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Abstrat

The �rst main result is that if a maro tree translation is of linear size inrease,

i.e., if the size of every output tree is linearly bounded by the size of the orresponding

input tree, then the translation is MSO de�nable (i.e., de�nable in monadi seond-

order logi). This gives a new haraterization of the MSO de�nable tree translations

in terms of maro tree transduers: they are exatly the maro tree translations of

linear size inrease. The seond main result is that given a maro tree transduer,

it an be deided whether or not its translation is MSO de�nable, and if it is then

an equivalent MSO transduer an be onstruted. Similar results hold for attribute

grammars, whih de�ne a sublass of the maro tree translations.

1 Introdution

Very often, a omplex objet has a struture that shows how it is omposed from smaller

objets by the appliation of ertain operations. The smaller objets may themselves be

omposed of other objets. Suh a struture an naturally be desribed by a tree, and

hene the objets are \tree-strutured". Examples of tree-strutured objets are the words

of a ontext-free language (with derivation trees as struture) or the graphs of bounded

tree-width (with tree deompositions as struture). Now onsider the transformation of a

tree-strutured objet, based on its struture and independent of the interpretation of the

operations, i.e., a tree-to-tree transformation. We are interested in models of suh trans-

formations: tree transduers. Well-known examples of tree transduers are top-down tree

transduers [Rou70, Tha70, AU71, GS97℄ and attribute grammars [EF81, F�ul81, FV98℄

(motivated by syntax-direted semantis and ompilers, f. [Iro61, Knu68, KV97, WM95℄),

unranked tree transduers [MN00, BMN00℄ and pebble tree transduers [MSV00℄ (mo-

tivated by the transformation of XML douments, f. [Via01℄), and maro tree trans-

duers [Eng80, CF82, EV85, FV98℄ (motivated by syntax-direted and denotational se-

mantis [Iro61, Sto77℄, and used as a model in, e.g., funtional programming [Vog91,
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K�uh98, KV01℄, language prototyping [vDHK96℄, and linguistis [KMMM01, MMM01℄).

Motivated by model theory is the idea of \interpretation", meaning the de�nition of a

(logial) struture in terms of logial formulas over another struture (f. Chapter 10

of [EF95℄). For monadi seond-order (MSO) logi, suh MSO interpretations have re-

ently been used to haraterize the generation of graphs by ontext-free graph gram-

mars [Cou94, CE95, EvO97, Eng97℄ (see also [KS94℄). Taking trees as logial stru-

ture, another type of tree transduer is obtained: the MSO tree transduer, studied

in [BE00, EM99℄ (for strings, see [EH01℄). An important part of tree transduer theory is

to ompare the formal power of these di�erent models of transformation of tree-strutured

objets and to provide e�etive translations between these models. This paper ompares

the power of maro tree transduers and MSO tree transduers.

The maro tree transduer (MTT) is a �nite state devie that translates, in a reursive

top-down fashion, an input tree into an output tree, handling ontext information by the

use of parameters. The states of the MTT an be viewed as funtions that all eah other

reursively; the initial state is the main funtion. The (tree-to-tree) translations of MTTs

form a large lass, ontaining the translations of top-down tree transduers and attribute

grammars. In order to prove our results, we add the feature of regular look-ahead (see,

e.g., Setion 18 of [GS97℄) to top-down tree transduers, attribute grammars, and maro

tree transduers. Note that in the ase of MTTs this has no inuene on the translations:

the lasses of translations realized by MTTs with and without regular look-ahead are the

same [EV85℄.

The MSO tree transduer uses formulas in monadi seond-order logi to de�ne tree-to-

tree translations. This provides a delarative way of de�ning a tree translation, as opposed

to the operational way of an MTT. The idea is to de�ne the nodes and edges of the output

tree in terms of MSO formulas that are interpreted in the input tree, or, more preisely,

in a �xed number of disjoint opies of the input tree. Tree translations de�nable in MSO

logi have nie properties, omparable to those of �nite state transdutions on strings. In

partiular, they are losed under omposition and they an be omputed in linear time.

Maro tree translations do not possess these properties.

The question arises, what is the preise relationship between these two di�erent models?

From [BE00, EM99℄ it is known that every MSO de�nable tree translation an be realized

by an MTT. However, the onverse does not hold, for obvious reasons: by de�nition, MSO

de�nable tree translations are of linear size inrease: the size of the output tree is at most

k times the size of the input tree, where k is the number of disjoint opies of the input tree,

used to de�ne the output tree. On the other hand, the translations realized by MTTs an

be of double exponential size inrease (f. Lemma 4.22 of [FV98℄). Our �rst main result is

that if we restrit ourselves to translations of linear size inrease, then the two formalisms,

MSO tree transduers and maro tree transduers, have exatly the same power, i.e., the

respetive lasses of translations oinide.

Let us briey disuss the proof of the �rst main result. As mentioned before, our MTTs

are equipped with regular look-ahead. In [EM99℄ a haraterization of the MSO de�nable

tree translations in terms of MTTs is given: they are the translations realized by \�nite

opying" MTTs. The notion of �nite opying was introdued in [AU71℄ for generalized

syntax-direted translation shemes, whih are losely related to top-down tree transdu-
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ers. It requires that there is a bound on the number of states that translate a given node

of the input tree. For MTTs this requirement is alled \�nite opying in the input" and an

MTT is �nite opying [EM99℄, if it is both �nite opying in the input and \�nite opying

in the parameters"; the latter means that there is a bound on the number of opies made

of a parameter. We want to prove that if the translation realized by an MTT is of linear

size inrease, then it is MSO de�nable. By the above this is equivalent to showing that for

every MTT M that is of linear size inrease (i.e., whih realizes a translation of linear size

inrease), there is an equivalent MTT M

0

that is �nite opying. How an we onstrut

M

0

, given M? The idea is that every MTTM an be transformed into a normal formM

0

,

alled the \proper normal form" of M , suh that if M is of linear size inrease then M

0

is

�nite opying. Roughly speaking this normal form requires that all states and parameters

of M

0

are really \needed", more preisely, eah state generates in�nitely many output

trees (onsidering all possible input trees), and for eah parameter y there are in�nitely

many atual parameter trees being substituted for y (for all possible input trees). Then

for a proper MTT M

0

it an be shown that (i) if M

0

is of linear size inrease, then it is

�nite opying in the parameters, and (ii) if M

0

is �nite opying in the parameters and of

linear size inrease, then it is �nite opying in the input. Both (i) and (ii) are proved by

a pumping argument, i.e., it is shown that if M

0

is not �nite opying in the parameters,

then it is not of linear size inrease, and similarly for (ii).

Our seond main result onerns deidability. Given a maro tree transduer it an be

deided whether or not its translation is MSO de�nable, and if so, an equivalent MSO

tree transduer an be onstruted. The proof is based on the following results: (1) the

translation realized by an MTT M is MSO de�nable { i.e., of linear size inrease { if and

only if its proper normal form M

0

is �nite opying (by the proof of our �rst main result,

as disussed above), (2) for an MTT it is deidable whether or not it is �nite opying (the

proof is based on the fat that the �niteness of ranges of MTTs is deidable [DE98℄), and

(3) from [EM99, BE00℄ it follows that given a �nite opying MTT, an equivalent MSO

tree transduer an be onstruted.

Note that very often membership in a sublass is undeidable (suh as regularity of a

ontext-free language). In ases of deidability there is often a haraterization of the

sublass that is independent of the devie that de�nes the whole lass, i.e., a \semanti"

rather than \syntati" haraterization, suh as our linear size inrease haraterization.

As another example, in [Cou95℄ it is shown that an NR (node replaement) ontext-free

graph language an be generated by an HR (hyperedge replaement) ontext-free graph

grammar if and only if the number of edges of its graphs is linearly bounded by the number

of nodes.

The idea for our main results stems from [AU71℄; there it is shown that a generalized

syntax-direted translation (gsdt) sheme an be realized by a tree-walking transduer if

and only if it is of linear size inrease. Sine gsdt shemes are a variation of top-down

tree transduers, and tree-walking transduers are losely related to �nite opying top-

down tree transduers [ERS80℄, our result an be viewed as a generalization of the result

of [AU71℄, from top-down tree transduers to maro tree transduers. In fat, sine the

proper normal form of a top-down tree transduer is again a top-down tree transduer,

we reobtain their result (in our formalism): the top-down tree translations of linear size

inrease are exatly the translations realized by �nite opying top-down tree transduers.
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Moreover, they are exatly the MSO de�nable top-down tree translations.

The main result of [EM99℄, on whih this paper is based, is on its turn based on the main

result of [BE00℄ whih states that the MSO de�nable tree translations an be haraterized

by attribute grammars (more preisely: by attributed tree transduers with look-ahead)

that are single use restrited. The single use restrition [Gie88, Gan83, K�uh98, KV01℄

is interesting, beause attribute grammars are losed under left-omposition with single

use restrited attribute grammars. Our results now imply that given an attributed tree

transduer (with look-ahead) it an be deided whether or not there exists an equivalent

one that is single use restrited, and furthermore, that the linear size inrease attributed

tree translations are preisely the MSO de�nable tree translations.

This paper is strutured as follows. In Setion 2 trees and tree substitutions are de�ned.

In partiular, the de�nition of seond-order tree substitution is given, whih is the type

of substitution that maro tree transduers are based on. Various results about these

substitutions are proved, for example, how to ompute the number of ourrenes of a

partiular symbol in a tree to whih a seond-order tree substitution is applied. Then,

tree languages and tree translations are de�ned, and the notion of MSO de�nable tree

translation is realled briey. Setion 3 de�nes maro tree transduers, whih are total de-

terministi and equipped with regular look-ahead. Some basi results needed in the paper

are realled, and two sublasses de�ned by restritions on the parameters are onsidered.

Setion 4 realls the notion of �nite opying, whih onsists of two parts: �nite opying

in the input and �nite opying in the parameters. It is proved that it is deidable for an

MTT whether or not it is �nite opying. Moreover, although this is already known from

the result of [EM99℄, it is proved for ompleteness sake that if an MTT is �nite opying,

then it is of linear size inrease. The proof is based on an intermediate, very natural no-

tion of bounded opying: \�nite ontribution". An MTT is �nite ontribution if there is

a bound on the number of output nodes that are ontributed by a given node of the input

tree. Also in this setion the notion of \�nite nested opying in the input" is introdued;

it requires a bound on the amount of nesting of the states that translate a given node of

the input tree. In Setion 5 the proper normal form is introdued, and it is shown how to

onstrut, given an MTT, an equivalent one in proper normal form. Setion 6 proves our

main results: if the translation realized by a proper MTT M is of linear size inrease (for

short, \M is lsi"), then M is �nite opying. The proof goes in three stages: (I) If M is

lsi, then it is �nite nested opying in the input, (II) if M is lsi and �nite nested opying

in the input, then it is �nite opying in the parameters, and �nally, (III) if M is lsi, �nite

nested opying in the input, and �nite opying in the parameters, then it is �nite opying

in the input. Setion 7 presents the main results, and their onsequenes for top-down

tree transduers, attribute grammars, and ontext-free graph grammars. At last, some

open problems and further researh topis are mentioned.

We note that tehnially this paper is onerned with maro tree transduers only. The

links to MSO tree transduers were established in [BE00, EM99℄.
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2 Preliminaries

The set f0; 1; : : : g of natural numbers is denoted by N. The empty set is denoted by ?.

For k 2 N, [k℄ denotes the set f1; : : : ; kg; thus [0℄ = ?. For a set A, jAj is the ardinality

of A, and A

�

is the set of all strings over A. The empty string is denoted by ". The

length of a string w is denoted jwj and the number of ourrenes of the symbol a in

w is denoted by #

a

(w). For a set B � A, #

B

(w) =

P

f#

a

(w) j a 2 Bg. For strings

v; w

1

; : : : ; w

n

2 A

�

and distint a

1

; : : : ; a

n

2 A, we denote by v[a

1

 w

1

; : : : ; a

n

 w

n

℄ the

result of (simultaneously) substituting w

i

for every ourrene of a

i

in v. Note that the

substitution [a

1

 w

1

; : : : ; a

n

 w

n

℄ is a homomorphism on strings. Let P be a ondition

on a and w suh that f(a;w) j Pg is a partial funtion; then we use, similar to set notation,

[a  w j P ℄ to denote the substitution [L℄, where L is the list of all a  w for whih

ondition P holds.

2.1 Trees

A set � together with a mapping rank

�

: �! N is alled a ranked set. For k � 0, �

(k)

is the

set f� 2 � j rank

�

(�) = kg; we also write �

(k)

to indiate that rank

�

(�) = k. For sets �

and A, h�; Ai = ��A; if � is ranked, then so is h�; Ai, with rank

h�;Ai

(h�; ai) = rank

�

(�)

for every h�; ai 2 h�; Ai. A ranked alphabet is a �nite ranked set.

For the rest of this paper we hoose the set of input variables to be X = fx

1

; x

2

; : : : g

and the set of parameters to be Y = fy

1

; y

2

; : : : g. For k � 0, X

k

= fx

1

; : : : ; x

k

g and

Y

k

= fy

1

; : : : ; y

k

g.

Let � be a ranked set. The set of trees over �, denoted by T

�

, is the smallest set of strings

T � �

�

suh that if � 2 �

(k)

, k � 0, and t

1

; : : : ; t

k

2 T , then � t

1

� � � t

k

2 T . For better

readability we write �(t

1

; : : : ; t

k

) for � t

1

� � � t

k

and k � 1. For a set A with � \ A = ?,

the set of trees over � indexed by A, denoted by T

�

(A), is the set T

�[A

, where for every

a 2 A, rank

�[A

(a) = 0. If A = Y , then T

�

(Y ) is the set of trees (over �) with parameters.

For every tree t 2 T

�

, the set of nodes of t, denoted by V (t), is a subset of N

�

whih

is indutively de�ned as follows: if t = �(t

1

; : : : ; t

k

) with � 2 �

(k)

, k � 0, and for all

i 2 [k℄; t

i

2 T

�

, then V (t) = f"g [ fiu j u 2 V (t

i

); i 2 [k℄g. Thus, " represents the root of

a tree and for a node u the i-th hild of u is represented by ui. A leaf is a node without

hildren. If u = vw with w 2 N

�

, then v is an anestor of u and u is a desendant of v;

if w 6= ", then v is a proper anestor of u, and u is a proper desendant of v. The label

of t at node u is denoted by t[u℄; we also say that t[u℄ ours in t (at u). The subtree

of t at node u is denoted by t=u. The substitution of the tree s 2 T

�

at node u in t is

denoted by t[u  s℄; it means that the subtree t=u is replaed by s. Formally, these

notions an be de�ned as follows: t["℄ is the �rst symbol of t (in �), t=" = t, t[" s℄ = s,

and if t = �(t

1

; : : : ; t

k

), i 2 [k℄, and u 2 V (t

i

), then t[iu℄ = t

i

[u℄, t=iu = t

i

=u, and

t[iu s℄ = �(t

1

; : : : ; t

i

[u s℄; : : : ; t

k

).

The usual pre-order of the nodes of t (whih, in fat, is the lexiographial order on N

�

)

is denoted <; thus, " < iu (for i � 1), if u < v then iu < iv, and if i < j then iu < jv.

The size of a tree t, denoted by size(t), is the number jV (t)j of nodes of t. For t =

�(t

1

; : : : ; t

k

), size(t) equals 1+size(t

1

)+� � �+size(t

k

); note that size(t) =

P

�2�

#

�

(t) = jtj.
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For � 2 �, V

�

(t) denotes the set of nodes of t whih are labeled by �, i.e., fu 2 V (t) j

t[u℄ = �g; note that jV

�

(t)j = #

�

(t): the number of ourrenes of � in t. For a set S � �,

V

S

(t) =

S

�2S

V

�

(t). The height of t is denoted by height(t); for t = �(t

1

; : : : ; t

k

) it equals

1 + maxfheight(t

i

) j i 2 [k℄g.

2.2 Tree Substitution

In the previous subsetion on trees we already de�ned a partiular tree substitution: for

trees t; s and a node u of t, t[u  s℄ is the result of replaing in t the subtree t=u by s.

Now we want to onsider replaing in t all ourrenes of a symbol �.

Trees are partiular strings and therefore string substitution as de�ned in the beginning of

these Preliminaries is appliable to a tree. In order to guarantee that the resulting string

is again a tree, we require that only symbols of rank zero, i.e., leaves, may be replaed

by trees; we refer to this type of substitution as \�rst-order tree substitution". Note

that top-down tree transduers are based on �rst-order tree substitution. In ontrast

to this, \seond-order tree substitution" means that symbols of arbitrary rank an be

replaed. This is the type of substitution maro tree transduers are based on. Consider

the replaement of a symbol � of rank k by a tree s. Then in s we use the parameters

y

1

; : : : ; y

k

to indiate where the subtrees of � have to be inserted. That is, if � appears at

a node u of the tree t, then replaing it by s means to replae in t the subtree at u by s,

in whih eah y

j

is replaed by the j-th subtree of u, i.e., by the tree t=uj. This is now

de�ned formally.

Let � be a ranked set and let �

1

; : : : ; �

n

be distint elements of ��Y , n � 1, and for eah

i 2 [n℄ let s

i

be a tree in T

��Y

(Y

r

), where r = rank

�

(�

i

). For t 2 T

�

, the seond-order tree

substitution of �

i

by s

i

in t, denoted by t[[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ is indutively de�ned as

follows (abbreviating [[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ by [[: : :℄℄). For t = �(t

1

; : : : ; t

k

) with � 2 �

(k)

,

k � 0, and t

1

; : : : ; t

k

2 T

�

, (i) if � = �

i

for an i 2 [n℄, then t[[: : :℄℄ = s

i

[y

j

 t

j

[[: : :℄℄ j j 2 [k℄℄

and (ii) otherwise t[[: : :℄℄ = �(t

1

[[: : :℄℄; : : : ; t

k

[[: : :℄℄). We will say that [[�

1

 s

1

; : : : ; �

n

 s

n

℄℄

is a seond-order tree substitution over �. Note that it is a mapping from T

�

to T

�

. In

fat, it is a tree homomorphism [GS84℄. Note also that (just as ordinary substitution)

seond-order tree substitution is assoiative (by the losure of tree homomorphisms under

omposition, f. Theorem IV.3.7 of [GS84℄), i.e., t[[�  s℄℄[[�  s

0

℄℄ = t[[�  s[[�  s

0

℄℄℄℄

and if �

0

6= � then t[[�  s℄℄[[�

0

 s

0

℄℄ = t[[�

0

 s

0

; �  s[[�

0

 s

0

℄℄℄℄, and similarly for the

general ase (f. Setions 3.4 and 3.7 of [Cou83℄). Let P be a ondition on � and s suh

that f(�; s) j Pg is a partial funtion; then we use [[�  s j P ℄℄ to denote the substitution

[[L℄℄, where L is the list of all �  s for whih ondition P holds. In seond-order tree

substitutions we use for the relabeling �  Æ(y

1

; : : : ; y

k

) of �

(k)

by Æ

(k)

the abbreviation

�  Æ; note that this is, in fat, a string substitution.

The seond-order tree substitution [[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ is nondeleting if for every

i 2 [n℄: #

y

j

(s

i

) � 1 for all j 2 [rank

�

(�

i

)℄, and it is nonerasing if for every i 2 [n℄, s

i

62 Y .

It is produtive, if it is both nondeleting and nonerasing.

Lemma 2.1 Let � be a ranked alphabet and let � = [[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ be a

nondeleting seond-order tree substitution over �. For all t; t

0

2 T

�

, if t

0

is a subtree of t,

then t

0

� is a subtree of t�. In partiular, for y 2 Y , if #

y

(t) � 1 then #

y

(t�) � 1.
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Proof. For t = �(t

1

; : : : ; t

k

), t

j

� is a subtree of t�. Hene the result follows immediately,

by indution on the struture of t.

If #

y

(t) � 1 then y is a subtree of t whih means, by the �rst part of this lemma, that y

is also a subtree of t�, i.e., #

y

(t�) � 1. Note that y� = y beause, by the de�nition of

seond-order tree substitution, �

i

62 Y for all i 2 [n℄. 2

Lemma 2.2 Let � be a ranked alphabet and let � = [[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ be a

nonerasing seond-order tree substitution over �. For every t 2 T

�

, if t 62 Y then t� 62 Y .

Proof. Let t = �(t

1

; : : : ; t

k

) with � 2 �

(k)

� Y . If � 62 f�

1

; : : : ; �

n

g then t� =

�(t

1

�; : : : ; t

k

�) 62 Y . If � = �

i

for some i 2 [n℄, then t� = s

i

[y

j

 t

j

� j j 2 [k℄℄ 62 Y

(beause s

i

62 Y ). 2

In order to alulate the number of times that a partiular node u of a tree is opied by

the appliation of a seond-order tree substitution, we need to know whih symbols appear

at the anestors of u. For this we de�ne the string obtained by reading the labels of the

anestors of u in desending order, starting at the root; if u is labeled by a parameter, then

we do not inlude its label in this string, beause in trees of the form t[[�

1

 s

1

; : : : ; �

n

 

s

n

℄℄ the parameters present in the trees s

i

do not appear. For a tree t 2 T

�

and a node

u 2 V (t), the label path to u (in t), denoted by lpath(t; u), is the string in (� � Y )

�

de�ned reursively as follows: lpath(t; ") = " if t 2 Y and otherwise lpath(t; ") = t["℄; for

u = iu

0

, i � 1, and u

0

2 N

�

, lpath(t; u) = t["℄ lpath(t=i; u

0

). For example, let t be the tree

(�(a; y

1

)); then lpath(t; 12) = lpath(t; 1) = � and lpath(t; 11) = �a.

The following lemma shows how a label path in t hanges, if a seond-order tree substitu-

tion is applied to t.

Lemma 2.3 Let � be a ranked alphabet. Let � be the seond-order tree substitution

[[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ over �, and let t 2 T

�

.

(i) Every label path in t� is of the form

w

0

v

1

w

1

� � � v

m

w

m

;

wherem � 0, w

0

�

i

1

w

1

� � � �

i

m

w

m

is a label path in t, i

1

; : : : ; i

m

2 [n℄, and for j 2 [m℄,

v

j

is a label path in s

i

j

and w

j

2 (�� f�

1

; : : : ; �

n

g)

�

.

(ii) If � is nondeleting, then for every w; v 2 �

�

suh that w�

i

is a label path in t and

v is a label path in s

i

, there is a w

0

2 �

�

suh that w

0

v is a label path in t�.

2.3 Number of Ourrenes

Sine this paper is about the size inrease of maro tree transduers, and they are based

on seond-order tree substitution, we need to know how the size of a tree t hanges when

a seond-order tree substitution � is applied to t. Reall that size(t�) is the sum of

7



the numbers #

�

(t�) of ourrenes of � in t�, for all symbols �. Thus, we need to

determine the number #

�

(t�). Sine seond-order tree substitution is based on �rst-order

tree substitution whih is a partiular string substitution, we �rst determine the number

#

a

(w[: : : ℄), where w is a string and [: : : ℄ is a string substitution.

The following lemma an be proved by straightforward indution on the length of w.

Lemma 2.4 Let A be an alphabet. Let w; v

1

; : : : ; v

n

2 A

�

and let a

1

; : : : ; a

n

be distint

elements of A. For every a 2 A,

#

a

(w[a

1

 v

1

; : : : ; a

n

 v

n

℄) = S +

X

i2[n℄

#

a

i

(w) �#

a

(v

i

);

where S = #

a

(w) if a 62 fa

1

; : : : ; a

n

g and otherwise S = 0.

In the next lemma we prove the generalization of Lemma 2.4 to seond-order tree sub-

stitution. Intuitively we now have to take into aount, for a node u of the tree t,

how many times it is opied by the appliation of the seond-order tree substitution

� = [[�

1

 s

1

; : : : ; �

n

 s

n

℄℄: for eah �

i

that ours at a proper anestor u

0

of u, u is in

some subtree t=u

0

j of u

0

; thus, replaing �

i

by s

i

generates #

y

j

(s

i

) opies of t=u

0

j. Hene,

the produt of these numbers #

y

j

(s

i

), for all proper anestors u

0

, determines the number

of opies of u in t�. In the lemma this produt is denoted

Q

F

�

t;u

, where the family F

�

t;u

of numbers is de�ned as follows.

De�nition 2.5 (the family F

�

t;u

)

Let � be a ranked alphabet and let � = [[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ be a seond-order tree sub-

stitution over �. For every t 2 T

�

and u 2 V (t), F

�

t;u

is the family ff

u

0

g

u

0

proper anestor of u

where

f

u

0

=

�

1 if t[u

0

℄ 62 f�

1

; : : : ; �

n

g

#

y

j

(s

i

) if t[u

0

℄ = �

i

; i 2 [n℄; and u = u

0

ju

00

with j � 1; u

00

2 N

�

:

Note that, as usual, if F

�

t;u

is empty (i.e., u = ") then

Q

F

�

t;u

= 1.

Lemma 2.6 Let � be a ranked alphabet and let � = [[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ be a

seond-order tree substitution over �. For every � 2 � and t 2 T

�

,

#

�

(t�) = S

1

+ S

2

;

where

S

1

=

X

u2V

�

(t)

Y

F

�

t;u

if � 62 f�

1

; : : : ; �

n

g and otherwise S

1

= 0;

S

2

=

X

u2V

�

i

(t);i2[n℄

#

�

(s

i

) �

Y

F

�

t;u

if � 62 Y and otherwise S

2

= 0:

8



Proof. Denote f�

1

; : : : ; �

n

g by �

n

. Let O

"

= V

�

(t) \ f"g, O = V

�

(t) � f"g, and for

i 2 [n℄, O

";i

= V

�

i

(t) \ f"g and O

i

= V

�

i

(t) � f"g. Clearly, S

1

= T

1

+ S

0

1

, where for

� 62 �

n

, T

1

=

P

u2O

"

Q

F

�

t;u

and S

0

1

=

P

u2O

Q

F

�

t;u

and otherwise T

1

= 0 and S

0

1

= 0.

Similarly, S

2

= T

2

+ S

0

2

, where for � 62 Y , T

2

=

P

u2O

";i

;i2[n℄

#

�

(s

i

) �

Q

F

�

t;u

and S

0

2

=

P

u2O

i

;i2[n℄

#

�

(s

i

) �

Q

F

�

t;u

and otherwise T

2

= 0 and S

0

2

= 0.

The proof that S

1

+ S

2

equals #

�

(t�) is by indution on the struture of t. Let t =

�

0

(t

1

; : : : ; t

k

) with �

0

2 �

(k)

, k � 0, and t

1

; : : : ; t

k

2 T

�

.

Case 1: �

0

2 �� �

n

.

Then t["℄ 62 �

n

and hene, for every j 2 [k℄ and v 2 V (t

j

),

Q

F

�

t;jv

=

Q

F

�

t

j

;v

. Sine

O =

S

j2[k℄

fjv j v 2 V

�

(t

j

)g, it follows that

P

u2O

Q

F

�

t;u

equals

P

v2V

�

(t

j

);j2[k℄

Q

F

�

t

j

;v

and

similarly for O

i

. We an apply the indution hypothesis for t

j

to S

1;j

+S

2;j

, where S

1;j

=

P

v2V

�

(t

j

)

Q

F

�

t

j

;v

if � 62 �

n

and otherwise S

1;j

= 0, and S

2;j

=

P

v2V

�

i

(t

j

);i2[n℄

#

�

(s

i

) �

Q

F

�

t

j

;v

if � 62 Y and otherwise S

2;j

= 0. Sine O

";i

= ? we get that T

2

= 0 and hene

S

1

+ S

2

= T

1

+

X

j2[k℄

#

�

(t

j

�):

Now T

1

equals 1 if �

0

= � and 0 otherwise. By the de�nition of #

�

this means that the

above is equal to #

�

(�

0

(t

1

�; : : : ; t

k

�)). This equals #

�

(t�), by the de�nition of seond-

order tree substitution.

Case 2: �

0

= �

i

for some i 2 [n℄.

For every j 2 [k℄ and v 2 V (t

j

),

Q

F

�

t;jv

= #

y

j

(s

i

)�

Q

F

�

t

j

;v

. Thus, S

0

1

=

P

j2[k℄

#

y

j

(s

i

)�S

1;j

and S

0

2

=

P

j2[k℄

#

y

j

(s

i

) � S

2;j

. By indution, S

1;j

+ S

2;j

= #

�

(t

j

�). Hene S

0

1

+ S

0

2

=

P

j2[k℄

#

y

j

(s

i

) � #

�

(t

j

�). Now T

1

= 0, and if � 62 Y then T

2

= #

�

(s

i

) and otherwise

T

2

= 0. We an apply Lemma 2.4 to T

1

+T

2

+S

0

1

+S

0

2

(with S = T

2

) to obtain #

�

(s

i

[y

j

 

t

j

� j j 2 [k℄℄) whih equals #

�

(t�) by the de�nition of seond-order tree substitution. 2

Reall from Setion 2.2 that the seond-order tree substitution � = [[�

1

 s

1

; : : : ; �

n

 s

n

℄℄

is nondeleting if eah s

i

ontains at least one ourrene of y

j

for every j 2 [rank

�

(�

i

)℄, and

nonerasing if eah s

i

ontains at least one symbol in �� Y . We an now use Lemma 2.6

to prove that if � is produtive, i.e., both nondeleting and nonerasing, then its appliation

does not derease the size of a tree.

Lemma 2.7 Let � be a ranked alphabet and let � = [[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ be a

seond-order tree substitution over �. If � is produtive then size(t�) � size(t) for every

t 2 T

�

.

Proof. Let �

n

= f�

1

; : : : ; �

n

g. Sine size(t�) =

P

�2�

#

�

(t�), we an apply Lemma 2.6

to obtain

P

�2�

S

1

+

P

�2�

S

2

, where S

1

and S

2

are as in Lemma 2.6.

Sine � is nondeleting, for every u 2 V

�

(t),

Q

F

�

t;u

� 1. Thus

size(t�) �

X

�2���

n

;u2V

�

(t)

1 +

X

u2V

�

i

(t);i2[n℄

X

�2��Y

#

�

(s

i

):
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Using the fat that � is nonerasing, we get size(t�) �

P

�2���

n

;u2V

�

(t)

1+

P

�2�

n

;u2V

�

(t)

1

=

P

�2�;u2V

�

(t)

1 = size(t). 2

2.4 Tree Languages

Let � be a ranked alphabet. A subset L of T

�

is alled a tree language.

A �nite state tree automaton is a tuple (P;�; h), where P is a �nite set of states, � is a

ranked alphabet of input symbols suh that � is disjoint with P , and h is a olletion of

mappings suh that for every � 2 �

(k)

, h

�

is a mapping from P

k

to P . The extension

~

h of h

to a mapping from T

�

to P is reursively de�ned as

~

h(�(s

1

; : : : ; s

k

)) = h

�

(

~

h(s

1

); : : : ;

~

h(s

k

))

for every � 2 �

(k)

, k � 0, and s

1

; : : : ; s

k

2 T

�

. Throughout this paper we simply write

h(s) to mean

~

h(s), for s 2 T

�

. For p 2 P the tree language fs 2 T

�

j h(s) = pg = h

�1

(p)

is denoted by L

p

.

