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Abstract

The first main result is that if a macro tree translation is of linear size increase,
i.e., if the size of every output tree is linearly bounded by the size of the corresponding
input tree, then the translation is MSO definable (i.e., definable in monadic second-
order logic). This gives a new characterization of the MSO definable tree translations
in terms of macro tree transducers: they are exactly the macro tree translations of
linear size increase. The second main result is that given a macro tree transducer,
it can be decided whether or not its translation is MSO definable, and if it is then
an equivalent MSO transducer can be constructed. Similar results hold for attribute
grammars, which define a subclass of the macro tree translations.

1 Introduction

Very often, a complex object has a structure that shows how it is composed from smaller
objects by the application of certain operations. The smaller objects may themselves be
composed of other objects. Such a structure can naturally be described by a tree, and
hence the objects are “tree-structured”. Examples of tree-structured objects are the words
of a context-free language (with derivation trees as structure) or the graphs of bounded
tree-width (with tree decompositions as structure). Now consider the transformation of a
tree-structured object, based on its structure and independent of the interpretation of the
operations, i.e., a tree-to-tree transformation. We are interested in models of such trans-
formations: tree transducers. Well-known examples of tree transducers are top-down tree
transducers [Rou70, Tha70, AU71, GS97] and attribute grammars [EF81, Fiil81, FV98]
(motivated by syntax-directed semantics and compilers, cf. [Iro61, Knu68, KV97, WM95]),
unranked tree transducers [MN0O, BMNOO] and pebble tree transducers [MSV00] (mo-
tivated by the transformation of XML documents, cf. [Via0l]), and macro tree trans-
ducers [Eng80, CF82, EV85, FV98] (motivated by syntax-directed and denotational se-
mantics [Iro61, Sto77], and used as a model in, e.g., functional programming [Vog91,
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Kih98, KVO01], language prototyping [vDHK96], and linguistics [KMMMO01, MMMO01]).
Motivated by model theory is the idea of “interpretation”, meaning the definition of a
(logical) structure in terms of logical formulas over another structure (cf. Chapter 10
of [EF95]). For monadic second-order (MSO) logic, such MSO interpretations have re-
cently been used to characterize the generation of graphs by context-free graph gram-
mars [Cou94, CE95, EvO97, Eng97] (see also [KS94]). Taking trees as logical struc-
ture, another type of tree transducer is obtained: the MSO tree transducer, studied
in [BE0O, EM99] (for strings, see [EH01]). An important part of tree transducer theory is
to compare the formal power of these different models of transformation of tree-structured
objects and to provide effective translations between these models. This paper compares
the power of macro tree transducers and MSO tree transducers.

The macro tree transducer (MTT) is a finite state device that translates, in a recursive
top-down fashion, an input tree into an output tree, handling context information by the
use of parameters. The states of the MTT can be viewed as functions that call each other
recursively; the initial state is the main function. The (tree-to-tree) translations of MTTs
form a large class, containing the translations of top-down tree transducers and attribute
grammars. In order to prove our results, we add the feature of regular look-ahead (see,
e.g., Section 18 of [GS97]) to top-down tree transducers, attribute grammars, and macro
tree transducers. Note that in the case of MTTs this has no influence on the translations:
the classes of translations realized by MTTs with and without regular look-ahead are the
same [EV85].

The MSO tree transducer uses formulas in monadic second-order logic to define tree-to-
tree translations. This provides a declarative way of defining a tree translation, as opposed
to the operational way of an MTT. The idea is to define the nodes and edges of the output
tree in terms of MSO formulas that are interpreted in the input tree, or, more precisely,
in a fixed number of disjoint copies of the input tree. Tree translations definable in MSO
logic have nice properties, comparable to those of finite state transductions on strings. In
particular, they are closed under composition and they can be computed in linear time.
Macro tree translations do not possess these properties.

The question arises, what is the precise relationship between these two different models?
From [BE00, EM99] it is known that every MSO definable tree translation can be realized
by an MTT. However, the converse does not hold, for obvious reasons: by definition, MSO
definable tree translations are of linear size increase: the size of the output tree is at most
k times the size of the input tree, where £ is the number of disjoint copies of the input tree,
used to define the output tree. On the other hand, the translations realized by MTTs can
be of double exponential size increase (cf. Lemma 4.22 of [FV98]). Our first main result is
that if we restrict ourselves to translations of linear size increase, then the two formalisms,
MSO tree transducers and macro tree transducers, have exactly the same power, i.e., the
respective classes of translations coincide.

Let us briefly discuss the proof of the first main result. As mentioned before, our MTT's
are equipped with regular look-ahead. In [EM99] a characterization of the MSO definable
tree translations in terms of MTTs is given: they are the translations realized by “finite
copying” MTTs. The notion of finite copying was introduced in [AUT71] for generalized
syntax-directed translation schemes, which are closely related to top-down tree transduc-



ers. It requires that there is a bound on the number of states that translate a given node
of the input tree. For MTTs this requirement is called “finite copying in the input” and an
MTT is finite copying [EM99], if it is both finite copying in the input and “finite copying
in the parameters”; the latter means that there is a bound on the number of copies made
of a parameter. We want to prove that if the translation realized by an MTT is of linear
size increase, then it is MSO definable. By the above this is equivalent to showing that for
every MTT M that is of linear size increase (i.e., which realizes a translation of linear size
increase), there is an equivalent MTT M’ that is finite copying. How can we construct
M’, given M? The idea is that every MTT M can be transformed into a normal form M’,
called the “proper normal form” of M, such that if M is of linear size increase then M’ is
finite copying. Roughly speaking this normal form requires that all states and parameters
of M' are really “needed”, more precisely, each state generates infinitely many output
trees (considering all possible input trees), and for each parameter y there are infinitely
many actual parameter trees being substituted for y (for all possible input trees). Then
for a proper MTT M’ it can be shown that (i) if M’ is of linear size increase, then it is
finite copying in the parameters, and (ii) if M’ is finite copying in the parameters and of
linear size increase, then it is finite copying in the input. Both (i) and (ii) are proved by
a pumping argument, i.e., it is shown that if M’ is not finite copying in the parameters,
then it is not of linear size increase, and similarly for (ii).

Our second main result concerns decidability. Given a macro tree transducer it can be
decided whether or not its translation is MSO definable, and if so, an equivalent MSO
tree transducer can be constructed. The proof is based on the following results: (1) the
translation realized by an MTT M is MSO definable — i.e., of linear size increase — if and
only if its proper normal form M’ is finite copying (by the proof of our first main result,
as discussed above), (2) for an MTT it is decidable whether or not it is finite copying (the
proof is based on the fact that the finiteness of ranges of MTTs is decidable [DE98]), and
(3) from [EM99, BEOO] it follows that given a finite copying MTT, an equivalent MSO
tree transducer can be constructed.

Note that very often membership in a subclass is undecidable (such as regularity of a
context-free language). In cases of decidability there is often a characterization of the
subclass that is independent of the device that defines the whole class, i.e., a “semantic”
rather than “syntactic” characterization, such as our linear size increase characterization.
As another example, in [Cou95] it is shown that an NR (node replacement) context-free
graph language can be generated by an HR (hyperedge replacement) context-free graph
grammar if and only if the number of edges of its graphs is linearly bounded by the number
of nodes.

The idea for our main results stems from [AUT1]; there it is shown that a generalized
syntax-directed translation (gsdt) scheme can be realized by a tree-walking transducer if
and only if it is of linear size increase. Since gsdt schemes are a variation of top-down
tree transducers, and tree-walking transducers are closely related to finite copying top-
down tree transducers [ERS80], our result can be viewed as a generalization of the result
of [AUT71], from top-down tree transducers to macro tree transducers. In fact, since the
proper normal form of a top-down tree transducer is again a top-down tree transducer,
we reobtain their result (in our formalism): the top-down tree translations of linear size
increase are exactly the translations realized by finite copying top-down tree transducers.



Moreover, they are exactly the MSO definable top-down tree translations.

The main result of [EM99], on which this paper is based, is on its turn based on the main
result of [BE0OO] which states that the MSO definable tree translations can be characterized
by attribute grammars (more precisely: by attributed tree transducers with look-ahead)
that are single use restricted. The single use restriction [Gie88, Gan83, Kiih98, KV01]
is interesting, because attribute grammars are closed under left-composition with single
use restricted attribute grammars. Our results now imply that given an attributed tree
transducer (with look-ahead) it can be decided whether or not there exists an equivalent
one that is single use restricted, and furthermore, that the linear size increase attributed
tree translations are precisely the MSO definable tree translations.

This paper is structured as follows. In Section 2 trees and tree substitutions are defined.
In particular, the definition of second-order tree substitution is given, which is the type
of substitution that macro tree transducers are based on. Various results about these
substitutions are proved, for example, how to compute the number of occurrences of a
particular symbol in a tree to which a second-order tree substitution is applied. Then,
tree languages and tree translations are defined, and the notion of MSO definable tree
translation is recalled briefly. Section 3 defines macro tree transducers, which are total de-
terministic and equipped with regular look-ahead. Some basic results needed in the paper
are recalled, and two subclasses defined by restrictions on the parameters are considered.
Section 4 recalls the notion of finite copying, which consists of two parts: finite copying
in the input and finite copying in the parameters. It is proved that it is decidable for an
MTT whether or not it is finite copying. Moreover, although this is already known from
the result of [EM99], it is proved for completeness sake that if an MTT is finite copying,
then it is of linear size increase. The proof is based on an intermediate, very natural no-
tion of bounded copying: “finite contribution”. An MTT is finite contribution if there is
a bound on the number of output nodes that are contributed by a given node of the input
tree. Also in this section the notion of “finite nested copying in the input” is introduced;
it requires a bound on the amount of nesting of the states that translate a given node of
the input tree. In Section 5 the proper normal form is introduced, and it is shown how to
construct, given an MTT, an equivalent one in proper normal form. Section 6 proves our
main results: if the translation realized by a proper MTT M is of linear size increase (for
short, “M is 1si”), then M is finite copying. The proof goes in three stages: (I) If M is
Isi, then it is finite nested copying in the input, (IT) if M is Isi and finite nested copying
in the input, then it is finite copying in the parameters, and finally, (ITT) if M is Isi, finite
nested copying in the input, and finite copying in the parameters, then it is finite copying
in the input. Section 7 presents the main results, and their consequences for top-down
tree transducers, attribute grammars, and context-free graph grammars. At last, some
open problems and further research topics are mentioned.

We note that technically this paper is concerned with macro tree transducers only. The
links to MSO tree transducers were established in [BE00, EM99].



2 Preliminaries

The set {0,1,...} of natural numbers is denoted by N. The empty set is denoted by &.
For k € N, [k] denotes the set {1,...,k}; thus [0] = @. For a set A, |A| is the cardinality
of A, and A* is the set of all strings over A. The empty string is denoted by . The
length of a string w is denoted |w| and the number of occurrences of the symbol a in
w is denoted by #,(w). For a set B C A, #p(w) = Y {#4(w) | a € B}. For strings
v, Wi, ..., w, € A* and distinct a4, ...,a, € A, we denote by v[a; < wi,...,a, < wy] the
result of (simultaneously) substituting w; for every occurrence of a; in v. Note that the
substitution [a; < w1, ..., ay < wy] is a homomorphism on strings. Let P be a condition
on ¢ and w such that {(a,w) | P} is a partial function; then we use, similar to set notation,
[a < w | P] to denote the substitution [L], where L is the list of all a - w for which
condition P holds.

2.1 Trees

A set X together with a mapping ranky: ¥ — N is called a ranked set. For k > 0, ) is the
set {0 € ¥ | ranky (o) = k}; we also write 0(®) to indicate that ranky,(c) = k. For sets ¥
and A, (¥, A) = ¥ x A; if ¥ is ranked, then so is (X, A), with rank s, 4)((0,a)) = rankg (o)
for every (o,a) € (¥, A). A ranked alphabet is a finite ranked set.

For the rest of this paper we choose the set of input variables to be X = {z1,z2,...}
and the set of parameters to be Y = {y1,y9,...}. For k > 0, Xy = {z1,..., 2} and
Yk = {yl,...,yk}.

Let 3 be a ranked set. The set of trees over X, denoted by Tk, is the smallest set of strings
T C ¥* such that if 0 € &%) &k >0, and t,...,t; € T, then ot;---t;, € T. For better
readability we write o(t1,...,t;) for ot1- -ty and k > 1. For a set A with XN A =g,
the set of trees over 3 indexed by A, denoted by Tx(A), is the set Tx4, where for every
a € A, rankyya(a) =0. If A=Y, then T5(Y) is the set of trees (over ) with parameters.

For every tree t € Ty, the set of nodes of t, denoted by V(t), is a subset of N* which
is inductively defined as follows: if t = o(ty,...,t;) with 0 € Z*) &k > 0, and for all
i € [k],t; € Tx, then V(t) = {e} U {iu | u € V(#;),7 € [k]}. Thus, e represents the root of
a tree and for a node u the i-th child of u is represented by wi. A leaf is a node without
children. If 4 = vw with w € N*, then v is an ancestor of u and u is a descendant of v;
if w # €, then v is a proper ancestor of u, and w is a proper descendant of v. The label
of t at node u is denoted by t[u]; we also say that ¢[u] occurs in ¢ (at u). The subtree
of t at node u is denoted by t/u. The substitution of the tree s € Tx at node u in t is
denoted by t[u < s]; it means that the subtree t/u is replaced by s. Formally, these
notions can be defined as follows: ¢[¢] is the first symbol of ¢ (in X), t/e = t, t[e  s] = s,
and if ¢ = o(t1,...,1), @ € [k], and u € V(¢;), then tliu] = t;[u], t/iu = t;/u, and
tlivw « s] = o(ty, ..., tiu < s|,... ).

The usual pre-order of the nodes of ¢ (which, in fact, is the lexicographical order on N*)
is denoted <; thus, € < su (for i > 1), if u < v then iu < iv, and if i < j then iu < jv.

The size of a tree t, denoted by size(t), is the number |V (¢)| of nodes of t. For ¢ =
o(ty, ..., t), size(t) equals 1+size(t)+- - - +size(ty); note that size(t) = Y s #5(t) = |t].



For o € ¥, V,(t) denotes the set of nodes of ¢ which are labeled by o, i.e., {u € V(¢) |
t{u] = o}; note that |V, (t)| = #4(t): the number of occurrences of o in ¢. For aset S C ¥,
Vs(t) = Uyeg Vo (t). The height of t is denoted by height(t); for t = o(ty,..., ) it equals
1 4+ max{height(¢;) | 7 € [k]}.

2.2 Tree Substitution

In the previous subsection on trees we already defined a particular tree substitution: for
trees t,s and a node u of ¢, t{u < s| is the result of replacing in ¢ the subtree t/u by s.
Now we want to consider replacing in ¢ all occurrences of a symbol o.

Trees are particular strings and therefore string substitution as defined in the beginning of
these Preliminaries is applicable to a tree. In order to guarantee that the resulting string
is again a tree, we require that only symbols of rank zero, i.e., leaves, may be replaced
by trees; we refer to this type of substitution as “first-order tree substitution”. Note
that top-down tree transducers are based on first-order tree substitution. In contrast
to this, “second-order tree substitution” means that symbols of arbitrary rank can be
replaced. This is the type of substitution macro tree transducers are based on. Consider
the replacement of a symbol ¢ of rank k by a tree s. Then in s we use the parameters
Y1,---,Yk to indicate where the subtrees of o have to be inserted. That is, if o appears at
a node u of the tree ¢, then replacing it by s means to replace in ¢ the subtree at u by s,
in which each y; is replaced by the j-th subtree of u, i.e., by the tree ¢/uj. This is now
defined formally.

Let X be a ranked set and let o1, ..., 0, be distinct elements of ¥ —Y, n > 1, and for each
i € [n] let s; be a tree in Tx_y (Y;), where r = ranks,(0;). For t € T, the second-order tree
substitution of o; by s; in t, denoted by t[oy < s1,...,0, ¢ s,] is inductively defined as
follows (abbreviating [o1 < $1,...,0n < sp] by [...]). Fort = o(ty,...,t;) witho € BK),
k>0,and ty,...,t; € Ty, (i) if o = 0; for an i € [n], then t[...] = s;[y; < t;[...] | 7 € [K]]
and (ii) otherwise t[...] = o(t1[...], .., tg[--.]). We will say that [o1 < s1,...,0, < sp]
is a second-order tree substitution over 3. Note that it is a mapping from Tx to Tx. In
fact, it is a tree homomorphism [GS84]. Note also that (just as ordinary substitution)
second-order tree substitution is associative (by the closure of tree homomorphisms under
composition, cf. Theorem IV.3.7 of [GS84)), i.e., t[o < s][o « §'] = t[o + s[o + §']]
and if o’ # o then t]o + s][o’ + §'] = t[o’ + §',0 + s[o’ + §']], and similarly for the
general case (cf. Sections 3.4 and 3.7 of [Cou83]). Let P be a condition on ¢ and s such
that {(o,s) | P} is a partial function; then we use [0 < s | P] to denote the substitution
[L], where L is the list of all o < s for which condition P holds. In second-order tree
substitutions we use for the relabeling o < d(y1,...,y;) of o® by §*) the abbreviation
o < d; note that this is, in fact, a string substitution.

The second-order tree substitution [o1 < s1,...,0, < s,] is nondeleting if for every
i € [n]: #y,;(s;) > 1 for all j € [rankx(0;)], and it is nonerasing if for every i € [n], s; Y.
It is productive, if it is both nondeleting and nonerasing.

Lemma 2.1 Let ¥ be a ranked alphabet and let ® = [Joy + $1,...,0, « s,] be a
nondeleting second-order tree substitution over X. For all ¢,' € Tk, if t’ is a subtree of ¢,
then ¢'® is a subtree of t®. In particular, for y € Y, if #,(t) > 1 then #,(t®) > 1.



Proof.  Fort=o(t1,...,t), t;® is a subtree of ¢®. Hence the result follows immediately,
by induction on the structure of ¢.

If #,(t) > 1 then y is a subtree of ¢ which means, by the first part of this lemma, that y
is also a subtree of t®, i.e., #,(t®) > 1. Note that y® = y because, by the definition of
second-order tree substitution, o; € Y for all i € [n]. O

Lemma 2.2 Let ¥ be a ranked alphabet and let ® = [o; + $1,...,0, < s,] be a
nonerasing second-order tree substitution over . For every t € Ty, if t € Y then t® € Y.

