. It will be needed to prove Theorems 29 and 30.

Lemma 28. sMTT o MON C sMTT.

Proof. Let M = (X, A,Q, qo, R) be a stay-mtt. We will construct the stay-mtt M’
such that 7a;+ = 7a7 o mona. The idea of defining M’ is to replace each output
symbol ¢ (of rank m) in the right-hand side of a rule of M by a new state gs (of
rank m), which will generate an arbitrary number of §’s followed by the 4§, i.e., a
tree of the form &6(---8(5(y1, ..., Ym))).

Let M' = (X,AU{5|6 € A}, Q',q0, R') where Q' = QU {g\™ | 6 € A(™ m >
0}. For every rule {(q,0,b,7)(y1,...,ym) =  in R, let the rule

(@, 0, M )W, ym) = (¥
be in R', where the substitution ¥ is defined as
¥ = [6 « (gs,stay) | 6 € A].
Moreover, for every 6 € A™ m >0, 0 € ¥, and j € [0, J] let the rules

<(]§, g, /\7j>(y17 s aym) - S(q(f)
<q5707/\7]>(y17 .- -aym) - 6(:’/17 .. 7ym)
be in R'.
A formal proof of the correctness of M’ is left to the reader. O
For compositions of stay-mtts we obtain, from Lemmas 27 and 28, that stay

moves can be removed from all transducers in the compositions, except the first
one, as stated in the next theorem.
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Theorem 29. For every n > 1, sMTT" ™! = sMTT o MTT".

Proof. By induction on n. For n = 1, sSMTT? C sMTToMONoMTT by Lemma 27,
which is included in sMTT o MTT by Lemma 28. Now for n + 1, sMTT"*? =
SsMTT o sMTT" ™! is included in sSMTT? o MTT™ by induction. By the case n = 1
the latter is included in sSMTT o MTT o MTT" =sMTT o MTT" "1, O

It should be clear that the class REGT of regular tree languages is closed under
MON, i.e., that MON(REGT) C REGT (take the regular tree grammar in normal
form, i.e., with at most one terminal symbol in the right-hand side of each pro-
duction; for every production A — (A, ..., Ay) add all productions A — (A4,),
A, = 0(Ay), and A, — o(A1,...,Ag).) Thus we obtain from Theorem 29 and
Lemma 27 that (compositions of) stay-mtts define the same output languages as
(compositions of) mtts.

Theorem 30. For every n > 1, sMTT"(REGT) = MTT"(REGT).

Since MON C sMTT, we also obtain from Theorem 29 and Lemma 27 that
SMTT* = MON o MTT"™.

For deterministic stay-mtts we prove in the next theorem (and in the remainder
of this subsection) that stay moves can be removed, i.e., the respective classes of
translations coincide. As mentioned before, since the proof involves the nontrivial
task of removing infinite computations, it is a key result of this paper.

Theorem 31. DsMTT = DMTT.

Proof. We have to show that DsMTT C DMTT. Let M = (X, A,Q,qo,R) be a
0-dpmtt without up instructions and let J = max{ranks (o) | o € X'}. We will con-
struct the 0-dpmtt M’ that has down instructions only, i.e., a dmtt, by removing
the stay instructions that appear in the right-hand sides of the rules of M. Roughly
speaking, this is done by applying rules to the stay instructions in a right-hand
side, while keeping track of possible circular configurations, and forcing 7as (s) to
be undefined if in the computation {qo, ho) =7r,s there is a sentential form that
has an outside occurrence of a circular configuration (recall the notion of a circular
configuration from Subsection 5.2, and see Lemma 21). Before M’ is defined, we
construct several intermediate 0-dpmtts: first N which has information about cir-
cular configurations, then N’ which does not have circular configurations anymore,
then N”" which does not execute stay instructions anymore, and finally M’ which
has only down instructions.

By Lemma 17 we may assume that M is total. First, we construct the 0-dpmtt
N which is equivalent to M, but additionally keeps information in its states about
which states have been passed, while staying at a particular node of the input tree.

Define N = (X, A,Qn,(q,9), Ry) where Qn = (Q,P(Q)) and for every
(@, F) € Q¥ m > 0,0 € T, j €[0,J], and rule (¢,0,\,5)(y1,-.-,ym) = C in
R, the rule

<(Qa F)a o, Aa.i)(yla ce 7ym) - C[[Stan,F]][[down]]

is in Ry, where the substitutions [stay, ] and [down] are defined as
[stay, r] = [(¢', stay) < ((¢', F U {q}),stay) | ¢’ € Q],
[down] = [{¢',down;) < ((¢',2),down;) | ¢' € Q,i € [J]].

Since NV has, besides the additional sets F' in its states, exactly the same rules
as M, it obviously realizes the same translation as M, i.e., 7y = Tas- In fact, it can
be shown easily that for all &,& € Taucy, (Y),

(C1) if & = N5 & then & [no F's] =5 E2[no Fs],
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and for all 11,12 € Tauc,,, (Y), and & € Taucy,, (Y) with & [no F's] =,

(C2) if g =15 m2 then 36 € Taucy,, (Y) : &2[no F's] =, and & =N s &0,
where the substitution [no F’s] is defined as

[[((QaF)ah> «— (‘Lh) | <(QaF)ah> € ON,S]]'

By induction on the length of the computations, C1 implies 7y C 73 and C2 implies
v C 7n. Note that N is total because M is total.

The following claim expresses that the sets F' in the states of N contain the
intended states of M, i.e., those that were entered while staying at a particular
node.

Claim: Let s € Tx. If {(qo,9), ho) =Ns § € Taucoy,, and ((q,F),hy € Cns
occurs outside in &, then for every r € F' of rank m > 0,

(a) there is an 17 € Taucy,, such that (go, ho) =73, 7 and (r, h) occurs outside in
n, and

(b) there is an o' € Taucy,., (Ym) such that (r,h)(yi,...,ym) #L’S n' and (q, h)
occurs outside in 7’.

Since this claim is intuitively obvious, but its proof is technically rather involved,
we postpone its proof until after the present proof.

We now use the information in the states of N to remove its circular config-
urations, i.e., its infinite computations (cf. Lemma 21). Define Qcycie = {(¢, F) €
Qn | ¢ € F}. We remove all rules for (¢, F) € Qcycle from Ry, thus obtaining the
0-dpmtt N'.

Formally, let N' = (X, A,Qn, (g0, 9), Rn+), where Ry is the set of all p-rules
in Ry with p € QN - Qcycle-

It is straightforward to prove the correctness of the definition of N’, i.e., that
TN+ = 7n: Since Ry C Ry, it clearly holds that 75+ C 7. To prove that 7 C 77,
let s € Ty and consider a complete computation & = ((qo, @), ho) =nN,s &1 =N,s

- =>nN.s & € Ta. Then, for i € [0,n], & has no outside occurrence of (p,h) €
Cn,s with p € Qcycle- To see this, assume to the contrary that some ¢; has an

outside occurrence of ((q, F'),h) € C'](Vms) with ¢ € F and m > 0. Then by the
Claim above, there are n,n' € Tauc,,,(Y) such that (g0, ho) =3, s 1, (¢, h) occurs
outside in 1, (¢, hY(y1,---,Ym) :>X,[,S n', and (g, h) occurs outside in 7', i.e., (g, h)
is circular. By Lemma 21 this implies that the complete computations by = s s
starting with (go, ho) are infinite, and hence that 7as(s) is undefined. Since T = Tis
this contradicts the existence of the finite complete computation £ =7 ; - Thus,
only rules of N' are applied in the computation & =N,s &n, which means that
§o =5 &n, and therefore 75y C 7. This ends the proof of the correctness of N’

Next, the 0-dpmtt N = (¥, A, Qn, (¢o, D), Rn») is defined by iteratively ap-
plying rules to the stay instructions that appear in the right-hand side of each rule
r of N'. This is done with the use of Lemma 15, changing N’ gradually into N"”
by iterating the following procedure. Initially, N” = N’ and Ry» = Rn+. Now con-
sider a rule r = ((q, F),0,\,7}(y1,---,ym) — ¢ in Ry~ and change it into the rule
r= ((an)aaa )‘7.j>(y17 e 7ym) - Céa,j where

bo; = [, F'),stay) < ¢ [ (¢, F'), 0, X, 5) (W1, - yne) = " is in Ryo].

Note that if {(¢', F'), stay) occurs in the right-hand side ¢ of r, then F' has larger
cardinality than the F in the left-hand side of » (and thus the same holds for 7).
Clearly, the new rule 7 can be obtained from the old rule r by iterated application
of Lemma 15 (see the last paragraph of Subsection 2.2). Thus, by that lemma, an
equivalent O-dpmtt is obtained. After changing, in this way, every rule r into 7, the

42



minimal cardinality of all state sets F' such that {(g, F'),stay) occurs in a right-hand
side of a rule in Ry» for some ¢ with (¢, F) ¢ Qcycie has increased. Hence, after
repeating this process at most |@Q| times, the only ((g, F),stay) that occur in right-
hand sides of rules satisfy (¢, F') € Qcycle (for which there are no rules in Ry~ ). The
resulting 0-dpmtt is, by definition, N".

Last but not least, we define the dmtt M'. This is done by removing the stay
instructions that appear in the rules of N”. Since N" has no rules for states in
Qcycle, We can, in order to construct M', replace each stay instruction in a rule of
N" by a down; instruction (or remove the rule, if the input symbol has rank zero).

