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Abstrat. The n-pebble tree transduer was reently proposed as a model

for XML query languages. The four main results on deterministi trans-

duers are: First, (1) the translation � of an n-pebble tree transduer an

be realized by a omposition of n + 1 0-pebble tree transduers. Next, the

pebble tree transduer is ompared with the maro tree transduer, a well-

known model for syntax-direted semantis, with deidable type heking.

The 0-pebble tree transduer an be simulated by the maro tree trans-

duer, whih, by the �rst result, implies that (2) � an be realized by an

(n+1)-fold omposition of maro tree transduers. Conversely, every maro

tree transduer an be simulated by a omposition of 0-pebble tree trans-

duers. Together these simulations prove that (3) the omposition losure of

n-pebble tree transduers equals that of maro tree transduers (and that of

0-pebble tree transduers). Similar results hold in the nondeterministi ase.

Finally, (4) the output languages of deterministi n-pebble tree transduers

form a hierarhy with respet to the number n of pebbles.

1 Introdution

Trees appear in siene in many ontexts. For instane, they are used to represent

the struture of a omposed objet: the objet is obtained by applying a ertain

operation (at the root of the tree) to its omponents (represented by the subtrees);

suh a tree orresponds to the derivation tree of a grammar generating the objet.

Another more reent example is XML, a general data format for strutured dou-

ments; there, the interest is in the struture of the tree itself. Natural appliation

areas of trees are (we mention only four) (i) linguistis (phrase struture), (ii) om-

pilers (derivation trees, or parse trees), (iii) funtional programming (terms), and

(iv) databases (XML douments).

Let us now onsider the translation of trees into other trees. It plays an im-

portant role in eah of the four areas: (i) for natural language translation (see,

e.g., [KMMM,MMM01℄) (ii) for the spei�ation of the syntax-direted semantis

of a programming language, and its implementation in a ompiler, f. [Iro61,Knu68,

KV97,WM95℄, (iii) for funtional programs working on tree strutured data, f.,

e.g., [Vog91℄, and (iv) for the spei�ation and implementation of XML transfor-

mation (e.g., XSLT; f. [MN00,BMN02℄) and XML query languages [Via01℄. Now,

onsider the (sequential) omposition of tree translations. It appears in applia-

tions in a natural way: e.g., as multi-pass ompilers, as model for deforestation in

funtional languages [K�uh98,Voi02℄ and as implementation of queries to a (possibly

iterated) view of an (XML) database.

This paper is onerned with tree translations and ompositions of them. In par-

tiular, we study the relationship between the n-pebble tree transduer, introdued

in [MSV00,MSV℄ as a model for XML query languages (f. also [Via01℄), and the

maro tree transduer [Eng80,Eng81,CF82,EV85,EV86,FV98℄ whih is a model for



syntax-direted semantis. We �rst disuss the pebble tree transduer (in the ter-

minology used within this paper, whih di�ers slightly from that in [MSV00,MSV℄)

and then the maro tree transduer.

An n-pebble tree transduer (n-ptt) is a �nite state devie that translates or-

dered ranked trees (whih might be odings of XML douments). Its reading head

is a pointer to a node of the input tree and an be moved to another node along

the edges of the input tree. The n-ptt is equipped with n pebbles, marked 1; : : : ; n,

whih an be dropped at or lifted from the urrent node (pointed at by the read-

ing head). A omputation starts in the initial state with the reading head at the

root node, and no pebbles on the input tree. The ptt an test (in its urrent state)

the label of the urrent node, its \position" (i.e., whether it is the root node or

the jth hild of a node, j � 1), and the presene of the pebbles at the urrent

node. Depending on the test, it generates an output tree, at the leaves of whih

new omputations an be spawned (whih will eah have their \own" opy of the

input tree, with pebbles and reading head). This means that, in terms of the output

tree, the basi operation inherent in a omputation step of an n-ptt is the replae-

ment of leaves by trees (\�rst order tree substitution"). When a new omputation

is spawned, the ptt an hange its state and either move the reading head to a

neighboring node, or lift/drop a pebble at the urrent node. Pebbles must be used

in a stak-like fashion: if l � n pebbles are on the tree, then pebble l an be lifted

(if it is present at the urrent node) or pebble l + 1 an be dropped at the urrent

node (if l + 1 � n). We note here that in the model of [MSV00,MSV,Via01℄ the

reading head is onsidered to be a pebble too; thus, our n-pebble tree transduer is

there alled an (n+ 1)-pebble tree transduer.

As observed in [MSV00℄, the pebble tree transduer an be obtained from

the tree-walking automaton of [AU71℄ (see also [ERS80℄) by adding pebbles and

the ability to generate output trees rather than strings. We observe here that

the deterministi pebble tree transduer without pebbles, i.e., the 0-ptt, is very

losely related to the attribute grammar: a well-known ompiler writing formal-

ism (see, e.g., [DJL88,AM91,Paa95℄). Here, the attributes of the attribute grammar

should have trees as values (in whih ase it is also alled an attributed tree trans-

duer [EF81,F�ul81,FV98℄). This relationship was disussed in [Eng86℄, where the

0-ptt is alled an RT(Tree-walk) transduer (see also [EV86℄). Thus, 0-ptts are es-

sentially attribute grammars, and n-ptts ould be viewed as \attribute grammars

with pebbles". If we further restrit the 0-ptt in suh a way that the reading head

may only move down in eah omputation step, then we obtain the lassial top-

down tree transduer [Rou70,Tha70,GS97℄, as mentioned in [MSV00℄.

For a pebble tree transduer, the restrition of input and output to monadi

trees gives rise to a natural transduer model for string translation whih was on-

sidered in [EM02b℄. For some of the results of the present paper we will mention the

orresponding results for pebble string transduers, but for more details the reader

is referred to [EM02b℄. String automata that use pebbles in a stak-like fashion

(whih basially means that the pebbles have nested life times) were introdued

in [GH96℄ and extended to trees in [EH99℄ (see also [NSV01℄).

The maro tree transduer (mtt) is also a �nite state devie that translates trees

into trees. It an be obtained by ombining the top-down tree transduer and the

maro grammar [Fis68℄, i.e., the states of the top-down tree transduer may have

parameters of type output tree, and thus omputations an be spawned at non-leaf

nodes of the output tree. Now, when the mtt exeutes a move at suh a node v, it

is replaed by an output tree whih may spawn new omputations, and in whih

eah leaf labeled by the formal parameter y

j

is replaed by the orresponding atual

parameter, i.e., the jth subtree of v (\seond-order tree substitution"). Just as for

the top-down tree transduer, the reading head of the maro tree transduer an
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only move down. This implies that deterministi maro tree transduers do not have

nonterminating omputations, as opposed to deterministi pebble tree transduers.

Note that it is well known that (in the total deterministi ase) all attributed tree

transduers an be simulated by maro tree transduers [Fra82,CF82,FV99,EM99℄,

and that the omposition losures of the two oinide (f., e.g., Chapter 6 of [FV98℄).

This suggests that (in the deterministi ase) 0-ptts an be simulated by mtts, and

that their omposition losures oinide: one of our results. Maro tree transduers

are well studied in tree transduer theory, and about their omposition losure many

attrative properties are known; for instane: it has deidable type heking [EV85℄,

the translations an be omputed in linear time (in the sum of the sizes of input and

output tree) [Man02℄, and the output languages form a full AFL and have deidable

emptiness and �niteness problems [DE98℄.

Before we disuss our results, let us onsider the relationship of tree transduers

to (XML based) databases, f. [Via01,MSV00℄. In terms of databases, tree trans-

duers an be seen as a query language: the input tree is the urrent ontent of

the database and the output tree is a result of the query that is omputed by the

transduer. Of ourse the result an be input to another query; this orresponds

to the sequential omposition of two tree transduers. In fat, the appliation of a

query q to a database D (a set of inputs) is often used to de�ne a derived version

of the database, alled the \view of D under q". This orresponds to the output

language �(R) of a tree transduer � taking a set R of input trees. We will assume

(as in [MSV00℄) that R is a regular tree language (orresponding to a database type

onstraint as de�ned, e.g., by a DTD or a speialized DTD in XML).

Our �rst main result is ompletely independent of maro tree transduers. It

is a result about pebble tree transduers only: The translation of an n-pebble tree

transduer an be realized by the omposition of n+1 zero-pebble tree transduers.

In fat, the use of the �rst pebble an be simulated by (pre-)omposing with the

translation of a deterministi zero-pebble tree transduer. In terms of databases this

means that a user who understands the onept of a view and that of a 0-pebble

query (omputed by a 0-ptt) need not be bothered with queries of n-pebble tree

transduers for n > 0, i.e., need not know about pebbles at all. Moreover, we observe

that it is a desirable property of a query language to be losed under omposition:

it means that querying a view (i.e., the result of a previous query) gives a result for

whih there is a diret query on the original database. Thus, it is natural to de�ne

the query language of a lass of tree translations as its omposition losure. Note

that the lass of pebble tree translations is not losed under omposition (both in

the deterministi and the nondeterministi ase). For the omposition losure of

pebble tree transduers the �rst result implies that it is equal to the omposition

losure of zero-pebble tree transduers. Hene, as query languages in the above

sense, the pebble tree transduer and the zero-pebble tree transduer are equally

expressive.

Our seond main result is that every pebble tree transduer an be simulated

by a omposition of maro tree transduers. In the nondeterministi ase, to sim-

ulate n pebbles, n + 1 mtts are needed in the omposition and the mtts must be

extended by the ability to remain at a node, instead of stritly moving down in eah

step. Sine suh a transduer an loop, it an have nonterminating omputations.

In the deterministi ase, n pebbles an be simulated by the omposition of n + 1

(onventional) deterministi mtts. Also, a simulation in the onverse diretion is

possible: for every maro tree transduer there is a omposition of 0-pebble tree

transduers whih realizes the same translation. This gives our third main result:

the omposition losure of n-pebble tree transduers equals that of maro tree trans-

duers, i.e., as query languages both formalisms have the same power. Sine mtts

always terminate, the simulations prove that ompositions of deterministi pebble
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tree transduers an be transformed into ones that always terminate. Tehnially

speaking, this is one of the key results of this paper.

Our fourth main result onerns the power of de�ning views, or, equivalently, the

power to generate output languages (for deterministi transduers): n + 1 pebbles

give stritly more views than n pebbles, i.e., there is a hierarhy with respet to the

number n of pebbles, of the output languages of n-pebble tree transduers. The proof

is based on the \mtt-hierarhy" of (string) output languages of n-fold ompositions

of mtts that was reently proved in [EM02a℄. The result strengthens the hierarhy

of translations of n-pebble tree transduers, whih follows from an obvious size-

to-height relationship for suh translations (viz., the height of the output tree is

polynomially bounded in the size of the input tree, with exponent n + 1). The

proof uses ounter examples that are monadi, and thus also proves that there is a

hierarhy of output languages of n-pebble string transduers, as already presented

in [EM02b℄. Moreover, it is shown that nondeterminism gives more views: even

without pebbles a nondeterministi (0-)ptt an ompute a view that annot be

omputed by any omposition of deterministi pebble tree transduers.

Finally, we address the type heking problem for ompositions of pebble tree

transduers; it is the question whether all output douments in a view satisfy a

given type (i.e., a regular tree language). Sine it is well known that inverse type

inferene for ompositions of maro tree transduers is solvable [EV85℄, our seond

main result provides an alternative proof of the main result of [MSV00℄ that type

heking for pebble tree transduers is deidable. We also obtain an extension from

[DE98℄: \almost always" type heking is solvable for ompositions of pebble tree

transduers; it is the question whether all output douments in a view, exept

�nitely many, satisfy a given type (and if so, to produe the list of exeptions).

The struture of this paper is as follows. The Preliminaries (Setion 2) �x ba-

si notations and de�nitions, mainly onerning trees, tree substitution, and tree

grammars. Setion 3 presents the de�nition of the n-pebble tree transduer (with

a omparison to the original de�nition of [MSV00℄ in Subsetion 3.1), and proves

some of its elementary properties. In partiular, the size-to-height relationship for

ptts is proved, and then applied to show that there is a proper hierarhy of transla-

tions and that the lass of pebble tree translations is not losed under omposition.

Subsetions 3.2 and 3.3 ompare ptts to attribute grammars and to the RT(S)

transduers of [Eng86,EV86℄ (with S = Tree-walk). Setion 4 proves our �rst re-

sult, the deomposition of an n-pebble tree translation into n + 1 zero-pebble tree

translations. In Setion 5 pebble tree transduers are ompared with maro tree

transduers. In partiular, our seond and third main results are proved there. In

Setion 6 the output languages of pebble tree transduers are investigated; it is

proved that these languages form a proper hierarhy with respet to the number of

pebbles. Setion 7 disusses type heking, and almost always type heking. The

paper ends with onlusions and suggestions for further researh in Setion 8.

Even when not expliitly mentioned in the lemmas and theorems, all our results

are e�etive.

2 Preliminaries

The set f0; 1; : : :g of natural numbers is denoted by N. The empty set is denoted by

?. For k; l 2 N, [k℄ denotes the set f1; : : : ; kg and [k; l℄ denotes the set fk; : : : ; lg.

For a set A, jAj is the ardinality of A, P(A) is the set of subsets of A, A

�

is the

set of all strings over A, and A

+

is the set of nonempty strings over A. The empty

string is denoted by ". If the elements of A are strings themselves, then we might

write a string w 2 A

�

as w = [a

1

; a

2

; : : : ; a

n

℄ with a

i

2 A; in partiular, we will

then use � to denote the empty string (of strings), i.e., � has a di�erent type than
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". The length of a string w is denoted jwj, and the ith symbol in w is denoted by

w(i). For n � 0, A

�n

denotes the set fw 2 A

�

j jwj � ng.

For sets A and B, their artesian produt is A � B = f(a; b) j a 2 A; b 2 Bg.

An ordered pair (a; b) will also be denoted ha; bi, and A � B will also be denoted

by hA;Bi.

For a binary relation R and a set A, R(A) denotes the set fy j 9x 2 A :

(x; y) 2 Rg and R

�1

(A) denotes the set fx j 9y 2 A : (x; y) 2 Rg. Moreover,

for a lass R of binary relations and a lass of sets A, R(A) denotes the lass of

sets fR(A) j R 2 R; A 2 Ag. The omposition of two (binary) relations R and

S, denoted by R Æ S, is the set of pairs f(x; z) j there is a y with (x; y) 2 R and

(y; z) 2 Sg. For n � 0, the n-fold omposition of R with itself is denoted R

n

. The

reexive, transitive losure and the transitive losure of R are denoted R

�

and R

+

,

respetively. For lasses of relations R and S, R Æ S denotes the lass of relations

fRÆS j R 2 R; S 2 Sg. For n � 1, R

n

denotes RÆ� � � ÆR (n times) and R

�

denotes

the lass

S

n�1

R

n

.

For a binary relation ) � A � A over a set A, we will all, for a; a

0

2 A, a

derivation a)

�

a

0

a omputation (by ) starting with a). Moreover, a omputation

starting with a an also be in�nite. A omputation is omplete if it is either in�nite

or of the form a )

�

a

0

6), i.e., there is no a

00

2 A suh that a

0

) a

00

; in the latter

ase, a

0

is the result of the omputation.

2.1 Ranked Sets and Trees

A set � together with a mapping rank

�

:� ! N is alled a ranked set. For k �

0, �

(k)

is the set f� 2 � j rank

�

(�) = kg; we also write �

(k)

to indiate that

rank

�

(�) = k. For a set A, h�;Ai is the ranked set ��A with rank

h�;Ai

(h�; ai) =

rank

�

(�) for every h�; ai 2 h�;Ai.

Let � be a ranked set. The set of trees over �, denoted by T

�

, is the smallest

set of strings T � (� [ f(; ); ; g)

�

suh that �

(0)

� T and if � 2 �

(k)

, k � 1, and

t

1

; : : : ; t

k

2 T , then �(t

1

; : : : ; t

k

) 2 T . For a set A, the set of trees over � indexed

by A, denoted by T

�

(A), is the set T

�[A

, where for every a 2 A, rank

A

(a) = 0.

For the rest of this paper we hoose the set of parameters to be Y = fy

1

; y

2

; : : : g.

For m � 0, Y

m

denotes the set fy

1

; : : : ; y

m

g. Thus, T

�

(Y ) is the set of trees over �

with parameters.

For every tree t 2 T

�

, the set of nodes of t, denoted by V (t), is the subset of N

�

that is indutively de�ned as follows: if t = �(t

1

; : : : ; t

k

) with � 2 �

(k)

, k � 0, and

t

i

2 T

�

for all i 2 [k℄, then V (t) = f"g[ fiu j u 2 V (t

i

); i 2 [k℄g. Thus, " represents

the root of a tree and for a node u the ith hild of u is represented by ui. The size

of t is its number of nodes, i.e., size(t) = jV (t)j, and the height of t is the number of

nodes on a longest path of t, i.e., height(�(t

1

; : : : ; t

k

)) = 1+maxfheight(t

i

) j i 2 [k℄g.

The label of t at node u is denoted by t[u℄; we also say that t[u℄ ours in t (at

u). The rank of u is the rank of its label t[u℄; in partiular, u is a leaf if it has no

hildren, i.e., if it has rank zero. If u = vw with w 2 N

�

, then v is an anestor of

u and u is a desendant of v; if w 6= ", then v is a proper anestor of u and u is

a proper desendant of v. The subtree of t at node u is denoted by t=u; a subtree

t=ui is alled a subtree of node u. The substitution of the tree s 2 T

�

at node u in

t is denoted by t[u  s℄; it means that the subtree t=u is replaed by s. Formally,

these notions an be de�ned as follows: t["℄ is the �rst symbol of t (in �), t=" = t,

t["  s℄ = s, and if t = �(t

1

; : : : ; t

k

), i 2 [k℄, and u 2 V (t

i

), then t[iu℄ = t

i

[u℄,

t=iu = t

i

=u, and t[iu s℄ = �(t

1

; : : : ; t

i

[u s℄; : : : ; t

k

).

Let u 2 N

�

. For every j � 1, u is the parent of uj, denoted by parent(uj), and j is

the hild number of uj, denoted by hildno(uj). Moreover, we de�ne hildno(") = 0.

Let � be a ranked alphabet. For a tree t 2 T

�

, yt denotes the yield of t, i.e.,

the string in (�

(0)

� feg)

�

obtained by reading the leaves of t from left to right,
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omitting nodes labeled by the speial symbol e of rank 0 (e.g., for t = �(a; �(e; b)),

yt = t[1℄t[22℄ = ab). The string yt an be obtained reursively as follows; if t = e

then yt = ", if t 2 �

(0)

� feg then yt = t, and if t = �(t

1

; : : : ; t

k

), k � 1, � 2 �

(k)

,

and t

1

; : : : ; t

k

2 T

�

, then yt = yt

1

� � � yt

k

.

A ranked alphabet � is monadi if all its symbols are of rank one, exept the

speial symbol e of rank zero, i.e., if � = �

(1)

[ fe

(0)

g; a tree in T

�

is a monadi

tree. For a monadi tree t = a

1

(a

2

(� � � a

m

(e))), pt denotes the path of t, i.e., the

string a

1

� � � a

m

2 (�

(1)

)

�

.

2.2 Tree Substitution

First, we de�ne string substitution: For strings v; w

1

; : : : ; w

n

2 A

�

and distint

a

1

; : : : ; a

n

2 A, we denote by v[a

1

 w

1

; : : : ; a

n

 w

n

℄ the result of (simultane-

ously) substituting w

i

for every ourrene of a

i

in v. Note that the substitution

[a

1

 w

1

; : : : ; a

n

 w

n

℄ is a homomorphism on strings. Let P be a ondition on

a and w suh that f(a; w) j Pg is a partial funtion. Then we use, similar to set

notation, [a  w j P ℄ to denote the substitution [L℄, where L is the list of all

a  w for whih ondition P holds. Sine trees are strings, we an use ordinary

string substitution to replae leaves in a tree: for � of rank zero, t[�  s℄ is the

tree obtained from t by replaing eah node labeled � by the tree s. This type of

tree substitution (i.e., replaing leaves) is often alled \�rst-order tree substitution";

note that top-down tree transduers and also pebble tree transduers are based on

this type of substitution.

Reall from the previous subsetion that for a node u of t, t[u  s℄ is the tree

obtained by replaing in t the subtree rooted at u by s. This type of tree substitution

(i.e., replaing a subtree) is also often alled �rst-order tree substitution. Note that

if fu

1

; : : : ; u

n

g is the set of all �-labeled nodes in t and � is of rank zero, then

t[� s℄ = t[u

1

 s℄ � � � [u

n

 s℄.

We now turn to a di�erent type of substitution, whih is used in maro tree

transduers: \seond-order tree substitution". It means to replae in a tree a symbol

of arbitrary rank by a tree s. Here, the question arises how to deal with the subtrees

of a symbol of rank k � 1 that is replaed. We use, at leaves of s, the (formal)

parameters y

1

; : : : ; y

k

as plaeholders for the 1st, : : : , kth subtrees of the symbol

being replaed.

As for �rst-order tree substitution, let us �rst de�ne the expliit replaement of

a node u in t. Let k be the rank of u, i.e., t[u℄ 2 �

(k)

, and let s be a tree with

parameters in Y

k

, i.e., s 2 T

�

(Y

k

). Then the seond-order substitution of s at u in

t, denoted by t[[u s℄℄, is the tree obtained by replaing in t the subtree rooted at

u by s, in whih eah y

j

is replaed by the jth subtree t=uj of u in t; thus, t[[u s℄℄

an be de�ned in terms of �rst-order substitution as

t[[u s℄℄ = t[u s[y

j

 t=uj j j 2 [k℄℄℄:

Note, by the way, that t[[u  s℄℄ = t[u  s℄ in the ase that s does not ontain

parameters.

Next, we de�ne the seond-order tree substitution of all �'s (of rank k) in t by the

tree s 2 T

�

(Y

k

). Let �

1

; : : : ; �

n

be distint elements of �, n � 1, and for eah i 2 [n℄

let s

i

be a tree in T

�

(Y

k

i

), where k

i

= rank

�

(�

i

). The seond-order tree substitution

of �

i

by s

i

in t, denoted by t[[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ is indutively de�ned as follows

(abbreviating [[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ by [[: : :℄℄). For t = �(t

1

; : : : ; t

k

) with � 2 �

(k)

,

k � 0, and t

1

; : : : ; t

k

2 T

�

, (i) if � = �

i

for an i 2 [n℄, then t[[: : :℄℄ = s

i

[y

j

 

t

j

[[: : :℄℄ j j 2 [k℄℄ and (ii) otherwise t[[: : :℄℄ = �(t

1

[[: : :℄℄; : : : ; t

k

[[: : :℄℄). We will say that

[[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ is a seond-order tree substitution over �. Note that it is

a mapping from T

�

to T

�

. In fat, it is a tree homomorphism [GS84℄. Let P be

6



a ondition on � and s suh that f(�; s) j Pg is a partial funtion. Then we use

[[�  s j P ℄℄ to denote the substitution [[L℄℄, where L is the list of all �  s for

whih ondition P holds. In seond-order tree substitutions we use for the relabeling

�  Æ(y

1

; : : : ; y

k

) of �

(k)

by Æ

(k)

the abbreviation �  Æ; note that this is, in fat,

a string substitution.

We will use elementary properties of seond-order substitution (both t[[u  s℄℄

and t[[�

1

 s

1

; : : : ; �

n

 s

n

℄℄) without proof. For instane, (just as ordinary substi-

tution) seond-order tree substitution is assoiative (by the losure of tree homo-

morphisms under omposition, f. Theorem IV.3.7 of [GS84℄), i.e., t[[�  s℄℄[[�  

s

0

℄℄ = t[[�  s[[�  s

0

℄℄℄℄ and if �

0

6= � then t[[�  s℄℄[[�

0

 s

0

℄℄ = t[[�

0

 s

0

; �  

s[[�

0

 s

0

℄℄℄℄, and similarly for the general ase (f. Setions 3.4 and 3.7 of [Cou83℄).

It should be lear that t[[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ an be obtained from t by

the iterative appliation of one-node substitutions t

0

[[u  s

i

℄℄. More preisely, let

� = t[[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ and de�ne the binary relation)

�

on trees as follows:

t

1

)

�

t

2

if t

2

= t

1

[[u s

i

℄℄ for some i 2 [n℄ and some u 2 V (t

1

) with t

1

[u℄ = �

i

. Note

that )

�

�

is a ongruene, i.e., if t

i

)

�

�

t

0

i

then �(t

1

; : : : ; t

k

))

�

�

�(t

0

1

; : : : ; t

0

k

). Using

this and the de�nition of the seond-order tree substitution �, it is straightforward

to show (by indution on the struture of t) that t)

�

�

t�.

2.3 Tree Languages and Tree Grammars

Let � be a ranked alphabet. A tree language (over �) is a subset of T

�

. Both yield

and path (de�ned in Subsetion 2.1) are extended to tree languages in the obvious

way, i.e., for L � T

�

, yL = fyt j t 2 Lg and pL = fpt j t 2 Lg (note that pL is only

de�ned if � is monadi). For a lass L of tree languages, yL = fyL j L 2 Lg and

pL = fpL j L 2 Lg.

A regular tree grammar is a tuple G = (N;�; S

0

; P ) where N is a �nite set of

nonterminals, � is a ranked alphabet, S

0

2 P is the initial nonterminal, and P is a

�nite set of produtions of the form A ! � with A 2 N and � 2 T

�

(N). For trees

�; �

0

2 T

�

(N), � )

G

�

0

if �

0

= �[u  �℄ for a leaf u of � labeled by A 2 N and a

prodution A ! � in P . The tree language generated by G is L(G) = ft 2 T

�

j

S

0

)

�

G

tg. The lass of all regular tree languages is denoted by REGT.

We assume the reader to be familiar with the elementary properties of the regular

tree languages (see, e.g., [GS84,GS97℄).

3 Pebble Tree Transduers

In this setion the n-pebble tree transduer (n-ptt) is de�ned, and two easy re-

sults about them are proved. The �rst one is a normal form for the rules of n-ptts

(Lemma 2). After that, we give several examples of n-ptts. Then the seond result

is proved: a size-to-height relationship for translations of n-ptts (Lemma 7). Using

this relationship (and the examples of before), it is shown that there is a proper

hierarhy of translations of n-ptts, with respet to the number n of pebbles, and

that the lass of ptt translations is not losed under omposition. In Subsetion 3.1

the di�erenes between our de�nition of n-pebble tree transduer and the original

one of [MSV00℄ are disussed. In Subsetion 3.2 it is shown that, under ertain

onditions, 0-pebble tree transduers are attribute grammars; to be preise, that

nonirular deterministi 0-pebble tree transduers ompute the same total fun-

tions as attribute grammars. Finally, in Subsetion 3.3, we explain how n-ptts �t

into the framework of RT(S) transduers of [Eng86,EV86℄. These subsetions are

independent from the rest of the paper, and therefore an be skipped.

An n-pebble tree transduer is a �nite state devie that takes an (ordered,

ranked) tree as input and generates a tree as output. It proesses the input tree

7



starting in the initial state with its reading head at the root node (i.e., with the

root node as \urrent node"). It then walks on the input tree, from node to node,

using n pebbles to �nd its way. Depending on the urrent state, the label of the

urrent node and its hild number (that is, 0 for the root and j � 1 for a node

that is the jth hild of its parent), and on the presene of the pebbles 1; : : : ; n

at the urrent node, the transduer an generate a tree as output; the leaves of

that tree may ontain state-instrution pairs that determine how to proeed. The

possible instrutions are to move to one of the neighbors of the urrent node (i.e.,

to a parent or a hild) or to stay there, or to lift or drop a pebble. The pebbles

1; : : : ; n are used in a stak-like fashion, i.e., if l � n pebbles are on the tree, then

at most two instrutions onerning pebbles are available: either drop pebble l + 1

(if l + 1 � n) or lift pebble l (if it is present at the urrent node).

An n-ptt an be seen as a partiular type of funtional program: eah state

is a funtion with one parameter. The parameter is the \input on�guration" h

whih ontains the urrent node of the input tree and the positions of the pebbles.

The funtion body onsists of a ase distintion on the input on�guration h; more

preisely, the ase distintion is on test(h), see below, whih is a triple onsisting

of the label of the urrent node, the information about whih pebbles are at the

urrent node, and the hild number of the urrent node. The funtion body may

ontain reursive alls to other funtions, and generates output of type output tree.

De�nition 1. For n � 0, an n-pebble tree transduer (for short, n-ptt) is a tuple

M = (�;�;Q; q

0

; R), where � and � are ranked alphabets of input and output

symbols, respetively, Q is a �nite set of states, q

0

2 Q is the initial state, and R is

a �nite set of rules. A rule is of the form hq; �; b; ji ! � where � is of one of the two

forms

� =

�

hq

0

; 'i

Æ(hq

1

; stayi; : : : ; hq

k

; stayi)

for q 2 Q, � 2 �, b 2 f0; 1g

�n

, j 2 [0; J ℄ with J = maxfrank

�

(�) j � 2 �g, q

0

2 Q,

' 2 I

�;b;j

, Æ 2 �

(k)

, k � 0, and q

1

; : : : ; q

k

2 Q. The set I

�;b;j

of instrutions is

de�ned as

fstayg [ fup j j 6= 0g [ fdown

i

j i 2 [�℄g [ fdrop j l < ng [ flift j l � 1; b(l) = 1g

where � = rank

�

(�) and l = jbj. A rule r as above is alled hq; �; b; ji-rule or q-rule,

and its right-hand side � is denoted by rhs(r). For a subset Q

0

of Q, a q-rule with

q 2 Q

0

is also alled Q

0

-rule.

If � and � are monadi thenM is monadi. If for every q, �, b, and j there is at

most one hq; �; b; ji-rule in R, then M is deterministi (for short, M is an n-dptt).

If there is at least one suh rule then M is total. ut

If an n-ptt M is monadi (reall the de�nition of monadi trees from Subse-

tion 2.1) and if we view monadi trees as strings, then the resulting string-to-string

translations realized by monadi n-ptts are the same as those realized by the two-

way n-pebble string transduers of [EM02b℄ (and similarly for the deterministi

transduers). Viewing a monadi tree t as a string orresponds to taking its path

pt, i.e., the string a

1

� � � a

m

for t = a

1

(a

2

(� � � a

m

(e) � � � )).