Proof.  Let t = o(t,...,t;) with 0 € ¥ — Y. If 0 ¢ {01,...,0,} then t®
o(t1®,...,4:®) € Y. If 0 = o; for some ¢ € [n], then t® = s;[y; + ;@ | j € [K]] &
(because s; € Y).

o~

In order to calculate the number of times that a particular node u of a tree is copied by
the application of a second-order tree substitution, we need to know which symbols appear
at the ancestors of u. For this we define the string obtained by reading the labels of the
ancestors of u in descending order, starting at the root; if u is labeled by a parameter, then
we do not include its label in this string, because in trees of the form t[oy < s1,...,0, +
sp] the parameters present in the trees s; do not appear. For a tree ¢ € T and a node
u € V(t), the label path to u (in t), denoted by lpath(¢,u), is the string in (¥ — Y)*
defined recursively as follows: lpath(¢,e) = ¢ if t € Y and otherwise Ipath(¢,e) = t[e]; for
u=1u',i>1, and v’ € N*, Ipath(¢,u) = t[e]lpath(t/i,u’). For example, let ¢ be the tree
v(o(a,y1)); then Ipath(¢,12) = Ipath(¢, 1) = yo and Ipath(¢,11) = yoa.

The following lemma shows how a label path in ¢ changes, if a second-order tree substitu-
tion is applied to ¢.

Lemma 2.3 Let ¥ be a ranked alphabet. Let ® be the second-order tree substitution
[o1 < s1,...,00 < sy over ¥, and let ¢ € T,.

(i) Every label path in ¢® is of the form
WeV1W1 * * " UmWn,

where m > 0, woo;, w1 - -+ 0, Wy, is alabel path in ¢, i1, ..., iy, € [n], and for j € [m],
v; is a label path in s;; and w; € (X —{01,...,0,})*

(ii) If ® is nondeleting, then for every w,v € ¥£* such that wo; is a label path in ¢ and
v is a label path in s;, there is a w’ € ¥* such that w'v is a label path in t®.

2.3 Number of Occurrences

Since this paper is about the size increase of macro tree transducers, and they are based
on second-order tree substitution, we need to know how the size of a tree ¢ changes when
a second-order tree substitution ® is applied to ¢. Recall that size(t®) is the sum of



the numbers #,(t®) of occurrences of o in t®, for all symbols o. Thus, we need to
determine the number #, (¢t®). Since second-order tree substitution is based on first-order
tree substitution which is a particular string substitution, we first determine the number
#o(wl[...]), where w is a string and [...] is a string substitution.

The following lemma can be proved by straightforward induction on the length of w.

Lemma 2.4 Let A be an alphabet. Let w,vq,...,v, € A* and let aq,...,a, be distinct
elements of A. For every a € A,

#a(w[al S~ V1yeenyp vn]) =S5+ Z #ai(w) ' #a(vi)a
i€[n]

where S = #,(w) if a & {a1,...,a,} and otherwise S = 0.

In the next lemma we prove the generalization of Lemma 2.4 to second-order tree sub-
stitution. Intuitively we now have to take into account, for a node u of the tree t,
how many times it is copied by the application of the second-order tree substitution
O = o1 ¢ 81,...,0, < 8] for each o; that occurs at a proper ancestor u' of u, u is in
some subtree t/u'j of u'; thus, replacing o; by s; generates #,, (s;) copies of t/u'j. Hence,
the product of these numbers #,.(s;), for all proper ancestors u’, determines the number
of copies of u in ¢®. In the lemma this product is denoted [] Ft?u, where the family Ft?u
of numbers is defined as follows.

Definition 2.5 (the family F},)

Let ¥ be a ranked alphabet and let ® = [0 « s1,...,0, < $,] be a second-order tree sub-
stitution over X. For every ¢t € Tx, and u € V (t), Ff)u is the family { fu’ b/ proper ancestor of u
where

fu = 1 if tu] & {o1,...,00}
u = #y; (s;) ift{u'] =0y,i € [n], and u = u'ju” with j > 1,u” € N*.

Note that, as usual, if Ft?u is empty (i.e., u = ¢) then HFt?u =1.

Lemma 2.6 Let ¥ be a ranked alphabet and let ® = [o1 «+ s1,...,0,, < 8] be a
second-order tree substitution over . For every o € ¥ and t € Ty,

#4(t®) = S1 + S,
where

S = Z HFSU if o ¢ {o1,...,0,} and otherwise S; = 0,
u€V,(t)

Sy = Z #q(si) - HFSU if o € Y and otherwise S = 0.
u€Vy, (t),i€n]



Proof.  Denote {o1,...,0n,} by E,. Let O, = V,(t) n{e}, O = V,(¢t) — {e}, and for
i € [n], O = V5, (t) N {e} and O; = V,,(t) — {e}. Clearly, S = T\ + Sj, where for
0 &%, TL =Y o [1F, and S§ =3 .o [1F, and otherwise T} = 0 and S} = 0.
Similarly, So = T + S5, where for 0 ¢ Y, Ty = ZuEOsi,ie[n] #o(si) - HFSH and S, =
> ucoyicin] o (si) - [1F, and otherwise T, = 0 and Sj = 0.

The proof that S; + Sy equals #,(¢®) is by induction on the structure of ¢. Let t =
o'(tr,...,t,) with o' € BF) k>0, and t1,...,t, € Tx.

Case 1: o' € ¥ — %,

Then tle] ¢ X, and hence, for every j € [k] and v € V(t;), HFt%v = HFt‘f,v. Since

O =Ujepliv [ v € Vo(t)}, it follows that 3°, [1F?, equals Zveva(tj),je[k} ]_[Ft?’v and
similarly for O;. We can apply the induction hypothesis for Z; to 51 ; + S ;, where 57 ; =

Z’UEVO—(t]‘) ]_[Ft?’v if o ¢ ¥, and otherwise S;; = 0, and Sy ; = ZUEVa—i(tj),iE[n] #o(8;) -
I Ft?,v if o €Y and otherwise Sy ; = 0. Since O, ; = @ we get that 75 = 0 and hence

Si+S=Ti+ > #.,(t;®).
j€lk]

Now Tj equals 1 if o/ = o and 0 otherwise. By the definition of #, this means that the
above is equal to #4,(0'(t19,...,t®)). This equals #,(t®), by the definition of second-
order tree substitution.

Case 2: o' = o; for some i € [n].

For every j € [k] and v € V (t;), HF&-U = #y,; (si)- 11 Ft?,v' Thus, S =3 e #y, (5i)- 51
and Sy = 3¢ #y,(si) - S2,5. By induction, Sy ; 4+ S = #4(t;®). Hence S} + 55 =
Zje[k] #y, (i) - #o(t;®). Now T1 = 0, and if 0 ¢ Y then Tp = #,(s;) and otherwise
T, = 0. We can apply Lemma 2.4 to 71 +T>+ S| + S5 (with S = T5) to obtain #,(siy; <
t;® | j € [k]]) which equals #,(t®) by the definition of second-order tree substitution. O

Recall from Section 2.2 that the second-order tree substitution ® = [o1 < $1,...,0, < s,]
is nondeleting if each s; contains at least one occurrence of y; for every j € [ranky(0;)], and
nonerasing if each s; contains at least one symbol in ¥ — Y. We can now use Lemma 2.6
to prove that if ® is productive, i.e., both nondeleting and nonerasing, then its application
does not decrease the size of a tree.

Lemma 2.7 Let ¥ be a ranked alphabet and let ® = [o; + $1,...,0, + s,] be a
second-order tree substitution over ¥. If ® is productive then size(t®) > size(t) for every
teTs.

Proof.  Let X, = {o1,...,0n}. Since size(t®) = ) . #4(t®), we can apply Lemma 2.6
to obtain ) - 81+ ) 5 S2, where S; and S3 are as in Lemma 2.6.

Since @ is nondeleting, for every u € V,(t), [T F5, > 1. Thus

size(t®) > > 1+ > > #olsi).

oEXL—Xn,ucVs(t) u€Vy, (t),i€[n] oeX-Y



Using the fact that ® is nonerasing, we get size(t®) > Ean—Zn,ueVg(t) 1+Za€2n,ueVg(t) 1
= ZJEE,UGVa(t) 1= Size(t)'

2.4 Tree Languages

Let ¥ be a ranked alphabet. A subset L of T is called a tree language.

A finite state tree automaton is a tuple (P, X, h), where P is a finite set of states, ¥ is a
ranked alphabet of input symbols such that > is disjoint with P, and h is a collection of
mappings such that for every o € »®) h,isa mapping from P¥ to P. The extension hofh
to a mapping from T, to P is recursively defined as h(o(sq, ..., s5)) = he(h(s1),- .., h(sE))
for every o € 2, k > 0, and s1,...,s; € Ts. Throughout this paper we simply write
h(s) to mean h(s), for s € Tx. For p € P the tree language {s € Tx | h(s) = p} = h™'(p)
is denoted by L.

A tree language L is regular (or, recognizable) if there is a finite state tree automaton
(P,%, h) and a subset F' of P such that L = {s € T, | h(s) € F'}. Note that, in particular,
L, is regular for every p € P.

2.5 Tree Translations

Let ¥ and A be ranked alphabets. A (total) function 7 : Ty, — Ta is called a tree
translation or simply translation. For a tree language L C T%, 7(L) denotes the set
{t €eTa |t =7(s) for some s € L}. For a class T of tree translations and a class L of tree
languages, T (L) denotes the class of tree languages {7(L) | 7 € T,L € L}.

A tree translation 7 : Ts; — Ta is of linear size increase (for short, lsi) if there is a ¢ € N
such that size(7(s)) < c- size(s) for all s € Tx.. The class of all tree translations of linear
size increase is denoted LST.

We will now shortly define MSO definability of a tree translation. This definition will,
however, not be needed in the paper. Let k be the maximal rank of a symbol in A. The
tree translation 7 : Ty, — Ta is MSO definable (i.e., definable in monadic second-order
logic) if there is an MSO tree transducer which realizes 7, that is, if there exist a finite
set C' and MSO(X)-formulas v.(z), ¥5.(z), and x;d(z,y), with ¢,d € C, § € A, and
1 <4 < k, such that for every s € Tx, 7(s) € Ta is isomorphic to the tree ¢ with set of
nodes {(c,z) € C x V(s) | s = v¢(z)}, node (c,z) has label 0 iff s = 95.(z), and (d,y)
is the i-th child of (¢, z) iff s = X cd(z,y). An MSO(X)-formula is a formula of monadic
second-order logic that uses atomic formulas lab,(z) and child;(z,y), with ¢ € X and
1 > 1, to express that x has label o and y is the i-th child of z, respectively. The class of
all MSO definable tree translations is denoted MSOTT. For examples and more details,
see, e.g., [Cou94, BE0OO]. Note that, by definition, every MSO definable tree translation 7
is of linear size increase: size(7(s)) < |C| - size(s). Thus, MSOTT C LSI.
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3 Macro Tree Transducers

In this section we recall the definition of macro tree transducers and some basic lemmas
about them. Furthermore, we consider two subclasses of macro tree transducers which are
defined by certain (static) restrictions on the rules of the transducers.

3.1 Basic Definitions and Results

A macro tree transducer is a syntax-directed translation device in which the translation of
an input tree may depend on its subtrees, represented by input variables z1,zo,..., and
on its context, represented by parameters yi,¥s,.... We only consider total deterministic
macro tree transducers. For technical reasons we add the feature of regular look-ahead to
them (this does not change the class of translations, cf. Theorem 4.21 of [EV85]).

Definition 3.1 (macro tree transducer with regular look-ahead)

A macro tree transducer with reqular look-ahead (for short, MTTR) is a tuple M =
(Q,P,%,A,qo, R,h), where @ is a ranked alphabet of states, ¥ and A are ranked al-
phabets of input and output symbols, respectively, ANY = &, gy € QO is the initial
state, (P,X,h) is a finite state tree automaton, called the look-ahead automaton of M,
and R is a finite set of rules of the following form. For every ¢ € Q™, o € () and
P, ..., pr € P with m, k > 0 there is exactly one rule of the form

(g0(z1, - ze)) (Y1, ym) = ¢ (P1y-- - PE) (%)
in R, where ¢ € T\, x,yua(Ym)- O

A rule r of the form (x) is called the (g, 0, (p1,...,px))-rule and its right-hand side ¢ is
denoted by rhs(r) or by rhsy/(q, 0, (p1,...,pk)); it is also called a g-rule, a o-rule, or a
(q,0)-rule. A top-down tree transducer with reqular look-ahead (for short, TR) is an MTTR
all states of which are of rank zero. If the look-ahead automaton is trivial, i.e., P = {p}
and hy(p,...,p) = p for all 0 € X, then M is called a macro tree transducer (for short,
MTT) and if M is a TR, then M is called a top-down tree transducer. In such cases we
omit the look-ahead automaton and simply denote M by (Q, %, A, qo, R); we also omit
the look-ahead part (p1,...,pg) in every rule (x).

We now define the derivation relation induced by an MTT® M. Recall from Section 2.2
that in a second-order tree substitution (¢',z;) < (q¢’,s;) is a shorthand for (¢',z;) +
(q,s:)(y1,---,yn), where n is the rank of ¢

Definition 3.2 (derivation relation, translation)

Let M = (Q, P,%, A, qo, R, h) be an MTTR. The derivation relation induced by M, denoted
by =, is the binary relation on Tig 7yyua (V') such that, for every 1,82 € Tig myua(Y),
&1 = & if and only if there exist u € V(£)), o0 € Z¥)| 51,... s, € Tx, g € Q™)
and t1,...,tm € Tigrpyua(Y) such that £ /u = (g, 0(s1, ..., sk))(t1, - -, tm) and &2 equals
£1[u « ¢] with

¢ =rhsar(g, 0, (h(s1),- ., B(s))(q's i) < (d' i) | {ds i) € (Q, Xi)ly; <t | 5 € [ml].
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The translation realized by M, denoted by Tas, is the total function

{(s,t) € T x Ta | {q0, 8) = t}-

a

An MTTR is of linear size increase (for short, Isi) if 7ps is of linear size increase (cf.
Section 2.5).

Two MTTRs M and M' are equivalent, if Ty = 73p. The class of all translations which
can be realized by MTTs and MTTRs is denoted by MTT and MTT?F, respectively. The
class of all translations which can be realized by TRs is denoted by T%.

Lemma 3.3 (Theorem 4.21 of [EV85]) MTT® = MTT (effectively).

As mentioned in the Introduction, macro tree translations can be of double exponential
size increase. This is shown in the following example.

Example 3.4 Let M = (Q,3, A, go, R) be the MTT with Q = {¢\”, ¢V}, & = {¢(1), a®},
A = {6®,a0}, and R consisting of the following rules.

QO,U§$1)> - (g, 71)()
(g,21)({g,21)(y1))
5(y1,y1)

The MTT M translates « into «, and for n > 0 it translates the input tree s, = o(0"())
into a full binary tree of height 2" (i.e., a tree with 22" leaves): First (qo,sn) =
(q,0™(c))(). Then, due to the copying of states of the (¢, o)-rule, (q,0"())() is trans-
lated into the monadic tree (g, a)({(g,a)(--- (¢, @)(a)...)) containing 2" occurrences of
(g, ). At last, due to the copying of parameters of the (g, «)-rule, this monadic tree is
translated into a full binary tree of height 2. Thus, the input tree s, of size n + 2 is
translated into a tree of size 22" ! —1 and hence the translation realized by M is of double
exponential size increase. |

, —
q,0(z1))(y1) —
) —

Let M = (Q,P,%,A,qo,R,h) be an MTTR. For every ¢ € Q™ and s € Ty let
the g¢-translation of s, denoted by M,(s), be the unique tree ¢ € Ta(Y},) such that
(g,8)(y1,.--,ym) =3 t. Note that, for s € Tx, Tar(s) = My (s). The g-translations
of trees in Tx, can be characterized inductively as follows, using second-order tree substi-
tution.

Lemma 3.5 (Lemma 4.8 of [EV94]) Let M = (Q,P,%,A,qo,R,h) be an MTTR. For
every g € Q, 0 € %) k>0, and s1,...,s; € Tk,

My(o(s1,...,s,)) =rhsp(q, 0, (h(s1)y- - s h(s))(d s z:) + My (si) | (q,z;) € (Q, Xp)]-

The following two results are often used in this paper.
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Lemma 3.6 (Lemma 7.4(1) of [EVS85]) Let M = (Q, P,%, A, qo, R, h) be an MTTR. For
every ¢ € QU m > 0, and regular tree language L C Ta(Y;,), M;l(L) is regular and
can be defined effectively.

Proof.  In Lemma 7.4(1) of [EV85] the result is stated for the case m = 0. The general
case can be reduced to this case as follows. For every r € @ let 7 be a symbol not in 3.

Define the MTTR M = (Q,P,S U{r") | r € Q},AU{7\" | j € [m]},q0, RUR,h UT)
where 7 is the maximal rank of a state of M. For every r € Q™. n > 0, and p € P let
h#(p) = p, and let the rule

<QO7F(I1)> - <T7$1>(y17"'7yn) <p>

be in R. Clearly, 757(7(s)) = My(s)[y; < 7, | j € [n]] for every s € Tx. Let L = {t[y; <
y; | j€[m]]|te€ L} By Lemma 7.4(1) of [EV85], Tﬁl (L) is (effectively) regular. Then
also Tﬁl (L) Ng(Ts) = g(M; (L)) is (effectively) regular (because regular tree languages
are effectively closed under intersection, cf., e.g., Theorem I1.4.2 of [GS84]). Since there is
a linear top-down tree transducer that translates each tree g(¢) into the tree ¢, and regular

tree languages are (effectively) closed under linear top-down tree translations (see, e.g.,
Corollary IV.6.6 of [GS84]), we obtain that M (L) is (effectively) regular. O

The next lemma follows from Theorem 4.5 of [DE98] and Theorem 7.3 of [EV85] (and
the obvious fact that every regular tree language is the range of a nondeterministic top-
down tree transducer, cf., e.g., Proposition 20.1(ii) of [GS97]). Note that we have not
defined nondeterministic MTTRs and that we need to apply Lemma 3.7 only once to a
nondeterministic (top-down) tree transducer (in Lemma 5.7).

Lemma 3.7 (Theorem 4.5 of [DE98|) For a regular tree language L and a finite num-
ber of (possibly nondeterministic) MTTRs Mj,..., M,, it is decidable whether or not
Tz, (Tar, o (- -+ 7ar, (L) - +)) is finite. Moreover, if it is finite, it can be constructed.

3.2 Subclasses Defined by Restrictions on the Parameters

We now define two restrictions on the occurrences of parameters in the right-hand sides
of the rules of an MTTR M, and then show that these restrictions carry over to the
g-translations M,(s) of M.

Definition 3.8 (nondeleting, nonerasing, productive)

Let M = (Q, P, %, A, qo, R, h) be an MTTR. If for every ¢ € Q™. m > 1, 0 € ) k >0,
pla---apkep7 andjE[m],

e y; occurs at least once in rhsas(g, o, (p1,...,pk)), then M is nondeleting

e rhsy/(q, 0, (p1,-..,pk)) €Y, then M is nonerasing.