Formally, Let M’ = (X, A,Qn, (g0, @), R') where R’ is defined as follows. Let
r=p,o,\)W,...,Ym) = ¢ with 0 € X*) and k > 0 be a rule in Ry». If k=0
and ¢ € Ta(Yy,) then let r be in R'. If k > 1 then let the rule

<p7 ag, )‘7.7'>(y17 v ,ym) - C[[(pla StaY> <« <pla dOWIl1> | pl € QCyCIG]]

be in R'. Obviously, M' is a dmtt. It is straightforward to show that 7p; = 73y =
™™ - O

In the remainder of this subsection, the Claim in the proof of Theorem 31 is
proved. The uninterested reader can skip directly to Subsection 5.4.

For the proof of the Claim we need two technical lemmas, which are presented
now. They state two general facts about pmtts. The first one is about the decom-
position of computations, and the second one is about how to find the rule that
generated a particular symbol during a computation. The first is needed to prove
the second.

Consider a pmtt M, an input tree s, and a sentential form £ = 7(&;,. .., &,) with
TE C'j(\i}’)s. The first lemma states that a computation & =5 7 can be decomposed
into m + 1 computations by =ar,s starting with 7(y1,...,y,) and with &,...,&,
(for some m > 0). A similar result holds for macro grammars (cf. Theorem 4.1.1
of [Fis68], where only the case that 7 is terminal is considered). Note that the second
item of Lemma 32 implies that

T(fla .. 7€n) :>§C\9[73 nlin[yj — gﬂ(]’) | .7 S [m]]
and that the third item implies that

Minlys < &xiy | € [m]] =505 mminly; < n |5 € [m]] = 0.
Lemma 32. Let M = (X, A,Q,q,R) be a pmtt. Let 7 € (AU Cprs)™, n > 1,
and 1,&1,...,6n € Tavcn,, (V). W r(&,..., &) =4, . n, k > 0, then there exists a
tree Min € Tauca, (Ym), m > 0, such that ni, is linear in Yy, (ie., each y € Y,
appears at most once in m;,), and there exist a mapping 7 : [m] — [n], trees
N,y Mm € Tavey,, (Y), and ko, k1, ..., ky, € N such that

= 1 =in[y; < m’k| J € [m]],
= (Y1, Yn) =07 MinlYj < Yn() | J € [m]],
. k;
for every j € [m], &x(j) =ars i
— ko-l-kl-l--l-km:k, and
— for every j € [m], if y; does not occur outside in i, then k; = 0.

Proof. The proof is by induction on the length k of the computation of 7. It is
obvious for k = 0: take min = 7(y1,--.,Yn), m = n, 7 is the identity on [n], n; = §;
and k; = 0 for j € [0,n]. Now consider the following computation of length k + 1

T(€17 ce 7671) :>§c\/[,s n $M7S 77I- (*)
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By induction, n = minly; < n; | j € [m]] where min and ni,...,n,, satisfy the
conditions of the lemma, for certain 7 : [m] — [n] and ko, ..., k, € N. Let v be the
node in 1 to which a rule is applied in the last step of the computation (x).

Case 1: v € V(min) and minf[v] € Y. Hence, min[v] = n[v] and therefore we
can apply the rule of the last step in (%) to min: min =m,s 7 with 7' = 7j[y; «
n; | 7 € [m]]. Let m' be the number of occurrences of parameters in the tree 7.
Next, we “linearize” (in the parameters) the tree 7: let 0, € Tauc,,,(Ym) and

7 : [m'] = [m] such that
= ilyj < Yz |7 € M.

Note that for every j € [m], if #7'(j) is not a singleton (i.e., if y; does not occur
exactly once in 77) then y; occurs at a descendant of v in min, and so, by the last
condition of the lemma, k; = 0. This shows that kz1)+- - +kz(n) = k1 +- -+ k.
Now define n; = nz(;) and k} = kz(; for j € [m'], and define ky = ko + 1 and
7' =% onm:[m'] = [n]. Then

and T(y1,--,Yn) =hts Minlyj < Yn(y) | 5 € [m]] a0 Aily; < yr(yy | 7 € [m])-
The latter tree equals ny; [y; < Yz | 7 € [M'][Y; < Y= | 5 € [m]] = milyy
Yn(#(j)) | § € [m']] which is equal to ny;, [y; < yr ;) | 5 € [m]]. Thus, the “primed
versions” of the first four conditions of the lemma hold. It remains to prove the last
condition of the lemma. Let j € [m']. Clearly, if y; does not occur outside in nf;,
then yz(;) does not occur outside in min and hence kz(;) = 0 by the last condition
for mip-

Case 2: v € V(min) or Min[v] € Y,,,. This means that there is a jo € [m] such that
Yjo, occurs outside in Min, 17j, = a5 My, and 0" = min[y; < 0 | 5 € [m]—{jo}Hyj, +
n},]- Hence, for k= kj, + 1 (and everything else the same) the statement of the
lemma holds. ad

The second lemma is based on the following technical notions. Let M = (X, A, Q,
do, R) be a pmtt and let s € T'x,. For a symbol «

— £ € Taucn,,(Y) computes « if there is a ' such that £ =73, ¢’ and ¢’ has an
outside occurrence of a;, and

—c€ C'](\Z,nz (with m > 0) directly computes o if there is a & € Tauc,,,,(Ym) such
that e(y1,...,Ym) =m,s & @ occurs in &, and & computes a.

If, in the first definition, & :>§“VI78 & then we say that ¢ k-computes «a. If &

k-computes « for & = c¢(y1,-.-,Ym), ¢ € C’J(V":”s), and m > 0, then we say that c
k-computes «a. Clearly, computing configurations is transitive, that is, for configu-
rations a, b, and ¢ and ki, ks € N, if a kj-computes b and b ky-computes ¢, then a
(k1 + k2)-computes ¢ (and similarly, for a replaced by a tree §).

Consider now Lemma 33. Intuitively, the lemma states that if configuration
¢ computes another configuration d, then a rule » must have been applied, which
contains d in its right-hand side ¢ (in the lemma, r is the rule of M that is applicable
to ¢’). To be more precise, d is in ([h]ar,s where h is the input configuration of c.

Recall the Claim in the proof of Theorem 31. In the proof of that claim we
will apply Lemma 33 to d = ((¢, F'), h) with F # &; then, by the definition of the
rules of M, r must have {(q, F), stay) in its right-hand side, and thus ¢’ must equal
((¢', F"), h) for some (¢', F') € Qar. Note that, in Lemma 33, ¢’ is not necessarily
different from c.
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Lemma 33. Let M be a pmtt and let s be an input tree of M. Let ¢,d € Cus
with ¢ # d and let k' € N. If ¢ k'-computes d, then there are ¢’ € Cpr5 and k" < k'
such that (1) ¢ k”-computes ¢’ and (2) ¢ directly computes d.

Proof. The proof is by induction on &'. Let m be the rank of ¢. Since ¢ # d, k' > 1,
i.e., there is a computation

C(yla cen 7ym) =M € :>§c\/1,s gl

where k = k' — 1, £, € Taucy,,,(Ym), and d occurs outside in &'. If d occurs in
& then the lemma holds for ¢/ = ¢ and k" = 0. Consider now the case that d does
not occur in £. Since £ k-computes d, we can apply the claim below to obtain a
configuration ¢ in ¢ and k,l € N such that & k-computes &, ¢ I-computes d, and
k+1 < k. Now, & # d because & occurs in ¢ and d does not. Since | < &/, we can
apply the induction hypothesis (to é, I, and d). Hence, there are & and I’ < [ such
that é I'-computes ¢ and ¢ directly computes d. Since ¢(y1,...,¥m) =um,s § and €
k-computes &, ¢ (k+ 1)-computes & By the transitivity of computing configurations
we obtain that ¢ (k 4+ 1 + I')-computes &. It follows from k + 1 < k and I’ < [ that
k+1' <k =k —1, and therefore k + 1 +1' < k’. Thus, the lemma holds for ¢’ = &
and k" = k + 1+ ['. It remains to prove the claim.

Claim: Let € € Taucy, . (Y) and k € N. If € k-computes d, then there are k,1 € N
and a configuration ¢ in & such that k+1<k, ¢ k-computes ¢, and ¢ [-computes d.

The proof is by induction on the structure of £. Since £ k-computes d there
is an n such that ¢ i?w,s n and n has an outside occurrence of d. This implies
that € € Y, i.e., € is of the form 7(&,...,&,) for 7 € (AU Cr.5)™, n > 0, and
61, cey fn S TAUCM‘S (Y)

We now apply Lemma 32 to the computation 7(&1, ..., &) i?w,s 7, and obtain
a tree Min € Taucy,, (Yim), m > 0, which is linear in Y,, a mapping 7 : [m] — [n],
Ny-eosMm € Tavey,,(Y), and ko, ki, ..., ky € N such that (1) n = minly; < 0 |
jemll, ) T(yis-- - yn) =5t minlyy < yey 1§ € [mll, (3) for every j € [m],
fﬂ-(]') jﬁ}’s Ny, and (4) ko+ki+---+kn=k.

Case (i): d occurs outside in nin. Then 7 € Cprs and 7 ko-computes d. Hence,
for k =0, | = ko, and & = 7 the claim holds.

Case (ii): d does not occur outside in 7;,. Since d occurs outside in 7, there
must be a j € [m] such that y; occurs outside in min and d occurs outside in
n;. This implies that {;(;) kj-computes d. By induction there are l::,l € Nand a
configuration ¢ in &, (;) such that k+1< ki, &) k-computes ¢, and & [-computes d.
Since £ = 7(&1, ..., &n) :>ﬁ§}’s Mmin[Y; < &x(5) | 7 € [m]] = 7" and y; occurs outside in
min (at p), every outside node (v) in &) is also outside in n" (at pv). Hence, since
&x(h) k-computes ¢ we obtain that 1" k-computes ¢ and so & (ko + k)-computes
¢ Tt follows from k + [ < k; that (ko + l~c) +1 < ko + kj, which is < k because
> ueim) ku = k. This concludes the proof of the claim and hence of the lemma.