Let us now disuss how, for a given input tree s 2 T

�

, the n-ptt M omputes

an output tree. An (n-pebble) input on�guration (on s) is a pair h = (u; �), where

u 2 V (s) and � 2 V (s)

�n

. The set of all n-pebble input on�gurations on s is

denoted by IC

n;s

. The input on�guration (u; �) means that the reading head ofM

is at node u, that there are l = j�j pebbles on the tree, and that the pebbles 1; : : : ; l

are present at the nodes �(1); : : : ; �(l), respetively.

By `testing' the on�guration h, M an determine the label � of the urrent

node u, the bit string b (of length l) that has the ith bit set i� the ith pebble is at
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u, and the hild number j of u (see Subsetion 2.1 for the notion of hild number).

Thus, we de�ne test(h) as the triple (�; b; j), where � = s[u℄, b(i) = (�(i) = u) for

i 2 [l℄, and j = hildno(u). For test(h) = (�; b; j) and an instrution ' 2 I

�;b;j

, the

exeution of ' on h, denoted by '(h), is the input on�guration de�ned as

'(h) = '((u; �)) =

8

>

>

>

>

<

>

>

>

>

:

(u; �) if ' = stay

(parent(u); �) if ' = up

(ui; �) if ' = down

i

(u; �u) if ' = drop

(u; [�(1); : : : ;�(l � 1)℄ if ' = lift

Note that � is a string of strings and that [�(1); : : : ;�(l � 1)℄ is the string onsist-

ing of the strings �(1); : : : ; �(l � 1); f. the beginning of the Preliminaries. Thus,

[�(1); : : : ;�(l � 1)℄ is the unique �

0

suh that � = �

0

u.

A on�guration of M on s is a pair hq; hi 2 hQ; IC

n;s

i. It means that q is the

urrent state and h is the urrent input on�guration. The set hQ; IC

n;s

i of all on-

�gurations of M on s is denoted C

M;s

. A rule hq; �; b; ji ! � of M is appliable to

hq; hi if (�; b; j) = test(h). A sentential form (of M on s) is a tree in T

�

(C

M;s

),

ontaining the already produed output and the on�gurations at whih the om-

putation of M may ontinue.

The omputation relation of M on s, denoted by )

M;s

, is the binary relation

over T

�

(C

M;s

) de�ned as follows: for �; �

0

2 T

�

(C

M;s

), � )

M;s

�

0

i� there are

(N) a leaf v of � labeled by hq; hi 2 C

M;s

, and

(R) a rule hq; �; b; ji ! � in R appliable to hq; hi

suh that �

0

= �[v  �℄ where � equals

� hq

0

; '(h)i if � = hq

0

; 'i; and

� Æ(hq

1

; hi; : : : ; hq

k

; hi) if � = Æ(hq

1

; stayi; : : : ; hq

k

; stayi):

Note that �

0

= �[v  �[h℄

M;s

℄ where

[h℄

M;s

= [hq

0

; 'i  hq

0

; '(h)i j q

0

2 Q;' 2 I

test(h)

℄: (#)

A omputation ofM on an input tree s always starts at the root node " of s, and

with no pebbles present; in other words, the initial on�guration is hq

0

; h

0

i, where

the initial input on�guration h

0

is de�ned as ("; �). Reall, from the beginning of

the Preliminaries, that " denotes the empty string, and that � is used to denote the

empty string of strings. The translation realized by M , denoted by �

M

, is de�ned as

�

M

= f(s; t) 2 T

�

� T

�

j hq

0

; h

0

i )

�

M;s

tg:

Two transduers are equivalent, if they realize the same translation. The lass

of all translations realized by n-ptts is denoted by n-PTT, and in the deterministi

ase by n-DPTT. The unions

S

n�0

n-PTT and

S

n�0

n-DPTT are denoted by PTT

and DPTT, respetively. It should be lear that for a deterministi n-ptt M , �

M

is a funtion (f. Lemma 20 where this fat is proved for the more general ase of

deterministi n-pebble maro tree transduers).

Note that for n � 0, n-PTT(REGT) denotes the lass of all tree languages

�

M

(R) = ft j (s; t) 2 �

M

for some s 2 Rg where M is an n-ptt and R is a regular

tree language. This is the lass of output languages of n-PTT. From the point of

view of databases it is the lass of views orresponding to queries realized by n-ptts

(on some type R). In fat, we will use similar terminology for any lass of tree

transduers.

Sine pebble tree transduers, just as regular tree grammars, are based on �rst-

order tree substitution, it is quite obvious to see that for a �xed input tree the
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omputations of an n-ptt an be simulated by a regular tree grammar. Formally,

let M = (�;�;Q; q

0

; R) be an n-ptt and let s 2 T

�

be an input tree. As stated

in Proposition 3.5 of [MSV00℄, there is a regular tree grammar G

M;s

suh that its

derivations orrespond to the omputations by )

M;s

. In fat, the nonterminals of

G

M;s

are the on�gurations hq; hi in C

M;s

, with initial nonterminal hq

0

; h

0

i, and if

hq; hi )

M;s

� then G

M;s

has the prodution hq; hi ! �. Clearly, G

M;s

generates the

tree language �

M

(s) � T

�

.

PTTs with general rules. When onstruting the rules of a ptt, it is onvenient

not to be restrited to the two forms of possible right-hand sides of De�nition 1, i.e.,

either \navigation" (viz. hq; 'i) or \output one symbol" (viz. Æ(hq

1

; stayi; : : : ; hq

k

;

stayi)). It should be intuitively lear that we an allow any tree � over output sym-

bols and symbols hq; 'i as right-hand side of a rule, without hanging the expres-

siveness of the model. Roughly speaking, suh a right-hand side � an be simulated

by a subprogram that generates �, using only rules with right-hand sides of the

above two kinds (navigation or output).

A rule of the form hq; �; b; ji ! � with � 2 T

�

(hQ; I

�;b;j

i) is a general rule, and

an n-ptt with general rules is a tuple M = (�;�;Q; q

0

; R) where R is a �nite set

of general rules (and the rest is as for an n-ptt). For M , the notions `determinis-

ti', `total', and `monadi' are de�ned in the same way as for an n-ptt. Reall the

de�nition of the omputation of an n-ptt. The omputation relation for a ptt with

general rules is de�ned as follows: � )

M;s

�

0

i� there are (N) a leaf v of � labeled

by hq; hi 2 C

M;s

, and (R) a rule hq; �; b; ji ! � in R appliable to hq; hi, suh that

�

0

= �[v  �[h℄

M;s

℄;

where [h℄

M;s

is de�ned in equation (#) above.

Lemma 2. For every n-ptt M with general rules there is an equivalent n-ptt M

0

.

If M is deterministi, then so is M

0

.

Proof. LetM = (�;�;Q; q

0

; R) be an n-ptt with general rules. The onstrution of

the rules of the n-pttM

0

is similar to the onstrution of produtions in normal form

for a regular tree grammar (f. Lemma 3.4 of [GS84℄). LetM

0

= (�;�;Q[Q

r

; q

0

; R

0

)

be de�ned as follows. Consider a rule hq; �; b; ji ! � in R. Let (�; ") be a state in

Q

r

and let the rule

hq; �; b; ji ! h(�; "); stayi

be in R

0

. For every w 2 V (�) let (�; w) be a state in Q

r

and let the rule

h(�; w); �; b; ji ! �[w℄(h(�; w1); stayi; : : : ; h(�; wk); stayi)

be in R

0

, where k is the rank of the label �[w℄ of w. Obviously, M

0

is an n-ptt and

�

M

0

= �

M

.

Atually, this lemma is just an easy speial ase of Theorem 16 in Setion 5

(more preisely, the ase that all states of the \n-pmtt" M have rank zero; then M

is an n-ptt with general rules). Thus, the proof of Theorem 16 ontains a formal

orretness proof of the above onstrution. ut

Convention 3. From now on, when de�ning an n-ptt (or n-dptt) we taitly give

the de�nition of one with general rules, without expliitly mentioning that Lemma 2

should be applied in order to obtain an equivalent n-ptt (or n-dptt). Note that from

this point of view Lemma 2 is a normal form result.
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Examples. We now give several examples of pebble tree transduers. We start with

deterministi transduers without pebbles: In Example 4 two deterministi 0-pebble

tree transduers are de�ned, suh that their omposition has an exponential size-

to-height relationship; this will be used later in this setion to prove that PTT and

DPTT are not losed under omposition. In Example 5, a deterministi monadi n-

ptt, n 2 N, is de�ned whih has polynomial size inrease with exponent n+1; it will

be used later in this setion to prove that the translations of n-ptts and of n-dptts

form hierarhies with respet to the number n of pebbles. Finally, in Example 6,

an example of a nondeterministi 0-pebble transduer is given that translates eah

input tree into in�nitely many di�erent output trees; this example will play a speial

role in Setion 5.

Example 4. Let � = fa

(1)

; e

(0)

g and� = f�

(2)

; e

(0)

g. The �rst 0-dpttM

1

translates

a monadi tree (in T

�

) of size m+ 1 (i.e., a tree s with ps = a

m

, f. the de�nition

of the \path" ps of a monadi tree s in Subsetion 2.1) into a full binary tree (in

T

�

) with 2

m

leaves. Let M

1

= (�;�; fqg; q; R

1

) where, for j 2 f0; 1g, R onsists of

the following (general) rules

hq; a; �; ji ! �(hq; down

1

i; hq; down

1

i)

hq; e; �; ji ! e:

Obviously, the tree t

m

= �

M

1

(a

m

(e)) is a full binary tree with 2

m

leaves, i.e., with

yield yt

m

= e

2

m

.

The next 0-dpttM

2

translates a binary tree (in T

�

) withm leaves into a monadi

tree (in T

�

) of size m+1, i.e., into the tree a

m

(e). LetM

2

= (�;�; fd; d

0

; ug; d; R

2

)

and let the following (general) rules be in R

2

.

hd; �; �; ji ! hd; down

1

i for j 2 [0; 2℄

hd; e; �; 1i ! a(hd

0

; upi)

hd

0

; �; �; ji ! hd; down

2

i for j 2 [0; 2℄

hd; e; �; 2i ! a(hu; upi)

hd; e; �; 0i ! a(e)

hu; �; �; 1i ! hd

0

; upi

hu; �; �; 2i ! hu; upi

hu; �; �; 0i ! e

Obviously, M

2

performs a depth-�rst left-to-right tree traversal on its input tree

s 2 T

�

, outputting an a for eah leaf (labeled e) of s. Eah �-labeled node is visited

three times by M

2

(in states d, d

0

, and u, respetively) and eah e-labeled node is

visited one (in state d).

Finally, onsider the omposition

� = �

M

1

Æ �

M

2

= f(a

m

(e); a

2

m

(e)) j m 2 Ng:

The size of �(s) is 2

size(s)�1

+ 1, i.e., � is of exponential size inrease. Thus, � has

a non-polynomial size-to-height relationship (beause the height of a monadi tree

equals its size). ut

Reall from De�nition 1 that an n-ptt is monadi if its input and output alpha-

bets are monadi. The next example presents, for n 2 N, the monadi n-dptt M

n

suh that

�

M

n

= f(a

m�1

(e); a

k�1

(e)) j k = m

n+1

g;

i.e., it has polynomial size inrease with exponent n + 1. It will be proved later

(Lemma 7) that this is indeed the maximal size inrease of a monadi n-ptt.
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Example 5. Let � = � = fa

(1)

; e

(0)

g. Let M

0

be a 0-dptt that realizes the identity

on all input trees in T

�

: M

0

has set of states Q

0

= fq

0

g and, for j 2 f0; 1g, it has

the rules

hq

0

; a; �; ji ! a(hq

0

; down

1

i)

hq

0

; e; �; ji ! e

For every n � 0 we now de�ne indutively the (n + 1)-dptt M

n+1

whih, above

eah symbol in an output tree ofM

n

, inserts a opy of the orresponding input tree

(more preisely, of the monadi piee a

m�1

of the input tree a

m�1

(e)). The idea of

the onstrution is as follows. WheneverM

n

generates an output symbol Æ, the new

(n+1)-dpttM

n+1

instead drops a pebble at the urrent node u, and hanges into a

new state q

up

. In state q

up

it moves to the root of the input tree s. Then it hanges

into the state q

down

in whih it moves down to the leaf of s, opying eah a of the

input tree. Finally, it hanges into the state q

�nd

and searhes for the node with the

most reently plaed pebble, i.e., the node u. One at u, it lifts the pebble, outputs

Æ, and proeeds aording to the rules of M

n

(doing the same as above whenever

output is generated).

For n � 0 de�ne M

n+1

= (�;�;Q

n+1

; q

0

; R

n+1

) with

{ Q

n+1

= Q

n

[ fq



j q 2 Q

n

;  2 fup; down; �nd; bakgg

{ For every rule r = (hq; �; b; ji ! �) in R

n

: if � 2 hQ

n

; I

�;b;j

i then let r be in

R

n+1

, and otherwise (i.e., � = e or � = a(hq

0

; stayi) with q

0

2 Q) let the rules

hq; �; b; ji ! hq

up

; dropi

hq

bak

; �; b; ji ! �

be in R

n+1

. For every q 2 Q

n

, b 2 f0; 1g

�n+1

, and b

0

2 f0; 1g

�n

let the following

rules be in R

n+1

:

hq

up

; �; b; 1i ! hq

up

; upi for � 2 �

hq

up

; �; b; 0i ! hq

down

; stayi for � 2 �

hq

down

; a; b; ji ! a(hq

down

; down

1

i) for j 2 f0; 1g

hq

down

; e; b; ji ! hq

�nd

; stayi for j 2 f0; 1g

hq

�nd

; �; b

0

0; 1i ! hq

�nd

; upi for � 2 �

hq

�nd

; �; b

0

1; ji ! hq

bak

; lifti for � 2 �; j 2 f0; 1g:

Clearly, M

n+1

is deterministi, i.e., �

M

n+1

2 (n + 1)-DPTT. Let us now show

thatM

n+1

has polynomial size inrease with exponent n+2. Consider an input tree

s = a

m�1

(e), m � 1. Then �

M

0

(s) = s. The 1-dptt M

1

inserts a

m�1

above eah of

the m symbols of �

M

0

(s), i.e., �

M

1

(s) has k � 1 = (m� 1)m+ (m� 1) ourrenes

of a, and thus its size is k = m

2

= size(s)

2

. In general we get

size(�

M

n+1

(s)) = (size(s)� 1) � size(�

M

n

(s)) + size(�

M

n

(s))

= size(s) � size(�

M

n

(s))

= size(s)

n+2

:

Finally note that instead of de�ning M

n

reursively, it would have also been

possible to give a diret onstrution of an n-dptt that realizes the same translation

as M

n

: it systematially generates all possible on�gurations in whih all n pebbles

are present, starting with all the pebbles and the reading head at the root node and

ending with all the pebbles and the reading head at the leaf, generating an a for

eah suh on�guration. Obviously, there are size(s)

n+1

suh on�gurations. ut

Example 6. Let � be a ranked alphabet, J = maxfrank

�

(�) j � 2 �g, and let

� = � [ f��

(1)

j � 2 �g. Let mon

�

� T

�

� T

�

be the translation onsisting of all

pairs (s; t) suh that t is obtained from s by inserting, above eah �-labeled node

12



in s, an arbitrary number of unary symbols �� (we use `mon' to stand for \monadi

insertion"). The following nondeterministi 0-pttM

�

realizes the translation mon

�

.

Let M

�

= (�;�; fqg; q; R) where, for every � 2 �

(k)

, k � 0, and j 2 [0; J ℄, the

following rules are in R.

hq; �; �; ji ! ��(hq; stayi)

hq; �; �; ji ! �(hq; down

1

i; : : : ; hq; down

k

i)

It should be lear that indeed �

M

�

= mon

�

.

Note that mon

�

is an instane of a \regular insertion" (see, e.g., Setion 2.3

of [Eng82℄), whih inserts strings (seen as monadi trees) of an arbitrary regular

language R

�

above eah symbol � of an input tree. ut

Size-to-Height Relationship of PTT Translations. In the next lemma we

show an elementary property of the translation realized by an n-ptt: for a given

input tree, the height of an output tree is either unbounded or it is polynomially

bounded by the size of the input tree, where the exponent of the polynomial is n+1.

This is due to the fat that the number of possible on�gurations on the input tree

is polynomially bounded by its size.

Lemma 7. Let M be an n-ptt. There is a  > 0 suh that for every input tree s,

if �

M

(s) is �nite then height(t) �  � size(s)

n+1

for every output tree t 2 �

M

(s).

Proof. Let M = (�;�;Q; q

0

; R) and s 2 T

�

. We laim that if �

M

(s) is �nite then

height(t) � jC

M;s

j for every t 2 �

M

(s). Sine the number of on�gurations of M on

s is at most jQj � size(s) � (size(s) + 1)

n

(state, urrent node, and the position of the

n pebbles), this shows the lemma for, e.g.,  = jQj � 2

n

.

To prove the laim, onsider the regular tree grammarG

0

M;s

with set of nontermi-

nals C

M;s

, initial nonterminal hq

0

; h

0

i, and all produtions hq; hi ! Æ(hq

1

; h

1

i; : : : ;

hq

k

; h

k

i) suh that Æ 2 �

(k)

, k � 0, and hq; hi )

�

M;s

Æ(hq

1

; h

1

i; : : : ; hq

k

; h

k

i). It

should be lear that the language L(G

0

M;s

) generated by G

0

M;s

equals �

M

(s). It

should also be lear, by the usual pumping argument (see, e.g., Proposition 5.2

of [GS97℄), that if t 2 L(G

0

M;s

) has height larger than jC

M;s

j, whih is the number

of nonterminals of G

0

M;s

, then L(G

0

M;s

) is in�nite.

We note that the proof would work as well with G

M;s

, disussed above after the

de�nition of �

M

, but is even more apparent with G

0

M;s

whih generates exatly one

output symbol at eah derivation step (and thus orresponds to a nondeterministi

�nite state tree automaton). ut

The fat that translations of n-ptts have polynomial size-to-height relationship

of input to output tree (Lemma 7), has two immediate onsequenes:

(1) Hierarhies of Translations. Reall from Example 5 the deterministi monadi

n-ptt M

n+1

, n 2 N, and note that height(t) = size(t) for every monadi tree t. As

was shown in the example, height(�

M

n+1

(s)) = size(s)

n+2

, whih means that there is

no  suh that height(�

M

n+1

(s)) �  � size(s)

n+1

for every input tree s. By Lemma 7

we obtain that �

M

n+1

annot be realized by any n-dptt, i.e., �

M

n+1

62 n-DPTT. This

proves that

�

M

n+1

2 (n+ 1)-DPTT� n-DPTT;

i.e., there is a proper hierarhy of translations of deterministi n-ptts with respet

to the number n of pebbles.

In fat, by Lemma 7, even

(n+ 1)-DPTT� n-PTT 6= ?;

whih means that also the translations of nondeterministi n-ptts form a proper

hierarhy with respet to the number n of pebbles.

13



(2) Nonlosure under Composition. Reall from Example 4 the two 0-dptts

M

1

and M

2

. As was shown in the example, the omposition � = �

M

1

Æ �

M

2

has

exponential size-to-height relationship. Thus, by Lemma 7, � annot be realized by

any n-ptt, and therefore 0-DPTT Æ 0-DPTT * PTT whih means that

DPTT and PTT are not losed under omposition.

As disussed in the Introdution, it is an undesirable property of a query lan-

guage not to be losed under omposition: it means that querying a view (i.e., the

result of a previous query) might give a result for whih there is no diret query on

the original database. For this reason, one may argue that the query language of peb-

ble tree transduers determines the lasses DPTT

�

and PTT

�

of (deterministi and

nondeterministi) queries, rather than DPTT and PTT, respetively. Note further,

that in the ase of monadi trees, the lass of two-way pebble string translations

orresponding to DPTT is losed under omposition, as was shown in Theorem 2

of [EM02b℄ (and so is the lass orresponding to 0-DPTT).

3.1 Comparison with the Model of Milo, Suiu, and Vianu

In this subsetion our de�nition of n-pebble tree transduer (De�nition 1) is om-

pared to the original de�nition of [MSV00℄. This omparison is not needed in order

to understand the remainder of the paper, and hene an be skipped.

The n-pebble tree transduer of [MSV00℄ translates binary trees, using n pebbles

named 1; : : : ; n. The pebbles are put on the input tree in the order of their names,

i.e., if there are l pebbles on the tree, then pebble l is the most reently plaed

pebble, alled the urrent pebble. It ats as the reading head and moves aording

to the label of the node on whih it is (the urrent node), the urrent state, and

the absene or presene of the various other pebbles on the urrent node. In other

words, there are up to n� 1 \real" pebbles that are tested in the transitions, plus

the additional urrent pebble (the \reading-head-pebble"). To plae a new pebble

means that the urrent pebble l remains at the urrent node, and pebble l+1, whih

now beomes the urrent pebble, is plaed on the root of the input tree. To pik the

urrent pebble l+1 means to remove it, making pebble l the urrent one. In terms

of a model with a reading head in plae of the urrent pebble these two operations

an be seen as follows: (1) �rst a pebble is dropped at the node of the reading head,

and then the reading head jumps to the root and (2) the reading head jumps to the

node of the highest numbered pebble, and then this pebble is lifted.

Our model of n-pebble tree transduer (De�nition 1) has a reading head and

additionally has n pebbles, that it may drop/lift at the urrent node, whih is the

node pointed at by the reading head. Moreover, our transduer has the ability to

hek whether the urrent node is the root node, viz. heking, in the left-hand side

of a rule, whether the hild number equals zero: \is the urrent node the hild of no

node?", i.e., \is it the root node?". This is a natural hoie beause the transduer

an hek whether the urrent node is a leaf (by the rank of the node label), i.e., it

an reognize the bottom boundary of the input tree, so it should also be able to

reognize the top boundary of the input tree, i.e., its root. In the model of [MSV00℄

a root hek an be implemented by plaing an extra pebble on the root (or by

having a speial root symbol). Note that the expliit test for the hild number j

that is present in the left-hand side of a rule of our transduer, is also present in the

model of [MSV00℄ for j 6= 0: it ours when the appliability of an up

j

-instrution

(with j = 1; 2) is determined. Sine we are partiularly interested in deterministi

transduers, it seems more appropriate to expliitly inlude this test in the left-

hand side of a rule, beause it leads to a natural de�nition of determinism: for eah

left-hand side there should be at most one rule.
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Let n-MSV denote the lass of tree translations realized by the (n + 1)-pebble

tree transduers of [MSV00℄ (i.e., having n \real" pebbles), where we drop the

restrition to binary ranked alphabets. Denote by n-PTT

no-root

the lass of tree

translations that an be realized by the n-pebble tree transduers obtained from

De�nition 1 by removing the root-hek, i.e., by requiring that if hq; �; b; 0i ! � is

a rule, then hq; �; b; ji ! � is also a rule, for all possible j � 1. Below we prove the

following inlusions, for n � 0:

n-MSV � n-PTT � (n+ 1)-PTT

no-root

� (n+ 1)-MSV; (�)

also for the deterministi ase.

First inlusion of (�): the move transition (q; plae-new-pebble) of an n-MSV

transduer an be simulated by an n-ptt by �rst dropping a pebble and hang-

ing into a new state r, and then in r to move up to the root node (reognized

by the root-hek), at whih we hange into the state q. The move transition

(q; pik-urrent-pebble) is simulated by hanging into state r and then, as before,

to move to the root node. Now we searh the tree for the highest numbered pebble,

whih an be realized by a depth-�rst left-to-right traversal of the tree (f., e.g.,

Example 3.3 of [MSV00℄, and our Example 4). One arrived at the node that has

the highest numbered pebble, we lift it and hange to state q.

Seond inlusion of (�): To simulate the root-hek of an n-PTT, the (n + 1)-

PTT

no-root

drops a pebble in its initial on�guration, i.e., at the root node; then

the root-hek is simply realized by heking the presene of this pebble.

Third inlusion of (�): A (q; drop) transition of an (n+1)-PTT

no-root

an be sim-

ulated by an (n+1)-MSV transduer in the following way. First plae a new pebble,

by a transition (r; plae-new-pebble). This means that urrent pebble l remains at

the urrent node, and the new urrent pebble l + 1 (the reading-head-pebble) will

be at the root. Now searh for the pebble l and move to state q one it is found. A

(q; lift) transition of an (n+1)-PTT

no-root

is simulated by a (q; pik-urrent-pebble)

transition of an (n+ 1)-MSV transduer.

Clearly, the above implies that MSV =

S

n�0

n-MSV = PTT and hene our

results about the lass PTT diretly arry over to the lass MSV (and similarly in

the deterministi ase). On the other hand, our results that depend on the number

n of pebbles, i.e., results about the lasses n-PTT and n-DPTT, should be handled

with are when translating them into the model of [MSV00℄.

3.2 0-PTTs are Attribute Grammars

In this subsetion it is shown that 0-dptts and attribute grammars are losely related

formalisms and, under ertain onditions, realize the same lass of translations. Sine

we do not use this in the remainder of the paper, the subsetion an be skipped.

Attribute grammars were introdued by Knuth in [Knu68℄ to model syntax-

direted semantis. They are now the basis of many ompiler-ompiler systems

(see, e.g., [DJL88℄). An attribute grammar an be seen as a devie whih translates

the set of trees (i.e., the free algebra) over a many-sorted signature. This is, in fat,

the set of derivation trees of a ontext-free grammar G: the sorts are the nontermi-

nals of G and the symbols are the produtions of G (see Setion 3 of [GTWW77℄).

The output trees are interpreted in a semanti domain, i.e., they are viewed as

expressions denoting objets in that domain. Thus, an attribute grammar de�nes

a tree-to-objet translation. If the interpretation of the output trees is dropped,

then an attribute grammar de�nes a tree-to-tree translation [EF81℄. We will only

onsider one-sorted signatures from now on, for the sake of simpliity. Then the

resulting (uninterpreted) attribute grammars are also alled attributed tree trans-

duers [F�ul81,FV98℄.
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The table in Figure 1 shows the orrespondene between deterministi zero peb-

ble tree transduers and attribute grammars (seen as attributed tree transduers).

0-dptt attribute grammar

states attributes

initial state designated attribute at the root

rules semanti rules that de�ne the attributes

Fig. 1. Correspondene between 0-dptts and attribute grammars.

Attribute grammars (for short, AGs) are total deterministi, and even required

to have no in�nite omputations starting with any sentential form, i.e., they are

\nonirular", whih, in the 0-ptt notation, means that there is no omputation

hq; hi )

+

M;s

� where hq; hi ours in �. This implies that AGs de�ne total funtions.

Formally, a 0-ptt M is nonirular, if there are no input tree s, on�guration  2

C

M;s

, and sentential form � of M on s suh that  )

+

M;s

� and  ours in � (suh

a on�guration  will also be alled \irular", f. Setion 5.2).

To understand the formal de�nition of an attribute grammar as a speial type

of 0-dptt, we �rst extend the 0-ptt formalism to have rules with left-hand side

hq; �; �; �; ji where � is the label of the parent of the urrent node (or `�' if j = 0).

Clearly, this extension does not hange the power of 0-dptts (a 0-dptt M

0

an

simulate an extended one M , beause in state q at node u, M

0

an visit u's parent

u

0

, move down to u into state (q; �) where � is the label of u

0

, and then apply

the hq; �; �; �; ji-rule of M). Furthermore, we allow the extended 0-dptts to use

in the right-hand side of a hq; �; �; �; ji-rule the new instrution updown

i

, with

1 � i � rank

�

(�), whih is simply a subroutine for moving to the parent of the

urrent node u and then to the ith hild (i.e., to the ith sibling of u).

Next we restrit the extended 0-dptts: The attributes (states) are divided into

inherited attributes (i-states) and synthesized attributes (s-states). Now the restri-

tion says that the

{ rules for s-states are: hq; �; �; �; ji-rules that disregard � and j and have no up

instrution in the right-hand side (and no updown

i

), and

{ rules for i-states are: hq; �; �; �; ji-rules that disregard �, have no down

i

instru-

tion in the right-hand side, but are allowed to use updown

i

.

The extended 0-ptts that ful�ll the above two onditions and additionally are total

deterministi and nonirular, are alled attributed tree transduers (for short att).

Note that for the hq; �; �; �; ji-rules to disregard, e.g., the symbol �, means that

all hq; �; �; �; ji-rules for � 2 � have the same right-hand side. Note also that,

intuitively, the �rst ondition means that for eah s-state, at a �-labeled node,

there is a unique appliable rule, and the seond ondition means that for eah i-

state, at a jth hild of a � -labeled node, there is a unique appliable rule. Moreover,

from an s-state it is not possible to move up, and from an i-state it is not possible

to move down, respetively.

Finally note that an attribute grammar is usually spei�ed by giving for eah

input symbol � (i.e., eah prodution of the underlying ontext-free grammar)

�

all rules h q ; � ; [� ; � ; j℄ i ! � q synthesized

all rules h q ; [�

0

℄ ; � ; [�℄ ; j i ! � q inherited

where the brakets `[' and `℄' around the symbols mean that they are not present

in the atual left-hand side of the attribute grammar rule (whih is the same as
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hd; �i ! hd; down

1

i ht; �; 1i ! a(hd; updown

2

i) hu; �; 1i ! hd; updown

2

i

hd; ei ! ht; stayi ht; �; 2i ! a(hu; upi) hu; �; 2i ! hu; upi

ht; ; 0i ! a(e) hu; ; 0i ! e

Fig. 2. An att (with s-state d and i-states t and u) equivalent to M

2

of Example 4.

disregarding it). Figure 2 shows the rules, in this attribute grammar notation, of an

att that omputes the same translation as the 0-dptt M

2

of Example 4, in a similar

way.

Clearly, for every att there is an equivalent nonirular 0-dptt, beause an att is

an extended 0-dptt. We now show that also the onverse holds, i.e., that for every

nonirular 0-dptt M that realizes a total funtion, there is an equivalent att; this

proves that suh 0-dptts and atts have the same power.

Theorem 8. A total funtion from T

�

to T

�

an be realized by an attributed tree

transduer i� it an be realized by a nonirular 0-dptt.

Proof. As stated before, every att is an (extended) nonirular 0-dptt, by de�nition.

It remains to show that for every nonirular 0-dpttM that realizes a total funtion,

there is an equivalent att A. Sine �

M

is a total funtion, we may assume that M is

total: this an be ahieved by simply adding (dummy) rules for the left-hand sides

that do not have a rule (note that these rules will never be applied).