If M is both nondeleting and nonerasing, then it is productive. O
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Lemma 3.9 (Lemma 7.11 of [EM99]) For every MTT® M there is a productive MTTR
M' equivalent to M.

The following lemma shows that the restrictions nondeleting and nonerasing carry over
from the right-hand sides of an MTT® to the g-translations of M. In Lemma 6.7 of [EM99]
a similar result is proved: if in the right-hand side of every g-rule each parameter y; of ¢
occurs exactly once, then y; occurs exactly once in M,(s).

Lemma 3.10 Let M = (Q, P, %, A, qo, R, h) be an MTTR. For every ¢ € QU™, m > 0,
j € [m], and s € T,

(1) if M is nondeleting, then #, (M,(s)) > 1, and

(2) if M is nonerasing, then M,(s) € Y.

Proof.  The proof is by induction on the structure of s. Let s = o(s1,...,8;) with & >0
and s1,...,8; € Tx. Denote by t the tree rhsy/(q, 0, (h(s1),...,h(sk))). By Lemma 3.5,
My(s) = t® with @ = [(¢', i) < My (si) | (¢, 2:) € (Q, Xi)]-

(1) By induction #,,(My(s;)) > 1 for all (¢,2;) € (Q,X;)™ and v € [n], i.e., the
substitution @ is nondeleting. Since M is nondeleting, #,.(#) > 1 and thus, by Lemma 2.1,
#yj (té) > 1.

(2) By induction My (s;) ¢ Y for all (¢, z;) € (Q, X}), i.e., the substitution ® is noneras-
ing. Since M is nonerasing, t € Y and thus, by Lemma 2.2, t® £ Y. a

4 Finite Copying Restrictions

In this section we define various restrictions on the copying that is performed by an MTTR.
First, in Section 4.1, copying restrictions for the input variables and for the parameters
are defined. Both together form the ‘finite copying’ restriction which was introduced
in [EM99]; there it was shown (in Theorem 7.1) that the translations realized by finite
copying MTTRs are precisely the MSO definable tree translations (cf. Section 2.5). Since,
by their definition, the MSO definable tree translations are of linear size increase, this
means that finite copying MTTRs are of linear size increase. To keep this paper self-
contained, we give, in Section 4.3, a direct proof of this fact which is based on the notion
of ‘“finite contribution’. Intuitively, an MTTR® is finite contribution if there is a bound
on the number of output nodes contributed by a single node u of the input tree. In the
terminology of [vDKT96], the node u is called the ‘origin’ of the nodes of the output tree
that it contributes; so, finite contribution means that there is a bound on the number of
nodes that have the same origin. In [vDKT96] it is shown that for a primitive recursive
scheme, which is a macro tree transducer, every node of an output tree has exactly one
origin.

We also define, in Section 4.2, a restriction on the copying that occurs on one path of the
output tree, i.e., a restriction on the amount of nesting of states that occurs during the
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derivation of an MTTR. This notion will play an essential role in Section 6 where it is
proved that if the translation of an MTTR® is of linear size increase then it can also be
realized by a finite copying MTTR (and hence is MSO definable).

4.1 Finite Copying in the Input and in the Parameters

Here we recall the definition of finite copying MTTRs from [EM99] and show that for an
MTTR® it is decidable whether or not it is finite copying. The finite copying restriction
was introduced in [AUT71] for generalized syntax-directed translation schemes. For top-
down tree transducers it was investigated in [ERS80]. A top-down tree transducer is finite
copying, if every subtree of the input tree is translated by boundedly many states, i.e., the
length of the state sequence is bounded, where the state sequence at a subtree s/u consists
of the states that translate s/u. For a macro tree transducer this restriction is called finite
copying in the input (fci) and we additionally have a restriction for the parameters, called
finite copying in the parameters (fcp). The fcp restriction requires that, for every state ¢
and input tree s, the number of parameters that occur in the g-translation M,(s) of s is
bounded.

In order to define the state sequence of a tree s at the node u of s, we first extend an MTTR
in such a way that the output tree ¢, for the input tree s[u < p], contains the states which
process the subtree s/u (assuming that p = h(s/u)). More precisely, ¢ contains {(q,p)) if
the state ¢ translates s/u. Analogous to the definition of (X, A) let, for a ranked set ¥
and a set A, (X, A) be the ranked set of all symbols (o, a)) of rank m for ¢ € (™ and
a € A.

Definition 4.1 (Definition 3.5 of [EM99]: extension)

Let M = (Q,P,X,A . 0o, R, h) be an MTTR. The e:z:tenswn of M, denoted by M
the MTTR (Q, P,3, A, qo, R, h), where 2 = S U {p® | p € P} A =AU(Q,P), R

{?’U{<q7p>(ylaaym) «Q7p>>(y177ym) | ( q,p ) ( ) > }7 h’ () p fOI‘p € Pa and
h(r(pla"' 7pk) = ho’(pla"' 7pk) for o € E(k)a k> 0, and P1,---,Pk € P. O

Note that if M is nondeleting or nonerasing, then so is M. Before state sequences and the
fci and fcp properties are defined, we present two useful lemmas about the ¢-translations
of M. The first lemma shows that the g-translation of an input tree s can be obtained by
replacing in the g-translation of the “context” of a node u of s, Mq(s[u + p]), each (¢, p)
by the ¢’-translation My (s/u) of the subtree of s at . In fact, the lemma is stated in the
more general case that s/u may contain occurrences of symbols in P. The lemma can be
seen as a generalization of Lemma 3.5 from the application of a rule at the root of s, to
the translation of the context of an arbitrary node w.

Lemma 4.2 (Lemma 3.6 of [EM99]) Let M = (Q,P,%,A,qo, R, h) be an MT'IA‘R and
= (Q,P,%,A,qo, R, h) its extension. Let ¢ € Q, s € Ts, u € V(s), and p = h(s/u),
such that s[u < p| contains exactly one occurrence of an element of P. Then

My(s) = Mqy(s[u < p)[{d',p) < My(s/u) | ' € Q].
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The next lemma is obtained by application of Lemma 3.5 to the My (s/u) in the substitu-
tion of Lemma 4.2. It shows how to express the translation of the context of a child node
in terms of the translation of the context of its parent and the translations of the subtrees
of its siblings.

Lemma 4.3 Let M = (Q,P,%,A,qo, R,h) be an MTTR. Let ¢ € Q, s € Tx, and
u € V(s). If sfu] =0 € ®) i € [k], p; € P, p; = h(s/uj) for every j € [k] — {i}, and
b= ho’(pla s 7pk)7 then

Mq(slui ¢ pi]) = My(s[u < p])[rhs] [,

where [rhs] = [(d',p) < rhsa (¢, 0, (p1,....08)) | 4" € Q],
[.] = [r,zj) < M(s/uj) | r € Q,j € [k] - {i}], and
[l = [(rx) < (rp) | r € Q]

Proof.  Let s’ = slui < p;]. Since p = h(s'/u) and s'[u < p] contains exactly one
occurrence of an element of P, we can apply Lemma 4.2 to get M,(s") = My(s[u <
p)[(d ) + My(s'/u) | ¢ € Q. Now s'/u = o(s1,...,s;) with s; = p; and s; = s/uj
for every j € [k] — {i}. By application of Lemma 3.5 to My (s'/u) the above equals

My(slu © pD[(d' ) + thsu(dso. (1o o)L ] | @ € QI where [...] denotes
[(r,zj) < M,(s;) | r € Q,5 € [k]]. We now use the associativity of second-order tree
substitution, cf. Section 2.2. Since M,(s[u + p]) does not contain elements of (Q, Xj) we
can move [...] out of the substitution to get M, (s[u < p])[rhs][...]. For every j € [k]—{i},
M,(sj) = M,(s;) does not contain elements of( ,{z;}); moreover, M, (s;) = ((r,p;)). Thus
we can write [...] as [..][¢]. O

We now turn to the definition of state sequence and the finite copying properties. Recall
that the pre-order of the nodes of a tree is denoted by <.

Definition 4.4 (Definition 3.7 of [EM99]: state sequence)
Let M = (Q,P,%,A,qo, R,h) be an MTTR, s € T, and u € V(s). Let p = h(s/u) and

& = My, (slu + pl) € Tyoppyua, and let {v € V() | €[] € (Q,{p})} = {v1,-.-,vn}
with v1 < -+ < v,. The state sequence of s at u, denoted by stsas(s,u), is the sequence of

states qi - - - qp such that &[v;] = (g, p)) for every i € [n]. O
Note that [stsas(s,u)| = #«Q,{p}»(Mqo(s[u < p|)), where p = h(s/u).

Definition 4.5 (Definition 6.1 of [EM99]: finite copying in the input)

Let M = (Q,P,%,A,qo, R,h) be an MTTR. Then M is finite copying in the input (for
short, fci), if there is an N € N such that for every s € Ty, and u € V(s): |stspar(s,u)| < N.
The number N is an input copying bound for M. a

Definition 4.6 (Definition 6.2 of [EM99]: finite copying in the parameters)

Let M = (Q,P,%,A,qo, R,h) be an MTTR. Then M is finite copying in the parameters
(for short, fcp), if there is an N € N such that for every ¢ € Q™) s € T, and j € [m],
#y,(My(s)) < N. The number N is a parameter copying bound for M. O
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Note that the MTT M of Example 3.4 is neither fci nor fcp. There is exponential state
copying: the state sequence stsys(sp,11") of s, = (0™ () at 11" equals ¢>", and there
is double exponential parameter copying: #,, (M,(c™(a))) = 22".

The following lemma, shows that if M is finite copying in the parameters, i.e., if the number
of occurrences of y; in M,(s) is bounded by some N, for all states ¢ and parameters y; of
g, then also for the g-translations of M of input trees s[u < p], the number of occurrences
of y; is bounded by N. However, we must assume that M is nondeleting.

Lemma 4.7 Let M = (Q, P, %, A, qo, R, h) be a nondeleting fcp MTTR and let N be a
parameter copying bound for M. For every ¢ € Q™) j € [m], s € Tx, and u € V(s),

#y; (My(s[u < h(s/u)])) < N.

Proof.  Let p = h(s/u). By Lemma 4.2, M,(s) = £[...] with £ = M(s[u «+ p]) and

L0 = [(dp) & My(s/u) | ¢ € QI By Lemma 2.6, #, (€[ 1) = Loey,, (o TTFL
Let V,(§) = {v1,...,vn}. Then the above sum equals

which implies that n = #,.(£) < N because [] F[["'ﬂ > 1 for every i € [n], by the fact that

M is nondeleting, and hence, by Lemma 3.10(1 ) #yk( o (s/u)) > 1 for every ¢’ € Q™
and k € [m/]. O

Finally, the combination of fci and fcp yields the finite copying property.

Definition 4.8 (finite copying)
An MTTR is finite copying (for short, fc), if it is both fci and fcp.

We use the subscripts ‘fci’, ‘fep’, or ‘fc’ for classes of translations, to denote that the
corresponding MTTRs are fci, fcp, or fc, respectively. Thus M TTg =M TTgi,fcp- The

main result of [EM99] is that the translations of finite copying MTTRs are precisely the
MSO definable tree translations (see Section 2.5).

Lemma 4.9 (Theorem 7.1 of [EM99]) MSOTT = MTTE (effectively).

The main results of this paper are: (i) the translations of finite copying MTTRs are
precisely the translations of MTTRs that are of linear size increase (i.e., MTT® N LST =
MTTE), and (ii) it is decidable for an MTTR M whether or not there exists an equivalent
finite copying MTT® (i.e., whether 73y € MTTE). We now show that it is decidable for
an MTTR M whether or not M is finite copying. The proof is based on Lemma 3.7.

Lemma 4.10 Tt is decidable for an MTTR M

(i) whether or not M is fci, and
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(ii) whether or not M is fcp,

and if so, a copying bound can be obtained effectively.

Proof. Let M = (Q,P,%,A,qo, R, h).

(i) Define the MTT N = (Q', AU (Q, P),T,r, R') with @' = {r{"),r0} and T = {¢ |
q € QYU {e}. For every k >0, (q,p) € (Q,P)*), and § € A) let the following rules
be in R'.

(ro, (g p) (@1, szk)) = q((rz)((ryz2) (- (r 2k (e) - --)))
(ro, 6(21, ..., 2k)) = (ra)({rz) (-~ (r,zp)(e) -+ )
(rlap) (@, -z () = q((rz)(r22)(- (r,xk>(y1) )
( - ({r,

7, 6(w1,y .y ) ) (Y1) (ry w1 ) ((ryw2) (-~ (ry i) (Y1) - -
)

Then, for every s € Ts and u € V(s), Ipath(ry (7 (s[u « h(s/u)])),v) = stsar(s,u)e,
where v is the unique leaf of 7 (7, (s[u < h(s/u)])).

Let L be the tree language {s[u < h(s/u)] | s € Tx,u € V(s)}. Then M is fci iff
K = 7n(1y,(L)) is finite. Note that L = {s € Tx(P') | #p/(s) = 1} where P' = {p €
P | L, # @}; hence L is (effectively) regular. Thus, finiteness of K can be decided by
Lemma 3.7; in case of finiteness, K can be constructed and an input copying bound for
M is max{size(t) |t € K} — 1.

(ii) Let M be the MTTR® defined in the proof of Lemma 3.6 and let A = A U {ygo) |
j € [m]} be its output alphabet, where 7 is the maximal rank of a state of M. Let
N = ({r}”,r},K,T,ro, Ry) be the MTT with T = {7\ | j € [m]} U {e®}. For
6 € A®) with k > 0 the (rg, d)- and (r,d)-rules are defined as for N in (i). For j € [] let
the rules (ro,y;) — ¥;(e) and (r,y;)(y1) = ¥,(y1) be in Ry.

Clearly, for every q € Q and s € Ty, size(7n(737(G(s))) = 1 + #y(My(s)). Now, for the
regular tree language L = {G(s) | ¢ € Q,s € Tx}: M is fcp iff K = 75 (75;7(L)) is finite.
As in (i), this can be decided by Lemma 3.7; in case of finiteness, K can be constructed
and a parameter copying bound for M is max{size(t) |t € K} — 1. O

In fact, the effectiveness of Lemma 4.9 was not completely proved in [EM99], but with
Lemma 4.10 it can be shown as follows: given an 1\/ITTfRc M we can use Lemma 4.10 to
obtain a parameter copying bound N for M. Then, given M and N we can, by the proof of
Lemma 6.3 of [EM99], construct an MTTchi,surp M’ equivalent to M (where ‘surp’ means
‘single use restricted in the parameters’). Now, again by Lemma 4.10 we can determine an
input copying bound N for M’. Then, given M’ and N we can, by the proof of Lemma 6.10
of [EM99], construct a single use restricted MTTR M" equivalent to M'. Now by the proofs
of Lemmas 5.9, 5.12, and 4.1 of [EM99], a single use restricted attributed tree transducer
with look-ahead (for short, ATT®) A equivalent to M" can be constructed. Given A, the
proof of Lemma 7 of [BE0O] shows how to construct an equivalent MSO tree transducer.
This proves the effectiveness going from M TTfE to MSOTT. For the other direction, that
is, starting with an MSO tree transducer M, we can proceed as follows: the proof of
Theorem 14 of [BE0O] gives a construction of an equivalent single use restricted ATTR A.
The proofs of Lemmas 4.2 and 5.11 of [EM99] show how to construct an equivalent single
use restricted MTTR M'. By the proof of Theorem 6.12 of [EM99], M’ is finite copying.
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4.2 Finite Nested Copying in the Input

Consider the translation & = M, (s[u < p]) of the context of a node u of the input tree s,
where p = h(s/u). The symbols of (@, {p})) can occur nested in ¢, i.e., they can occur on
a common label path Ipath(£,v) to some node v of £&. Assuming that M is nondeleting,
this means that a lot of copies of v will be generated; namely, || Fg[[v]] copies, where [...]
replaces ((q,p)) by M,(s/u). Thus, a way to bound the copying carried out by M, is to
bound by some B € N the number of elements of (@, {p})) that occur on a label path in
&, i.e., to bound the nesting of states. This implies that the number of elements in the
family Fg[[vﬂ is bounded by B. We call this property finite nested copying in the input (for
short, fnest). Clearly, it is a much weaker restriction than the fci restriction. However, if
an MTTR® is fnest and fcp, then ] Fg[[vﬂ is bounded by NZ, if N is a parameter copying
bound for M.

Definition 4.11 (finite nested copying in the input)

Let M = (Q, P,%, A, qo, R, h) be an MTTR. Then M is finite nested copying in the input
(for short, fnest), if there is a B € N such that for every s € Tx, u € V(s), p = h(s/u),
and label path m in My, (s[u < p]), # (o {pyy(7) < B. The number B is a nesting bound
for M. a

We use the subscript ‘fnest’ for classes of translations of MTTRs to denote that the cor-
responding transducers are fnest. The next lemma shows that the nesting bound B also
holds for trees M,(s[u < p]) with s € Ly, provided that ((¢,p’)) is reachable, in the
following sense.

Definition 4.12 (reachable)

Let M = (Q,P,%, A, qo, R,h) be an MTTR, g € Q, and p € P. Then, ((g,p)) is reachable,
if there are s € T, and u € V (s) such that ((g,p)) occurs in M, (s[u < p]). O

Note that reachability does not require that h(s/u) = p; however, for L, # @ this can
always be assumed (simply take s’ = s[u < ¢] for some ¢t € Ly, if h(s/u) # p). Note that
in that case, ¢ occurs in the state sequence of s at w.

Lemma 4.13 Let M = (Q, P,%, A, qo, R, h) be a nondeleting fnest MTT® and let B be
a nesting bound for M. If (g, p)) € (@, P)) is reachable, then for every s € Ly, u € V(s),
py = h(s/u), and label path 7 in Mq(s[u —pul)s #(o puyy(7) < B.