A tree language L is regular (or, reognizable) if there is a �nite state tree automaton

(P;�; h) and a subset F of P suh that L = fs 2 T

�

j h(s) 2 Fg. Note that, in partiular,

L

p

is regular for every p 2 P .

2.5 Tree Translations

Let � and � be ranked alphabets. A (total) funtion � : T

�

! T

�

is alled a tree

translation or simply translation. For a tree language L � T

�

, �(L) denotes the set

ft 2 T

�

j t = �(s) for some s 2 Lg. For a lass T of tree translations and a lass L of tree

languages, T (L) denotes the lass of tree languages f�(L) j � 2 T ; L 2 Lg.

A tree translation � : T

�

! T

�

is of linear size inrease (for short, lsi) if there is a  2 N

suh that size(�(s)) �  � size(s) for all s 2 T

�

. The lass of all tree translations of linear

size inrease is denoted LSI.

We will now shortly de�ne MSO de�nability of a tree translation. This de�nition will,

however, not be needed in the paper. Let k be the maximal rank of a symbol in �. The

tree translation � : T

�

! T

�

is MSO de�nable (i.e., de�nable in monadi seond-order

logi) if there is an MSO tree transduer whih realizes � , that is, if there exist a �nite

set C and MSO(�)-formulas �



(x),  

Æ;

(x), and �

i;;d

(x; y), with ; d 2 C, Æ 2 �, and

1 � i � k, suh that for every s 2 T

�

, �(s) 2 T

�

is isomorphi to the tree t with set of

nodes f(; x) 2 C � V (s) j s j= �



(x)g, node (; x) has label Æ i� s j=  

Æ;

(x), and (d; y)

is the i-th hild of (; x) i� s j= �

i;;d

(x; y). An MSO(�)-formula is a formula of monadi

seond-order logi that uses atomi formulas lab

�

(x) and hild

i

(x; y), with � 2 � and

i � 1, to express that x has label � and y is the i-th hild of x, respetively. The lass of

all MSO de�nable tree translations is denoted MSOTT. For examples and more details,

see, e.g., [Cou94, BE00℄. Note that, by de�nition, every MSO de�nable tree translation �

is of linear size inrease: size(�(s)) � jCj � size(s). Thus, MSOTT � LSI.
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3 Maro Tree Transduers

In this setion we reall the de�nition of maro tree transduers and some basi lemmas

about them. Furthermore, we onsider two sublasses of maro tree transduers whih are

de�ned by ertain (stati) restritions on the rules of the transduers.

3.1 Basi De�nitions and Results

A maro tree transduer is a syntax-direted translation devie in whih the translation of

an input tree may depend on its subtrees, represented by input variables x

1

; x

2

; : : : , and

on its ontext, represented by parameters y

1

; y

2

; : : : . We only onsider total deterministi

maro tree transduers. For tehnial reasons we add the feature of regular look-ahead to

them (this does not hange the lass of translations, f. Theorem 4.21 of [EV85℄).

De�nition 3.1 (maro tree transduer with regular look-ahead)

A maro tree transduer with regular look-ahead (for short, MTT

R

) is a tuple M =

(Q;P;�;�; q

0

; R; h), where Q is a ranked alphabet of states, � and � are ranked al-

phabets of input and output symbols, respetively, � \ Y = ?, q

0

2 Q

(0)

is the initial

state, (P;�; h) is a �nite state tree automaton, alled the look-ahead automaton of M,

and R is a �nite set of rules of the following form. For every q 2 Q

(m)

, � 2 �

(k)

, and

p

1

; : : : ; p

k

2 P with m; k � 0 there is exatly one rule of the form

hq; �(x

1

; : : : ; x

k

)i(y

1

; : : : ; y

m

)! � hp

1

; : : : ; p

k

i (�)

in R, where � 2 T

hQ;X

k

i[�

(Y

m

). 2

A rule r of the form (�) is alled the (q; �; hp

1

; : : : ; p

k

i)-rule and its right-hand side � is

denoted by rhs(r) or by rhs

M

(q; �; hp

1

; : : : ; p

k

i); it is also alled a q-rule, a �-rule, or a

(q; �)-rule. A top-down tree transduer with regular look-ahead (for short, T

R

) is an MTT

R

all states of whih are of rank zero. If the look-ahead automaton is trivial, i.e., P = fpg

and h

�

(p; : : : ; p) = p for all � 2 �, then M is alled a maro tree transduer (for short,

MTT) and if M is a T

R

, then M is alled a top-down tree transduer. In suh ases we

omit the look-ahead automaton and simply denote M by (Q;�;�; q

0

; R); we also omit

the look-ahead part hp

1

; : : : ; p

k

i in every rule (�).

We now de�ne the derivation relation indued by an MTT

R

M . Reall from Setion 2.2

that in a seond-order tree substitution hq

0

; x

i

i  hq

0

; s

i

i is a shorthand for hq

0

; x

i

i  

hq

0

; s

i

i(y

1

; : : : ; y

n

), where n is the rank of q

0

.

De�nition 3.2 (derivation relation, translation)

LetM = (Q;P;�;�; q

0

; R; h) be an MTT

R

. The derivation relation indued by M, denoted

by )

M

, is the binary relation on T

hQ;T

�

i[�

(Y ) suh that, for every �

1

; �

2

2 T

hQ;T

�

i[�

(Y ),

�

1

)

M

�

2

if and only if there exist u 2 V (�

1

), � 2 �

(k)

, s

1

; : : : ; s

k

2 T

�

, q 2 Q

(m)

,

and t

1

; : : : ; t

m

2 T

hQ;T

�

i[�

(Y ) suh that �

1

=u = hq; �(s

1

; : : : ; s

k

)i(t

1

; : : : ; t

m

) and �

2

equals

�

1

[u �℄ with

� = rhs

M

(q; �; hh(s

1

); : : : ; h(s

k

)i)[[hq

0

; x

i

i  hq

0

; s

i

i j hq

0

; x

i

i 2 hQ;X

k

i℄℄[y

j

 t

j

j j 2 [m℄℄:

11



The translation realized by M, denoted by �

M

, is the total funtion

f(s; t) 2 T

�

� T

�

j hq

0

; si )

�

M

tg:

2

An MTT

R

is of linear size inrease (for short, lsi) if �

M

is of linear size inrease (f.

Setion 2.5).

Two MTT

R

s M and M

0

are equivalent, if �

M

= �

M

0

. The lass of all translations whih

an be realized by MTTs and MTT

R

s is denoted by MTT and MTT

R

, respetively. The

lass of all translations whih an be realized by T

R

s is denoted by T

R

.

Lemma 3.3 (Theorem 4.21 of [EV85℄) MTT

R

= MTT (e�etively).

As mentioned in the Introdution, maro tree translations an be of double exponential

size inrease. This is shown in the following example.

Example 3.4 LetM = (Q;�;�; q

0

; R) be the MTT withQ = fq

(0)

0

; q

(1)

g, � = f�

(1)

; �

(0)

g,

� = fÆ

(2)

; �

(0)

g, and R onsisting of the following rules.

hq

0

; �(x

1

)i ! hq; x

1

i(�)

hq

0

; �i ! �

hq; �(x

1

)i(y

1

) ! hq; x

1

i(hq; x

1

i(y

1

))

hq; �i(y

1

) ! Æ(y

1

; y

1

)

The MTT M translates � into �, and for n � 0 it translates the input tree s

n

= �(�

n

(�))

into a full binary tree of height 2

n

(i.e., a tree with 2

2

n

leaves): First hq

0

; s

n

i )

M

hq; �

n

(�)i(�). Then, due to the opying of states of the (q; �)-rule, hq; �

n

(�)i(�) is trans-

lated into the monadi tree hq; �i(hq; �i(� � � hq; �i(�) : : : )) ontaining 2

n

ourrenes of

hq; �i. At last, due to the opying of parameters of the (q; �)-rule, this monadi tree is

translated into a full binary tree of height 2

n

. Thus, the input tree s

n

of size n + 2 is

translated into a tree of size 2

2

n

+1

�1 and hene the translation realized byM is of double

exponential size inrease. 2

Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. For every q 2 Q

(m)

and s 2 T

�

let

the q-translation of s, denoted by M

q

(s), be the unique tree t 2 T

�

(Y

m

) suh that

hq; si(y

1

; : : : ; y

m

) )

�

M

t. Note that, for s 2 T

�

, �

M

(s) = M

q

0

(s). The q-translations

of trees in T

�

an be haraterized indutively as follows, using seond-order tree substi-

tution.

Lemma 3.5 (Lemma 4.8 of [EV94℄) Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. For

every q 2 Q, � 2 �

(k)

, k � 0, and s

1

; : : : ; s

k

2 T

�

,

M

q

(�(s

1

; : : : ; s

k

)) = rhs

M

(q; �; hh(s

1

); : : : ; h(s

k

)i)[[hq

0

; x

i

i  M

q

0

(s

i

) j hq

0

; x

i

i 2 hQ;X

k

i℄℄:

The following two results are often used in this paper.

12



Lemma 3.6 (Lemma 7.4(1) of [EV85℄) Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. For

every q 2 Q

(m)

, m � 0, and regular tree language L � T

�

(Y

m

), M

�1

q

(L) is regular and

an be de�ned e�etively.

Proof. In Lemma 7.4(1) of [EV85℄ the result is stated for the ase m = 0. The general

ase an be redued to this ase as follows. For every r 2 Q let r be a symbol not in �.

De�ne the MTT

R

M = (Q;P;� [ fr

(1)

j r 2 Qg;� [ fy

(0)

j

j j 2 [m℄g; q

0

; R [ R; h [ h)

where m is the maximal rank of a state of M . For every r 2 Q

(n)

, n � 0, and p 2 P let

h

r

(p) = p, and let the rule

hq

0

; r(x

1

)i ! hr; x

1

i(y

1

; : : : ; y

n

) hpi

be in R. Clearly, �

M

(r(s)) = M

r

(s)[y

j

 y

j

j j 2 [n℄℄ for every s 2 T

�

. Let L = ft[y

j

 

y

j

j j 2 [m℄℄ j t 2 Lg. By Lemma 7.4(1) of [EV85℄, �

�1

M

(L) is (e�etively) regular. Then

also �

�1

M

(L) \ q(T

�

) = q(M

�1

q

(L)) is (e�etively) regular (beause regular tree languages

are e�etively losed under intersetion, f., e.g., Theorem II.4.2 of [GS84℄). Sine there is

a linear top-down tree transduer that translates eah tree q(t) into the tree t, and regular

tree languages are (e�etively) losed under linear top-down tree translations (see, e.g.,

Corollary IV.6.6 of [GS84℄), we obtain that M

�1

q

(L) is (e�etively) regular. 2

The next lemma follows from Theorem 4.5 of [DE98℄ and Theorem 7.3 of [EV85℄ (and

the obvious fat that every regular tree language is the range of a nondeterministi top-

down tree transduer, f., e.g., Proposition 20.1(ii) of [GS97℄). Note that we have not

de�ned nondeterministi MTT

R

s and that we need to apply Lemma 3.7 only one to a

nondeterministi (top-down) tree transduer (in Lemma 5.7).

Lemma 3.7 (Theorem 4.5 of [DE98℄) For a regular tree language L and a �nite num-

ber of (possibly nondeterministi) MTT

R

s M

1

; : : : ;M

n

it is deidable whether or not

�

M

n

(�

M

n�1

(� � � �

M

1

(L) � � � )) is �nite. Moreover, if it is �nite, it an be onstruted.

3.2 Sublasses De�ned by Restritions on the Parameters

We now de�ne two restritions on the ourrenes of parameters in the right-hand sides

of the rules of an MTT

R

M , and then show that these restritions arry over to the

q-translations M

q

(s) of M .

De�nition 3.8 (nondeleting, nonerasing, produtive)

LetM = (Q;P;�;�; q

0

; R; h) be an MTT

R

. If for every q 2 Q

(m)

, m � 1, � 2 �

(k)

, k � 0,

p

1

; : : : ; p

k

2 P , and j 2 [m℄,

� y

j

ours at least one in rhs

M

(q; �; hp

1

; : : : ; p

k

i), then M is nondeleting

� rhs

M

(q; �; hp

1

; : : : ; p

k

i) 62 Y , then M is nonerasing.

If M is both nondeleting and nonerasing, then it is produtive. 2

13



Lemma 3.9 (Lemma 7.11 of [EM99℄) For every MTT

R

M there is a produtive MTT

R

M

0

equivalent to M .

The following lemma shows that the restritions nondeleting and nonerasing arry over

from the right-hand sides of an MTT

R

to the q-translations ofM . In Lemma 6.7 of [EM99℄

a similar result is proved: if in the right-hand side of every q-rule eah parameter y

j

of q

ours exatly one, then y

j

ours exatly one in M

q

(s).

Lemma 3.10 Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. For every q 2 Q

(m)

, m � 0,

j 2 [m℄, and s 2 T

�

,

(1) if M is nondeleting, then #

y

j

(M

q

(s)) � 1, and

(2) if M is nonerasing, then M

q

(s) 62 Y .

Proof. The proof is by indution on the struture of s. Let s = �(s

1

; : : : ; s

k

) with k � 0

and s

1

; : : : ; s

k

2 T

�

. Denote by t the tree rhs

M

(q; �; hh(s

1

); : : : ; h(s

k

)i). By Lemma 3.5,

M

q

(s) = t� with � = [[hq

0

; x

i

i  M

q

0

(s

i

) j hq

0

; x

i

i 2 hQ;X

k

i℄℄.

(1) By indution #

y

�

(M

q

0

(s

i

)) � 1 for all hq

0

; x

i

i 2 hQ;X

k

i

(n)

and � 2 [n℄, i.e., the

substitution � is nondeleting. SineM is nondeleting, #

y

j

(t) � 1 and thus, by Lemma 2.1,

#

y

j

(t�) � 1.

(2) By indution M

q

0

(s

i

) 62 Y for all hq

0

; x

i

i 2 hQ;X

k

i, i.e., the substitution � is noneras-

ing. Sine M is nonerasing, t 62 Y and thus, by Lemma 2.2, t� 62 Y . 2

4 Finite Copying Restritions

In this setion we de�ne various restritions on the opying that is performed by an MTT

R

.

First, in Setion 4.1, opying restritions for the input variables and for the parameters

are de�ned. Both together form the `�nite opying' restrition whih was introdued

in [EM99℄; there it was shown (in Theorem 7.1) that the translations realized by �nite

opying MTT

R

s are preisely the MSO de�nable tree translations (f. Setion 2.5). Sine,

by their de�nition, the MSO de�nable tree translations are of linear size inrease, this

means that �nite opying MTT

R

s are of linear size inrease. To keep this paper self-

ontained, we give, in Setion 4.3, a diret proof of this fat whih is based on the notion

of `�nite ontribution'. Intuitively, an MTT

R

is �nite ontribution if there is a bound

on the number of output nodes ontributed by a single node u of the input tree. In the

terminology of [vDKT96℄, the node u is alled the `origin' of the nodes of the output tree

that it ontributes; so, �nite ontribution means that there is a bound on the number of

nodes that have the same origin. In [vDKT96℄ it is shown that for a primitive reursive

sheme, whih is a maro tree transduer, every node of an output tree has exatly one

origin.

We also de�ne, in Setion 4.2, a restrition on the opying that ours on one path of the

output tree, i.e., a restrition on the amount of nesting of states that ours during the

14



derivation of an MTT

R

. This notion will play an essential role in Setion 6 where it is

proved that if the translation of an MTT

R

is of linear size inrease then it an also be

realized by a �nite opying MTT

R

(and hene is MSO de�nable).

4.1 Finite Copying in the Input and in the Parameters

Here we reall the de�nition of �nite opying MTT

R

s from [EM99℄ and show that for an

MTT

R

it is deidable whether or not it is �nite opying. The �nite opying restrition

was introdued in [AU71℄ for generalized syntax-direted translation shemes. For top-

down tree transduers it was investigated in [ERS80℄. A top-down tree transduer is �nite

opying, if every subtree of the input tree is translated by boundedly many states, i.e., the

length of the state sequene is bounded, where the state sequene at a subtree s=u onsists

of the states that translate s=u. For a maro tree transduer this restrition is alled �nite

opying in the input (fi) and we additionally have a restrition for the parameters, alled

�nite opying in the parameters (fp). The fp restrition requires that, for every state q

and input tree s, the number of parameters that our in the q-translation M

q

(s) of s is

bounded.

In order to de�ne the state sequene of a tree s at the node u of s, we �rst extend an MTT

R

in suh a way that the output tree t, for the input tree s[u p℄, ontains the states whih

proess the subtree s=u (assuming that p = h(s=u)). More preisely, t ontains hhq; pii if

the state q translates s=u. Analogous to the de�nition of h�; Ai let, for a ranked set �

and a set A, hh�; Aii be the ranked set of all symbols hh�; aii of rank m for � 2 �

(m)

and

a 2 A.

De�nition 4.1 (De�nition 3.5 of [EM99℄: extension)

Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. The extension of M , denoted by

^

M , is

the MTT

R

(Q;P;

^

�;

^

�; q

0

;

^

R;

^

h), where

^

� = � [ fp

(0)

j p 2 Pg,

^

� = � [ hhQ;P ii,

^

R =

R [ fhq; pi(y

1

; : : : ; y

m

)! hhq; pii(y

1

; : : : ; y

m

) j hq; pi 2 hQ;P i

(m)

g,

^

h

p

() = p for p 2 P , and

^

h

�

(p

1

; : : : ; p

k

) = h

�

(p

1

; : : : ; p

k

) for � 2 �

(k)

, k � 0, and p

1

; : : : ; p

k

2 P . 2

Note that ifM is nondeleting or nonerasing, then so is

^

M . Before state sequenes and the

fi and fp properties are de�ned, we present two useful lemmas about the q-translations

of

^

M . The �rst lemma shows that the q-translation of an input tree s an be obtained by

replaing in the q-translation of the \ontext" of a node u of s,

^

M

q

(s[u p℄), eah hhq

0

; pii

by the q

0

-translation M

q

0

(s=u) of the subtree of s at u. In fat, the lemma is stated in the

more general ase that s=u may ontain ourrenes of symbols in P . The lemma an be

seen as a generalization of Lemma 3.5 from the appliation of a rule at the root of s, to

the translation of the ontext of an arbitrary node u.

Lemma 4.2 (Lemma 3.6 of [EM99℄) Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

and

^

M = (Q;P;

^

�;

^

�; q

0

;

^

R;

^

h) its extension. Let q 2 Q, s 2 T

^

�

, u 2 V (s), and p =

^

h(s=u),

suh that s[u p℄ ontains exatly one ourrene of an element of P . Then

^

M

q

(s) =

^

M

q

(s[u p℄)[[hhq

0

; pii  

^

M

q

0

(s=u) j q

0

2 Q℄℄:
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The next lemma is obtained by appliation of Lemma 3.5 to the

^

M

q

0

(s=u) in the substitu-

tion of Lemma 4.2. It shows how to express the translation of the ontext of a hild node

in terms of the translation of the ontext of its parent and the translations of the subtrees

of its siblings.

Lemma 4.3 Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. Let q 2 Q, s 2 T

�

, and

u 2 V (s). If s[u℄ = � 2 �

(k)

, i 2 [k℄, p

i

2 P , p

j

= h(s=uj) for every j 2 [k℄ � fig, and

p = h

�

(p

1

; : : : ; p

k

), then

^

M

q

(s[ui p

i

℄) =

^

M

q

(s[u p℄)[[rhs℄℄[[::℄℄[[i℄℄;

where [[rhs℄℄ = [[hhq

0

; pii  rhs

M

(q

0

; �; hp

1

; : : : ; p

k

i) j q

0

2 Q℄℄;

[[::℄℄ = [[hr; x

j

i  M

r

(s=uj) j r 2 Q; j 2 [k℄� fig℄℄; and

[[i℄℄ = [[hr; x

i

i  hhr; p

i

ii j r 2 Q℄℄:

Proof. Let s

0

= s[ui  p

i

℄. Sine p =

^

h(s

0

=u) and s

0

[u  p℄ ontains exatly one

ourrene of an element of P , we an apply Lemma 4.2 to get

^

M

q

(s

0

) =

^

M

q

(s[u  

p℄)[[hhq

0

; pii  

^

M

q

0

(s

0

=u) j q

0

2 Q℄℄. Now s

0

=u = �(s

1

; : : : ; s

k

) with s

i

= p

i

and s

j

= s=uj

for every j 2 [k℄ � fig. By appliation of Lemma 3.5 to

^

M

q

0

(s

0

=u) the above equals

^

M

q

(s[u  p℄)[[hhq

0

; pii  rhs

M

(q

0

; �; hp

1

; : : : ; p

k

i)[[: : :℄℄ j q

0

2 Q℄℄, where [[: : :℄℄ denotes

[[hr; x

j

i  

^

M

r

(s

j

) j r 2 Q; j 2 [k℄℄℄. We now use the assoiativity of seond-order tree

substitution, f. Setion 2.2. Sine

^

M

q

(s[u p℄) does not ontain elements of hQ;X

k

i we

an move [[: : :℄℄ out of the substitution to get

^

M

q

(s[u p℄)[[rhs℄℄[[: : :℄℄. For every j 2 [k℄�fig,

^

M

r

(s

j

) =M

r

(s

j

) does not ontain elements of hQ; fx

i

gi; moreover,

^

M

r

(s

i

) = hhr; p

i

ii. Thus

we an write [[: : :℄℄ as [[::℄℄[[i℄℄. 2

We now turn to the de�nition of state sequene and the �nite opying properties. Reall

that the pre-order of the nodes of a tree is denoted by <.

De�nition 4.4 (De�nition 3.7 of [EM99℄: state sequene)

Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

, s 2 T

�

, and u 2 V (s). Let p = h(s=u) and

� =

^

M

q

0

(s[u  p℄) 2 T

hhQ;fpgii[�

, and let fv 2 V (�) j �[v℄ 2 hhQ; fpgiig = fv

1

; : : : ; v

n

g

with v

1

< � � � < v

n

. The state sequene of s at u, denoted by sts

M

(s; u), is the sequene of

states q

1

� � � q

n

suh that �[v

i

℄ = hhq

i

; pii for every i 2 [n℄. 2

Note that jsts

M

(s; u)j = #

hhQ;fpgii

(

^

M

q

0

(s[u p℄)), where p = h(s=u).

De�nition 4.5 (De�nition 6.1 of [EM99℄: �nite opying in the input)

Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. Then M is �nite opying in the input (for

short, fi), if there is an N 2 N suh that for every s 2 T

�

and u 2 V (s): jsts

M

(s; u)j � N .

The number N is an input opying bound for M . 2

De�nition 4.6 (De�nition 6.2 of [EM99℄: �nite opying in the parameters)

Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. Then M is �nite opying in the parameters

(for short, fp), if there is an N 2 N suh that for every q 2 Q

(m)

, s 2 T

�

, and j 2 [m℄,

#

y

j

(M

q

(s)) � N . The number N is a parameter opying bound for M . 2
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Note that the MTT M of Example 3.4 is neither fi nor fp. There is exponential state

opying: the state sequene sts

M

(s

n

; 11

n

) of s

n

= �(�

n

(�)) at 11

n

equals q

2

n

, and there

is double exponential parameter opying: #

y

1

(M

q

(�

n

(�))) = 2

2

n

.

The following lemma shows that ifM is �nite opying in the parameters, i.e., if the number

of ourrenes of y

j

in M

q

(s) is bounded by some N , for all states q and parameters y

j

of

q, then also for the q-translations of

^

M of input trees s[u p℄, the number of ourrenes

of y

j

is bounded by N . However, we must assume that M is nondeleting.

Lemma 4.7 Let M = (Q;P;�;�; q

0

; R; h) be a nondeleting fp MTT

R

and let N be a

parameter opying bound for M . For every q 2 Q

(m)

, j 2 [m℄, s 2 T

�

, and u 2 V (s),

#

y

j

(

^

M

q

(s[u h(s=u)℄)) � N .

Proof. Let p = h(s=u). By Lemma 4.2, M

q

(s) = �[[: : :℄℄ with � =

^

M

q

(s[u  p℄) and

[[: : :℄℄ = [[hhq

0

; pii  M

q

0

(s=u) j q

0

2 Q℄℄. By Lemma 2.6, #

y

j

(�[[: : :℄℄) =

P

v2V

y

j

(�)

Q

F

[[:::℄℄

�;v

.

Let V

y

j

(�) = fv

1

; : : : ; v

n

g. Then the above sum equals

Y

F

[[:::℄℄

�;v

1

+ � � �+

Y

F

[[:::℄℄

�;v

n

= #

y

j

(M

q

(s)) � N;

whih implies that n = #

y

j

(�) � N beause

Q

F

[[:::℄℄

�;v

i

� 1 for every i 2 [n℄, by the fat that

M is nondeleting, and hene, by Lemma 3.10(1), #

y

k

(M

q

0

(s=u)) � 1 for every q

0

2 Q

(m

0

)

and k 2 [m

0

℄. 2

Finally, the ombination of fi and fp yields the �nite opying property.

De�nition 4.8 (�nite opying)

An MTT

R

is �nite opying (for short, f), if it is both fi and fp.

We use the subsripts `fi', `fp', or `f' for lasses of translations, to denote that the

orresponding MTT

R

s are fi, fp, or f, respetively. Thus MTT

R

f

= MTT

R

fi;fp

. The

main result of [EM99℄ is that the translations of �nite opying MTT

R

s are preisely the

MSO de�nable tree translations (see Setion 2.5).

Lemma 4.9 (Theorem 7.1 of [EM99℄) MSOTT = MTT

R

f

(e�etively).

The main results of this paper are: (i) the translations of �nite opying MTT

R

s are

preisely the translations of MTT

R

s that are of linear size inrease (i.e., MTT

R

\ LSI =

MTT

R

f

), and (ii) it is deidable for an MTT

R

M whether or not there exists an equivalent

�nite opying MTT

R

(i.e., whether �

M

2 MTT

R

f

). We now show that it is deidable for

an MTT

R

M whether or not M is �nite opying. The proof is based on Lemma 3.7.

Lemma 4.10 It is deidable for an MTT

R

M

(i) whether or not M is fi, and
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(ii) whether or not M is fp,

and if so, a opying bound an be obtained e�etively.

Proof. Let M = (Q;P;�;�; q

0

; R; h).

(i) De�ne the MTT N = (Q

0

;� [ hhQ;P ii;�; r

0

; R

0

) with Q

0

= fr

(0)

0

; r

(1)

g and � = fq

(1)

j

q 2 Qg [ fe

(0)

g. For every k � 0, hhq; pii 2 hhQ;P ii

(k)

, and Æ 2 �

(k)

let the following rules

be in R

0

.

hr

0

; hhq; pii(x

1

; : : : ; x

k

)i ! q(hr; x

1

i(hr; x

2

i(� � � hr; x

k

i(e) � � � )))

hr

0

; Æ(x

1

; : : : ; x

k

)i ! hr; x

1

i(hr; x

2

i(� � � hr; x

k

i(e) � � � ))

hr; hhq; pii(x

1

; : : : ; x

k

)i(y

1

) ! q(hr; x

1

i(hr; x

2

i(� � � hr; x

k

i(y

1

) � � � )))

hr; Æ(x

1

; : : : ; x

k

)i(y

1

) ! hr; x

1

i(hr; x

2

i(� � � hr; x

k

i(y

1

) � � � ))

Then, for every s 2 T

�

and u 2 V (s), lpath(�

N

(�

^

M

(s[u  h(s=u)℄)); v) = sts

M

(s; u)e,

where v is the unique leaf of �

N

(�

^

M

(s[u h(s=u)℄)).

Let L be the tree language fs[u  h(s=u)℄ j s 2 T

�

; u 2 V (s)g. Then M is fi i�

K = �

N

(�

^

M

(L)) is �nite. Note that L = fs 2 T

�

(P

0

) j #

P

0

(s) = 1g where P

0

= fp 2

P j L

p

6= ?g; hene L is (e�etively) regular. Thus, �niteness of K an be deided by

Lemma 3.7; in ase of �niteness, K an be onstruted and an input opying bound for

M is maxfsize(t) j t 2 Kg � 1.

(ii) Let M be the MTT

R

de�ned in the proof of Lemma 3.6 and let � = � [ fy

(0)

j

j

j 2 [m℄g be its output alphabet, where m is the maximal rank of a state of M . Let

N = (fr

(0)

0

; r

(1)

g;�;�; r

0

; R

N

) be the MTT with � = fy

(1)

j

j j 2 [m℄g [ fe

(0)

g. For

Æ 2 �

(k)

with k � 0 the (r

0

; Æ)- and (r; Æ)-rules are de�ned as for N in (i). For j 2 [m℄ let

the rules hr

0

; y

j

i ! y

j

(e) and hr; y

j

i(y

1

)! y

j

(y

1

) be in R

N

.

Clearly, for every q 2 Q and s 2 T

�

, size(�

N

(�

M

(q(s))) = 1 + #

Y

(M

q

(s)). Now, for the

regular tree language L = fq(s) j q 2 Q; s 2 T

�

g: M is fp i� K = �

N

(�

M

(L)) is �nite.

As in (i), this an be deided by Lemma 3.7; in ase of �niteness, K an be onstruted

and a parameter opying bound for M is maxfsize(t) j t 2 Kg � 1. 2

In fat, the e�etiveness of Lemma 4.9 was not ompletely proved in [EM99℄, but with

Lemma 4.10 it an be shown as follows: given an MTT

R

f

M we an use Lemma 4.10 to

obtain a parameter opying boundN forM . Then, givenM and N we an, by the proof of

Lemma 6.3 of [EM99℄, onstrut an MTT

R

fi;surp

M

0

equivalent to M (where `surp' means

`single use restrited in the parameters'). Now, again by Lemma 4.10 we an determine an

input opying boundN forM

0

. Then, givenM

0

and N we an, by the proof of Lemma 6.10

of [EM99℄, onstrut a single use restrited MTT

R

M

00

equivalent toM

0

. Now by the proofs

of Lemmas 5.9, 5.12, and 4.1 of [EM99℄, a single use restrited attributed tree transduer

with look-ahead (for short, ATT

R

) A equivalent to M

00

an be onstruted. Given A, the

proof of Lemma 7 of [BE00℄ shows how to onstrut an equivalent MSO tree transduer.

This proves the e�etiveness going from MTT

R

f

to MSOTT. For the other diretion, that

is, starting with an MSO tree transduer M , we an proeed as follows: the proof of

Theorem 14 of [BE00℄ gives a onstrution of an equivalent single use restrited ATT

R

A.