Let M = (�;�;Q; q

0

; R) and let J = maxfrank

�

(�) j � 2 �g. Note that M is

not extended. The att A is onstruted as follows:

{ s-states: (q; j) with q 2 Q and j 2 [0; J ℄; initial state: (q

0

; 0)

{ i-states: (q; ') with q 2 Q and ' 2 fstay; upg

{ rules for s-states:

For every hq; �; �; ji ! � in R and (�; j

0

) 2 (� � [J ℄) [ f(�; 0)g, let

h(q; j); �; �; �; j

0

i ! �

0

be a rule of A, where

�

0

=

8

>

>

<

>

>

:

Æ(h(q

1

; j); stayi; : : : ; h(q

k

; j); stayi) if � = Æ(hq

1

; stayi; : : : ; hq

k

; stayi)

h(q

0

; j); stayi if � = hq

0

; stayi

h(q

0

; i); down

i

i if � = hq

0

; down

i

i

h(q

0

; stay); stayi if � = hq

0

; upi

{ rules for i-states:

For every q 2 Q, � 2 �, and (�; j) 2 (� � [J ℄) [ f(�; 0)g, let

h(q; stay); �; �; �; ji ! h(q; up); upi for j 6= 0

h(q; up); �; �; �; ji ! h(q; j); stayi

be rules of A. Furthermore, A has the (dummy) rule h(q; stay); �;�; �; 0i !

hp; stayi where p is an arbitrary state of A.

Note that the rules of A even disregard � , and do not ontain the updown

i

instru-

tions. It should be lear that A is equivalent to M , i.e., �

A

= �

M

. Intuitively, when-

everM is in state q at node u, the att A will be in s-state (q; hildno(u)) at the same

node u. This property is obviously preserved by down and stay moves: If M moves

down to its ith hild ui into state q

0

, then A moves down to ui into s-state (q

0

; i),

and if M stays at u in state q

0

, then A stays at u in s-state (q

0

; hildno(u)). Now, if

M moves up into state q

0

, then A annot move up diretly, beause (q; hildno(u))

is an s-state (only i-states are allowed to move up). Thus, A �rst hanges into the

i-state (q

0

; stay), then moves up into the i-state (q

0

; up), and �nally does a stay move

into the s-state (q

0

; j), where j = hildno(parent(u)). It is not diÆult to see that

A is nonirular, beause M is. ut
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Note that for an attributed tree transduer it is well known that the height of the

output tree is linear in the size of the input tree (f., e.g., Lemma 5.40 of [FV98℄);

this orresponds to the ase n = 0 of Lemma 7.

Attribute grammars an also be de�ned as nondeterministi and partial devies.

In fat, the attributed tree transduer of [F�ul81℄ is de�ned nondeterministially.

In [Kam83,FM00℄ it is shown that domains of (deterministi) partial AGs are the

languages reognized by universal tree-walking automata, whih, essentially, are the

aeptor version of 0-dptts. We �nally note that the relationship between 0-ptts and

attribute grammars was already pointed out in Setion 3 of [Eng86℄, where 0-ptts

are alled RT(Tree-walk) transduers; these transduers are disussed in the next

subsetion.

3.3 Relationship to Grammars with Storage

In this subsetion we explain that the n-ptt is an instane of the regular tree S

transduer, for a storage type S. This is only needed to understand some of our

referenes to the literature, and hene an be skipped.

Grammars, automata, and transduers with storage have been onsidered in

[Eng86,EV86,EV88℄, both for strings and for trees. The speial ase of string au-

tomata with storage was extensively investigated in AFL and AFA theory [Gin75℄.

Here we disuss the regular tree transduers with storage, or RT(S) transdu-

ers, where S is an arbitrary storage type (suh as the Counter, the Pushdown,

or the Stak). Basially, an RT(S) transduer is a regular tree grammar (see Sub-

setion 2.3) of whih the nonterminals are viewed as the states of the transduer.

Moreover, with eah ourrene of a nonterminal in a sentential form a storage

on�guration of S is assoiated, and the produtions of the grammar are extended

with tests and instrutions of S that operate on these on�gurations. Thus, the

derivations of the grammar are ontrolled by the storage on�gurations. The RT(S)

transduer reeives one of a set of designated initial storage on�gurations of S as

input (assoiated with the initial nonterminal), and produes the generated tree as

output. This means that it translates initial on�gurations into trees.

As observed already in the Introdution (and at the end of the previous sub-

setion), the 0-ptt is the same as the RT(Tree-walk) transduer of [Eng86℄, i.e., the

RT(S) transduer where S is the storage type Tree-walk. A storage on�guration of

Tree-walk onsists of an input tree s, together with an input on�guration on s, as

de�ned for the 0-ptt, i.e., a node u of s; it is an initial storage on�guration if u is the

root of s, in whih ase it is identi�ed with s (and thus, the RT(Tree-walk) trans-

duer indeed translates trees into trees). The tests of the storage type Tree-walk

allow to test the label and hild number of the node u, and its instrutions are the

instrutions of the 0-ptt, i.e., up, stay, and down

i

. As an example of a prodution

of an RT(Tree-walk) transduer, onsider

A[label = �?hildno = 3?℄ ! Æ(�;B[down

2

℄; C[up℄):

Intuitively, this prodution means that a nonterminal (or state) A whih has storage

on�guration (s; u) where s is an input tree and u a node of s with label � and hild

number 3, an be replaed by the right-hand side, in whih the nonterminals (or

states) B and C have storage on�gurations (s; u2) and (s; parent(u)), respetively.

Thus, it orresponds to the rule hA; �; �; 3i ! Æ(�; hB; down

2

i; hC; upi) of a 0-ptt.

It should now be lear to the reader that the storage type Tree-walk an easily be

extended to the storage type n-Pebble, for every n 2 N, suh that the RT(n-Pebble)

transduer is preisely the n-ptt. Hene, all results for RT(S) transduers proved

in, e.g., [Eng86,EV86,EV88℄ hold in partiular for n-ptts.
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Another storage type of interest is Tree (denoted TR in [EV86,EV88℄): it is

Tree-walk without the instrutions stay and up, and without the test on hild num-

ber. We observe here that the RT(Tree) transduer is preisely the top-down tree

transduer.

In [EV86,EV88℄, also ontext-free tree transduers with storage, or CFT(S)

transduers, are investigated. They are de�ned in the same way as RT(S) trans-

duers, exept that ontext-free tree grammars rather than regular tree grammars

are used. In partiular, the CFT(Tree) transduer is (a notational variant of) the

maro tree transduer. Thus, in this paper, we ompare RT(n-Pebble) transduers

with CFT(Tree) transduers.

We �nally note that with every storage type S is assoiated the storage type

P(S) of pushdowns of S-on�gurations. It is easy to see (see Setion 6(7) of [Eng86℄)

that every RT(Tree-walk) transduer, i.e., every 0-ptt, an be simulated by an

RT(P(Tree)) transduer: roughly speaking, the nodes that are on the path from

the root to the urrent node are pushed on the stak; thus, a down

i

instrution is

simulated by a push(down

i

) instrution, whih pushes node ui on the pushdown (if

u was the node on top of the pushdown), and an up instrution is simulated by

popping the pushdown. It is shown in [EV86℄ that, under ertain onditions, the

RT(P(S)) transduer has the same power as the CFT(S) transduer.

4 Deomposition of Pebble Tree Transduers

In this setion it is proved that eah n-pebble tree transduerM an be deomposed

into the (n+1)-fold omposition of 0-pebble tree transduers; more preisely, the �rst

n 0-ptts of the omposition are deterministi, and the last one is nondeterministi

(and they are all deterministi if M is). This means that for a pebble transduer,

a pebble an be simulated by the appliation of a translation of a deterministi

0-ptt. Thus, instead of taking are of many pebbles at the same time (viz. program-

ming an n-ptt) one an simply onsider pebble transduers without pebbles, and

sequentially ompose them. Note that in the string ase an analogous result holds,

but with one pebble rather than zero: eah n-pebble string transduer an be real-

ized by the omposition of n 1-pebble string transduers (Theorem 1 of [EM02b℄).

The idea of the proof in the string ase is similar to, but easier than, the one for

trees in this setion. The one pebble is really needed: deterministi 0-pebble string

transduers are losed under omposition (beause they are the two-way �nite state

transduers [CJ77℄).

Let us sketh the proof of this deomposition. Let M be an n-ptt, n � 1. We

want to disuss how to deompose M 's translation �

M

into the omposition of a

�xed total funtion EnPeb, realized by a deterministi 0-ptt, and an (n � 1)-ptt

M

0

. The idea of the funtion EnPeb is to add information about the position of

the �rst pebble of M to the input tree. More preisely, the input tree is enlarged

by adding to eah node, as an additional (last) subtree, a opy of the input tree in

whih that node is marked. The omputation of M on an input tree s is simulated

by the (n � 1)-ptt M

0

on the input tree EnPeb(s). As long as M has no pebbles

on s, M

0

simulates it on the original nodes of s, of whih the labels are primed to

distinguish them from the new nodes of EnPeb(s). However, when M drops the

�rst pebble on node v of s, M

0

instead enters the new subtree of v and walks to the

marked node, orresponding to v. In that subtree M

0

behaves just like M , using

pebble i as pebble i+1 of M . If M heks for the presene of its �rst pebble, then

M

0

heks whether the urrent node is marked. If M lifts its �rst pebble, then M

0

returns to v by walking up to the �rst primed node.

There is one diÆulty in the onstrution skethed above, and that is the preise

de�nition of EnPeb(s). Suppose that, as suggested above, eah additional subtree
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is indeed a preise opy of the input tree, with one node marked by barring its label.

Then it is easy to see that EnPeb an be realized by a dptt M

1

with one pebble.

In fat, M

1

has states q

0

, q

1

, and q

2

, and the following rules (with � 2 �

(k)

, j � 0,

j

0

> 0, and b 2 f0; 1g):

hq

0

; �; �; ji ! �

0

(hq

0

; down

1

i; : : : ; hq

0

; down

k

i; hq

1

; dropi)

hq

1

; �; b; j

0

i ! hq

1

; upi

hq

1

; �; b; 0i ! hq

2

; stayi

hq

2

; �; 0; ji ! �(hq

2

; down

1

i; : : : ; hq

2

; down

k

i)

hq

2

; �; 1; ji ! �(hq

2

; down

1

i; : : : ; hq

2

; down

k

i)

Thus, to generate the additional tree, M

1

drops its pebble at the urrent node,

walks to the root, and opies the input tree, putting a bar on the label of the node

that arries the pebble.

However, it an be proved that this mapping EnPeb annot be realized by a

zero-pebble ptt. For this reason, we instead de�ne EnPeb in suh a way that the

new subtree of node v is a \folded" opy of the input tree s, obtained from s by

turning v into the root node. This is done by reversing the diretion of the edges on

the path from the root to v, i.e., by inverting the parent-hild relationship between

all anestors of v. It is not diÆult to see that this EnPeb an be realized by a

zero-pebble ptt (see also Example 3.7 of [MSV℄): to generate the new subtree it an

just opy the input tree starting at the urrent node v and \walking away" from v.

It should also be lear that the (n�1)-pttM

0

an still simulateM on this folding of

s, provided some additional information is added to the labels of the (ex-)anestors

of v that allows M

0

to reonstrut the form of s, and, thus, to turn a walk on s

into a walk on the folding of s. This information an easily be produed by the

zero-pebble ptt. Note that the simulation of the dropping and lifting of the �rst

pebble has even beome easier: when it is dropped, M

0

just moves down one step

(to the root of the new subtree), and when it is lifted, M

0

just moves up one step.

We now give a more preise desription of the mapping EnPeb, to prepare

for its formal de�nition. For every input tree s of M , EnPeb(s) has all nodes of

the original tree s, but additionally eah node v of rank k in the tree s, has rank

k + 1 in EnPeb(s) and its (k + 1)th subtree is the tree s

dir

v

, obtained by adding

the \rediretion information" mentioned above to the labels of the folding s

v

of

the input tree s at v. We �rst desribe how the intermediate tree s

v

is onstruted

from s, and then show how to relabel it in order to obtain the tree s

dir

v

. The tree s

v

is obtained from s by inverting the parent-hild relationship of all anestors of u.

More preisely, if u is an anestor of v in s, then, in s

v

, the parent of u is swapped

with its ith hild, where i = swap

v

(u) and

swap

v

(u) =

�

k + 1 if u = v

l if v = ulv

0

for l 2 N and some v

0

2 N

�

with k = rank

�

(s[v℄). Sine v itself has no hild that is an anestor of v, its parent

is added as a new, (k + 1)th hild. If u is the root node, then it has no parent, but

in order to keep the ranks of the new symbols in s

dir

v

as uniform as possible, we

assume an imaginary parent of u, labeled by a dummy symbol $. Clearly M

0

will

never visit these $-labeled nodes in EnPeb(s), beause that would orrespond to

an up instrution of M at the root node, whih does not exist.

We now disuss how to relabel s

v

in order to obtain the tree s

dir

v

. Let u be

an anestor of v. Sine in s

v

the parent of u was swapped with its ith hild, i =

swap

v

(u), also the orresponding move instrutions of the (n � 1)-ptt M

0

have to

be swapped. We apture this \swapping information" by the set d

i

, de�ned as

d

i

= f(up; down

i

); (down

i

; up)g:
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Also, the hild number j of u (in s) may have hanged in s

v

. Thus, for M

0

to have

omplete information about the original order of the anestors of v, we inlude both

d

i

and the original hild number j of u in the label of the orresponding node in

s

dir

v

. Hene, s

dir

v

is obtained from s

v

by relabeling, for every anestor u of v, the

node orresponding to u by (s[u℄; hildno(u); d

swap

v

(u)

).

Note that the node of s

dir

v

orresponding to v, i.e., its root, is marked in the sense

that it is the unique node of s

dir

v

with label (�; j; d

i

) suh that i = rank

�

(�) + 1.

Note also that, in fat, the hild number information is superuous: if a node of

s

dir

v

has label (�; j; d

i

) and its ith hild has label (�

0

; j

0

; d

i

0

), then j = i

0

(and if its

ith hild has label $, then j = 0). Moreover, even the d

i

information is superuous,

beause i is the number of the unique hild that is an (ex-)anestor of v (or has

label $). Thus, it would have suÆed to mark all (ex-)anestors of v. However, the

addition of this information simpli�es the formal de�nition of M

0

.

�

�a g

�  

Æ f

d e

v

b

Æ

e 

� f

�  �

a g$b

d

�

(Æ; 1; d

3

)

d e

f



a g$b

(; 3; d

1

)

(�; 2; d

3

)

(�; 0; d

2

)

Fig. 3. The trees s, s

v

, and s

dir

v

.

Figure 3 shows a tree s in whih the node v = 231 is enirled, the orresponding

tree s

v

whih is obtained from s by turning v into the root node and reversing the

order of the anestors of v, as desribed above, and the tree s

dir

v

obtained from s

v

by relabeling eah anestor of v by the orret triple (�; j; d

i

). As an example of the

translation EnPeb, onsider Figure 4 whih shows the tree s = �(�; (Æ)) together

with the tree EnPeb(s).

Formally, the tree EnPeb(s) is de�ned as follows. First, de�ne for every v 2 V (s)

the funtion en

v

that maps every u 2 V (s) to the orresponding node in the subtree

s

dir

v

of EnPeb(s). Let w be the longest ommon anestor of u and v, let u

0

2 N

�

suh that u = wu

0

, and let w

1

= v; w

2

; : : : ; w

m

= w, m � 1, be the nodes on the

path from v to w (i.e., w

i

is a hild of w

i+1

for 1 � i < m). Then

en

v

(u) = v(k + 1)swap

v

(w

1

) � � � swap

v

(w

m�1

)u

0

with k = rank

�

(s[v℄). Figure 5 shows the nodes u, v, and w

i

in the tree s. Obviously,

en

v

is an enoding, i.e., for every u; u

0

2 V (s)

(P0) en

v

(u) = en

v

(u

0

) i� u = u

0

.

Using en

v

(u) we an de�ne the set of nodes of EnPeb(s) as

V (EnPeb(s)) = V (s) [ fen

v

(u) j u; v 2 V (s)g

[ fen

v

(")swap

v

(") j v 2 V (s)g:

The labels of the nodes of EnPeb(s) are as follows. Note that nodes in V (s) are

labeled by primed opies of the orresponding symbols of �, beause their rank in
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�
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) (Æ; 1; d

1

) (; 2; d

2

) (�; 0; d
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 $�

Æ$�

(�; 0; d

2

)Æ(; 2; d
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)

(�; 0; d

2

)

� $Æ

$
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Æ

�

�

0

�

Fig. 4. The trees s = �(�; (Æ)) and EnPeb(s).

w

m

= w

w

2

w

1

= v

u

u

0

w

m�1

.

.

.

"

Fig. 5. The nodes u, v, and w

i

in the tree s.
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EnPeb(s) has inreased by one. Denote the tree EnPeb(s) by s

0

. Then, for every

u; v 2 V (s),

(P1) s

0

[u℄ = �

0

where � = s[u℄

(P2) if u is not an anestor of v then s

0

[en

v

(u)℄ = s[u℄

(P3) if u is an anestor of v then s

0

[en

v

(u)℄ = (s[u℄; hildno(u); d

swap

v

(u)

)

(P4) s

0

[en

v

(")swap

v

(")℄ = $.

Note that the information hildno(u) is available at node en

v

(u) of s

0

. If u is

an anestor of v this is by de�nition of the relabeling, viz. P3, and otherwise, by

the de�nition of en

v

(u), we get

(P5) if u is not an anestor of v then hildno(u) = hildno(en

v

(u)).

In the next lemma the 0-dptt M

EnPeb

realizing EnPeb is onstruted, and, for

a given n-ptt M , the (n � 1)-ptt M

0

is onstruted suh that the omposition of

�

M

EnPeb

and �

M

0

equals the translation �

M

realized by M .

Lemma 9. For every n � 1, n-PTT � 0-DPTT Æ (n� 1)-PTT and

n-DPTT � 0-DPTT Æ (n� 1)-DPTT.

Proof. Let M = (�;�;Q; q

0

; R) be an n-ptt, and let J = maxfrank

�

(�) j � 2 �g.

We will de�ne the deterministi 0-ptt M

EnPeb

and the (n � 1)-ptt M

0

suh that

�

M

= �

M

EnPeb

Æ �

M

0

. The 0-ptt M

EnPeb

realizes the mapping EnPeb desribed

above this lemma, i.e., it adds to eah node v of rank k of an input tree s, as

(k + 1)th subtree, the tree s

dir

v

(f. Figure 3). It has initial state q whih opies the

urrent node v of rank k (adding a prime to its label), and spawns the generation

of s

dir

v

as (k+1)th subtree, in state q

1

. In the subtree s

dir

v

, M

EnPeb

uses states q

�

,

� 2 [J ℄, to denote that the previously proessed node had hild number �. Finally,

it has a state q

id

that realizes the identity.

De�ne M

EnPeb

= (�;�; S; q; P ) with

� = � [ f�

0

(k+1)

j � 2 �

(k)

; k � 0g

[ f(�; j; d

i

)

(k)

j � 2 �

(k)

; k � 0; i 2 [k℄; j 2 [0; J ℄g

[ f(�; j; d

k+1

)

(k+1)

j � 2 �

(k)

; k � 0; j 2 [0; J ℄g

[ f$

(0)

g

and S = fq; q

1

; q

1

; : : : ; q

J

; q

id

g. For every � 2 �

(k)

, k � 0, j 2 [0; J ℄, and � 2 [k℄

let the following rules be in P .

hq; �; �; ji ! �

0

(hq; down

1

i; : : : ; hq; down

k

i; hq

1

; stayi)

hq

1

; �; �; ji ! (�; j; d

k+1

)(hq

id

; down

1

i; : : : ; hq

id

; down

k

i; �

j

)

hq

�

; �; �; ji ! (�; j; d

�

)(hq

id

; down

1

i; : : : ; hq

id

; down

��1

i; �

j

;

hq

id

; down

�+1

i; : : : ; hq

id

; down

k

i)

hq

id

; �; �; ji ! �(hq

id

; down

1

i; : : : ; hq

id

; down

k

i)

where �

j

= $ if j = 0, and �

j

= hq

j

; upi if j 2 [J ℄. This ends the onstrution of

M

EnPeb

. It should be lear that indeed �

M

EnPeb

(s) = EnPeb(s) for every s 2 T

�

.

In partiular this implies that the properties P1 { P5 (stated before the lemma)

hold for s

0

= �

M

EnPeb

(s).

We now de�ne the (n � 1)-ptt M

0

= (�;�;Q; q

0

; R

0

). Sine, in the orretness

proof, we will need to know whih rules r

0

in R

0

were onstruted from the rule

r 2 R, we will all r

0

related to r if it is onstruted from r. Then R

0

is de�ned as

fr

0

j 9r 2 R : r

0

is related to rg.

Let q 2 Q, � 2 �

(k)

, k � 0, b 2 f0; 1g

�n

, j 2 [0; J ℄, and let r = (hq; �; b; ji ! �)

be a rule in R. The new rules of M

0

are de�ned by the following ase distintion on

the bit string b.
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{ (zero pebbles) b = �: If � 6= hq

0

; dropi for any q

0

2 Q then let the rule

hq; �

0

; �; ji ! � be related to r, and otherwise let the rule hq; �

0

; �; ji !

hq

0

; down

k+1

i be related to r.

{ (�rst pebble not at urrent node) b = 0b

0

for some b

0

2 f0; 1g

�n�1

: Let the rule

hq; �; b

0

; ji ! � be related to r, and, for every i 2 [k℄ and j

0

2 [J + 1℄, let the

rule

hq; (�; j; d

i

); b

0

; j

0

i ! �[hq

0

; 'i  hq

0

; '

0

i j q

0

2 Q; ('; '

0

) 2 d

i

℄

be related to r.

{ (�rst pebble at urrent node) b = 1b

0

for some b

0

2 f0; 1g

�n�1

: If b

0

= � and � =

hq

0

; lifti for q

0

2 Q, then let, for every j

0

2 [J+1℄, the rule hq; (�; j; d

k+1

); b

0

; j

0

i !

hq

0

; upi be related to r, and otherwise let, for every j

0

2 [J + 1℄, the rule

hq; (�; j; d

k+1

); b

0

; j

0

i ! �[hq

0

; 'i  hq

0

; '

0

i j q

0

2 Q; ('; '

0

) 2 d

k+1

℄

be related to r. (Remark: the rules with j

0

6= k+1 are useless, but their presene

simpli�es the orretness proof.)

This onludes the onstrution of M

0

. Clearly, M

0

is deterministi if M is.

Let s 2 T

�

and s

0

= �

M

EnPeb

(s). In order to prove the orretness of the

onstrution, we extend the notion of relatedness from rules to sentential forms:

For � 2 T

�[C

M;s

and �

0

2 T

�[C

M

0

;s

0

: � is related to �

0

if �

0

= �[en℄, where [en℄

is the substitution [hq; hi  hq; en(h)i j q 2 Q; h 2 IC

n;s

℄ and the \enoded"

input on�guration en(h) 2 IC

n�1;s

of M

0

is de�ned as follows: if h = (u; �) with

u 2 V (s) then en(h) = h, and if h = (u; vv

1

� � � v

l

) with u; v; v

1

; : : : ; v

l

2 V (s) and

l 2 [0; n� 1℄ then

en(h) = en(u; vv

1

� � � v

l

) = (en

v

(u); en

v

(v

1

) � � � en

v

(v

l

)):

Note that for every rule r

0

2 R

0

there is preisely one rule r in R related to r

0

whih we denote by rel(r

0

). We �rst show, in Claim 1, that if a rule is appliable

to a on�guration, then there is related rule appliable to the related on�guration,

and vie versa.

Claim 1: Let hq; hi 2 C

M;s

and r 2 R.

r is appliable to hq; hi i� there is a rule r

0

2 R

0

suh that

rel(r

0

) = r and r

0

is appliable to hq; en(h)i.

Case 1, h = (u; �) for u 2 V (s): Let � = s[u℄ and j = hildno(u). Then, r is

appliable to hq; hi i� its left-hand side is hq; �; �; ji. By the de�nition of R

0

this is i�

there is an r

0

2 R

0

with rel(r

0

) = r and left-hand side hq; �

0

; �; ji. Sine en(h) = h

and, by P1, s

0

[u℄ = �

0

, this is i� r

0

is appliable to hq; en(h)i.

Case 2, h = (u; vv

1

� � � v

l

) for u; v; v

1

; : : : ; v

l

2 V (s) and l 2 [0; n�1℄: Let � = s[u℄,

p 2 f0; 1g with p = 1 i� v = u, b

0

2 f0; 1g

l

with b

0

(�) = 1 i� v

�

= u for � 2 [l℄, and

j = hildno(u). We distinguish two subases.

Case (i), u is not an anestor of v: Sine p = 0 (beause u 6= v), r is applia-

ble to hq; hi i� its left-hand side is hq; �; 0b

0

; ji. By the de�nition of R

0

this is i�

there is an r

0

2 R

0

with rel(r

0

) = r and left-hand side hq; �; b

0

; ji. Sine en(h) =

(en

v

(u); en

v

(v

1

) � � � en

v

(v

l

)), s

0

[en

v

(u)℄ = s[u℄ by P2, hildno(en

v

(u)) = hildno

(u) by P5, and en

v

(v

�

) = en

v

(u) i� v

�

= u for � 2 [l℄ by P0, this is i� r

0

is appli-

able to hq; en(h)i.

Case (ii), u is an anestor of v: Let j

0

= hildno(en

v

(u)) and i = swap

v

(u). Now

r is appliable to hq; hi i� its left-hand side is hq; �; pb

0

; ji. By the de�nition of R

0

this is i� there is an r

0

in R

0

with rel(r

0

) = r and left-hand side hq; (�; j; d

i

); b

0

; j

0

i

(note that, by the de�nition of swap

v

(u), i 2 [k℄ if p = 0 and i = k + 1 otherwise).

24



Sine en(h) = (en

v

(u); en

v

(v

1

) � � � en

v

(v

l

)), s

0

[en

v

(u)℄ = (�; j; d

i

) by P3, and

en

v

(v

�

) = en

v

(u) i� v

�

= u for � 2 [l℄ by P0, this is i� r

0

is appliable to

hq; en(h)i, whih onludes the proof of Claim 1.

Next we prove a laim about the result of applying related rules r and r

0

to re-

lated on�gurations. More preisely, the laim shows that the appliation of related

rules to related on�gurations yields related sentential forms. Reall, for an input

on�guration h, the de�nition (#) of the substitution [h℄

M;s

at the end of Setion 3;

we will denote it here by [h℄, and similarly we denote [en(h)℄

M

0

;s

0

by [en(h)℄.

Claim 2: Let hq; hi 2 C

M;s

, r 2 R appliable to hq; hi, and r

0

2 R

0

appliable to

hq; en(h)i, with r = rel(r

0

). Then rhs(r

0

)[en(h)℄ = rhs(r)[h℄[en℄.

Let � 2 �

(k)

, k � 0, b 2 f0; 1g

�n

, and j 2 [0; J ℄ suh that (�; b; j) = test(h).

Thus, r is a hq; �; b; ji-rule.

If rhs(r) 2 T

�[hQ;stayi

then rhs(r

0

) = rhs(r) and, sine there are only stay

instrutions, applying the substitution [h℄[en℄ is equivalent to applying [hq; stayi  

hq; en(h)i j q 2 Q℄ whih, for the same reason, is equivalent to applying [en(h)℄.

If rhs(r) = hq

0

; 'i with ' 2 I

�;b;j

�fstayg then we distinguish the following three

ases. Let u 2 V (s).

Case 1, ' = drop: If h = (u; �) then en(h) = h and rhs(r

0

) = hq

0

; down

k+1

i.

Thus, rhs(r

0

)[en(h)℄ = hq

0

; down

k+1

(h)i = hq

0

; (u(k + 1); �)i whih, by the def-

inition of en, equals hq

0

; en(u; u)i = hq

0

; drop(h)i[en℄ = rhs(r)[h℄[en℄. If h =

(u; vv

1

� � � v

l

) for v; v

1

; : : : ; v

l

2 V (s) and l � 0, then rhs(r

0

) = rhs(r). Thus,

rhs(r

0

)[en(h)℄ = hq

0

; drop(en

v

(u); en

v

(v

1

) � � � en

v

(v

l

))i = hq

0

; (en

v

(u); en

v

(v

1

)

� � � en

v

(v

l

)en

v

(u))i = hq

0

; en(u; vv

1

� � � v

l

u)i = hq

0

; drop(h)i[en℄ = rhs(r)[h℄[en℄.

Case 2, ' = lift: If h = (u; u) then rhs(r

0

) = hq

0

; upi and en(h) = (en

u

(u); �) =

(u(k + 1); �). Consequently, rhs(r

0

)[en(h)℄ = hq

0

; up(u(k + 1); �)i = hq

0

; (u; �)i =

hq

0

; en(u; �)i = hq

0

; lift(h)i[en℄ = rhs(r)[h℄[en℄.

If h = (u; vv

1

� � � v

l

u) for v; v

1

; : : : ; v

l

2 V (s) and l � 0 then rhs(r

0

) = rhs(r).

Hene, rhs(r

0

)[en(h)℄ = hq

0

; lift(en

v

(u); en

v

(v

1

) � � � en

v

(v

l

)en

v

(u))i = hq

0

; (en

v

(

u); en

v

(v

1

) � � � en

v

(v

l

))i = hq

0

; en(u; vv

1

� � � v

l

)i = hq

0

; lift(h)i[en℄ = rhs(r)[h℄[en℄.

Case 3, ' 2 fup; down

1

; : : : ; down

k

g: If h = (u; �) then rhs(r

0

) = rhs(r),

en(h) = h, and en('(h)) = '(h). Thus, on rhs(r), [en(h)℄ = [h℄ = [h℄[en℄. If

h = (u; vv

1

� � � v

l

) for v; v

1

; : : : ; v

l

2 V (s) and l � 0 then we distinguish the following

two ases, where p denotes the string vv

1

� � � v

l

and p

0

denotes en

v

(v

1

) � � � en

v

(v

l

).

Case (i), u is not an anestor of v: Then rhs(r

0

) = rhs(r), i.e., it suÆes to show

that '(en(h)) = en('(h)). Now en(h) = (en

v

(u); p

0

) = (v(k

0

+ 1)swap

v

(w

1

) � � �

swap

v

(w

m�1

)u

0

; p

0

), where k

0

is the rank of s[v℄, w

1

= u;w

2

; : : : ; w

m

are the nodes on

the path from v to the longest ommon anestor w

m

of u and v, and u = w

m

u

0

. Sine

u is not an anestor of v, u

0

2 N

+

. Thus, applying ' to en(h) amounts to applying it

to u

0

, and hene to u. For a node z, de�ne '(z) = parent(z) if ' = up, and '(z) = zi

if ' = down

i

. Then '(en(h)) = (v(k

0

+ 1)swap

v

(w

1

) � � � swap

v

(w

m�1

)'(u

0

); p

0

) =

en(w

m

'(u

0

); p) = en('(w

m

u

0

); p) = en('(u); p) = en('(h)).