Proof of the Claim in the proof of Theorem 31. For ease of reference we
repeat the claim.

Claim: Let s € Tx. If ((q0,9),ho) =N € € Taucy,, and ((¢,F),h) € Cns
occurs outside in &, then for every r € F' of rank m > 0,

(a) there is an 1 € Tauc,,,, such that (go, ho) =73, s n and (r, h) occurs outside in
n, and

(b) there is an o' € Taucy,., (Ym) such that (r,h)(yi,...,ym) iﬁ[,s n' and (q, h)
occurs outside in 7.
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The proof is by induction on the length & of the given computation. Assume it
holds for all i < k and consider a state r € F. The application of Lemma 33 to
¢ = {(qo, D), ho), d = {(q, F),h), and k' = k gives an i < k and a configuration ¢
such that ¢ i-computes ¢’ and ¢’ directly computes d. Since ((g, F'), stay) must appear
in the right-hand side of the rule applicable to ¢/, it follows from the definition of
the rules of N that ¢’ is of the form ((¢/, F'),h) with F = {¢'} U F'. Tt follows
from C1 (in the proof of Theorem 31) that there is an 7 such that (go,ho) =73/,
7 and 7 has an outside occurrence of (¢',h), and that there is an 7' such that
(', h)(y1, -, yn) ﬁ&s 7' and (g, h) occurs outside (at p) in 7' (where n is the
rank of ¢'). If ¢' = r, then the claim holds for = 7 and ' = 7'.

Consider now the case that ¢ # r. Since F' = F'U{q'}, r must be in F'. We apply
the induction hypothesis to {(qo, &), ho), i, and {(¢', F"'), h) to obtain an n such that
(q0, ho) =41 mand (r, h) occurs outside in n, and an 7 with (r, h)(y1, ..., Ym) :>X,[,S
7 and (¢', h) occurs outside in 7 (at v). Thus, part (a) of the claim holds. Since
(G, h)(y1, -, yn) #j[,ﬂs 7', there is a computation 7 ﬁXLS v + 7'] = n' and
(g, h) occurs outside in i’ (at vp). This proves (b) and concludes the proof of the
Claim. O

5.4 Simulation of PTTs by Macro Tree Transducers

In this subsection it is proved that, by the use of parameters, we can remove all
up instructions from a 0-ptt M, thus obtaining a stay-mtt that realizes the same
translation as M.

In fact, this result is already known. It was proved in [EV86] in the setting
of transducers with storage. As discussed at the end of Subsection 3.3, 0-PTT =
RT(Tree-walk) and hence 0-PTT C RT(P(Tree)). By Theorem 5.14, Corollary 5.21,
and Theorem 4.18 of [EV86], RT(P(Tree)) C CFT(Treeiq). Here, ‘id’ indicates the
addition of an identity instruction (Definition 3.7 of [EV86]) and thus the possibility
to stay at a node. Since, as observed in Subsection 3.3, CFT(Tree) = MTT, it should
be clear that CFT(Tree;q) is precisely the class sMTT. In the same way it follows
that 0-DPTT C DsMTT, because the proofs preserve determinism. Since the proof
in [EV86] is complicated by the fact that it is shown for arbitrary storage types, we
present here a direct proof for completeness sake.

Since DsMTT = DMTT by Theorem 31, the fact that 0-DPTT C DsMTT
proves that 0-DPTT C DMTT (and this is a new result). For total functions this
result was also proved in [EV86] (Theorem 5.16); in the noncircular case (see Sub-
section 3.2) it is the well-known fact that attribute grammars can be simulated by
macro tree transducers [Fra82,CF82,FV99,EM99].

Lemma 34. 0-PTT CsMTT and O0-DPTT C DsMTT.

Proof. Let M = (X, A,Q,q,R) be a 0-ptt and let ¢',...,¢™ be the states in Q.
We want to construct a 0-pmtt M’ without up instructions that realizes the same
translation as M. The idea of M' is to replace each up instruction into state ¢”,
by the selection of the parameter y,. Hence, if the current node is v, then in the
vth parameter position of a state of M', we have to compute what M does at the
parent of v. Obviously, if v is the root node, then there is no parent, and therefore
the corresponding states of M' have no parameters. More precisely, M’ has states
(¢,0) of rank zero which are used if the current node is the root node, and if the
current node is not the root node, then M’ uses states (¢,m) of rank m. For every
move of M from v to its jth child vj, M’ computes in the vth parameter position
of the new state (¢, m) what happens if M moves back to v into state ¢”. Thus, the
parameters are used in a stack-like fashion, to keep a history of the computations
of all states for all ancestors of the current node; in that way moving up into state
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q” is realized by M’ by selecting the parameter y,, and therefore M’ has no up
instructions. Note that this kind of stack technique was invented by Rounds (cf.
Theorem 7 of [Rou70], which was generalized in Lemma 5.4 of [EV86]).

Let us now define M'. Let M' = (X, A,Q", (q,0), R'), where Q" = {(q, )™ |
qg € Q,u € {0,m}} and R' = {rel(r) | r € R}. For every rule r € R the related
rule rel(r) is defined as follows. Let r = ({(¢,0,\,j) — () with ¢ € Q, 0 € ¥, and
j €10, J]. Then

I(r) = ((¢,0),0,\,0) — transg(¢), ifj=0
renr) = ((g;m), o, A, j)(y1, .-+, Ym) — trans,,({), otherwise

where, for p € {0,m}, trans,(¢) =

— yv if ¢ =(¢", up)
—((r, )Yy Yu)s oo P )W, y,)) i C=0(r1,... 1) with 6 € A
kE>0,and ry,...,r; € Q,
— and if ( = (¢', ) with ¢ € {down; | i € [J]} U {stay} then it equals
o ((q',m),downy)((¢", ) (W1, - - yp),-- -5 (@™ 1) (1, - -, yw)) if = down;
o (¢ ), stay)(y1, ..., yu) if ¢ = stay.

Obviously, if M is deterministic, then so is M.

Let s € T';. Before we prove the correctness of the construction of M’ we need
some auxiliary notions. Define the full m-ary “stack tree” (fmt) that is generated
by M' in order to keep track of the computations at ancestors as follows. For a con-
figuration (g, (u, A)) of M, the tree fmt((q, (u,\))) € Tc,,, , is defined as ((¢,0), h)
if u = ¢, and otherwise as ((g,m), h)(fmt({(g',up(h))), ..., fmt({g™,up(h)))), where
h = (u,\). We can now define the substitution @, that allows us to extend the
notion of relatedness from rules to sentential forms:

@ = [{q, (u,A)) < fmt((g, (u, N))) | ¢ € Q,u € V(s)].

Two sentential forms & € Tauc,, ., and ¢ € Tauc,, , are related, if & =¢&@.

Claim 1: For ¢ € Cp5 and r € R, r is applicable to ¢ iff rel(r) is applicable to
cP[e].

Let ¢ = (q,(u,\)) and r = (g,0,A,j) — (. The rule r is applicable to c iff
slu] = o and j = childno(u) iff rel(r) is applicable to c¢®[e] because, for u = ¢,
(g, (u, \))Y®le] = ((¢,0), (u,A)) and the left-hand side of rel(r) is ((g,0),0,A,0),
and for u # e, (q, (u,\))®@[e] = ((g,m), (u,\)) and the left-hand side of rel(r) is
((g;m), o, X, j)(y1, - - -, Ym)- This proves Claim 1.

By Claim 2 below, the application of related rules to the same node in related
sentential forms yields again related sentential forms. Now, if & =75 £ by rule r at
node p and & is related to &, then by Claim 1 rel(r) is applicable to £ at p because
& o] = (&[p])P[e], and, by Claim 2, & is related to & where & = 5 & by rel(r).
Thus, if (go, ho) =3, t € Ta, then ((go,0), ho) =3 , t because (go, ho) is related
to ((go,0), ho). This means that 7oy C 7a. Similarly, ((go,0), ho) i*M’,s t€Th
implies that (qo, ho) =7/ t and thus 7asr C 7. It remains to prove Claim 2.

Claim 2: Let 1,6 € Taucy,,, and &,& € Tauc,,, , such that & and & are
related. If & =15 & by rule r € R at node p in & and & = 5 & by rule rel(r)
at node p in &, then & and &, are related.

Let &[p] = (q,(u,N)) and r = {q,0,\,j) — (. Let p
otherwise 1 = m. Then € /p = fmt({g, (u, \))) = (g, 1),
£ = ft((gi, up(, \))) for i € [1].

If ( = (¢',stay) then & = &ip « (¢, (u, A\))] and rel(r) has right-hand side
(¢, 1), 5t23) (41 -, ). Then & Saps € = ELlp (s 1), (w0 A (Er, - t)] =
€1l it (¢, (u WD) = &1l & (¢, (u, W) = £:.