The proofs of Lemmas 4.2 and 5.11 of [EM99℄ show how to onstrut an equivalent single

use restrited MTT

R

M

0

. By the proof of Theorem 6.12 of [EM99℄, M

0

is �nite opying.
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4.2 Finite Nested Copying in the Input

Consider the translation � =

^

M

q

0

(s[u p℄) of the ontext of a node u of the input tree s,

where p = h(s=u). The symbols of hhQ; fpgii an our nested in �, i.e., they an our on

a ommon label path lpath(�; v) to some node v of �. Assuming that M is nondeleting,

this means that a lot of opies of v will be generated; namely,

Q

F

[[:::℄℄

�;v

opies, where [[: : :℄℄

replaes hhq; pii by M

q

(s=u). Thus, a way to bound the opying arried out by M , is to

bound by some B 2 N the number of elements of hhQ; fpgii that our on a label path in

�, i.e., to bound the nesting of states. This implies that the number of elements in the

family F

[[:::℄℄

�;v

is bounded by B. We all this property �nite nested opying in the input (for

short, fnest). Clearly, it is a muh weaker restrition than the fi restrition. However, if

an MTT

R

is fnest and fp, then

Q

F

[[:::℄℄

�;v

is bounded by N

B

, if N is a parameter opying

bound for M .

De�nition 4.11 (�nite nested opying in the input)

Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. Then M is �nite nested opying in the input

(for short, fnest), if there is a B 2 N suh that for every s 2 T

�

, u 2 V (s), p = h(s=u),

and label path � in

^

M

q

0

(s[u  p℄), #

hhQ;fpgii

(�) � B. The number B is a nesting bound

for M . 2

We use the subsript `fnest' for lasses of translations of MTT

R

s to denote that the or-

responding transduers are fnest. The next lemma shows that the nesting bound B also

holds for trees

^

M

q

(s[u  p℄) with s 2 L

p

0

, provided that hhq; p

0

ii is reahable, in the

following sense.

De�nition 4.12 (reahable)

Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

, q 2 Q, and p 2 P . Then, hhq; pii is reahable,

if there are s 2 T

�

and u 2 V (s) suh that hhq; pii ours in

^

M

q

0

(s[u p℄). 2

Note that reahability does not require that h(s=u) = p; however, for L

p

6= ? this an

always be assumed (simply take s

0

= s[u t℄ for some t 2 L

p

, if h(s=u) 6= p). Note that

in that ase, q ours in the state sequene of s at u.

Lemma 4.13 Let M = (Q;P;�;�; q

0

; R; h) be a nondeleting fnest MTT

R

and let B be

a nesting bound for M . If hhq; pii 2 hhQ;P ii is reahable, then for every s 2 L

p

, u 2 V (s),

p

u

= h(s=u), and label path � in

^

M

q

(s[u p

u

℄), #

hhQ;fp

u

gii

(�) � B.

Proof. Sine hhq; pii is reahable, there are t 2 T

�

, v 2 V (t), and � 2 V

hhq;pii

(

^

M

q

0

(t[v  

p℄)). We may assume that t=v = s and hene t=vu = s=u. By Lemma 4.2,

^

M

q

0

(t[vu  

p

u

℄) =

^

M

q

0

(t[v  p℄)[[: : :℄℄ with [[: : :℄℄ = [[hhq

0

; pii  

^

M

q

0

(s[u  p

u

℄) j q

0

2 Q℄℄. Clearly,

lpath(

^

M

q

0

(t[v  p℄); �) = whhq; pii for some w 2 (hhQ; fpgii [�)

�

. Sine M is nondeleting

(and hene so is

^

M), the substitution [[: : :℄℄ is nondeleting by Lemma 3.10(1), and thus,

by Lemma 2.3(ii), there is a w

0

2 (hhQ; fp

u

gii [ �)

�

suh that w

0

� is a label path in

^

M

q

0

(t[v  p℄)[[: : :℄℄, i.e., in

^

M

q

0

(t[vu  p

u

℄). Now, #

hhQ;fp

u

gii

(�) � #

hhQ;fp

u

gii

(w

0

�) whih

is � B, beause B is a nesting bound for M . 2
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u

v

Figure 1: the tree s with shaded part s=u[v

0

 p

v

℄

Consider a nondeleting MTT

R

M and an input tree s 2 T

�

. In Setion 6 we will often be

interested in the part of s that lies between two nodes u and v of s, where v is a desendant

of u; this part an be represented by the tree s=u[v

0

 p

v

℄, where v = uv

0

and p

v

= h(s=v).

The shaded region in Fig. 1 shows suh a part of s. In partiular, in Setion 6.2, we will need

to know, if a state q of M proesses this part, how many times the node v

0

is proessed by

a state q

0

, i.e., how many ourrenes of hhq

0

; p

v

ii there are in the tree

^

M

q

(s=u[v

0

 p

v

℄). If

M is nondeleting and w is a node between u and v, i.e., a desendant of u and anestor of v,

then a lower bound for this number is given by summing for all states r, the produt of the

number of ourrenes of hhr; p

w

ii in

^

M

q

(s=u[w

0

 p

w

℄) and #

hhq

0

;p

v

ii

(

^

M

r

(s=w[v

00

 p

v

℄)),

where v = wv

00

. This is intuitively true beause, due to nondeletion, for eah ourrene

of hhr; p

w

ii in

^

M

q

(s=u[w

0

 p

w

℄) there is in

^

M

q

(s=u[v

0

 p

v

℄) at least one ourrene of

the tree

^

M

r

(s=w[v

00

 p

v

℄) (without the parameters), and, due to parameter opying,

there ould be more than one suh ourrene. This is stated in part (i) of the following

lemma. Part (ii) of the lemma onsiders the ase that M is �nite nested opying in the

input and �nite opying in the parameters; then we an also give an upper bound for the

number of ourrenes of hhq

0

; p

v

ii in

^

M

q

(s=u[v

0

 p

v

℄), beause eah ourrene of hhr; p

w

ii

in

^

M

q

(s=u[w

0

 p

w

℄) an only be opied a bounded number of times.

Lemma 4.14 Let M = (Q;P;�;�; q

0

; R; h) be a nondeleting MTT

R

. Let q; q

0

2 Q,

s 2 T

�

, and u;w; v 2 V (s) suh that u is an anestor of w and w is an anestor of v,

i.e., w = uw

0

and v = wv

00

for some w

0

; v

00

2 N

�

, and let v

0

= w

0

v

00

, p

w

= h(s=w), and

p

v

= h(s=v). Finally, let

S =

X

r2Q

#

hhq

0

;p

v

ii

(

^

M

r

(s=w[v

00

 p

v

℄)) �#

hhr;p

w

ii

(

^

M

q

(s=u[w

0

 p

w

℄)):

Then the following two statements hold.

(i) #

hhq

0

;p

v

ii

(

^

M

q

(s=u[v

0

 p

v

℄)) � S.

(ii) If M is fnest and fp with nesting bound B and parameter opying bound N , and

hhq; h(s=u)ii is reahable, then #

hhq

0

;p

v

ii

(

^

M

q

(s=u[v

0

 p

v

℄)) � N

B

� S.
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Proof. Note that for s

0

= s=u[v

0

 p

v

℄:

^

h(s

0

=w

0

) = p

w

, s

0

[w

0

 p

w

℄ = s=u[w

0

 p

w

℄, and

s

0

=w

0

= s=w[v

00

 p

v

℄. Hene, by Lemma 4.2 applied to s

0

and w

0

,

^

M

q

(s=u[v

0

 p

v

℄) =

�[[: : :℄℄, where � =

^

M

q

(s=u[w

0

 p

w

℄) and [[: : :℄℄ = [[hhr; p

w

ii  

^

M

r

(s=w[v

00

 p

v

℄) j r 2 Q℄℄,

and thus, by Lemma 2.6,

#

hhq

0

;p

v

ii

(

^

M

q

(s=u[v

0

 p

v

℄)) =

X

~u2V

hhr;p

w

ii

(�);r2Q

#

hhq

0

;p

v

ii

(

^

M

r

(s=w[v

00

 p

v

℄)

Y

F

[[:::℄℄

�;~u

: (�)

Sine M is nondeleting, by Lemma 3.10(1), #

y

j

(

^

M

r

0

(s=w[v

00

 p

v

℄)) � 1 for every r

0

2

Q

(m)

and j 2 [m℄. This implies that

Q

F

[[:::℄℄

�;~u

� 1. Thus, the sum in (�) is � S, beause

jV

hhr;p

w

ii

(�)j equals #

hhr;p

w

ii

(

^

M

q

( s=u[w

0

 p

w

℄)). This proves part (i).

For (ii),

Q

F

[[:::℄℄

�;~u

� N

B

, beause the number of elements of hhQ; fp

w

gii that our in

lpath(�; ~u) is � B by Lemma 4.13 (using the assumption that hhq; h(s=u)ii is reahable)

and beause, by Lemma 4.7, #

y

j

(

^

M

r

0

(s=w[v

00

 p

v

℄)) � N for every r

0

2 Q

(m)

and j 2 [m℄.

Thus, the sum in (�) is � N

B

�

P

~u2V

hhr;p

w

ii

(�);r2Q

#

hhq

0

;p

v

ii

(

^

M

r

(s=w[v

00

 p

v

℄)) = N

B

� S.

2

Note that point (ii) of Lemma 4.14 an be strengthened by proving an upper bound of

N

B�1

� S for the number of ourrenes of hhq

0

; p

v

ii in

^

M

q

(s=u[v

0

 p

v

℄)). This is true

beause in F

[[:::℄℄

�;~u

, the node ~u itself (whih is labeled by hhr; p

w

ii for some state r) is not taken

into aount, i.e., only proper anestors of ~u that are labeled by elements of hhQ; fp

w

gii are

ounted; thus there are at most B� 1 of them. We deided to leave out the `�1', beause

in the appliation of the lemma in the proof of Lemma 6.5 this will keep the numbers

better readable.

4.3 Finite Copying implies Linear Size Inrease

In this subsetion it is proved that if an MTT

R

is �nite opying, then it is of linear size

inrease. Note that this result is not needed, beause it follows from Lemma 4.9 (as

disussed in the beginning of this setion). The proof uses an intermediate, very natural

notion, alled �nite ontribution. Intuitively, an MTT

R

M is �nite ontribution, if there

is a bound  on the number of output nodes that are ontributed by a node of the input

tree. Clearly, if M is �nite ontribution, then it is of linear size inrease (with bound ).

Thus, in order to prove that �nite opying implies linear size inrease, it suÆes to prove

that ifM is �nite opying then it is �nite ontribution (Lemma 4.18). In fat, sine one of

the main results of this paper is that MTT

R

s of linear size inrease realize the same lass

of translations as �nite opying MTT

R

s (Theorem 7.2 and Lemma 4.9), it means that this

is also the lass of translations realized by �nite ontribution MTT

R

s.

In order to ompute the ontribution by a node of the input tree s, we de�ne an MTT

R

M

s

, whih keeps in the label of eah output node v the orresponding input node u that

generated v. More preisely, if � is the output alphabet of M , then M

s

has output

alphabet h�; V (s)i, and the ontribution by the node u of s is the number of symbols in

h�; fugi that appear inM

s

q

0

(s

0

), where s

0

is the \deorated version" of s, i.e., s

0

is obtained

from s by hanging, for every node w, its label � into h�;wi.
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De�nition 4.15 (The MTT

R

M

s

, deorated version, ontribution)

Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

and let s 2 T

�

. Then M

s

= (Q;P; h�; V (s)i;

h�; V (s)i; q

0

; R

s

; h

s

) is the MTT

R

suh that for every h�; ui 2 h�; V (s)i

(k)

, k � 0, and

p

1

; : : : ; p

k

2 P :

� h

s

h�;ui

(p

1

; : : : ; p

k

) = h

�

(p

1

; : : : ; p

k

) and

� rhs

M

s

(q; h�; ui; hp

1

; : : : ; p

k

i) = rhs

M

(q; �; hp

1

; : : : ; p

k

i)[[Æ  hÆ; ui j Æ 2 �℄℄.

The deorated version of s, denoted by de(s), is the unique tree in T

h�;V (s)i

suh that

V (de(s)) = V (s), and for every u 2 V (s): de(s)[u℄ = hs[u℄; ui.

For a node u of s, the set V

h�;fugi

(M

s

q

0

(de(s))) � V (M

q

0

(s)) is the set of output nodes

ontributed by u, and the ontribution by u, denoted by Contrib

M

(s; u), is the ardinality

#

h�;fugi

(M

s

q

0

(de(s))) of this set. 2

Note that every output node is ontributed by a unique input node u (alled its origin

in [vDKT96℄). Before we prove our �rst lemma about ontribution, let us note some easy

properties of the MTT

R

M

s

. Let u 2 V (s) and q 2 Q.

(P1) h

s

(de(s)=u) = h(s=u).

(P2) For s

0

2 T

h�;V (s)i

, �

�

(M

s

q

(s

0

)) = M

q

(�

�

(s

0

)), where �

�

hanges eah symbol hÆ; ui

into Æ, i.e., it is the anonial projetion from h�; V (s)i to �. For

^

M

s

and

^

M a

similar statement holds.

Additionally, note the following two obvious fats about the projetion �

�

. Let


 be a ranked alphabet disjoint with h�; V (s)i, � 2 T


[h�;V (s)i

(Y ), and �

0

2

T


[h�;fugi

(Y ). We assume that �

�

is the identity on elements of 
.

(D1) For � 2 (
 [ Y ) : V

�

(�

�

(�)) = V

�

(�).

(D2) For Æ 2 � : V

Æ

(�

�

(�

0

)) = V

hÆ;ui

(�

0

).

(P3) Let P

0

= fp

(0)

j p 2 Pg.

(a) For � 2 T

h�;V (s)i

: If #

h�;fugi

(�) = 0 then #

h�;fugi

(M

s

q

(�)) = 0.

(b) For � 2 T

h�;V (s)i[P

0

: If #

h�;fugi

(�) = 0 then #

h�;fugi

(

^

M

s

q

(�)) = 0.

Let us prove property P3, by indution on the struture of �. Let � = h�; vi(�

1

; : : : ; �

k

)

with h�; vi 2 h�; V (s)i

(k)

and k � 0 suh that #

h�;fugi

(�) = 0. By Lemma 3.5, M

s

q

(�) =

�[[hq

0

; x

i

i  M

s

q

0

(�

i

) j hq

0

; x

i

i 2 hQ;X

k

i℄℄ with � = rhs

M

s

(q; h�; vi; hh

s

(�

1

); : : : ; h

s

(�

k

)i), and

thus, by Lemma 2.6, #

h�;fugi

(M

s

q

(�)) = S

1

+ S

2

, where S

1

and S

2

are the sums de�ned

in that lemma. Now S

1

= 0 beause V

h�;fugi

(�) = ? by the de�nition of the rules of M

s

and by the fat that v 6= u (beause #

h�;fugi

(�) = 0). By indution, #

h�;fugi

(M

s

q

0

(�

i

)) = 0

and therefore also S

2

= 0, whih onludes the proof for the (a) ase. For the (b) ase

the same proof holds, exept that we have to onsider the additional ase � = p 2 P

0

: the

right-hand side � of the p-rule of

^

M

s

is in T

hhQ;fpgii

(Y ) and thus #

h�;fugi

(�) = 0.

First, we want to present a lemma that omputes, in the style of Lemma 2.6, the number

Contrib

M

(s; u) of output nodes ontributed by u.
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Lemma 4.16 Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

, s 2 T

�

, and u 2 V (s). Then

Contrib

M

(s; u) =

X

v 2 V

hhq;pii

(t)

q 2 Q

X

w2V

�

(�

q

)

Y

F

[[ ℄℄

�

q

;w

Y

F

[[:::℄℄

t;v

with p = h(s=u), t =

^

M

q

0

(s[u  p℄), �

q

= rhs

M

(q; �; hp

1

; : : : ; p

k

i) for all q 2 Q where

� = s[u℄ 2 �

(k)

, k � 0, and p

i

= h(s=ui) for all i 2 [k℄, [[ ℄℄ = [[hq

0

; x

i

i  M

q

0

(s=ui) j

hq

0

; x

i

i 2 hQ;X

k

i℄℄, and [[: : :℄℄ = [[hhq; pii  M

q

(s=u) j q 2 Q℄℄.

Proof. By de�nition, Contrib

M

(s; u) = #

h�;fugi

(M

s

q

0

(de(s))). Sine, by the de�nition

of de, de(s)[u℄ = h�; ui 2 h�; V (s)i

(k)

, we get by Lemmas 4.2 and 3.5, and property P1,

M

s

q

0

(de(s)) = t

0

[[rhs℄℄[[ ℄℄

0

where t

0

=

^

M

s

q

0

(de(s)[u  p℄), [[rhs℄℄ = [[hhq; pii  �

0

q

j q 2 Q℄℄

with �

0

q

= rhs

M

s

(q; h�; ui; hp

1

; : : : ; p

k

i) for q 2 Q, and [[ ℄℄

0

= [[hq; x

i

i  M

s

q

(de(s)=ui) j

hq; x

i

i 2 hQ;X

k

i℄℄. The appliation of Lemma 2.6 to #

h�;fugi

(t

00

[[ ℄℄

0

) with t

00

= t

0

[[rhs℄℄

gives S

0

1

+ S

0

2

, where S

0

2

= 0 beause #

h�;fugi

(M

s

q

(de(s)=ui)) = 0 by property P3(a) and

the fat that de(s)=ui ontains no symbol in h�; fugi (by the de�nition of de). Thus,

Contrib

M

(s; u) = S

0

1

, whih equals

X

v2V

h�;fugi

(t

0

[[rhs℄℄)

Y

F

[[ ℄℄

0

t

0

[[rhs℄℄;v

: (�)

By the laim below, for � = [[rhs℄℄ and 	 = [[ ℄℄

0

, the sum in (�) equals

P

2h�;fugi

(S

1

+S

2

).

Now S

1

equals zero, beause V

h�;fugi

(t

0

) = ?, whih holds by property P3(b) and the

fat that de(s)[u  p℄ ontains no symbol in h�; fugi. Thus, the sum in (�) equals

P

2h�;fugi

S

2

=

X

v 2 V

hhq;pii

(t

0

)

q 2 Q

X

w2V

h�;fugi

(�

0

q

)

Y

F

[[ ℄℄

0

�

0

q

;w

Y

F

[[:::℄℄

0

t

0

;v

;

where [[: : :℄℄

0

is the substitution [[hhq; pii  M

s

q

(de(s)=u) j q 2 Q℄℄. Let us now show that

this sum equals the one of the lemma. For every q 2 Q it follows from property D1 (for


 = hhQ; fpgii and � = hhq; pii) that V

hhq;pii

(t

0

) = V

hhq;pii

(�

�

(t

0

)) whih equals V

hhq;pii

(t)

by (the

^

M -version of) property P2, where �

�

is the projetion de�ned in that property.

Sine �

0

q

2 T

hQ;X

k

i[h�;fugi

(Y ) it follows from property D2 that V

h�;fugi

(�

0

q

) = V

�

(�

�

(�

0

q

)),

whih equals V

�

(�

q

) beause �

�

(�

0

q

) = �

q

by the de�nition of the rules of M

s

. Now

for w 2 V (�

0

q

) = V (�

q

),

Q

F

[[ ℄℄

0

�

0

q

;w

=

Q

F

[[ ℄℄

�

q

;w

beause for q

0

2 Q, by D1, V

hq

0

;x

i

i

(�

0

q

) =

V

hq

0

;x

i

i

(�

�

(�

0

q

)) whih equals V

hq

0

;x

i

i

(�

q

) and for y 2 Y , by D1, #

y

(M

s

q

(de(s)=ui)) =

#

y

(�

�

(M

s

q

(de(s)=ui))), whih equals #

y

((M

q

(s=ui)) by P2. Similarly,

Q

F

[[:::℄℄

0

t

0

;v

=

Q

F

[[:::℄℄

t;v

for v 2 V (t

0

) = V (t) beause, as shown above, V

hhq;pii

(t

0

) = V

hhq;pii

(t) for q 2 Q, and for

y 2 Y , by D1, #

y

(M

s

q

(de(s)=u)) = #

y

(�

�

(M

s

q

(de(s)=u))) whih equals #

y

(M

q

(s)) by

P2.

It remains to show the following laim, whih is a generalization of Lemma 2.6 to two

seond-order tree substitutions � and 	 (more preisely, taking the substitution 	 as the

23



identity on �� Y gives Lemma 2.6 for the ase � =  62 f�

1

; : : : ; �

n

g [ Y ). Note that �	

denotes the omposition of 	 after �, i.e., t(�	) = (t�)	.

Claim: Let � be a ranked alphabet. Let � = [[�

i

 s

i

j i 2 [n℄℄℄ and 	 = [[�

j

 

�

j

j j 2 [m℄℄℄ be seond-order tree substitutions over �. Then for t 2 T

�

and  2 � �

(f�

1

; : : : ; �

n

; �

1

; : : : ; �

m

g [ Y ),

X

v2V



(t�)

Y

F

	

t�;v

= S

1

+ S

2

; (�)

where

S

1

=

X

v2V



(t)

Y

F

�	

t;v

and S

2

=

X

v 2 V

�

i

(t)

i 2 [n℄

X

w2V



(s

i

)

Y

F

	

s

i

;w

Y

F

�	

t;v

:

Proof of the laim: Note that the statement does not depend on the numbers #



(�

j

). This

is true beause the substitution 	 only appears in the F s. In fat, for any node v of a

tree �,

Q

F

	

�;v

=

Q

F

	

0

�;v

, for every substitution 	

0

= [[�

j

 �

0

j

j j 2 [m℄℄℄ with the property

that #

y

(�

0

j

) = #

y

(�

j

) for every y 2 Y and j 2 [m℄; we denote this property by E(	;	

0

).

For S

1

and S

2

a similar statement holds. (Note that if E(	;	

0

) then E(�	;�	

0

); this is

true beause, by assoiativity of seond-order substitution, �	 = [[�

i

 s

i

	; �

j

 �

j

j G℄℄

and �	

0

= [[�

i

 s

i

	

0

; �

j

 �

0

j

j G℄℄, where G denotes the statement `i 2 [n℄; j 2 [m℄ with

�

j

62 f�

1

; : : : ; �

n

g'; by the above, E(	;	

0

) implies that

Q

F

	

s

i

;v

=

Q

F

	

0

s

i

;v

for any node v

of s

i

, and thus for every y 2 Y ,

P

v2V

y

(s

i

)

Q

F

	

s

i

;v

=

P

v2V

y

(s

i

)

Q

F

	

0

s

i

;v

whih means, by

Lemma 2.6, that #

y

(s

i

	) = #

y

(s

i

	

0

).)

The idea of the proof is as follows. We will apply Lemma 2.6 twie: �rst to #



(t

0

	

0

), where

t

0

= t� and 	

0

is a substitution with E(	;	

0

), and seond to #



(tB) with B = �	

0

. The

�rst appliation will give the left-hand side of the equation (�), and the seond one will

give the right-hand side of that equation. Clearly, by de�nition of the omposition of

seond-order tree substitutions, #



(t

0

	

0

) = #



(tB).

De�ne 	

0

= [[�

j

 �

0

j

j j 2 [m℄℄℄ with E(	;	

0

) and #



(�

0

j

) = 0 for all j 2 [m℄. Then

for t

0

= t�, #



(t

0

	

0

) equals, by Lemma 2.6, S

0

1

+ S

0

2

with S

0

1

=

P

v2V



(t�)

Q

F

	

0

t�;v

and

S

0

2

= 0 beause all the numbers #



(�

0

j

) are zero by the de�nition of 	

0

. Sine E(	;	

0

),

this means that #



(t

0

	

0

) =

P

v2V



(t�)

Q

F

	

t�;v

, whih is the left-hand side of the equation

(�).

By the assoiativity of seond-order tree substitution, B = �	

0

equals

[[�

i

 s

i

	

0

; �

j

 �

0

j

j i 2 [n℄; j 2 [m℄ with �

j

62 �

n

℄℄;

where �

n

= f�

1

; : : : ; �

n

g. The appliation of Lemma 2.6 to #



(tB) gives S

0

1

+S

0

2

with S

0

1

=

P

v2V



(t)

Q

F

�	

0

t;v

and S

0

2

=

P

v2V

�

i

(t);i2[n℄

#



(s

i

	

0

) �

Q

F

�	

0

t;v

+

P

v2V

�

j

(t);j2[m℄;�

j

62�

n

#



(�

0

j

) �

Q

F

�	

0

t;v

. Sine #



(�

0

j

) = 0, the seond term of S

0

2

equals zero. In the �rst term of S

0

2

we

apply Lemma 2.6 to #



(s

i

	

0

) whih gives T

1

+ T

2

, where T

2

= 0 beause #



(�

0

j

) = 0,

and T

1

=

P

v2V

�

i

(t);i2[n℄

P

w2V



(s

i

)

Q

F

	

0

s

i

;w

Q

F

�	

0

t;v

. Sine E(	;	

0

), S

0

1

= S

1

and T

1

= S

2

whih onludes the proof of the laim. 2
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Using Lemma 4.16 we an now prove that if an MTT

R

is �nite opying then it is �nite

ontribution, whih is de�ned next.

De�nition 4.17 (�nite ontribution)

Let M be an MTT

R

with input alphabet �. Then M is �nite ontribution if there is a

 2 N suh that Contrib

M

(s; u) �  for every s 2 T

�

and u 2 V (s). 2

Consider now a �nite opying MTT

R

M . In the translations ofM , every node of the input

tree is translated at most I �N

I�1

times (f. the disussion on page 71 of [EM99℄), where

I and N are input and parameter opying bounds for M , respetively. This implies that

the number Contrib

M

(s; u) of output nodes ontributed by the node u is bounded.

Lemma 4.18 Let M be an MTT

R

. If M is �nite opying, then it is �nite ontribution.

Proof. Let M = (Q;P;�;�; q

0

; R; h), s 2 T

�

, and u 2 V (s). Let I be an input opying

bound for M and let N be a parameter opying bound for M . Furthermore, let m be the

maximal size of the right-hand side of a rule ofM . By the de�nition of fi it follows that for

t =

^

M

q

0

(s[u p℄) and p = h(s=u), #

hhQ;fpgii

(t) � I. By the de�nition of fp it follows that,

for every v 2 V

hhq;pii

(t) and q 2 Q,

Q

F

[[:::℄℄

t;v

� N

I�1

, where [[: : :℄℄ = [[hhq; pii  M

q

(s=u) j q 2

Q℄℄. By Lemma 4.16 this means that Contrib

M

(s; u) � I �N

I�1

�maxf

P

w2V

�

(�

q

)

Q

F

[[ ℄℄

�

q

;w

j

q 2 Qg, where [[ ℄℄ = [[hq

0

; x

i

i  M

q

0

(s=ui) j hq

0

; x

i

i 2 hQ;X

k

i℄℄. By the de�nition of m this

is � I �N

I�1

�m �maxf

Q

F

[[ ℄℄

�

q

;w

j q 2 Q;w 2 V

�

(�

q

)g � I �N

I�1

�m �N

m�1

= . 2

As disussed in the beginning of this subsetion, if an MTT

R

is �nite ontribution then

it is of linear size inrease. This holds beause, by P2, size(M

q

0

(s)) = size(M

s

q

0

(de(s)))

=

P

u2V (s)

Contrib

M

(s; u) � �size(s). Together with Lemma 4.18 this gives us the desired

result: �nite opying implies linear size inrease.

Theorem 4.19 If an MTT

R

is �nite opying, then it is of linear size inrease.

5 Proper Normal Form

In Setion 4.3 we showed that if an MTT

R

is �nite opying, then it is of linear size inrease.

In Setions 6 and 7 we want to prove that the onverse also holds, i.e., that linear size

inrease implies �nite opying. However, in general this does not hold: there are MTT

R

s

of linear size inrease that are not �nite opying. Roughly speaking, the reason for this

is that the part of the output tree that is being opied unboundedly, by means of input

variables or parameters, might be a �xed tree that does not hange for di�erent input. So,

an input tree s

n

of size n might generate a state sequene of length n, but, the number

of di�erent output trees that are eventually generated by the states in the state sequene

might be bounded. Then the MTT

R

is not �nite opying in the input, but the translation

it realizes might still be of linear size inrease (f. the MTT

R

M at the beginning of

Setion 5.1). Similarly, a tree M

q

(s

n

) might ontain n opies of a parameter y

j

, but there
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are only boundedly many di�erent output trees that will be substituted for y

j

in the atual

output M

q

0

(s). Then M is not �nite opying in the parameters, but the translation it

realizes might be of linear size inrease (f. the MTT

R

at the beginning of Setion 5.2).

Intuitively it should be lear that a state that generates, for any input, only a bounded

number of di�erent output trees t, is not needed; it an be eliminated by immediately

substituting the orret tree t, whih an be determined by regular look-ahead. This gives

rise to a normal form, alled input proper, whih is treated in Setion 5.1. Similarly for a

parameter y

j

of a state q: if the number of atual output trees t that will be substituted

for y

j

is bounded, then this parameter is not needed; it an be eliminated by immediately

substituting the orret t, whih an be omputed in the states of the MTT

R

. This gives

rise to a normal form, alled parameter proper ; it is treated in Setion 5.2.

Altogether, an MTT

R

will be alled proper, if it is input proper, parameter proper, and

produtive. Again, this is a normal form, i.e., for every MTT

R

there is an equivalent one

whih is proper. Then, in Setion 6 it an be proved that if a proper MTT

R

is of linear

size inrease, then it is �nite opying.

5.1 Input Proper

Consider the following MTT

R

M , whih is of linear size inrease, but not �nite opying

in the input. Let M = (Q;�;�; q

0

; R) with Q = fq

(0)

0

; q

(0)

; q

0

(0)

g, � = f

(1)

; a

(0)

; b

(0)

g,

� = f�

(2)

; a

(0)

; b

(0)

g, and R onsisting of the following rules.

hq

0

; (x

1

)i ! �(hq; x

1

i; hq

0

; x

1

i)

hq; (x

1

)i ! hq; x

1

i

hq

0

; (x

1

)i ! �(hq; x

1

i; hq

0

; x

1

i)

hr; �i ! � (for every r 2 Q and � 2 fa; bg)

Note that M is in fat a top-down tree transduer. Intuitively, M translates every

monadi tree s

n

= (: : : (�) : : : ) = 

n

(�) of height n (with � 2 fa; bg) into a omb

t

n

= �(�; �(�; : : : �(�; �) : : : )) of height n. Thus, size(�

M

(s)) � 2 � size(s) for every s 2 T

�

and so M is lsi. Clearly, M is not fi beause sts

M

(s

n

; u) = q

n

q

0

for n � 1 and u = 1

n

the

unique leaf of s

n

. The reason for this is thatM generates many opies of q, but q generates

only a �nite number of di�erent trees (viz. the trees a and b). How an we hange M

into an equivalent MTT

R

whih is fi? The idea is to simply delete the state q and to

determine by regular look-ahead the appropriate tree in fa; bg. In this example we just

need L

p

= f

n

(a) j n � 0g and L

p

0

= f

n

(b) j n � 0g and then the q

0

-rule ofM is replaed

by two q

0

-rules with right-hand sides �(a; hq

0

; x

1

i) and �(b; hq

0

; x

1

i) for look-ahead p and

p

0

, respetively, and similarly for the q

0

-rule.