Case (ii), u is an anestor of v: If ' = up then rhs(r

0

) = hq

0

; down

i

i where

i = swap

v

(u) by P3 and the de�nition of r

0

. Thus, we must show that en(up(h)) =

down

i

(en(h)). Now up(h) = (�u; p) where �u = parent(u). Thus, en

v

(�u) = v(k

0

+

1)swap

v

(w

1

) � � � swap

v

(w

m�1

), where w

1

= v; : : : ; w

m

= �u are the nodes on the path

from v to �u. This implies that w

m�1

= u and swap

v

(w

m�1

) = i, i.e., en(�u; p) =

down

i

(v(k

0

+ 1)swap

v

(w

1

) � � � swap

v

(w

m�2

); p

0

) = down

i

(en(h)).

If ' = down

i

for i 2 [k℄, then we distinguish whether or not ui is an anes-

tor of v. If ui is not an anestor of v, then rhs(r

0

) = rhs(r) and we must show

that en('(h)) = '(en(h)). Sine en

v

(ui) = en

v

(u)i we get en(down

i

(h)) =

en(ui; p)=(en

v

(ui); p

0

)=(en

v

(u)i; p

0

)= down

i

(en

v

(u); p

0

) = down

i

(en(h)).

If ui is an anestor of v, then rhs(r

0

) = hq

0

; upi, i.e., we must show that

en(down

i

(h)) = up(en(h)). Now down

i

(h) = (ui; p) and en(h) = (v(k

0

+1)swap

v

(
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w

1

) � � � swap

v

(w

m�1

); p

0

), where k

0

is the rank of s[v℄ and w

1

= v; : : : ; w

m

= u are

the nodes on the path from v to u; thus, up(en(h)) = (v(k

0

+1)swap

v

(w

1

) � � � swap

v

(

w

m�2

); p

0

). Sine w

m�1

= ui, this equals en(ui; p) = down

i

(en(h)).

This onludes the proof of Claim 2.

The next laim shows that the appliation of related rules to the same node

in related sentential forms (i.e., � and �

0

with �

0

= �[en℄), yields again related

sentential forms. Reall the de�nition of )

M;s

from Setion 3: If � )

M;s

~

� then

there is a leaf � in � suh that

~

� = �[� �[h℄℄, where �[�℄ = hq; hi 2 C

M;s

and � is

the right-hand side of a rule r of M appliable to hq; hi; we say that \� )

M;s

~

� by

rule r at node �".

Claim 3: Let � 2 T

�[C

M;s

and � 2 T

�[C

M

0

;s

0

with � = �[en℄. If � )

M;s

~

� by

rule r 2 R at node � 2 V (�) and � )

M

0

;s

0

~� by rule r

0

at node �, with r = rel(r

0

),

then ~� =

~

�[en℄.

Note that if �[�℄ = hq; hi then, by the de�nition of [en℄, �[�℄ = hq; en(h)i. Now

Claim 3 an be proved using Claim 2 as follows:

~� = �[en℄[� rhs(r

0

)[en(h)℄℄

= �[en℄[� rhs(r)[h℄[en℄℄ (by Claim 2)

= �[� rhs(r)[h℄℄[en℄ (assoiativity of substitution)

=

~

�[en℄:

Last but not least, it is shown in the �nal laim of this proof that relatedness

(viz. the appliation of [en℄) is preserved in arbitrary omputations of M and M

0

.

Claim 4: Let l � 0 and � 2 T

�[C

M

0

;s

0

. Then

hq

0

; h

0

i )

l

M

0

;s

0

� i� 9� : hq

0

; h

0

i )

l

M;s

� and �[en℄ = �:

The proof of Claim 4 is by indution on the length l of the omputations. For

l = 0 the statement is obvious beause hq

0

; h

0

i[en℄ = hq

0

; h

0

i. Let us now prove the

indution step.

First, the `if' part: Let �;

~

� be sentential forms of M on s suh that

hq

0

; h

0

i )

l

M;s

� )

M;s

~

�;

and let � 2 V (�), hq; hi 2 C

M;s

, and r 2 R be the involved node, on�guration,

and rule, respetively, of the last step of the omputation. Let ~� =

~

�[en℄. By

indution, hq

0

; h

0

i )

l

M

0

;s

0

� with � = �[en℄. It follows from the de�nition of [en℄

that �[�℄ = hq; en(h)i. By Claim 1 there is a rule r

0

appliable to hq; en(h)i with

rel(r

0

) = r. Hene � )

M

0

;s

0

~

�[en℄ = ~� by Claim 3.

Seond, the `only if' part: Let �; ~� be sentential forms of M

0

on s

0

suh that

hq

0

; h

0

i )

l

M

0

;s

0

� )

M

0

;s

0

~�;

and let � 2 V (�), hq; h

0

i 2 C

M

0

;s

0

, and r

0

2 R

0

be the involved node, on�guration,

and rule, respetively, of the last step of the omputation. By indution, there

exists � suh that hq

0

; h

0

i )

l

M;s

� and �[en℄ = �. Hene, by the de�nition of [en℄,

h

0

= en(h) for some h 2 IC

n;s

and, using Claim 1, rel(r

0

) is appliable to hq; hi at

node � of �. Let

~

� be the result of that appliation. Then

~

�[en℄ = ~� by Claim 3.

This ends the proof of Claim 4.

Sine �[en℄ = t i� � = t, for t 2 T

�

, it follows immediately from Claim 4 that

�

M

0

(s

0

) = �

M

(s). Furthermore, sine s

0

= �

M

EnPeb

(s) we obtain that �

M

EnPeb

Æ�

M

0

=

�

M

. ut
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From Lemma 9 we obtain the deomposition result of this setion, our �rst main

theorem: every n-ptt an be deomposed into the omposition of n+ 1 0-ptts, and

similarly in the deterministi ase. In more detail, the �rst n translations of this

omposition are in fat (very simple) deterministi transduers: they all realize the

total funtion EnPeb.

Theorem 10. For every n � 1, n-PTT � 0-PTT

n+1

and n-DPTT � 0-DPTT

n+1

.

A onsequene of Theorem 10 is the equality of the omposition losure of all

ptts with the omposition losure of all 0-ptts, and similarly in the deterministi

ase.

Corollary 11. PTT

�

= 0-PTT

�

and DPTT

�

= 0-DPTT

�

.

In terms of databases, Corollary 11 means that the query language of pebble

tree transduers, i.e., the omposition losure PTT

�

(DPTT

�

), is equal to the query

language of 0-pebble tree transduers.

We note here that the key result of [MSV00℄ is that inverse n-ptt translations

preserve the regular tree languages, i.e., if � 2 n-PTT and R 2 REGT, then

�

�1

(R) 2 REGT. It follows from Theorem 10 that, in fat, it suÆes to show

this for 0-ptts.

5 Pebble Tree Transduers and Maro Tree Transduers

In this setion we ompare the model of pebble tree transduers with that of maro

tree transduers, well known from tree language theory [Eng80,CF82,EV85,FV98℄.

Sine, aording to Subsetion 3.2, 0-pebble tree transduers an be thought of as

attribute grammars, the (total deterministi) zero pebble ase is losely related to

the well-known omparison of attributed tree transduers with maro tree trans-

duers (see, e.g., [Eng81,CF82,EM99,FV99℄).

The main result is that an n-pebble tree transduer an be simulated by the

omposition of n+1 maro tree transduers (for short, mtts). Moreover, it is shown

that mtts an be simulated by ompositions of ptts. Thus, the omposition losure

of all ptts is equal to the omposition losure of all mtts. To be preise, in the

nondeterministi ase, the mtts must additionally be allowed to use stay instrutions

(\stay-mtts"). These are the seond and third main results of this paper.

Let us now disuss these results in more detail. The maro tree transduer an

be obtained from the 0-ptt in the following way: First, onsider a 0-pttM that uses

no up or stay instrutions, i.e., only down instrutions. If we additionally allowM to

have general rules (with arbitrary right-hand sides in T

�[hQ;downi

), thenM is a top-

down tree transduer [Rou70,Tha70,AU71,Eng82,GS97℄ (f. also the disussion on

top-down tree transduers in Subsetion 3.1 of [MSV℄). Now, by adding parameters

(of type output tree) to the states of the top-down tree transduer, we obtain the

maro tree transduer (for short, mtt). A nie onsequene of the fat that mtts have

no stay and up instrutions, is that they have no in�nite omputations, i.e., they

terminate for every input tree. It was proved in the previous setion (Corollary 11)

that the omposition losure of all ptts is equal to the omposition losure of all

0-ptts. Hene, in order to prove the equivalene to the omposition losure of all

mtts, it suÆes to show how to simulate 0-ptts by mtts and vie versa.

In order to formalize the simulation of 0-ptts by mtts, we �rst de�ne a more

general model whih is of interest on its own: the n-pebble maro tree transduer

(for short, n-pmtt). It is obtained from the n-ptt by adding parameters to the states.

Then, an mtt is a 0-pmtt that uses only down instrutions. In order to prove that

a 0-ptt an be simulated by an mtt we �rst eliminate the up instrutions by the
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use of parameters (Lemma 34), thus obtaining a 0-pmtt without up instrutions,

but whih still uses stay instrutions: a \stay-mtt". Using Theorem 10, this shows

that n-PTT � sMTT

n+1

, where sMTT denotes the lass of translations realized by

stay-mtts (and similarly for the deterministi lasses).

In the deterministi ase we prove, in Theorem 31, that stay moves an be elim-

inated from deterministi stay-mtts, i.e., the translation of a 0-dptt an be realized

by a deterministi maro tree transduer, and hene an n-dptt an be realized by the

(n+ 1)-fold omposition of deterministi maro tree transduers (Theorem 35). As

suggested in the Introdution, Theorem 31 is, tehnially speaking, one of the key

results of this paper: it involves removing nonterminating omputations (whih stay

at a node of the input tree) from the stay-mtt; this is done in several intermediate

stages in the proof of Theorem 31.

In the nondeterministi ase it an be shown that stay-mtts are \lose" to mtts,

in partiular that they have the same output languages (whih is of interest for the

type heking problem) and that in a omposition of stay-mtts, all exept the �rst

an be mtts (Theorems 30 and 29, respetively). The reason why a nondeterministi

stay-mtt annot always be simulated by an mtt is that �

M

(s) may be in�nite, i.e.,

there are stay-mttsM that generate in�nitely many output trees for one input tree

s. A prototypi example of suh a transduer is the nondeterministi 0-ptt M

�

of

Example 6 that realizes the translation mon

�

: it inserts above eah �-labeled node u

of the input tree s 2 T

�

, arbitrarily many nodes labeled by the (unary) symbol ��. In

fat, this translation an be used in order to simulate an arbitrary stay-mttM by an

mtt: �rstM

�

translates s into the \(arbitrarily) blown up" version s

0

2 mon

�

(s) of

s by inserting unary nodes, and then a maro tree transduerM

0

an be onstruted

that on s

0

simulates the stay-mtt M (on s): If M does a stay move, then M

0

moves

down on the unary (barred) nodes. Thus, sMTT � MONÆMTT (Lemma 27), where

MON is the lass of all translations mon

�

.

The struture of this setion is as follows. In Subsetion 5.1, pebble maro tree

transduers are de�ned and some of their basi properties are proved. Subsetion 5.2

deals in partiular with properties of deterministi pmtts. Subsetion 5.3 de�nes

maro tree transduers and stay-mtts, and investigates their relationship. Subse-

tion 5.4 presents the simulation of ptts by ompositions of (stay-) maro tree trans-

duers. Finally, in Subsetion 5.5 the simulation of (stay-) maro tree transduers

by ompositions of ptts is presented, and it is proved that the omposition losures

of ptts and (stay-) mtts oinide.

5.1 Pebble Maro Tree Transduers

The n-pebble maro tree transduer (for short, n-pmtt) is obtained from the n-ptt

by allowing eah state to have a �nite number of parameters y

1

; : : : ; y

m

of type

output tree (in addition to the, impliit, parameter of type \input on�guration").

Moreover, the right-hand side of a rule of an n-pmtt is an arbitrary tree over output

symbols, state-instrution pairs hq

0

; 'i of the same rank as q

0

, and parameters. For

instane, hq; upi(�; �(y

1

; hq

0

; down

1

i)) is a possible right-hand side (for a state of

rank � 1), where q and q

0

are of rank 2 and 0, respetively. Viewing an n-pmtt as a

funtional program this means that eah state (of rank m) is a funtion with m+1

parameters, and in the funtion body eah ase of the ase distintion onsists of

an arbitrary expression over output symbols, funtion alls, and parameters. Reall

from Subsetion 2.1 that Y

m

denotes the set fy

1

; : : : ; y

m

g.

De�nition 12. For n � 0, an n-pebble maro tree transduer is a tuple M =

(�;�;Q; q

0

; R), where � and � are ranked alphabets of input and output symbols,

respetively, Q is a ranked alphabet of states, q

0

2 Q

(0)

is the initial state, and R
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is a �nite set of rules of the form

hq; �; b; ji(y

1

; : : : ; y

m

)! �;

where q 2 Q

(m)

, m � 0, � 2 �, b 2 f0; 1g

�n

, j 2 [0; J ℄ with J = maxfrank

�

(�) j

� 2 �g, and � 2 T

�[hQ;I

�;b;j

i

(Y

m

). A rule r as above is alled hq; �; b; ji-rule or

q-rule, and its right-hand side � is denoted by rhs(r). For a subset Q

0

of Q, a q-rule

with q 2 Q

0

is also alled Q

0

-rule.

If for every q, �, b, and j there is at most one hq; �; b; ji-rule in R, then M is

deterministi (for short, M is an n-dpmtt). If there is at least one suh rule then

M is total. ut

Note that an n-ptt with general rules (f. Lemma 2) is the speial ase of an

n-pmtt in whih eah state has rank zero, i.e., has no parameters. For an n-pmtt

M , the ranked set of all on�gurations of M on s, denoted by C

M;s

, is de�ned

as hQ; IC

n;s

i (reall, from the beginning of Subsetion 2.1, that this means that

hq; hi 2 hQ; IC

n;s

i has the same rank as q). A rule hq; �; b; ji(y

1

; : : : ; y

m

)! � of M

is appliable to a on�guration hq; hi if (�; b; j) = test(h). A sentential form (of M

on s) is a tree over � [ C

M;s

.

Let � be a sentential form and u 2 V (�). Then u is outside in � if no proper

anestor of u is labeled by a on�guration. The omputation relation ofM on s 2 T

�

is de�ned as follows: For �; �

0

2 T

�[C

M;s

, � )

M;s

�

0

i� there are

(N) a node v outside in � labeled by hq; hi 2 C

(m)

M;s

, m � 0, and

(R) a rule hq; �; b; ji(y

1

; : : : ; y

m

)! � in R appliable to hq; hi

suh that �

0

= �[[v  �[[h℄℄

M;s

℄℄ where

[[h℄℄

M;s

= [[hq

0

; 'i  hq

0

; '(h)i j q

0

2 Q;' 2 I

test(h)

℄℄: (#)

Reall from Subsetion 2.2 that �[[v  �℄℄ denotes �[v  �[y

j

 t=vj j j 2 [m℄℄℄.

Reall also that the substitution [[h℄℄

M;s

is just a relabeling: every node labeled

hq

0

; 'i is relabeled by hq

0

; '(h)i.

The translation �

M

realized by M is de�ned in the same way as for an n-ptt. The

lass of all translations realized by n-pmtts is denoted by n-PMTT. If the trans-

duers are deterministi, then the respetive lass is denoted by n-DPMTT. The

unions of these lasses over n 2 N are denoted PMTT and DPMTT, respetively.

Note that n-PTT � n-PMTT, and similarly for the deterministi ase.

Example 13. In order to demonstrate that the addition of parameters gives a proper

extension to pebble tree transduers, we onstrut a deterministi 0-pebble maro

tree transduer that realizes a translation that has an exponential size-to-height

relationship, and therefore annot be realized by any pebble tree transduer by

Lemma 7. Let M = (�;�; fq

(0)

0

; q

(1)

g; q

0

; R) where � = fa

(1)

; e

(0)

g and let R

onsist of the following four rules.

hq

0

; a; �; 0i ! hq; down

1

i(hq; down

1

i(e))

hq

0

; e; �; 0i ! a(e)

hq; a; �; 1i(y

1

) ! hq; down

1

i(hq; down

1

i(y

1

))

hq; e; �; 1i(y

1

) ! a(e)

Now, let us onsider how M omputes the output tree �

M

(s), for the input tree

s = a(a(e)):

hq

0

; h

0

i = hq

0

; ("; �)i )

M;s

hq; (1; �)i(hq; (1; �)i(e))

)

M;s

hq; (2; �)i(hq; (2; �)i(hq; (1; �)i(e)))

)

M;s

a(hq; (2; �)i(hq; (1; �)i(e)))

)

M;s

a(a(hq; (1; �)i(e)))

)

M;s

a(a(hq; (2; �)i(hq; (2; �)i(e))))

)

2

M;s

a(a(a(a(e)))):
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It should be lear that �

M

= f(a

m

(e); a

2

m

(e)) j m 2 Ng. Thus, �

M

is not of

polynomial size-to-height inrease and therefore

0-DPMTT� PTT 6= ?:

ut

In the sequel we will also apply )

M;s

to trees with parameters, i.e, trees in

T

�[C

M;s

(Y ); then, the parameters are just viewed as output symbols of rank zero.

Note that, by the requirement in (N) that v is outside, the order in whih

on�gurations in a tree � 2 T

�[C

M;s

are replaed is top-down; in other words, � is

evaluated in a \all-by-name" (or \lazy") fashion: the value of an atual parameter

is not evaluated until the \funtion-all" has been evaluated and the parameter

is needed. In terms of maro tree grammars this order of replaement is alled

\outside-in", or \OI" for short (f., e.g., [Fis68,ES77℄). Maro tree grammars (also

alled ontext-free tree grammars) an be obtained from a pmtt by removing the

tree-walk faility (then the on�gurations beome the states, viz. the nonterminals).

Just as the omputations of an n-ptt an be simulated by a regular tree grammar, as

shown in the beginning of Setion 3, it is possible to obtain, for a �xed input tree s,

a omputation by )

M;s

(for a pmtt M) as the derivation of a maro tree grammar

G

M;s

: The (ranked) nonterminals of G

M;s

are the on�gurations hq; hi in C

M;s

and

if hq; hi(y

1

; : : : ; y

m

) )

M;s

� then G

M;s

has the prodution hq; hi(y

1

; : : : ; y

m

) ! �.

For maro tree grammars the OI requirement is superuous, i.e., the same tree

language is generated with unrestrited order of replaement (see Theorem 4.1.2

of [Fis68℄; see also Setion 3.2 of [EV85℄). This implies that also for pmtts the

outside-in requirement in (N) an be dropped, without hanging �

M

. We keep the

restrition beause it is tehnially more onvenient.

As explained in Subsetion 3.3, n-ptts are the same as RT(n-Pebble) transduers.

From the previous paragraph it should be lear that we just have to replae the

regular tree grammar (RT) by the ontext-free tree grammar (CFT) in order to

obtain a formalism that is equivalent to the n-pmtt: the CFT(n-Pebble) transduer.

In partiular, the 0-pmtt is the same as the CFT(Tree-walk) transduer, whih is

related to the so-alled maro attributed tree transduer of [KV94,FV98℄ in the

same way as the 0-ptt is related to the attribute grammar (see Subsetion 3.2).

Convention 14. In order to make the rules of n-pmtts more readable, we �x the

onvention (both for the n-ptts of De�nition 1 and the n-pmtts of De�nition 12)

that stay instrutions may be omitted, i.e., instead of hq; stayi for a state q, we may

simply write q.

Sine pmtts have stay moves, their rules hq; �; b; ji(y

1

; : : : ; y

m

) ! � an be re-

strited in suh a way that eah � has one of the forms

�=

8

<

:

hq

0

; 'i(hq

1

; stayi(y

1

; : : : ; y

m

); : : : ; hq

k

; stayi(y

1

; : : : ; y

m

)) (navigation)

Æ(hq

1

; stayi(y

1

; : : : ; y

m

); : : : ; hq

k

; stayi(y

1

; : : : ; y

m

)) (output)

y

�

(parameter seletion)

A pmtt is in normal form if the right-hand side of eah of its rules has one of the

above three forms. Using Convention 14, this means that the right-hand side of an

n-pmtt rule is either a parameter, or of one of the following two forms:

{ hq

0

; 'i(q

1

(y

1

; : : : ; y

m

); : : : ; q

k

(y

1

; : : : ; y

m

)) or

{ Æ(q

1

(y

1

; : : : ; y

m

); : : : ; q

k

(y

1

; : : : ; y

m

)).

It will be proved in the next theorem (Theorem 16) that every pmtt an be put

into normal form. This shows that the pmtt an also be viewed as a very simple

extension of the ptt in its original form (i.e., without general rules).
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To prove Theorem 16 we will use the following basi lemma (also to be used

in the proof of Theorem 31). It shows that a stay instrution in the right-hand

side of a rule an be expanded by \applying" an appropriate rule. This is similar

to the well-known tehnique of applying a prodution of a ontext-free grammar

to the right-hand side of another prodution. Note that the ourrene of the stay

instrution need not be outside.

Lemma 15. Let M = (�;�;Q; q

0

; R) be an n-pmtt M , n � 0, let

r

1

= hq

1

; �; b; ji(y

1

; : : : ; y

m

1

)! �

1

and

r

2

= hq

2

; �; b; ji(y

1

; : : : ; y

m

2

)! �

2

be rules of M , and let u 2 V (�

1

) have label �

1

[u℄ = hq

2

; stayi. Assume, moreover,

that r

2

is the unique rule in R with left-hand side hq

2

; �; b; ji(y

1

; : : : ; y

m

2

). Let

M

0

= (�;�;Q; q

0

; R

0

) be the n-pmtt with R

0

= fr

0

j r 2 Rg where r

0

= r for

r 6= r

1

, and

r

0

1

= hq

1

; �; b; ji(y

1

; : : : ; y

m

1

)! �

1

[[u �

2

℄℄

(i.e., M

0

is obtained from M by hanging rule r

1

into r

0

1

).

Then �

M

0

= �

M

.

Proof. We may assume that q

1

6= q

2

, that u 2 V (�

1

) in r

1

is the unique ourrene

of the state q

2

in the right-hand sides of the rules ofM , that r

2

is the unique q

2

-rule

in R, and that q

2

is not the initial state. In fat, if this is not the ase, then hange

�

1

[u℄ into h�q

2

; stayi, and add the rule h�q

2

; �; b; ji(y

1

; : : : ; y

m

2

) ! �

2

to R, where �q

2

is a new state.

Note that, onsequently, if hq

0

; h

0

i )

�

M;s

� and hq

2

; hi ours in �, then test(h) =

(�; b; j), as an easily be shown by indution on the length of the derivation. This

means that r

2

is appliable to hq

2

; hi.

We also note that r

1

6= r

2

and hene q

2

does not our in �

2

. This implies that

for every � 2 T

�[C

M;s

there exists

~

� 2 T

�[C

M;s

suh that � )

�

M;s

~

� by q

2

-rules only

(i.e., by appliations of r

2

) and

~

� has no outside ourrenes of on�gurations hq

2

; hi,

h 2 IC

n;s

. To see this, let us say that an ourrene of hq

2

; hi in a sentential form

is almost outside if none of its anestors is labeled hq; h

0

i with q 6= q

2

. It should

now be lear that after applying r

2

to all outside ourrenes of on�gurations

hq

2

; hi in the sentential form �, the maximal number of almost outside ourrenes

of on�gurations hq

2

; hi on a path of the sentential form has dereased. Thus,

~

� is

obtained after repeating this proess at most height(�) times.

Let s 2 T

�

. In order to prove the orretness of M

0

, i.e., that �

M

0

(s) = �

M

(s),

�rst a laim is proved. Part (1) of the laim shows how to simulate M by M

0

: if a

rule r other than r

2

is applied by M then M

0

an apply the orresponding rule r

0

,

and if rule r

2

is applied thenM

0

need not apply a rule, beause the involved trees are

equal under the substitution 	 (de�ned in the Claim); intuitively, 	 arries out all

M 's omputation steps for on�gurations hq

2

; hi, h 2 IC

n;s

. The seond part of the

Claim shows how to simulate M

0

by M ; it uses the fat mentioned above: starting

with any sentential form � of M , there is a omputation by )

M;s

(using rule r

2

only) suh that the resulting tree

~

� has no outside ourrenes of on�gurations

hq

2

; hi.

Claim: Let the substitution 	 be de�ned as

	 = [[hq

2

; hi  �

2

[[h℄℄ j h 2 IC

n;s

℄℄

where [[h℄℄ = [[h℄℄

M;s

= [[h℄℄

M

0

;s

is de�ned as in (#) above (below De�nition 12).

(1) Let �; �

0

2 T

�[C

M;s

suh that � )

M;s

�

0

by the rule r at node v of �. If r = r

2

then �	 = �

0

	 , and if r 6= r

2

then �	 )

M

0

;s

�

0

	 by the rule r

0

at node v of �	 .
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(2) For �; �

0

2 T

�[C

M

0

;s

and � 2 T

�[C

M;s

, if � )

M

0

;s

�

0

and �	 = � then there

exists �

0

suh that � )

�

M;s

�

0

and �

0

	 = �

0

.

Proof of part (1): � )

M;s

�

0

by r at v. By the de�nition of )

M;s

this means

that v is outside in � and has label hq; hi 2 C

M;s

, suh that �

0

= �[[v  �[[h℄℄℄℄ where

� is the right-hand side of the rule r, whih is appliable to hq; hi.

If r = r

2

, then q = q

2

and � = �

2

, and so �

0

	 = �[[v  �

2

[[h℄℄℄℄	 = �	 , beause v

has label hq

2

; hi and q

2

does not our in �

2

.

If r 6= r

2

then q 6= q

2

beause r

2

is the only q

2

-rule. Note that sine v is outside

in �, it is also outside in �	 and �	=v = (�=v)	 . This implies that (�	)[v℄ = �[v℄ =

hq; hi. Thus, the rule r

0

of M

0

, whih has the same left-hand side as r, is appliable

to �	 at v. Let �

0

be the result of that appliation. Hene, �	 )

M

0

;s

�

0

. Note also

that �

0

	 = �[[v  �[[h℄℄℄℄	 = �	 [[v  �[[h℄℄	 ℄℄ beause v is outside and does not have

label hq

2

; hi. We now distinguish two ases.

If r 6= r

1

, then r

0

= r and �

0

	 = �	 [[v  �[[h℄℄℄℄ beause q

2

does not our in �.

Sine this equals �

0

, �	 )

M

0

;s

�

0

	 .

If r = r

1

, then q = q

1

and � = �

1

, and r

0

= r

0

1

. In this ase we obtain that

�

0

	 = �	 [[v  �

1

[[h℄℄	 ℄℄ = �	 [[v  (�

1

[[u �

2

℄℄)[[h℄℄℄℄ = �

0

.

Proof of part (2): If � )

M

0

;s

�

0

then there is a node v outside in � suh that

�[v℄ = hq; hi 2 C

M;s

and there is a rule r

0

in R

0

with right-hand side � that is

appliable to hq; hi suh that �

0

= �[[v  �[[h℄℄℄℄. If � 2 T

�[C

M;s

suh that �	 = �,

then, by the remark above this Claim, there exists

~

� suh that � )

�

M;s

~

� only by

q

2

-rules, and

~

� has no outside ourrenes of on�gurations hq

2

; h

0

i, h

0

2 IC

n;s

. By

part (1) of this Claim,

~

�	 = �	 = �. Consider the outside ourrene v of hq; hi

in �. Sine the appliation of 	 to

~

� does not replae any outside ourrenes of

on�gurations hq

2

; h

0

i (beause there are none),

~

�	 [v℄ =

~

�[v℄. Let �

0

be the result

of applying the rule r of M to

~

� at v. Then � =

~

�	 )

M

0

;s

�

0

	 by applying r

0

at v,

aording to part (1) of this Claim. Hene �

0

	 = �

0

, whih onludes the proof of

the Claim.

We are now ready to prove that �

M

0

= �

M

. First, �

M

(s) � �

M

0

(s): If hq

0

; h

0

i )

�

M;s

t 2 T

�

then, by part (1) of the Claim above, hq

0

; h

0

i = hq

0

; h

0

i	 )

�

M

0

;s

t	 = t

(where 	 is as in the Claim). Seond, �

M

0

(s) � �

M

(s): Assume that hq

0

; h

0

i )

�

M

0

;s

t 2 T

�

. Then, by part (2) of the Claim, hq

0

; h

0

i )

�

M;s

� for some � 2 T

�[C

M;s

with

�	 = t. As mentioned before the Claim, there exists a

~

� suh that � )

�

M;s

~

� by q

2

-

rules,

~

� has no outside ourrenes of on�gurations hq

2

; hi, and

~

�	 = �	 by part (1)

of the Claim. Sine

~

�	 2 T

�

,

~

� has no outside ourrenes of on�gurations hq; hi

with q 6= q

2

(by the de�nition of 	). Hene,

~

� 2 T

�

and hq

0

; h

0

i )

�

M;s

~

� =

~

�	 = t.

ut

In the next theorem we prove that for every pmttM there is an equivalent pmtt

M

0

in normal form. In partiular, if all states of M are of rank 0 (i.e., M is an

n-ptt with general rules), then M

0

is a ptt (without general rules). Thus, this result

enompasses Lemma 2.

Theorem 16. For every n-pmtt M there is an equivalent n-pmtt M

0

in normal

form. If M is deterministi, then so is M

0

. If all states of M are of rank 0, then M

0

is an n-ptt.