0 lf u = € and
))(tla"'atu) with

> |l
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If C = 5(7‘1, tee ,T‘k) then 52 = 51 [p « 5((7‘1, (ua A))7 LR <rk7 (ua /\)>)] and rel(r)
has right-hand side 6((ri, )(y1,.- 3 Yu)s- s Py ) (Y1s .-+, yu)). Then & = s
gé = fi[p \ §(<(rlaﬂ)7 (ua /\)>(t17 s atu)a T ((Tka:u)a (ua /\)>(t17 s atu))]
= &lp « 0(fmt((r1, (u, A))), - .., fmt((rs, (u, A))))]
=& [,0 A (5((7”1, (U,, /\)>7 R <7“k, (U, /\)>)]¢ = &P

If ¢ = (¢',down;) then & = & [p « (¢, (ui, \))] and rel(r) has right-hand side
(( ) downl)((qlau)(yla . '7yu)a teey (qmaru‘)(yla v 7yu))' Then fi :>M’,s gé =
€llp (! m), (i, M)A 1), Ao ) (g™ ) (s A )]
= &l lp  fmt((q', (ui, W))] = &11p + (0'> (ui, )] = 2.

If ¢ = (¢, up> then u = u'i for some u' € V(s) and i € [J], and & = & [p +
(¢, (u', A))]. The right-hand side of rel(r) is y, for v € [m] such that ¢ = ¢'. Thus
€ Soapn £ = Ellp 1] = £ [p — fmt((q, (u', W)] = &1[p + (¢, (u, )b = &8

O

Now, from Theorem 10 together with Lemma 34 and Theorem 31 we obtain
our second main result: every n-ptt can be simulated by the composition of n + 1
stay-mtts (mtts in the deterministic case). Note that, as for Theorem 10, the first n
translations are realized by (very simple) total deterministic mtts: they all realize

EncPeb € D{MTT.
Theorem 35. For every n > 1, n-PTT C sMTT""" and n-DPTT C DMTT™*!.

By Theorem 29 and Lemma 27 the nondeterministic part of this theorem implies
that n-PTT C MON o MTT""!. The deterministic part of Theorem 35 is, in fact,
optimal, i.e., n-DPTT is not included in DMTT". This will follow immediately from
Theorem 41 in Section 6.

5.5 Simulation of Macro Tree Transducers by PTTs

In the previous subsection it was shown how to simulate n-ptts by compositions of
stay-mtts, and by compositions of dmtts in the deterministic case. Now we show the
converse direction, namely, how to simulate a stay-mtt by a composition of 0-ptts,
and a deterministic mtt by a composition of O-dptts. This result, together with the
converse simulation of the previous subsection, proves that ptts and stay-mtts have
the same composition closure (and that dptts and dmtts have the same composition
closure). Hence, the classes of output languages of compositions of ptts and of mtts
coincide.

Recall that by Lemma 27, sSMTT C MON o MTT. Since MON C 0-PTT by
Example 6, this means that SMTT C 0-PTToMTT. Thus, it will suffice to consider
the simulation of mtts by ptts.

In order to prove that an mtt can be simulated by compositions of ptts, we use
a well-known decomposition result of (total deterministic) mtts into compositions of
top-down tree transducers and so-called “YIELD mappings” (see, e.g., [ES77,Eng80]).
Recall from Definition 22 that a top-down tree transducer is an mtt M without pa-
rameters, i.e., with each state of rank zero. The configurations of a top-down tree
transducer are always at the leaves of a sentential form, in contrast to an mtt whose
configurations can also be at non-leaf nodes of a sentential form. This means that
a top-down tree transducer can simulate the state behavior of an mtt, but only
at the leaves of its sentential forms, because it cannot carry out the second-order
tree substitution inherent in a computation step of an mtt (viz. applying a rule
to a configuration of rank > 0). Now, YIELD mappings carry out second-order
tree substitution. Altogether, a total deterministic mtt M can be simulated by first
running a (total deterministic) top-down tree transducer that realizes M’s state
behavior and generates a special intermediate tree, and then applying a YIELD
mapping to that tree (realizing the second-order tree substitution inherent in M’s
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computation). In other words, D{MTT C D;To YIELD (Proposition 4.17 of [CF82];
cf. also Theorem 4.8 of [EV85]). Partialness and nondeterminism of an mtt can be
handled by post-composing a total deterministic mtt with a corresponding top-
down tree transducer (Corollary 6.12 of [EV85]), i.e., MTT C D(MTT o T and
DMTT C D{MTT o DT. Thus, we obtain (cf. also Theorem 7.3 of [EV85])

MTT C (TUYIELD)® and DMTT C (DT UYIELD)®.

As stated in Lemma 23, top-down tree transducers can be realized by 0-ptts;
we now prove, in Lemma 36, that YIELD mappings can be realized by 0-ptts.
For attribute grammars (see Subsection 3.2) these results are well known: top-
down tree transducers can be simulated by attribute grammars [CF82] and so can
YIELD mappings (shown in Theorem 1.3 of [Eng81], without correctness proof,
and in Corollary 6.24 of [FV98], using an indirect proof). Together with the above
decomposition result this will allow us to prove the equality of the composition
closure of ptts and stay-mtts, in Theorem 38.

Let us now define YIELD mappings and show that they can be realized by 0-
ptts. A YIELD mapping Y7 is a mapping from T’z to Ta(Y") defined by a mapping
f from X(©) to TA(Y), for ranked alphabets X and A. It realizes the semantics of
first-order tree substitution in the following way:

(i) for a € X V;(a) = f(a) and
(ii) for o € X*) sy,... s; € T, and k > 1,
Yi(o(s1,-..,88)) = Yi(s1)[yuy < Yi(sus1) | p € [k —1]].

The class of all YIELD mappings is denoted by YIELD.

Intuitively, to compute the tree Y;(s) for some s = o(s1,...,5:) € Tx, the
mapping Yy has to be applied to the first subtree s;, and in the resulting tree each
parameter y,,, i € [k — 1], has to be replaced by Y} applied to the (x+ 1)th subtree
Su+1- Note that if f is a mapping from X 0 TA(Yy,), m > 0, then Y7 is a mapping
from Ty, to Ta (V).

As a small example of a YIELD mapping, consider the ranked alphabet X with
Y0 = {a,b,¢}, ¥? = {5} and the mapping f from X(©) to Tx(V;) with A =
{a™ M) M e} and f(a) = a(y), f(b) = b(y1), and f(c) = c(e). Now let
s = o(a,o(b,c)). Then Y;(s) is a (monadic tree) representation of the yield abc of
the tree s, namely,

Yi(s) = f(a)[yy < Yy(o(b, c))]
= a(y)[y1 < fO)[y1 < c(e)]]

b(c(e))
= a(b(c(e)))-
Note that, in general, a YIELD mapping Y7 is realized by a dmtt M with one
state ¢ and rules

(qaaa/\aj>(y17' o 7y77L) - f(Ol)
(qao-a/\aj>(y17"'7yM) - (q,dOWn1>(<q,dOWn2>(y1,...,ym),...,
(q,downk>(y1,---,ym),yka---,ym),

where f is a mapping from X to Ta(Y;,), and yg, ..., ¥m is empty if m < k.
We now show that YIELD mappings can be realized by 0-dptts.

Lemma 36. YIELD C 0-DPTT.

Proof. Let X and A be ranked alphabets, J = max{ranks(c) | 0 € X}, m > 0,
and let f be a mapping from X to Tx(Y;,). We now define the determinis-

tic O-ptt M = (¥, AU {yfto) | p € [m]},Q,q,R) such that 7y = Y. Let Q =
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{6, q1,--sqm, 4}, - -, ¢, } For the state g, let the following rules be in R.

(q,0,),7) — (q,downy) foro € X®) k> 1,and j €[0,.J]
(0,0, 7, §) = F(@)lyu ¢ (g, stay) | n € [m]]  for a € £ and j € [0, J).

Intuitively, starting in a configuration (g, (u, )}, M will compute the tree Y, (s/u)
when restricted to input configurations (v, \) where v is a descendant of u, i.e.,
v =uwv'" with v" € V(s/u). However, in place of a parameter y,, this tree will have a
configuration (g, (u, A)}; such a configuration computes the actual parameter tree
which should replace y,, during M’s computation of Y;(s). For every p € [m] let
the rules

(@u,0, A, 1) = {q,,,up) foro € ¥

(qu, 0, A, 3) = {qu,up) for o0 € ¥ and j € 2, ]]

(qu, 0,2, 0) =y, foro e X

d,,0,\,7) = (g, down, 1) for 0 € X 1 +1<k, and j €0,
w i

(@, 0,),§) = (qu,stay)  foro € ¥ p+1>k, and j € [0, ]

be in R. Intuitively, in a configuration (g, (u,A)), M computes for y, the actual
parameter tree at u, which is the (u + 1)th child of u’s parent «’ if u is a first child
and u' has a (u + 1)th child, and otherwise is the actual parameter tree at u’ (cf.
the rules of the dmtt My shown below the definition of YIELD).

We now prove the correctness of the construction of M. Let s € Tx. It must
be shown that 7as(s) = Y(s). In what follows, let = s s be denoted by =. By the
claim below, (g, ho) =* Y;(s)[yy < {(qu,ho) | 1 € [m]] = &. Since (g, ho) = y,, for
every u € [m], £ =* Yi(s)[yy < yu | 1 € [m]] = Yy(s). Thus, (g, ho) =* Y;(s).

In the remainder of this proof we will write (g, u) instead of (g, (u, A)).

Claim: For every u € V(s), (q,u) =* Y (s/u)[yy < (qu,u) | p € [m]].

The proof of the claim is by induction on the size of s/u.

Case 1, u is a leaf: Let a = s[u]. Then (q,u) = f(a)[y,  (qu,u) | p € [m]]. By
the definition of Y}, f(a) = Y¢(a), and, since u is a leaf, Yy(a) = Yy(s/u), which
proves the claim for this case.