We will say that an MTT

R

M is `input proper' if every state, exept possibly the initial

one, produes in�nitely many output trees (in T

�

(Y )). More preisely, for every look-

ahead state p of M and every state q, M should produe in�nitely many output trees

taking L

p

(the trees for whih the look-ahead automaton arrives in state p) as input; in

fat, this is only required if hhq; pii is reahable, i.e., if hhq; pii ours in

^

M

q

0

(s[u  p℄) for

some s and u (see De�nition 4.12).
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The notion of input properness was de�ned in [AU71℄ for generalized syntax-direted

translation shemes (whih are a variant of top-down tree transduers) and was there

alled `redued'. We add two useful tehnial properties to it.

De�nition 5.1 (input proper)

An MTT

R

M = (Q;P;�;�; q

0

; R; h) is input proper (for short, i-proper), if

(i) for every q 2 Q and p 2 P suh that q 6= q

0

and hhq; pii is reahable, the set

Out(q; p) = fM

q

(s) j s 2 L

p

g is in�nite,

(ii) q

0

does not our in the right-hand sides of the rules in R, and

(iii) L

p

6= ? for every p 2 P . 2

Note that Out(q; p) � T

�

(Y

m

) for q 2 Q

(m)

. Before it is proved (in Lemma 5.4) that i-

properness is a normal form for MTT

R

s, we need the following two straightforward lemmas

about �niteness of Out(q; p).

Lemma 5.2 Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. For given q 2 Q

(m)

and p 2 P

it is deidable whether or not Out(q; p) is �nite. Moreover, Out(q; p) an be onstruted,

if it is �nite.

Proof. Let M be the MTT

R

onstruted in the proof of Lemma 3.6. Then, for every

s 2 T

�

, �

M

(q(s)) = M

q

(s)[y

j

 y

j

j j 2 [m℄℄ and hene M

q

(s) = �

M

(q(s))�, where

� = [y

j

 y

j

j j 2 [m℄℄. The substitution � an be realized by a (very simple) top-down

tree transduer. Thus, for the regular tree language L = fq(s) j s 2 L

p

g, Out(q; p) =

fM

q

(s) j s 2 L

p

g = f�

M

(s)� j s 2 Lg = �

N

(�

M

(L)). By Lemma 3.7 the �niteness of

�

N

(�

M

(L)) is deidable, and in ase of �niteness �

N

(�

M

(L)) an be onstruted. 2

Lemma 5.3 LetM = (Q;P;�;�; q

0

; R; h) be a nondeleting MTT

R

. Let q 2 Q, � 2 �

(k)

,

k � 1, and p; p

1

; : : : ; p

k

2 P suh that p = h

�

(p

1

; : : : ; p

k

) and L

p

j

6= ? for every j 2 [k℄.

If hr; x

i

i 2 hQ;X

k

i ours in rhs

M

(q; �; hp

1

; : : : ; p

k

i) and Out(q; p) is �nite,

then Out(r; p

i

) is �nite.

Proof. For j 2 [k℄ � fig �x trees s

j

2 T

�

with h(s

j

) = p

j

. Let � = �[[: : :℄℄ with

� = rhs

M

(q; �; hp

1

; : : : ; p

k

i) and [[: : :℄℄ = [[hq

0

; x

j

i  M

q

0

(s

j

) j q

0

2 Q; j 2 [k℄ � fig℄℄. By

the de�nition of Out(q; p), Lemma 3.5, and assoiativity of seond-order tree substitution,

O = fM

q

(�(s

1

; : : : ; s

k

)) j s

i

2 L

p

i

g = f�[[s

i

℄℄ j s

i

2 L

p

i

g where [[s

i

℄℄ denotes the substitution

[[hq

0

; x

i

i  M

q

0

(s

i

) j q

0

2 Q℄℄ is a subset of Out(q; p) and hene �nite. SineM is nondelet-

ing, both [[: : :℄℄ and [[s

i

℄℄ are nondeleting, by Lemma 3.10(1). Hene, by Lemma 2.1, � has a

subtree hr; x

i

i(�

1

; : : : ; �

m

), where m = rank

Q

(r). Again by Lemma 2.1, �[[s

i

℄℄ has a subtree

hr; x

i

i(�

1

; : : : ; �

m

)[[s

i

℄℄ = M

r

(s

i

)[y

j

 �

j

[[s

i

℄℄ j j 2 [m℄℄. Thus, for every t 2 Out(r; p

i

) (i.e.,

t =M

r

(s

i

) for some s

i

2 L

p

i

) the tree t[y

j

 �

j

[[s

i

℄℄ j j 2 [m℄℄ is a subtree of �[[s

i

℄℄, i.e., it

is a subtree of a tree in the �nite set O. This implies �niteness of Out(r; p

i

). 2
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We are now ready to prove that i-properness is a normal form. The onstrution involved

is similar to the one of Lemma 5.5 of [AU71℄ exept that we apply it repeatedly to obtain

an i-proper MTT

R

as opposed to their single appliation whih is insuÆient (also in their

formalism, whih means that their proof of the lemma is inorret).

Lemma 5.4 For every MTT

R

M there is (e�etively) an i-proper and produtive MTT

R

M

0

equivalent to M . If M is a T

R

, then so is M

0

.

Proof. Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. By Lemma 3.9 we may assume that

M is produtive. Moreover, we may assume that q

0

does not our in the right-hand side

of any rule of M (if it does, replae it in all rules by a new state q

0

0

whih has the same

rules as q

0

).

Before we onstrut the MTT

R

M

0

whih is i-proper and realizes the same translation

as M , let us de�ne an auxiliary notion. For eah p 2 P , let F

p

denote the set fq 2 Q j

Out(q; p) is �niteg of states whih produe �nitely many output trees in T

�

(Y ) on input

trees in L

p

. Note that F

p

an be onstruted e�etively, beause, by Lemma 5.2, it is

deidable whether or not Out(q; p) is �nite. Moreover, Out(q; p) an be onstruted for

every q 2 F

p

.

The MTT

R

M

0

is onstruted in suh a way that, if hr; x

i

i ours in rhs

M

0

(q; �; hp

1

; : : : ;

p

k

i), then r 62 F

p

i

. This implies point (i) of i-properness of M

0

as follows. If hhr; pii 2

hhQ;P ii is reahable (with r 6= q

0

), then there are s 2 T

�

and u 2 V (s) suh that hhr; pii

ours in

^

M

0

q

0

(s[u p℄). Sine r 6= q

0

, u = vi for some i � 1 and v 2 N

�

. By Lemma 4.3

this implies that hr; x

i

i ours in the right-hand side of a rule of M

0

with p

i

= p. This

means that r 62 F

p

, i.e., Out(r; p) is in�nite.

We �rst onstrut the MTT

R

�(M) by simply deleting ourrenes of hr; x

i

i with r 2

F

p

i

and replaing them by the orret tree in Out(r; p

i

) whih is determined by regular

look-ahead. Due to the hange of look-ahead automaton, an ourrene of hr; x

i

i in the

(q; �; hp

1

; : : : ; p

k

i)-rule of M with r 62 F

p

i

might produe only �nitely many trees for the

new look-ahead states (p

i

; '

i

). For this reason we have to iterate the appliation of � until

the sets F

p

do not hange anymore. This results in the desired MTT

R

M

0

.

For eah p 2 P let �

p

be the (�nite) set of all mappings ' : F

p

! T

�

(Y ) suh that there

is an s 2 L

p

with '(q) = M

q

(s) for every q 2 F

p

. Note that �

p

is �nite beause '(q) 2

Out(q; p), whih is �nite for q 2 F

p

. This also implies that �

p

an be obtained e�etively by

heking, for the (�nitely many) mappings ' : F

p

!

S

q2F

p

Out(q; p), whether or not ' is in

�

p

. This is deidable beause ' 2 �

p

i�K

p;'

= L

p

\

T

q2F

p

M

�1

q

(f'(q)g) is nonempty; K

p;'

is regular by Lemma 3.6 (and the losure of the regular tree languages under intersetion),

and hene has a deidable emptiness problem (f., e.g., Theorem II.10.2 of [GS84℄). The

mappings in �

p

partition L

p

into the sets K

p;'

whih an be determined by regular look-

ahead.

We now onstrut the MTT

R

�(M) = (Q;P

0

;�;�; q

0

; R

0

; h

0

) as follows. Let P

0

= f(p; ') j

p 2 P;' 2 �

p

g. For � 2 �

(k)

and (p

1

; '

1

); : : : ; (p

k

; '

k

) 2 P

0

let, for every q 2 Q

(m)

, the

rule

hq; �(x

1

; : : : ; x

k

)i(y

1

; : : : ; y

m

)! �

q

� h(p

1

; '

1

); : : : ; (p

k

; '

k

)i
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be in R

0

, where �

q

= rhs

M

(q; �; hp

1

; : : : ; p

k

i) and � = [[hr; x

i

i  '

i

(r) j r 2 F

p

i

; i 2 [k℄℄℄,

and let h

0

�

((p

1

; '

1

); : : : ; (p

k

; '

k

)) = (p; '), where p = h

�

(p

1

; : : : ; p

k

) and ' = f(q; �

q

�) j

q 2 F

p

; �

q

= rhs

M

(q; �; hp

1

; : : : ; p

k

i)g.

Before we prove that the look-ahead automaton of �(M) is as desired, let us show that

it is well de�ned, i.e., that ' 2 �

p

. We must show that there is an s 2 L

p

suh that,

for every q 2 F

p

, '(q) = M

q

(s). Sine '

i

2 �

p

i

for i 2 [k℄, there are s

i

2 L

p

i

suh that

'

i

(r) = M

r

(s

i

) for all i 2 [k℄ and r 2 F

p

i

. Hene, for q 2 F

p

, '(q) = �

q

� with �

q

=

rhs

M

(q; �; hp

1

; : : : ; p

k

i) and � = [[hr; x

i

i  M

r

(s

i

) j hr; x

i

i 2 hF

p

i

;X

k

i℄℄. By Lemma 5.3

and the de�nition of F

p

, only hr; x

i

i with r 2 F

p

i

our in �

q

. Therefore we an extend

� to all elements of hQ;X

k

i. By Lemma 3.5 we get '(q) = M

q

(s), for s = �(s

1

; : : : ; s

k

).

Sine p = h

�

(p

1

; : : : ; p

k

), s 2 L

p

.

Claim 1: Let s 2 T

�

. If h

0

(s) = (p; '), then p = h(s) and '(q) =M

q

(s) for every q 2 F

p

.

The proof is by indution on the struture of s. Let s = �(s

1

; : : : ; s

k

) with s

1

; : : : ; s

k

2 T

�

and h

0

(s

i

) = (p

i

; '

i

) 2 P

0

for i 2 [k℄. By de�nition, p = h

�

(p

1

; : : : ; p

k

) = h(s). For q 2 F

p

,

'(q) = rhs

M

(q; �; hp

1

; : : : ; p

k

i)�. By indution, '

i

(r) =M

r

(s

i

), for all i 2 [k℄ and r 2 F

p

i

.

For the same reason as above we an extend � to all elements of hQ;X

k

i to get M

q

(s).

This laim implies that �(M) satis�es point (iii) of i-properness. In fat, if (p; ') 2 P

0

then ' 2 �

p

, and so there exists s 2 L

p

suh that '(q) = M

q

(s) for every q 2 F

p

. Thus,

by Claim 1, h

0

(s) = (p; '). Hene, L

(p;')

6= ?.

The MTT

R

�(M) realizes the same translation asM . This follows from Claim 2 for q = q

0

.

Claim 2: For q 2 Q and s 2 T

�

, �(M)

q

(s) =M

q

(s).

Again we prove this by indution on s. Let s = �(s

1

; : : : ; s

k

) with s

1

; : : : ; s

k

2 T

�

and

h

0

(s

i

) = (p

i

; '

i

) 2 P

0

for i 2 [k℄. By the de�nition of the rules of �(M) and by Lemma 3.5,

�(M)

q

(s) equals rhs

M

(q; �; hp

1

; : : : ; p

k

i)�[[ ℄℄, where [[ ℄℄ = [[hq

0

; x

i

i  �(M)

q

0

(s

i

) j hq

0

; x

i

i 2

hQ;X

k

i℄℄. By Claim 1, � equals [[hr; x

i

i  M

r

(s

i

) j r 2 F

p

i

; i 2 [k℄℄℄, and by in-

dution [[ ℄℄ = [[hq

0

; x

i

i  M

q

0

(s

i

) j hq

0

; x

i

i 2 hQ;X

k

i℄℄. Thus �[[ ℄℄ = [[ ℄℄ and we get

rhs

M

(q; �; hp

1

; : : : ; p

k

i)[[ ℄℄ whih, by Lemma 3.5, equals M

q

(s).

The MTT

R

�(M) is produtive beauseM is produtive and the appliation of � does not

delete nodes. Formally, onsider a right-hand side �

q

� of �(M) with �

q

= rhs

M

(q; �; hp

1

;

: : : ; p

k

i), q 2 Q

(m)

, and m � 0. For every r 2 F

p

i

, '

i

(r) = M

r

(s) for some s 2 T

�

.

Thus, by Lemma 3.10(1), #

y

�

('

i

(r)) � 1 for every � 2 [rank

Q

(r)℄, i.e., the substitution

� is nondeleting. Sine, for j 2 [m℄, #

y

j

(�

q

) � 1 this implies, by Lemma 2.1, that

#

y

j

(�

q

�) � 1, i.e., �(M) is nondeleting. Analogously, by Lemma 3.10(2), #

y

�

('

i

(r)) 62 Y

for r 2 F

p

i

and � 2 [rank

Q

(r)℄, i.e., the substitution � is nonerasing. Sine, for j 2 [m℄,

�

q

62 Y this implies, by Lemma 2.2, that �

q

� 62 Y , i.e., �(M) is nonerasing.

Sine �(M) has the same states as M , �(M) is a T

R

, if M is.

We now disuss the reason for iterating �. Consider an ourrene of hr; x

i

i in the right-

hand side of a rule of �(M). We know that r 62 F

p

i

, beause eah suh ourrene is

removed by the substitution � in the de�nition of the rules of �(M). Thus, Out(r; p

i

) is

in�nite. However, through the new look-ahead, the set L

p

i

is partitioned into sets L

(p

i

;'

i

)

,

'

i

2 �

p

i

(to see this, onsider an s 2 L

p

i

; then, by Claim 1, s 2 L

(p

i

;'

i

)

, where '

i

is de�ned

as '

i

(q) = M

q

(s) for every q 2 F

p

i

). Thus, we merely know, by Claim 2, that the union

of Out(r; (p

i

; '

i

)) for all '

i

2 �

p

i

is in�nite, but for a partiular '

i

2 �

p

i

, Out(r; (p

i

; '

i

))
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might be �nite, whih means that �(M) is not i-proper (see Example 5.5).

Let us now show that the iterative appliation of � yields an i-proper MTT

R

. In partiular,

we iterate the appliation of � until

F

(p;')

= F

p

for every (p; ') 2 P

0

: (�)

It follows from (�) that if hr; x

i

i ours in the right-hand side of a rule of �(M), then by

the de�nition of �, r 62 F

p

i

, and hene by (�), r 62 F

(p

i

;'

i

)

. Thus (�) implies (point (i) of)

i-properness of �(M), as argued in the beginning of this proof.

It remains to show that after a �nite number of appliations of �, (�) holds. Clearly, F

p

�

F

(p;')

� Q, beause Out(q; (p; ')) � Out(q; p) as argued above. Let us �rst show that, for

every (p; ') 2 P

0

, F

(p;')

= F

p

implies that (after onstruting �(�(M))) F

((p;');'

0

)

= F

(p;')

for every '

0

2 �

(p;')

. Let '

0

2 �

(p;')

, i.e., there is an s 2 L

(p;')

suh that '

0

(q) = �(M)

q

(s)

for every q 2 F

(p;')

= F

p

. Sine, by Claims 1 and 2, �(M)

q

(s) = M

q

(s) = '(q) for every

q 2 F

p

, it follows that '

0

= '. This means that L

((p;');'

0

)

= fs 2 L

(p;')

j �(M)

q

(s) = '

0

(q)

for all q 2 F

(p;')

g equals fs 2 L

(p;')

j M

q

(s) = '(q) for all q 2 F

p

g = L

(p;')

. This implies

that Out(q; ((p; '); '

0

)) = Out(q; (p; ')) and thus F

((p;');'

0

)

= fq 2 Q j Out(q; ((p; '); '

0

))

is �niteg = fq 2 Q j Out(q; (p; ')) is �niteg = F

(p;')

.

Now, after at most k = jQj iterations of �, (�) holds. Let (� � � ((p; '

1

); '

2

) : : : ; '

k

) be

denoted by (p; '

1

; : : : ; '

k

). Then, for every look-ahead state (p; '

1

; : : : ; '

k

) of �

k

(M):

F

(p;'

1

;:::;'

k�1

)

= F

(p;'

1

;:::;'

k

)

. This is true beause F

p

= ? implies F

(p;'

1

)

= ? (sine

�

p

= f'

1

g), and F

(p;'

1

;:::;'

i

)

= F

(p;'

1

;:::;'

i+1

)

implies that F

(p;'

1

;:::;'

j

)

= F

(p;'

1

;:::;'

i

)

for all

j � i (by the above). Sine a sequene of nonempty subsets of Q in whih eah set is a

proper subset of the next one has length at most jQj = k, F

(p;'

1

;:::;'

k�1

)

= F

(p;'

1

;:::;'

k

)

.

Thus, M

0

= �

k

(M) is i-proper. 2

The next example illustrates the onstrution of an i-proper MTT

R

following the proof of

Lemma 5.4.

Example 5.5 For simpliity let us onsider an MTT

R

without parameters, i.e., a T

R

. Let

M = (Q;P;�;�; q

0

; R; h) be a T

R

with Q = fq

0

; q; q

0

; ig, P = fpg, � = f�

(0)

; 

(1)

; �

(1)

g,

� = f�

(0)

; �

(0)

; 

(1)

; �

(1)

; Æ

(2)

g, and let R onsist of the following rules.

hq

0

; (x

1

)i ! Æ(hq; x

1

i; hi; x

1

i) hpi

hq

0

; �(x

1

)i ! hq

0

; x

1

i hpi

hq; (x

1

)i ! � hpi

hq; �(x

1

)i ! � hpi

hq

0

; (x

1

)i ! � hpi

hq

0

; �(x

1

)i ! �(hi; x

1

i) hpi

hi; (x

1

)i ! (hi; x

1

i) hpi

hi; �(x

1

)i ! �(hi; x

1

i) hpi

hr; �i ! � for eah r 2 Q

Let us now de�ne M

1

= �(M) = (Q;P

0

;�;�; q

0

; R

0

; h

0

). We obtain F

p

= fqg and �

p

=

f'

�

; '

�

g with '

�

= f(q; �)g and '

�

= f(q; �)g, and thus P

0

= f(p; '

�

); (p; '

�

)g. As an
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easily be veri�ed, the rules of the look-ahead automaton of M

1

look as follows: h

0

�

=

(p; '

�

), h

0



((p; '

�

)) = h

0



((p; '

�

)) = (p; '

�

), h

0

�

((p; '

�

)) = h

0

�

((p; '

�

)) = (p; '

�

).

The q-, q

0

-, and i-rules in R

0

are idential to the ones in R for both new look-ahead states.

The q

0

-rules in R

0

look as follows:

hq

0

; (x

1

)i ! Æ(�; hi; x

1

i) h(p; '

�

)i

hq

0

; (x

1

)i ! Æ(�; hi; x

1

i) h(p; '

�

)i

hq

0

; �(x

1

)i ! hq

0

; x

1

i h(p; '

�

)i

hq

0

; �(x

1

)i ! hq

0

; x

1

i h(p; '

�

)i

Note that L

(p;'

�

)

= f�g [ f(s) j s 2 T

�

g and L

(p;'

�

)

= f�(s) j s 2 T

�

g. Hene

Out(q

0

; (p; '

�

)) = f�g, and so the T

R

M

1

is not i-proper yet, beause F

(p;'

�

)

= fq; q

0

g 6=

F

p

. Thus we have to apply � again. Let M

0

= �(M

1

) = (Q;P

00

;�;�; q

0

; R

00

; h

00

).

We get �

(p;'

�

)

= f'g, with ' = f(q; �); (q

0

; �)g and �

(p;'

�

)

= f'

�

g. Thus P

00

=

f((p; '

�

); '); ((p; '

�

); '

�

)g. The look-ahead automaton of M

0

stays the same as for M

1

exept for a renaming of states: (p; '

�

) by ((p; '

�

); ') and (p; '

�

) by ((p; '

�

); '

�

). The

q-, q

0

- and i-rules in R

00

are idential to the ones in R

0

(and R) for all look-ahead states.

The q

0

-rules in R

00

look as follows:

hq

0

; (x

1

)i ! Æ(�; hi; x

1

i) h((p; '

�

); ')i

hq

0

; (x

1

)i ! Æ(�; hi; x

1

i) h((p; '

�

); '

�

)i

hq

0

; �(x

1

)i ! � h((p; '

�

); ')i

hq

0

; �(x

1

)i ! hq

0

; x

1

i h((p; '

�

); '

�

)i

The T

R

M

0

is i-proper beause F

((p;'

�

);')

= fq; q

0

g = F

(p;'

�

)

and F

((p;'

�

);'

�

)

= fqg =

F

(p;'

�

)

. We �nally note that it is easy to transform M into a generalized syntax-direted

translation sheme that forms a ounter-example to the proof of Lemma 5.5 of [AU71℄. 2

5.2 Parameter Proper

Consider the following MTT M whih is of linear size inrease, but not �nite opying in

the parameters. LetM = (Q;�;�; q

0

; R) with Q = fq

(0)

0

; q

(1)

g, � = f�

(2)

; 

(2)

; �

(0)

; �

(0)

g,

and � = f�

(2)

; 

(2)

; �

(1)

; �

(1)

; ��

(0)

; �

(0)

g. For all Æ 2 f�; g and a 2 f�; �g, let the following

rules be in R.

hq

0

; Æ(x

1

; x

2

)i ! Æ(hq; x

1

i(

�

Æ); hq; x

2

i(

�

Æ))

hq; Æ(x

1

; x

2

)i(y

1

) ! Æ(hq; x

1

i(y

1

); hq; x

2

i(y

1

))

hq

0

; ai ! a(�a)

hq; ai(y

1

) ! a(y

1

)

Intuitively, M moves the root symbol of the input tree to eah of its leaves; e.g., for s =

�((�; �); �) we get �

M

(s) = �((�(��); �(��); �(��))). Thus,M is lsi (beause size(�

M

(s)) �

2 � size(s)). Clearly, M is not fp, beause #

y

1

(M

q

(s)) equals the number of leaves of s.

This time, the reason is that M generates a lot of parameter ourrenes whih have only

�nitely many `argument trees' (viz., �� and �). A j-th argument tree for q and p is a tree

�

j

suh that hhq; pii(�

1

; : : : ; �

m

) is a subtree of some

^

M

q

0

(s[u p℄).
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The idea of the next normal form is to eliminate parameters y

j

of q for whih there are

only �nitely many j-th argument trees (for look-ahead p). This an be done by keeping the

information on these argument trees in the states of the new MTT

R

and by appropriately

replaing y

j

by the orret argument tree in eah right-hand side. For the example MTT

M of above we have to add states q

Æ

, Æ 2 f�; g of rank zero, and take as rules

hq

0

; Æ(x

1

; x

2

)i ! Æ(hq

Æ

; x

1

i; hq

Æ

; x

2

i)

hq

Æ

; �(x

1

; x

2

)i ! �(hq

Æ

; x

1

i; hq

Æ

; x

2

i) for � 2 f�; g

hq

0

; ai ! a(�a) for a 2 f�; �g

hq

Æ

; ai ! a(

�

Æ) for a 2 f�; �g

This shows that the translation �

M

an atually be realized by a top-down tree transduer.

De�nition 5.6 (parameter proper, proper)

An MTT

R

M = (Q;P;�;�; q

0

; R; h) is parameter proper (for short, p-proper), if for every

q 2 Q

(m)

, m � 1, j 2 [m℄, and p 2 P

(i) if hhq; pii is reahable, then the set Arg(q; j; p) =

ft=vj j 9s 2 T

�

; u 2 V (s) : t =

^

M

q

0

(s[u p℄); v 2 V (t); t[v℄ = hhq; piig

is in�nite, and

(ii) if hhq; pii is not reahable, then #

y

j

(M

q

(s)) � 1 for all s 2 L

p

.

The MTT

R

M is proper, if it is produtive and both i-proper and p-proper. 2

Note that Arg(q; j; p) � T

hhQ;fpgii[�

. Note also that hhq; pii is reahable if and only if

Arg(q; j; p) 6= ?.

Point (ii) in De�nition 5.6 says that if a parameter appears more than one in M

q

(s),

then hhq; h(s)ii is reahable. This (mild) additional requirement is needed to fore an lsi

MTT

R

to be fp, beause De�nition 4.6 of the fp property requires #

y

j

(M

q

(s)) � N for

all states q, i.e., hhq; h(s)ii might not be reahable.

Similar to the ase of i-properness, we present two lemmas onerning the �niteness of

Arg(q; j; p). First, let us show that it is deidable whether Arg(q; j; p) is in�nite.

Lemma 5.7 Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. For given q 2 Q

(m)

, m � 1, j 2

[m℄, and p 2 P , it is deidable whether or not Arg(q; j; p) is �nite. Moreover, Arg(q; j; p)

an be onstruted, if it is �nite.

Proof. Let K

p

be the regular tree language fs 2 T

^

�

j p ours exatly one in sg with

^

� = �[fp

(0)

g. Then �

^

M

(K

p

) � T

hhQ;fpgii[�

. We now onstrut a partial nondeterministi

top-down tree transduer N whih takes a tree in T

hhQ;fpgii[�

as input and generates as

output the j-th subtree of an ourrene of hhq; pii. (A partial nondeterministi top-down

tree transduer is de�ned as in De�nitions 3.1 and 3.2 but for q and � there may be none

or several rules of the form hq; �(x

1

; : : : ; x

k

)i ! �.) Let N = (fr

(0)

; id

(0)

g;�;�; r; R

0

),

where � = hhQ; fpgii [� and R

0

onsists of the following rules.
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hr; (x

1

; : : : ; x

k

)i ! hr; x

i

i 8 2 �

(k)

; k � 1; i 2 [k℄

hr; hhq; pii(x

1

; : : : ; x

m

)i ! hid; x

j

i

hid; (x

1

; : : : ; x

k

)i ! (hid; x

1

i; : : : ; hid; x

k

i) 8 2 �

(k)

; k � 0

Clearly, �

N

(�

^

M

(K

p

)) = Arg(q; j; p), beause every tree t in �

^

M

(K

p

) equals

^

M

q

0

(s[u p℄)

for some s and u, and for every subtree hhq; pii(�

1

; : : : ; �

m

) of t: (t; �

j

) 2 �

N

. The �niteness

of L = �

N

(�

^

M

(K

p

)) an be deided by Lemma 3.7, and in ase of �niteness L an be

onstruted. 2

Lemma 5.8 Let M = (Q;P;�;�; q

0

; R; h) be an i-proper and produtive MTT

R

. Let

q 2 Q

(n)

, � 2 �

(k)

, n; k � 0, and p; p

1

; : : : ; p

k

2 P suh that p = h

�

(p

1

; : : : ; p

k

) and hhq; pii

is reahable. Let hr; x

i

i(t

1

; : : : ; t

m

) be a subtree of rhs

M

(q; �; hp

1

; : : : ; p

k

i) with r 2 Q

(m)

,

m � 0, i 2 [k℄, and t

1

; : : : ; t

m

2 T

hQ;X

k

i[�

(Y

n

).

For j 2 [m℄, the set Arg(r; j; p

i

) is in�nite if in t

j

there is

(i) an ourrene of y

�

2 Y

n

, where Arg(q; �; p) is in�nite, or

(ii) an ourrene of an element of hQ;X

k

� fx

i

gi, or

(iii) an ourrene of y

�

2 Y

n

suh that there is a � 2 Arg(q; �; p) for whih �[[rhs℄℄

ontains an ourrene of an element of hQ;X

k

� fx

i

gi, where [[rhs℄℄ denotes the

substitution [[hhq

0

; pii  rhs

M

(q

0

; �; hp

1

; : : : ; p

k

i) j q

0

2 Q℄℄.

Proof. Consider s 2 T

�

, u 2 V (s), and �

1

; : : : ; �

n

2 T

hhQ;fpgii[�

suh that hhq; pii(�

1

; : : : ;

�

n

) is a subtree of

^

M

q

0

(s[u p℄). Consider also s

�

2 L

p

�

for � 2 [k℄. Note that suh trees

exist beause hhq; pii is reahable and beause M satis�es point (iii) of i-properness.

Let s

0

= s[u �(s

1

; : : : ; s

k

)℄. Note that s

0

=u = �(s

1

; : : : ; s

k

) is in L

p

and that s

0

[u p℄ =

s[u  p℄. By Lemma 4.3,

^

M

q

0

(s

0

[ui  p

i

℄) =

^

M

q

0

(s[u  p℄)[[rhs℄℄	

s

1

;:::;s

k

[[i℄℄, with [[rhs℄℄

as in (iii), 	

s

1

;:::;s

k

= [[hq

0

; x

�

i  M

q

0

(s

�

) j q

0

2 Q; � 2 [k℄ � fig℄℄, and [[i℄℄ = [[hq

0

; x

i

i  

hhq

0

; p

i

ii j q

0

2 Q℄℄.

Sine M is nondeleting, so is [[rhs℄℄ and, by Lemma 3.10(1), so is 	

s

1

;:::;s

k

. Then, by

Lemma 2.1, the tree

^

M

q

0

(s

0

[ui  p

i

℄) has a subtree hhq; pii(�

1

; : : : ; �

n

)[[rhs℄℄	

s

1

;:::;s

k

[[i℄℄ =

��

�

1

;:::;�

n

	

s

1

;:::;s

k

[[i℄℄ with � = rhs

M

(q; �; hp

1

; : : : ; p

k

i) and �

�

1

;:::;�

n

= [y

�

 �

�

[[rhs℄℄ j � 2

[n℄℄. Again by Lemma 2.1 it has a subtree hhr; p

i

ii(t

0

1

; : : : ; t

0

m

), where, for j 2 [m℄,

t

0

j

= t

j

�

�

1

;:::;�

n

	

s

1

;:::;s

k

[[i℄℄ 2 Arg(r; j; p

i

): (�)

(i) Let j 2 [m℄ suh that y

�

is a subtree of t

j

. By Lemma 2.1, y

�

�

�

1

;:::;�

n

	

s

1

;:::;s

k

[[i℄℄ =

�

�

[[rhs℄℄	

s

1

;:::;s

k

[[i℄℄ is a subtree of t

0

j

. Thus size(t

0

j

) � size(�

�

[[rhs℄℄	

s

1

;:::;s

k

[[i℄℄) whih is �

size(�

�

) by Lemma 2.7 and the fat that [[rhs℄℄ and 	

s

1

;:::;s

k

are produtive by Lemma 3.10.