Proof.  Since {(q,p)) is reachable, there are t € T, v € V(t), and p € V«q,p»(Mqo (tlv
p])). We may assume that t/v = s and hence t/vu = s/u. By Lemma 4.2, My (tvu
pl) = Myp(tlo = D[] with [...] = [(d,p) < My(slu < pa)) | ¢ € QI Clearly,
Ipath(My, (t[v < p]), p) = w((g,p)) for some w € ({Q, {p})) UA)*. Since M is nondeleting
(and hence so is M), the substitution [...] is nondeleting by Lemma 3.10(1), and thus,
by Lemma 2.3(ii), there is a w' € ({@Q,{pu})) U A)* such that w'm is a label path in
Mg, (t[v — p])[[ . .]], ie., in My, (t[vu — pu]) Now, #((Q,{pu}»(ﬂ') < #((Q,{:Du})) (w,ﬂ') which
is < B, because B is a nesting bound for M. O
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Figure 1: the tree s with shaded part s/u[v’ < p,]

Consider a nondeleting MTTR M and an input tree s € Ts. In Section 6 we will often be
interested in the part of s that lies between two nodes u and v of s, where v is a descendant
of u; this part can be represented by the tree s/u[v' < p,], where v = uv’ and p, = h(s/v).
The shaded region in Fig. 1 shows such a part of s. In particular, in Section 6.2, we will need
to know, if a state ¢ of M processes this part, how many times the node v’ is processed by
a state ¢', i.e., how many occurrences of (¢’,p,)) there are in the tree Mq(s/u[v’ —py)). If
M is nondeleting and w is a node between u and v, i.e., a descendant of u and ancestor of v,
then a lower bound for this number is given by summing for all states r, the product of the
number of occurrences of (7, py) in My(s/ufw' + py]) and #(q o) M, (s/w[v" « p,))),
where v = wov”. This is intuitively true because, due to nondeletion, for each occurrence
of (r,pw) in My(s/ufw' < py]) there is in Mq(s/u[v’ < py|) at least one occurrence of
the tree M, (s/w[v" <+ p,]) (without the parameters), and, due to parameter copying,
there could be more than one such occurrence. This is stated in part (i) of the following
lemma. Part (ii) of the lemma considers the case that M is finite nested copying in the
input and finite copying in the parameters; then we can also give an upper bound for the
number of occurrences of (¢', p,)) in My(s/uv’ + p,]), because each occurrence of ((r, p,))
in M,(s/u[w' + py]) can only be copied a bounded number of times.

Lemma 4.14 Let M = (Q,P,%, A, qy, R,h) be a nondeleting MTTR. Let ¢,¢' € Q,
s € Ty, and u,w,v € V(s) such that u is an ancestor of w and w is an ancestor of v,
Le., w = vw' and v = wv"” for some w',v"” € N*, and let v' = w'v”, p, = h(s/w), and
py = h(s/v). Finally, let

S =" #(apoy M (/00" o)) # (rpuy (Mg(s/u[w’ < pu))).
re@

Then the following two statements hold.

(D) #(qpoy (My(s/ult’ < pu])) = 5.

(ii) If M is fnest and fcp with nesting bound B and parameter copying bound N, and
{{q,h(s/u))) is reachable, then # y , y(My(s/ulv’ < py])) < NEB.S.
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Proof.  Note that for ' = s/u[v’ < py): h(s'/w') = pu, 8'[W < pu) = s/u[w’ < py], and

s'/w' = sjw" + py]. Hence, by Lemma 4.2 applied to s’ and w', My(s/ulv’ « py]) =
€[ .1, where £ = M,(s/ulu’ — py]) and [...] = [{r,pu)) + My(s/wlo" < p,]) | 7 € QI,
and thus, by Lemma 2.6,

#(q o) (My(s/ult’ = p,])) = Z # g poy M (s/w[v” < py)) HF[ 1 (%)

GEV(r,py ) (§),7EQ

Since M is nondeleting, by Lemma 3.10(1), #yj(Mr/(s/w[v” +— py])) > 1 for every ' €
Q'™ and j € [m]. This implies that HF[[,%']] > 1. Thus, the sum in (x) is > S, because
Virpwy (€)1 equals # ¢, .y (M, 1,( s/u[w’ < py])). This proves part (i).

For (ii), HF[ 1 < NB, because the number of elements of (Q,{p,}) that occur in
Ipath(&,w) is < B by Lemma 4.13 (using the assumption that ((q, (s/u))) is reachable)
and because, by Lemma 4.7, #yj( o (s/w[v" + p,])) < N for every ' € QU™ and j € [m).
Thus, the sum in (x) is < N? T DAV (€)@ TH(a o) ( M, (s/w[v" + p,])) = NP ,S;I

Note that point (ii) of Lemma 4.14 can be strengthened by proving an upper bound of
NB=1. 8 for the number of occurrences of (¢, p,)) in M,(s/u[v' < p,])). This is true

because in Fg"ﬁ'ﬂ, the node @ itself (which is labeled by ((r, p,,)) for some state r) is not taken
into account, i.e., only proper ancestors of 4 that are labeled by elements of (Q, {pw})) are
counted; thus there are at most B — 1 of them. We decided to leave out the ‘—1’, because
in the application of the lemma in the proof of Lemma 6.5 this will keep the numbers
better readable.

4.3 Finite Copying implies Linear Size Increase

In this subsection it is proved that if an MTTR is finite copying, then it is of linear size
increase. Note that this result is not needed, because it follows from Lemma 4.9 (as
discussed in the beginning of this section). The proof uses an intermediate, very natural
notion, called finite contribution. Intuitively, an MTTR M is finite contribution, if there
is a bound ¢ on the number of output nodes that are contributed by a node of the input
tree. Clearly, if M is finite contribution, then it is of linear size increase (with bound c).
Thus, in order to prove that finite copying implies linear size increase, it suffices to prove
that if M is finite copying then it is finite contribution (Lemma 4.18). In fact, since one of
the main results of this paper is that MTTRs of linear size increase realize the same class
of translations as finite copying MTTRs (Theorem 7.2 and Lemma 4.9), it means that this
is also the class of translations realized by finite contribution MTTRs.

In order to compute the contribution by a node of the input tree s, we define an MTTR
M*#, which keeps in the label of each output node v the corresponding input node « that
generated v. More precisely, if A is the output alphabet of M, then M® has output
alphabet (A, V(s)), and the contribution by the node u of s is the number of symbols in
(A, {u}) that appear in M} (s'), where s’ is the “decorated version” of s, i.e., s’ is obtained
from s by changing, for every node w, its label o into (o, w).
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Definition 4.15 (The MTTR M?#, decorated version, contribution)

Let M = (Q,P,%, A, q, R,h) be an MTTR and let s € Ts. Then M* = (Q, P, (3, V (s)),
(A, V(s)),qo, R, h®) is the MTTR such that for every (o,u) € (2,V(s))®, &k > 0
Ply..., Pk € P:

i h’fo—’,@(pla"' 7pk) = ho’(pla"' 7pk) and
L rhSMS(Q7 (U,U), (pla' o 7pk>) = rhsM(q,a, <p17' o 7pk>)[[6 A <6,U> | d€ A]]

The decorated version of s, denoted by dec(s), is the unique tree in Tix v (5)) such that
V(dec(s)) = V(s), and for every u € V(s): dec(s)[u] = (s[u], u).

For a node u of s, the set Via 1,3y (M, (dec(s))) € V(Mg (s)) is the set of output nodes
contributed by u, and the contribution by u, denoted by Contribys(s,u), is the cardinality
#(a,qu}y (M (dec(s))) of this set. O

Note that every output node is contributed by a unique input node v (called its origin
in [vDKT96]). Before we prove our first lemma about contribution, let us note some easy
properties of the MTTR M*. Let u € V(s) and ¢q € Q.

(P1) h*(dec(s)/u) = h(s/u).

(P2) For s' € Tis vy, ma(M;(s')) = My(ma(s')), where ma changes each symbol (4, u)
into 8, i.e., it is the canonical projection from (A, V(s)) to A. For M* and M a
similar statement holds.

Additionally, note the following two obvious facts about the projection wa. Let
Q be a ranked alphabet disjoint with (A,V(s)), £ € Toya,v(s)(Y), and ¢ €
Touaqupy(Y). We assume that ma is the identity on elements of 2.

(D1) For € (QUY) : Vs(ma(£)) = Vs(£)-
(D2) For 6 € A: Vs(mal') = Viguy(£')-

(P3) Let Py = {p® | p € P}.

(a) For £ € T v(s): If #(s,up) () = 0 then # A )y (M7 (£)) = 0.
(b) For & € Tis v(syur,: I #(x,quy)(€) = 0 then # A 43, (M7(£)) = 0.

Let us prove property P3, by induction on the structure of . Let & = (o,v) (&1, .-+, &)
with (o,v) € (2,V(s))®) and k > 0 such that # s r,),(¢) = 0. By Lemma 3.5, M3(¢) =
(e, i) < My (&) | (@' 7)) € (Q, Xi)] with ¢ = rhsps (g, (o, ), (h*(61),- -, h*(§))), and
thus, by Lemma 2.6, #a (u)) (M7 (§)) = S1 + S2, where S; and S are the sums defined
in that lemma. Now S; = 0 because Vi (4})(¢) = @ by the definition of the rules of M?
and by the fact that v # u (because # 5 14}y (§) = 0). By induction, #<A’{u}>(qu, &) =0
and therefore also Sy = 0, which concludes the proof for the (a) case. For the (b) case
the same proof holds, except that we have to consider the additional case £ = p € Py: the
right-hand side ¢ of the p-rule of M* is in Tyq,ipyy(Y) and thus # ¢43)(¢) = 0.

First, we want to present a lemma that computes, in the style of Lemma 2.6, the number
Contriby/(s,u) of output nodes contributed by wu.
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Lemma 4.16 Let M = (Q,P,%, A, qo, R, h) be an MTTR, s € T, and « € V(s). Then

Comstooy= Y S LAELILAY

v € Vg oy () wEVA(C)
q€Q

with p = h(s / ), t = M o(slu < pl), ¢4 = rhsp(q,0,(p1,...,pk)) for all ¢ € Q where
o= sl € 2% k>0, and pi = h(s/ui) for all i € [k], [.] = [(¢',zi) + My (s/ui) |
(¢, z:) € (Q, Xk)]]a and [[ J=1[a.p)  My(s/u) | q € Q.

Proof. By definition, Contribas(s,u) = #a 1uy) (M, (dec(s))). Since, by the definition
of dec, dec(s)[u] = (o,u) € (%, V(s))UC)A, we get by Lemmas 4.2 and 3.5, and property P1,
My, (dec(s) = VbsIL where ' = N, (dec(s)lu  pl), Trs] = [(asp) < G | 0 € €
with Cq = rhsys (q7 <O’,U>, <p17 s 7pk>) for ¢ € @, and [[—]] = [[<q7xl> A qu(dec(s)/uz) |
(¢,7i) € (Q,Xg)]- The application of Lemma 2.6 to #a (u))(t"[]) with ¢ = #'[rhs]
gives S| + S5, where S = 0 because #a {u}) (M, (dec(s)/ui)) = 0 by property P3(a) and
the fact that dec(s)/ui contains no symbol in (3, {u}) (by the definition of dec). Thus,
Contribys (s, u) = S7, which equals

Z H Ft[E [[ﬂrhs]] 2 ( * )

UE‘/(A,{u}) (t’ [[rhs]])

By the claim below, for ® = [rhs] and ¥ = [_]', the sum in () equals Y ove(afuy (S1+S52).
Now S; equals zero, because Vi (4))(t') = @, which holds by property P3(b) and the
fact that dec(s)[u < p| contains no symbol in (3, {u}). Thus, the sum in (x) equals

2 one(afuy) 52 =

Z Z H ],]w H Flt[E vﬂ ’
RS ‘/«eq,pQ» (t’) UIG‘/(A,{u} (Cq)
q

where [...]" is the substitution [(q,p)) < M (dec(s)/u) | ¢ € Q]. Let us now show that
this sum equals the one of the lemma. For every ¢ € @ it follows from property D1 (for

= (@, {p}) and § = (q,p}) that Vi) (#') = Vigpy(ma(t) which equals Vigpy(¢)
by (the M-version of) property P2, where mwa is the projection defined in that property.
Since (; € Tig,x,)u(a,{u}) (V) it follows from property D2 that Via 11y (¢q) = Va(ma((y)),
which equals VA((,) because ma((;) = (, by the definition of the rules of M?®. Now
for w € V((;) = V(¢y), HFH = HFH because for ¢ € Q, by D1, Vig.1(¢;) =
Vig 2y (ma(Cy)) which equals V +)(Cg) and for y € Y, by D1, #,(M_(dec(s)/ui)) =
#, (ma (M3 (dec(s) /ui))), which equals #,((M,(s/ui)) by P2. slmﬂarly,npt[{vﬂ S
for v € V(t') = V(t) because, as shown above, Vi, ,y(t') = Viqy(t) for ¢ € Q, and for
y € Y, by DL, 4, (M;(dec(s)/u)) = #, (ma (M; (dec(s) /u))) which equals #,(My(s)) by
P2.

It remains to show the following claim, which is a generalization of Lemma 2.6 to two
second-order tree substitutions ® and ¥ (more precisely, taking the substitution ¥ as the
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identity on I' — Y gives Lemma 2.6 for the case 0 =y & {01,...,0,} UY). Note that dT
denotes the composition of ¥ after @, i.e., t(dV) = (¢tP)T.

Claim: Let T' be a ranked alphabet. Let ® = [o; < s; | @ € [n]] and ¥ = [1; +

& | 7 € [m]] be second-order tree substitutions over I'. Then for ¢t € Tr and v € T' —
{1, y0n, Ty, T pUY),

Y IIFe.=5+5, (x)

veV, (t®)

where

SR wa s= Y Y [T

veEVy (1) veVTl]() wEV (i)
1€ [n

Proof of the claim: Note that the statement does not depend on the numbers #.,(;). This
is true because the substitution ¥ only appears in the F's. In fact, for any node v of a
tree (, HF‘I’ HFC'I”;, for every substitution W' = [7; - & | j € [m]] with the property
that #y(ﬁ’) #,(&;) for every y € Y and j € [m]; we denote this property by E(¥,¥’).
For S; and Sy a similar statement holds. (Note that if E(¥, ¥’) then E(®¥, ®¥’); this is
true because, by associativity of second-order substitution, @V = [o; < 5; ¥, 7; < §; | G]
and @V’ = [o; 5, ¥, 7; < & | G], where G denotes the statement ‘t € [n],j € [m] with
7 & {o1,...,0n}"; by the above, E(¥,¥’) implies that [] Fy , = [[ F, ,v for any node v
of s;, and thus for every y € Y, ZveVy(si) ]_[F;I;v = Euevy ]_[F » Which means, by
Lemma 2.6, that #,(s;,¥) = #,(s;7’).)

The idea of the proof is as follows. We will apply Lemma 2.6 twice: first to #(¢'¥’), where
t' = t® and ¥’ is a substitution with E(¥, ¥'), and second to #,(tB) with B = ®U’. The
first application will give the left-hand side of the equation (x), and the second one will
give the right-hand side of that equation. Clearly, by definition of the composition of
second-order tree substitutions, #,(t'U’') = #,(tB).

Define ¥’ = [r; < & | j € [m]] with E(¥,¥’) and #,({;) = 0 for all j € [m]. Then
for t' = t®, #.,(t'¥’') equals, by Lemma 2.6, S| + S} with S} = EUGVW(@) HFt%:U and
S5 = 0 because all the numbers #,(¢}) are zero by the definition of ¥'. Since E(¥, V),

this means that #.(t'¥’) = EUEVW 1) [1F% »» Which is the left-hand side of the equation
(%)

By the associativity of second-order tree substitution, B = ®¥’ equals
[oi < si0', 7 < & | i € [n],j € [m] with 7; & 3,],

where X, = {01, ..,0pn}. The application of Lemma, 2.6 to #7(tB) gives S|+ S5 with S| =
ZveV,, H Ft v and Sé = EUEV,, #’Y(St ) H Ft v +Z1}€V‘r t),j€[m], 7 ¢%n #7(5;) .
[1F7 V. Since #(&;) = 0, the second term of S5 equals zero. In the first term of S, we
apply Lemma 2.6 to #£(s;¥') which gives T + Tb, where T5 = 0 because #,({}) = 0
and Ty = Zvch,i(t),i etn] owevs(s) L1 Fo, Vo ITFSY . Since E(¥, V'), S| =S and T} = S,
which concludes the proof of the clalm |
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Using Lemma 4.16 we can now prove that if an MTTR is finite copying then it is finite
contribution, which is defined next.

Definition 4.17 (finite contribution)

Let M be an MTT®R with input alphabet 3. Then M is finite contribution if there is a
¢ € N such that Contribys(s,u) < ¢ for every s € Tx and u € V(s). O

Consider now a finite copying MTTR M. In the translations of M, every node of the input
tree is translated at most I- N'~! times (cf. the discussion on page 71 of [EM99]), where
I and N are input and parameter copying bounds for M, respectively. This implies that
the number Contribys(s,u) of output nodes contributed by the node u is bounded.

Lemma 4.18 Let M be an MTTR. If M is finite copying, then it is finite contribution.

Proof. TLet M = (Q,P,%,A,qo,R,h), s € Tx, and u € V(s). Let I be an input copying
bound for M and let N be a parameter copying bound for M. Furthermore, let m be the
maximal size of the right-hand side of a rule of M. By the definition of fci it follows that for
t = My, (s[u + p]) and p = h(s/u), #0,{py (t) < I. By the definition of fcp it follows that,

for every v € Vi, py (t) and ¢ € Q, HFt[E;;'H < NIt where [...] = [(g,p)) < My(s/u) | q €
Q]. By Lemma 4.16 this means that Contriby(s,u) < I-N'=! max{},eva(c,) HFC[[;},]w |
q € Q}, where [ ] = [(¢, zi) « My (s/ui) | (¢',z;) € (Q, Xi)]. By the definition of m this
is < TNl max{[[F, | g € Qu e Va(()} <T-NT1om - N™1 = O

As discussed in the beginning of this subsection, if an MTTR is finite contribution then
it is of linear size increase. This holds because, by P2, size(Mg,(s)) = size(M, (dec(s)))
= D uev(s) Contribar(s, u) < c-size(s). Together with Lemma 4.18 this gives us the desired
result: finite copying implies linear size increase.

Theorem 4.19 If an MTTR® is finite copying, then it is of linear size increase.

5 Proper Normal Form

In Section 4.3 we showed that if an MTT® is finite copying, then it is of linear size increase.
In Sections 6 and 7 we want to prove that the converse also holds, i.e., that linear size
increase implies finite copying. However, in general this does not hold: there are MTTRs
of linear size increase that are not finite copying. Roughly speaking, the reason for this
is that the part of the output tree that is being copied unboundedly, by means of input
variables or parameters, might be a fixed tree that does not change for different input. So,
an input tree s, of size n might generate a state sequence of length n, but, the number
of different output trees that are eventually generated by the states in the state sequence
might be bounded. Then the MTT® is not finite copying in the input, but the translation
it realizes might still be of linear size increase (cf. the MTTR® M at the beginning of
Section 5.1). Similarly, a tree My(s,) might contain n copies of a parameter y;, but there
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are only boundedly many different output trees that will be substituted for y; in the actual
output My, (s). Then M is not finite copying in the parameters, but the translation it
realizes might be of linear size increase (cf. the MTTR® at the beginning of Section 5.2).