Case 2, u is not a leaf: By the definition of the g-rule of M for symbols of positive
rank, (¢,u) = (g,ul). By induction

(g, ul) =* Ye(s/ul)[y, < (gu,ul) | p € [m]] = ¢

What M computes in a configuration (g,,ul) depends on the numbers p + 1 and
k, where k is the rank of s[u]: If y + 1 > k then

<qu7U1> = (q;uu> = (qu7u>7
and if 4+ 1 <k then

<qﬂ7u1> = <q;luu>
= (¢ u(p+1))
=*Yr(s/u(pe+ 1))y < (qv,u(p+1)) | v € [m]] (by induction)
= Yi(s/u(p+ 1))y, < (q,u) | v € [m]] (because pu + 1 > 2).

Thus, there is a computation starting from ¢ (displayed above), of the form

§="Yy(s/ul) [yu < Yy(s/u(p+1))¥ [ p € [m],p+1 < K]
lyu < (qu,u) | € [m],p+ 1> k],

where ¥ = [y, + (qv,u) | v € [m]]. This is equal to

Vi(s/ul)ly, < Yy(s/u(p+1)) | p € [m],u+1 < KW
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Since “p € [m],p + 1 < k” means the same as “p € [k — 1]” we obtain, by the
definition of Y7, that the above equals Yy (s/u)®. This concludes the proof of the
claim and of the lemma. O

Consider again the example of a YIELD mapping Yy given above the previ-
ous lemma and the tree s = o(a,o(b,c)). Let M be the 0-dptt obtained by the
construction in the proof of the previous lemma (and let = denote =-s,5). Then

(0,6) = (2,1) = a((q1,1)) = al{g1,¢)) = a((g,2)) =
a((g,21)) = a(b((q1,21))) = a(b((g1,2))) = a(b((g,22))) = a(b(c(e))),

which is the correct tree Y;(s), as shown in the example.
Lemma 37. sMTT C 0-PTT* and DMTT C 0-DPTT?.

Proof. By Lemma 27, sMTT C MON o MTT which is included in 0-PTT o MTT
by Example 6. As mentioned above, MTT C (T U YIELD)? which is included in
0-PTT? by Lemmas 23 and 36. Hence sMTT C 0-PTT?. In the deterministic case,
DMTT C (DTUYIELD)? which is included in 0-DPTT? by Lemmas 23 and 36. O

It was proved at the end of Section 4 that the composition closure of n-ptts
equals the one of O-ptts, i.e., PTT* = 0-PTT"* (and DPTT* = 0-DPTT" in the
deterministic case). We are now ready to prove our third main result, namely, that
these classes equal the composition closure of stay-mtts (and of dmtts in the deter-
ministic case).

Theorem 38. PTT* =0-PTT* =sMTT* and
DPTT* = 0-DPTT* = DMTT".

Proof. By Corollary 11, PTT* = 0-PTT* and DPTT* = 0-DPTT"*. We now show
that 0-PTT* = sMTT"* and 0-DPTT* = DMTT". By Theorem 35 and Lemma 37,
0-PTT C sMTT C 0-PTT* and 0-DPTT C DMTT C 0-DPTT*. This implies the
required equalities. O

In terms of databases Theorem 38 shows that, as query languages, ptts and mtts
have the same expressiveness. For total functions, it was already known that total
deterministic macro tree transducers and (noncircular) attributed tree transducers
have the same composition closure (see Chapter 6 of [FV98]).

In the deterministic case, we have also proved that DPTT* C 0-DPTT},, .,
where the latter is the class of translations realized by 0-dptts that have no infinite
computations, i.e., they are terminating: first simulate the dptts by (compositions
of) dmtts, then decompose the dmtts into (deterministic) top-down tree transducers
and YIELD mappings following the results in [EV85], and finally simulate those
by (compositions of) 0-ptts, using Lemmas 23 and 36, respectively (obviously, the
constructions in the proofs of these two lemmas give terminating 0-dptts; in fact,
they are even noncircular, see Subsection 3.2). Note that it is not clear whether or
not infinite computations can be removed directly from an n-dptt, i.e., whether or
not DPTT C DPTTyerm-

In [MSVO00] it is stated as an open problem whether PTT contains all bottom-
up tree translations (denoted B, and DB in the deterministic case). Note that we
obtain from Lemmas 23, 36, and 37 that DB C 0-DPTT? and B C 0-PTT? because
DB C DMTT (Corollary 6.16 of [EV85]) and B C T o YIELD (Theorem 5.16 and
Lemma 5.5 of [EV85]).

If we consider the class of output languages of PTT™, then by the previous theo-
rem, PTT*(REGT) = sMTT*(REGT) and by Theorem 30 this equals MTT*(REGT).
Thus, PTT* and MTT"* define the same class of output languages.
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Corollary 39. PTT*(REGT) = MTT*(REGT).

As stated in Fact 25, emptiness and finiteness of tree languages in MTT*(REGT)
are decidable. In Section 7 on type checking we will use these facts to show that
“type checking” and “almost always type checking” are decidable for languages in
MTT*(REGT). Through Corollary 39 this provides an alternative proof of the main
result of [MSV00] that type checking is decidable for languages in PTT*(REGT).

6 Pebble Hierarchies for Deterministic PTTs

In this section we consider for deterministic pebble tree transducers the following
question: Is the (deterministic) pebble tree transducer with n + 1 pebbles more
powerful than the one with n pebbles? As the power of the pebble tree transducer
we consider its ability

(i) to translate,
(ii) to generate output tree languages, and
(iii) to generate output string languages.

The first two aspects are important for database theory (translations are queries,
and output tree languages are views) and the third one is mainly of interest for
formal language theory. Note that an output string language is obtained from an
output tree language by taking the yields of its trees; thus, it is of the form y7a(R) =
{yt | (s,t) € Tar for some s € R} where M is a pebble tree transducer and R €
REGT.

In Section 3 it was shown already that the number n of pebbles gives rise to
a proper hierarchy of translations; in other words, with respect to (i), the dptt
with n + 1 pebbles is strictly more powerful than the one with n pebbles. In this
section we show that also with respect to (iii), and hence also (ii), n 4+ 1 pebbles are
strictly more powerful than n. More precisely, for the classes y(n-DPTT(REGT))
of output string languages of n-dptts, there is a proper hierarchy with respect to n,
ie., y((n—1)-DPTT(REGT)) C y(n-DPTT(REGT)) for all n > 1. We call this the
“dptt-hierarchy”.

Recall from Theorem 35 that (n — 1)-DPTT C DMTT". The properness of the
dptt-hierarchy will be proved using a ‘bridge theorem’ for the classes yDiMTT"(
REGT), viz. Theorem 18 of [EMO02a]. This bridge theorem provides a method
to obtain languages that are not in yDyMTT"(REGT). In [EM02a] it was used
to prove that the “(total) dmtt-hierarchy” is proper, i.e., yD{MTT"(REGT) C
yDMTT" " (REGT): Theorem 23 of [EM02a]. Here we will use it to show that
y(n-DPTT(REGT)) contains languages not in yDMTT"(REGT), and hence not in
y((n—1)-DPTT(REGT)). Since the dptt-hierarchy involves non-total functions, we
first prove that totality is irrelevant for output languages of DMTT", i.e., that for
every n > 1,

yDMTT"(REGT) = yD;MTT"(REGT). (%)

We show, by induction on n, that DMTT"(REGT) = D{MTT"(REGT), i.e., even
the corresponding classes of tree languages coincide. The proof is based on Theo-
rem 6.18 of [EV85] which says that DMTT = FTA o D(MTT, where FTA is the
class of identity functions restricted to regular tree languages, i.e., applying a func-
tion in FTA is the same as taking the intersection with a regular tree language.
For n = 1 this implies that DMTT(REGT) = D{MTT(FTA(REGT)). Since regu-
lar tree languages are closed under intersection (cf., e.g., [GS84]), FTA(REGT) =
REGT and hence D(MTT(FTA(REGT)) = D;MTT(REGT). For n + 1, it fol-
lows from Theorem 6.18 of [EV85] and by induction that DMTT"* (REGT) =
DMTT(FTA(D{MTT"(REGT))). Now FTA(D{MTT"(REGT)) equals DyMTT"(
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REGT): for Rin,Rout € REGT and 7 € DMTT", 7(Rin) N Rout = 7(Rin N
71 (Rout)) and Rin N7 1 (Rout) is in REGT by Fact 24 and the fact that REGT is
closed under intersection.

Let us now state the bridge theorem of [EM02a], in terms of non-total dmtts.
To do this we first define the notion of §-completeness. Let A and B be disjoint
alphabets. Consider a string w of the form

w=wawaa -« a1 WG W41

with I >0, a1,...,a; € A, and wy, ..., w1 € B*. Define the string ress(w) € A*
as ay ---ay. If all wa,...,w; are pairwise different, then w is a é-string for ay - - - a;.
Let L C A* and L' C (AU B)*. If L' contains, for every w € L, a d-string for w,
then L' is called §-complete for L.

Lemma 40. (Theorem 18 of [EM02a]) Let A and B be disjoint alphabets, and let
L C A* and L' C (AU B)* be languages such that L' is §-complete for L and
res4(L') = L.

(a) For every n > 1, if L' € yDMTT""(REGT), then L € yDMTT"(REGT).
(b) If L' € yDMTT(REGT), then L € yDT(REGT).