We now let �

1

; : : : ; �

n

vary in (�): For every �

�

in the in�nite set Arg(q; �; p) there are

s 2 T

�

, u 2 V (s), and �

�

, � 2 [n℄ � f�g suh that hhq; pii(�

1

; : : : ; �

n

) is a subtree of

^

M

q

0

(s[u  p℄); then the size of t

j

�

�

1

;:::;�

n

	

s

1

;:::;s

k

[[i℄℄ 2 Arg(r; j; p

i

) is � size(�

�

). Thus,

Arg(r; j; p

i

) is in�nite.
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(ii) Let j 2 [m℄, q

0

2 Q

(l)

, l � 0, and � 2 [k℄ � fig suh that t

j

has a subtree

hq

0

; x

�

i(

�

t

1

; : : : ;

�

t

l

) for some trees

�

t

1

; : : : ;

�

t

l

. Then hhq

0

; p

�

ii is reahable, by the same ar-

gument as given above equation (�) (where we showed that hhr; p

i

ii is reahable). By

Lemma 2.1, t

0

j

has the subtree M

q

0

(s

�

)[y

�

 

�

t

�

�

�

1

;:::;�

n

	

s

1

;:::;s

k

[[i℄℄ j � 2 [l℄℄ the size of

whih is � size(M

q

0

(s

�

)). Sine M satis�es points (i) and (ii) of i-properness, the set

Out(q

0

; p

�

) = fM

q

0

(s

�

) j s

�

2 L

p

�

g is in�nite. We now let s

�

vary in (�): For ev-

ery s

�

2 L

p

�

the size of t

j

�

�

1

;:::;�

n

	

s

1

;:::;s

k

[[i℄℄ 2 Arg(r; j; p

i

) is � size(M

q

0

(s

�

)). Thus,

Arg(r; j; p

i

) is in�nite.

(iii) Let s 2 T

�

and u 2 V (s) suh that

^

M

q

0

(s[u  p℄) has a subtree hhq; pii(�

1

; : : : ; �

n

)

for trees �

1

; : : : ; �

n

and �

�

[[rhs℄℄ has a subtree hq

0

; x

�

i(

�

t

1

; : : : ;

�

t

l

) for some q

0

2 Q

(l)

, l � 0,

� 2 [k℄ � fig, and trees

�

t

1

; : : : ;

�

t

l

. It follows from Lemma 2.6 (S

1

= 0) that �

�

ontains

some hhq

00

; pii, q

00

2 Q, suh that rhs

M

(q

00

; �; hp

1

; : : : ; p

k

i) ontains hq

0

; x

�

i. Sine hhq

00

; pii

is reahable (beause �

�

is a subtree of

^

M

q

0

(s[u p℄)), hhq

0

; p

�

ii is reahable by the same

argument as used above (�). Thus, Out(q

0

; p

�

) is in�nite. Let j 2 [m℄ suh that y

�

ours

in t

j

. Then, by Lemma 2.1, t

0

j

has a subtree M

q

0

(s

�

)[y

�

 

�

t

�

	

s

1

;:::;s

k

[[i℄℄ j � 2 [l℄℄ the size

of whih is � size(M

q

0

(s

�

)). Letting s

�

range over L

p

�

in (�) this implies, analogous to

ase (ii), that Arg(r; j; p

i

) is in�nite. 2

We are now ready to prove that properness (i.e., i-properness, p-properness, and produ-

tiveness) is a normal form for MTT

R

s.

Theorem 5.9 For every MTT

R

M there is (e�etively) a proper MTT

R

prop(M) equiv-

alent to M . If M is a T

R

, then so is prop(M).

Proof. Let M = (Q;P;�;�; q

0

; R; h). By Lemma 5.4 we may assume that M is pro-

dutive and i-proper. Let q 2 Q

(n)

and p 2 P . The idea of onstruting prop(M) is to

delete all parameters y

j

of q for whih Arg(q; j; p) is �nite, and to keep the parameters

y

j

1

; : : : ; y

j

m

of q for whih Arg(q; j

�

; p) is in�nite. The information on the atual parameter

tree whih has to be substituted for y

j

is stored in the states of prop(M). More preisely,

a state of prop(M) will be of the form (q; '), where ' is a mapping whih assoiates with

j

�

the new parameter y

�

, and with j a tree �

j

in the �nite set Arg(q; j; p).

Let us �rst de�ne an auxiliary notion. For every q 2 Q

(n)

, n � 0, and p 2 P , let �

q;p

be

the (�nite) set of all mappings ' from [n℄ to T

hhQ;fpgii[�

[ Y suh that there are s 2 T

�

,

u 2 V (s), and �

1

; : : : ; �

n

2 T

hhQ;fpgii[�

:

^

M

q

0

(s[u  p℄) has a subtree hhq; pii(�

1

; : : : ; �

n

)

and F

q;p

('; �

1

; : : : ; �

n

). The prediate F

q;p

('; �

1

; : : : ; �

n

) holds if for all j 2 [n℄: if j = j

�

for an � 2 [m℄ then '(j) = y

�

, and otherwise '(j) = �

j

, where fj

1

; : : : ; j

m

g = fj 2 [n℄ j

Arg(q; j; p) is in�niteg and j

1

< � � � < j

m

.

By the de�nition of Arg, '(j) 62 Y implies '(j) 2 Arg(q; j; p). Note that �

q;p

is �nite

beause '(j) 2 Y

m

[K

j

withK

j

= Arg(q; j; p) for �nite Arg(q; j; p) and K

j

= ? otherwise.

Therefore, �

q;p

an be obtained e�etively by heking, for the (�nitely many) mappings

' : [n℄ ! K, whether or not ' 2 �

q;p

(where K = Y

m

[

S

j2[n℄

K

j

an be onstruted by

Lemma 5.7). This is deidable beause, apart from the requirement that '(j

�

) = y

�

for

all � 2 [m℄ (whih is deidable by Lemma 5.7), ' is in �

q;p

i� �

�1

^

M

(L) \ S is nonempty,

where S = fs[u  p℄ j s 2 T

�

; u 2 V (s)g and L onsists of all trees in T

hhQ;fpgii[�

whih

have a subtree hhq; pii(�

1

; : : : ; �

n

) with �

j

= '(j) for all j 62 '

�1

(Y ). Clearly, L is regular
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and hene, by Lemma 3.6, �

�1

^

M

(L) is regular. Sine S is regular, so is �

�1

^

M

(L) \ S, whih

implies that its emptiness is deidable.

We �rst onstrut the MTT

R

�(M) by deleting, in the right-hand side of a rule (with

look-ahead hp

1

; : : : ; p

k

i), all parameters y

j

of hr; x

i

i for whih Arg(r; j; p

i

) is �nite and

replae them by the appropriate tree in Arg(r; j; p

i

). This tree is oded in the states of

�(M). Due to the new states of �(M), a parameter y

j

�

of r with Arg(r; j

�

; p

i

) in�nite

might orrespond in �(M) to the parameter y

�

of a state (r; ') with �nite Arg((r; '); �; p

i

).

For this reason we have to iterate the appliation of � (as in the onstrution in the proof

of Lemma 5.4) until the ranks of the states do not hange anymore. This results in the

desired MTT

R

prop(M).

De�ne �(M) = (Q

0

; P;�;�; (q

0

;?); R

0

; h) with Q

0

= f(q; ')

(m)

j q 2 Q;9p 2 P : ' 2

�

q;p

;m = j'

�1

(Y )jg. For every (q; ') 2 Q

0

(m)

, � 2 �

(k)

, q 2 Q

(n)

, m;n; k � 0, and

p; p

1

; : : : ; p

k

2 P with p = h

�

(p

1

; : : : ; p

k

), let the rule

h(q; '); �(x

1

; : : : ; x

k

)i(y

1

; : : : ; y

m

)! � hp

1

; : : : ; p

k

i

be in R

0

suh that if ' 62 �

q;p

then � is an arbitrary (\dummy") tree in T

�

(Y

m

)� Y with

#

y

j

(�) = 1 for every j 2 [m℄, and if ' 2 �

q;p

then � = repl(rhs(�)�), where � is the

(q; �; hp

1

; : : : ; p

k

i)-rule of M , � denotes the substitution

[y

j

 '(j)[[rhs℄℄ j j 2 [n℄℄ with [[rhs℄℄ = [[hhr; pii  rhs

M

(r; �; hp

1

; : : : ; p

k

i) j r 2 Q℄℄;

and for every subtree t 2 T

hQ;X

k

i[�

(Y

m

) of rhs(�)� the tree repl(t) is reursively de�ned

as follows:

� for t 2 Y

m

, repl(t) = t,

� for t = Æ(t

1

; : : : ; t

l

) with Æ 2 �

(l)

, l � 0, and t

1

; : : : ; t

l

2 T

hQ;X

k

i[�

(Y

m

), repl(t) =

Æ(repl(t

1

); : : : ; repl(t

l

)), and

� for t = hq

0

; x

i

i(t

1

; : : : ; t

l

), hq

0

; x

i

i 2 hQ;X

k

i

(l)

, l � 0, and t

1

; : : : ; t

l

2 T

hQ;X

k

i[�

(Y

m

),

repl(t) = h(q

0

; '

0

); x

i

i(repl(t

j

1

); : : : ; repl(t

j

�

));

where fj

1

; : : : ; j

�

g = fj 2 [l℄ j Arg(q

0

; j; p

i

) is in�niteg, j

1

< � � � < j

�

, and for j 2 [l℄,

'

0

(j) =

�

y

�

if j = j

�

for an � 2 [�℄

t

j

[[i℄℄ otherwise

with [[i℄℄ = [[hr; x

i

i  hhr; p

i

ii j r 2 Q℄℄.

This ends the onstrution of �(M).

Well-de�nedness of �(M): To prove that �(M) is well de�ned, we have to show that

repl(rhs(�)�) is in T

hQ

0

;X

k

i[�

(Y

m

). Sine rhs(�) 2 T

hQ;X

k

i[�

(Y

n

) and '(Y

n

) � Y

m

[

T

hhQ;fpgii[�

(beause ' 2 �

q;p

), it follows that rhs(�)� 2 T

hQ;X

k

i[�

(Y

m

). To prove

that repl(rhs(�)�) 2 T

hQ

0

;X

k

i[�

(Y

m

) we must show that, in the de�nition of repl, if

hq

0

; x

i

i(t

1

; : : : ; t

l

) is a subtree of rhs(�)�, then (q

0

; '

0

) 2 Q

0

, i.e., there is a p

0

suh that

'

0

2 �

q

0

;p

0

.
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We will show that '

0

2 �

q

0

;p

i

, i.e., that there are s

0

2 T

�

, u

0

2 V (s

0

), and �

0

1

; : : : ; �

0

l

2

T

hhQ;fp

i

gii[�

suh that hhq

0

; p

i

ii(�

0

1

; : : : ; �

0

l

) is a subtree of

^

M

q

0

(s

0

[u

0

 p

i

℄) and F

q

0

;p

i

('

0

; �

0

1

;

: : : ; �

0

l

). Sine ' 2 �

q;p

, there are s 2 T

�

, u 2 V (s), and �

1

; : : : ; �

n

2 T

hhQ;fpgii[�

suh that

hhq; pii(�

1

; : : : ; �

n

) is a subtree of

^

M

q

0

(s[u p℄) and F

q;p

('; �

1

; : : : ; �

n

). Note in partiular

that hhq; pii is reahable. Take s

0

= s[u  �(s

1

; : : : ; s

k

)℄ with s

�

2 L

p

�

for all � 2 [k℄,

and take u

0

= ui. The s

�

exist, beause M is i-proper (point (iii)). By Lemma 4.3,

^

M

q

0

(s

0

[u

0

 p

i

℄) equals

^

M

q

0

(s[u  p℄)[[rhs℄℄[[::℄℄[[i℄℄, where [[::℄℄ denotes [[hr; x

�

i  M

r

(s

�

) j

hr; x

�

i 2 hQ;X

k

� fx

i

gi℄℄, and [[rhs℄℄ and [[i℄℄ are as in the de�nition of �(M). Sine

hhq; pii(�

1

; : : : ; �

n

) is a subtree of

^

M

q

0

(s[u p℄) it follows, by Lemma 2.1 and the fat that

[[::℄℄ is nondeleting by Lemma 3.10(1), that

^

M

q

0

(s

0

[u

0

 p

i

℄) has a subtree rhs(�)�

0

[[::℄℄[[i℄℄,

where �

0

= [y

�

 �

�

[[rhs℄℄ j � 2 [n℄℄.

Consider the two ases (i) there are t

0

1

; : : : ; t

0

l

2 T

hQ;X

k

i[�

(Y

n

) suh that hq

0

; x

i

i(t

0

1

; : : : ; t

0

l

)

is a subtree of rhs(�) and t

0

j

� = t

j

for all j 2 [l℄, and (ii) hq

0

; x

i

i(t

1

; : : : ; t

l

) is a subtree of

'(�)[[rhs℄℄ for some � 2 [n℄.

(i) Sine rhs(�) has a subtree hq

0

; x

i

i(t

0

1

; : : : ; t

0

l

), it follows, by appliation of �

0

[[::℄℄[[i℄℄ (and

Lemma 2.1), that

^

M

q

0

(s

0

[u

0

 p

i

℄) has a subtree hhq

0

; p

i

ii(�

0

1

; : : : ; �

0

l

) with �

0

j

= t

0

j

�

0

[[::℄℄[[i℄℄ for

every j 2 [l℄. Let j 2 [l℄ suh that Arg(q

0

; j; p

i

) is �nite. Then by Lemma 5.8(ii) and (iii),

both t

0

j

and all �

�

[[rhs℄℄ suh that y

�

ours in t

0

j

, do not ontain elements of hQ;X

k

�fx

i

gi.

Thus �

0

j

= t

0

j

�

0

[[::℄℄[[i℄℄ equals t

0

j

�

0

[[i℄℄. By Lemma 5.8(i), t

0

j

does not ontain any y

�

2 Y

n

suh that Arg(q; �; p) is in�nite. Thus, sine F

q;p

('; �

1

; : : : ; �

n

), t

0

j

�

0

[[i℄℄ = t

0

j

�[[i℄℄ = t

j

[[i℄℄.

By the de�nition of '

0

this shows that F

q

0

;p

i

('

0

; �

0

1

; : : : ; �

0

l

).

(ii) There is an ourrene of y

�

in rhs(�), beause M is nondeleting. Sine '(�) = �

�

, by

the fat that F

q;p

('; �

1

; : : : ; �

n

) holds, this means that in rhs(�)�

0

[[::℄℄[[i℄℄ there is a subtree

hhq

0

; p

i

ii(�

0

1

; : : : ; �

0

l

) with �

0

j

= t

j

[[::℄℄[[i℄℄ for j 2 [l℄. Sine hq

0

; x

i

i(t

1

; : : : ; t

l

) is a subtree

of �

�

[[rhs℄℄, it follows from the de�nition of seond-order tree substitution that �

�

has a

subtree hhq

00

; pii(�

1

; : : : ; �

�

) and the right-hand side of the (q

00

; �; hp

1

; : : : ; p

k

i)-rule �

00

has a

subtree hq

0

; x

i

i(t

0

1

; : : : ; t

0

l

) suh that t

j

= t

0

j

[y

�

 �

�

[[rhs℄℄ j � 2 [�℄℄ for every j 2 [l℄. Note

that hhq

00

; pii is reahable beause it ours in �

�

. Now let j 2 [l℄ suh that Arg(q

0

; j; p

i

)

is �nite. Then, as in ase (i), by Lemma 5.8(ii) and (iii) applied to �

00

, both t

0

j

and all

�

�

[[rhs℄℄ suh that y

�

ours in t

0

j

do not ontain elements of hQ;X

k

�fx

i

gi. Hene t

j

does

not ontain elements of hQ;X

k

�fx

i

gi and thus �

0

j

= t

j

[[::℄℄[[i℄℄ = t

j

[[i℄℄. By the de�nition of

'

0

this shows that F

q

0

;p

i

('

0

; �

0

1

; : : : ; �

0

l

).

Equivalene of �(M) and M : We now prove that �(M) realizes the same translation as

M . This follows from Claim 1 for (q; ') = (q

0

;?).

Claim 1: Let s 2 T

�

, q 2 Q

(n)

, n � 0, and p = h(s). For every ' 2 �

q;p

, �(M)

(q;')

(s) =

M

q

(s)�

0

, where �

0

= [y

j

 '(j)[[hhr; pii  M

r

(s) j r 2 Q℄℄ j j 2 [n℄℄.

This laim is proved by indution on the struture of s. Let the indution hypothesis be

denoted by IH1. Let s = �(s

1

; : : : ; s

k

) with � 2 �

(k)

, k � 0, and s

1

; : : : ; s

k

2 T

�

. For

i 2 [k℄ let p

i

= h(s

i

) and let m = rank

Q

0

((q; ')).

By Lemma 3.5, �(M)

(q;')

(�(s

1

; : : : ; s

k

)) = rhs

�(M)

((q; '); �; hp

1

; : : : ; p

k

i)[[ ℄℄, where [[ ℄℄ =

[[hr; x

i

i  �(M)

r

(s

i

) j hr; x

i

i 2 hQ

0

;X

k

i℄℄. By the de�nition of the right-hand sides of the

rules of �(M) we get repl(rhs(�)�)[[ ℄℄, where repl, �, and � are as in the de�nition of the

rules of �(M).
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For t = rhs(�)� it follows from Claim 2 that repl(rhs(�)�)[[ ℄℄ = rhs(�)�[[: : :℄℄, where

[[: : :℄℄ = [[hr; x

i

i  M

r

(s

i

) j hr; x

i

i 2 hQ;X

k

i℄℄. If we apply [[: : :℄℄ to rhs(�)� and use

Lemma 3.5 for M , then we get M

q

(s)�

0

whih proves Claim 1.

Claim 2: Let t 2 T

hQ;X

k

i[�

(Y

m

) be a subtree of rhs(�)�. Then repl(t)[[ ℄℄ = t[[: : :℄℄.

This laim is proved by indution on the struture of t. The indution hypothesis is

denoted by IH2.

If t 2 Y

m

, then repl(t)[[ ℄℄ = t[[ ℄℄ = t = t[[: : :℄℄. If t = Æ(t

1

; : : : ; t

l

) with Æ 2 �

(l)

, l � 0, and

t

1

; : : : ; t

l

2 T

hQ;X

k

i[�

(Y

m

), then repl(Æ(t

1

; : : : ; t

l

))[[ ℄℄ equals Æ(repl(t

1

)[[ ℄℄; : : : ; repl(t

l

)[[ ℄℄).

By IH2 this equals Æ(t

1

[[: : :℄℄; : : : ; t

l

[[: : :℄℄) = t[[: : :℄℄.

If t = hq

0

; x

i

i(t

1

; : : : ; t

l

) with hq

0

; x

i

i 2 hQ;X

k

i

(l)

, l � 0, and t

1

; : : : ; t

l

2 T

hQ;X

k

i[�

(Y

m

),

then repl(t)[[ ℄℄ equals h(q

0

; '

0

); x

i

i(repl(t

j

1

); : : : ; repl(t

j

�

))[[ ℄℄ with fj

1

; : : : ; j

�

g = fj 2 [l℄ j

Arg(q

0

; j; p

i

) is in�niteg and '

0

as in the de�nition of repl. Applying the substitution [[ ℄℄

we get

�(M)

(q

0

;'

0

)

(s

i

)[y

�

 repl(t

j

�

)[[ ℄℄ j � 2 [�℄℄:

Sine '

0

2 �

q

0

;p

i

(as shown for the well-de�nedness of �(M)), we an apply IH1 to

�(M)

(q

0

;'

0

)

(s

i

) and IH2 to repl(t

j

�

[[ ℄℄) to get

M

q

0

(s

i

)�

00

[y

�

 t

j

�

[[: : :℄℄ j � 2 [�℄℄

with �

00

= [y

j

 '

0

(j)[[:℄℄ j j 2 [l℄℄ and [[:℄℄ = [[hhr; p

i

ii  M

r

(s

i

) j r 2 Q℄℄.

By the de�nition of '

0

we an write this as

M

q

0

(s

i

)[y

j

 t

j

[[i℄℄[[:℄℄ j j 2 [l℄; j 6= j

�

for � 2 [�℄℄[y

j

�

 y

�

j � 2 [�℄℄[y

�

 t

j

�

[[: : :℄℄ j � 2 [�℄℄:

Sine '

0

2 �

q

0

;p

i

, t

j

is in T

hQ;fx

i

gi[�

for j 6= j

�

. Therefore, in t

j

[[i℄℄[[:℄℄ = t

j

[[hr; x

i

i  

M

r

(s

i

) j r 2 Q℄℄ we an extend the substitution to all elements of hQ;X

k

i to get t

j

[[: : :℄℄.

Altogether we get

M

q

0

(s

i

)[y

j

 t

j

[[: : :℄℄ j j 2 [l℄; j 6= j

�

for � 2 [�℄℄[y

j

�

 t

j

�

[[: : :℄℄ j � 2 [�℄℄

whih equals M

q

0

(s

i

)[y

j

 t

j

[[: : :℄℄ j j 2 [l℄℄ = hq

0

; x

i

i(t

1

; : : : ; t

l

)[[: : :℄℄. This ends the proof

of Claim 2.

Nondeleting of �(M): Consider the ((q; '); �; hp

1

; : : : ; p

k

i)-rule r of �(M) and let '

�1

(Y

m

) =

fj

1

; : : : ; j

m

g with j

1

< � � � < j

m

. Let � 2 [m℄. If r is a dummy rule, then #

y

�

(rhs(r)) = 1.

Otherwise rhs(r) = repl(rhs(�)�), where � is the (q; �; hp

1

; : : : ; p

k

i)-rule of M . Sine M

is nondeleting, y

j

�

ours in rhs(�). Sine ' 2 �

q;p

, '(j

�

) = y

�

; this means that the

substitution � replaes y

j

�

by y

�

, and hene y

�

ours in rhs(�)�. To show that y

�

ours

in repl(rhs(�)�), we prove that for t 2 T

hQ;X

k

i[�

(Y

m

): if y

�

ours in t, then it also ours

in repl(t). The proof is by indution on the struture of t. It is obvious for t 2 Y

m

and

t = Æ(t

1

; : : : ; t

l

). For t = hq

0

; x

i

i(t

1

; : : : ; t

l

), let j 2 [l℄ suh that y

�

ours in t

j

, and let

'

0

be as in the de�nition of repl. By indution, y

�

ours in repl(t

j

). Then y

�

ours

also in t

j

[[i℄℄, where [[i℄℄ is as in the de�nition of repl. This means that t

j

[[i℄℄ 62 T

hhQ;fp

i

gii[�

and sine '

0

2 �

q

0

;p

i

, this implies that '

0

(j) = y

�

for some � 2 [�℄ with j = j

0

�

, where
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fj

0

1

; : : : ; j

0

�

g = '

0

�1

(Y

�

) and j

0

1

< � � � < j

0

�

. By the de�nition of repl, repl(t

j

0

�

) = repl(t

j

) is

a subtree of repl(t) and therefore y

�

ours in repl(t).

Nonerasing of �(M): Clearly, from the de�nition of repl, if repl(t) 2 Y , then t 2 Y . Hene

repl(rhs(�)�) 2 Y implies rhs(�)� 2 Y and so, obviously, rhs(�) 2 Y . Thus, sine M is

nonerasing, so is �(M).

I-properness of �(M): Sine �(M) has the same look-ahead automaton as M , point (iii)

of i-properness is preserved. It follows from the de�nition of � and repl and from i-

properness of M that no (q

0

; ') appears in the right-hand side of a rule of �(M). Using

Lemma 4.3 (and the fat that, in the de�nition of repl(t), '

0

2 �

q

0

;p

i

) it is not diÆult

to see that if hh(q; '); pii is reahable, then ' 2 �

q;p

and hene, by the de�nition of �

q;p

,

hhq; pii is reahable. Also by Lemma 4.3, if (q; ') 6= (q

0

;?) then (q; ') appears in the right-

hand side of a rule of �(M), and so q 6= q

0

. By Claim 1, �(M)

(q;')

(s) = M

q

(s)�

0

with

�

0

= [y

j

 '(j)[[hhr; pii  M

r

(s) j r 2 Q℄℄ j j 2 [n℄℄. Sine size(M

q

(s)�

0

) � size(M

q

(s)),

Out((q; '); p) = fM

q

(s)�

0

j s 2 L

p

g is in�nite if fM

q

(s) j s 2 L

p

g = Out(q; p) is in�nite,

whih holds by i-properness of M .

P-properness: By onstruting �(M) we have kept only those parameter positions j of

q, for whih Arg(q; j; p) is in�nite. But even if Arg(q; j; p) is in�nite, there might be

a ' 2 �

q;p

for whih Arg((q; '); j; p) is �nite. This means that �(M) need not be p-

proper yet (see Example 5.10), and, as in the ase of i-properness, we have to iterate the

appliation of �. For the termination ondition of this iteration we only need to onsider

partiular states, whih are atually used in the derivations of �

k

(M). Denote the state

(� � � ((q; '

1

); '

2

) : : : ; '

k

) of �

k

(M) by (q; '

1

; : : : ; '

k

). The state (q; '

1

; : : : ; '

k

) is p-uniform

if for eah 0 � i � k � 1: '

i+1

2 �

(q;'

1

;:::;'

i

);p

. We iterate the appliation of � until we

obtain the MTT

R

N (with set of states Q

N

) suh that

for every p 2 P and p-uniform state (q; ') of M

0

= �(N) :

rank

Q

0

((q; ')) = rank

Q

N

(q); (�)

where Q

0

is the set of states of M

0

.

Let us now show that, indeed, after a �nite number of appliations of �, (�) holds. For q 2

Q and p 2 P , de�ne the tree T

q;p

as follows. For k � 0, the state (q; '

1

; : : : ; '

k

) of �

k

(M)

is a node of T

q;p

if it is p-uniform and there is a p-uniform state (q; '

1

; : : : ; '

k

; : : : ; '

l

) of

�

l

(M) with l > k whih is of smaller rank than (q; '

1

; : : : ; '

k

). There is an edge in T

q;p

from every node (q; '

1

; : : : ; '

k

) to every node (q; '

1

; : : : ; '

k

; '

k+1

). Clearly, if T

q;p

is �nite

for every q 2 Q and p 2 P , then the iteration of � terminates: Let l be maximal suh that

(q; '

1

; : : : ; '

l

) is a leaf of T

q;p

for some q 2 Q and p 2 P . Then the statement in (�) holds

for N = �

l+1

(M), beause no p-uniform state (q; '

1

; : : : ; '

l

; '

l+1

) is a node of T

q;p

and

hene, by the de�nition of the nodes of T

q;p

, every p-uniform state (q; '

1

; : : : ; '

l+1

; '

l+2

)

has the same rank as (q; '

1

; : : : ; '

l+1

). To show the �niteness of T

q;p

it suÆes, by K�onig's

Lemma, to show that every path � of T

q;p

is �nite. Assume to the ontrary that � is

in�nite. Let u = (q; '

1

; : : : ; '

k

) be a node of �. Then there is a desendant of u on the

path �, that has lower rank than u. This an be seen as follows. By the de�nition of the

node u, there is a p-uniform state (q; '

1

; : : : ; '

k

; : : : ; '

l

) of �

l

(M), l > k, whih has lower

rank than u. Now, for eah i 2 fk + 1; : : : ; lg suh that v = (q; '

1

; : : : ; '

k

; : : : ; '

i�1

) is on

the path �: either v

0

= (v; '

i

) = (q; '

1

; : : : ; '

k

; : : : ; '

i

) has the same rank as v and then
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v

0

is on the path � beause �

v;p

= fv

0

g by the de�nition of �

v;p

, or, v

0

has a lower rank n

than v, and then, by the de�nition of �

v;p

, eah state (v; ') has rank n, in partiular the

hild of v that is on the path �. Sine eah node u of � has a desendant on � that has

a lower rank than u, there is an in�nite sequene of nodes on � with stritly dereasing

ranks. This ontradits the �niteness of the rank of q.

Before we show that M

0

is p-proper, we prove a laim about p-uniformity.

Claim 3: Let k � 0, let q be a state of �

k

(M), and let p 2 P .

(i) If hq; x

i

i appears in the right-hand side of a (q

0

; �; hp

1

; : : : ; p

k

0

i)-rule of �

k

(M) for

some state q

0

of �

k

(M), k

0

� 0, i 2 [k

0

℄, and p

1

; : : : ; p

k

0

2 P , then q is p

i

-uniform.

(ii) If hhq; pii is reahable (by �

k

(M)), then q is p-uniform.

The proof of part (i) of Claim 3 is by indution on k. For k = 0, every state is p-

uniform for all p 2 P , and thus the statement holds. Now assume the statement holds for

�

k

(M). If h(q; '); x

i

i appears in the right-hand side � of the ((q

0

; '

0

); �; hp

1

; : : : ; p

k

0

i)-rule of

�(�

k

(M)), then, by the de�nition of the rules of �(�

k

(M)), � is of the form repl(rhs(�)�),

where � is the (q

0

; �; hp

1

; : : : ; p

k

0

i)-rule of �

k

(M). Thus, by the de�nition of repl and �,

hq; x

i

i ours in rhs(�), whih means, by indution, that q is p

i

-uniform. In the proof of

well-de�nedness of �(M) it is shown that ' 2 �

q;p

i

, and hene also (q; ') is p

i

-uniform.

This proves part (i) of the laim. To prove part (ii), we may assume that q 6= r

0

, the

initial state of �

k

(M); in fat, r

0

= (q

0

;?; : : : ;?) is p-uniform for every p. If hhq; pii is

reahable (by �

k

(M)) then, by de�nition, it appears in

\

�

k

(M)

r

0

(s[u  p℄) for some tree

s and node u of s, where

\

�

k

(M) denotes the extension of �

k

(M). Sine q 6= r

0

, u must be

of the form u

0

j with u

0

2 N

�

and j � 1. Hene, by Lemma 4.3, hq; x

j

i must our in the

right-hand side of some rule of �

k

(M) with look-ahead hp

1

; : : : ; p

l

i, l � 1, and p

j

= p. By

part (i) of the laim this implies that q is p-uniform. This onludes the proof of Claim 3.

Let us now prove (i) of p-properness for N . Let hhq; pii be reahable (by N). By

Claim 3(ii), q is p-uniform. Sine hhq; pii is reahable, the set �

q;p

must, by de�ni-

tion, ontain some element '. Then (q; ') is p-uniform and it follows from (�) that

n = j'

�1

(Y )j and thus fj 2 [n℄ j Arg(q; j; p) is in�niteg = f1; : : : ; ng. Thus (i) of p-

properness holds for N . Now onsider M

0

. Note that, by the previous argument, if

(q; ') is a p-uniform state of M

0

then ' = '

n

, where q 2 Q

(n)

N

and '

n

(j) = y

j

for ev-

ery j 2 [n℄. Clearly, (i) of p-properness also holds for M

0

. Formally this an be shown

by proving that Arg((q; '

n

); j; p) = Arg(q; j; p)[[rel℄℄, where [[rel℄℄ denotes the relabeling

[[hhq

0

; pii  hh(q

0

; '

n

0

); pii j q

0

2 Q

(n

0

)

N

; n

0

� 0℄℄. This follows from Claim 4 (for q equal to the

initial state of N and ' equal to ?).