Intuitively it should be clear that a state that generates, for any input, only a bounded
number of different output trees t, is not needed; it can be eliminated by immediately
substituting the correct tree ¢, which can be determined by regular look-ahead. This gives
rise to a normal form, called input proper, which is treated in Section 5.1. Similarly for a
parameter y; of a state ¢: if the number of actual output trees ¢ that will be substituted
for y; is bounded, then this parameter is not needed; it can be eliminated by immediately
substituting the correct ¢, which can be computed in the states of the MTTR. This gives
rise to a normal form, called parameter proper; it is treated in Section 5.2.

Altogether, an MTTR will be called proper, if it is input proper, parameter proper, and
productive. Again, this is a normal form, i.e., for every MTTR there is an equivalent one
which is proper. Then, in Section 6 it can be proved that if a proper MTTR® is of linear
size increase, then it is finite copying.

5.1 Input Proper
Consider the following MTTR M, which is of linear size increase, but not finite copying

in the input. Let M = (Q,%,A,qo, R) with Q = {g)",¢®,¢'"}, = = {4(V,a® 6O},
A = {c® 4 b0} and R consisting of the following rules.

(@0, 7(x1)) = ol{g,21),{d', 1))

<q7 (171)) - (q,I1>

(qla’Y(Il» - U(<q7$1>7 <q17$1>)

(r, a) — «a (for every r € Q and « € {a,b})

Note that M is in fact a top-down tree transducer. Intuitively, M translates every
monadic tree s, = y(...v(a)...) = y"(a) of height n (with « € {a,b}) into a comb
tn =o(a,0(a,...0(a,a)...)) of height n. Thus, size(rps(s)) < 2-size(s) for every s € Tx
and so M is Isi. Clearly, M is not fci because stsys(s,,u) = ¢"¢’ for n > 1 and v = 1" the
unique leaf of s,,. The reason for this is that M generates many copies of ¢, but g generates
only a finite number of different trees (viz. the trees a and b). How can we change M
into an equivalent MTTR® which is fci? The idea is to simply delete the state ¢ and to
determine by regular look-ahead the appropriate tree in {a,b}. In this example we just
need L, = {y"(a) | n > 0} and Ly = {y"(b) | n > 0} and then the go-rule of M is replaced
by two go-rules with right-hand sides o(a, (¢’,z1)) and o(b, (¢, 1)) for look-ahead p and
p', respectively, and similarly for the ¢’-rule.

We will say that an MTTR M is ‘input proper’ if every state, except possibly the initial
one, produces infinitely many output trees (in Ta(Y)). More precisely, for every look-
ahead state p of M and every state ¢, M should produce infinitely many output trees
taking L, (the trees for which the look-ahead automaton arrives in state p) as input; in
fact, this is only required if (g, p)) is reachable, i.e., if {(¢,p)) occurs in Mqo(s[u + p]) for
some s and u (see Definition 4.12).
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The notion of input properness was defined in [AUT71] for generalized syntax-directed
translation schemes (which are a variant of top-down tree transducers) and was there
called ‘reduced’. We add two useful technical properties to it.

Definition 5.1 (input proper)
An MTTR M = (Q, P,%, A, qo, R, h) is input proper (for short, i-proper), if

(i) for every ¢ € @ and p € P such that ¢ # qo and ((g,p)) is reachable, the set
Out(q,p) = {M,(s) | s € Lp} is infinite,

(ii) gop does not occur in the right-hand sides of the rules in R, and

(iii) L, # @ for every p € P. O

Note that Out(g,p) C Ta(Y;n) for ¢ € Q™. Before it is proved (in Lemma 5.4) that i-
properness is a normal form for MTTRs, we need the following two straightforward lemmas
about finiteness of Out(q, p).

Lemma 5.2 Let M = (Q,P,%, A, qo, R, h) be an MTTR. For given ¢ € Q™ and p € P
it is decidable whether or not Out(q, p) is finite. Moreover, Out(g,p) can be constructed,
if it is finite.

Proof.  Let M be the MTTR® constructed in the proof of Lemma 3.6. Then, for every
s € Ty, 137(q(s)) = My(s)ly; < ¥; | j € [m]] and hence My(s) = 737(q(s))I, where
Il = [y; + y;j | j € [m]]. The substitution II can be realized by a (very simple) top-down
tree transducer. Thus, for the regular tree language L = {g(s) | s € L,}, Out(q,p) =
{My(s) | s € Lp} = {rp(s)IL | s € L} = 7n(737(L)). By Lemma 3.7 the finiteness of
7 (737(L)) is decidable, and in case of finiteness 7y (7;;(L)) can be constructed. O

Lemma 5.3 Let M = (Q, P,%, A, qo, R, h) be a nondeleting MTTR. Let ¢ € Q, o € (),
k> 1, and p,p1,...,px € P such that p = hs(p1,...,px) and Ly, # @ for every j € [k].

If (r,z;) € (Q, X)) occurs in rhsys(q, 0, (p1,...,pr)) and Out(q,p) is finite,
then Out(r,p;) is finite.

Proof. For j € [k] — {i} fix trees s; € Ty with h(s;) = p;. Let £ = ([...] with
¢ = thsr(g, 0, (pr,- -, pi)) and [...] = [ ;) & My(s;) | ¢ € Qj € (K] — {i}]- By
the definition of Out(q, p), Lemma 3.5, and associativity of second-order tree substitution,
O ={My(o(s1,...,5k)) | $i € Lp;} = {&[si] | si € Lp,} where [s;] denotes the substitution
(¢, zi) < My (si) | ¢ € Q] is a subset of Out(g,p) and hence finite. Since M is nondelet-
ing, both [...] and [s;] are nondeleting, by Lemma 3.10(1). Hence, by Lemma 2.1, £ has a
subtree (r, z;)(&1,...,&n), where m = rankg(r). Again by Lemma 2.1, £[s;] has a subtree
(ryxi) (&1, -5 &m)si] = My (si)lyj < &lsi] | 4 € [m]]. Thus, for every ¢t € Out(r,p;) (i.e.,
t = M, (s;) for some s; € L,,) the tree tly; < &;[s;] | 7 € [m]] is a subtree of {[s;], i.e., it
is a subtree of a tree in the finite set O. This implies finiteness of Out(r, p;). a
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We are now ready to prove that i-properness is a normal form. The construction involved
is similar to the one of Lemma 5.5 of [AU71] except that we apply it repeatedly to obtain
an i-proper MTTR® as opposed to their single application which is insufficient (also in their
formalism, which means that their proof of the lemma is incorrect).

Lemma 5.4 For every MTTR M there is (effectively) an i-proper and productive MTTR
M’ equivalent to M. If M is a TR, then so is M.

Proof. Let M = (Q,P,%,A,qy,R,h) be an MTTR. By Lemma 3.9 we may assume that
M is productive. Moreover, we may assume that go does not occur in the right-hand side
of any rule of M (if it does, replace it in all rules by a new state g which has the same
rules as qp).

Before we construct the MTTR M’ which is i-proper and realizes the same translation
as M, let us define an auxiliary notion. For each p € P, let F), denote the set {q € Q |
Out(q, p) is finite} of states which produce finitely many output trees in Ta(Y') on input
trees in L,. Note that F), can be constructed effectively, because, by Lemma 5.2, it is
decidable whether or not Out(g,p) is finite. Moreover, Out(q,p) can be constructed for
every q € Fj.

The MTTR M’ is constructed in such a way that, if (r,z;) occurs in rhsyy(q, o, (p1,...,
pk)), then r ¢ F,.. This implies point (i) of i-properness of M' as follows. If ((r,p)) €
(Q, P)) is reachable (with r # qg), then there are s € Tx, and u € V(s) such that {(r,p))
occurs in Méo(s[u + p|). Since r # qp, v = vi for some ¢ > 1 and v € N*. By Lemma 4.3
this implies that (r,z;) occurs in the right-hand side of a rule of M’ with p; = p. This
means that r ¢ F),, i.e., Out(r, p) is infinite.

We first construct the MTTR 7(M) by simply deleting occurrences of (r,z;) with r €
F,, and replacing them by the correct tree in Out(r,p;) which is determined by regular
look-ahead. Due to the change of look-ahead automaton, an occurrence of (r,z;) in the
(g,0,(p1,...,pk))-rule of M with r ¢ F,, might produce only finitely many trees for the
new look-ahead states (p;, ;). For this reason we have to iterate the application of 7 until
the sets F}, do not change anymore. This results in the desired MTTR M’

For each p € P let ®, be the (finite) set of all mappings ¢ : F, = Ta(Y) such that there
is an s € L, with p(q) = M,(s) for every ¢ € F,. Note that ®, is finite because ¢(q) €
Out(g,p), which is finite for ¢ € F},. This also implies that ®, can be obtained effectively by
checking, for the (finitely many) mappings ¢ : F}, — qu F, Out(q, p), whether or not ¢ is in
®,. This is decidable because ¢ € @ iff Kp , = LpN(sep, Mq_1({<p(q)}) is nonempty; Kp o,
is regular by Lemma 3.6 (and the closure of the regular tree languages under intersection),
and hence has a decidable emptiness problem (cf., e.g., Theorem I1.10.2 of [GS84]). The
mappings in @, partition L, into the sets K, , which can be determined by regular look-
ahead.

We now construct the MTTR (M) = (Q, P', 3, A, qo, R', 1) as follows. Let P' = {(p, ¢) |
p € P ®,}. For o € %) and (p1,¢1),...,(pr, ox) € P’ let, for every ¢ € Q™) the
rule

(0T, sz ) (Y1, ym) = GO {(P1,91),- -+ (Prs Pk))
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be in R, where {; = rhsyr(q, 0, (p1,...,pk)) and © = [(r,z;) < @;i(r) | r € Fp,,i € [K]],
and let hg((p1,¢1),.--, (Pk: k) = (P, ), where p = hy(p1,...,px) and ¢ = {(q,(;O) |
qc Fpva = I'hSM(q, g, (pla s 7pk>)}

Before we prove that the look-ahead automaton of w(M) is as desired, let us show that
it is well defined, i.e., that ¢ € ®,. We must show that there is an s € L, such that,
for every q € Fp, ¢(q) = M,y(s). Since ¢; € &, for i € [k], there are s; € Ly, such that
@i(r) = M,(s;) for all ¢ € [k] and r € F),. Hence, for ¢ € F,, ¢(q) = (,0 with ¢, =
rhsyr(q, 0, (p1,...,pk)) and © = [(r,z;) < M,(s;) | (r,zi) € (Fp;, X;)]. By Lemma 5.3
and the definition of F,, only (r,z;) with r € F), occur in {,. Therefore we can extend
© to all elements of (), X;). By Lemma 3.5 we get ¢(q) = M,(s), for s = o(sy,...,s).
Since p = ho(p1,.-.,Dk), S € Lp.

Claim 1: Let s € Ts,. If h'(s) = (p, @), then p = h(s) and ¢(q) = My(s) for every q € F),.

The proof is by induction on the structure of s. Let s = o(s1,...,sx) with s1,...,s, € Ty
and h'(s;) = (pi, i) € P’ for i € [k]. By definition, p = hy(p1,...,pk) = h(s). For g € F),
©(q) = rhsar(g, 0, (p1, ..., pr))O. By induction, ¢;(r) = M,(s;), for all i € [k] and r € F),.
For the same reason as above we can extend © to all elements of (Q, Xj) to get M,(s).

This claim implies that 7w(M) satisfies point (iii) of i-properness. In fact, if (p, ) € P’
then ¢ € ®,, and so there exists s € L, such that ¢(q) = M,(s) for every ¢ € F,,. Thus,
by Claim 1, h'(s) = (p, ). Hence, L, ) # 2.

The MTTR (M) realizes the same translation as M. This follows from Claim 2 for ¢ = qo.
Claim 2: For g € Q and s € Tx, m(M),(s) = My(s).

Again we prove this by induction on s. Let s = o(sy,...,8;) with s1,...,8; € Tx and
h'(si) = (pi, i) € P' for i € [k]. By the definition of the rules of 7(M) and by Lemma 3.5,
m(M)4(s) equals rhsas(g, o, (p1, . .., pi))O[-], where [] = [(¢, z;) < 7(M)y(s:) | (¢, ) €
(@Q,X)]. By Claim 1, © equals [(r,z;) < M,(s;) | r € F,,i € [k]], and by in-
duction [] = [(¢',z:) + My(s;) | (¢szi) € (Q,Xk)]. Thus O[] = [] and we get
rhsa(q, o, (p1, - .., p))[-] which, by Lemma 3.5, equals M,(s).

The MTTR 7(M) is productive because M is productive and the application of © does not
delete nodes. Formally, consider a right-hand side (,© of 7(M) with {;, = rhsy/(q, o, (p1,

o)), ¢ € QU and m > 0. For every r € Fp,, @i(r) = M,(s) for some s € T.
Thus, by Lemma 3.10(1), #,, (¢i(r)) > 1 for every v € [rankg(r)], i.e., the substitution
© is nondeleting. Since, for j € [m], #,,((;) > 1 this implies, by Lemma 2.1, that
#y,((4©) > 1, i.e., m(M) is nondeleting. Analogously, by Lemma 3.10(2), #y, (¢i(r)) ¢ Y
for r € Fp,, and v € [rankg(r)], i.e., the substitution © is nonerasing. Since, for j € [m],
(; ¢ Y this implies, by Lemma 2.2, that (,0 ¢ Y, i.e., 7(M) is nonerasing.

Since 7(M) has the same states as M, w(M) is a TR, if M is.

We now discuss the reason for iterating 7. Consider an occurrence of (r,z;) in the right-
hand side of a rule of 7(M). We know that r ¢ F,,, because each such occurrence is
removed by the substitution © in the definition of the rules of w(M). Thus, Out(r,p;) is
infinite. However, through the new look-ahead, the set Ly, is partitioned into sets L, ..y,
@i € @), (to see this, consider an s € Ly,; then, by Claim 1, s € Ly, ;) where @; is defined
as i(q) = My(s) for every g € Fp,). Thus, we merely know, by Claim 2, that the union
of Out(r, (pi, pi)) for all ¢; € ®,, is infinite, but for a particular ¢; € ®,,, Out(r, (p;, ¢;))
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might be finite, which means that 7(M) is not i-proper (see Example 5.5).

Let us now show that the iterative application of 7 yields an i-proper MTTR. In particular,
we iterate the application of 7 until
F

) = Fp for every (p,p) € P (%)

It follows from (*) that if (r,z;) occurs in the right-hand side of a rule of 7 (M), then by
the definition of ©, r ¢ F},;, and hence by (), r € F{;, ,.,)- Thus () implies (point (i) of)
i-properness of (M), as argued in the beginning of this proof.

It remains to show that after a finite number of applications of m, (*) holds. Clearly, F}, C
F,.0) € Q, because Out(q, (p, p)) € Out(q,p) as argued above. Let us first show that, for
every (p,p) € P', F{y, ,) = F, implies that (after constructing 7(7(M))) F((p.0),0) = F(p,p)
for every ¢’ € ®(,, ). Let ¢' € &, ), i.e., thereisan s € L, ,) such that ¢'(q) = 7(M)4(s)
for every ¢ € Fy, ,) = Fp. Since, by Claims 1 and 2, 7(M),(s) = My(s) = ¢(q) for every
q € Fy, it follows that ¢’ = ¢. This means that L((, ,) 1) = {8 € L) | 1(M)4(s) = ¢'(q)
for all ¢ € Fp, )} equals {s € L, ) | My(s) = ¢(q) for all ¢ € F)} = L, ). This implies
that Out(q, ((p, ¢),¢')) = Out(q, (p, )) and thus Fi, ) ) = {g € Q | Out(q, ((p, ), ¢"))
is finite} = {qg € Q | Out(q, (p, p)) is finite} = F{, ..

Now, after at most k£ = |Q| iterations of m, (%) holds. Let (---((p,¥1),92)...,%r) be
denoted by (p,¢1,...,¢r). Then, for every look-ahead state (p,¢1,...,¢x) of ©F(M):
Fooorron1) = Flpor,npr)- This is true because F, = & implies F,, , ) = @ (since
Dy = {p1}), and Fip s, 0 = Flppr,.pipr) implies that Fopior,nos) = Flpspr,...pr) for all
j > i (by the above). Since a sequence of nonempty subsets of @) in which each set is a
proper subset of the next one has length at most |Q| = k, Fooporon1) = Flpor,non)-
Thus, M' = 7*(M) is i-proper. O

The next example illustrates the construction of an i-proper MTTR following the proof of
Lemma 5.4.

Example 5.5 For simplicity let us consider an MTT®R without parameters, i.e., a T®. Let
M = (Qapa 27A7QO7R7 h) be a TR with Q = {q07q7qlai}7 P = {p}a Y= {O[(O),’)’(l),U(l)},
A = {9,580 1) (1) 521 and let R consist of the following rules.

(qo,v(z1)) — (g, 1), (1)) (p)
(q0,0(w1)) — (d's21) (p)
(,7(71)) — « (p)
(g,o(z1)) — B (p)
(d,7(71)) — «a (p)
(¢ o(z1)) — o((i,z1)) (p)
(G, v(z1))  — ({3, 21)) (p)
(i,0(z1)) — o((i,z1)) (p
(r,a) - « for each r € Q

Let us now define My = n(M) = (Q, P', %, A, qo, R',h'). We obtain F, = {¢} and ¢, =
{a; ps} with pa = {(¢,)} and g = {(¢,)}, and thus P’ = {(p, pa), (p, pp)}. As can
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easily be verified, the rules of the look-ahead automaton of M; look as follows: hl, =
(1, 9a)s B (0, 0a)) = W (s 05)) = (P, Pa)s b (D, 0a)) = iy (D, 05)) = (D, ©5)-

The ¢-, ¢’-, and i-rules in R are identical to the ones in R for both new look-ahead states.
The go-rules in R’ look as follows:

(go,v(x1)) = d(ev, (5,21))  ((p; ¥a))

(90,7(z1)) — (B, (i, 21)) ((p,wp))

(qo,0(x1)) — (¢, 71) ((p,9a))

<QO7U(x1)> - <q,,I1> <(p7()0,3)>
Note that L, = {a} U{y(s) | s € Tx} and Lp%, = {o(s) | s € TE} Hence
Out(q', (p, goa)) = {a} and so the TR M, is not i-proper yet, because F, ={q,q'} #
F,. Thus we have to apply = again. Let M' = =n(M;) = (Q,P" Z A ,qo, R, h'").