The next theorem (Theorem 41, which is the main result of this section) proves
that there is an n-dptt that generates an output string language which is not in
yDMTT"(REGT). Recall from Definition 1 that an n-ptt is monadic if its input
and output alphabets X and A are monadic, and that the corresponding string-
to-string translations are those realized by two-way n-pebble string transducers.
The first part of the proof of Theorem 41 was already presented in (the proof of)
Theorem 5 of [EM02b]: with one pebble more, there is a monadic (n + 1)-dptt that
generates an output language which is not in yDMTT"(REGT) when viewed as a
string language (through paths). Together with the fact that the output languages of
monadic n-dptts (viewed as string languages) are output string languages of n-fold
compositions of total deterministic mtts (Theorem 4 of [EMO02b]) this proves that
the output tree languages of monadic n-dptts form a proper hierarchy with respect
to the number n of pebbles: the “pebble string transducer hierarchy” (Theorem 5
of [EMO02b]). The second part of the proof of Theorem 41 shows that without the
monadic restriction the extra pebble is not needed.

Note that, in terms of the translations, this result implies immediately that
n-DPTT ¢ DMTT", which cannot be proved using size-height properties of trans-
lations of dmtts. Thus, the inclusion n-DPTT C DMTT"™! of Theorem 35 is opti-
mal.

Theorem 41. For every n > 1, y(n-DPTT(REGT)) — yDMTT"(REGT) # &.

Proof. The inequality will be proved using the ‘bridge theorem’ Lemma 40. First,
let n = 1 and let ¥ = {a(",e®}. Tt is well known that the language K =
{(a™b)™ | m > 0} is not in yDT(REGT) (see Theorem 3.16 of [Eng82]). This
means, by Lemma 40(b), that K can be used in order to construct languages K’
not in yDMTT(REGT).

Before it is shown how to obtain a 1-dptt such that the yield of its output
language is such a K', we show how to construct a monadic 1-dptt Mg with
vy (Tx) = {(a™b)™ | m > 0} = K (recall the definition of p from Subsec-
tion 2.1, e.g., for the tree s = a(a(b(e))), ps is the string aad). The idea of Mk is
straightforward: Mg uses the pebble as a counter to make m copies of the input
tree a™(e). On input tree a™e, it drops the pebble at the root node, copies the
input tree top-down, replacing the e by b, thus generating a™b as output. Then
it searches the pebble, moves it one node down, and then again generates another
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copy of a™b. This is repeated until the pebble has reached the leaf of the input tree,
thus generating the monadic tree (a™b)™e. It should be obvious how to define the
rules of M.

Given a monadic n-dptt M (with arbitrary input and output alphabets X and
A, respectively) we will construct below the

— n-dptt split(M) and the
— monadic (n + 1)-dptt conf(M)

(with the same input alphabet ¥) such that for L = prp(Tx) and A = A

— L' = y7gpiig(mr) (Tx) is 6-complete for L and
— L' = preont(ar) (Ts) is 6-complete for L,

and res4(L') = L in both cases, which will be proved in Claims 2 and 1, respectively.

Let now, again, n = 1 and ¥ = {a(",e(®}. Consider the 1-dptt split(Mx)
obtained from the monadic 1-dptt Mg of above. Then K' = yry,iism)(Ts) is
s-complete for prys, (Ts) = K and resy(K') = K, where A = A®M and A is the
output alphabet of M. Since K ¢ yDT(REGT) we apply Lemma 40(b) in order to
“bridge” K' out of the class yDMTT(REGT); we obtain that K’ ¢ yDMTT(REGT)
which proves the theorem for n =1 (because T, € REGT).

Now let n > 1. Define inductively the monadic n-dptt N, = conf(N,_1) and
N; = Mg . We will prove by induction on n that

prN, (Ts) € yDMTT"™ ! (REGT).

As stated above, L' = prn, (Tx) is d-complete for L = prn,,_, (Tx) and res4(L') =
L, where A = A" and A is the output alphabet of N,,_;.

Forn =2, L = K ¢ yDT(REGT) which implies by Lemma 40(b) that L' ¢
yDMTT(REGT).

For n > 2 assume that L = pry,_,(Tsx) ¢ yDMTT" *>(REGT). Then L' =
prN, (Ts) is not in yDMTT" ' (REGT) by Lemma 40(a).

Note that, since monadic n-ptts are the same as n-pebble string transducers,
prn, (T's) is an output language of an n-pebble string transducer; as mentioned
above the theorem, the fact that pry, (Tx) ¢ yDMTT™ '(REGT) was used in
Theorem 5 of [EMO02b] to prove the properness of the pebble string transducer
hierarchy.

We now apply the construction split to N,, to obtain the n-dptt split(N,).
Take L = prn, (Tx) and L' = yTypiie(n,,) (T's)- Then, by the above, L' is §-complete
for L and resq(L') = L, where A = A®M and A is the output alphabet of N,,.
Hence, since L ¢ yDMTT" (REGT) by the inductive proof above, we obtain from
Lemma 40(a) that L' ¢ yDMTT"(REGT). Since L' € y(n-DPTT(REGT)), this
proves the theorem.

Let M = (X, A, Q, qo, R) be an arbitrary monadic n-dptt, n > 1. In what follows,
we construct the monadic (n + 1)-dptt conf(M) and the n-dptt split(M), and prove
in Claims 1 and 2 that their corresponding output languages are §-complete for
pm(Tx). First we define the monadic (n + 1)-dptt conf(M): The construction of
conf(M) is similar to the construction of M, ; in Example 5. The idea is that
conf(M) simulates M, and additionally inserts above each unary symbol of the
output tree of M a coding w, of the current configuration ¢ € Cys s. This coding is
obtained as follows. If the current configuration is ¢ = (g, (u, 7)), then conf(M) first
moves from « up to the root (in state qup). From there (in state gaown) it moves to
the leaf of the input tree s, outputting at each node v the symbol (g, o, b), where o
is the label of v and b is the information on the pebbles at v. After this, conf(M)
needs to move back to the node u to continue the computation of M. This is done
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by dropping, before the coding is generated, an extra pebble at u. After the coding
is generated, conf(M) changes into the state ggna and moves to the node with the
most recently dropped pebble, i.e., to u. Note that the symbol (g, o, b) generated by
conf(M) at v also contains the information about the position of the reading head:
if b indicates that the most recently dropped pebble is present, then the reading
head is at v (i.e., v = ). It should now be clear that w, is indeed a coding of ¢, i.e.,
we # we for ¢ # .
Define conf(M) = (X, I,Q’, g0, R') with

~T'=AU{(¢g,0,0)V | g€ Q,0 € X,b€ {0,1}="*1}

- Q" =QU{q | g€ Q,ce {up,down, find, back}}

— For every rule r = ({(¢,0,b,j) = ¢) in R: if ( € (Q, I, ;) or { = e, then let r
be in R'; if ¢ = a(q') with a € AM) and ¢’ € Q, then let the rules

<q7 0-7 b7 ]> — <q11p7 dr0p>
(qbacka g, b7 .7> — a(ql)

be in R'. For every ¢ € Q, b € {0,1}="+1 and b’ € {0,1}=" let the following
rules be in R':

(qup,0,b,1) = {(qup, up) foroce X

(GQup,0,5,0) = {gdown, Stay) foroce X

(qdownag b .7> - (q,O', b)((‘]down:downl)) for o € E(l)aj € {07 1}
(qdown; €, 0,5) — (¢, €,b)({gana,stay))  for j € {0,1}

(Gfind, 7,0, 1) = (gfind, up) foroce X

(qind, 7, 0’1, ) = {qback, lift) foro e X,j € {0,1}.

Note that I' should be defined in such a way that the set {(q, o, b)) | ¢ €
Q,0 € X,b e {0,1}="+1} is disjoint with A. In that way we will be able to apply
Lemma 40 for A= AM and B=T — A.

Clearly, Tcont(nr) € (n 4+ 1)-DPTT and res yq) (pTeont(ar) (Tx)) = pras (Tx).

Claim 1: Let M be a monadic n-dptt with input ranked alphabet X. Then
PTeont(r)(T's) is d-complete for prys (Tx).

Let M' denote conf(M). Since both M and M' are monadic, we will drop the
parentheses and the symbol e when we show computations. It has to be shown that
for every w € L = prpr(Tx) thereis a w' € L' = pry (Tx) such that w' is a d-string
for w. Let s € T's;. If w = pras(s) is defined, then there is a computation

* * *
(90, ho) = co =}y, do = m,s @0C1 =)y G0d1 = M,s GA1C2 =5 -

* *
=M, @0 m—1m = M5 Q0" AmCmt1 = s Q0 G = W,

where ag, ...,am € AMD and ¢, dp, . . . 2 Cm>dm, Cmt1 € Chr,s. Then, all configura-
tions dp, . . . , d,, are pairwise different because M is deterministic. Take w' = 7as ().
Now, if ¢ =75 d then ¢ =y 5 d, because M’ has the same rules as M for right-
hand sides that do not contain an output symbol. If d = 5 ac, then d =M s Waac
where wy is the coding of d discussed above. Applied to the computation of w by
= M,s, We obtain

* * * * *
Co =M s do =M1 s Wdo @0C1L = 0p Wa,aody =M1, s Wdo QoWdy A1C2 =31 o

* * !
iMﬁs Wq,apWq, a1 * * * Wq,, GmCm41 iMﬁs Wy AoWd, @1 * * - W, Ay = W .