Claim 4: Let s 2 T

�

, u 2 V (s), and p 2 P , and let (q; ') be an h(s[u p℄)-uniform state

of M

0

. Then

^

M

0

(q;')

(s[u p℄) =

^

N

q

(s[u p℄)[[rel℄℄:

The proof is by indution on the struture of s. Let s = �(s

1

; : : : ; s

k

) with � 2 �

(k)

,

k � 0, and s

1

; : : : ; s

k

2 T

�

. For u = " we get

^

M

0

(q;')

(s[u  p℄) = hh(q; '); pii. Sine

' = '

n

, where n is the rank of q, hh(q; '); pii = hhq; pii[[rel℄℄ =

^

N

q

(s[u  p℄)[[rel℄℄. For
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u = ju

0

with j � 1 and u

0

2 N

�

, s[u  p℄ = �(~s

1

; : : : ; ~s

k

) with ~s

j

= s

j

[u

0

 p℄ and

~s

i

= s

i

for i 2 [k℄ � fjg. By Lemma 3.5 and the de�nition of the right-hand sides of

M

0

,

^

M

0

(q;')

(s[u  p℄) = repl(rhs(�)�)[[ ℄℄, where � is the (q; �; hh(~s

1

); : : : ; h(~s

k

)i)-rule of

N and [[ ℄℄ = [[h(q

0

; '

0

); x

i

i  

^

M

0

(q

0

;'

0

)

(~s

i

) j h(q

0

; '

0

); x

i

i 2 hQ

0

;X

k

i℄℄. By Claim 3(i), if

h(q

0

; '

0

); x

i

i ours in repl(rhs(�)�), then (q

0

; '

0

) is h(~s

i

)-uniform and, by the argument

given above Claim 4, '

0

= '

n

0

where q

0

2 Q

(n

0

)

N

. Clearly, repl(rhs(�)�) equals rhs(�)[[ ℄℄

with [[ ℄℄ = [[hq

0

; x

i

i  h(q

0

; '

n

0

); x

i

i j hq

0

; x

i

i 2 hQ

N

;X

k

i

(n

0

)

; n

0

� 0℄℄. Furthermore, we an

restrit the substitution [[ ℄℄ to those h(q

0

; '

0

); x

i

i whih our in repl(rhs(�)�), and then

apply the indution hypothesis to ~s

j

= s

j

[u p℄. If we ombine the resulting substitution

with [[ ℄℄ and apply Claim 1 to ~s

i

= s

i

for i 2 [k℄� fjg (where �

0

is the identity), then we

get rhs(�)[[hq

0

; x

i

i  

^

N

q

0

(~s

i

)[[rel℄℄ j hq

0

; x

i

i 2 hQ

N

;X

k

i ours in rhs(�)℄℄ = rhs(�)[[hq

0

; x

i

i  

^

N

q

0

(~s

i

)[[rel℄℄ j hq

0

; x

i

i 2 hQ

N

;X

k

i℄℄, whih equals

^

N

q

(s[u p℄)[[rel℄℄. This proves Claim 4.

To show (ii) of p-properness of M

0

, note that if ' 2 �

q;p

, then hhq; pii is reahable (by

N) and hene, by Claim 3(ii), q is p-uniform; then also (q; ') is p-uniform, ' = '

n

, and,

by Claim 4, hh(q; '); pii is reahable (by M

0

). Thus, if hh(q; '); pii is not reahable, then

' 62 �

q;p

. This implies a dummy right-hand side for all ((q; '); �; hp

1

; : : : ; p

k

i)-rules with

h

�

(p

1

; : : : ; p

k

) = p and therefore #

y

j

(M

0

(q;')

(s)) = 1 for all s 2 L

p

. This proves (ii) of

p-properness and onludes the proof of properness of M

0

. Hene, the lemma holds for

prop(M) =M

0

. 2

The following example illustrates the onstrution of a proper MTT

R

as given in the proof

of Theorem 5.9.

Example 5.10 Let M = (Q; fpg;�;�; q

0

; R; h) be the MTT with Q = fq

(0)

0

; q

(2)

g, � =

fa

(1)

; b

(1)

; e

(0)

g, � = f�

(3)

; 

(1)

; a

(0)

; b

(0)

; e

(0)

g, and R onsisting of the following rules

(where the only look-ahead hpi is omitted, as usual).

hq

0

; a(x

1

)i ! hq; x

1

i(a; a) hq; a(x

1

)i(y

1

; y

2

) ! �(y

1

; y

2

; hq; x

1

i(a; a))

hq

0

; b(x

1

)i ! hq; x

1

i(b; b) hq; b(x

1

)i(y

1

; y

2

) ! �(y

1

; y

2

; hq; x

1

i(b; (y

2

)))

hq

0

; ei ! e hq; ei(y

1

; y

2

) ! �(y

1

; y

2

; e)

Note that M is produtive and i-proper. Let us now onstrut the MTT �(M) as de�ned

in the proof of Theorem 5.9. Clearly, Arg(q; 1; p) = fa; bg and Arg(q; 2; p) = f

n

() j

n � 0;  2 fa; bgg. Thus, �

q;p

onsists of the two mappings '

a

and '

b

with '

a

(1) =

a, '

a

(2) = y

1

, '

b

(1) = b, and '

b

(2) = y

1

. Therefore the states of M

1

= �(M) are

(q

0

;?)

(0)

; (q; '

a

)

(1)

; (q; '

b

)

(1)

, abbreviated by q

0

; q

a

; q

b

, respetively. For every  2 fa; bg,

M

1

has the following rules.

hq

0

; a(x

1

)i ! hq

a

; x

1

i(a) hq



; a(x

1

)i(y

1

) ! �(; y

1

; hq

a

; x

1

i(a))

hq

0

; b(x

1

)i ! hq

b

; x

1

i(b) hq



; b(x

1

)i(y

1

) ! �(; y

1

; hq

b

; x

1

i((y

1

)))

hq

0

; ei ! e hq



; ei(y

1

) ! �(; y

1

; e)

Now for M

1

, Arg(q

a

; 1; p) = fag and Arg(q

b

; 1; p) = f

n

() j n � 0;  2 fa; bgg. Sine

hhq

a

; pii is reahable this means that M

1

is not p-proper.

Following the proof of Theorem 5.9, we have to onstrut the MTT N = �(M

1

), beause

rank

Q

0

((q; '

a

)) < rank

Q

(q). Clearly, �

q

a

;p

= f'

0

a

g with '

0

a

(1) = a, and �

q

b

;p

= f'

1

g
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with '

1

(1) = y

1

. Thus, the states of N are (q

0

;?)

(0)

; (q

a

; '

0

a

)

(0)

; (q

b

; '

1

)

(1)

, abbreviated

by q

0

; q

a

; q

b

, respetively. The rules of N are as follows.

hq

0

; a(x

1

)i ! hq

a

; x

1

i

hq

0

; b(x

1

)i ! hq

b

; x

1

i(b)

hq

0

; ei ! e

hq

a

; a(x

1

)i ! �(a; a; hq

a

; x

1

i)

hq

b

; a(x

1

)i(y

1

) ! �(b; y

1

; hq

a

; x

1

i)

hq

a

; b(x

1

)i ! �(a; a; hq

b

; x

1

i((a)))

hq

b

; b(x

1

)i(y

1

) ! �(b; y

1

; hq

b

; x

1

i((y

1

)))

hq

a

; ei ! �(a; a; e)

hq

b

; ei(y

1

) ! �(b; y

1

; e)

The MTT N is p-proper beause Arg(q

b

; 1; p) = f

n

() j n � 0;  2 fa; bgg (and all

elements of hhQ

N

; fpgii are reahable). It is easy to see that N is equivalent to M . 2

6 From Linear Size Inrease to Finite Copying

In this setion we prove that if a proper MTT

R

M is of linear size inrease (lsi), then it

is �nite opying (f, i.e., both fi and fp, see Setion 4.1). The proof is split up into the

following three stages, using �nite nested opying (fnest, see Setion 4.2) as an intermediate

notion:

(I) If M is lsi, then it is fnest.

(II) If M is lsi and fnest, then it is fp.

(III) If M is lsi, fnest, and fp, then it is fi.

We �rst prove (II) and then (III), and �nally (I). The reason for this order is that the

proof of (I) will use results that are proved in (III). The idea in eah stage is roughly as

follows: First, it is proved that if M 's opying is not bounded (i.e., M is not fp, not fi,

and not fnest, for (II), (III), and (I), respetively), then we an �nd an input tree in whih

some part s an be pumped, i.e., repeated; eah repetition of s will produe a opy of a

ertain parameter (for (II)) or of a ertain state (for (III) and (I)). Seond, it is shown

that this repetition gives a size inrease that is not linearly bounded (by any ); in this

part the properness ofM is used: it is shown that for any  we an pik a suÆiently large

output tree t, a opy of whih is generated with eah repetition of s, and a suÆiently

large i suh that after i repetitions of s the size of the orresponding output tree is larger

than  times the size of the input tree.

6.1 From lsi and fnest to fp (II)

We now present (in Lemma 6.2) a pumping lemma for non-fp MTT

R

fnest

s, whih allows

us to prove (in Theorem 6.3) that if a proper MTT

R

fnest

is of linear size inrease, then it is

�nite opying in the parameters.
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First, for an MTT

R

M , onsider the number k of ourrenes of y

�

in

^

M

r

(t[u p℄) with

p = h(t=u). Clearly, if

^

M

r

(t[u p℄) has a subtree hhr

1

; pii(�

1

; : : : ; �

m

1

) suh that y

�

ours

in �

�

1

for some �

1

2 [m

1

℄, then, assuming that M is nondeleting, the number of y

�

's in

M

r

(t) must be at least k � 1 plus the number of y

�

1

's in M

r

1

(t=u). This is proved in the

next lemma, in suh a way that the idea an be iterated.

Lemma 6.1 Let M = (Q;P;�;�; q

0

; R; h) be a nondeleting MTT

R

. For r

0

2 Q

(m

0

)

,

r

1

2 Q

(m

1

)

, �

0

2 [m

0

℄, �

1

2 [m

1

℄, t

0

2 T

�

, u

1

2 V (t

0

), and k 2 N,

let P(r

0

; �

0

; t

0

; r

1

; �

1

; u

1

; k) be the following statement, with p

1

denoting h(t

0

=u

1

):

#

y

�

0

(

^

M

r

0

(t

0

[u

1

 p

1

℄)) � k and

^

M

r

0

(t

0

[u

1

 p

1

℄) has a subtree hhr

1

; p

1

ii(�

1

; : : : ; �

m

1

)

for ertain �

1

; : : : ; �

m

1

suh that #

y

�

0

(�

�

1

) � 1.

Let r

2

2 Q

(m

2

)

, �

2

2 [m

2

℄, u

2

2 V (t

0

=u

1

), and l 2 N. If P(r

0

; �

0

; t

0

; r

1

; �

1

; u

1

; k) and

P(r

1

; �

1

; t

0

=u

1

; r

2

; �

2

; u

2

; l), then P(r

0

; �

0

; t

0

; r

2

; �

2

; u

1

u

2

; k + l � 1).

Proof. Note that t

0

=u

1

u

2

= (t

0

=u

1

)=u

2

. Let t

1

= t

0

=u

1

, p

1

= h(t

1

) and p

2

=

h(t

0

=u

1

u

2

) = h(t

1

=u

2

). By Lemma 4.2,

^

M

r

0

(t

0

[u

1

u

2

 p

2

℄) equals t[[: : :℄℄ with t =

^

M

r

0

(t

0

[u

1

 p

1

℄) and [[: : :℄℄ = [[hhq

0

; p

1

ii  

^

M

q

0

(t

1

[u

2

 p

2

℄) j q

0

2 Q℄℄. We use Lemma 2.6

to ompute the number of ourrenes of y

�

0

's in this tree. By the �rst assumption, t has

at least k leaves u 2 V

y

�

0

(t), and it has a subtree hhr

1

; p

1

ii(�

1

; : : : ; �

m

1

) with #

y

�

0

(�

�

1

) � 1.

Thus, t has a leaf u 2 V

y

�

0

(t) suh that

Q

F

[[:::℄℄

t;u

� #

y

�

1

(

^

M

r

1

(t

1

[u

2

 p

2

℄)), whih is � l

by the seond assumption. Hene, S

1

+ S

2

of Lemma 2.6 equals S

1

� k � 1 + l. We

have used the fat that #

y

�

(

^

M

q

0

(t

1

[u

2

 p

2

℄)) � 1 for all � and q

0

, whih follows from

Lemma 3.10(1) beause M is nondeleting (and hene so is

^

M).

The substitution [[: : :℄℄ is nondeleting, beause

^

M is nondeleting. Thus, sine t has a

subtree hhr

1

; p

1

ii(�

1

; : : : ; �

m

1

), it follows from Lemma 2.1 that

^

M

r

0

(t

0

[u

1

u

2

 p

2

℄) = t[[: : :℄℄

has a subtree hhr

1

; p

1

ii(�

1

; : : : ; �

m

1

)[[: : :℄℄ =

^

M

r

1

(t

1

[u

2

 p

2

℄)[: : : ℄, where [: : : ℄ denotes [y

j

 

�

j

[[: : :℄℄ j j 2 [m

1

℄℄.

By the seond assumption,

^

M

r

1

(t

1

[u

2

 p

2

℄) has a subtree hhr

2

; p

2

ii(�

1

; : : : ; �

m

2

) with

#

y

�

1

(�

�

2

) � 1. Thus we obtain a subtree hhr

2

; p

2

ii(�

1

[: : : ℄; : : : ; �

m

2

[: : : ℄) and �

�

2

[: : : ℄ has a

subtree �

�

1

[[: : :℄℄ whih ontains y

�

0

(beause #

y

�

0

(�

�

1

) � 1 and M is nondeleting). 2

Lemma 6.2 Let M = (Q;P;�;�; q

0

; R; h) be a nondeleting MTT

R

fnest

with the property:

if hhq; pii 2 hhQ;P ii

(m)

is not reahable, then #

y

j

(M

q

(s)) � 1 for all j 2 [m℄ and s 2 L

p

(property (ii) of De�nition 5.6 of p-properness).

If M is not fp, then there are m � 1, q 2 Q

(m)

, j 2 [m℄, s 2 T

�

, u 2 V (s), and p 2 P

suh that

(1) #

y

j

(

^

M

q

(s[u p℄)) � 2,

(2)

^

M

q

(s[u p℄) has a subtree hhq; pii(�

1

; : : : ; �

m

) with #

y

j

(�

j

) � 1, and

(3) p = h(s) = h(s=u).
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Proof. We �rst de�ne an auxiliary notion. For t 2 T

�

, u an anestor of v 2 V (t),

q 2 Q

(m)

, � 2 [m℄, q

0

2 Q

(m

0

)

, �

0

2 [m

0

℄, de�ne (q; �) !

u;v

(q

0

; �

0

) if, for �

q;u;v

=

^

M

q

(t=u[v

0

 p

v

℄) with v = uv

0

and p

v

= h(t=v): #

y

�

(�

q;u;v

) � 2 and �

q;u;v

has a

subtree hhq

0

; p

v

ii(�

1

; : : : ; �

m

0

) suh that #

y

�

(�

�

0

) � 1. Note that (q; �) !

u;v

(q

0

; �

0

) i�

P(q; �; t=u; q

0

; �

0

; v

0

; 2), where P is the statement of Lemma 6.1. The relation ! is tran-

sitive, i.e., for a desendant w of v,

if (q; �)!

u;v

(q

0

; �

0

) and (q

0

; �

0

)!

v;w

(q

00

; �

00

) then (q; �)!

u;w

(q

00

; �

00

):

This follows from Lemma 6.1, beause (q; �) !

u;v

(q

0

; �

0

) and (q

0

; �

0

)!

v;w

(q

00

; �

00

) imply

that P(q; �; t=u; q

00

; �

00

; v

0

w

0

; 3) with w

0

2 N

�

suh that w = vw

0

, and thus (q; �) !

u;w

(q

00

; �

00

).

Assume that M is not fp. Then, in terms of the !-notation, the lemma says that there

are m � 1, q 2 Q

(m)

, j 2 [m℄, s 2 T

�

, u 2 V (s), and p 2 P suh that

(1; 2) (q; j)!

";u

(q; j) and

(3) p = h(s) = h(s=u):

Sine M is not fp, for every n 2 N, there are q 2 Q

(m)

, j 2 [m℄, and t 2 T

�

suh that

#

y

j

(M

q

(t)) > n. The following laim shows that if #

y

j

(M

q

(t=u)) is `large' for a node u

of t, then there must be a desendant v of u, a state r, and a parameter y

�

of r suh that

(q; j) !

u;v

(r; �) and #

y

�

(M

r

(t=v)) is still `large'. The appliation of this laim an be

iterated to show the existene of a sequene of desendants v and a sequene of steps !,

whih will eventually lead to a repetition of a state-parameter pair that allows us to de�ne

s and u suh that (1){(3) holds.

Let B be a nesting bound for M . Let � be the maximal height of the right-hand side of

a rule of M , i.e., � = maxfheight(rhs(�)) j � 2 Rg, and let � � 1 be an upper bound for

the number of ourrenes of one partiular parameter in the right-hand side of a rule of

M , i.e., #

y

(rhs(�)) � � for every y 2 Y and � 2 R.

Claim: For every  � 1, t 2 T

�

, u 2 V (t), q 2 Q

(m)

, and � 2 [m℄, if #

y

�

(M

q

(t=u)) >



B�

� �

B

, then there exist a desendant v of u, a state r 2 Q

(m

0

)

, and a � 2 [m

0

℄ suh that

(q; �)!

u;v

(r; �) and #

y

�

(M

r

(t=v)) > .

Proof of the laim: Let w be a longest desendant of u suh that #

y

�

(�

q;u;w

) = 1. Clearly,

suh a w exists, beause #

y

�

(�

q;u;u

) = 1. Then there must be a hild v of w that satis�es

the requirements of the laim. Assume to the ontrary, that if v is a hild of w, then it does

not satisfy the requirements, i.e., for every r 2 Q

(m

0

)

and � 2 [m

0

℄ with (q; �)!

u;v

(r; �),

#

y

�

(M

r

(t=v)) � . This will lead to a ontradition.

By Lemmas 4.2 (applied to t=u and w) and 3.5,

M

q

(t=u) = �

q;u;w

[[rhs℄℄[[: : :℄℄;

where [[rhs℄℄ = [[hhr; p

w

ii  rhs

M

(r; �; hp

1

; : : : ; p

k

i) j r 2 Q℄℄ with � = t[w℄ 2 �

(k)

, k � 0,

p

w

= h(t=w), p

i

= h(t=wi) for i 2 [k℄, and [[: : :℄℄ = [[hr; x

i

i  M

r

(t=wi) j hr; x

i

i 2 hQ;X

k

i℄℄.

Now, #

y

�

(�

q;u;w

[[rhs℄℄) � �

B

. This is true beause by Lemma 2.6, #

y

�

(�

q;u;w

[[rhs℄℄) =

S

1

=

P

z2V

y

�

(�

q;u;w

)

Q

F

[[rhs℄℄

�

q;u;w

;z

, whih equals

Q

F

[[rhs℄℄

�

q;u;w

;z

for the unique z with V

y

�

(�

q;u;w

) =

fzg. Sine #

y

�

(M

q

(t=u)) > 1, hhq; h(t=u)ii is reahable by the assumption of the lemma.
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Thus, by Lemma 4.13, there are at most B ourrenes of elements of hhQ; fp

w

gii on

the label path lpath(�

q;u;w

; z). Hene,

Q

F

[[rhs℄℄

�

q;u;w

;z

is the produt of at most B numbers

#

y

�

(rhs

M

(r; �; hp

1

; : : : ; p

k

i)) � � for r 2 Q and � 2 [rank

Q

(r)℄, and therefore

Q

F

[[rhs℄℄

�

q;u;w

;z

�

�

B

.

Sine every label path of �

q;u;w

is of the form w

0

hhq

1

; p

w

iiw

1

� � � hhq

l

; p

w

iiw

l

with l � B,

q

1

; : : : ; q

l

2 Q and w

0

; : : : ; w

l

2 �

�

, it follows from Lemma 2.3(i) that every label path � in

�

q;u;w

[[rhs℄℄ is of the form w

0

v

1

w

1

� � � v

l

w

l

, where eah v

i

is a label path in rhs

M

(q

i

; �; hp

1

; : : : ;

p

k

i). By the de�nition of �, the length of v

i

is� �. Thus, #

hQ;X

k

i

(�) =

P

i2[l℄

#

hQ;X

k

i

(v

i

) �

B�.

Let � = �

q;u;w

[[rhs℄℄. By Lemma 2.6, #

y

�

(�[[: : :℄℄) =

P

z2V

y

�

(�)

Q

F

[[:::℄℄

�;z

. This is � �

B

�

Q

F

[[:::℄℄

�;z

, where z 2 V

y

�

(�) suh that

Q

F

[[:::℄℄

�;z

is maximal, beause #

y

�

(�) � �

B

. Sine

#

hQ;X

k

i

(�) � B� for � = lpath(�; z),

Q

F

[[:::℄℄

�;z

is the produt of at most B� numbers

#

y

�

(M

r

(t=wi)). Let us now show that eah suh number is � . We need to show that

(q; �) !

u;wi

(r; �). By the de�nition of w, #

y

�

(�

q;u;wi

) 6= 1. Sine M is nondeleting it

follows from Lemma 3.10(1) that #

y

�

(�

q;u;wi

) � 1, and thus #

y

�

(�

q;u;wi

) � 2. Sine hr; x

i

i

ours in � at some node z

0

with z = z

0

�z

00

, � has a subtree hr; x

i

i(�

1

; : : : ; �

m

0

) for some

�

1

; : : : ; �

m

0

2 T

hQ;X

k

i[�

(Y

m

), and y

�

ours in �

�

. By Lemma 4.3, �

q;u;wi

= �[[::℄℄[[i℄℄, with

[[::℄℄ and [[i℄℄ as in that lemma. It follows from Lemma 3.10(1) that [[::℄℄[[i℄℄ is nondeleting.

Thus, by Lemma 2.1, �

q;u;wi

has a subtree hhr; p

i

ii(�

1

[[::℄℄[[i℄℄; : : : ; �

m

0

[[::℄℄[[i℄℄) and y

�

ours in

�

�

[[::℄℄[[i℄℄. This proves that (q; �)!

u;wi

(r; �) and thus, by assumption, #

y

�

(M

r

(t=wi)) � .

We get #

y

�

(M

q

(t=u)) � 

B�

��

B

whih is a ontradition and ends the proof of the laim.

Now, let 

0

= 1 and 

i

= 

B�

i�1

�

B

for i � 1. Sine M is not fp, for every n � 1 there

exist r

0

2 Q

(m

0

)

, �

0

2 [m

0

℄, and t 2 T

�

suh that #

y

�

0

(M

r

0

(t)) > 

n

. Let v

0

= ". We

apply the laim for i = 0; 1; : : : ; n � 1 to u = v

i

, q = r

i

, and � = �

i

to obtain that

there exist a desendant v

i+1

of v

i

, a state r

i+1

2 Q

(m

i+1

)

, and �

i+1

2 [m

i+1

℄ suh that

(r

i

; �

i

)!

v

i

;v

i+1

(r

i+1

; �

i+1

) and #

y

�

i+1

(M

r

i+1

(t=v

i+1

)) > 

n�(i+1)

.

Take n = jQj �m � jP j where m is the maximal rank of a state ofM . Then there are indies

0 � i < i

0

� n suh that q = r

i

= r

i

0

, j = �

i

= �

i

0

, and p = h(t=v

i

) = h(t=v

i

0

). Then

(q; j)!

v

i

;v

i

0

(q; j) by the transitivity of !. Let s = t=v

i

and v

i

u = v

i

0

. Clearly (3) holds.

Moreover, in s, (q; j)!

";u

(q; j) whih means that (1) and (2) hold. 2

We now prove that if a proper MTT

R

fnest

M is of linear size inrease, then it is �nite opying

in the parameters, i.e., we prove step (II). The idea is to assume that M is not fp, and

then to \pump" the tree s[u  p℄ of Lemma 6.2 in order to show that this implies that

M is not lsi. We use the following notation to pump a tree. For s 2 T

�

, u 2 V (s), p 2 P ,

and s

0

2 T

�

(P ), let s[u p℄ � s

0

denote s[u s

0

℄. Let (s[u p℄)

0

= p, and for n 2 N let

(s[u p℄)

n+1

= (s[u p℄) � (s[u p℄)

n

. Thus, e.g.,

(s[u p℄)

1

= s[u p℄ � p = s[u p℄;

(s[u p℄)

2

= (s[u p℄) � (s[u p℄) = s[u s[u p℄℄, and

(s[u p℄)

3

= (s[u p℄) � s[u s[u p℄℄ = s[u s[u s[u p℄℄℄:

We will only pump the tree s[u  p℄, for a given MTT

R

, if

^

h(s[u  p℄) = p. Note that

this ondition is satis�ed in Lemma 6.2 by point (3).
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Theorem 6.3 Let M be a proper MTT

R

fnest

. If M is lsi, then it is fp.

Proof. Let M = (Q;�;�; q

0

; R; P; h) be lsi, i.e., there is a  2 N suh that for every

input tree t,

size(�

M

(t)) �  � size(t): (�)

Assume now that M is not fp. We will derive a ontradition by onstruting an input

tree t suh that size(�

M

(t)) >  � size(t). Let q 2 Q

(m)

, m � 1, j 2 [m℄, s 2 T

�

, p = h(s),

and u 2 V (s) be suh that (1) { (3) of Lemma 6.2 hold. Note that sine M is proper it

satis�es the onditions of Lemma 6.2.

The idea of onstruting a t suh that (�) does not hold is as follows. Let s

0

2 T

�

and

u

0

2 V (s

0

) suh that

^

M

q

0

(s

0

[u

0

 p℄) has a subtree hhq; pii(�

1

; : : : ; �

m

) (y)

for some trees �

1

; : : : ; �

m

. Consider input trees t

i

obtained by i times pumping the tree

s[u p℄ in the tree s

0

[u

0

 s℄. Then the size of the trees t

i

grows at most linearly with

onstant size(s[u  p℄). In the output tree �

M

(t

i

) there are at least i ourrenes of the

subtree �

j

[[: : :℄℄ for some seond-order tree substitution [[: : :℄℄. Hene, the size of the trees

�

M

(t

i

) grows at least linearly with onstant size(�

j

). Thus, if we hoose s

0

and u

0

in suh

a way that size(�

j

) is larger than the produt of  and size(s[u  p℄), then size(�

M

(t

i

))

grows faster than  � size(t

i

), whih implies that we an �nd an i suh that (�) does not

hold for t = t

i

.

Reall De�nition 5.6 of p-properness. In order to hoose s

0

and u

0

appropriately we need

that the set Arg(q; j; p) is in�nite, i.e., that it ontains arbitrarily large trees. This is

guaranteed by point (i) of De�nition 5.6, if hhq; pii is reahable. The latter holds for the

following reason. Sine M is nondeleting, by Lemma 3.10(1), #

y

�

(M

r

(s=u)) � 1 for every

r 2 Q

(m

0

)

and � 2 [m

0

℄. By Lemmas 4.2 and 2.6 and the fat that #

y

j

(

^

M

q

(s[u p℄)) � 2

by (1), this implies that #

y

j

(M

q

(s)) � 2. Thus, hhq; pii is reahable by point (ii) of

De�nition 5.6.

We now show the e�et of pumping the tree s[u p℄ in the input tree s = s[u p℄ � s=u.

For i � 0 let t

0

i

= (s[u  p℄)

i

� s=u. Then #

y

j

(M

q

(t

0

i

)) > i. Using the fat that M is

nondeleting this follows (as above, by Lemmas 4.2 and 2.6) from #

y

j

(

^

M

q

(t

0

i

[u

i

 p℄)) > i

whih is a onsequene of the next laim and the de�nition of P (f. Lemma 6.1).

Claim: For i � 0, P(q; j; t

0

i

; q; j; u

i

; i+ 1).

The proof of this laim is by indution on i. For i = 0, P(q; j; t

0

i

; q; j; u

i

1

; i + 1) be-

ause � =

^

M

q

(s=u["  p℄) = hhq; pii(y

1

; : : : ; y

m

) and thus #

y

j

(�) � 1 and � has a

subtree hhq; pii(�

1

; : : : ; �

m

) with #

y

j

(�

j

) = #

y

j

(y

j

) = 1. For i + 1 > 0, by indution,

P(q; j; t

0

i

; q; j; u

i

; i + 1). Clearly, by (3), h(t

0

i+1

=u

i

) = h(s) = p = h(s=u) = h(t

0

i

=u

i

), and

t

0

i+1

[u

i

 p℄ = t

0

i

[u

i

 p℄. Thus, P(q; j; t

0

i+1

; q; j; u

i

; i+1). By (1) and (2), P(q; j; s; q; j; u; 2)

whih is equivalent to P(q; j; t

0

i+1

=u

i

; q; j; u; 2) beause t

0

i+1

=u

i

= s. By Lemma 6.1 this

means that P(q; j; t

0

i+1

; q; j; u

i

u; i+ 2), whih onludes the proof of the laim.

Now let t

i

= s

0

[u

0

 t

0

i

℄ where s

0

2 T

�

and u

0

2 V (s

0

) satisfy (y). Thus, t

i

is the result of

pumping the tree s[u p℄ in the input tree s

0

[u

0

 s℄. Sine #

y

j

(

^

M

q

(t

0

i

) > i, we obtain
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size(�

M

(t

i

)) > i � size(�

j

) as follows. By Lemma 4.2, �

M

(t

i

) =

^

M

q

0

(s

0

[u

0

 p℄)[[: : :℄℄, where

[[: : :℄℄ = [[hhr; pii  M

r

(t

0

i

) j r 2 Q℄℄. By Lemma 2.1,

^

M

q

0

(s

0

[u

0

 p℄)[[: : :℄℄ has a subtree

� = hhq; pii(�

1

; : : : ; �

m

)[[: : :℄℄ = M

q

(t

0

i

)[y

�

 �

�

[[: : :℄℄ j � 2 [m℄℄. By Lemma 2.4 (summing

for all Æ 2 �), size(�) = #

�

(�) = #

�

(M

q

(t

0

i

)) +

P

�2[m℄

#

y

�

(M

q

(t

0

i

)) � #

�

(�

�

[[: : :℄℄) �

P

�=j

#

y

�

(M

q

(t

0

i

)) � #

�

(�

�

[[: : :℄℄) = #

y

j

(M

q

(t

0

i

)) � size(�

j

[[: : :℄℄). Sine M is produtive,

Lemma 2.7 and Lemma 3.10 imply that size(�

j

[[: : :℄℄) � size(�

j

). Sine #

y

j

(M

q

(t

0

i

)) > i,

this implies that size(�

M

(t

i

)) > i � size(�

j

).

Sine Arg(q; j; p) is in�nite, we an hoose s

0

and u

0

suh that (y) and

size(�

j

) >  � 

1

;

where 

1

= size(s[u  p℄) � 1. Let i = (

0

+ 

2

) for 

0

= size(s

0

[u

0

 p℄) � 1 and



2

= size(s=u). Sine size(t

i

) = 

0

+i

1

+

2

this means that size(�

M

(t

i

)) > �size(t

i

) beause

size(�

M

(t

i

)) > i � size(�

j

) � i � ( � 

1

+1) = i

1

+ (

0

+ 

2

) = (

0

+ i

1

+ 

2

) =  � size(t

i

).