We get @,,,) = {p}, with ¢ = {(¢,0),(¢';a)} and @, ) = {(pg}. Thus P" =
{((ps¢a),¥), ((p,vs),vs)}. The look-ahead automaton of M’ stays the same as for M;
except for a renaming of states: (p,¢a) by ((p,¢a), ) and (p,¢g) by ((p,¢s),¢s). The
q-, ¢'- and 4-rules in R" are identical to the ones in R’ (and R) for all look-ahead states.
The go-rules in R" look as follows:

(qo,v(x1)) — 8(e, (i,21)) (((p%a), ©))
(o, 7(x1)) — 6(B, (i z1)) (((pp), ©s))
<QO7U(x1)> - (((p,<pa),<,0)>
(qo,0(x1)) — (¢, 71) (((p,08), ©8))

R . _ -
The T M’ is i-proper because F((, o.).0) = 10,0'} = Flp ooy and F(pos).05) = 14} =
Fippp)- We finally note that it is easy to transform M into a generalized syntax-directed
translation scheme that forms a counter-example to the proof of Lemma 5.5 of [AU71]. O

5.2 Parameter Proper

Consider the following MTT M which is of linear size increase, but not finite copying in
the parameters. Let M = (Q, %, A, qo, R) with Q = {q(()o),q(l)}, ¥ ={c®,43, a0 g0},
and A = {0, v?) o) (1) 50 30 Foralld € {o,7} and a € {a, 8}, let the following
rules be in R.

(90,0(z1,22))  — 0({q,71)(9), (g, 22)(9))
(q,0(z1,22))(v1) — 0({(g,21)(y1), (g, 72) (1))
{q0,a) — a(a)
(g,a)(y1) = a(y1)

Intuitively, M moves the root symbol of the input tree to each of its leaves; e.g., for s =
o(y(a, B), a) we get Tar(s) = o(y(a(a), B(a),a(a))). Thus, M islsi (because size(1ps(s)) <
2 - size(s)). Clearly, M is not fcp, because #,, (M,(s)) equals the number of leaves of s.
This time, the reason is that M generates a lot of parameter occurrences which have only
finitely many ‘argument trees’ (viz., & and 7). A j-th argument tree for g and p is a tree
&; such that (¢,p)(&1,...,&m) is a subtree of some My, (s[u < p]).
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The idea of the next normal form is to eliminate parameters y; of ¢ for which there are
only finitely many j-th argument trees (for look-ahead p). This can be done by keeping the
information on these argument trees in the states of the new MTTR and by appropriately
replacing y; by the correct argument tree in each right-hand side. For the example MTT
M of above we have to add states ¢z, 0 € {0,v} of rank zero, and take as rules

(qo0,0(z1,22)) — 0({g5, 1), (g5, T2))

(g5, p(z1,72)) — p({g5,21), (g5, 72)) for p € {o,7}
(qo0,a) — a(a) for a € {a, B}
(an a> - a(é) for a € {a718}

This shows that the translation 73, can actually be realized by a top-down tree transducer.

Definition 5.6 (parameter proper, proper)

An MTTR M = (Q, P, %, A, qo, R, h) is parameter proper (for short, p-proper), if for every
geQ™, m>1,j€[m],andp e P

(i) if (g, p)) is reachable, then the set Arg(q,j,p) =
{t/vj | 3s € Te,u € V(s) : t = My, (s[u  p]),v € V(t),t[v] = (g, p)}
is infinite, and
(ii) if ((g,p)) is not reachable, then #, (M,(s)) <1 for all s € L.

The MTTR M is proper, if it is productive and both i-proper and p-proper. O

Note that Arg(q,7,p) € Tygpyyua- Note also that ((g,p)) is reachable if and only if
Arg(q,j,p) # @.

Point (ii) in Definition 5.6 says that if a parameter appears more than once in M,(s),
then ((q, h(s))) is reachable. This (mild) additional requirement is needed to force an Isi
MTTR® to be fcp, because Definition 4.6 of the fcp property requires #y; (My(s)) < N for
all states q, i.e., {(q,h(s))) might not be reachable.

Similar to the case of i-properness, we present two lemmas concerning the finiteness of
Arg(q, 7, p). First, let us show that it is decidable whether Arg(q, 7, p) is infinite.

Lemma 5.7 Let M = (Q, P,%, A, qo, R, h) be an MTTR. For given ¢ € Q™ , m > 1, j €
[m], and p € P, it is decidable whether or not Arg(q,j,p) is finite. Moreover, Arg(q, 7, p)
can be constructed, if it is finite.

Proof.  Let K, be the regular tree language {s € Ty, | p occurs exactly once in s} with
3 = 2U{p®}. Then T (Kp) € Ty pyyua- We now construct a partial nondeterministic
top-down tree transducer N which takes a tree in Tyg (p3yua as input and generates as
output the j-th subtree of an occurrence of ((q,p)). (A partial nondeterministic top-down
tree transducer is defined as in Definitions 3.1 and 3.2 but for ¢ and o there may be none
or several rules of the form (q,o(x1,...,2;)) — ¢.) Let N = ({r(©,id®},T,T,r, R'),
where I' = (@, {p})) UA and R’ consists of the following rules.
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<T77($17 s 7I1€)> - (Ta IZ) V’)’ € F(k),k >1,1 € [k]
<T7 «q,p>>($1, s ,Q?m)) - <1d7 I]>
(id,f}l(xla"'axk» - 7(<1d7I1>77<1d7I1€>) V’)’EF(k),k >0

Clearly, 7n (7, (K})) = Arg(q, j,p), because every tree ¢ in 7,,(K,) equals My, (s[u < p])
for some s and u, and for every subtree ((g,p))(&1,...,&m) of t: (£,&;) € 7. The finiteness
of L = 7nx(7y;(Kp)) can be decided by Lemma 3.7, and in case of finiteness L can be
constructed. |

Lemma 5.8 Let M = (Q,P,%, A, qo, R, h) be an i-proper and productive MTTR. Let
qe Q(n)a o€ E(k)a n,k >0, and p,p1,...,px € P such that p = ha'(p17 s 7pk) and <<q7p>>
is reachable. Let (r,z;)(t,...,tm) be a subtree of rhsys(q, o, (p1,...,pi)) with r € QU™
m >0, € [k], and t1,...,tm € T, x,)ua(Yn)-

For j € [m], the set Arg(r, j,p;) is infinite if in ¢; there is

(i) an occurrence of y, € Y,,, where Arg(q, 1, p) is infinite, or
(ii) an occurrence of an element of (Q, Xy — {z;}), or

(iii) an occurrence of y, € Y, such that there is a £ € Arg(q,pu,p) for which {[rhs]
contains an occurrence of an element of (Q, Xy — {z;}), where [rhs] denotes the

substitution [[«ql7p>> — rhSM(qla o, <p17 s 7pk>) | q, € Q]]

Proof.  Consider s € Ts, u € V(s), and &1,...,&n € Tyo (pyyua such that (q,p) (&1, .- -,
&) is a subtree of My, (s[u < p]). Consider also s, € L, for v € [k]. Note that such trees
exist because ((¢q,p)) is reachable and because M satisfies point (iii) of i-properness.

Let s = s[u <= o(s1,...,sk)]. Note that s'/u =0 (s1,...,s,) is in Ly and that s'[u < p] =
s[u < p]. By Lemma 4.3, My, (s'[ui < p;]) = My, (s[u < p])[rhs]¥s, . 5. [i], with [rhs]
as in (iii), Uy, s, = [(¢,20)  My(sy) | ¢ € Q,v € [k] — {i}], and [i] = [(¢',zi) +
(dpi) 14" € Q].

Since M is nondeleting, so is [rhs] and, by Lemma 3.10(1), so is ¥y, . Then, by
Lemma 2.1, the tree My, (s'[ui < p;]) has a subtree ((g,p)(&1,...,&)[rhs] s, .. [i] =

ey en Vo, 8] with ¢ = rhsa(q, 0, (p1, - pk)) and g, ¢, = [y, < &frhs] | n €
[n]]. Again by Lemma 2.1 it has a subtree {(r,p;)(#,,...,t,,), where, for j € [m],

t;’ = thﬁl,...,&n\Ilsh...,sk [[Z]] € Arg(r, j,pi)- (*)

(i) Let j € [m] such that y, is a subtree of ¢;. By Lemma 2.1, y,II¢ ¢ W, o [i] =
Eulrhs]Ws, s, [i] is a subtree of ¢’. Thus size(t}) > size({,[rhs]¥s,, s, [i]) which is >
size(¢,) by Lemma 2.7 and the fact that [rhs] and ¥y, _,, are productive by Lemma 3.10.
We now let &;,...,&, vary in (x): For every {, in the infinite set Arg(q,u,p) there are
s € Ty, u € V(s), and &, n € [n] — {p} such that ((g,p)(&i,...,&,) is a subtree of
My, (s[u + p]); then the size of ;Tl¢, ¢ Wy, o [i] € Arg(r,,p;) is > size(£,). Thus,
Arg(r, j,p;) is infinite.
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(i) Let j € [m], ¢ € QV, 1 > 0, and v € [k] — {i} such that t; has a subtree
(¢ z,)(t1,..., 1) for some trees ty,...,t;. Then {¢’',p,)) is reachable, by the same ar-
gument as given above equation (x) (where we showed that ((r,p;)) is reachable). By
Lemma 2.1, ¢; has the subtree My (sy)lyy < tylle, .6, Vs, [1] | n € [I]] the size of
which is > size(My(s,)). Since M satisfies points (i) and (ii) of i-properness, the set
Out(¢',py) = {My(sv) | su € Lyp,} is infinite. We now let s, vary in (x): For ev-
ery s, € Ly, the size of t;ll¢ ¢ Vs, o [i] € Arg(r,j,p;) is > size(My(s,)). Thus,
Arg(r, j,p;) is infinite.

(iti) Let s € T and u € V(s) such that M (s[u < p]) has a subtree {q,p)(&1,---,&n)
for trees ¢1,...,&, and &,[rhs] has a subtree (¢, z,)(f1,...,%;) for some ¢’ € Q. 1 >0,
v € [k] — {i}, and trees t1,...,t. It follows from Lemma 2.6 (S; = 0) that £, contains
some ((q",p), ¢" € @Q, such that rhsy/(q", o, (p1,...,pr)) contains (¢',x,). Since {(¢”,p))
is reachable (because £, is a subtree of My, (s[u « p])), (¢',p,)) is reachable by the same
argument as used above (x). Thus, Out(¢’,p,) is infinite. Let j € [m] such that y, occurs
in ¢;. Then, by Lemma 2.1, t} has a subtree My (su)[yy  ty¥s,,..s.[1] | 7 € [I]] the size
of which is > size(My (s,)). Letting s, range over Ly, in (x) this implies, analogous to
case (ii), that Arg(r, j,p;) is infinite. O

We are now ready to prove that properness (i.e., i-properness, p-properness, and produc-
tiveness) is a normal form for MTTRs.

Theorem 5.9 For every MTTR M there is (effectively) a proper MTTR prop(M) equiv-
alent to M. If M is a TR, then so is prop(M).

Proof. Let M = (Q,P,%,A,q, R,h). By Lemma 5.4 we may assume that M is pro-
ductive and i-proper. Let ¢ € Q™ and p € P. The idea of constructing prop(M) is to
delete all parameters y; of ¢ for which Arg(q, j,p) is finite, and to keep the parameters
Yjrs- -+ Yjn of ¢ for which Arg(g, j,,p) is infinite. The information on the actual parameter
tree which has to be substituted for y; is stored in the states of prop(M). More precisely,
a state of prop(M) will be of the form (g, ¢), where ¢ is a mapping which associates with
juv the new parameter y,, and with j a tree ; in the finite set Arg(q, j,p).

Let us first define an auxiliary notion. For every ¢ € Q™ n > 0, and p € P, let o, , be
the (finite) set of all mappings ¢ from [n] to Ty (pyyua UY such that there are s € Ty,
u € V(s), and &1,...,8 € Tygpyyua: My, (slu < p]) has a subtree ((q,p))(&1,---,8&n)
and Fy,(p,&1,...,&,). The predicate Fy,(p,&1,...,&,) holds if for all j € [n]: if j = 7,
for an n € [m] then ¢(j) = y,, and otherwise ¢(j) = &;, where {j1,...,jm} = {j € [n] |
Arg(q, 7,p) is infinite} and 71 < -+ < .

By the definition of Arg, ¢(j) ¢ Y implies ¢(j) € Arg(q,j,p). Note that ®,, is finite
because ¢(j) € Y, UK; with K; = Arg(q, j,p) for finite Arg(q, j,p) and K; = & otherwise.
Therefore, ®,, can be obtained effectively by checking, for the (finitely many) mappings
¢ : [n] = K, whether or not ¢ € @, (where K =Y, U, K;j can be constructed by
Lemma 5.7). This is decidable because, apart from the requirement that ¢(j,) = y, for
all n € [m] (which is decidable by Lemma 5.7), ¢ is in ®, ), iff TAT;(L) N S is nonempty,
where S = {s[u + p] | s € Tx,u € V(s)} and L consists of all trees in Tyq 1,1yua which
have a subtree (q,p)(¢1,...,&,) with & = ¢(j) for all j & ¢~ '(Y). Clearly, L is regular

34



and hence, by Lemma, 3.6, TA;[I(L) is regular. Since S is regular, so is TA;[I(L) N S, which
implies that its emptiness is decidable.

We first construct the MTT®R 7(M) by deleting, in the right-hand side of a rule (with
look-ahead (p1,...,px)), all parameters y; of (r,z;) for which Arg(r,j,p;) is finite and
replace them by the appropriate tree in Arg(r,,p;). This tree is coded in the states of
m(M). Due to the new states of (M), a parameter y;, of r with Arg(r,j,,p;) infinite
might correspond in (M) to the parameter y, of a state (r, p) with finite Arg((r, ¢), v, p;).
For this reason we have to iterate the application of 7 (as in the construction in the proof
of Lemma 5.4) until the ranks of the states do not change anymore. This results in the
desired MTTR® prop(M).

Define 7(M) = (Q',P,%, A, (qo, @), R, h) with Q' = {(¢,9)™ | qe€ Q,Ipe P: ¢ c
®yp,m = | H(Y)|}. For every (q,¢) € Q’(m), oex® ¢ge Q™ mnk >0, and
Dy P1y- .- Pk € P with p=hy(p1,...,pk), let the rule

(g, 0),0(m1,. s zp)) (Y1 ym) = ¢ (P1,-- -, Pk)

be in R’ such that if ¢ ¢ ®,, then ( is an arbitrary (“dummy”) tree in Ta(Yy,) — Y with
#y,(¢) = 1 for every j € [m], and if ¢ € @y then ¢ = repl(rhs(p)II), where p is the
(q,0,{(p1,...,pr))-rule of M, II denotes the substitution

lyj < @(j)[rhs] | j € [n]] with [rhs] = [(r,p)) < rhsar(r,o,(p1,-..,px)) [T € €],
and for every subtree ¢ € T, x,)ua(Ym) of ths(p)II the tree repl(t) is recursively defined
as follows:

e for ¢t € Y),, repl(t) = t,

o for t = 6(t1,...,t;) with 6 € AW [ >0, and ¢;,...,t € Tig,x,yua(Ym), repl(t) =

d(repl(t1), ..., repl(¢;)), and
o for t = (¢, z;)(t1,..., 1), (¢, z;) € (Q, X)D, 1 >0, and t1,....,t € T, xpyua(Ym),
repl(t) = ((¢',¢'), %) (repl(t;,), . .., repl(t;,)),

where {j1,...,j,} = {j € [I] | Arg(¢’, j,ps) is infinite}, j; < --- < j,, and for j € [I],

i f yy if g =g, foran n € [y
v = { t;[i] otherwise

with [i] = [(r,z;) < (r,p:)) | r € Q].

This ends the construction of w(M).

Well-definedness of w(M): To prove that w(M) is well defined, we have to show that
repl(rhs(p)II) is in Tigr x,yua(Ym). Since rhs(p) € Tig x,yua(Yn) and o(Ys) C Y U
Tyq,ipyyua (because ¢ € @), it follows that rhs(p)ll € Tig x,yua(Ym). To prove
that repl(rhs(p)Il) € T x,yua(Ym) we must show that, in the definition of repl, if
(q',x;)(t1,...,t;) is a subtree of rhs(p)II, then (¢',¢’) € @', i.e., there is a p’ such that
(,DI € (I)q/’p/.
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We will show that ¢’ € @ ., i.e., that there are s € Ty, v’ € V(s'), and &],...,¢ €
Tyg,ipiyyua such that (¢',pi) (&1, ... ,¢)) is a subtree of My, (s'[u’ < p;]) and Fy . (o', &1,

.+,&). Since p € @y, there are s € Ts, u € V(s), and &1, ... ,&n € Tyg gpyua such that
{q,p) (&1, .., &n) is a subtree of Mqo(s[u « p]) and F,(p,&1,...,&,). Note in particular
that ((¢,p)) is reachable. Take s’ = s[u < o(s1,...,s)] with s, € L, for all v € [k],
and take v’ = ui. The s, exist, because M is i-proper (point (iii)). By Lemma 4.3,
M, (s'[u < p;]) equals My, (s[u < p])[rhs][..][], where [..] denotes [(r,z,) < M,(s,) |
(ryzy) € (Q, Xy — {x;})], and [rhs] and [i] are as in the definition of w(M). Since
(g, P) (€1, ..., &) is a subtree of My, (s[u < p]) it follows, by Lemma 2.1 and the fact that
[.] is nondeleting by Lemma 3.10(1), that M, (s'[«' < p;]) has a subtree rhs(p)TI'[..][4],
where IT" = [y, + &,[rhs] | 1 € [n]].

Consider the two cases (i) there are t},...,t € Tig x,yua(Yn) such that (¢, z;)(,... %)
is a subtree of rhs(p) and ¢;IT =t; for all j € [I], and (ii) (¢, z;)(t1,...,%) is a subtree of
©(p)[rhs] for some p € [n].

(i) Since rhs(p) has a subtree (¢/,z;)(t},. .., 1)), it follows, by application of II'[..][¢] (and
Lemma 2.1), that My, (s'[u’ < p;]) has a subtree (¢, p;) (&}, ..., &) with & = t;II'[.][4] for
every j € [l]. Let j € [I] such that Arg(q',7,p;) is finite. Then by Lemma 5.8(ii) and (iii),
both #; and all €, [rhs] such that y,, occurs in ¢}, do not contain elements of (Q, Xy —{z:}).
Thus & = ¢;IT'[..][i] equals £:II'[¢]. By Lemma 5.8(i), ¢ does not contain any y,, € Y,
such that Arg(q, u,p) is infinite. Thus, since Fy (0, &1, .., &), I = 11[i] = ¢;[i].
By the definition of ¢’ this shows that Fjy p, (¢',&],...,§)).