Proof. Let M = (�;�;Q; q

0

; R) be an n-pmtt. Intuitively, M

0

uses stay moves to

generate the right-hand side � of a q-rule ofM node by node (in states (�; w;m) for

node w of �, where m is the rank of q). Note that if M

0

simulates a omputation of

M , then parts of the right-hand sides of the rules ofM might never be generated by

M

0

, beause of the outside-in order of applying rules. This is, however, no problem,

due to Lemma 15.
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De�ne M

0

= (�;�;Q [Q

r

[Q

p

; q

0

; R

0

) as follows. Consider a rule

� = hq; �; b; ji(y

1

; : : : ; y

m

)! � in R:

For every � 2 [m℄, let p

m

�

be a state in Q

p

of rank m and let the rule

hp

m

�

; �; b; ji(y

1

; : : : ; y

m

)! y

�

be in R

0

. Let (�; ";m) be a state in Q

r

of rank m and let the rule

�

0

= hq; �; b; ji(y

1

; : : : ; y

m

)! h(�; ";m); stayi(p

m

1

(y

1

; : : : ; y

m

); : : : ; p

m

m

(y

1

; : : : ; y

m

))

be in R

0

. For every w 2 V (�) let (�; w;m) be a state in Q

r

of rank m and let the

rule

h(�; w;m); �; b; ji(y

1

; : : : ; y

m

)!

�[w℄((�; w1;m)(y

1

; : : : ; y

m

); : : : ; (�; wk;m)(y

1

; : : : ; y

m

))

be in R

0

, where k is the rank of �[w℄. Obviously, M

0

is in normal form (note that

we have used Convention 14).

The orretness of M

0

, i.e., the equality �

M

0

= �

M

, is based on Lemma 15. In

fat, it should be lear that if Lemma 15 is applied iteratively to a rule r

1

= �

0

for

all appropriate (Q

r

[Q

p

)-rules r

2

, the original rule � is reobtained. More preisely,

by �rst applying m Q

p

-rules the rule �

0

is transformed into the rule

hq; �; b; ji(y

1

; : : : ; y

m

)! h(�; ";m); stayi(y

1

; : : : ; y

m

);

and then size(�) appliations of Q

r

-rules transform this rule into � (generating � in

a way similar to a regular tree grammar).

Thus, by Lemma 15, M

0

is equivalent with the n-pmtt M

00

= (�;�;Q [ Q

r

[

Q

p

; q

0

; R

00

) where R

00

is the union of R and all (Q

r

[Q

p

)-rules ofM

0

. Sine, obviously,

the states in Q

r

[Q

p

do not our in the sentential forms of M

00

that are generated

from hq

0

; h

0

i, M

00

is equivalent to M . ut

In some proofs it will be onvenient to deal with total transduers. Therefore, we

show in the next lemma that every transduer an be made total, without hanging

the translation; this is done by simply adding, for eah missing q-rule, a rule with

hq; stayi as (root of the) right-hand side.

Lemma 17. For every n-pmtt M , n � 0, there is an equivalent total n-pmtt M

0

.

If M is deterministi, then so is M

0

.

Proof. Let M = (�;�;Q; q

0

; R) and let J = maxfrank

�

(�) j � 2 �g. De�ne

M

0

= (�;�;Q; q

0

; R

0

), where R

0

= R [ C and for every � 2 �, q 2 Q

(m)

, m � 0,

b 2 f0; 1g

�n

, and j 2 [0; J ℄ suh that there is no hq; �; b; ji-rule in R, let the rule

hq; �; b; ji(y

1

; : : : ; y

m

)! hq; stayi(y

1

; : : : ; y

m

)

be in C. Clearly, M

0

is equivalent to M : �

M

� �

M

0

beause R � R

0

. To see that

�

M

0

� �

M

, let s 2 T

�

and let �; �

0

2 T

�[C

M

0

;s

= T

�[C

M;s

. If � )

M

0

;s

�

0

by a rule in

R then also � )

M;s

�

0

by the same rule, and if � )

M

0

;s

�

0

by a rule in C, then �

0

= �

and thus, � )

�

M;s

�

0

. Hene, hq

0

; h

0

i )

�

M

0

;s

t 2 T

�

implies that hq

0

; h

0

i )

�

M;s

t and

thus �

M

0

� �

M

. ut
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5.2 Deterministi Pebble Maro Tree Transduers

In this subsetion some basi properties of deterministi pmtts are proved. First,

a general lemma about binary relations that are \one-step onuent" is proved.

Then it is shown that the omputation relation of a dpmtt M is one-step onuent.

Together this implies thatM either halts or omputes forever on a given input tree,

and that �

M

is a funtion. Finally it is proved that a omputation of M is in�nite

if it has a \yle".

Consider a deterministi pmtt M and an input tree s. It should be intuitively

lear that for a sentential form � of M on s, either all omplete omputations by

)

M;s

starting with � are in�nite, or they are all �nite, of the same length, and

with the same result (reall, from the Preliminaries, the de�nition of a omplete

omputation). This is proved in the following two lemmas, based on the fat that

)

M;s

is one-step onuent. A binary relation) is one-step onuent if � ) �

1

and

� ) �

2

for �

1

6= �

2

implies that there is a �

0

with �

1

) �

0

and �

2

) �

0

. This is a par-

tiular onuene property whih implies, e.g., that ) is subommutative [Klo92℄

(alled `strongly onuent' in [DJ90℄). Though not expliitly mentioned, the result

that one-step onuene implies the statement of the following lemma, seems to be

folklore within the area of term rewriting; nevertheless, we present a formal proof.

Lemma 18. Let A be a set,)� A�A a binary relation that is one-step onuent,

and let � 2 A. Either the omplete omputations by) starting with � are all in�nite,

or they are all �nite, of the same length, and with the same result.

Proof. Consider two omplete omputations, both starting with � 2 A. If one of the

omputations is �nite, then by Claim 1 the other omputation is also �nite, and

has the same length and the same result.

Claim 1: If � )

i

�

1

and � )

j

�

2

for 0 � i � j, �

1

; �

2

2 A, and �

1

6) (i.e., there

is no

~

� 2 A suh that �

1

)

~

�), then j = i and �

2

= �

1

.

We prove Claim 1 by indution on i. For i = 0, � 6) and thus j = i and

�

2

= �

1

= �. For i+1 � 1, � )

i+1

�

1

means that there is a �

0

suh that � ) �

0

)

i

�

1

.

Sine j � i+1, there is a �

00

suh that � ) �

00

)

j�1

�

2

. If �

00

= �

0

then, by indution,

j � 1 = i, i.e., j = i+1, and �

2

= �

1

. Now let �

00

6= �

0

. By one-step onuene there

is a

�

� suh that �

0

)

�

� (whih implies i � 1) and �

00

)

�

�. By Claim 2,

�

� )

i�1

�

1

and thus �

00

)

i

�

1

. Then, by indution (applied to �

00

), j� 1 = i, i.e., j = i+1, and

�

2

= �

1

, whih onludes the proof of Claim 1.

Claim 2: Let k � 1 and �; �

0

; � 2 A. If � )

k

�

0

6) and � ) � then � )

k�1

�

0

.

The laim is proved by indution on k. For k = 1 it follows from the one-step

onuene of ) that � = �

0

and thus � )

0

�

0

. For k + 1, there is a �

1

suh that

� ) �

1

)

k

�

0

. If � = �

1

then the laim holds. Otherwise, by one-step onuene,

there must be an �

1

suh that �

1

) �

1

and � ) �

1

. By indution �

1

)

k�1

�

1

and

thus � )

k

�

0

. ut

The following easy lemma shows that, for a dpmtt M and an input tree s, the

omputation relation )

M;s

is one-step onuent.

Lemma 19. For every dpmtt M and input tree s, )

M;s

is one-step onuent.

Proof. We have to show that for �; �

1

; �

2

2 T

�[C

M;s

with �

1

6= �

2

:

if � )

M;s

�

1

and � )

M;s

�

2

; then 9�

0

with �

1

)

M;s

�

0

and �

2

)

M;s

�

0

:

If � )

M;s

�

l

for l 2 [2℄ then there are v

1

; v

2

2 V (�) and �

1

; �

2

2 T

�[C

M;s

suh

that �

l

= �[v

l

 �

l

℄ for l 2 [2℄. Sine M is deterministi there is at most one rule

appliable to �[v

l

℄. Thus, v

1

= v

2

would imply the ontradition �

1

= �

2

. Hene,
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v

1

6= v

2

. Moreover, by the \outside" requirement in (N), v

2

is not an anestor of v

1

,

and v

1

is not an anestor of v

2

. Hene �

1

=v

2

= �=v

2

and �

2

=v

1

= �=v

1

and thus, for

l 2 [2℄, �

l

)

M;s

�

0

, where �

0

= �[v

l

 �

l

j l 2 [2℄℄. ut

An immediate onsequene of Lemmas 18 and 19 is that �

M

is a (partial) fun-

tion, beause if (s; t); (s; t

0

) 2 �

M

, then hq

0

; h

0

i )

�

M;s

t is a �nite omplete ompu-

tation and therefore, by Lemma 18, t

0

= t.

Lemma 20. For every dpmtt M , �

M

is a funtion.

In fat, Lemmas 19 and 20 were already proved for a more general formalism (see

Subsetion 3.3): In the proof of Lemma 3.14 of [EV86℄ it is shown that the derivation

relation of a deterministi CFT(S) transduer (where S is an arbitrary storage

type) is one-step onuent. Thus, Lemma 19 is the speial ase that S = n-Pebble.

Similarly, Lemma 20 is a speial ase of Theorem 3.15 of [EV86℄.

Sine the number of on�gurations of a dpmtt M is �nite, every in�nite om-

putation by M must have repetitions of a on�guration. In fat the repetitions will

be in suh a way that a on�guration  will \yle", i.e., it will ompute a tree that

ontains  itself at an outside ourrene ( is \irular"). The next easy lemma

states that irular on�gurations lead to in�nite omputations.

Consider a deterministi n-pmtt M and an input tree s of M . A on�guration

 2 C

(m)

M;s

, m � 0, is irular if there is a t 2 T

�[C

M;s

(Y

m

) suh that

{ (y

1

; : : : ; y

m

))

+

M;s

t and

{  ours outside in t.

We now show how to apply a omputation starting with some on�guration, to

an outside ourrene of that on�guration in a sentential form. Then, the iterative

appliation of suh omputations, applied to a node generated by the previous

omputation, is formalized (\pumping").

Appliation of a omputation: Consider a omputation (y

1

; : : : ; y

m

) )

+

M;s

t

(where t not neessarily ontains ) and onsider a tree � 2 T

�[C

M;s

(Y

m

) that has

an outside ourrene v of . It follows from the de�nition of)

M;s

and by indution,

that � )

+

M;s

�[[v  t℄℄. (In fat, if u is outside in t

0

, then vu is outside in �[[v  t

0

℄℄

and �[[v  t

0

℄℄[[vu �[[h℄℄

M;s

℄℄ = �[[v  t

0

[[u �[[h℄℄

M;s

℄℄℄℄.)

Iteration of appliations: If a sentential form �

0

(of M on s) has an outside

ourrene v

0

of 

1

2 C

(m

1

)

M;s

, m

1

� 0, and for every i � 1 there are t

i

and



i+1

2 C

(m

i+1

)

M;s

, m

i+1

� 0, suh that 

i

(y

1

; : : : ; y

m

i

) )

+

M;s

t

i

and t

i

has an out-

side ourrene v

i

of 

i+1

, then by omposing the orresponding omputations of

the form � )

+

M;s

[[v  t℄℄, we obtain the in�nite omputation

�

0

)

+

M;s

�

0

[[v

0

 t

1

℄℄

| {z }

�

1

)

+

M;s

�

1

[[v

0

v

1

 t

2

℄℄

| {z }

�

2

)

+

M;s

� � �

)

+

M;s

�

i

[[v

0

v

1

� � � v

i

 t

i+1

℄℄

| {z }

�

i+1

)

+

M;s

� � � : ($)

Lemma 21. LetM be a dpmtt, s an input tree ofM , and � a sentential form ofM

on s. If there exists a �

0

suh that � )

�

M;s

�

0

and �

0

ontains an outside ourrene

of a irular on�guration , then every omplete omputation by )

M;s

starting

with � is in�nite.

Proof. Let v be the outside ourrene of  in �

0

. Sine  is irular, there exists a t

suh that (y

1

; : : : ; y

m

))

+

M;s

t and t has an outside ourrene v of . Let �

0

= �

0

,

v

0

= v, and, for i � 1, let t

i

= t, 

i

= , and v

i

= v. Then there is an in�nite
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omputation of the form ($), displayed above. Thus there is an in�nite omputation

starting with �

0

and hene one starting with �. This implies, by Lemmas 18 and 19,

that every omputation by )

M;s

starting with � is in�nite. ut

It an be shown that, in fat, the impliation in this lemma is an equivalene,

i.e., if a omplete omputation of M starting with � is in�nite, then � leads to a

irular on�guration. Thus, in�nite omputations are due to \yles".

5.3 Maro Tree Transduers (with and without stay moves)

An obvious way to make sure that a 0-pebble maro tree transduer M has no

in�nite omputations, is to disallow up and stay instrutions, or, in other words, to

only allow down instrutions. The transduer model obtained from the 0-pmtt in

this way, is the maro tree transduer of [Eng80,Eng81,CF82,EV85℄, de�ned next.

De�nition 22. LetM be a 0-pmtt suh that the rules ofM ontain no up instru-

tions. Then M is a stay-maro tree transduer (for short, stay-mtt). If, moreover,

the rules of M ontain no stay instrutions (i.e., there are only down instrutions)

then M is a maro tree transduer (for short mtt, and dmtt if M is deterministi).

If all states of an mtt are of rank zero, then it is a top-down tree transduer.

As an example of a (deterministi) maro tree transduer, reonsider the 0-dpmtt

M of Example 13: it has no up and no stay moves, i.e., it is a dmtt.

The lass of all translations realized by stay-mtts is denoted sMTT, and DsMTT

for deterministi stay-mtts. The lass of all translations realized by mtts is denoted

by MTT, and DMTT for deterministi mtts. The lass of all translations realized by

total deterministi mtts is denoted by D

t

MTT. Note that translations realized by

total deterministi mtts are total funtions. Note also that the analogue of Lemma 17

does not hold for mtts. In fat, D

t

MTT is the lass of all total funtions in DMTT.

We denote by T and DT (D

t

T) the lasses of translations realized by top-down tree

transduers and (total) deterministi top-down tree transduers, respetively.

It follows from the de�nition that top-down tree transduers are 0-ptts (with

general rules) that only use down instrutions. Thus, by Lemma 2, we obtain the

obvious fat that top-down tree transduers an be simulated by 0-ptts, as observed

in [MSV00℄ and stated in the next lemma.

Lemma 23. T � 0-PTT and DT � 0-DPTT.

Usually (see, e.g., [EV85,FV98℄) the rules of an mtt are de�ned as rewrite rules

in whih variables of the form x

i

represent the down

i

instrutions. Also, the hild

number j is not present in the left-hand sides of mtt rules; learly this information

an be inorporated into the states of an mtt, i.e., in order to transform an mtt

M de�ned in the pmtt formalism as above into one de�ned in the onventional

way, new states (q; j) would be introdued, for every state q of M and possible

hild number j, and the initial state would be (q

0

; 0). From this it also follows, as

observed in Subsetion 3.3, that the mtt is in fat the CFT(Tree) transduer, and

that the top-down tree transduer is the RT(Tree) transduer.

Sine, in the de�nition of the omputation relation of an n-pmtt, we have �xed

in (N) the order in whih rules are applied to be outside-in (OI), this also �xes the

order for an mtt to be OI (or, equivalently, unrestrited; see Corollary 3.13 of [EV85℄

and f. the disussion after Example 13). Maro tree transduers with the inside-out

(IO) order of rule appliation have also been studied in the literature. In the total

deterministi ase there is no di�erene between the OI and IO translations. We also

note that MTT

�

= MTT

�

IO

, where MTT

IO

denotes the lass of all IO translations

realized by maro tree transduers (f. Theorem 7.3 of [EV85℄), and similarly in the

deterministi ase.

We now ite two well-known fats about maro tree transduers.
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Fat 24. Inverses of (ompositions of) maro tree transduers preserve the regular

tree languages, i.e., if � 2 MTT

�

and R 2 REGT, then �

�1

(R) 2 REGT.

Fat 25. For an output language K of a omposition of maro tree transduers,

i.e., for K 2 MTT

�

(REGT),

(i) it is deidable whether or not K is empty, and

(ii) it is deidable whether or not K is �nite; moreover, if the answer is yes, the list

of elements of K an be omputed.

Fat 24 is proved in Theorem 7.4 of [EV85℄. It immediately implies Fat 25(i):

sine K = �(R) is empty i� �

�1

(T

�

) \ R is empty, the result follows from the

fat that REGT is losed under intersetion, and that emptiness of regular tree

languages is deidable (f. [GS84℄). Fat 25(ii) is shown in Theorem 4.5 of [DE98℄.

In the remainder of this subsetion, we relate the new lass sMTT to the well-

known lass MTT of translations realized by mtts. In partiular, it is proved in

Theorem 31 that, in the deterministi ase, stay-mtts realize the same lass of

translations as mtts, i.e., DsMTT = DMTT, and it is proved in Theorem 29 that,

in the nondeterministi ase, ompositions of n stay-mtts an be realized by the

omposition of one stay-mtt and n�1 mtts, i.e., sMTT

n

� sMTTÆMTT

n�1

. In the

nondeterministi ase, whih is proved �rst, the main proof is rather straightforward

(Lemma 27), while the deterministi ase (Theorem 31) has a quite involved proof.

Due to nondeterminism and the presene of stay moves, a stay-mtt M an gen-

erate in�nitely many output trees for one partiular input tree (see Example 6).

This implies that M 's translation annot be realized by an mtt, beause, due to

the absene of stay moves, in every omputation step of an mtt a node of the input

tree is \onsumed"; hene, an mtt translates eah input tree into a �nite number

of output trees. In order to eliminate stay moves from nondeterministi stay-mtts,

we onsider the translation mon

�

(of Example 6) that inserts unary ��'s above eah

symbol � of a tree. Then, we an deompose M into mon

�

followed by an mtt M

0

.

Notation 26. Let MON be the lass of all mon

�

for all ranked alphabets �.

Note that the 0-ptt M

�

of Example 6 that realizes mon

�

is also a stay-mtt.

Thus, MON � 0-PTT and MON � sMTT.

In the next lemma it is shown how to remove the stay instrutions from a stay-

mtt, by pre-omposing with a translation in MON.

Lemma 27. sMTT � MON ÆMTT.

Proof. LetM = (�;�;Q; q

0

; R) be a 0-pmtt without up instrutions. We onstrut

a maro tree transduerM

0

suh that mon

�

Æ�

M

0

= �

M

. The idea of the onstrution

of M

0

is as follows. Instead of staying at some �-labeled node u of the input tree

s, the new transduer M

0

will move down on the monadi piee of ��-labeled nodes

that are present above the �-labeled node v in mon

�

(s) that orresponds to u. In

order to know, until we arrive at v, the hild number of v in the original tree s, we

keep this information in the states of M

0

. That is, states of the form (q; j) are used

to simulate sequenes of stay moves; this is done only on barred symbols, i.e., there

are no rules for states of the form (q; j) and input symbols �. As soon as there is

a non-stay instrution, i.e., a down

i

instrution into state q, we hange into a state

of the form (q; down

i

). Suh a state will move down the remaining monadi piee

of ��'s, and at the �-labeled node v it will exeute the down

i

move into state q.

Let M

0

= (�;�;Q [ Q

0

; q

0

; R

0

) with � = � [

�

�,

�

� = f��

(1)

j � 2 �g, and

Q

0

= Q[hQ; [0; J ℄i[ hQ; downi, where `down' denotes the set fdown

i

j i 2 [J ℄g and

J = maxfrank

�

(�) j � 2 �g.
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Let hq; �; �; ji(y

1

; : : : ; y

m

)! � be a rule in R. Then let the rules

hq; ��; �; ji(y

1

; : : : ; y

m

) ! ��

j

	

h(q; j); ��; �; 1i(y

1

; : : : ; y

m

)! ��

j

	

be in R

0

, where the substitutions �

j

and 	 are de�ned as

�

j

= [[hq

0

; stayi  h(q

0

; j); down

1

i j q

0

2 Q℄℄

	 = [[hq

0

; down

i

i  h(q

0

; down

i

); down

1

i j q

0

2 Q; i 2 [J ℄℄℄:

Moreover, for every q 2 Q

(m)

, m � 0, � 2 �

(k)

, k � 1, and i 2 [k℄, let the rules

h(q; down

i

); ��; �; 1i(y

1

; : : : ; y

m

)! h(q; down

i

); down

1

i(y

1

; : : : ; y

m

)

h(q; down

i

); �; �; 1i(y

1

; : : : ; y

m

) ! hq; down

i

i(y

1

; : : : ; y

m

)

be in R

0

. Obviously, the rules of M

0

do not ontain stay instrutions anymore, and

thus M

0

is an mtt.

Before we prove the orretness of the onstrution ofM

0

, we need some auxiliary

notions. Let s 2 T

�

and s

0

2 mon

�

(s). Reall that s

0

is obtained from s by inserting

above eah �-labeled node u, an arbitrary number of nodes u

0

labeled �� (of rank

1), whih are \assoiated" with u. We now de�ne the funtion de, whih maps

eah node u

0

of s

0

to the assoiated node u of s: Let u

0

= i

1

� � � i

m

2 V (s

0

) with

i

1

; : : : ; i

m

2 [J ℄ and m � 0. De�ne de(u

0

) = i

�

1

� � � i

�

n

, where �

1

< � � � < �

n

,

n � 0, are all indies � 2 [m℄ suh that s

0

[i

1

� � � i

��1

℄ 2 �. Finally, we de�ne the

substitution [[de℄℄ whih hanges a sentential form ofM

0

into one ofM by relabeling

the on�gurations of M

0

appropriately. Let [[de℄℄ = [[Q℄℄[[down℄℄ where [[Q℄℄ denotes

the substitution

[[hr; (u

0

; �)i  hq

0

; (de(u

0

); �)i j q

0

= r for r 2 Q and

q

0

= q for r = (q; j) 2 Q� [0; J ℄℄℄

and

[[down℄℄ = [[h(q; down

i

); (u

0

; �)i  hq; (de(u

0

)i; �)i j q 2 Q; i 2 [J ℄℄℄:

In the sequel, we will also apply de to input on�gurations h

0

of M

0

, i.e., if h

0

=

(u

0

; �) then de(h

0

) = (de(u

0

); �).

Next we state, without proof, two obvious properties about on�gurations that

our in sentential forms � of M

0

on an input tree s

0

2 T

�

with s

0

2 mon

�

(s) and

s 2 T

�

. Sine both properties are about (the hild numbers in s) of nodes of s

0

, we

all them N1 and N2. Let hq

0

; h

0

i )

�

M

0

;s

0

� and let hp; (u

0

; �)i be a on�guration

that ours in �. Then

(N1) if p = (q; j) 2 (Q� [0; J ℄) then hildno(de(u

0

)) = j; and

(N2) if p 2 Q then hildno(de(u

0

)) = hildno(u

0

):

Before it is proved, in Claims 2 and 3 thatM

0

is orret, i.e., that mon

�

Æ �

M

0

=

�

M

, we �rst relate in Claim 1 the right-hand side ��

j

	 of a (Q[Q� [0; J ℄)-rule of

M

0

to the right-hand side � of the orresponding rule of M .

Claim 1: Let s 2 T

�

, s

0

2 mon

�

(s), h = (u; �) 2 IC

0;s

, and h

0

= (u

0

; �) 2 IC

0;s

0

suh that de(h

0

) = h and s

0

[u

0

℄ 2

�

�. Let [[h℄℄ denote [[h℄℄

M;s

, and let [[h

0

℄℄ denote

[[h

0

℄℄

M

0

;s

0

. Finally, let � = s[u℄ and j = hildno(u). For every � 2 T

�[I

�;�;j

(Y

m

),

m � 0,

��

j

	 [[h

0

℄℄[[de℄℄ = �[[h℄℄:

The proof of Claim 1 is by indution on the struture of �. If � = y 2 Y

m

then

��

j

	 [[h

0

℄℄[[de℄℄ = y = �[[h℄℄, beause none of the substitutions replaes parameters.

Let l � 0 and �

1

; : : : ; �

l

2 T

�[I

�;�;j

(Y

m

).
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If � = Æ(�

1

; : : : ; �

l

) with Æ 2 �

(l)

, then ��

j

	 [[h

0

℄℄[[de℄℄ = Æ(�

1

�

j

	 [[h

0

℄℄[[de℄℄; : : : ;

�

l

�

j

	 [[h

0

℄℄[[de℄℄) whih, by indution, is Æ(�

1

[[h℄℄; : : : ; �

l

[[h℄℄) = Æ(�

1

; : : : ; �

l

)[[h℄℄ = �[[h℄℄.

If � = hq; stayi(�

1

; : : : ; �

l

) with q 2 Q

(l)

then

��

j

	 = h(q; j); down

1

i(�

1

�

j

	; : : : ; �

l

�

j

	) and

��

j

	 [[h

0

℄℄[[de℄℄ = hq; de(down

1

(h

0

))i(�

1

�

j

	 [[h

0

℄℄[[de℄℄; : : : ; �

l

�

j

	 [[h

0

℄℄[[de℄℄):

By indution, and sine de(down

1

(h

0

)) = de(h

0

) = h (note that s

0

[u

0

℄ = ��), this

equals hq; hi(�

1

[[h℄℄; : : : ; �

l

[[h℄℄) = �[[h℄℄.

If � = hq; down

i

i(�

1

; : : : ; �

l

) then

��

j

	 = h(q; down

i

); down

1

i(�

1

�

j

	; : : : ; �

l

�

j

	) and

��

j

	 [[h

0

℄℄[[de℄℄ = hq; down

i

(de(down

1

(h

0

)))i(�

1

�

j

	 [[h

0

℄℄[[de℄℄; : : : ; �

l

�

j

	 [[h

0

℄℄[[de℄℄):

By indution, and sine de(down

1

(h

0

)) = h, this is hq; down

i

(h)i(�

1

[[h℄℄; : : : ; �

l

[[h℄℄) =

�[[h℄℄, whih onludes the proof of Claim 1.

Next, it is proved that mon

�

Æ �

M

0

� �

M

. In fat, sine hq

0

; h

0

i[[de℄℄ = hq

0

; h

0

i

and t[[de℄℄ = t for t 2 T

�

, this follows by indution from Claim 2.

Claim 2: Let s 2 T

�

and s

0

2 mon

�

(s). For every �; �

0

2 T

�[C

M

0

;s

0

with

hq

0

; h

0

i )

�

M

0

;s

0

�, if � )

M

0

;s

0

�

0

by a (Q[Q� [0; J ℄)-rule then �[[de℄℄)

M;s

�

0

[[de℄℄,

and if � )

M

0

;s

0

�

0

by a hQ; downi-rule then �[[de℄℄ = �

0

[[de℄℄.

Let v 2 V (�) with �[v℄ = hp; h

0

i and h

0

= (u

0

; �), u

0

2 V (s

0

), suh that �

0

=

�[[v  �

0

[[h

0

℄℄℄℄ where �

0

is the right-hand side of a rule appliable to hp; h

0

i. Let

u = de(u

0

).

Case p 2 (Q [ Q � [0; J ℄): Then s

0

[u

0

℄ = �� with � = s[u℄, beause p-rules

are only de�ned for barred input symbols. If p = (q; j) 2 Q � [0; J ℄ then, by N1,

hildno(u) = j. If p = q 2 Q then, by N2, hildno(u) = hildno(u

0

). This means that

in both ases �

0

= ��

j

	 where � is the right-hand side of a hq; �; �; ji-rule r ofM and

j = hildno(u). Sine [[de℄℄ is a relabeling of on�gurations, v is outside in �[[de℄℄

and labeled by the on�guration hq; (u; �)i. Thus, r an be applied to v: �[[de℄℄)

M;s

�[[de℄℄[[v  �[[h℄℄℄℄. By Claim 1 the latter equals �[[de℄℄[[v  �

0

[[h

0

℄℄[[de℄℄℄℄ = �[[v  

�

0

[[h

0

℄℄℄℄[[de℄℄ = �

0

[[de℄℄, whih proves the laim for this ase.

Case p = (q; down

i

) 2 hQ

(m)

; downi, m � 0: By the de�nition of [[de℄℄ this im-

plies that �[[de℄℄[v℄ = hq; (ui; �)i. Moreover, �

0

[[h

0

℄℄ is either equal to h(q; down

i

); (u

0

1;

�)i(y

1

; : : : ; y

m

), with s

0

[u

0

℄ 2

�

�, or equal to hq; (u

0

i; �)i(y

1

; : : : ; y

m

), with s

0

[u

0

℄ 2 �.

In both ases, the appliation of [[de℄℄ gives hq; (ui; �)i(y

1

; : : : ; y

m

), whih proves

that �[[de℄℄ = �

0

[[de℄℄. This ends the proof of Claim 2.

It remains to prove that �

M

� mon

�

Æ�

M

0

. This will follow from Claim 3. Denote

byM

0

(Q) the restrition ofM

0

to (Q[Q� [0; J ℄)-rules and denote byM

0

(Q; down)

its restrition to hQ; downi-rules. Intuitively, to simulate a omputation step of M ,

M

0

�rst applies all possible hQ; downi-rules, and then it applies a (Q [Q� [0; J ℄)-

rule. Let ) denote

)

�

M

0

(Q;down);s

0

Æ )

M

0

(Q);s

0

:

Claim 3: Let n � 0, s 2 T

�

, and s

0

2 mon

�

(s) suh that for every u 2 V (s)

jde

�1

(u)j � n + 1. Let � 2 T

�[C

M;s

. If hq

0

; h

0

i )

n

M;s

� then there exists an

� 2 T

�[C

M

0

;s

0

suh that

1. hq

0

; h

0

i )

n

� and

2. �[[de℄℄ = �.

The proof of Claim 3 is by indution on n. If n = 0 then the statement holds

for � = hq

0

; h

0

i. Now onsider the following omputation of length n+ 1.

hq

0

; h

0

i )

n

M;s

� )

M;s

�

0

:
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By indution there exists an � suh that hq

0

; h

0

i )

n

� and �[[de℄℄ = �. Let v 2 V (�)

and hq; hi 2 C

(m)

M;s

, m � 0, suh that �[v℄ = hq; hi and �

0

= �[[v  �[[h℄℄℄℄ where � is

the right-hand side of a rule of M appliable to hq; hi. By the de�nition of [[de℄℄,

�[v℄ = hp; h

0

i with (i) p = q, or (ii) p = (q; j) with j 2 [0; J ℄, or (iii) p = (q; down

i

).

Let h = (u; �) and h

0

= (u

0

; �). We now show that there exists an �

0

suh that

� ) �

0

and �

0

[[de℄℄ = �

0

.