This ontradits (�) and onludes the proof. 2

6.2 From lsi, fnest, and fp to fi (III)

Here we present a pumping lemma for MTT

R

fnest;fp

s that are not fi (Lemma 6.5) and

apply it in Lemma 6.6 to show that if a MTT

R

fnest;fp

is of linear size inrease, then it is

fi. We �rst de�ne, in general, what is required of an MTT

R

in order to get a repetition

of states by pumping a part of an input tree; this is alled input pumpable. It means that

there is a state q

1

that is reahable, i.e., appears in

^

M

q

0

(s

0

[u

0

 p℄) for some input tree

s

0

and node u

0

of s

0

(with p = h(s

0

=u

0

)), and going from node u

0

to node u

0

u

1

in s

0

, q

1

will generate a opy of itself and of a state q

2

; furthermore, the state q

2

generates a opy

of itself when going from u

0

to u

0

u

1

.

De�nition 6.4 (input pumpable)

An MTT

R

M = (Q;P;�;�; q

0

; R; h) is input pumpable, if there are q

1

; q

2

2 Q, s

0

2 T

�

,

u

0

2 V (s

0

), u

1

2 V (s

0

=u

0

), and p 2 P suh that the following four onditions hold.

(1) hhq

1

; pii ours in

^

M

q

0

(s

0

[u

0

 p℄),

(2) hhq

1

; pii and hhq

2

; pii our at distint nodes of

^

M

q

1

(s

0

=u

0

[u

1

 p℄),

(3) hhq

2

; pii ours in

^

M

q

2

(s

0

=u

0

[u

1

 p℄), and

(4) p = h(s

0

=u

0

) = h(s

0

=u

0

u

1

). 2

The following pumping lemma an be viewed as a generalization of Lemma 4.2 of [AU71℄

from top-down tree transduers to maro tree transduers.

Lemma 6.5 Let M be a nondeleting MTT

R

fnest;fp

. If M is not fi, then it is input

pumpable.
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Proof. Let M = (Q;P;�;�; q

0

; R; h). We �rst de�ne some auxiliary notions. Let

t 2 T

�

and u; v 2 V (t) suh that u is an anestor of v, i.e., v = uv

0

for some v

0

2 N

�

,

and let p

v

= h(t=v). For q 2 Q, if n = #

hhQ;fp

v

gii

(

^

M

q

(t=u[v

0

 p

v

℄)), then we say that

q ontributes n states at u to v. If n � 1, then we say that q ontributes at u to v. For

q; q

0

2 Q we write q !

u;v

q

0

if hhq

0

; p

v

ii ours in

^

M

q

(t=u[v

0

 p

v

℄). For r

1

; r

2

2 Q we write

q !

u;v

r

1

; r

2

if hhr

1

; p

v

ii and hhr

2

; p

v

ii our at distint nodes of

^

M

q

(t=u[v

0

 p

v

℄). Observe

the following easy properties:

(P0) q !

v;v

q

0

i� q = q

0

; q ontributes one state at v to v.

(P1) q

0

!

";v

q i� q ours in sts

M

(t; v); q

0

ontributes jsts

M

(t; v)j states at " to v.

(P2) q ontributes at u to v i� there is a q

0

2 Q suh that q !

u;v

q

0

.

Let w be a node of t that is a desendant of u and an anestor of v.

(P3) If q !

u;w

q

00

and q

00

!

w;v

q

0

, then q !

u;v

q

0

.

(P4) If q !

u;v

q

0

, then there is a q

00

2 Q suh that q !

u;w

q

00

and q

00

!

w;v

q

0

.

Note that P3 and P4 an be proved using Lemma 4.14: Let w

0

; v

00

2 N

�

suh that w = uw

0

and v = wv

00

(and so v

0

of above equals w

0

v

00

), and let p

w

= h(t=w). For P3, the number

#

hhq

00

;p

w

ii

(

^

M

q

(t=u[w

0

 p

w

℄)) is � 1 beause q !

u;w

q

00

, and #

hhq

0

;p

v

ii

(

^

M

q

00

(t=w[v

00

 p

v

℄))

is � 1 beause q

00

!

w;v

q

0

; hene the produt of these two numbers is � 1 and so the sum

S of Lemma 4.14 is � 1. Thus, by part (i) of that lemma, #

hhq

0

;p

v

ii

(

^

M

q

(t=u[v

0

 p

v

℄)) � 1,

i.e., q !

u;v

q

0

. For P4, q !

u;v

q

0

implies that the sum in (�) of the proof of Lemma 4.14 is

� 1 and thus there is an ourrene of some hhq

00

; p

w

ii 2 hhQ; fp

w

gii in

^

M

q

(s=u[w

0

 p

w

℄)

with #

hhq

0

;p

v

ii

(

^

M

q

00

(t=w[v

00

 p

v

℄)) � 1, i.e., there is a q

00

2 Q suh that q !

u;w

q

00

and

q

00

!

w;v

q

0

.

(P5) q ontributes � 2 states at u to v i� there are r

1

; r

2

2 Q suh that q !

u;v

r

1

; r

2

.

(P6) Let r

0

1

; r

0

2

2 Q and w as above. If q !

u;w

r

1

; r

2

and r

i

!

w;v

r

0

i

for i 2 [2℄, then

q !

u;v

r

0

1

; r

0

2

.

Let us prove property P6. If r

0

1

6= r

0

2

then by P3, q !

u;v

r

0

1

and q !

u;v

r

0

2

, whih means that

q !

u;v

r

0

1

; r

0

2

. Now assume that r

0

1

= r

0

2

. By Lemma 4.14(i), #

hhr

0

1

;p

v

ii

(

^

M

q

(t=u[v

0

 p

v

℄))

is greater than or equal to

X

r2Q

#

hhr

0

1

;p

v

ii

(

^

M

r

(t=w[v

00

 p

v

℄)) �#

hhr;p

w

ii

(

^

M

q

(t=u[w

0

 p

w

℄)); (�)

where p

w

, w

0

, and v

00

are as in the proof of P3. We distinguish the following two ases:

(i) r

1

6= r

2

: For r = r

1

and r = r

2

, #

hhr;p

w

ii

(

^

M

q

(t=u[w

0

 p

w

℄)) � 1, beause q !

u;w

r

1

; r

2

.

Thus, the sum in (�) is � #

hhr

0

1

;p

v

ii

(

^

M

r

1

(t=w[v

00

 p

v

℄)) + #

hhr

0

1

;p

v

ii

(

^

M

r

2

(t=w[v

00

 p

v

℄))

whih is � 2, beause r

i

!

w;v

r

0

i

for i 2 [2℄.

(ii) r

1

= r

2

: For r = r

1

, #

hhr;p

w

ii

(

^

M

q

(t=u[w

0

 p

w

℄)) � 2, beause q !

u;w

r

1

; r

1

. Thus, the

sum in (�) is � #

hhr

0

1

;p

v

ii

(

^

M

r

1

(t=w[v

00

 p

v

℄)) � 2 whih is � 2, beause r

1

!

w;v

r

0

1

.
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In terms of the !-notation the four onditions of input pumpability (f. De�nition 6.4)

say that there are states q

1

and q

2

, a tree s

0

2 T

�

, and nodes u

0

and u

0

u

1

of s

0

suh that

(1) q

0

!

";u

0

q

1

,

(2) q

1

!

u

0

;u

0

u

1

q

1

; q

2

,

(3) q

2

!

u

0

;u

0

u

1

q

2

, and

(4) h(s

0

=u

0

) = h(s

0

=u

0

u

1

).

SineM is not fi, arbitrary long state sequenes an be generated. Thus, for every m � 1

there are t 2 T

�

and v 2 V (t) suh that jsts

M

(t; v)j > m, whih, by P1, means that q

0

ontributes more than m states at " to v. In the following Claim 1 we will show that if a

state q ontributes `many' states at u to v, then there must be an intermediate node w (a

desendant of u and anestor of v) suh that q ontributes at least two states at u to w

that ontribute at w to v, and at least one of these states still ontributes `many' states at

w to v. The appliation of this laim an be iterated to show the existene of a sequene

of intermediate nodes w, whih will eventually lead to an appropriate repetition of states

(and look-ahead states) that allows us to de�ne s

0

and nodes u

0

, u

0

u

1

for whih (1) { (4)

hold.

Let � � 1 be an upper bound for the number of ourrenes of elements of hQ; fx

i

gi for

an i � 1 in the right-hand side of any rule of R, i.e., � � #

hQ;fx

i

gi

(rhs(�)) for every � 2 R

and i � 1. Let � be the maximal height of the right-hand side of any rule in R, i.e.,

� = maxfheight(rhs(�)) j � 2 Rg. Let N � 1 be a parameter opying bound for M and

let B � 1 be a nesting bound for M .

Claim 1: Let hhq; pii 2 hhQ;P ii be reahable, t 2 T

�

, and u; v 2 V (t) suh that t=u 2 L

p

and u is an anestor of v. Let  � 1. If q ontributes more than (�N

2B+�

) �  states at

u to v, then there is a proper desendant w of u whih is an anestor of v and there are

states r; r

0

2 Q suh that

(a) q !

u;w

r; r

0

,

(b) r ontributes more than  states at w to v, and

() r

0

ontributes at w to v.

Proof of Claim 1: Let w be the �rst (shortest) desendant of u and anestor of v suh that

there are r

1

; r

2

2 Q with q !

u;w

r

1

; r

2

and r

1

,r

2

ontribute at w to v. Clearly suh a w

exists, beause q ontributes � 2 states at u to v, and thus, by P5, there are r

1

; r

2

2 Q

suh that q !

u;v

r

1

; r

2

, and, by P0, r

1

; r

2

ontribute at v to v. By P0, q ontributes

exatly one state at u to u and therefore w 6= u. It remains to show that there is an r 2 Q

suh that q !

u;w

r and r ontributes more than  states at w to v; then r

0

is hosen to be

one of the r

1

; r

2

suh that (a) holds.

In (sub)Claim 2 below we will show that q ontributes at most � �N

B+�

states r at u to

w that ontribute at w to v. We now show that the number of states that q ontributes

at u to v is at most N

B

times the sum of the ontributions of the states r at w to v, and

hene that at least one of these r must ontribute >  states.
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Let w

0

; v

0

; v

00

2 N

�

suh that w = uw

0

and v = uv

0

= wv

00

. Let p

w

= h(t=w) and

p

v

= h(t=v). By assumption, q ontributes > (�N

2B+�

)� states at u to v, i.e., (�N

2B+�

)�

is smaller than #

hhQ;fp

v

gii

(

^

M

q

(t=u[v

0

 p

v

℄)) whih, by Lemma 4.14(ii) (using the fat that

hhq; h(t=u)ii is reahable, and summing over all hhq

0

; p

v

ii in hhQ; fp

v

gii), is

� N

B

�

X

r2Q

#

hhQ;fp

v

gii

(

^

M

r

(t=w[v

00

 p

v

℄)) �#

hhr;p

w

ii

(

^

M

q

(t=u[w

0

 p

w

℄)):

If #

hhQ;fp

v

gii

(

^

M

r

(t=w[v

00

 p

v

℄)) 6= 0, then r ontributes at w to v. Thus, we an re-

strit the above sum to states in Q

w;v

= fr 2 Q j r ontributes at w to vg. Now let

r 2 Q

w;v

be suh that q !

u;w

r (i.e., #

hhr;p

w

ii

(

^

M

q

(t=u[w

0

 p

w

℄)) � 1) and the num-

ber of states it ontributes at w to v is maximal, i.e., for all r

0

6= r with q !

u;w

r

0

,

#

hhQ;fp

v

gii

(

^

M

r

0

(t=w[v

00

 p

v

℄)) � #

hhQ;fp

v

gii

(

^

M

r

(t=w[v

00

 p

v

℄)). Then the above number

is

� N

B

�#

hhQ;fp

v

gii

(

^

M

r

(t=w[v

00

 p

v

℄)) �#

hhQ

w;v

;fp

w

gii

(

^

M

q

(t=u[w

0

 p

w

℄))

whih, by Claim 2, is � N

B

� #

hhQ;fp

v

gii

(

^

M

r

(t=w[v

00

 p

v

℄)) � (�N

B+�

). Thus we get

 < #

hhQ;fp

v

gii

(

^

M

r

(t=w[v

00

 p

v

℄)), i.e., r ontributes more than  states at w to v, whih

onludes the proof of Claim 1.

Claim 2: #

hhQ

w;v

;fp

w

gii

(

^

M

q

(t=u[w

0

 p

w

℄)) � � �N

B+�

.

Proof of Claim 2: Sine w 6= u it follows that w

0

6= ", i.e., there are i � 1 and !

0

2 N

�

suh

that w

0

= !

0

i. Let ! = u!

0

, i.e., w is the i-th hild of !. In the remainder of this proof

we will always write !i in plae of w and !

0

i in plae of w

0

, in partiular, p

!i

= p

w

and

Q

!i;v

= Q

w;v

. Let p

!

= h(t=!). Using the fat that hhq; h(t=u)ii is reahable, we an apply

Lemma 4.14(ii) to t and u; !; !i 2 V (t), summing over all hhq

0

; p

!i

ii in hhQ

!i;v

; fp

!i

gii, to

get that #

hhQ

!i;v

;fp

!i

gii

(

^

M

q

(t=u[!

0

i p

!i

℄)) is

� N

B

�

X

r2Q

#

hhQ

!i;v

;fp

!i

gii

(

^

M

r

(t=![i p

!i

℄)) �#

hhr;p

!

ii

(

^

M

q

(t=u[!

0

 p

!

℄)):

If #

hhQ

!i;v

;fp

!i

gii

(

^

M

r

(t=![i  p

!i

℄)) 6= 0, then there is an ourrene of some hhr

0

; p

!i

ii in

^

M

r

(t=![i  p

!i

℄), i.e., r !

!;!i

r

0

, and r

0

ontributes at !i to v, i.e., r

0

!

!i;v

r

00

for some

r

00

2 Q. Thus, by P3, r !

!;v

r

00

, whih means by P2 that r ontributes at ! to v. By

the de�nition of the node !i there is at most one ourrene of a hhq

0

; p

!

ii 2 hhQ; fp

!

gii

in

^

M

q

(t=u[!

0

 p

!

℄) suh that q

0

ontributes at ! to v, and sine q ontributes at u to

v, by P4 there is at least one suh ourrene. Hene, in the above sum there is only one

non-zero produt, namely for r = q

0

, and #

hhq

0

;fp

!

gii

(

^

M

q

(t=u[!

0

 p

!

℄)) = 1. We get

N

B

�#

hhQ

!i;v

;fp

!i

gii

(

^

M

q

0

(t=![i p

!i

℄)) � N

B

�#

hhQ;fp

!i

gii

(

^

M

q

0

(t=![i p

!i

℄)):

By Lemma 4.3 with s = t=! and u = ", and sine

^

M

q

0

(t=!["  p

!

℄) = hhq

0

; p

!

ii, the

tree

^

M

q

0

(t=![i  p

!i

℄) equals rhs

M

(q

0

; �; hp

1

; : : : ; p

k

i)[[::℄℄[[i℄℄, where [[::℄℄ = [[hr

0

; x

j

i  

M

r

0

(t=!j) j r

0

2 Q; j 2 [k℄ � fig℄℄ and [[i℄℄ = [[hr

0

; x

i

i  hhr

0

; p

!i

ii j r

0

2 Q℄℄ with t[!℄ = � 2

�

(k)

, k � 1, and p

j

= h(t=!j) for eah j 2 [k℄. Thus, N

B

�#

hhQ;fp

!i

gii

(

^

M

q

0

(t=![i  p

!i

℄))
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equals N

B

� #

hhQ;fp

!i

gii

(rhs

M

(q

0

; �; hp

1

; : : : ; p

k

i)[[::℄℄[[i℄℄), whih, avoiding the relabeling [[i℄℄,

an be written as

N

B

�#

hQ;fx

i

gi

(rhs

M

(q

0

; �; hp

1

; : : : ; p

k

i)[[hr

0

; x

j

i  M

r

0

(t=!j) j r

0

2 Q; j 6= i℄℄):

The appliation of Lemma 2.6 and the fat that the trees M

r

0

(t=!j) do not ontain ele-

ments of hQ; fx

i

gi gives the number N

B

�

P

~u2V

hQ;fx

i

gi

(�)

Q

F

[[::℄℄

�;~u

, where � = rhs

M

(q

0

; �; hp

1

;

: : : ; p

k

i). Sine the height of � is at most �,

Q

F

[[::℄℄

�;~u

� N

�

, and thus the above number is

� N

B+�

� jV

hQ;fx

i

gi

(�)j whih is � � �N

B+�

by the de�nition of �. This ends the proof of

Claim 2.

Let  = �N

2B+�

. Sine M is not fi, for every n � 1 there are t

n

2 T

�

and v

n

2 V (t

n

)

suh that jsts

M

(t

n

; v

n

)j > 

n

. Let r

0

= q

0

and w

0

= ". We now apply Claim 1 for

i = 0; : : : ; n� 1 to q = r

i

, p = h(t

n

=w

i

), t = t

n

, u = w

i

, v = v

n

, and  = 

n�i�1

. For i = 0

this is possible beause hhq

0

; h(t

n

)ii is reahable, and by P1, q

0

ontributes more than 

n

states at " to v

n

. We obtain that there exists a proper desendant w

i+1

of w

i

and states

r

i+1

; r

0

i+1

suh that r

i

!

w

i

;w

i+1

r

i+1

; r

0

i+1

, the state r

i+1

ontributes more than 

n�i�2

states at w

i+1

to v

n

, and r

0

i+1

ontributes at w

i+1

to v

n

. Note that sine q

0

!

";w

i+1

r

i+1

and q

0

!

";w

i+1

r

0

i+1

by P3, both r

i+1

and r

0

i+1

our in sts

M

(t

n

; w

i+1

) by P1 (and thus,

hhr

i+1

; h(t

n

=w

i+1

)ii is reahable). For an anestor w of v

n

let sts(w) denote sts

M

(t

n

; w)

restrited to the states q whih ontribute at w to v

n

(i.e., all states that do not ontribute

to v

n

are erased from sts

M

(t

n

; w)). Hene, r ours in sts(w) i� q

0

!

";w

r !

w;v

q for

some state q. In partiular, r

i+1

and r

0

i+1

our in sts(w

i+1

). Figure 2 shows the nodes w

i

and the orresponding sequenes sts(w

i

) with the states r

i

; r

0

i

; the arrows mean!

w

i

;w

i+1

.

.

.

.

.

.

.

w

1

w

2

w

n

v

n

= sts(w

2

)

= sts(w

n

)

� � � r

2

� � � r

0

2

� � �

q

0

= sts(")

= sts(w

1

)

� � � � � � � � � = sts

M

(t

n

; v

n

)

� � � r

n�1

� � � r

0

n�1

� � �

� � � r

1

� � � r

0

1

� � �

� � � r

n

� � � r

0

n

� � �

w

n�1

= sts(w

n�1

)

w

0

Figure 2: the tree t

n

with ontributing states

Now take n = jQj � jP j �2

jQj

and let t

n

, v

n

, w

i

, r

i

, and r

0

i

be as above for 0 � i � n. Clearly

this means that there are indies 0 � i < j � n suh that

� r

i

= r

j

,

� p = h(t

n

=w

i

) = h(t

n

=w

j

), and
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� fr 2 Q j r ours in sts(w

i

)g = fr 2 Q j r ours in sts(w

j

)g,

beause there are exatly jQj � jP j � 2

jQj

di�erent possibilities (r

i

; p; S), for r

i

2 Q, p 2 P ,

and S � Q. Let q

0

1

= r

i

and let q

0

2

2 Q suh that r

0

i+1

!

w

i+1

;w

j

q

0

2

and q

0

2

ours in

sts(w

j

). Suh a q

0

2

exists by the fat that r

0

i+1

ontributes at w

i+1

to v

n

, using property

P4 (and also P2 and P3). Sine r

i+1

!

w

i+1

;w

j

r

i

, we an apply P6 to get q

0

1

!

w

i

;w

j

q

0

1

; q

0

2

.

Thus, onditions (1), (2), and (4) of input pumpability hold for q

1

= q

0

1

, q

2

= q

0

2

, s

0

= t

n

,

u

0

= w

i

, and u

0

u

1

= w

j

. Clearly, if q

0

1

= q

0

2

, then also (3) holds, whih proves the lemma

for that ase. Thus, from now on we assume that q

0

1

6= q

0

2

. To realize (3), we will pump

the tree t

n

=w

i

[w

0

j

 p℄ in t

n

, where w

j

= w

i

w

0

j

.

For every r 2 Q that ours in sts(w

i

), there is an r

0

2 Q with r !

w

i

;w

j

r

0

and r

0

ours

in sts(w

j

), by P4. Sine the same states appear in sts(w

i

) and sts(w

j

), this means that

r

0

also ours in sts(w

i

). Thus, there is a sequene

q

0

1

!

w

i

;w

j

q

0

2

!

w

i

;w

j

q

0

3

!

w

i

;w

j

� � � !

w

i

;w

j

q

0

m

!

w

i

;w

j

q

0

m��

;

where 2 � m � jQj, 0 � � < m, and q

0

1

; : : : ; q

0

m

are pairwise di�erent states that our

in sts(w

i

). Hene, after m � � � 1 steps of !

w

i

;w

j

, starting at q

0

1

, states will repeat

with period � + 1. Let d be a multiple of � + 1 with d � m � � � 1. Then, there is a

� 2 fm� �; : : : ;mg suh that after d steps of !

w

i

;w

j

, q

0

1

reahes q

0

�

and q

0

�

reahes q

0

�

.

q

0

1

� � � q

0

2

� � � q

0

3

� � � q

0

4

� � � q

0

5

q

0

1

� � � q

0

2

� � � q

0

3

� � � q

0

4

� � � q

0

5

q

0

1

� � � q

0

2

� � � q

0

3

� � � q

0

4

� � � q

0

5

q

0

1

� � � q

0

2

� � � q

0

3

� � � q

0

4

� � � q

0

5

Figure 3: onditions (2) and (3) of input pumpability for q

1

= q

0

1

and q

2

= q

0

4

Let q

1

= q

0

1

, q

2

= q

0

�

,

s

0

= (t

n

[w

i

 p℄) � (t

n

=w

i

[w

0

j

 p℄)

d

� (t

n

=w

j

);

u

0

= w

i

, and u

1

= (w

0

j

)

d

. Then h(s

0

=w

i

(w

0

j

)



) = p for all 0 �  � d, whih easily follows by

indution, using the fat that

^

h(t

n

=w

i

[w

0

j

 p℄) =

^

h(t

n

=w

i

[w

0

j

 h(t

n

=w

j

)℄) = h(t

n

=w

i

) =

p. In partiular h(s

0

=u

0

) = h(s

0

=u

0

u

1

) = p, i.e., ondition (4) of input pumpability holds.

Clearly, for 0 �  < d, q !

w

i

;w

j

q

0

in the tree t

n

i� q !

w

i

(w

0

j

)



;w

i

(w

0

j

)

+1
q

0

in the tree

s

0

and similarly q !

w

i

;w

j

q

0

; q

00

in the tree t

n

i� q !

w

i

(w

0

j

)



;w

i

(w

0

j

)

+1
q

0

; q

00

in the tree s

0

;

this is true beause s

0

=w

i

(w

0

j

)



[w

0

j

 p℄ = t

n

=w

i

[w

0

j

 p℄. Thus, in s

0

, q

2

!

u

0

;u

0

u

1

q

2

by the de�nition of q

0

�

(using P3), whih proves ondition (3) of the input pumpable

property. To show ondition (2) we use P6: Sine q

0

1

!

w

i

;w

i

w

0

j

q

0

1

; q

0

2

, also q

0

1

!

w

i

;w

i

w

0

j

q

0

1

and thus, by the above and by P3, q

0

1

!

w

i

w

0

j

;w

i

(w

0

j

)

d

q

0

1

holds in s

0

. By the de�nition of q

0

�

,
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q

0

2

!

w

i

w

0

j

;w

i

(w

0

j

)

d

q

0

�

. Therefore, by P6, q

1

!

u

0

;u

0

u

1

q

1

; q

2

. Clearly, (1) of input pumpability

holds beause q

0

!

";w

i

r

i

in t

n

by the de�nition of r

i

, s

0

[u

0

 p℄ = t

n

[w

i

 p℄, and thus

q

0

!

";u

0

r

i

= q

1

holds in s

0

. Figure 3 outlines the hoie of q

2

for m = 5 and � = 2 (thus

d = 3 and � = 4). 2

Lemma 6.6 Let M be a proper MTT

R

. If M is input pumpable, then it is not lsi.

Proof. Let M = (Q;�;�; q

0

; R; P; h) be input pumpable, i.e., there are q

1

; q

2

2 Q,

s

0

2 T

�

, u

0

2 V (s

0

), u

1

2 V (s

0

=u

0

), and p 2 P suh that (1){(4) of De�nition 6.4 hold.

Assume now that M is lsi, i.e., there is a  2 N suh that for every input tree t 2 T

�

,

size(�

M

(t)) �  � size(t): (�)

In the sequel we will derive a ontradition by onstruting an input tree t suh that

size(�

M

(t)) >  � size(t). Note �rst that if we replae in s

0

the subtree at u

0

u

1

by any

tree s in L

p

, then (1){(4) still hold. Similar to the proof of Theorem 6.3, the idea of

onstruting t is as follows. Consider input trees t

i

obtained by i times pumping the tree

s

0

=u

0

[u

1

 p℄ in the tree s

0

[u

0

u

1

 s℄. Then the trees t

i

grow at most linearly with

onstant size(s

0

=u

0

[u

1

 p℄). In the output tree �

M

(t

i

) there are at least i ourrenes of

the tree M

q

2

(s). Hene, the trees �

M

(t

i

) grow at least linearly with onstant size(M

q

2

(s)).

Thus, if we hoose s in suh a way that size(M

q

2

(s)) is larger than the produt of  and

the size of s

0

=u

0

[u

1

 p℄, then size(�

M

(t

i

)) grows faster than  � size(t

i

), i.e., we an �nd

an i suh that (�) does not hold for t = t

i

.

In order to hoose the tree s appropriately, we need that the set Out(q

2

; p) = fM

q

2

(s) j

s 2 L

p

g is in�nite, i.e., that it ontains trees with arbitrarily many output symbols. This

is guaranteed by i-properness (f. point (i) of De�nition 5.1), if (a) hhq

2

; pii is reahable

and (b) q

2

6= q

0

.

(a) Clearly, hhq

2

; pii is reahable beause it ours in

^

M

q

0

(s

0

[u

0

u

1

 p℄); this follows from

(1) and (2) using Lemma 4.14(i) (analogous to the proof of P3 in the proof of Lemma 6.5;

in fat, using the !-notation of the proof of that lemma, it follows from (1) and (2) by

P3 that q

0

!

";u

0

u

1

q

2

, whih means that hhq

2

; pii ours in

^

M

q

0

(s

0

[u

0

u

1

 p℄)).

(b) By (2),

^

M

q

1

(s

0

=u

0

[u

1

 p℄) 6= hhq

1

; pii =

^

M

q

1

(s

0

=u

0

["  p℄), and thus u

1

6= ", i.e.,

u

1

= u

0

1

i for some u

0

1

2 N

�

and i � 1. Also by (2), hhq

2

; pii ours in

^

M

q

1

(s

0

=u

0

[u

1

 p℄).

Hene (by Lemma 4.3 applied to q

1

, s

0

=u

0

, and u

0

1

), hq

2

; x

i

i ours in the right-hand side

of a rule of M . By (ii) of i-properness this implies that q

2

6= q

0

.

We now pump the tree s

0

=u

0

[u

1

 p℄ in the tree s

0

[u

0

u

1

 s℄ = (s

0

[u

0

 p℄)�(s

0

=u

0

[u

1

 

p℄)�s: for i � 0, let t

i

= (s

0

[u

0

 p℄)� (s

0

=u

0

[u

1

 p℄)

i

�s. It follows from (1){(4) that for

every i � 0, sts

M

(t

i

; u

0

u

i

1

) ontains at least one ourrene of q

1

and at least i ourrenes

of q

2

; this is skethed in Fig. 4 and formalized in the following laim.

Claim: For all i � 0, #

hhq

1

;pii

(�

i

) � 1 and #

hhq

2

;pii

(�

i

) � i, where �

i

=

^

M

q

0

(t

i

[u

0

u

i

1

 p℄).

The proof of the laim is by indution on i. For i = 0, t

i

[u

0

u

i

1

 p℄ = s

0

[u

0

 p℄

and by (1), #

hhq

1

;pii

(

^

M

q

0

(s

0

[u

0

 p℄) � 1. For i + 1 we apply Lemma 4.14(i) to t

i+1

,

u = ", w = u

0

u

i

1

, v = u

0

u

i+1

1

, and q = q

0

. Sine h(t

i+1

=u

0

u

i

1

) = h(s

0

=u

0

[u

1

 s℄) =
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sts

M

(t

i

; u

0

u

3

1

) =

sts

M

(t

i

; ") =

sts

M

(t

i

; u

0

u

2

1

) =

sts

M

(t

i

; u

0

u

1

) =

sts

M

(t

i

; u

0

) =

q

0

� � � q

1

� � �

� � � q

1

� � � q

2

� � � q

1

� � � q

2

� � � q

2

� � � q

1

� � � q

2

� � � q

2
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2

Figure 4: states that appear in state sequenes of t

i

^

h(s

0

=u

0

[u

1

 p℄) = p by (4) and the fat that s 2 L

p

, h(t

i+1

=u

0

u

i+1

1

) = h(s) = p, and

t

i+1

[u

0

u

i

1

 p℄ = t

i

[u

0

u

i

1

 p℄, we get

#

hhq

0

;pii

(�

i+1

) �

X

r2Q

#

hhq

0

;pii

(

^

M

r

(s

0

=u

0

[u

1

 p℄)) �#

hhr;pii

(�

i

):

Let q

0

= q

1

. Surely restriting the above sum to r = q

1

does not inrease the result.

Thus, the sum is � #

hhq

1

;pii

(

^

M

q

1

(s

0

=u

0

[u

1

 p℄)) � #

hhq

1

;pii

(�

i

). This is � 1 beause

#

hhq

1

;pii

(

^

M

q

1

(s

0

=u

0

[u

1

 p℄)) � 1 by (2), and #

hhq

1

;pii

(�

i

) � 1 by indution.