All the strings wq, are pairwise different because the d; are. This implies that w' is
a d-string for w, which ends the proof of Claim 1.
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Second, we construct the n-dptt split(M). The idea of split(M) is as follows:
just as conf(M), split(M) simulates M and additionally outputs before each unary
output symbol generated by M a coding of the current configuration that M is in.
However, this time we do not want to use an extra pebble to do this, but rather
generate the corresponding string as yield and use split(M)’s ability to generate
non-monadic output in order to ‘split’ the computation, i.e., to initiate parallel
computations (which start with the same input configurations) in order to insert
the current configuration of M before an output symbol. More precisely, if M, in
configuration ¢, outputs a unary symbol a and changes into configuration ¢’, then
split(M), in ¢, computes a tree with yield w.ac', where w. is a coding of the
configuration ¢. The coding is similar to the one of conf(M): split(M) moves from
the current node u up to the root of the input tree s and then down to the leaf of
s, outputting at every node v a symbol (g, 0,b), where ¢ = (g, h) for some h, o is
the label of v, and b is the information of the pebbles at v. It should be clear that
in this way the current configuration is coded in a unique way. Note that split(M)
also produces output when moving up; this takes care of the coding of the position
u of the reading head. Thus w, is a coding of ¢, i.e., w, # we for ¢ # .

Define split(M) = (X, I,Q’, g0, R') with

=T = {6%,9®,e@U{a® | a € AV}U{(q,0,0) | g € Qo € T,b €
{0,1}="};

- Q" =QU{qu | 7€ Q}U {gaown | ¢ € Q}

— For every rule r = ({(¢,0,b,j) = ¢) in R: if ( € (Q, I, ;) or { = e, then let r
be in R'; if ¢ = a(q') with a € AM) and ¢’ € Q then let the rule

<q7 a, ba .7> - ¢(<qupa StaY)a a, (qla StaY>)

be in R'.
For every ¢ € Q and b € {0,1}=" let the following rules be in R':

(qup,0,0,1) = ((q,0,b), (qup, up)) foroce X

(qup,0,b,0) = ¥((g,0,b), (gdown,stay)) foro e X
(@down, 0, b, 5) = ¥((q,0,b), (ddown, downy ) for o € X 5 € {0,1}
<Qdowna €, ba.]) — ((Lea b) for .7 € {07 ]-}

As before for conf(M), I" should be defined in such a way that 4 = A(M) ig
disjoint with B = I" — A.

Clearly, Tgpiig(ary € n-DPTT and res qc) (y7pis(an) (Tx)) = prar (Tx).

Claim 2: Let M be a monadic n-dptt with input alphabet X. Then y7y,1i4(ar)(T)
is d-complete for prps (Tx).

Let M' denote split(M) and let s € Ts. If w = pras(s) is defined, then there is
a computation by = s as displayed in the proof of Claim 1. Now, if ¢ =5 d then
¢ =wm s d, because M’ has the same rules as M for right-hand sides that do not
contain an output symbol. If d =7 s ac, then there is a computation (showing only
the yields of the respective sentential forms) d =M s Waac where wq is the coding
of d described above. This means that there is the computation by = displayed
in the proof of Claim 1, generating as yield the string w’ which is d-complete for w.
This proves Claim 2. O

It follows immediately from Theorem 41 and the inclusion n-DPTT C DMTT"+!
in Theorem 35, that the dptt-hierarchy is proper: our fourth main result.

Theorem 42. The dptt-hierarchy is proper, i.e., for n. > 0,

y(n-DPTT(REGT)) C y((n + 1)-DPTT(REGT)).
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The fact that y(n-DPTT(REGT))—yDMTT"(REGT) # & (Theorem 41) means
that counter examples of the dmtt-hierarchy can already be found in the dptt-
hierarchy. Thus, if we additionally knew that yDMTT(REGT) —yDPTT(REGT) #
&, then the inclusion diagram in Figure 6 would be a Hasse diagram. We conjecture

yDMTT* (REGT)
yDPTT(REGT) T/T

yDMTT" ! (REGT)
yn-DPTT(REGT)
yDMTT"(REGT)
y(n —1)-DPTT(REGT)

l/l yDMTT(REGT)
y0-DPTT(REGT)

Fig. 6. Inclusion diagram relating the dptt-hierarchy to the dmtt-hierarchy

that this is the case.

Note that, with respect to the corresponding classes of translations the figure
is a Hasse diagram because, as shown in Example 13, DMTT — DPTT # & (M of
Example 13 is a dmtt).

In the case of nondeterministic n-pebble tree transducers (and also for compo-
sitions of nondeterministic mtts) it is open whether there is a proper hierarchy of
output languages. If we compare the output languages of nondeterministic ptts with
those of deterministic ones, then it can be shown that even at the lowest level (i.e.,
without pebbles), nondeterminism is more powerful than determinism: There is a
language generated by a nondeterministic 0-ptt, which is not in DPTT*(REGT),
and hence

DPTT(REGT) ¢ PTT(REGT).

In terms of databases this means that, for queries realized by pebble transducers,
nondeterminism gives strictly more views than determinism. It follows from the fact
that there is a language L generated by a (nondeterministic) top-down tree trans-
ducer, i.e., which is in yT(REGT), and which cannot be generated by compositions
of deterministic mtts, i.e., which is not in yDMTT*(REGT). This was proved in
Theorem 25 of [EMO02a], as another application of the bridge theorem (Lemma 40).
Since T C 0-PTT by Lemma, 23, and DPTT* = DMTT* by Theorem 38, we obtain
that L € y(0-PTT(REGT)) — yDPTT*(REGT).

7 Type Checking

As mentioned in the Introduction, the application of a query ¢ to a database D
(a set of inputs) defines a derived version of the database: the view of D under
q. Now if ¢ is computed by the tree transducer M, and D is represented by the
regular tree language R, then the view of D under q is equal to the output language
7ap (R). An important issue in XML-based query languages is type checking of views
(see, e.g., [MSV00,PV00,Via01,AMN*+01a,AMNT01b,Toz01,Suc02]). The main re-
sult of [MSVO00] is that type checking is decidable for pebble tree transducers. For a
class X of tree translations, the type checking problem (for X) is defined in Figure 7.
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input: types Rin, Rout € REGT, translation 7 € X

“yes” if 7(Rin) C Rous

tput: .
outpu { “no” otherwise.

Fig. 7. Type checking for translations in X.

If the output of type checking is “yes”, i.e., the view 7(R;,) is included in Roys, then
we say that 7 type checks for (Rin, Rout)-

Intuitively, type checking means to verify whether or not all documents in a
view conform to a certain type. As a typical scenario of type checking, imagine that
7 translates XML documents into HTML documents. Thus, for a set R of XML
documents 7(R) is an “HTML-view” of the documents in R. Now, a particular
user might be interested only in very particular XML documents, for instance,
documents that have no nested lists, represented by the type XMLy pest. Since
XML documents are unranked trees, this type corresponds to a string, or, rather,
a forest ay,...,ay of one node trees a;; using the usual encoding of unranked trees
by binary trees, this corresponds to ‘combs’ of the form o(ay,0(as, - o(ag,e)--)),
where ¢ has rank 2. Obviously, this is a regular tree language. Then, the user wants
to verify that also the corresponding HTML documents 7(XMULy_nest) do not have
nested lists, i.e, are of type HTMLyo_nest- Thus, he wants to know whether or not
7 type checks for (XMLyo-nest, HTML;j0-nest ). As mentioned above, this problem is
decidable if 7 is defined by a ptt.

It is well known in tree transducer theory that type checking is decidable for
translations in MTT*, i.e., it is decidable for an output language in MTT*(REGT)
whether or not it is included in a given regular tree language.

Proposition 43. Type checking of compositions of macro tree transducers is de-
cidable.

This can be seen as follows. The translation 7 € MTT”* type checks for (Rin, Rout)
ifft K = 7(Rin) N R, is empty, where RS, denotes the complement of Ry. Since
REGT is effectively closed under complement and MTT*(REGT) is effectively
closed under intersection with regular tree languages, the tree language K is in
MTT*(REGT). This implies, by Fact 25(i), that K’s emptiness is decidable which
gives Proposition 43. Note that it is obvious that MTT*(REGT) is closed under
intersection with a regular tree language R, because that is the same as applying
the partial identity for R, i.e., a mapping in FTA (cf. the discussion in the beginning
of Section 6), which is a top-down tree translation and hence is in MTT.

Together with Theorem 30, Proposition 43 implies that even for compositions
of stay-mtts, type checking is decidable.

Corollary 44. Type checking of compositions of stay-mtts is decidable.

Since PTT*(REGT) = MTT*(REGT) by Corollary 39, Proposition 43 gives an
alternative proof of the main result of [MSV00]. We can now strengthen this result,
based on the fact that the finiteness of languages in MTT*(REGT) is decidable by
Fact 25(ii). More precisely, we can solve almost always type checking, which is a
weaker variation of type checking, defined in Figure 8. Intuitively, almost always
type checking means to check whether or not all output documents in the view
7(Rin), except finitely many exceptions, satisfy the output type Royui. Moreover, if
the answer is yes, the list of exceptions is produced.
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input: types Rin, Rout € REGT, translation 7 € X

“yes”, T(Rin) — Rout  if T(Rin) — Rous is finite

output: { “ne? otherwise.

Fig. 8. Almost always type checking for translations in X.

Since K = 7(Rin) — Rout is in MTT*(REGT), as shown above, Fact 25(ii) implies
that its finiteness is decidable, and if so, that the finitely many exceptions can be
computed. By Corollary 39, this proves the next theorem.

Theorem 45. Almost always type checking of compositions of pebble tree trans-
ducers is solvable.

Note that in the affirmative case, 7 type checks for (Rin, Rous U F) where F =
T(Rin) — Rout is the finite set of exceptions. The new output type Rout U F' is indeed
a regular tree language and can be determined effectively.