Cases (i) and (ii): Then de(u

0

) = u. In ase (i) it follows from N2 that hildno(

u

0

) = hildno(u), and in ase (ii), i.e., p = (q; j), it follows from N1 that j =

hildno(u). Sine, in the omputation hq

0

; h

0

i )

n

� exatly n steps by )

M

0

(Q);s

0

have been applied, s

0

[u

0

℄ must be a barred symbol, beause there are � n + 1 of

them, by the ondition jde

�1

(u)j � n + 2. Thus, s

0

[u

0

℄ = �� with � = s[u℄. Hene

M

0

has a rule with right-hand side �

0

= ��

j

	 whih is appliable to hp; h

0

i. We

obtain � )

M

0

(Q);s

0
�[[v  �

0

[[h

0

℄℄℄℄ = �

0

. The appliation of [[de℄℄ to �

0

gives, using

Claim 1, �[[de℄℄[[v  �

0

[[h

0

℄℄[[de℄℄℄℄ = �[[v  �[[h℄℄℄℄ = �

0

. This ends the proof of the

laim for this ase.

Case (iii) p = (q; down

i

): Then � )

+

M

0

(Q;down);s

0

�

00

where �

00

is the same as �

exept that �

00

[v℄ = hq; (u

00

i; �)i with s

0

[u

00

℄ 2 �, de(u

00

) = de(u

0

), and de(u

00

i) =

de(u

0

)i = u. By Claim 2, �

00

[[de℄℄ = �[[de℄℄ = � and hq

0

; h

0

i )

n

�

00

. Now, to the

on�guration hq; (u

00

i; �)i of �

00

we an apply one step of )

M

0

(Q);s

0

, as shown in

ase (i), to obtain �

00

)

M

0

(Q);s

0

�

0

with �

0

[[de℄℄ = �

0

. This onludes the proof of

Claim 3.

It should be obvious how to show that for every s 2 T

�

there exists s

0

2 mon

�

(s)

suh that �

M

(s) � �

M

0

(s

0

): If hq

0

; h

0

i )

n

M;s

t 2 �

M

(s), n � 1, then let s

0

2 mon

�

(s)

be as required in Claim 3. By Claim 3, applied to � = t, there exists � suh that

hq

0

; h

0

i )

�

M

0

;s

0

� (beause ) � )

�

M

0

;s

) and �[[de℄℄ = t. Sine t 2 T

�

, � = t. Hene

t 2 �

M

0

(s

0

). ut

The next small lemma shows that sMTT is losed under post-omposition with

MON. It will be needed to prove Theorems 29 and 30.

Lemma 28. sMTT ÆMON � sMTT.

Proof. Let M = (�;�;Q; q

0

; R) be a stay-mtt. We will onstrut the stay-mtt M

0

suh that �

M

0

= �

M

Æ mon

�

. The idea of de�ning M

0

is to replae eah output

symbol Æ (of rank m) in the right-hand side of a rule of M by a new state q

Æ

(of

rank m), whih will generate an arbitrary number of

�

Æ's followed by the Æ, i.e., a

tree of the form

�

Æ(� � �

�

Æ(Æ(y

1

; : : : ; y

m

))).

Let M

0

= (�;� [ f

�

Æ j Æ 2 �g; Q

0

; q

0

; R

0

) where Q

0

= Q [ fq

(m)

Æ

j Æ 2 �

(m)

;m �

0g. For every rule hq; �; b; ji(y

1

; : : : ; y

m

)! � in R, let the rule

hq; �; �; ji(y

1

; : : : ; y

m

)! �	

be in R

0

, where the substitution 	 is de�ned as

	 = [[Æ  hq

Æ

; stayi j Æ 2 �℄℄:

Moreover, for every Æ 2 �

(m)

, m � 0, � 2 �, and j 2 [0; J ℄ let the rules

hq

Æ

; �; �; ji(y

1

; : : : ; y

m

)!

�

Æ(q

Æ

)

hq

Æ

; �; �; ji(y

1

; : : : ; y

m

)! Æ(y

1

; : : : ; y

m

)

be in R

0

.

A formal proof of the orretness of M

0

is left to the reader. ut

For ompositions of stay-mtts we obtain, from Lemmas 27 and 28, that stay

moves an be removed from all transduers in the ompositions, exept the �rst

one, as stated in the next theorem.
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Theorem 29. For every n � 1, sMTT

n+1

= sMTT ÆMTT

n

.

Proof. By indution on n. For n = 1, sMTT

2

� sMTTÆMONÆMTT by Lemma 27,

whih is inluded in sMTT Æ MTT by Lemma 28. Now for n + 1, sMTT

n+2

=

sMTT Æ sMTT

n+1

is inluded in sMTT

2

ÆMTT

n

by indution. By the ase n = 1

the latter is inluded in sMTT ÆMTT ÆMTT

n

= sMTT ÆMTT

n+1

. ut

It should be lear that the lass REGT of regular tree languages is losed under

MON, i.e., that MON(REGT) � REGT (take the regular tree grammar in normal

form, i.e., with at most one terminal symbol in the right-hand side of eah pro-

dution; for every prodution A ! �(A

1

; : : : ; A

k

) add all produtions A ! ��(A

�

),

A

�

! ��(A

�

), and A

�

! �(A

1

; : : : ; A

k

).) Thus we obtain from Theorem 29 and

Lemma 27 that (ompositions of) stay-mtts de�ne the same output languages as

(ompositions of) mtts.

Theorem 30. For every n � 1, sMTT

n

(REGT) = MTT

n

(REGT).

Sine MON � sMTT, we also obtain from Theorem 29 and Lemma 27 that

sMTT

�

= MON ÆMTT

�

.

For deterministi stay-mtts we prove in the next theorem (and in the remainder

of this subsetion) that stay moves an be removed, i.e., the respetive lasses of

translations oinide. As mentioned before, sine the proof involves the nontrivial

task of removing in�nite omputations, it is a key result of this paper.

Theorem 31. DsMTT = DMTT.

Proof. We have to show that DsMTT � DMTT. Let M = (�;�;Q; q

0

; R) be a

0-dpmtt without up instrutions and let J = maxfrank

�

(�) j � 2 �g. We will on-

strut the 0-dpmtt M

0

that has down instrutions only, i.e., a dmtt, by removing

the stay instrutions that appear in the right-hand sides of the rules ofM . Roughly

speaking, this is done by applying rules to the stay instrutions in a right-hand

side, while keeping trak of possible irular on�gurations, and foring �

M

0

(s) to

be unde�ned if in the omputation hq

0

; h

0

i )

�

M;s

there is a sentential form that

has an outside ourrene of a irular on�guration (reall the notion of a irular

on�guration from Subsetion 5.2, and see Lemma 21). Before M

0

is de�ned, we

onstrut several intermediate 0-dpmtts: �rst N whih has information about ir-

ular on�gurations, then N

0

whih does not have irular on�gurations anymore,

then N

00

whih does not exeute stay instrutions anymore, and �nally M

0

whih

has only down instrutions.

By Lemma 17 we may assume that M is total. First, we onstrut the 0-dpmtt

N whih is equivalent to M , but additionally keeps information in its states about

whih states have been passed, while staying at a partiular node of the input tree.

De�ne N = (�;�;Q

N

; (q

0

;?); R

N

) where Q

N

= hQ;P(Q)i and for every

(q; F ) 2 Q

(m)

N

, m � 0, � 2 �, j 2 [0; J ℄, and rule hq; �; �; ji(y

1

; : : : ; y

m

) ! � in

R, the rule

h(q; F ); �; �; ji(y

1

; : : : ; y

m

)! �[[stay

q;F

℄℄[[down℄℄

is in R

N

, where the substitutions [[stay

q;F

℄℄ and [[down℄℄ are de�ned as

[[stay

q;F

℄℄ = [[hq

0

; stayi  h(q

0

; F [ fqg); stayi j q

0

2 Q℄℄;

[[down℄℄ = [[hq

0

; down

i

i  h(q

0

;?); down

i

i j q

0

2 Q; i 2 [J ℄℄℄:

Sine N has, besides the additional sets F in its states, exatly the same rules

as M , it obviously realizes the same translation as M , i.e., �

N

= �

M

. In fat, it an

be shown easily that for all �

1

; �

2

2 T

�[C

N;s

(Y ),

(C1) if �

1

)

N;s

�

2

then �

1

[[no F's℄℄)

M;s

�

2

[[no F's℄℄;
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and for all �

1

; �

2

2 T

�[C

M;s

(Y ), and �

1

2 T

�[C

N;s

(Y ) with �

1

[[no F's℄℄ = �

1

,

(C2) if �

1

)

M;s

�

2

then 9�

2

2 T

�[C

N;s

(Y ) : �

2

[[no F's℄℄ = �

2

and �

1

)

N;s

�

2

;

where the substitution [[no F's℄℄ is de�ned as

[[h(q; F ); hi  hq; hi j h(q; F ); hi 2 C

N;s

℄℄:

By indution on the length of the omputations, C1 implies �

N

� �

M

and C2 implies

�

M

� �

N

. Note that N is total beause M is total.

The following laim expresses that the sets F in the states of N ontain the

intended states of M , i.e., those that were entered while staying at a partiular

node.

Claim: Let s 2 T

�

. If h(q

0

;?); h

0

i )

�

N;s

� 2 T

�[C

N;s

and h(q; F ); hi 2 C

N;s

ours outside in �, then for every r 2 F of rank m � 0,

(a) there is an � 2 T

�[C

M;s

suh that hq

0

; h

0

i )

�

M;s

� and hr; hi ours outside in

�, and

(b) there is an �

0

2 T

�[C

M;s

(Y

m

) suh that hr; hi(y

1

; : : : ; y

m

) )

+

M;s

�

0

and hq; hi

ours outside in �

0

.

Sine this laim is intuitively obvious, but its proof is tehnially rather involved,

we postpone its proof until after the present proof.

We now use the information in the states of N to remove its irular on�g-

urations, i.e., its in�nite omputations (f. Lemma 21). De�ne Q

yle

= f(q; F ) 2

Q

N

j q 2 Fg. We remove all rules for (q; F ) 2 Q

yle

from R

N

, thus obtaining the

0-dpmtt N

0

.

Formally, let N

0

= (�;�;Q

N

; (q

0

;?); R

N

0

), where R

N

0

is the set of all p-rules

in R

N

with p 2 Q

N

�Q

yle

.

It is straightforward to prove the orretness of the de�nition of N

0

, i.e., that

�

N

0

= �

N

: Sine R

N

0

� R

N

, it learly holds that �

N

0

� �

N

. To prove that �

N

� �

N

0

,

let s 2 T

�

and onsider a omplete omputation �

0

= h(q

0

;?); h

0

i )

N;s

�

1

)

N;s

� � � )

N;s

�

n

2 T

�

. Then, for i 2 [0; n℄, �

i

has no outside ourrene of hp; hi 2

C

N;s

with p 2 Q

yle

. To see this, assume to the ontrary that some �

i

has an

outside ourrene of h(q; F ); hi 2 C

(m)

N;s

with q 2 F and m � 0. Then by the

Claim above, there are �; �

0

2 T

�[C

M;s

(Y ) suh that hq

0

; h

0

i )

�

M;s

�, hq; hi ours

outside in �, hq; hi(y

1

; : : : ; y

m

) )

+

M;s

�

0

, and hq; hi ours outside in �

0

, i.e., hq; hi

is irular. By Lemma 21 this implies that the omplete omputations by )

M;s

starting with hq

0

; h

0

i are in�nite, and hene that �

M

(s) is unde�ned. Sine �

N

= �

M

this ontradits the existene of the �nite omplete omputation �

0

)

�

N;s

�

n

. Thus,

only rules of N

0

are applied in the omputation �

0

)

�

N;s

�

n

, whih means that

�

0

)

�

N

0

;s

�

n

, and therefore �

N

� �

N

0

. This ends the proof of the orretness of N

0

.

Next, the 0-dpmtt N

00

= (�;�;Q

N

; (q

0

;?); R

N

00

) is de�ned by iteratively ap-

plying rules to the stay instrutions that appear in the right-hand side of eah rule

r of N

0

. This is done with the use of Lemma 15, hanging N

0

gradually into N

00

by iterating the following proedure. Initially, N

00

= N

0

and R

N

00

= R

N

0

. Now on-

sider a rule r = h(q; F ); �; �; ji(y

1

; : : : ; y

m

)! � in R

N

00

and hange it into the rule

�r = h(q; F ); �; �; ji(y

1

; : : : ; y

m

)! ��

�;j

where

�

�;j

= [[h(q

0

; F

0

); stayi  �

0

j h(q

0

; F

0

); �; �; ji(y

1

; : : : ; y

m

0

)! �

0

is in R

N

00

℄℄:

Note that if h(q

0

; F

0

); stayi ours in the right-hand side � of r, then F

0

has larger

ardinality than the F in the left-hand side of r (and thus the same holds for �r).

Clearly, the new rule �r an be obtained from the old rule r by iterated appliation

of Lemma 15 (see the last paragraph of Subsetion 2.2). Thus, by that lemma, an

equivalent 0-dpmtt is obtained. After hanging, in this way, every rule r into �r, the
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minimal ardinality of all state sets F suh that h(q; F ); stayi ours in a right-hand

side of a rule in R

N

00

for some q with (q; F ) =2 Q

yle

has inreased. Hene, after

repeating this proess at most jQj times, the only h(q; F ); stayi that our in right-

hand sides of rules satisfy (q; F ) 2 Q

yle

(for whih there are no rules in R

N

00

). The

resulting 0-dpmtt is, by de�nition, N

00

.

Last but not least, we de�ne the dmtt M

0

. This is done by removing the stay

instrutions that appear in the rules of N

00

. Sine N

00

has no rules for states in

Q

yle

, we an, in order to onstrut M

0

, replae eah stay instrution in a rule of

N

00

by a down

1

instrution (or remove the rule, if the input symbol has rank zero).

Formally, Let M

0

= (�;�;Q

N

; (q

0

;?); R

0

) where R

0

is de�ned as follows. Let

r = hp; �; �; ji(y

1

; : : : ; y

m

)! � with � 2 �

(k)

and k � 0 be a rule in R

N

00

. If k = 0

and � 2 T

�

(Y

m

) then let r be in R

0

. If k � 1 then let the rule

hp; �; �; ji(y

1

; : : : ; y

m

)! �[[hp

0

; stayi  hp

0

; down

1

i j p

0

2 Q

yle

℄℄

be in R

0

. Obviously, M

0

is a dmtt. It is straightforward to show that �

M

0

= �

N

00

=

�

M

. ut

In the remainder of this subsetion, the Claim in the proof of Theorem 31 is

proved. The uninterested reader an skip diretly to Subsetion 5.4.

For the proof of the Claim we need two tehnial lemmas, whih are presented

now. They state two general fats about pmtts. The �rst one is about the deom-

position of omputations, and the seond one is about how to �nd the rule that

generated a partiular symbol during a omputation. The �rst is needed to prove

the seond.

Consider a pmttM , an input tree s, and a sentential form � = �(�

1

; : : : ; �

n

) with

� 2 C

(n)

M;s

. The �rst lemma states that a omputation � )

�

M;s

� an be deomposed

into m + 1 omputations by )

M;s

starting with �(y

1

; : : : ; y

n

) and with �

1

; : : : ; �

n

(for some m � 0). A similar result holds for maro grammars (f. Theorem 4.1.1

of [Fis68℄, where only the ase that � is terminal is onsidered). Note that the seond

item of Lemma 32 implies that

�(�

1

; : : : ; �

n

))

k

0

M;s

�

lin

[y

j

 �

�(j)

j j 2 [m℄℄

and that the third item implies that

�

lin

[y

j

 �

�(j)

j j 2 [m℄℄)

k

1

+���+k

m

M;s

�

lin

[y

j

 �

j

j j 2 [m℄℄ = �:

Lemma 32. Let M = (�;�;Q; q

0

; R) be a pmtt. Let � 2 (� [ C

M;s

)

(n)

, n � 1,

and �; �

1

; : : : ; �

n

2 T

�[C

M;s

(Y ). If �(�

1

; : : : ; �

n

) )

k

M;s

�, k � 0, then there exists a

tree �

lin

2 T

�[C

M;s

(Y

m

), m � 0, suh that �

lin

is linear in Y

m

(i.e., eah y 2 Y

m

appears at most one in �

lin

), and there exist a mapping � : [m℄ ! [n℄, trees

�

1

; : : : ; �

m

2 T

�[C

M;s

(Y ), and k

0

; k

1

; : : : ; k

m

2 N suh that

{ � = �

lin

[y

j

 �

j

j j 2 [m℄℄,

{ �(y

1

; : : : ; y

n

))

k

0

M;s

�

lin

[y

j

 y

�(j)

j j 2 [m℄℄,

{ for every j 2 [m℄, �

�(j)

)

k

j

M;s

�

j

,

{ k

0

+ k

1

+ � � �+ k

m

= k, and

{ for every j 2 [m℄, if y

j

does not our outside in �

lin

then k

j

= 0.

Proof. The proof is by indution on the length k of the omputation of �. It is

obvious for k = 0: take �

lin

= �(y

1

; : : : ; y

n

), m = n, � is the identity on [n℄, �

j

= �

j

and k

j

= 0 for j 2 [0; n℄. Now onsider the following omputation of length k + 1

�(�

1

; : : : ; �

n

))

k

M;s

� )

M;s

�

0

: (�)
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By indution, � = �

lin

[y

j

 �

j

j j 2 [m℄℄ where �

lin

and �

1

; : : : ; �

m

satisfy the

onditions of the lemma, for ertain � : [m℄! [n℄ and k

0

; : : : ; k

m

2 N. Let v be the

node in � to whih a rule is applied in the last step of the omputation (�).

Case 1: v 2 V (�

lin

) and �

lin

[v℄ 62 Y

m

. Hene, �

lin

[v℄ = �[v℄ and therefore we

an apply the rule of the last step in (�) to �

lin

: �

lin

)

M;s

~� with �

0

= ~�[y

j

 

�

j

j j 2 [m℄℄. Let m

0

be the number of ourrenes of parameters in the tree ~�.

Next, we \linearize" (in the parameters) the tree ~�: let �

0

lin

2 T

�[C

M;s

(Y

m

0

) and

~� : [m

0

℄! [m℄ suh that

~� = �

0

lin

[y

j

 y

~�(j)

j j 2 [m

0

℄℄:

Note that for every j 2 [m℄, if ~�

�1

(j) is not a singleton (i.e., if y

j

does not our

exatly one in ~�) then y

j

ours at a desendant of v in �

lin

, and so, by the last

ondition of the lemma, k

j

= 0. This shows that k

~�(1)

+ � � �+k

~�(m

0

)

= k

1

+ � � �+k

m

.

Now de�ne �

0

j

= �

~�(j)

and k

0

j

= k

~�(j)

for j 2 [m

0

℄, and de�ne k

0

0

= k

0

+ 1 and

�

0

= ~� Æ � : [m

0

℄! [n℄. Then

�

0

= �

0

lin

[y

j

 y

~�(j)

j j 2 [m

0

℄℄[y

j

 �

j

j j 2 [m℄℄

= �

0

lin

[y

j

 �

~�(j)

|{z}

=�

0

j

j j 2 [m

0

℄℄

and �(y

1

; : : : ; y

n

) )

k

0

M;s

�

lin

[y

j

 y

�(j)

j j 2 [m℄℄ )

M;s

~�[y

j

 y

�(j)

j j 2 [m℄℄.

The latter tree equals �

0

lin

[y

j

 y

~�(j)

j j 2 [m

0

℄℄[y

j

 y

�(j)

j j 2 [m℄℄ = �

0

lin

[y

j

 

y

�(~�(j))

j j 2 [m

0

℄℄ whih is equal to �

0

lin

[y

j

 y

�

0

(j)

j j 2 [m

0

℄℄. Thus, the \primed

versions" of the �rst four onditions of the lemma hold. It remains to prove the last

ondition of the lemma. Let j 2 [m

0

℄. Clearly, if y

j

does not our outside in �

0

lin

then y

~�(j)

does not our outside in �

lin

and hene k

~�(j)

= 0 by the last ondition

for �

lin

.

Case 2: v 62 V (�

lin

) or �

lin

[v℄ 2 Y

m

. This means that there is a j

0

2 [m℄ suh that

y

j

0

ours outside in �

lin

, �

j

0

)

M;s

�

0

j

0

, and �

0

= �

lin

[y

j

 �

j

j j 2 [m℄�fj

0

g℄[y

j

0

 

�

0

j

0

℄. Hene, for k

0

j

0

= k

j

0

+ 1 (and everything else the same) the statement of the

lemma holds. ut

The seond lemma is based on the following tehnial notions. LetM = (�;�;Q;

q

0

; R) be a pmtt and let s 2 T

�

. For a symbol �

{ � 2 T

�[C

M;s

(Y ) omputes � if there is a �

0

suh that � )

�

M;s

�

0

and �

0

has an

outside ourrene of �, and

{  2 C

(m)

M;s

(with m � 0) diretly omputes � if there is a � 2 T

�[C

M;s

(Y

m

) suh

that (y

1

; : : : ; y

m

))

M;s

�, � ours in �, and � omputes �.

If, in the �rst de�nition, � )

k

M;s

�

0

then we say that � k-omputes �. If �

k-omputes � for � = (y

1

; : : : ; y

m

),  2 C

(m)

N;s

, and m � 0, then we say that 

k-omputes �. Clearly, omputing on�gurations is transitive, that is, for on�gu-

rations a, b, and  and k

1

; k

2

2 N, if a k

1

-omputes b and b k

2

-omputes , then a

(k

1

+ k

2

)-omputes  (and similarly, for a replaed by a tree �).

Consider now Lemma 33. Intuitively, the lemma states that if on�guration

 omputes another on�guration d, then a rule r must have been applied, whih

ontains d in its right-hand side � (in the lemma, r is the rule ofM that is appliable

to 

0

). To be more preise, d is in �[[h℄℄

M;s

where h is the input on�guration of .

Reall the Claim in the proof of Theorem 31. In the proof of that laim we

will apply Lemma 33 to d = h(q; F ); hi with F 6= ?; then, by the de�nition of the

rules of M , r must have h(q; F ); stayi in its right-hand side, and thus 

0

must equal

h(q

0

; F

0

); hi for some (q

0

; F

0

) 2 Q

M

. Note that, in Lemma 33, 

0

is not neessarily

di�erent from .
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Lemma 33. Let M be a pmtt and let s be an input tree of M . Let ; d 2 C

M;s

with  6= d and let k

0

2 N. If  k

0

-omputes d, then there are 

0

2 C

M;s

and k

00

< k

0

suh that (1)  k

00

-omputes 

0

and (2) 

0

diretly omputes d.

Proof. The proof is by indution on k

0

. Let m be the rank of . Sine  6= d, k

0

� 1,

i.e., there is a omputation

(y

1

; : : : ; y

m

))

M;s

� )

k

M;s

�

0

where k = k

0

� 1, �; �

0

2 T

�[C

M;s

(Y

m

), and d ours outside in �

0

. If d ours in

� then the lemma holds for 

0

=  and k

00

= 0. Consider now the ase that d does

not our in �. Sine � k-omputes d, we an apply the laim below to obtain a

on�guration ~ in � and

~

k; l 2 N suh that �

~

k-omputes ~, ~ l-omputes d, and

~

k + l � k. Now, ~ 6= d beause ~ ours in � and d does not. Sine l < k

0

, we an

apply the indution hypothesis (to ~, l, and d). Hene, there are ~

0

and l

0

< l suh

that ~ l

0

-omputes ~

0

and ~

0

diretly omputes d. Sine (y

1

; : : : ; y

m

))

M;s

� and �

~

k-omputes ~,  (

~

k+1)-omputes ~. By the transitivity of omputing on�gurations

we obtain that  (

~

k + 1 + l

0

)-omputes ~

0

. It follows from

~

k + l � k and l

0

< l that

~

k+ l

0

< k = k

0

� 1, and therefore

~

k+1+ l

0

< k

0

. Thus, the lemma holds for 

0

= ~

0

and k

00

=

~

k + 1 + l

0

. It remains to prove the laim.

Claim: Let � 2 T

�[C

M;s

(Y ) and k 2 N. If � k-omputes d, then there are

~

k; l 2 N

and a on�guration ~ in � suh that

~

k+ l � k, �

~

k-omputes ~, and ~ l-omputes d.

The proof is by indution on the struture of �. Sine � k-omputes d there

is an � suh that � )

k

M;s

� and � has an outside ourrene of d. This implies

that � 62 Y , i.e., � is of the form �(�

1

; : : : ; �

n

) for � 2 (� [ C

M;s

)

(n)

, n � 0, and

�

1

; : : : ; �

n

2 T

�[C

M;s

(Y ).

We now apply Lemma 32 to the omputation �(�

1

; : : : ; �

n

))

k

M;s

�, and obtain

a tree �

lin

2 T

�[C

M;s

(Y

m

), m � 0, whih is linear in Y

m

, a mapping � : [m℄ ! [n℄,

�

1

; : : : ; �

m

2 T

�[C

M;s

(Y ), and k

0

; k

1

; : : : ; k

m

2 N suh that (1) � = �

lin

[y

j

 �

j

j

j 2 [m℄℄, (2) �(y

1

; : : : ; y

n

) )

k

0

M;s

�

lin

[y

j

 y

�(j)

j j 2 [m℄℄, (3) for every j 2 [m℄,

�

�(j)

)

k

j

M;s

�

j

, and (4) k

0

+ k

1

+ � � �+ k

m

= k.

Case (i): d ours outside in �

lin

. Then � 2 C

M;s

and � k

0

-omputes d. Hene,

for

~

k = 0, l = k

0

, and ~ = � the laim holds.

Case (ii): d does not our outside in �

lin

. Sine d ours outside in �, there

must be a j 2 [m℄ suh that y

j

ours outside in �

lin

and d ours outside in

�

j

. This implies that �

�(j)

k

j

-omputes d. By indution there are

~

k; l 2 N and a

on�guration ~ in �

�(j)

suh that

~

k+ l � k

j

, �

�(j)

~

k-omputes ~, and ~ l-omputes d.

Sine � = �(�

1

; : : : ; �

n

))

k

0

M;s

�

lin

[y

j

 �

�(j)

j j 2 [m℄℄ = �

00

and y

j

ours outside in

�

lin

(at �), every outside node (v) in �

�(j)

is also outside in �

00

(at �v). Hene, sine

�

�(j)

~

k-omputes ~, we obtain that �

00

~

k-omputes ~ and so � (k

0

+

~

k)-omputes

~. It follows from

~

k + l � k

j

that (k

0

+

~

k) + l � k

0

+ k

j

, whih is � k beause

P

�2[m℄

k

�

= k. This onludes the proof of the laim and hene of the lemma.

Proof of the Claim in the proof of Theorem 31. For ease of referene we

repeat the laim.

Claim: Let s 2 T

�

. If h(q

0

;?); h

0

i )

�

N;s

� 2 T

�[C

N;s

and h(q; F ); hi 2 C

N;s

ours outside in �, then for every r 2 F of rank m � 0,

(a) there is an � 2 T

�[C

M;s

suh that hq

0

; h

0

i )

�

M;s

� and hr; hi ours outside in

�, and

(b) there is an �

0

2 T

�[C

M;s

(Y

m

) suh that hr; hi(y

1

; : : : ; y

m

) )

+

M;s

�

0

and hq; hi

ours outside in �

0

.

45



The proof is by indution on the length k of the given omputation. Assume it

holds for all i < k and onsider a state r 2 F . The appliation of Lemma 33 to

 = h(q

0

;?); h

0

i, d = h(q; F ); hi, and k

0

= k gives an i < k and a on�guration 

0

suh that  i-omputes 

0

and 

0

diretly omputes d. Sine h(q; F ); stayimust appear

in the right-hand side of the rule appliable to 

0

, it follows from the de�nition of

the rules of N that 

0

is of the form h(q

0

; F

0

); hi with F = fq

0

g [ F

0

. It follows

from C1 (in the proof of Theorem 31) that there is an ~� suh that hq

0

; h

0

i )

�

M;s

~� and ~� has an outside ourrene of hq

0

; hi, and that there is an ~�

0

suh that

hq

0

; hi(y

1

; : : : ; y

n

) )

+

M;s

~�

0

and hq; hi ours outside (at �) in ~�

0

(where n is the

rank of q

0

). If q

0

= r, then the laim holds for � = ~� and �

0

= ~�

0

.

Consider now the ase that q

0

6= r. Sine F = F

0

[fq

0

g, r must be in F

0

. We apply

the indution hypothesis to h(q

0

;?); h

0

i, i, and h(q

0

; F

0

); hi to obtain an � suh that

hq

0

; h

0

i )

�

M;s

� and hr; hi ours outside in �, and an �� with hr; hi(y

1

; : : : ; y

m

))

+

M;s

�� and hq

0

; hi ours outside in �� (at v). Thus, part (a) of the laim holds. Sine

hq

0

; hi(y

1

; : : : ; y

n

) )

+

M;s

~�

0

, there is a omputation �� )

+

M;s

��[[v  ~�

0

℄℄ = �

0

and

hq; hi ours outside in �

0

(at v�). This proves (b) and onludes the proof of the

Claim. ut

5.4 Simulation of PTTs by Maro Tree Transduers

In this subsetion it is proved that, by the use of parameters, we an remove all

up instrutions from a 0-ptt M , thus obtaining a stay-mtt that realizes the same

translation as M .

In fat, this result is already known. It was proved in [EV86℄ in the setting

of transduers with storage. As disussed at the end of Subsetion 3.3, 0-PTT =

RT(Tree-walk) and hene 0-PTT � RT(P(Tree)). By Theorem 5.14, Corollary 5.21,

and Theorem 4.18 of [EV86℄, RT(P(Tree)) � CFT(Tree

id

). Here, `id' indiates the

addition of an identity instrution (De�nition 3.7 of [EV86℄) and thus the possibility

to stay at a node. Sine, as observed in Subsetion 3.3, CFT(Tree) = MTT, it should

be lear that CFT(Tree

id

) is preisely the lass sMTT. In the same way it follows

that 0-DPTT � DsMTT, beause the proofs preserve determinism. Sine the proof

in [EV86℄ is ompliated by the fat that it is shown for arbitrary storage types, we

present here a diret proof for ompleteness sake.

Sine DsMTT = DMTT by Theorem 31, the fat that 0-DPTT � DsMTT

proves that 0-DPTT � DMTT (and this is a new result). For total funtions this

result was also proved in [EV86℄ (Theorem 5.16); in the nonirular ase (see Sub-

setion 3.2) it is the well-known fat that attribute grammars an be simulated by

maro tree transduers [Fra82,CF82,FV99,EM99℄.