Let q

0

= q

2

. Now restrit the sum to r 2 fq

1

; q

2

g. If q

1

= q

2

, then the sum is

� #

hhq

2

;pii

(

^

M

q

1

(s

0

=u

0

[u

1

 p℄)) � #

hhq

1

;pii

(�

i

); this is � 2 � maxf1; ig � i + 1, beause,

by (2), #

hhq

2

;pii

(

^

M

q

1

(s

0

=u

0

[u

1

 p℄)) � 2, and by indution #

hhq

1

;pii

(�

i

) = #

hhq

2

;pii

(�

i

) �

maxf1; ig. If q

1

6= q

2

, then the sum is � #

hhq

2

;pii

(

^

M

q

1

(s

0

=u

0

[u

1

 p℄)) � #

hhq

1

;pii

(�

i

) +

#

hhq

2

;pii

(

^

M

q

2

(s

0

=u

0

[u

1

 p℄)) �#

hhq

2

;pii

(�

i

); this is � i+1 beause #

hhq

2

;pii

(

^

M

q

1

(s

0

=u

0

[u

1

 

p℄)) � 1 by (2), #

hhq

2

;pii

(

^

M

q

2

(s

0

=u

0

[u

1

 p℄)) � 1 by (3), and, by indution, #

hhq

1

;pii

(�

i

) � 1

and #

hhq

2

;pii

(�

i

) � i. This ends the proof of the laim.

Sine #

hhq

2

;pii

(�

i

) � i, we obtain size(�

M

(t

i

)) � i �#

�

(M

q

2

(s)) as follows. By Lemma 4.2

and the fat that t

i

=u

0

u

i

1

= s, �

M

(t

i

) = M

q

0

(t

i

) = �

i

[[: : :℄℄ with [[: : :℄℄ = [[hhq; pii  M

q

(s) j

q 2 Q℄℄. By Lemma 2.6 (summing for all Æ 2 �), size(�

M

(t

i

)) = #

�

(�

i

[[: : :℄℄) = S

1

+

S

2

� S

2

=

P

u2V

hhq;pii

(�

i

);q2Q

#

�

(M

q

(s)) �

Q

F

[[:::℄℄

�

i

;u

. Sine M is nondeleting, it follows from

Lemma 3.10(1) that #

y

j

(M

q

(s)) � 1 for all q 2 Q

(m)

and j 2 [m℄, and thus

Q

F

[[:::℄℄

�

i

;u

� 1.

We get S

2

�

P

u2V

hhq;pii

(�

i

);q2Q

#

�

(M

q

(s)) �

P

u2V

hhq

2

;pii

(�

i

)

#

�

(M

q

2

(s)) � i �#

�

(M

q

2

(s)).

Now let s 2 L

p

suh that

#

�

(M

q

2

(s)) >  � 

1

;

where 

1

= size(s

0

=u

0

[u

1

 p℄) � 1. Then size(�

M

(t

i

)) � i � (

1

+ 1) = i

1

+ i. Let

i > (

0

+

2

), where 

0

= size(s

0

[u

0

 p℄)�1 and 

2

= size(s). Sine size(t

i

) = 

0

+i

1

+

2

this means that size(�

M

(t

i

)) >  � size(t

i

) beause size(�

M

(t

i

)) > i

1

+ (

0

+ 

2

) =

(

0

+ i

1

+ 

2

) =  � size(t

i

). This ontradits (�) and onludes the proof. 2
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We are now ready to prove step (III).

Theorem 6.7 Let M be a proper MTT

R

fnest;fp

. If M is lsi, then it is fi.

Proof. If M is not fi, then, by Lemma 6.5, M it is input pumpable and thus, by

Lemma 6.6, M is not lsi. 2

6.3 From lsi to fnest (I)

In Lemma 6.6 it was proved that if a proper MTT

R

M is input pumpable, then it is not

lsi. So, in order to prove that M is not lsi if it is not fnest, we would like to show that

if M is not fnest, then it is input pumpable. This ould be done by proving a pumping

argument that works on the paths of trees

^

M

q

0

(s[u  p℄). We have hosen the following

alternative: we an assoiate withM a top-down tree transduer A (with the same regular

look-ahead as M) in suh a way that

(i) the number of elements hhq

0

; pii of hhQ; fpgii that appear on a path of

^

M

q

(s[u p℄)

is bounded by the number of suh elements that appear in

^

A

q

(s[u p℄) and

(ii) if there are n ourrenes of hhq

0

; pii in

^

A

q

(s[u  p℄), then there are at least n

ourrenes of hhq

0

; pii in

^

M

q

(s[u p℄).

Thus, (i) implies that if M is not fnest then A is not fi, and (ii) implies that if A is

input pumpable then so is M . Hene we need to show that if A is not fi, then A is input

pumpable. This is exatly what the appliation of Lemma 6.5 to A gives (the lemma is

appliable beause, obviously, every top-down tree transduer is nondeleting, fnest with

nesting bound 1, and fp).

In order to prove (i) and (ii) we merely need to require from the T

R

A that it has the

same states as M (but of rank zero) and that every rule of A has the same number of

ourrenes of eah element of hQ;Xi as the orresponding rule of M .

De�nition 6.8 (assoiated T

R

, globally fi)

Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. The T

R

A = (Q

A

; P;�;�; q

0

; R

A

; h) is

assoiated with M , if Q

A

= fq

(0)

j q 2 Qg and for every q; q

0

2 Q, � 2 �

(k)

, k � 0, i 2 [k℄,

and p

1

; : : : ; p

k

2 P ,

#

hq

0

;x

i

i

(rhs

A

(q; �; hp

1

; : : : ; p

k

i)) = #

hq

0

;x

i

i

(rhs

M

(q; �; hp

1

; : : : ; p

k

i)):

The MTT

R

M is globally fi (for short, gfi), if every T

R

assoiated with M is fi. 2

We use the subsript `gfi' for lasses of translations of MTT

R

s to denote that the orre-

sponding transduers are gfi. Note that for T

R

s A

1

and A

2

assoiated withM , sts

A

1

(s; u)

is a permutation of sts

A

2

(s; u) (f. Lemma 6.9 of [EM99℄). Hene, M is gfi i� there exists

a T

R

fi

assoiated withM . For every MTT

R

M there is (e�etively) an assoiated T

R

A; it
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an be obtained from M by simply hanging every right-hand side of M into an arbitrary

right-hand side in T

hQ

A

;X

k

i[�

while preserving the number of ourrenes of hq; x

i

i for

every hq; x

i

i 2 hQ;X

k

i.

Let us �rst prove property (ii) mentioned above.

Lemma 6.9 Let M = (Q;P;�;�; q

0

; R; h) be a nondeleting MTT

R

and let A = (Q

A

; P;

�;�; q

0

; R

A

; h) be a T

R

assoiated with M . For every q; q

0

2 Q, s 2 T

�

, u 2 V (s), and

p 2 P : #

hhq

0

;pii

(

^

M

q

(s[u p℄)) � #

hhq

0

;pii

(

^

A

q

(s[u p℄)).

Proof. The proof is by indution on the struture of s. Let s = �(s

1

; : : : ; s

k

) with

� 2 �

(k)

and k � 0. Let m = rank

Q

(q).

If u = ", then #

hhq

0

;pii

(

^

M

q

(s[u  p℄)) = #

hhq

0

;pii

(hhq; pii(y

1

; : : : ; y

m

)) whih equals (now

with q 2 Q

(0)

A

), #

hhq

0

;pii

(hhq; pii) = #

hhq

0

;pii

(

^

A

q

(s[u p℄)).

Otherwise u = iv with i 2 [k℄ and v 2 V (s

i

). Thus

^

M

q

(s[u p℄) equals

^

M

q

(�(~s

1

; : : : ; ~s

k

),

where ~s

�

= s

�

for � 2 [k℄ � fig and ~s

i

= s

i

[v  p℄. For � 2 [k℄ let p

�

=

^

h(~s

�

). By

Lemma 3.5,

^

M

q

(�(~s

1

; : : : ; ~s

k

)) = t[[: : :℄℄, where t = rhs

M

(q; �; hp

1

; : : : ; p

k

i) and [[: : :℄℄ =

[[hr; x

�

i  

^

M

r

(~s

�

) j hr; x

�

i 2 hQ;X

k

i℄℄. Applying Lemma 2.6 we obtain that #

hhq

0

;pii

(t[[: : :℄℄)

equals

X

w 2 V

hr;x

�

i

(t);

hr; x

�

i 2 hQ;X

k

i

#

hhq

0

;pii

(

^

M

r

(~s

�

)) �

Y

F

[[:::℄℄

t;w

:

Sine M is nondeleting, by Lemma 3.10(1), #

y

j

(

^

M

r

(~s

�

)) � 1 for all r 2 Q

(n)

, j 2 [n℄, and

� 2 [k℄. This implies that

Q

F

[[:::℄℄

t;w

� 1. Hene,

#

hhq

0

;pii

(

^

M

q

(s[u p℄)) �

X

w 2 V

hr;x

�

i

(t);

hr; x

�

i 2 hQ;X

k

i

#

hhq

0

;pii

(

^

M

r

(~s

�

)): (�)

By indution, #

hhq

0

;pii

(

^

M

r

(~s

i

)) � #

hhq

0

;pii

(

^

A

r

(~s

i

)). For � 2 [k℄� fig, ~s

�

2 T

�

and therefore

#

hhq

0

;pii

(

^

M

r

(~s

�

)) = #

hhq

0

;pii

(M

r

(~s

�

)) = 0 = #

hhq

0

;pii

(A

r

(~s

�

)) = #

hhq

0

;pii

(

^

A

r

(~s

�

)). Thus, the

sum in (�) is �

P

w2V

hr;x

�

i

(t);hr;x

�

i2hQ;X

k

i

#

hhq

0

;pii

(

^

A

r

(~s

�

)). Sine A is assoiated with M ,

jV

hr;x

�

i

(�)j = jV

hr;x

�

i

(t)j for every hr; x

�

i 2 hQ;X

k

i, where � = rhs

A

(q; �; hp

1

; : : : ; p

k

i).

Therefore the above sum does not hange if we replae t by �. Then, by Lemma 2.4 we

get #

hhq

0

;pii

(�[: : : ℄) with [: : : ℄ = [hr; x

�

i  

^

A

r

(~s

�

) j hr; x

�

i 2 hQ

A

;X

k

i℄. By Lemma 3.5 and

the fat that

^

A is a T

R

, this equals #

hhq

0

;pii

(

^

A

q

(s[u p℄). 2

For a nondeleting MTT

R

M it follows immediately from Lemma 6.9 and De�nition 6.4

that if a T

R

A assoiated with M is input pumpable, then also M is input pumpable.

Lemma 6.10 Let M be a nondeleting MTT

R

and let A be a T

R

assoiated with M . If

A is input pumpable, then so is M .
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From Lemma 6.9 it also follows that gfi is a generalization of fi: if #

hhQ;fpgii

(

^

M

q

0

(s[u 

p℄)) is bounded by some N , then so is #

hhQ;fpgii

(

^

A

q

0

(s[u p℄)), i.e., if M is fi, then it is

gfi. However, the onverse is not true: there are MTT

R

s whih are gfi but not fi. In

fat, even for fp MTT

R

s, gfi does not imply fi. To see this onsider an MTT M whih

ontains the following rules (and trivial look-ahead P = fpg).

hq

0

; �(x

1

; x

2

)i ! hq; x

1

i(hq

0

; x

2

i)

hq

0

; �i ! �

hq; �(x

1

; x

2

)i(y

1

) ! �(y

1

; y

1

)

hq; �i(y

1

) ! �(y

1

; y

1

)

Now let s

0

= � and for n � 0 let s

n+1

= �(�; s

n

). Then

hq

0

; s

n

i )

M

hq; �i(hq

0

; s

n�1

i)

)

M

�(hq

0

; s

n�1

i; hq

0

; s

n�1

i)

)

�

M

�(�(hq

0

; s

n�2

i; hq

0

; s

n�2

i); �(hq

0

; s

n�2

i; hq

0

; s

n�2

i)):

Hene,

^

M

q

0

(s

n

[2

n

 p℄) is a full binary tree of height n with all leaves labeled hhq

0

; pii.

Thus sts

M

(s

n

; 2

n

) = q

2

n

0

whih means that M is not fi. However, M is gfi and fp, with

bounds 1 and 2, respetively. To see that M is gfi, onsider the T

R

A with right-hand

side �(hq; x

1

i; hq

0

; x

2

i) for the (q

0

; �)-rule and right-hand side � for all other rules. Now A

is assoiated with M , and it is linear in the input variables x

i

, i.e., A is fi with bound 1.

Moreover, M is not of linear size inrease (beause �

M

(s

n

) is a full binary tree of height

n). Thus, gfi plus fp annot be taken as an alternative to the de�nition of �nite opying:

MTT

R

fi;fp

( MTT

R

gfi;fp

.

As illustrated by the example above, a gfi MTT

R

M need not be fi and thus, the number

of ourrenes of elements of hhQ; fpgii in

^

M

q

0

(s[u  p℄) is in general unbounded, due to

parameter opying (in the example above by the rules with right-hand side �(y

1

; y

1

)).

However, the number of suh elements that appear on one path in

^

M

q

0

(s[u  p℄) is

bounded, and thus M is fnest. To see this intuitively, onsider a label path � in a tree in

T

hQ;T

�

i[�

. The appliation of a rule r of an MTT

R

does not opy any states on the path

�; thus, it inreases the number of ourrenes of q

0

on � by at most #

hfq

0

g;Xi

(rhs(r)),

whih equals #

hfq

0

g;Xi

(rhs(r

0

)) for the orresponding rule r

0

of a T

R

assoiated with M .

We now give a formal proof, of property (i) mentioned above.

Lemma 6.11 Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

and let A = (Q

A

; P;�;�; q

0

;

R

A

; h) be a T

R

assoiated with M . For every q; q

0

2 Q, s 2 T

�

, u 2 V (s), p 2 P , and

every label path � in

^

M

q

(s[u p℄): #

hhq

0

;pii

(�) � #

hhq

0

;pii

(

^

A

q

(s[u p℄)).

Proof. The proof is by indution on the length of u.

For u = ", #

hhq

0

;pii

(�) = #

hhq

0

;pii

(hhq; pii) = #

hhq

0

;pii

(

^

A

q

(s[u p℄)).

For u = u

0

i it follows from Lemma 4.3 that

^

M

q

(s[u  p℄) = t[[i℄℄[[::℄℄ with t =

^

M

q

(s[u

0

 

p

0

℄)[[rhs℄℄, p

0

=

^

h(s=u

0

[i  p℄), and the substitutions [[rhs℄℄, [[::℄℄, and [[i℄℄ de�ned as in

Lemma 4.3 (with u

0

instead of u, p

0

instead of p, and p instead of p

i

). By Lemma 2.3(i)

applied to t

0

[[::℄℄ with t

0

= t[[i℄℄, the label path � is of the form w

0

v

1

w

1

� � � v

m

w

m

, m � 0,
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where �

0

= w

0

hr

1

; x

�

1

iw

1

� � � hr

m

; x

�

m

iw

m

is a label path in t

0

, and for j 2 [m℄, r

j

2 Q,

�

j

2 [k℄�fig, v

j

is a label path inM

r

j

(s=u

0

�

j

), and w

0

; : : : ; w

m

do not ontain elements of

hQ;X

k

� fx

i

gi. Sine M

r

j

(s=u

0

�

j

) 2 T

�

(Y ), #

hhq

0

;pii

(v

j

) = 0 for all j 2 [m℄ whih means

that #

hhq

0

;pii

(�) = #

hhq

0

;pii

(�

0

).

Clearly, by the de�nition of [[i℄℄, #

hhq

0

;pii

(�

0

) = #

hq

0

;x

i

i

(�

00

) for some label path �

00

in t.

Hene, it remains to show that #

hq

0

;x

i

i

(�

00

) � #

hhq

0

;pii

(

^

A

q

(s[u p℄)) = #

hhq

0

;pii

(�[rhs℄[::℄[i℄) =

#

hq

0

;x

i

i

(�[rhs℄), where � =

^

A

q

(s[u

0

 p

0

℄) and [rhs℄, [::℄, [i℄ are the (orresponding �rst-order

variants of the) substitutions of Lemma 4.3.

By Lemma 2.3(i) applied to t =

^

M

q

(s[u

0

 p

0

℄)[[rhs℄℄, �

00

is of the form w

0

v

1

w

1

� � � v

m

w

m

,

m � 0, where � = w

0

hhr

1

; p

0

iiw

1

� � � hhr

m

; p

0

iiw

m

is a label path in

^

M

q

(s[u

0

 p

0

℄) and

for j 2 [m℄, r

j

2 Q, v

j

is a label path in rhs

M

(r

j

; �; hp

1

; : : : ; p

k

i), and w

0

; : : : ; w

m

on-

tain no elements of hhQ; fp

0

gii (i.e., w

j

is a string over � [ Y ). Thus, #

hq

0

;x

i

i

(�

00

) =

P

j2[m℄

#

hq

0

;x

i

i

(v

j

). Sine, for j 2 [m℄, v

j

is a label path in rhs

M

(r

j

; �; hp

1

; : : : ; p

k

i), this

sum is surely

�

X

j2[m℄

#

hq

0

;x

i

i

(rhs

M

(r

j

; �; hp

1

; : : : ; p

k

i)) =

X

j2[m℄

#

hq

0

;x

i

i

(rhs

A

(r

j

; �; hp

1

; : : : ; p

k

i));

whih an be written as

X

r2Q

#

hhr;p

0

ii

(�) �#

hq

0

;x

i

i

(rhs

A

(r; �; hp

1

; : : : ; p

k

i)):

By indution this is �

P

r2Q

#

hhr;p

0

ii

(�) � #

hq

0

;x

i

i

(rhs

A

(r; �; hp

1

; : : : ; p

k

i)) whih equals

#

hq

0

;x

i

i

(�[rhs℄) by Lemma 2.4. 2

Taking q = q

0

and summing over all q

0

2 Q, it follows immediately from Lemma 6.11 that

if A is fi then M is fnest, with the same bound. This is stated in the next lemma.

Lemma 6.12 If an MTT

R

is gfi, then it is fnest.

We are now ready to prove step (I), i.e., that for a proper MTT

R

, lsi implies fnest.

Theorem 6.13 Let M be a proper MTT

R

. If M is lsi, then it is fnest.

Proof. If M is not fnest, then by Lemma 6.12 it is not gfi. By the de�nition of gfi

this means that any T

R

A assoiated with M is not fi. The appliation of Lemma 6.5 to

A gives that A is input pumpable, and thus by Lemma 6.10 M is input pumpable. Now

Lemma 6.6 implies that M is not lsi. 2

From Theorems 6.13, 6.3, and 6.7 we obtain the main result of this setion: the onverse

of Theorem 4.19, for proper MTT

R

s.

Theorem 6.14 Let M be a proper MTT

R

. If M is of linear size inrease, then it is �nite

opying.
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Reall from Setion 4.3 the notion of �nite ontribution. By Lemma 4.18, every �nite

opying MTT

R

is �nite ontribution, and by the disussion before Theorem 4.19, every

�nite ontribution MTT

R

is of linear size inrease. Together with Theorem 6.14 this shows

that a proper MTT

R

is �nite opying i� it is �nite ontribution. It an be proved that this

even holds for a produtive MTT

R

that satis�es (ii) of De�nition 5.6 (of p-properness).

Thus, the notions of �nite opying and �nite ontribution are losely related.

7 Main Results and Consequenes

In this �nal setion we prove our main results: (i) a translation is MSO de�nable i�

it is a maro tree translation of linear size inrease, and (ii) for a given MTT M it is

deidable whether or not �

M

is MSO de�nable. Then we disuss some onsequenes of

these results for top-down tree transduers, attributed tree transduers, and ontext-free

graph grammars. At last some open problems and further researh topis are mentioned.

Theorem 7.1 Let M be an MTT

R

. Then the following statements are equivalent:

(1) �

M

is MSO de�nable.

(2) �

M

is of linear size inrease.

(3) prop(M) is �nite opying.

Proof. Sine every MSO de�nable tree translation is of linear size inrease (see Se-

tion 2.5), (1) ) (2). Note that this an also be proved using the results from Setion 4:

If �

M

is MSO de�nable, then by Lemma 4.9, �

M

2 MTT

R

f

and thus, by Theorem 4.19,

�

M

is of linear size inrease. To show (2) ) (3), let �

M

be of linear size inrease. By

Theorem 5.9, there is a proper MTT

R

prop(M) with �

prop(M)

= �

M

; i.e., �

prop(M)

is of

linear size inrease. By Theorem 6.14, prop(M) is �nite opying. Finally, if prop(M) is

�nite opying then, by Lemma 4.9, �

M

= �

prop(M)

is MSO de�nable. Thus (3) ) (1). 2

Note that, as disussed at the end of Setion 6, we ould have inluded \(4) prop(M) is

�nite ontribution" as another equivalent statement in Theorem 7.1.

Theorem 7.1 shows that the lass MSOTT of MSO de�nable tree translations an be

haraterized as those maro tree translations that are of linear size inrease. Reall (from

Setion 2.5) that LSI denotes the lass of all tree translations of linear size inrease.

Theorem 7.2 MSOTT = MTT \ LSI.

Proof. If � 2 MTT \ LSI then there is an MTT M suh that �

M

= � is of linear

size inrease. By Theorem 7.1 �

M

is MSO de�nable, and thus MTT \ LSI � MSOTT. If

� 2 MSOTT, then by Lemma 4.9 there is an MTT

R

M with �

M

= � . By Theorem 7.1 �

M

is

of linear size inrease, and thusMSOTT � MTT

R

\LSI. By Lemma 3.3, MTT

R

= MTT.

2
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By Theorem 7.1, the proper normal form prop(M) (whih an be onstruted by Theo-

rem 5.9) of an MTT M is �nite opying i� �

M

is MSO de�nable. Sine the �nite opying

property is deidable (Lemma 4.10) this implies that for M it is deidable whether or not

�

M

is MSO de�nable. If prop(M) is �nite opying, then an MSO tree transduer that

realizes �

M

an be onstruted, beause the equality MSOTT = MTT

R

f

of Lemma 4.9 is

e�etive (f. the disussion following Lemma 4.10).

Theorem 7.3 It is deidable for an MTT M whether or not �

M

is MSO de�nable, and

if it is, then an MSO tree transduer for �

M

an be onstruted.

7.1 Top-Down Tree Transduers

A top-down tree transduer an translate a monadi tree (of height n) into a full binary

tree (of height n). This translation is of exponential size inrease and hene it is not

MSO de�nable. On the other hand, there are MSO de�nable tree translations that annot

be realized by top-down tree transduers: onsider the translation that assoiates with a

tree its yield (i.e., the left-to-right sequene of the labels of its leaves), seen as a monadi

tree. This translation is MSO de�nable (f. Example 1(6, yield) of [BE00℄) but it annot

be realized by a top-down tree transduer, beause it is of exponential height inrease

(viz. it translates a full binary tree of height n into its yield, a monadi tree of height

2

n

) whereas top-down tree translations are of linear height inrease (f. Lemma 3.27

of [FV98℄). Now, whih translations realized by top-down tree transduers (with regular

look-ahead) are MSO de�nable? By our results, they are exatly the translations realized

by �nite opying T

R

s.

Theorem 7.4 T

R

\MSOTT = T

R

f

.

Proof. Let M be a T

R

suh that �

M

is MSO de�nable. By Theorem 7.1, prop(M) is

�nite opying. By Theorem 5.9, prop(M) is a T

R

. Thus, �

M

= �

prop(M)

2 T

R

f

. Hene,

T

R

\MSOTT � T

R

f

. The inlusion T

R

f

� T

R

\MSOTT is immediate from Lemma 4.9.

2

Note that it follows immediately from Theorem 7.1 that T

R

\MSOTT = T

R

\LSI. Thus,

T

R

f

= T

R

\LSI. Sine T

R

f

s are losely related to tree-walking transduers (see Theorem 4.9

of [ERS80℄), this may be viewed as the result of [AU71℄ that the translations realized by

tree-walking transduers are exatly the generalized syntax-direted translations of linear

size inrease.

7.2 Attributed Tree Transduers

Attributed tree transduers [F�ul81, FV98℄ serve as a formal model for attribute gram-

mars [Knu68℄. As argued in [BE00℄, adding the feature of look-ahead to them, yields a

better model of attribute grammars, and a more robust lass of tree translations. Let

ATT

R

denote the lass of translations realized by attributed tree transduers with look-

ahead (see [BE00, EM99℄) and let the subsript `sur' denote that the transduers are
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\single use restrited" (f. Setion 5 in [EM99℄), i.e., for every input symbol �, eah out-

side attribute is used at most one in the set of rules for �. It is proved in Theorem 17

of [BE00℄ that MSOTT = ATT

R

sur

. Hene MSOTT � ATT

R

\ LSI. Equality of these

lasses now follows from Theorem 7.2 and the fat that ATT

R

� MTT. (The latter in-

lusion an be proved as follows: by de�nition, ATT

R

onsists of all translations that

an be realized by the omposition of an attributed relabeling, followed by an attributed

tree translation. It follows from Theorem 4.4 of [EM99℄ that attributed relabelings an be

realized by T

R

s. Thus, ATT

R

� T

R

Æ ATT, where ATT denotes the lass of translations

realized by attributed tree transduers. By Lemma 5.11 of [EM99℄, ATT � MTT

R

and

so T

R

ÆATT � T

R

ÆMTT

R

whih, by Lemma 3.3, equals T

R

ÆMTT. Sine regular look-

ahead an be realized by �rst running a �nite state relabeling, i.e., applying a translation

in DBQREL (f. Theorem 2.6 of [Eng77℄), we get the inlusion in DBQREL Æ T ÆMTT

whih is � DBQREL ÆMTT by Corollary 4.10 of [EV85℄, and thus we have the inlusion

in MTT

R

= MTT.)

Theorem 7.5 MSOTT = ATT

R

\ LSI.

From the fat that ATT

R

� MTT (e�etively) together with Theorem 7.3 and the fat

that MSOTT = ATT

R

sur

(e�etively), we obtain the following deidability result for at-

tributed tree transduers.

Theorem 7.6 For an ATT

R

A it is deidable whether or not there exists an equivalent

single use restrited ATT

R

A

0

, and if so, A

0

an be onstruted.

The interpretation of Theorem 7.6 in terms of lassial attribute grammars involves a

tehnial detail: roughly speaking, the look-ahead part of an ATT

R

orresponds to the

underlying ontext-free grammar of an attribute grammar. If we want to apply Theo-

rem 7.6 to an attribute grammar G, then we �rst have to turn G into an equivalent ATT

R

A, i.e., into an ATT

R

that realizes the same tree-to-tree translation as G (translating the

non-derivation-trees of G into some error symbol). Now assume that for A there is an

equivalent single use restrited ATT

R

A

0

. In general the look-ahead of A

0

will be di�erent

from the one of A, whih implies that an attribute grammar G

0

equivalent to A

0

does not

have the same underlying ontext-free grammar as G, and hene the tree-to-tree transla-

tion realized by G

0

is di�erent from the one realized by G. This problem an be avoided by

adding boolean-valued attributes to G

0

(f. the Introdution of [BE00℄), whih simulate

the look-ahead part of A

0

. In this way G

0

and G have the same underlying ontext-free

grammar and they realize the same tree-to-tree translation (however, the boolean-valued

attributes are, in general, not single use restrited).

7.3 Context-Free Graph Grammars

A ontext-free graph grammar (see, e.g., [Eng97℄) generates a graph language. If the

graphs are restrited to trees, then we obtain a tree language. As disussed in the In-

trodution of [EM99℄, the lass of tree languages that an be generated by ontext-free

graph grammars (either by hyperedge replaement (HR), or by node replaement (NR), f.
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Setion 6 of [Eng97℄) an be obtained by applying the MSO de�nable tree translations to

the regular tree languages. By Theorem 7.2 it means that this lass of tree languages an

be obtained by the appliation of linear size inrease maro tree translations to the regular

tree languages. This is just a straightforward variation of similar statements in the liter-

ature: for single use restrited ATTs in Corollary 19 of [BE00℄, for \single use restrited"

MTTs and for �nite opying MTTs in Corollary 7.3 of [EM99℄, and for nondeleting MTTs

that are �nite opying and linear in the parameters in Theorem 5 of [EM00b℄ (based on

Theorem 8.1 of [Dre99a℄).

Theorem 7.7 The output tree languages of MTTs of linear size inrease applied to the

regular tree languages are the tree languages generated by (HR or NR) ontext-free graph

grammars.

7.4 Open Problems and Further Researh Topis

We have proved that for a maro tree transduer it is deidable whether or not the trans-

lation it realizes is MSO de�nable. What is the omplexity of this problem? In fat, the

omplexity of deiding the �niteness of ranges of (ompositions of) maro tree transdu-

ers [DE98℄ (f. Lemma 3.7) is not known, and our deidability proof is based on this

result.

It would be interesting to �nd a lassi�ation of the possible size inreases of MTTs. For

top-down tree transduers suh a lassi�ation is given in [AU71℄ and it is shown that the

size inrease of every top-down tree transduer is either polynomial or exponential. For

MTTs it ould be the ase that every size inrease is either polynomial, exponential, or

double exponential.

Is polynomial size inrease deidable for MTTs? If so, what is the omplexity? For top-

down tree transduers it is shown in [Dre99b℄ that this problem is NLOGSPACE-omplete.

It is not lear how MSO de�nability ould be generalized in order to obtain the lass of

polynomial size inrease maro tree translations. (Note that there are well-established

models of polynomial size inrease FO transduers, see, e.g., [EF95, Imm99℄).

Composition of MTTs yields a proper hierarhy, i.e., there are translations whih an be

realized by the omposition of m + 1 MTTs, but not by the omposition of m MTTs

(Theorem 4.16 of [EV85℄). Now, what happens if we restrit our attention to translations

that are of linear size inrease? Maybe then omposition does not yield a proper hierarhy,

but rather it remains the lass of MSO de�nable tree translations, i.e., is LSI\

S

n

MTT

n

=

MSOTT? Sine ompositions of MTTs an be realized by high-level tree transduers (and

vie versa) [EV88℄ this question is equivalent to: Are linear size inrease high-level tree

translations MSO de�nable? Again, this question ould also be onsidered for polynomial

instead of linear size inrease.

For both, maro tree transduers and MSO transduers there are nondeterministi vari-

ants (f. [EV85℄ and [Cou94℄, respetively). We would like to know whether our result

arries over to the nondeterministi ase, i.e., whether the nondeterministi maro tree

translations of linear size inrease are preisely the nondeterministi MSO de�nable tree

translations.
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Last but not least: Given an MTT M , is it deidable whether the translation �

M

realized

byM an be realized by an attributed tree transduer (with look-ahead), i.e., is it deidable

whether �

M

2 ATT (or ATT

R

)? Of ourse, if �

M

is MSO de�nable, whih an be deided

by Theorem 7.3, then the answer is positive, beause MSOTT = ATT

R

sur

by the result

of [BE00℄ (other positive riteria are disussed in [CF82, FV99℄). On the other hand, note

that ATT

R

s are of linear size-to-height inrease (f., e.g., Lemma 5.40 of [FV98℄). Denote

by LSHI the lass of all translations of linear size-to-height inrease. Probably it an be

proved (by methods similar to those in this paper) that MTT \ LSHI = MTT

R

fnest

and

that �

M

2 LSHI i� prop(M) is fnest, whih is deidable. Thus, it would be deidable for

an MTT whether or not it is of linear size-to-height inrease. If it is not, then it annot

be realized by an ATT

R

.
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