In the remainder of this section we present a straightforward type checking al-
gorithm for translations realized by (compositions of) deterministic mtts. As shown
below Proposition 43, type checking for compositions of dmtts can be solved using
Fact 25(i), and as discussed below Fact 25, the proof of Fact 25(1) uses inverse type
inference (for T and R,y); this means to determine the set of input trees of 7 which
generate output in Ry, i.e., to determine the regular tree language 77! (Rout). Re-
call the example XML to HTML translation 7 of before. Now imagine that the
generated HTML documents should conform to a certain type Rous, and one wants
to know which XML documents are admissible as input of 7, in order to generate
documents of the required type Rgyui: just do inverse type inference for 7 and Roys-

Clearly, for a function 7

T typechecks for (Rin, Rows) iff Rin € 77" (Rout)-

Since checking the inclusion of two regular tree languages is well known, we con-

centrate on the inverse type inference problem. Note that also in [MSV00] type

checking is solved by inverse type inference (using MSO logic to represent types).
If 7 is a composition 7 o 75 0 - - - o 73, of translations, then

Tﬁl(Rout) = 7—1_1(7—2_1(' : 'Tr:l(Rout)))'

Thus, to solve the type inference problem for X* (where X is a class of translations)
it suffices to solve it for X.

We now discuss an algorithm that performs inverse type inference for 73; and
Royut, for a deterministic mtt M and an output type Rous. Hence, the algorithm
constructs a description of the regular tree language T]f,[l (Rout)- Note that the ex-
istence of such an algorithm follows from the facts that DMTT C (DT U YIELD)3,
see Subsection 5.5, and that the inverses of DT and YIELD both (effectively) pre-
serve the regular tree languages (cf. the proof of Fact 24 in Theorem 7.4 of [EV85]).
From the proofs of these results in the literature it is straightforward, but rather
awkward, to extract the algorithm. Since, in fact, a direct algorithm is quite easy
to understand, we present it here. As description for a regular tree language we use
the deterministic bottom-up finite state tree automaton, defined next.

A deterministic bottom-up finite state tree autornaton (for short, dbfta) is a tuple
B = (P, Psn, X, 6) where P is a finite set of states, Psn C P is the set of final states,
X is a ranked alphabet, and ¢ is the collection (J,),ex of transition functions such
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that for every ¢ € X*) k> 0, d, is a mapping from P* to P. The tree language
L(B) C Tx recognized by B is {s € T | d(s) € Pan} where § is the extension of
o to trees in T which is recursively defined as follows. For every o € X% k > 0,
and s1,...,8, € T, 0(a(s1,.-.,8k)) = 05(0(s1),--.,0(sk))-

Let M = (X, A,Q,q, R) be a deterministic mtt. For technical reasons we as-
sume M to be total. Clearly, this is not a restriction: just add a new “undefined”
symbol L and for each left-hand side that has no rule, add a rule with right-hand
side L. Moreover, we assume that the {(g,0, A, j)-rules of M disregard j, i.e., all
(q,0, ), j)-rules for j € [0,.J] have the same right-hand side. (Obviously this is not
a restriction, because the j can be incorporated into the states; cf. the discussion
below Lemma 23.)

We are now ready to construct the dbfta A with L(A) = 73, (Rout). Let B =
(P, Psn, A, B) be a deterministic bottom-up finite state tree automaton with L(B) =
Rous- Define A = (D, Dgyp, X, 6) where D consists of all mappings d such that for
every ¢ € Q™) and m > 0, d(q) is a mapping from P™ to P, and Dg, consists of
all d € D such that d(qo)() € Ppan-

For every ¢ € X®), k > 0, and di,...,d; € D, let 0,(dy,...,d) = d where
d is defined as follows. For every ¢ € QU™, m > 0, p1,...,pm € P, and rule
(¢, 0,2\, (W1, -, ym) = € in R, let

d(q)(p1,---,pm) = B'(Cly; < pj | j € [m]]),

where /' is the following extension of § to trees over (Q, {down; | i € [k]})UAU{p(® |
p € P}. For every (¢, down;) € (Q, {down; | i € [k]})("™), m/ >0, and p},...,p. .,
let

qu’,downi)(pll’ s 7plm) = dl(ql)(plla s 7p;n’)a

and let 3,() = p for p € P. This ends the construction of A.

Intuitively, the idea of A is to run the dbfta B on the right-hand sides of the
rules of M. In order to do this, B has to be extended appropriately, because the
right-hand side ¢ of a g-rule of A might contain parameters y; or instructions of
the form (g, down,). Since the state p; in which B arrives after processing the actual
parameter tree ¢; of y; is not determined, a state d of A will contain all possible
choices of states of B for the parameters, i.e., d(q) is a function from P™ to P
and d(q)(p1,...,pm) = p means that, assuming state p, for ¢,, 4 € [m], B will
arrive in p after processing . The (¢',down;) in ¢ are handled by applying d;(¢'),
where d; is the state in which A arrives at the ith input subtree. In fact, for s € T's;,
0(s)(q)(p1,--.,pm) is the state in P in which B arrives on the output tree generated
by g on input s assuming that it arrives in p, for the parameter y,. More precisely,
if (¢, ho)(y1,--- ym) =3s,s t € Ta(Yi) then 6(s)(q)(p1,---,pm) = B(tlyu  tu])
where, for p € [m], ¢, is an arbitrary tree in Tx with §(¢,) = p,. From this it
should be clear that indeed

L(A) = {S €Ty | 7-M(S) N Rout 7& g} = T]\_/jl(Rout)-
This concludes the construction of the dbfta A and our inverse type inference

algorithm.

8 Conclusions and Problems

In this paper we have shown that n-ptts can be decomposed into compositions of 0-
ptts and compositions of mtts, respectively: (1) n-PTT C 0-PTT"*' and n-DPTT C
0-DPTT™"! and (2) n-PTT C sMTT""! and n-DPTT C DMTT""'. It was shown
that (3) PTT* = 0-PTT* = sMTT* and DPTT* = 0-DPTT* = DMTT", i.e., as
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query languages all three models, n-ptt, mtt, and 0-ptt, have the same expressive-
ness. The output languages of dptts form a proper hierarchy with respect to the
number of pebbles: (4) n-DPTT(REGT) C (n+1)-DPTT(REGT) which even holds
for the yields of these tree languages. Finally, (5) almost always type checking for
n-ptts is decidable.

We now discuss some topics for further research. It was shown in Subsection 3.2
that (deterministic) zero-pebble tree transducers are, essentially, attribute gram-
mars. This implies that the implementation techniques known for attribute gram-
mars (see, e.g., [DJL88,AM91,Paa95]) carry over to zero-pebble tree transducers.
The question arises, whether and how these techniques can be generalized to the
n-pebble case.

In Section 6 it was proved that the output languages of deterministic n-ptts form
a proper hierarchy with respect to n, see (4) above. The proof is similar to (and
uses parts of) the proof in [EM02a] of the fact that the output languages of n-fold
compositions of deterministic macro tree transducers give rise to a proper hierarchy,
with respect to m. As observed in Section 6, the exact Hasse diagram for these
hierarchies (see Fig. 6) has not yet been determined. It would also be interesting
to know whether or not the hierarchy of output languages of nondeterministic n-
pebble tree transducers is proper. Note that also for output languages of macro tree
transducers the properness of the nondeterministic hierarchy is an open problem
(stated in [EMO02al).

In Section 5 the n-pebble macro tree transducer was defined, but not investi-
gated. It is straightforward to extend the decomposition result of Section 4 to the
macro case, in the following way:

n-PMTT C 0-PTT" o 0-PMTT.

For the deterministic case a similar result can be proved. Now note that the transla-
tion s of the O-dpmtt M of Example 13 is equal to the composition 7, o7z, of the
two deterministic 0-ptts M; and My of Example 4. We suspect that every (deter-
ministic) 0-pebble macro tree transducer can be realized by the composition of two
(deterministic) O-ptts. In fact, by Subsection 3.2, 0-ptts are essentially attributed
tree transducers; the addition of parameters to the attributes of the attributed tree
transducer gives the macro attributed tree transducer of [KV94] which can be simu-
lated by the composition of two attributed tree transducers (to be precise, the class
of translations realized by macro attributed tree transducers equals the class of
two-fold compositions of attributed tree transducers; cf. Corollary 7.30 of [FV98]).
For the pebble formalism this suggests that 0-PMTT C 0-PTT? and 0-DPMTT C
0-DPTT? ; does this actually hold? As a special case of Corollary 3.27 of [EV86] (viz.
the case that S = Tree-walk) we obtain that 0-PMTT C 0-PTT o MTT and hence
n-PMTT C sMTT""? and PMTT* = PTT*. Is it true that 0-DPMTT C DMTT??
If so, then we would obtain that n-DPMTT C DMTT"*? and DPMTT* = DPTT*.
Using the results of [EV86] it can be shown that the total functions in -DPMTT
are also in DMTT?.

Furthermore, it can probably be shown that n-PTT C (n — 1)-PMTT, i.e., a
pebble can be avoided by the addition of parameters, in a similar way as the removal
of the tree-walk facility of the reading-head (which can be seen as a pebble), in the
proof of Lemma 34.

Last but not least, we conjecture that the class DPTT of deterministic pebble
tree translations can be characterized inside the class DPTT™ as those translations
for which the number of different subtrees in the output tree is polynomial in the
size of the input tree (cf. [EMO1], where the MSO definable tree translations are
characterized inside the class DMTT as those translations for which the size of the
output tree is linear in the size of the input tree).
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