Lemma 34. 0-PTT � sMTT and 0-DPTT � DsMTT.

Proof. Let M = (�;�;Q; q

0

; R) be a 0-ptt and let q

1

; : : : ; q

m

be the states in Q.

We want to onstrut a 0-pmtt M

0

without up instrutions that realizes the same

translation as M . The idea of M

0

is to replae eah up instrution into state q

�

,

by the seletion of the parameter y

�

. Hene, if the urrent node is v, then in the

�th parameter position of a state of M

0

, we have to ompute what M does at the

parent of v. Obviously, if v is the root node, then there is no parent, and therefore

the orresponding states of M

0

have no parameters. More preisely, M

0

has states

(q; 0) of rank zero whih are used if the urrent node is the root node, and if the

urrent node is not the root node, then M

0

uses states (q;m) of rank m. For every

move of M from v to its jth hild vj, M

0

omputes in the �th parameter position

of the new state (q;m) what happens if M moves bak to v into state q

�

. Thus, the

parameters are used in a stak-like fashion, to keep a history of the omputations

of all states for all anestors of the urrent node; in that way moving up into state
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q

�

is realized by M

0

by seleting the parameter y

�

, and therefore M

0

has no up

instrutions. Note that this kind of stak tehnique was invented by Rounds (f.

Theorem 7 of [Rou70℄, whih was generalized in Lemma 5.4 of [EV86℄).

Let us now de�ne M

0

. Let M

0

= (�;�;Q

0

; (q

0

; 0); R

0

), where Q

0

= f(q; �)

(�)

j

q 2 Q;� 2 f0;mgg and R

0

= frel(r) j r 2 Rg. For every rule r 2 R the related

rule rel(r) is de�ned as follows. Let r = (hq; �; �; ji ! �) with q 2 Q, � 2 �, and

j 2 [0; J ℄. Then

rel(r) =

�

h(q; 0); �; �; 0i ! trans

0

(�); if j = 0

h(q;m); �; �; ji(y

1

; : : : ; y

m

)! trans

m

(�); otherwise

where, for � 2 f0;mg, trans

�

(�) =

{ y

�

if � = hq

�

; upi

{ Æ((r

1

; �)(y

1

; : : : ; y

�

); : : : ; (r

k

; �)(y

1

; : : : ; y

�

)) if � = Æ(r

1

; : : : ; r

k

) with Æ 2 �

(k)

,

k � 0, and r

1

; : : : ; r

k

2 Q,

{ and if � = hq

0

; 'i with ' 2 fdown

i

j i 2 [J ℄g [ fstayg then it equals

� h(q

0

;m); down

i

i((q

1

; �)(y

1

; : : : ; y

�

); : : : ; (q

m

; �)(y

1

; : : : ; y

�

)) if ' = down

i

� h(q

0

; �); stayi(y

1

; : : : ; y

�

) if ' = stay.

Obviously, if M is deterministi, then so is M

0

.

Let s 2 T

�

. Before we prove the orretness of the onstrution of M

0

we need

some auxiliary notions. De�ne the full m-ary \stak tree" (fmt) that is generated

byM

0

in order to keep trak of the omputations at anestors as follows. For a on-

�guration hq; (u; �)i of M , the tree fmt(hq; (u; �)i) 2 T

C

M

0

;s

is de�ned as h(q; 0); hi

if u = ", and otherwise as h(q;m); hi(fmt(hq

1

; up(h)i); : : : ; fmt(hq

m

; up(h)i)), where

h = (u; �). We an now de�ne the substitution �, that allows us to extend the

notion of relatedness from rules to sentential forms:

� = [hq; (u; �)i  fmt(hq; (u; �)i) j q 2 Q; u 2 V (s)℄:

Two sentential forms � 2 T

�[C

M;s

and �

0

2 T

�[C

M

0

;s

are related, if �

0

= ��.

Claim 1: For  2 C

M;s

and r 2 R, r is appliable to  i� rel(r) is appliable to

�["℄.

Let  = hq; (u; �)i and r = hq; �; �; ji ! �. The rule r is appliable to  i�

s[u℄ = � and j = hildno(u) i� rel(r) is appliable to �["℄ beause, for u = ",

hq; (u; �)i�["℄ = h(q; 0); (u; �)i and the left-hand side of rel(r) is h(q; 0); �; �; 0i,

and for u 6= ", hq; (u; �)i�["℄ = h(q;m); (u; �)i and the left-hand side of rel(r) is

h(q;m); �; �; ji(y

1

; : : : ; y

m

). This proves Claim 1.

By Claim 2 below, the appliation of related rules to the same node in related

sentential forms yields again related sentential forms. Now, if �

1

)

M;s

�

2

by rule r at

node � and �

0

1

is related to �

1

, then by Claim 1 rel(r) is appliable to �

0

1

at � beause

�

0

1

[�℄ = (�

1

[�℄)�["℄, and, by Claim 2, �

0

2

is related to �

2

where �

0

1

)

M

0

;s

�

0

2

by rel(r).

Thus, if hq

0

; h

0

i )

�

M;s

t 2 T

�

, then h(q

0

; 0); h

0

i )

�

M

0

;s

t beause hq

0

; h

0

i is related

to h(q

0

; 0); h

0

i. This means that �

M

� �

M

0

. Similarly, h(q

0

; 0); h

0

i )

�

M

0

;s

t 2 T

�

implies that hq

0

; h

0

i )

�

M;s

t and thus �

M

0

� �

M

. It remains to prove Claim 2.

Claim 2: Let �

1

; �

2

2 T

�[C

M;s

and �

0

1

; �

0

2

2 T

�[C

M

0

;s

suh that �

1

and �

0

1

are

related. If �

1

)

M;s

�

2

by rule r 2 R at node � in �

1

and �

0

1

)

M

0

;s

�

0

2

by rule rel(r)

at node � in �

0

1

, then �

2

and �

0

2

are related.

Let �

1

[�℄ = hq; (u; �)i and r = hq; �; �; ji ! �. Let � = 0 if u = " and

otherwise � = m. Then �

0

1

=� = fmt(hq; (u; �)i) = h(q; �); (u; �)i(t

1

; : : : ; t

�

) with

t

i

= fmt(hq

i

; up(u; �)i) for i 2 [�℄.

If � = hq

0

; stayi then �

2

= �

1

[�  hq

0

; (u; �)i℄ and rel(r) has right-hand side

h(q

0

; �); stayi(y

1

; : : : ; y

�

). Then �

0

1

)

M

0

;s

�

0

2

= �

0

1

[�  h(q

0

; �); (u; �)i(t

1

; : : : ; t

�

)℄ =

�

0

1

[� fmt(hq

0

; (u; �)i)℄ = �

1

[� hq

0

; (u; �)i℄� = �

2

�.
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If � = Æ(r

1

; : : : ; r

k

) then �

2

= �

1

[�  Æ(hr

1

; (u; �)i; : : : ; hr

k

; (u; �)i)℄ and rel(r)

has right-hand side Æ((r

1

; �)(y

1

; : : : ; y

�

); : : : ; (r

k

; �)(y

1

; : : : ; y

�

)). Then �

0

1

)

M

0

;s

�

0

2

= �

0

1

[� Æ(h(r

1

; �); (u; �)i(t

1

; : : : ; t

�

); : : : ; h(r

k

; �); (u; �)i(t

1

; : : : ; t

�

))℄

= �

0

1

[� Æ(fmt(hr

1

; (u; �)i); : : : ; fmt(hr

k

; (u; �)i))℄

= �

1

[� Æ(hr

1

; (u; �)i; : : : ; hr

k

; (u; �)i)℄� = �

2

�.

If � = hq

0

; down

i

i then �

2

= �

1

[�  hq

0

; (ui; �)i℄ and rel(r) has right-hand side

h(q

0

;m); down

i

i((q

1

; �)(y

1

; : : : ; y

�

); : : : ; (q

m

; �)(y

1

; : : : ; y

�

)). Then �

0

1

)

M

0

;s

�

0

2

=

�

0

1

[� h(q

0

;m); (ui; �)i(h(q

1

; �); (u; �)i(t

1

; : : : ; t

�

); : : : ; h(q

m

; �); (u; �)i(t

1

; : : : ; t

�

))℄

= �

0

1

[� fmt(hq

0

; (ui; �)i)℄ = �

1

[� hq

0

; (ui; �)i℄� = �

2

�.

If � = hq

0

; upi then u = u

0

i for some u

0

2 V (s) and i 2 [J ℄, and �

2

= �

1

[�  

hq

0

; (u

0

; �)i℄. The right-hand side of rel(r) is y

�

for � 2 [m℄ suh that q

�

= q

0

. Thus

�

0

1

)

M

0

;s

�

0

2

= �

0

1

[� t

�

℄ = �

0

1

[� fmt(hq

�

; (u

0

; �)i)℄ = �

1

[� hq

0

; (u

0

; �)i℄� = �

2

�.

ut

Now, from Theorem 10 together with Lemma 34 and Theorem 31 we obtain

our seond main result: every n-ptt an be simulated by the omposition of n + 1

stay-mtts (mtts in the deterministi ase). Note that, as for Theorem 10, the �rst n

translations are realized by (very simple) total deterministi mtts: they all realize

EnPeb 2 D

t

MTT.

Theorem 35. For every n � 1, n-PTT � sMTT

n+1

and n-DPTT � DMTT

n+1

.

By Theorem 29 and Lemma 27 the nondeterministi part of this theorem implies

that n-PTT � MON ÆMTT

n+1

. The deterministi part of Theorem 35 is, in fat,

optimal, i.e., n-DPTT is not inluded in DMTT

n

. This will follow immediately from

Theorem 41 in Setion 6.

5.5 Simulation of Maro Tree Transduers by PTTs

In the previous subsetion it was shown how to simulate n-ptts by ompositions of

stay-mtts, and by ompositions of dmtts in the deterministi ase. Now we show the

onverse diretion, namely, how to simulate a stay-mtt by a omposition of 0-ptts,

and a deterministi mtt by a omposition of 0-dptts. This result, together with the

onverse simulation of the previous subsetion, proves that ptts and stay-mtts have

the same omposition losure (and that dptts and dmtts have the same omposition

losure). Hene, the lasses of output languages of ompositions of ptts and of mtts

oinide.

Reall that by Lemma 27, sMTT � MON Æ MTT. Sine MON � 0-PTT by

Example 6, this means that sMTT � 0-PTTÆMTT. Thus, it will suÆe to onsider

the simulation of mtts by ptts.

In order to prove that an mtt an be simulated by ompositions of ptts, we use

a well-known deomposition result of (total deterministi) mtts into ompositions of

top-down tree transduers and so-alled \YIELDmappings" (see, e.g., [ES77,Eng80℄).

Reall from De�nition 22 that a top-down tree transduer is an mtt M without pa-

rameters, i.e., with eah state of rank zero. The on�gurations of a top-down tree

transduer are always at the leaves of a sentential form, in ontrast to an mtt whose

on�gurations an also be at non-leaf nodes of a sentential form. This means that

a top-down tree transduer an simulate the state behavior of an mtt, but only

at the leaves of its sentential forms, beause it annot arry out the seond-order

tree substitution inherent in a omputation step of an mtt (viz. applying a rule

to a on�guration of rank > 0). Now, YIELD mappings arry out seond-order

tree substitution. Altogether, a total deterministi mtt M an be simulated by �rst

running a (total deterministi) top-down tree transduer that realizes M 's state

behavior and generates a speial intermediate tree, and then applying a YIELD

mapping to that tree (realizing the seond-order tree substitution inherent in M 's
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omputation). In other words, D

t

MTT � D

t

TÆYIELD (Proposition 4.17 of [CF82℄;

f. also Theorem 4.8 of [EV85℄). Partialness and nondeterminism of an mtt an be

handled by post-omposing a total deterministi mtt with a orresponding top-

down tree transduer (Corollary 6.12 of [EV85℄), i.e., MTT � D

t

MTT Æ T and

DMTT � D

t

MTT ÆDT. Thus, we obtain (f. also Theorem 7.3 of [EV85℄)

MTT � (T [ YIELD)

3

and DMTT � (DT [ YIELD)

3

:

As stated in Lemma 23, top-down tree transduers an be realized by 0-ptts;

we now prove, in Lemma 36, that YIELD mappings an be realized by 0-ptts.

For attribute grammars (see Subsetion 3.2) these results are well known: top-

down tree transduers an be simulated by attribute grammars [CF82℄ and so an

YIELD mappings (shown in Theorem 1.3 of [Eng81℄, without orretness proof,

and in Corollary 6.24 of [FV98℄, using an indiret proof). Together with the above

deomposition result this will allow us to prove the equality of the omposition

losure of ptts and stay-mtts, in Theorem 38.

Let us now de�ne YIELD mappings and show that they an be realized by 0-

ptts. A YIELD mapping Y

f

is a mapping from T

�

to T

�

(Y ) de�ned by a mapping

f from �

(0)

to T

�

(Y ), for ranked alphabets � and �. It realizes the semantis of

�rst-order tree substitution in the following way:

(i) for � 2 �

(0)

, Y

f

(�) = f(�) and

(ii) for � 2 �

(k)

, s

1

; : : : ; s

k

2 T

�

, and k � 1,

Y

f

(�(s

1

; : : : ; s

k

)) = Y

f

(s

1

)[y

�

 Y

f

(s

�+1

) j � 2 [k � 1℄℄.

The lass of all YIELD mappings is denoted by YIELD.

Intuitively, to ompute the tree Y

f

(s) for some s = �(s

1

; : : : ; s

k

) 2 T

�

, the

mapping Y

f

has to be applied to the �rst subtree s

1

, and in the resulting tree eah

parameter y

�

, � 2 [k� 1℄, has to be replaed by Y

f

applied to the (�+1)th subtree

s

�+1

. Note that if f is a mapping from �

(0)

to T

�

(Y

m

), m � 0, then Y

f

is a mapping

from T

�

to T

�

(Y

m

).

As a small example of a YIELD mapping, onsider the ranked alphabet � with

�

(0)

= fa; b; g, �

(2)

= f�g and the mapping f from �

(0)

to T

�

(Y

1

) with � =

fa

(1)

; b

(1)

; 

(1)

; e

(0)

g, and f(a) = a(y

1

), f(b) = b(y

1

), and f() = (e). Now let

s = �(a; �(b; )). Then Y

f

(s) is a (monadi tree) representation of the yield ab of

the tree s, namely,

Y

f

(s) = f(a)[y

1

 Y

f

(�(b; ))℄

= a(y

1

)[y

1

 f(b)[y

1

 (e)℄

| {z }

b((e))

℄

= a(b((e))):

Note that, in general, a YIELD mapping Y

f

is realized by a dmtt M

f

with one

state q and rules

hq; �; �; ji(y

1

; : : : ; y

m

)! f(�)

hq; �; �; ji(y

1

; : : : ; y

m

) ! hq; down

1

i(hq; down

2

i(y

1

; : : : ; y

m

); : : : ;

hq; down

k

i(y

1

; : : : ; y

m

); y

k

; : : : ; y

m

);

where f is a mapping from �

(0)

to T

�

(Y

m

), and y

k

; : : : ; y

m

is empty if m < k.

We now show that YIELD mappings an be realized by 0-dptts.

Lemma 36. YIELD � 0-DPTT.

Proof. Let � and � be ranked alphabets, J = maxfrank

�

(�) j � 2 �g, m � 0,

and let f be a mapping from �

(0)

to T

�

(Y

m

). We now de�ne the determinis-

ti 0-ptt M = (�;� [ fy

(0)

�

j � 2 [m℄g; Q; q; R) suh that �

M

= Y

f

. Let Q =
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fq; q

1

; : : : ; q

m

; q

0

1

; : : : ; q

0

m

g. For the state q, let the following rules be in R.

hq; �; �; ji ! hq; down

1

i for � 2 �

(k)

; k � 1, and j 2 [0; J ℄

hq; �; �; ji ! f(�)[y

�

 hq

�

; stayi j � 2 [m℄℄ for � 2 �

(0)

and j 2 [0; J ℄:

Intuitively, starting in a on�guration hq; (u; �)i, M will ompute the tree Y

f

(s=u)

when restrited to input on�gurations (v; �) where v is a desendant of u, i.e.,

v = uv

0

with v

0

2 V (s=u). However, in plae of a parameter y

�

this tree will have a

on�guration hq

�

; (u; �)i; suh a on�guration omputes the atual parameter tree

whih should replae y

�

during M 's omputation of Y

f

(s). For every � 2 [m℄ let

the rules

hq

�

; �; �; 1i ! hq

0

�

; upi for � 2 �

hq

�

; �; �; ji ! hq

�

; upi for � 2 � and j 2 [2; J ℄

hq

�

; �; �; 0i ! y

�

for � 2 �

hq

0

�

; �; �; ji ! hq; down

�+1

i for � 2 �

(k)

; �+ 1 � k; and j 2 [0; J ℄

hq

0

�

; �; �; ji ! hq

�

; stayi for � 2 �

(k)

; �+ 1 > k; and j 2 [0; J ℄

be in R. Intuitively, in a on�guration hq

�

; (u; �)i, M omputes for y

�

the atual

parameter tree at u, whih is the (�+1)th hild of u's parent u

0

if u is a �rst hild

and u

0

has a (� + 1)th hild, and otherwise is the atual parameter tree at u

0

(f.

the rules of the dmtt M

f

shown below the de�nition of YIELD).

We now prove the orretness of the onstrution of M . Let s 2 T

�

. It must

be shown that �

M

(s) = Y

f

(s). In what follows, let )

M;s

be denoted by ). By the

laim below, hq; h

0

i )

�

Y

f

(s)[y

�

 hq

�

; h

0

i j � 2 [m℄℄ = �. Sine hq

�

; h

0

i ) y

�

for

every � 2 [m℄, � )

�

Y

f

(s)[y

�

 y

�

j � 2 [m℄℄ = Y

f

(s). Thus, hq; h

0

i )

�

Y

f

(s).

In the remainder of this proof we will write hq; ui instead of hq; (u; �)i.

Claim: For every u 2 V (s), hq; ui )

�

Y

f

(s=u)[y

�

 hq

�

; ui j � 2 [m℄℄.

The proof of the laim is by indution on the size of s=u.

Case 1, u is a leaf: Let � = s[u℄. Then hq; ui ) f(�)[y

�

 hq

�

; ui j � 2 [m℄℄. By

the de�nition of Y

f

, f(�) = Y

f

(�), and, sine u is a leaf, Y

f

(�) = Y

f

(s=u), whih

proves the laim for this ase.

Case 2, u is not a leaf: By the de�nition of the q-rule ofM for symbols of positive

rank, hq; ui ) hq; u1i. By indution

hq; u1i )

�

Y

f

(s=u1)[y

�

 hq

�

; u1i j � 2 [m℄℄ = �:

What M omputes in a on�guration hq

�

; u1i depends on the numbers � + 1 and

k, where k is the rank of s[u℄: If �+ 1 > k then

hq

�

; u1i ) hq

0

�

; ui ) hq

�

; ui;

and if �+ 1 � k then

hq

�

; u1i ) hq

0

�

; ui

) hq; u(�+ 1)i

)

�

Y

f

(s=u(�+ 1))[y

�

 hq

�

; u(�+ 1)i j � 2 [m℄℄ (by indution)

)

�

Y

f

(s=u(�+ 1))[y

�

 hq

�

; ui j � 2 [m℄℄ (beause �+ 1 � 2):

Thus, there is a omputation starting from � (displayed above), of the form

� )

�

Y

f

(s=u1) [y

�

 Y

f

(s=u(�+ 1))	 j � 2 [m℄; �+ 1 � k℄

[y

�

 hq

�

; ui j � 2 [m℄; �+ 1 > k℄;

where 	 = [y

�

 hq

�

; ui j � 2 [m℄℄. This is equal to

Y

f

(s=u1)[y

�

 Y

f

(s=u(�+ 1)) j � 2 [m℄; �+ 1 � k℄	:
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Sine \� 2 [m℄; � + 1 � k" means the same as \� 2 [k � 1℄" we obtain, by the

de�nition of Y

f

, that the above equals Y

f

(s=u)	 . This onludes the proof of the

laim and of the lemma. ut

Consider again the example of a YIELD mapping Y

f

given above the previ-

ous lemma and the tree s = �(a; �(b; )). Let M be the 0-dptt obtained by the

onstrution in the proof of the previous lemma (and let ) denote )

M;s

). Then

hq; "i ) hq; 1i ) a(hq

1

; 1i)) a(hq

0

1

; "i)) a(hq; 2i))

a(hq; 21i)) a(b(hq

1

; 21i))) a(b(hq

0

1

; 2i))) a(b(hq; 22i))) a(b((e)));

whih is the orret tree Y

f

(s), as shown in the example.

Lemma 37. sMTT � 0-PTT

4

and DMTT � 0-DPTT

3

.

Proof. By Lemma 27, sMTT � MON ÆMTT whih is inluded in 0-PTT ÆMTT

by Example 6. As mentioned above, MTT � (T [ YIELD)

3

whih is inluded in

0-PTT

3

by Lemmas 23 and 36. Hene sMTT � 0-PTT

4

. In the deterministi ase,

DMTT � (DT[YIELD)

3

whih is inluded in 0-DPTT

3

by Lemmas 23 and 36. ut

It was proved at the end of Setion 4 that the omposition losure of n-ptts

equals the one of 0-ptts, i.e., PTT

�

= 0-PTT

�

(and DPTT

�

= 0-DPTT

�

in the

deterministi ase). We are now ready to prove our third main result, namely, that

these lasses equal the omposition losure of stay-mtts (and of dmtts in the deter-

ministi ase).

Theorem 38. PTT

�

= 0-PTT

�

= sMTT

�

and

DPTT

�

= 0-DPTT

�

= DMTT

�

:

Proof. By Corollary 11, PTT

�

= 0-PTT

�

and DPTT

�

= 0-DPTT

�

. We now show

that 0-PTT

�

= sMTT

�

and 0-DPTT

�

= DMTT

�

. By Theorem 35 and Lemma 37,

0-PTT � sMTT � 0-PTT

�

and 0-DPTT � DMTT � 0-DPTT

�

. This implies the

required equalities. ut

In terms of databases Theorem 38 shows that, as query languages, ptts and mtts

have the same expressiveness. For total funtions, it was already known that total

deterministi maro tree transduers and (nonirular) attributed tree transduers

have the same omposition losure (see Chapter 6 of [FV98℄).

In the deterministi ase, we have also proved that DPTT

�

� 0-DPTT

�

term

,

where the latter is the lass of translations realized by 0-dptts that have no in�nite

omputations, i.e., they are terminating: �rst simulate the dptts by (ompositions

of) dmtts, then deompose the dmtts into (deterministi) top-down tree transduers

and YIELD mappings following the results in [EV85℄, and �nally simulate those

by (ompositions of) 0-ptts, using Lemmas 23 and 36, respetively (obviously, the

onstrutions in the proofs of these two lemmas give terminating 0-dptts; in fat,

they are even nonirular, see Subsetion 3.2). Note that it is not lear whether or

not in�nite omputations an be removed diretly from an n-dptt, i.e., whether or

not DPTT � DPTT

term

.

In [MSV00℄ it is stated as an open problem whether PTT ontains all bottom-

up tree translations (denoted B, and DB in the deterministi ase). Note that we

obtain from Lemmas 23, 36, and 37 that DB � 0-DPTT

3

and B � 0-PTT

2

beause

DB � DMTT (Corollary 6.16 of [EV85℄) and B � T Æ YIELD (Theorem 5.16 and

Lemma 5.5 of [EV85℄).

If we onsider the lass of output languages of PTT

�

, then by the previous theo-

rem, PTT

�

(REGT) = sMTT

�

(REGT) and by Theorem 30 this equals MTT

�

(REGT).

Thus, PTT

�

and MTT

�

de�ne the same lass of output languages.
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Corollary 39. PTT

�

(REGT) = MTT

�

(REGT).

As stated in Fat 25, emptiness and �niteness of tree languages in MTT

�

(REGT)

are deidable. In Setion 7 on type heking we will use these fats to show that

\type heking" and \almost always type heking" are deidable for languages in

MTT

�

(REGT). Through Corollary 39 this provides an alternative proof of the main

result of [MSV00℄ that type heking is deidable for languages in PTT

�

(REGT).

6 Pebble Hierarhies for Deterministi PTTs

In this setion we onsider for deterministi pebble tree transduers the following

question: Is the (deterministi) pebble tree transduer with n + 1 pebbles more

powerful than the one with n pebbles? As the power of the pebble tree transduer

we onsider its ability

(i) to translate,

(ii) to generate output tree languages, and

(iii) to generate output string languages.

The �rst two aspets are important for database theory (translations are queries,

and output tree languages are views) and the third one is mainly of interest for

formal language theory. Note that an output string language is obtained from an

output tree language by taking the yields of its trees; thus, it is of the form y�

M

(R) =

fyt j (s; t) 2 �

M

for some s 2 Rg where M is a pebble tree transduer and R 2

REGT.

In Setion 3 it was shown already that the number n of pebbles gives rise to

a proper hierarhy of translations; in other words, with respet to (i), the dptt

with n + 1 pebbles is stritly more powerful than the one with n pebbles. In this

setion we show that also with respet to (iii), and hene also (ii), n+1 pebbles are

stritly more powerful than n. More preisely, for the lasses y(n-DPTT(REGT))

of output string languages of n-dptts, there is a proper hierarhy with respet to n,

i.e., y((n�1)-DPTT(REGT)) ( y(n-DPTT(REGT)) for all n � 1. We all this the

\dptt-hierarhy".

Reall from Theorem 35 that (n� 1)-DPTT � DMTT

n

. The properness of the

dptt-hierarhy will be proved using a `bridge theorem' for the lasses yD

t

MTT

n

(

REGT), viz. Theorem 18 of [EM02a℄. This bridge theorem provides a method

to obtain languages that are not in yD

t

MTT

n

(REGT). In [EM02a℄ it was used

to prove that the \(total) dmtt-hierarhy" is proper, i.e., yD

t

MTT

n

(REGT) (

yD

t

MTT

n+1

(REGT): Theorem 23 of [EM02a℄. Here we will use it to show that

y(n-DPTT(REGT)) ontains languages not in yDMTT

n

(REGT), and hene not in

y((n�1)-DPTT(REGT)). Sine the dptt-hierarhy involves non-total funtions, we

�rst prove that totality is irrelevant for output languages of DMTT

n

, i.e., that for

every n � 1,

yDMTT

n

(REGT) = yD

t

MTT

n

(REGT): (�)

We show, by indution on n, that DMTT

n

(REGT) = D

t

MTT

n

(REGT), i.e., even

the orresponding lasses of tree languages oinide. The proof is based on Theo-

rem 6.18 of [EV85℄ whih says that DMTT = FTA Æ D

t

MTT, where FTA is the

lass of identity funtions restrited to regular tree languages, i.e., applying a fun-

tion in FTA is the same as taking the intersetion with a regular tree language.

For n = 1 this implies that DMTT(REGT) = D

t

MTT(FTA(REGT)). Sine regu-

lar tree languages are losed under intersetion (f., e.g., [GS84℄), FTA(REGT) =

REGT and hene D

t

MTT(FTA(REGT)) = D

t

MTT(REGT). For n + 1, it fol-

lows from Theorem 6.18 of [EV85℄ and by indution that DMTT

n+1

(REGT) =

D

t

MTT(FTA(D

t

MTT

n

(REGT))). Now FTA(D

t

MTT

n

(REGT)) equals D

t

MTT

n

(
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REGT): for R

in

; R

out

2 REGT and � 2 D

t

MTT

n

, �(R

in

) \ R

out

= �(R

in

\

�

�1

(R

out

)) and R

in

\ �

�1

(R

out

) is in REGT by Fat 24 and the fat that REGT is

losed under intersetion.

Let us now state the bridge theorem of [EM02a℄, in terms of non-total dmtts.

To do this we �rst de�ne the notion of Æ-ompleteness. Let A and B be disjoint

alphabets. Consider a string w of the form

w = w

1

a

1

w

2

a

2

� � �a

l�1

w

l

a

l

w

l+1

with l � 0, a

1

; : : : ; a

l

2 A, and w

1

; : : : ; w

l+1

2 B

�

. De�ne the string res

A

(w) 2 A

�

as a

1

� � � a

l

. If all w

2

; : : : ; w

l

are pairwise di�erent, then w is a Æ-string for a

1

� � � a

l

.

Let L � A

�

and L

0

� (A [ B)

�

. If L

0

ontains, for every w 2 L, a Æ-string for w,

then L

0

is alled Æ-omplete for L.

Lemma 40. (Theorem 18 of [EM02a℄) Let A and B be disjoint alphabets, and let

L � A

�

and L

0

� (A [ B)

�

be languages suh that L

0

is Æ-omplete for L and

res

A

(L

0

) = L.

(a) For every n � 1, if L

0

2 yDMTT

n+1

(REGT), then L 2 yDMTT

n

(REGT).

(b) If L

0

2 yDMTT(REGT), then L 2 yDT(REGT).

The next theorem (Theorem 41, whih is the main result of this setion) proves

that there is an n-dptt that generates an output string language whih is not in

yDMTT

n

(REGT). Reall from De�nition 1 that an n-ptt is monadi if its input

and output alphabets � and � are monadi, and that the orresponding string-

to-string translations are those realized by two-way n-pebble string transduers.

The �rst part of the proof of Theorem 41 was already presented in (the proof of)

Theorem 5 of [EM02b℄: with one pebble more, there is a monadi (n+1)-dptt that

generates an output language whih is not in yDMTT

n

(REGT) when viewed as a

string language (through paths). Together with the fat that the output languages of

monadi n-dptts (viewed as string languages) are output string languages of n-fold

ompositions of total deterministi mtts (Theorem 4 of [EM02b℄) this proves that

the output tree languages of monadi n-dptts form a proper hierarhy with respet

to the number n of pebbles: the \pebble string transduer hierarhy" (Theorem 5

of [EM02b℄). The seond part of the proof of Theorem 41 shows that without the

monadi restrition the extra pebble is not needed.

Note that, in terms of the translations, this result implies immediately that

n-DPTT * DMTT

n

, whih annot be proved using size-height properties of trans-

lations of dmtts. Thus, the inlusion n-DPTT � DMTT

n+1

of Theorem 35 is opti-

mal.

Theorem 41. For every n � 1, y(n-DPTT(REGT))� yDMTT

n

(REGT) 6= ?.

Proof. The inequality will be proved using the `bridge theorem' Lemma 40. First,

let n = 1 and let � = fa

(1)

; e

(0)

g. It is well known that the language K =

f(a

m

b)

m

j m � 0g is not in yDT(REGT) (see Theorem 3.16 of [Eng82℄). This

means, by Lemma 40(b), that K an be used in order to onstrut languages K

0

not in yDMTT(REGT).