(ii) There is an occurrence of y,, in rhs(p), because M is nondeleting. Since ¢(u) = ¢, by
the fact that Fy, ,(¢,&1, ..., &,) holds, this means that in rhs(p)II'[..][¢] there is a subtree
(q' pi) (&1, -, &) with & = t;[.][¢] for j € [I]. Since (¢',z;)(t1,...,%) is a subtree
of ¢,[rhs], it follows from the definition of second-order tree substitution that ¢, has a
subtree (¢",p)((1,-..,(\) and the right-hand side of the (¢”, o, (p1, ..., pg))-rule p” has a
subtree (¢',z;)(#},...,t) such that t; = ¢.[y, < (,[rhs] | v € [A]] for every j € [I]. Note
that ((¢”,p)) is reachable because it occurs in &,. Now let j € [I] such that Arg(q,7,p;)
is finite. Then, as in case (i), by Lemma 5.8(ii) and (iii) applied to p”, both #} and all
Cv[rhs] such that y, occurs in #; do not contain elements of (Q, Xy — {;}). Hence t; does
not contain elements of (Q, Xy — {z;}) and thus &; = #;[..][i] = ¢;[i]. By the definition of
¢’ this shows that Fy , (¢',&],....&).

Equivalence of w(M) and M: We now prove that w(M) realizes the same translation as
M. This follows from Claim 1 for (g, ¢) = (qo, ).

Claim 1: Let s € Ts, g € QM. n > 0, and p = h(s). For every ¢ € Dy py (M) (g, (8) =
My (s)IT', where II" = [y; <= ¢ (5)[(r,p) < My (s) | r € Q] | j € [n]].

This claim is proved by induction on the structure of s. Let the induction hypothesis be
denoted by IH1. Let s = o(sy,...,s;) with 0 € £*®) k >0, and sy,...,s, € Ts. For
i € [k] let p; = h(s;) and let m = rankg ((q, ¢)).

By Lemma 3.5, (M), ,)(0(s1,-..,5k)) = thsyar)((g,9), 0, (p1,- -, pk))[], where [] =
[(r, 2y = w(M)y(s:) | (r,z:) € (Q', Xk)]. By the definition of the right-hand sides of the
rules of 7(M) we get repl(rhs(p)II)[-], where repl, p, and IT are as in the definition of the
rules of 7(M).
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For t = rhs(p)II it follows from Claim 2 that repl(rhs(p)II)[-] = rhs(p)II[...], where
I...] = [ryzi) « My(s;) | (r,z;) € (Q,Xk)]. If we apply [...] to rhs(p)Il and use
Lemma 3.5 for M, then we get M,(s)II' which proves Claim 1.

Claim 2: Let t € Ty x,)ua(Ym) be a subtree of rhs(p)II. Then repl(t)[-] = ¢[...].

This claim is proved by induction on the structure of ¢t. The induction hypothesis is
denoted by TH2.

If t € Yy, then repl(t)[] = t[] =t =t[...]. If t = (t1,...,t) with § € AW, [ >0, and
ti,... ) € T(Q,Xk>UA (Ym)a then repl((s(tla s 7tl))[[—]] equals 6(repl(t1)[[—]]7 ce ,repl(tl)[[_]]).
By IH2 this equals 6(¢1[...],...,&[...]) =¢[...]

Ift = (qlax’i>(t17 s 7tl) with (qlaIi> € (Qan>(l)a I > 0, and ti,...,11 € T(Q,Xk.)UA(Ym)a
then repl(t) -] eauals {(q', '), 23) (repl(t;,), - ., repl(t;, D[] with {ju, -, ju} = {7 € [I] |
Arg(q', 7,p;) is infinite} and ¢’ as in the definition of repl. Applying the substitution [_]
we get

(M) g,y (si) [y < repl(t,)[] | n € [u]]-

Since ¢’ € ®y,. (as shown for the well-definedness of m(M)), we can apply IH1 to
m(M)(q )(si) and TH2 to repl(t;, []) to get

My (si)I1 [y < t5,[...0 I m € [n]]

with II" = [y; < ¢'(7)[.] | 7 € [l]] and [.] = [{(r, pi)) < M (si) | 7 € QJ.

By the definition of ¢’ we can write this as

My (si)ly; < 1011 [ 5 € 11,5 # gy for m € [plllys, < yq |0 € [plllyy < 25,11 [0 € [l

Since ¢’ € Py ., tj is in Tig (mpua for j # jy. Therefore, in ¢;[i][.] = t;[(r, z;) +
M, (s;) | r € Q] we can extend the substitution to all elements of (Q, X) to get ¢;[...].
Altogether we get

My (si)ly; < ti[--- 113 € [1],5 # Jn for n € [ullly;, < t5,1-- 1 I n € [ul]

which equals My (si){y; < t;[...] | 7 € [l]] = (¢',zi)(t1,...,%)][...]. This ends the proof
of Claim 2.

Nondeleting of 7(M): Consider the ((¢, @), o, (p1,- .., pk))-rule r of 7(M) and let ¢ 1 (YV,,) =
{Jt,---,Jm} with j1 <--- < jm. Let v € [m]. If r is a dummy rule, then #,, (rhs(r)) = 1.
Otherwise rhs(r) = repl(rhs(p)IT), where p is the (q,0, (p1,...,px))-rule of M. Since M
is nondeleting, y;, occurs in rhs(p). Since ¢ € @4, ¢(j,) = yu; this means that the
substitution IT replaces y;, by y,, and hence y, occurs in rhs(p)IT. To show that y, occurs
in repl(rhs(p)II), we prove that for ¢ € T(g x,)ua(Ym): if y, occurs in ¢, then it also occurs
in repl(t). The proof is by induction on the structure of ¢. It is obvious for ¢ € Y, and
t=0(t1,...,t;). Fort = (¢',z;)(t1,...,t1), let j € [I] such that y, occurs in t;, and let
¢’ be as in the definition of repl. By induction, y, occurs in repl(t;). Then y, occurs
also in t;[i], where [7] is as in the definition of repl. This means that ¢;[i] & Tyo (p:1yua
and since ¢' € @y ., this implies that ¢'(j) = y, for some n € [u] with j = j;, where
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(gt an) = <p'_1(YM) and ji <--- < jj,. By the definition of repl, repl(t;; ) = repl(t;) is
a subtree of repl(t) and therefore y, occurs in repl(t).

Nonerasing of w(M): Clearly, from the definition of repl, if repl(t) € Y, then ¢ € Y. Hence
repl(rhs(p)IT) € Y implies rhs(p)II € Y and so, obviously, rhs(p) € Y. Thus, since M is
nonerasing, so is m(M).

I-properness of mw(M): Since (M) has the same look-ahead automaton as M, point (iii)
of i-properness is preserved. It follows from the definition of II and repl and from i-
properness of M that no (qo, ¢) appears in the right-hand side of a rule of m(M). Using
Lemma 4.3 (and the fact that, in the definition of repl(t), ¢’ € @y ,,) it is not difficult
to see that if (((¢, ), p)) is reachable, then ¢ € ®,, and hence, by the definition of @,
{(g, p)) is reachable. Also by Lemma 4.3, if (¢, ¢) # (qo, @) then (g, ¢) appears in the right-
hand side of a rule of 7(M), and so ¢ # qo- By Claim 1, w(M)4.,)(s) = My(s)IT" with
' = [y; < ().} + Me(s) | 7 € Q| j € [n]]. Since size(M,(s)I) > size(M,(s)),
Out((q, p),p) = {My(s)II' | s € Ly} is infinite if {My(s) | s € L,} = Out(g,p) is infinite,
which holds by i-properness of M.

P-properness: By constructing 7(M) we have kept only those parameter positions j of
q, for which Arg(q,j,p) is infinite. But even if Arg(q,j,p) is infinite, there might be
a ¢ € ®,, for which Arg((q,¢),7,p) is finite. This means that 7(M) need not be p-
proper yet (see Example 5.10), and, as in the case of i-properness, we have to iterate the
application of . For the termination condition of this iteration we only need to consider
particular states, which are actually used in the derivations of 7*(M). Denote the state
(- ((q,01),92) - - -, i) of T (M) by (g, 1, .., ¢k). Thestate (q,¢1,...,pk) is p-uniform
if for each 0 <4 <k —1: @i11 € Dy, p),p We iterate the application of 7 until we
obtain the MTTR N (with set of states Q) such that

for every p € P and p-uniform state (g, @) of M' = n(N) :
rankq((g, ¢)) = rankgy (q), (%)

where @' is the set of states of M’.

Let us now show that, indeed, after a finite number of applications of 7, (x) holds. For ¢ €
@ and p € P, define the tree T}, as follows. For k > 0, the state (g, ¢1,...,px) of 78(M)
is a node of Ty, if it is p-uniform and there is a p-uniform state (¢, ¢1,...,¢k,..., @) of
7!(M) with [ > k which is of smaller rank than (g, ¢1,...,@;). There is an edge in Typ
from every node (g, ¢1,..., k) to every node (¢, ¢1,..., 9k, pr+1). Clearly, if Ty, is finite
for every ¢ € Q and p € P, then the iteration of 7 terminates: Let [ be maximal such that
(g,¢1,--.,¢1) is a leaf of T, ,, for some g € @ and p € P. Then the statement in (x) holds
for N = «!*1(M), because no p-uniform state (g, ¢1,...,¢1,¢141) is a node of T, and
hence, by the definition of the nodes of T} ,, every p-uniform state (g, ¢1,..., 911, i+2)
has the same rank as (g, ¢1,...,¢;4+1). To show the finiteness of Ty, it suffices, by Konig’s
Lemma, to show that every path p of Tj, is finite. Assume to the contrary that p is
infinite. Let u = (q,¢1,...,¢k) be a node of p. Then there is a descendant of u on the
path p, that has lower rank than w. This can be seen as follows. By the definition of the
node u, there is a p-uniform state (¢, p1,..., 9k, ..., @) of ©'(M), | > k, which has lower
rank than u. Now, for each i € {k +1,...,1} such that v = (¢, 1,..., ¥k, ..., pi—1) is on
the path p: either v' = (v, ;) = (¢, ¥1,---, Pk, ---,pi) has the same rank as v and then
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v’ is on the path p because ®,, = {v'} by the definition of ®,,,, or, v’ has a lower rank n
than v, and then, by the definition of ®, ,, each state (v, ) has rank n, in particular the
child of v that is on the path p. Since each node u of p has a descendant on p that has
a lower rank than u, there is an infinite sequence of nodes on p with strictly decreasing
ranks. This contradicts the finiteness of the rank of g.

Before we show that M’ is p-proper, we prove a claim about p-uniformity.

Claim 3: Let k > 0, let ¢ be a state of 7%(M), and let p € P.

(i) If (g, z;) appears in the right-hand side of a (¢/, 0, (p1,...,pw))-rule of 7%(M) for
some state ¢’ of 7%(M), k' > 0, i € [K'], and py,...,pp € P, then ¢ is p;-uniform.

(ii) If (g, p)) is reachable (by 7%(M)), then ¢ is p-uniform.

The proof of part (i) of Claim 3 is by induction on k. For k = 0, every state is p-
uniform for all p € P, and thus the statement holds. Now assume the statement holds for
7*(M). If (¢, ), x;) appears in the right-hand side ¢ of the ((¢', ¢'), o, (p1, . .., pp))-rule of
7(7*(M)), then, by the definition of the rules of 7(7*(M)), ¢ is of the form repl(rhs(p)II),
where p is the (¢', 0, (p1,...,pw))-rule of 7%(M). Thus, by the definition of repl and II,
(q, ;) occurs in rhs(p), which means, by induction, that ¢ is p;-uniform. In the proof of
well-definedness of 7(M) it is shown that ¢ € ®,,., and hence also (g, ¢) is p;-uniform.
This proves part (i) of the claim. To prove part (ii), we may assume that ¢ # rg, the
initial state of 7%(M); in fact, ro = (qo,@,...,@) is p-uniform for every p. If (g,p)) is

reachable (by 7¥(M)) then, by definition, it appears in 7@ ), (8[u <= p]) for some tree

s and node u of s, where 7% (M) denotes the extension of 7¥(M). Since g # ro, v must be
of the form u'j with v’ € N* and j > 1. Hence, by Lemma 4.3, (g, ;) must occur in the
right-hand side of some rule of 7% (M) with look-ahead (p1,...,p;), I > 1, and pj = p. By
part (i) of the claim this implies that ¢ is p-uniform. This concludes the proof of Claim 3.

Let us now prove (i) of p-properness for N. Let ((g,p)) be reachable (by N). By
Claim 3(ii), ¢ is p-uniform. Since ((g,p)) is reachable, the set ®,, must, by defini-
tion, contain some element . Then (q,¢) is p-uniform and it follows from (x) that
n = |p~(Y)| and thus {j € [n] | Arg(q,j,p) is infinite} = {1,...,n}. Thus (i) of p-
properness holds for N. Now consider M’. Note that, by the previous argument, if
(q,¢) is a p-uniform state of M’ then ¢ = ¢,, where q € Qs\rfl) and ¢, (j) = y; for ev-
ery j € [n]. Clearly, (i) of p-properness also holds for M’'. Formally this can be shown
by proving that Arg((q,vn),J, p) = Arg(q, j,p)[rel], where [rel] denotes the relabeling
[{d o) <+ ((d's0n),P) | ¢ € QN ") > 0]. This follows from Claim 4 (for g equal to the
initial state of N and ¢ equal to @)

Claim 4: Let s € Tx, u € V(s), and p € P, and let (g, ¢) be an h(s[u < p])-uniform state
of M'. Then

M{, ) (slu + p)) = Ny(s[u < p])[rel]-

The proof is by induction on the structure of s. Let s = o(sq,...,s;) with o € X,
k >0, and sy,...,s; € Tx. For u = ¢ we get Méqw)(s[u — p|]) = (¢, ¥),p)). Since

© = @n, where n is the rank of ¢, {((¢,%),p) = (g,p)[rel] = Nq(s[u < p])[rel]. For
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u = ju' with j > 1 and v/ € N*, sfu + p] = o(51,...,8) with §; = s;[u/ + p] and
5; = s; for i € [k] — {j}. By Lemma 3.5 and the definition of the right-hand sides of

M, M(’q’(p)(s[u + p|) = repl(rhs(p)I)[_], where p is the (q,0,(h(31),...,h(8;)))-rule of

N and [] = [{(d,¢"),2:) + My 03) | ((ds¢),2:) € (Q,Xi)]- By Claim 3(i), if
(¢, ¢"), z;) occurs in repl(rhs(p)II), then (¢, ¢’) is h(3;)-uniform and, by the argument
given above Claim 4, ¢’ = ¢, where ¢’ € QS\?,). Clearly, repl(rhs(p)II) equals rhs(p)[ ]
with [ ] = [{¢',z) — (¢, on), i) | (¢, 2:5) € (Qn, X3)™),n' > 0]. Furthermore, we can
restrict the substitution [_] to those ((¢/,¢’), z;) which occur in repl(rhs(p)II), and then
apply the induction hypothesis to 5; = s;[u < p|. If we combine the resulting substitution
with [ ] and apply Claim 1 to §; = s; for i € [k] — {j} (where IT' is the identity), then we
get ths(p) [(¢',2:) Ny (G)lxel] | (¢'s3) € (@, Xi) ocours in whs(p)] = rhs()[{g', 7:)
Ny (83)[rel] | (¢, z;) € (@n, Xk)], which equals Ny(s[u < p])[rel]. This proves Claim 4.

To show (ii) of p-properness of M', note that if ¢ € ®,,, then ((¢,p)) is reachable (by
N) and hence, by Claim 3(ii), ¢ is p-uniform; then also (g, ¢) is p-uniform, ¢ = ¢, and,
by Claim 4, (¢, ), p)) is reachable (by M'). Thus, if {(q,¢),p)) is not reachable, then
¢ & ®,,. This implies a dummy right-hand side for all ((¢,¢), o, (p1,...,pk))-rules with
he(p1,...,pr) = p and therefore #yj(M(lq,Lp)(S)) =1 for all s € L,. This proves (ii) of
p-properness and concludes the proof of properness of M’. Hence, the lemma holds for
prop(M) = M'. O

The following example illustrates the construction of a proper MTTR as given in the proof
of Theorem 5.9.

Example 5.10 Let M = (Q,{p}. %, A, qo, R, h) be the MTT with Q = {¢{”,¢®}, © =
{a(l),b(l),e(o)}, A = {0(3),7(1),a(0),b(o),e(o)}, and R consisting of the following rules
(where the only look-ahead (p) is omitted, as usual).

(90,a(z1)) — {(g,z1)(a,a) (g;a(z1))(y1,92) — o(y1,92,(q, 71)(a,a))
(90,b(z1)) — (g, 71)(b,D) (g, b(z1))(y1,92) — o(y1,v2,(q,71)(b,7(y2)))
(qo€) — e (g,e)(y1,92) - o(y1,y2,e)

Note that M is productive and i-proper. Let us now construct the MTT (M) as defined
in the proof of Theorem 5.9. Clearly, Arg(q,1,p) = {a,b} and Arg(q,2,p) = {y"(c) |
n > 0,c € {a,b}}. Thus, ®,, consists of the two mappings ¢, and ¢, with ¢,(1) =
a, ©o(2) = y1, wp(l) = b, and ¢,(2) = y1. Therefore the states of My = w(M) are
(90,2), (¢, 0a) ", (g, 05)(V), abbreviated by qo, qa, qs, respectively. For every ¢ € {a,b},
M has the following rules.

(90,a(71)) — {(qa,71)(a) (ge,a(z))(y1) — ole,y1,(qa, 71)(a))
(90,0(z1)) — (av,71)(D) (@e, b(x1))(y1) —  ale,yr, (av 21)(v(y1)))
(g0, €) — e (e, €)(y1) - o(c,y1,e)

Now for My, Arg(qa,1,p) = {a} and Arg(qy,1,p) = {¥"(c) | n > 0,¢ € {a,b}}. Since
{(qa,p)) is reachable this means that M; is not p-proper.

Following the proof of Theorem 5.9, we have to construct the MTT N = 7 (M), because
rankg:((¢; pa)) < rankg(q). Clearly, @, = {pg} with ¢4(1) = a, and @y, = {p1}
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with ¢;(1) = y;. Thus, the states of N are (g, @), (¢a, ©,)?, (g5, 1)), abbreviated
by qo, qa, qp, respectively. The rules of N are as follows.

q0,a(71)) (qa> 1)
q0, b(1)) Qs 1) (D)
QO76> €

o
q

(1)

<Qaa$1

)
b » Y1, <Qaa 1)
)

Q

(

(

(
(qas )
(av, )(y1)
( )

(

(

(

A

(a,
a(z1) o( )
Ga> (1) o(a,a, (g, z1)(v(a)))
b, b(z1))(y1) a(b,y1, (gs, 21) (v(y1)))
Ga, €) o(a,a,e)
Qb76>( ) U(b Yi,€ )

The MTT N is p-proper because Arg(gy, 1,p) = {¥"(c) | » > 0,c € {a,b}} (and all
elements of (Qn,{p})) are reachable). It is easy to see that N is equivalent to M. O

6 From Linear Size Increase to Finite Copying

In this section we prove that if a proper MTT® M is of linear size increase (Isi), then it
is finite copying (fc, i.e., both fci and fcp, see Section 4.1). The proof is split up into the
following three stages, using finite nested copying (fnest, see Section 4.2) as an intermediate
notion:

(I) If M is Isi, then it is fnest.
(IT) If M is Isi and fnest, then it is fcp.