Before it is shown how to obtain a 1-dptt suh that the yield of its output

language is suh a K

0

, we show how to onstrut a monadi 1-dptt M

K

with

p�

M

K

(T

�

) = f(a

m

b)

m

j m � 0g = K (reall the de�nition of p from Subse-

tion 2.1, e.g., for the tree s = a(a(b(e))), ps is the string aab). The idea of M

K

is

straightforward: M

K

uses the pebble as a ounter to make m opies of the input

tree a

m

(e). On input tree a

m

e, it drops the pebble at the root node, opies the

input tree top-down, replaing the e by b, thus generating a

m

b as output. Then

it searhes the pebble, moves it one node down, and then again generates another
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opy of a

m

b. This is repeated until the pebble has reahed the leaf of the input tree,

thus generating the monadi tree (a

m

b)

m

e. It should be obvious how to de�ne the

rules of M

K

.

Given a monadi n-dptt M (with arbitrary input and output alphabets � and

�, respetively) we will onstrut below the

{ n-dptt split(M) and the

{ monadi (n+ 1)-dptt onf(M)

(with the same input alphabet �) suh that for L = p�

M

(T

�

) and A = �

(1)

:

{ L

0

= y�

split(M)

(T

�

) is Æ-omplete for L and

{ L

0

= p�

onf(M)

(T

�

) is Æ-omplete for L,

and res

A

(L

0

) = L in both ases, whih will be proved in Claims 2 and 1, respetively.

Let now, again, n = 1 and � = fa

(1)

; e

(0)

g. Consider the 1-dptt split(M

K

)

obtained from the monadi 1-dptt M

K

of above. Then K

0

= y�

split(M

K

)

(T

�

) is

Æ-omplete for p�

M

K

(T

�

) = K and res

A

(K

0

) = K, where A = �

(1)

and � is the

output alphabet ofM

K

. Sine K 62 yDT(REGT) we apply Lemma 40(b) in order to

\bridge"K

0

out of the lass yDMTT(REGT); we obtain thatK

0

62 yDMTT(REGT)

whih proves the theorem for n = 1 (beause T

�

2 REGT).

Now let n > 1. De�ne indutively the monadi n-dptt N

n

= onf(N

n�1

) and

N

1

=M

K

. We will prove by indution on n that

p�

N

n

(T

�

) 62 yDMTT

n�1

(REGT):

As stated above, L

0

= p�

N

n

(T

�

) is Æ-omplete for L = p�

N

n�1

(T

�

) and res

A

(L

0

) =

L, where A = �

(1)

and � is the output alphabet of N

n�1

.

For n = 2, L = K 62 yDT(REGT) whih implies by Lemma 40(b) that L

0

62

yDMTT(REGT).

For n > 2 assume that L = p�

N

n�1

(T

�

) 62 yDMTT

n�2

(REGT). Then L

0

=

p�

N

n

(T

�

) is not in yDMTT

n�1

(REGT) by Lemma 40(a).

Note that, sine monadi n-ptts are the same as n-pebble string transduers,

p�

N

n

(T

�

) is an output language of an n-pebble string transduer; as mentioned

above the theorem, the fat that p�

N

n

(T

�

) 62 yDMTT

n�1

(REGT) was used in

Theorem 5 of [EM02b℄ to prove the properness of the pebble string transduer

hierarhy.

We now apply the onstrution split to N

n

, to obtain the n-dptt split(N

n

).

Take L = p�

N

n

(T

�

) and L

0

= y�

split(N

n

)

(T

�

). Then, by the above, L

0

is Æ-omplete

for L and res

A

(L

0

) = L, where A = �

(1)

and � is the output alphabet of N

n

.

Hene, sine L 62 yDMTT

n�1

(REGT) by the indutive proof above, we obtain from

Lemma 40(a) that L

0

62 yDMTT

n

(REGT). Sine L

0

2 y(n-DPTT(REGT)), this

proves the theorem.

LetM = (�;�;Q; q

0

; R) be an arbitrary monadi n-dptt, n � 1. In what follows,

we onstrut the monadi (n+1)-dptt onf(M) and the n-dptt split(M), and prove

in Claims 1 and 2 that their orresponding output languages are Æ-omplete for

p�

M

(T

�

). First we de�ne the monadi (n + 1)-dptt onf(M): The onstrution of

onf(M) is similar to the onstrution of M

n+1

in Example 5. The idea is that

onf(M) simulates M , and additionally inserts above eah unary symbol of the

output tree of M a oding w



of the urrent on�guration  2 C

M;s

. This oding is

obtained as follows. If the urrent on�guration is  = hq; (u; �)i, then onf(M) �rst

moves from u up to the root (in state q

up

). From there (in state q

down

) it moves to

the leaf of the input tree s, outputting at eah node v the symbol (q; �; b), where �

is the label of v and b is the information on the pebbles at v. After this, onf(M)

needs to move bak to the node u to ontinue the omputation of M . This is done
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by dropping, before the oding is generated, an extra pebble at u. After the oding

is generated, onf(M) hanges into the state q

�nd

and moves to the node with the

most reently dropped pebble, i.e., to u. Note that the symbol (q; �; b) generated by

onf(M) at v also ontains the information about the position of the reading head:

if b indiates that the most reently dropped pebble is present, then the reading

head is at v (i.e., v = u). It should now be lear that w



is indeed a oding of , i.e.,

w



6= w



0

for  6= 

0

.

De�ne onf(M) = (�;�;Q

0

; q

0

; R

0

) with

{ � = � [ f(q; �; b)

(1)

j q 2 Q; � 2 �; b 2 f0; 1g

�n+1

g

{ Q

0

= Q [ fq



j q 2 Q;  2 fup; down; �nd; bakgg

{ For every rule r = (hq; �; b; ji ! �) in R: if � 2 hQ; I

�;b;j

i or � = e, then let r

be in R

0

; if � = a(q

0

) with a 2 �

(1)

and q

0

2 Q, then let the rules

hq; �; b; ji ! hq

up

; dropi

hq

bak

; �; b; ji ! a(q

0

)

be in R

0

. For every q 2 Q, b 2 f0; 1g

�n+1

, and b

0

2 f0; 1g

�n

let the following

rules be in R

0

:

hq

up

; �; b; 1i ! hq

up

; upi for � 2 �

hq

up

; �; b; 0i ! hq

down

; stayi for � 2 �

hq

down

; �; b; ji ! (q; �; b)(hq

down

; down

1

i) for � 2 �

(1)

; j 2 f0; 1g

hq

down

; e; b; ji ! (q; e; b)(hq

�nd

; stayi) for j 2 f0; 1g

hq

�nd

; �; b

0

0; 1i ! hq

�nd

; upi for � 2 �

hq

�nd

; �; b

0

1; ji ! hq

bak

; lifti for � 2 �; j 2 f0; 1g:

Note that � should be de�ned in suh a way that the set f(q; �; b)

(1)

j q 2

Q; � 2 �; b 2 f0; 1g

�n+1

g is disjoint with �. In that way we will be able to apply

Lemma 40 for A = �

(1)

and B = � ��.

Clearly, �

onf(M)

2 (n+ 1)-DPTT and res

�

(1)

(p�

onf(M)

(T

�

)) = p�

M

(T

�

).

Claim 1: Let M be a monadi n-dptt with input ranked alphabet �. Then

p�

onf(M)

(T

�

) is Æ-omplete for p�

M

(T

�

).

Let M

0

denote onf(M). Sine both M and M

0

are monadi, we will drop the

parentheses and the symbol e when we show omputations. It has to be shown that

for every w 2 L = p�

M

(T

�

) there is a w

0

2 L

0

= p�

M

0

(T

�

) suh that w

0

is a Æ-string

for w. Let s 2 T

�

. If w = p�

M

(s) is de�ned, then there is a omputation

hq

0

; h

0

i = 

0

)

�

M;s

d

0

)

M;s

a

0



1

)

�

M;s

a

0

d

1

)

M;s

a

0

a

1



2

)

�

M;s

� � �

)

�

M;s

a

0

� � �a

m�1

d

m

)

M;s

a

0

� � � a

m



m+1

)

�

M;s

a

0

� � � a

m

= w;

where a

0

; : : : ; a

m

2 �

(1)

and 

0

; d

0

; : : : ; 

m

; d

m

; 

m+1

2 C

M;s

. Then, all on�gura-

tions d

0

; : : : ; d

m

are pairwise di�erent beauseM is deterministi. Take w

0

= �

M

0

(s).

Now, if  )

M;s

d then  )

M

0

;s

d, beause M

0

has the same rules as M for right-

hand sides that do not ontain an output symbol. If d)

M;s

a, then d)

�

M

0

;s

w

d

a

where w

d

is the oding of d disussed above. Applied to the omputation of w by

)

M;s

, we obtain



0

)

�

M

0

;s

d

0

)

�

M

0

;s

w

d

0

a

0



1

)

�

M

0

;s

w

d

0

a

0

d

1

)

�

M

0

;s

w

d

0

a

0

w

d

1

a

1



2

)

�

M

0

;s

� � �

)

�

M

0

;s

w

d

0

a

0

w

d

1

a

1

� � �w

d

m

a

m



m+1

)

�

M

0

;s

w

d

0

a

0

w

d

1

a

1

� � �w

d

m

a

m

= w

0

:

All the strings w

d

i

are pairwise di�erent beause the d

i

are. This implies that w

0

is

a Æ-string for w, whih ends the proof of Claim 1.
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Seond, we onstrut the n-dptt split(M). The idea of split(M) is as follows:

just as onf(M), split(M) simulates M and additionally outputs before eah unary

output symbol generated by M a oding of the urrent on�guration that M is in.

However, this time we do not want to use an extra pebble to do this, but rather

generate the orresponding string as yield and use split(M)'s ability to generate

non-monadi output in order to `split' the omputation, i.e., to initiate parallel

omputations (whih start with the same input on�gurations) in order to insert

the urrent on�guration of M before an output symbol. More preisely, if M , in

on�guration , outputs a unary symbol a and hanges into on�guration 

0

, then

split(M), in , omputes a tree with yield w



a 

0

, where w



is a oding of the

on�guration . The oding is similar to the one of onf(M): split(M) moves from

the urrent node u up to the root of the input tree s and then down to the leaf of

s, outputting at every node v a symbol (q; �; b), where  = hq; hi for some h, � is

the label of v, and b is the information of the pebbles at v. It should be lear that

in this way the urrent on�guration is oded in a unique way. Note that split(M)

also produes output when moving up; this takes are of the oding of the position

u of the reading head. Thus w



is a oding of , i.e., w



6= w



0

for  6= 

0

.

De�ne split(M) = (�;�;Q

0

; q

0

; R

0

) with

{ � = f�

(3)

;  

(2)

; e

(0)

g [ fa

(0)

j a 2 �

(1)

g [ f(q; �; b)

(0)

j q 2 Q; � 2 �; b 2

f0; 1g

�n

g;

{ Q

0

= Q [ fq

up

j q 2 Qg [ fq

down

j q 2 Qg

{ For every rule r = (hq; �; b; ji ! �) in R: if � 2 hQ; I

�;b;j

i or � = e, then let r

be in R

0

; if � = a(q

0

) with a 2 �

(1)

and q

0

2 Q then let the rule

hq; �; b; ji ! �(hq

up

; stayi; a; hq

0

; stayi)

be in R

0

.

For every q 2 Q and b 2 f0; 1g

�n

let the following rules be in R

0

:

hq

up

; �; b; 1i !  ((q; �; b); hq

up

; upi) for � 2 �

hq

up

; �; b; 0i !  ((q; �; b); hq

down

; stayi) for � 2 �

hq

down

; �; b; ji !  ((q; �; b); hq

down

; down

1

i) for � 2 �

(1)

; j 2 f0; 1g

hq

down

; e; b; ji ! (q; e; b) for j 2 f0; 1g:

As before for onf(M), � should be de�ned in suh a way that A = �

(1)

is

disjoint with B = � ��.

Clearly, �

split(M)

2 n-DPTT and res

�

(1)

(y�

split(M)

(T

�

)) = p�

M

(T

�

).

Claim 2: LetM be a monadi n-dptt with input alphabet�. Then y�

split(M)

(T

�

)

is Æ-omplete for p�

M

(T

�

).

Let M

0

denote split(M) and let s 2 T

�

. If w = p�

M

(s) is de�ned, then there is

a omputation by)

M;s

as displayed in the proof of Claim 1. Now, if )

M;s

d then

 )

M

0

;s

d, beause M

0

has the same rules as M for right-hand sides that do not

ontain an output symbol. If d)

M;s

a, then there is a omputation (showing only

the yields of the respetive sentential forms) d)

�

M

0

;s

w

d

a where w

d

is the oding

of d desribed above. This means that there is the omputation by)

M

0

;s

displayed

in the proof of Claim 1, generating as yield the string w

0

whih is Æ-omplete for w.

This proves Claim 2. ut

It follows immediately from Theorem 41 and the inlusion n-DPTT � DMTT

n+1

in Theorem 35, that the dptt-hierarhy is proper: our fourth main result.

Theorem 42. The dptt-hierarhy is proper, i.e., for n � 0,

y(n-DPTT(REGT)) ( y((n+ 1)-DPTT(REGT)):
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The fat that y(n-DPTT(REGT))�yDMTT

n

(REGT) 6= ? (Theorem 41) means

that ounter examples of the dmtt-hierarhy an already be found in the dptt-

hierarhy. Thus, if we additionally knew that yDMTT(REGT)�yDPTT(REGT) 6=

?, then the inlusion diagram in Figure 6 would be a Hasse diagram. We onjeture

.

.

.

.

.

.

.

.

.

.

.

.

yDPTT(REGT)

yn-DPTT(REGT)

y0-DPTT(REGT)

yDMTT

n

(REGT)

yDMTT

�

(REGT)

yDMTT(REGT)

yDMTT

n+1

(REGT)

y(n� 1)-DPTT(REGT)

Fig. 6. Inlusion diagram relating the dptt-hierarhy to the dmtt-hierarhy

that this is the ase.

Note that, with respet to the orresponding lasses of translations the �gure

is a Hasse diagram beause, as shown in Example 13, DMTT�DPTT 6= ? (M of

Example 13 is a dmtt).

In the ase of nondeterministi n-pebble tree transduers (and also for ompo-

sitions of nondeterministi mtts) it is open whether there is a proper hierarhy of

output languages. If we ompare the output languages of nondeterministi ptts with

those of deterministi ones, then it an be shown that even at the lowest level (i.e.,

without pebbles), nondeterminism is more powerful than determinism: There is a

language generated by a nondeterministi 0-ptt, whih is not in DPTT

�

(REGT),

and hene

DPTT(REGT) ( PTT(REGT):

In terms of databases this means that, for queries realized by pebble transduers,

nondeterminism gives stritly more views than determinism. It follows from the fat

that there is a language L generated by a (nondeterministi) top-down tree trans-

duer, i.e., whih is in yT(REGT), and whih annot be generated by ompositions

of deterministi mtts, i.e., whih is not in yDMTT

�

(REGT). This was proved in

Theorem 25 of [EM02a℄, as another appliation of the bridge theorem (Lemma 40).

Sine T � 0-PTT by Lemma 23, and DPTT

�

= DMTT

�

by Theorem 38, we obtain

that L 2 y(0-PTT(REGT))� yDPTT

�

(REGT).

7 Type Cheking

As mentioned in the Introdution, the appliation of a query q to a database D

(a set of inputs) de�nes a derived version of the database: the view of D under

q. Now if q is omputed by the tree transduer M , and D is represented by the

regular tree language R, then the view of D under q is equal to the output language

�

M

(R). An important issue in XML-based query languages is type heking of views

(see, e.g., [MSV00,PV00,Via01,AMN

+

01a,AMN

+

01b,Toz01,Su02℄). The main re-

sult of [MSV00℄ is that type heking is deidable for pebble tree transduers. For a

lassX of tree translations, the type heking problem (for X) is de�ned in Figure 7.
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input: types R

in

; R

out

2 REGT, translation � 2 X

output:

�

\yes" if � (R

in

) � R

out

\no" otherwise.

Fig. 7. Type heking for translations in X.

If the output of type heking is \yes", i.e., the view �(R

in

) is inluded in R

out

, then

we say that � type heks for (R

in

; R

out

).

Intuitively, type heking means to verify whether or not all douments in a

view onform to a ertain type. As a typial senario of type heking, imagine that

� translates XML douments into HTML douments. Thus, for a set R of XML

douments �(R) is an \HTML-view" of the douments in R. Now, a partiular

user might be interested only in very partiular XML douments, for instane,

douments that have no nested lists, represented by the type XML

no-nest

. Sine

XML douments are unranked trees, this type orresponds to a string, or, rather,

a forest a

1

; : : : ; a

k

of one node trees a

i

; using the usual enoding of unranked trees

by binary trees, this orresponds to `ombs' of the form �(a

1

; �(a

2

; � � ��(a

k

; e) � � � )),

where � has rank 2. Obviously, this is a regular tree language. Then, the user wants

to verify that also the orresponding HTML douments �(XML

no-nest

) do not have

nested lists, i.e, are of type HTML

no-nest

. Thus, he wants to know whether or not

� type heks for (XML

no-nest

;HTML

no-nest

). As mentioned above, this problem is

deidable if � is de�ned by a ptt.

It is well known in tree transduer theory that type heking is deidable for

translations in MTT

�

, i.e., it is deidable for an output language in MTT

�

(REGT)

whether or not it is inluded in a given regular tree language.

Proposition 43. Type heking of ompositions of maro tree transduers is de-

idable.

This an be seen as follows. The translation � 2 MTT

�

type heks for (R

in

; R

out

)

i� K = �(R

in

) \ R



out

is empty, where R



out

denotes the omplement of R

out

. Sine

REGT is e�etively losed under omplement and MTT

�

(REGT) is e�etively

losed under intersetion with regular tree languages, the tree language K is in

MTT

�

(REGT). This implies, by Fat 25(i), that K's emptiness is deidable whih

gives Proposition 43. Note that it is obvious that MTT

�

(REGT) is losed under

intersetion with a regular tree language R, beause that is the same as applying

the partial identity for R, i.e., a mapping in FTA (f. the disussion in the beginning

of Setion 6), whih is a top-down tree translation and hene is in MTT.

Together with Theorem 30, Proposition 43 implies that even for ompositions

of stay-mtts, type heking is deidable.

Corollary 44. Type heking of ompositions of stay-mtts is deidable.

Sine PTT

�

(REGT) = MTT

�

(REGT) by Corollary 39, Proposition 43 gives an

alternative proof of the main result of [MSV00℄. We an now strengthen this result,

based on the fat that the �niteness of languages in MTT

�

(REGT) is deidable by

Fat 25(ii). More preisely, we an solve almost always type heking, whih is a

weaker variation of type heking, de�ned in Figure 8. Intuitively, almost always

type heking means to hek whether or not all output douments in the view

�(R

in

), exept �nitely many exeptions, satisfy the output type R

out

. Moreover, if

the answer is yes, the list of exeptions is produed.
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input: types R

in

; R

out

2 REGT, translation � 2 X

output:

�

\yes"; � (R

in

)�R

out

if � (R

in

)�R

out

is �nite

\no" otherwise.

Fig. 8. Almost always type heking for translations in X.

SineK = �(R

in

)�R

out

is in MTT

�

(REGT), as shown above, Fat 25(ii) implies

that its �niteness is deidable, and if so, that the �nitely many exeptions an be

omputed. By Corollary 39, this proves the next theorem.

Theorem 45. Almost always type heking of ompositions of pebble tree trans-

duers is solvable.

Note that in the aÆrmative ase, � type heks for (R

in

; R

out

[ F ) where F =

�(R

in

)�R

out

is the �nite set of exeptions. The new output type R

out

[F is indeed

a regular tree language and an be determined e�etively.

In the remainder of this setion we present a straightforward type heking al-

gorithm for translations realized by (ompositions of) deterministi mtts. As shown

below Proposition 43, type heking for ompositions of dmtts an be solved using

Fat 25(i), and as disussed below Fat 25, the proof of Fat 25(i) uses inverse type

inferene (for � and R

out

); this means to determine the set of input trees of � whih

generate output in R

out

, i.e., to determine the regular tree language �

�1

(R

out

). Re-

all the example XML to HTML translation � of before. Now imagine that the

generated HTML douments should onform to a ertain type R

out

, and one wants

to know whih XML douments are admissible as input of � , in order to generate

douments of the required type R

out

: just do inverse type inferene for � and R

out

.

Clearly, for a funtion �

� typeheks for (R

in

; R

out

) i� R

in

� �

�1

(R

out

):

Sine heking the inlusion of two regular tree languages is well known, we on-

entrate on the inverse type inferene problem. Note that also in [MSV00℄ type

heking is solved by inverse type inferene (using MSO logi to represent types).

If � is a omposition �

1

Æ �

2

Æ � � � Æ �

n

of translations, then

�

�1

(R

out

) = �

�1

1

(�

�1

2

(� � � �

�1

n

(R

out

))):

Thus, to solve the type inferene problem for X

�

(where X is a lass of translations)

it suÆes to solve it for X .

We now disuss an algorithm that performs inverse type inferene for �

M

and

R

out

, for a deterministi mtt M and an output type R

out

. Hene, the algorithm

onstruts a desription of the regular tree language �

�1

M

(R

out

). Note that the ex-

istene of suh an algorithm follows from the fats that DMTT � (DT [YIELD)

3

,

see Subsetion 5.5, and that the inverses of DT and YIELD both (e�etively) pre-

serve the regular tree languages (f. the proof of Fat 24 in Theorem 7.4 of [EV85℄).

From the proofs of these results in the literature it is straightforward, but rather

awkward, to extrat the algorithm. Sine, in fat, a diret algorithm is quite easy

to understand, we present it here. As desription for a regular tree language we use

the deterministi bottom-up �nite state tree automaton, de�ned next.

A deterministi bottom-up �nite state tree automaton (for short, dbfta) is a tuple

B = (P; P

�n

; �; Æ) where P is a �nite set of states, P

�n

� P is the set of �nal states,

� is a ranked alphabet, and Æ is the olletion (Æ

�

)

�2�

of transition funtions suh
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that for every � 2 �

(k)

, k � 0, Æ

�

is a mapping from P

k

to P . The tree language

L(B) � T

�

reognized by B is fs 2 T

�

j Æ(s) 2 P

�n

g where Æ is the extension of

Æ

�

to trees in T

�

whih is reursively de�ned as follows. For every � 2 �

(k)

, k � 0,

and s

1

; : : : ; s

k

2 T

�

, Æ(�(s

1

; : : : ; s

k

)) = Æ

�

(Æ(s

1

); : : : ; Æ(s

k

)).

Let M = (�;�;Q; q

0

; R) be a deterministi mtt. For tehnial reasons we as-

sume M to be total. Clearly, this is not a restrition: just add a new \unde�ned"

symbol ? and for eah left-hand side that has no rule, add a rule with right-hand

side ?. Moreover, we assume that the hq; �; �; ji-rules of M disregard j, i.e., all

hq; �; �; ji-rules for j 2 [0; J ℄ have the same right-hand side. (Obviously this is not

a restrition, beause the j an be inorporated into the states; f. the disussion

below Lemma 23.)

We are now ready to onstrut the dbfta A with L(A) = �

�1

M

(R

out

). Let B =

(P; P

�n

; �; �) be a deterministi bottom-up �nite state tree automaton with L(B) =

R

out

. De�ne A = (D;D

�n

; �; Æ) where D onsists of all mappings d suh that for

every q 2 Q

(m)

and m � 0, d(q) is a mapping from P

m

to P , and D

�n

onsists of

all d 2 D suh that d(q

0

)() 2 P

�n

.

For every � 2 �

(k)

, k � 0, and d

1

; : : : ; d

k

2 D, let Æ

�

(d

1

; : : : ; d

k

) = d where

d is de�ned as follows. For every q 2 Q

(m)

, m � 0, p

1

; : : : ; p

m

2 P , and rule

hq; �; �; ji(y

1

; : : : ; y

m

)! � in R, let

d(q)(p

1

; : : : ; p

m

) = �

0

(�[y

j

 p

j

j j 2 [m℄℄);

where �

0

is the following extension of � to trees over hQ; fdown

i

j i 2 [k℄gi[�[fp

(0)

j

p 2 Pg. For every hq

0

; down

i

i 2 hQ; fdown

i

j i 2 [k℄gi

(m

0

)

, m

0

� 0, and p

0

1

; : : : ; p

0

m

0

,

let

�

0

hq

0

;down

i

i

(p

0

1

; : : : ; p

0

m

) = d

i

(q

0

)(p

0

1

; : : : ; p

0

m

0

);

and let �

0

p

() = p for p 2 P . This ends the onstrution of A.

Intuitively, the idea of A is to run the dbfta B on the right-hand sides of the

rules of M . In order to do this, B has to be extended appropriately, beause the

right-hand side � of a q-rule of M might ontain parameters y

j

or instrutions of

the form hq; down

i

i. Sine the state p

j

in whih B arrives after proessing the atual

parameter tree t

j

of y

j

is not determined, a state d of A will ontain all possible

hoies of states of B for the parameters, i.e., d(q) is a funtion from P

m

to P

and d(q)(p

1

; : : : ; p

m

) = p means that, assuming state p

�

for t

�

, � 2 [m℄, B will

arrive in p after proessing �. The hq

0

; down

i

i in � are handled by applying d

i

(q

0

),

where d

i

is the state in whih A arrives at the ith input subtree. In fat, for s 2 T

�

,

Æ(s)(q)(p

1

; : : : ; p

m

) is the state in P in whih B arrives on the output tree generated

by q on input s assuming that it arrives in p

�

for the parameter y

�

. More preisely,

if hq; h

0

i(y

1

; : : : ; y

m

) )

�

M;s

t 2 T

�

(Y

m

) then Æ(s)(q)(p

1

; : : : ; p

m

) = �(t[y

�

 t

�

℄)

where, for � 2 [m℄, t

�

is an arbitrary tree in T

�

with �(t

�

) = p

�

. From this it

should be lear that indeed

L(A) = fs 2 T

�

j �

M

(s) \ R

out

6= ?g = �

�1

M

(R

out

):

This onludes the onstrution of the dbfta A and our inverse type inferene

algorithm.

8 Conlusions and Problems

In this paper we have shown that n-ptts an be deomposed into ompositions of 0-

ptts and ompositions of mtts, respetively: (1) n-PTT � 0-PTT

n+1

and n-DPTT �

0-DPTT

n+1

and (2) n-PTT � sMTT

n+1

and n-DPTT � DMTT

n+1

. It was shown

that (3) PTT

�

= 0-PTT

�

= sMTT

�

and DPTT

�

= 0-DPTT

�

= DMTT

�

, i.e., as
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query languages all three models, n-ptt, mtt, and 0-ptt, have the same expressive-

ness. The output languages of dptts form a proper hierarhy with respet to the

number of pebbles: (4) n-DPTT(REGT) ( (n+1)-DPTT(REGT) whih even holds

for the yields of these tree languages. Finally, (5) almost always type heking for

n-ptts is deidable.

We now disuss some topis for further researh. It was shown in Subsetion 3.2

that (deterministi) zero-pebble tree transduers are, essentially, attribute gram-

mars. This implies that the implementation tehniques known for attribute gram-

mars (see, e.g., [DJL88,AM91,Paa95℄) arry over to zero-pebble tree transduers.

The question arises, whether and how these tehniques an be generalized to the

n-pebble ase.

In Setion 6 it was proved that the output languages of deterministi n-ptts form

a proper hierarhy with respet to n, see (4) above. The proof is similar to (and

uses parts of) the proof in [EM02a℄ of the fat that the output languages of n-fold

ompositions of deterministi maro tree transduers give rise to a proper hierarhy,

with respet to n. As observed in Setion 6, the exat Hasse diagram for these

hierarhies (see Fig. 6) has not yet been determined. It would also be interesting

to know whether or not the hierarhy of output languages of nondeterministi n-

pebble tree transduers is proper. Note that also for output languages of maro tree

transduers the properness of the nondeterministi hierarhy is an open problem

(stated in [EM02a℄).

In Setion 5 the n-pebble maro tree transduer was de�ned, but not investi-

gated. It is straightforward to extend the deomposition result of Setion 4 to the

maro ase, in the following way:

n-PMTT � 0-PTT

n

Æ 0-PMTT:

For the deterministi ase a similar result an be proved. Now note that the transla-

tion �

M

of the 0-dpmttM of Example 13 is equal to the omposition �

M

1

Æ�

M

2

of the

two deterministi 0-ptts M

1

and M

2

of Example 4. We suspet that every (deter-

ministi) 0-pebble maro tree transduer an be realized by the omposition of two

(deterministi) 0-ptts. In fat, by Subsetion 3.2, 0-ptts are essentially attributed

tree transduers; the addition of parameters to the attributes of the attributed tree

transduer gives the maro attributed tree transduer of [KV94℄ whih an be simu-

lated by the omposition of two attributed tree transduers (to be preise, the lass

of translations realized by maro attributed tree transduers equals the lass of

two-fold ompositions of attributed tree transduers; f. Corollary 7.30 of [FV98℄).

For the pebble formalism this suggests that 0-PMTT � 0-PTT

2

and 0-DPMTT �

0-DPTT

2

; does this atually hold? As a speial ase of Corollary 3.27 of [EV86℄ (viz.

the ase that S = Tree-walk) we obtain that 0-PMTT � 0-PTT ÆMTT and hene

n-PMTT � sMTT

n+2

and PMTT

�

= PTT

�

. Is it true that 0-DPMTT � DMTT

2

?

If so, then we would obtain that n-DPMTT � DMTT

n+2

and DPMTT

�

= DPTT

�

.

Using the results of [EV86℄ it an be shown that the total funtions in 0-DPMTT

are also in DMTT

2

.

Furthermore, it an probably be shown that n-PTT � (n � 1)-PMTT, i.e., a

pebble an be avoided by the addition of parameters, in a similar way as the removal

of the tree-walk faility of the reading-head (whih an be seen as a pebble), in the

proof of Lemma 34.

Last but not least, we onjeture that the lass DPTT of deterministi pebble

tree translations an be haraterized inside the lass DPTT

�

as those translations

for whih the number of di�erent subtrees in the output tree is polynomial in the

size of the input tree (f. [EM01℄, where the MSO de�nable tree translations are

haraterized inside the lass DMTT as those translations for whih the size of the

output tree is linear in the size of the input tree).
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