(TIT) TIf M is Isi, fnest, and fcp, then it is fci.

We first prove (II) and then (III), and finally (I). The reason for this order is that the
proof of (I) will use results that are proved in (III). The idea in each stage is roughly as
follows: First, it is proved that if M’s copying is not bounded (i.e., M is not fcp, not fci,
and not fnest, for (II), (III), and (I), respectively), then we can find an input tree in which
some part s can be pumped, i.e., repeated; each repetition of s will produce a copy of a
certain parameter (for (II)) or of a certain state (for (III) and (I)). Second, it is shown
that this repetition gives a size increase that is not linearly bounded (by any ¢); in this
part the properness of M is used: it is shown that for any ¢ we can pick a sufficiently large
output tree t, a copy of which is generated with each repetition of s, and a sufficiently
large 7 such that after ¢ repetitions of s the size of the corresponding output tree is larger
than ¢ times the size of the input tree.

6.1 From Isi and fnest to fcp (II)

We now present (in Lemma 6.2) a pumping lemma for non-fcp MTTE s, which allows
us to prove (in Theorem 6.3) that if a proper MTTE __ is of linear size increase, then it is
finite copying in the parameters.

fnest
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First, for an MTTR M, consider the number k of occurrences of y, in M, (t[u + p]) with
p = h(t/u). Clearly, if M, (t[u < p]) has a subtree (r1,p)(¢1,...,&n,) such that y, occurs
in &, for some v € [mq], then, assuming that M is nondeleting, the number of y,’s in
M,.(t) must be at least £ — 1 plus the number of y,,’s in M, (t/u). This is proved in the
next lemma, in such a way that the idea can be iterated.

Lemma 6.1 Let M = (Q,P,%, A, qo, R, h) be a nondeleting MTTR. For ry € QUm0),
r| € Q(ml), 1y € [mo], V] € [ml], to € TE, u; € V(to), and k € N,

let P(ro,vo,to, 71,1, u1, k) be the following statement, with p; denoting h(ty/u1):

#y,o (Mg (tolur <= p1])) > k and My, (tolur < pi1]) has a subtree (r1, pi)(1,- .+ ,ém,)
for certain &1, ..., &n, such that #,, (§,) > 1.

Let 7o € QM) 1y € [ma], ua € V(to/u1), and I € N. If P(rg,vp,t0,71,1,u1,k) and
P(ri,vi,to/ur,ma,v2,uz,l), then P(ro,vo, to, r2, v2, urug, k +1—1).

Proof. Note that to/uius = (to/u1)/us. Let t1 = to/ur, p1 = h(t1) and po =
h(to/urug) = h(t1/uz). By Lemma 4.2, M, (toluius < po]) equals t[...] with ¢ =
M,y (to[ur < p1]) and [...] = [{(¢',p1)) < My (ti[uz < p2]) | ¢ € Q]. We use Lemma 2.6
to compute the number of occurrences of y,,’s in this tree. By the first assumption, ¢ has

at least k leaves u € Vy, (?), and it has a subtree (r1,p1))(&1,. .. ,&m,) with #,, (&) > 1.

Thus, ¢ has a leaf u € V,, () such that ]_[Ft[E',;']] > #ty,, (M (t1[ug < po])), which is > 1
by the second assumption. Hence, S; + Sy of Lemma 2.6 equals S1 > k—1+1. We

have used the fact that #,, (My (t1{uz < p2])) > 1 for all v and ¢', which follows from
Lemma 3.10(1) because M is nondeleting (and hence so is M).

The substitution [...] is nondeleting, because M is nondeleting. Thus, since ¢ has a
subtree ((r1,p1)(&1,...,&m,), it follows from Lemma 2.1 that M, (to[uius < po]) = t[...]

~

has a subtree (r1,p1) (&1, &my)[-- -] = My, (t1[uz < p2])[. .. ], where [...] denotes [y; <
&l-- Il € [ma]l-

By the second assumption, M, (t[us < ps]) has a subtree (ra,pa)(Ci,...,Cm,) With
#y,, (Cv,) > 1. Thus we obtain a subtree ((ro, p2))(C1[.--],- -+ Cms,[---]) and (y,][...] has a
subtree &y, [...] which contains y,, (because #,, (£,) > 1 and M is nondeleting). O

Lemma 6.2 Let M = (Q,P,%, A, qo, R, h) be a nondeleting MTTR . with the property:

fnes

if (¢,p) € (Q,P)™ is not reachable, then #y; (My(s)) < 1for all j € [m] and s € L,
(property (ii) of Definition 5.6 of p-properness).

If M is not fcp, then there are m > 1, ¢ € QU™, j € [m], s € T, u € V(s), and p € P
such that

(1) #y,; (My(su - p])) > 2,
(2) M,(s[u + p]) has a subtree (g, p))(&1,- .. ,&n) with #y,(&5) > 1, and

(3) p = h(s) = h(s/u).
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Proof.  We first define an auxiliary notion. For ¢ € Ty, u an ancestor of v € V(t),
g€ QM, peml ¢ eQm, yu e [m] define (q,u) —up (¢s1) if, for &guy =
M,(t/ulv’ + p,]) with v = uo’ and p, = h(t/v): #y, (Equp) > 2 and &gu, has a
subtree (¢',pu))(&1,...,&m) such that #, () > 1. Note that (¢,p) —up (¢',p') iff
P(q,p,t/u, ¢, 1’ v',2), where P is the statement of Lemma 6.1. The relation — is tran-
sitive, i.e., for a descendant w of v,

if (¢, ) =uw (¢ 1) and (¢', 1) =ow (¢", 1) then (g, ) —uw (4", 1").

This follows from Lemma 6.1, because (¢, ) —u (¢', ') and (¢, ') —vw (¢", ") imply
that P(q, u, t/u,q", p",v'w',3) with w' € N* such that w = vw', and thus (g, ) —uw
(" ).

Assume that M is not fcp. Then, in terms of the —-notation, the lemma says that there
arem >1,qge Q™ je[m],seTs,ue V(s), and p € P such that

(1,2) (g,4) —eu (g,5) and
(3)  p=h(s) =h(s/u).
Since M is not fcp, for every n € N, there are ¢ € Q™) j € [m], and t € Ty such that
#y;(My(t)) > n. The following claim shows that if #,. (M,(t/u)) is ‘large’ for a node u
of ¢, then there must be a descendant v of u, a state r, and a parameter y,, of r such that
(¢,7) —=up (r,v) and #,, (M, (t/v)) is still ‘large’. The application of this claim can be
iterated to show the existence of a sequence of descendants v and a sequence of steps —,

which will eventually lead to a repetition of a state-parameter pair that allows us to define
s and u such that (1)—(3) holds.

Let B be a nesting bound for M. Let n be the maximal height of the right-hand side of
a rule of M, i.e., n = max{height(rhs(p)) | p € R}, and let x > 1 be an upper bound for
the number of occurrences of one particular parameter in the right-hand side of a rule of
M, i.e., #,(rhs(p)) < & for every y € Y and p € R.

Claim: For every ¢ > 1,t € Ts, u € V(t), ¢ € QU and p € [m], if F#y, (My(t/u)) >
¢B. kB then there exist a descendant v of u, a state 7 € Q) and a v € [m'] such that
(¢, 1) —up (ryv) and #y, (Mr(t/v)) > c.

Proof of the claim: Let w be a longest descendant of u such that #,, ({4,u,») = 1. Clearly,
such a w exists, because #,, ({4,u,u) = 1. Then there must be a child v of w that satisfies
the requirements of the claim. Assume to the contrary, that if v is a child of w, then it does

not satisfy the requirements, i.e., for every r € Q™) and v € [m/] with (g, p) = (r,v),
#y, (M, (t/v)) < c. This will lead to a contradiction.

By Lemmas 4.2 (applied to t/u and w) and 3.5,

M,(t/u) = &g uwlrhs][.. ],

where [rhs] = [((r, pw) < rhsps(r,0, (p1,...,pr)) | 7 € Q] with o = t[w] € BH®), k > 0,
Pw = h(t/w), pi = h(t/wi) for i € [k], and [...] = [(r, z;) < M, (t/wi) | (r,z;) € (Q, Xi)]-
Now, #y, ((quwlrhs]) < xB. This is true because by Lemma 2.6, #,, (¢4u,w[rhs]) =

S| = Ezevyu(fq vy 11 Fg[[;}f]}uz, which equals [] Fg;islz for the unique z with V, (§4,uw) =

{z}. Since #,, (My(t/u)) > 1, (g, h(t/u))) is reachable by the assumption of the lemma.
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Thus, by Lemma 4.13, there are at most B occurrences of elements of (Q,{py})) on
the label path Ipath(&;,,,w,2). Hence, ]_[Fg};s]}u ;

#y, (thsp(r, 0, (p1,...,pr))) < & for r € Q and v € [rankg(r)], and therefore ] Fg[[;}ls]}u , <
B S Uy bl

K.

is the product of at most B numbers

Since every label path of &, is of the form wy{(qi,pw)wi - (@, pw))w; with [ < B,
q1,---,q € Q and wy, ..., w; € A* it follows from Lemma 2.3(i) that every label path 7 in
&q,u,w[rhs] is of the form woviw, - - - vjw;, where each v; is a label path in rhsa/(g;, 0, (p1, . . .,
pk))- By the definition of , the length of v; is < n. Thus, # x,)(7) = Zie[l] #0,x,) (vi) <
Bn.

Let ¢ = &yuw[rhs]. By Lemma 2.6, #, (C[...]) = ZZEVyM(C)HF[[";]]. This is < &5 -
HFC[[ZH, where z € V,, (() such that ]_[FC[[Z]] is maximal, because #,,(¢) < xP. Since

#(0,x,)(m) < Bn for T = Ipath((, 2), HFg[[,z]] is the product of at most Bn numbers
#y, (M, (t/wi)). Let us now show that each such number is < ¢. We need to show that
(¢, 1) —uwi (r,v). By the definition of w, #,, (quwi) # 1. Since M is nondeleting it
follows from Lemma 3.10(1) that #,, (4,uwi) > 1, and thus #, (£4u,wi) > 2. Since (r, z;)
occurs in ¢ at some node 2’ with z = 2'v2”, { has a subtree (r,z;)((i,..., () for some
C1y- 5 G € Ty x,)ua (Ym), and y, occurs in (. By Lemma 4.3, &0 = ([.-][i], with
[..] and [¢] as in that lemma. It follows from Lemma 3.10(1) that [..][¢] is nondeleting.
Thus, by Lemma 2.1, &g w: has a subtree (r, p; ) (Ci[.][4], - - ., G [--][¢]) and y, occurs in
¢u[.-1[]. This proves that (g, ) —y,wi (7, ) and thus, by assumption, #,, (M, (t/wi)) < c.
We get #,, (Mq(t/u)) < ¢P7- kP which is a contradiction and ends the proof of the claim.

Now, let ¢cg = 1 and ¢; = cﬁ"lﬁB for 4 > 1. Since M is not fcp, for every n > 1 there

exist 7o € Q™). vy € [mg], and t € Tx such that #y,, (Mro(t)) > cn. Let vy =e. We
apply the claim for ¢ = 0,1,...,n — 1 to v = v;, ¢ = r;, and p = v; to obtain that
there exist a descendant v;y; of v;, a state rj;1 € Q(mi“), and v;11 € [m;41] such that
(ri, i) =viwigy (i, vigr) and #y, (My, (8/0i41)) > ey

Take n = |Q|-m - |P| where ™ is the maximal rank of a state of M. Then there are indices
0 <i<i <mnsuchthat ¢ =1 =ry, j = v;i = vy, and p = h(t/v;) = h(t/vy). Then
(¢,5) —v;wy (g,7) by the transitivity of —. Let s = t/v; and v;u = vy. Clearly (3) holds.
Moreover, in s, (¢,7) —¢u (¢,7) which means that (1) and (2) hold. O

We now prove that if a proper MTTEleSt M is of linear size increase, then it is finite copying
in the parameters, i.e., we prove step (II). The idea is to assume that M is not fcp, and
then to “pump” the tree s[u < p| of Lemma 6.2 in order to show that this implies that
M is not 1si. We use the following notation to pump a tree. For s € Ts,, u € V(s), p € P,
and s’ € Ts(P), let s[u + p] e s' denote s[u + s']. Let (s[u < p])° = p, and for n € N let
(s[u < p])™*! = (s[u < p)) » (s[u « p])". Thus, e.g,

(sfup))' = slu<plep=sfupl,
Es[u %p];Z = Es[u — pl|) ® (s[u « p]) = s[u < s[u « p|], and

sfu <+ p))> = (s[u  p]) e s[u + sfu « p|] = s[u <+ s[u <+ s[u < p]]].

We will only pump the tree s[u < p], for a given MTTR, if h(s[u < p]) = p. Note that
this condition is satisfied in Lemma 6.2 by point (3).
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Theorem 6.3 Let M be a proper MTTEleSt. If M is lIsi, then it is fcp.

Proof. Let M = (Q,%,A,qo, R, P,h) be lsi, i.e., there is a ¢ € N such that for every
input tree ¢,

size(Tar(t)) < ¢ - size(t). (%)

Assume now that M is not fcp. We will derive a contradiction by constructing an input
tree ¢ such that size(ras(t)) > ¢ - size(t). Let ¢ € QU™ , m > 1, j € [m], s € Tx, p = h(s),
and u € V(s) be such that (1) - (3) of Lemma 6.2 hold. Note that since M is proper it
satisfies the conditions of Lemma 6.2.

The idea of constructing a ¢ such that (x) does not hold is as follows. Let sy € Tx, and
ug € V(sp) such that

M‘IO (SO[U’O A p]) has a subtree <<Q7p>> (517 cee 7§m) (T)
for some trees &1,...,&,. Consider input trees ¢; obtained by ¢ times pumping the tree

slu < p] in the tree so[ug < s]. Then the size of the trees t; grows at most linearly with
constant size(s[u < p]). In the output tree 7p/(¢;) there are at least i occurrences of the
subtree &;[...] for some second-order tree substitution [...]. Hence, the size of the trees
T (ti) grows at least linearly with constant size(¢;). Thus, if we choose sg and ug in such
a way that size(¢;) is larger than the product of ¢ and size(s[u < p]), then size(ras(t;))
grows faster than c - size(¢;), which implies that we can find an 4 such that () does not
hold for ¢t = ;.

Recall Definition 5.6 of p-properness. In order to choose sg and ug appropriately we need
that the set Arg(q,j,p) is infinite, i.e., that it contains arbitrarily large trees. This is
guaranteed by point (i) of Definition 5.6, if (g, p)) is reachable. The latter holds for the
following reason. Since M is nondeleting, by Lemma 3.10(1), #,, (M, (s/u)) > 1 for every
r e Q) and v € [m/]. By Lemmas 4.2 and 2.6 and the fact that #yj(Mq(s[u —pl)) >2
by (1), this implies that #,, (M,(s)) > 2. Thus, {(¢,p)) is reachable by point (ii) of
Definition 5.6.

We now show the effect of pumping the tree s[u <— p] in the input tree s = s[u < p| e s/u.
For i > 0 let t; = (s[u < p])" ® s/u. Then #, (My(})) > i. Using the fact that M is
nondeleting this follows (as above, by Lemmas 4.2 and 2.6) from #,, (M, (t;[u’ < p])) > i
which is a consequence of the next claim and the definition of P (cf. Lemma 6.1).

Claim: For i > 0, P(q,j,t:, q,5,u’,i +1).

The proof of this claim is by induction on i. For i = 0, P(q,7,t,q,7,u},i + 1) be-
canse € = My(s/uls  p)) = (@.0)(5nr- - ym) and thus #, (€) > 1 and £ has a
subtree (¢, p))(&1, ..., &m) With #,,(¢;) = #,;(y;) = 1. For i +1 > 0, by induction,
P(g,4,t;,q,4,u’,i + 1). Clearly, by (3), h(ti;,/u’) = h(s) = p = h(s/u) = h(t;/u’), and
tigq[u’ < p] = ti[u’ < p]. Thus, P(q,.j,tg-ﬂ, q,j,u’,i+1). By (1) and (2), P(q, j, 8, ¢ j, u, 2)
which is equivalent to P(q, 5, t; . /u’, q,j,u,2) because t; ,/u* = s. By Lemma 6.1 this
means that P(q, 7, t;H, q,j,u'u,i + 2), which concludes the proof of the claim.

Now let t; = so[ug < t;] where sg € Tx, and ug € V' (so) satisfy (). Thus, ¢; is the result of
pumping the tree s[u < p] in the input tree so[ug < s]. Since #,.(M,(t;) > i, we obtain
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size(Tar (t;)) > @ - size(§;) as follows. By Lemma 4.2, ma/(¢;) = Mqo(so[uo < p])[.-.], where
[...]1 = [{r,p) + M,(t)) | r € Q]. By Lemma 2.1, Mqo(so[uo < p])[...] has a subtree
&= (gp) (&, &)l ] = My(t)yy < &[...] | v € [m]]. By Lemma 2.4 (summing
for all 6 € A), size(§) = #a(8) = #a(Mg(t) + X em) #u (M) - #a(&-]) >
D= H#y, (My(t7) - #aE--]) = #y,(My(t])) - size(&5]--.]). Since M is productive,
Lemma 2.7 and Lemma 3.10 imply that size({;[...]) > size(&;). Since #,, (M,(t})) > i,
this implies that size(ras(t;)) > @ - size(&;).

Since Arg(q, j,p) is infinite, we can choose sy and ug such that (1) and
size(§;) > c- ¢,

where ¢; = size(s[u < p]) — 1. Let i = c(co + ¢2) for ¢g = size(sp[ug < p]) — 1 and
¢y = size(s/u). Since size(t;) = cp+ici+co this means that size(ras(¢;)) > c-size(t;) because
size(Tar(t;)) > i -size(€;) > i+ (c-c1 +1) = icer + c(co + ¢2) = c(co +ic1 + ¢2) = c - size(t;).
This contradicts (x) and concludes the proof. O

6.2 From lsi, fnest, and fcp to fei (III)

R
fnest,fcp

apply it in Lemma 6.6 to show that if a MTTElest’fCp is of linear size increase, then it is

Here we present a pumping lemma for MTT s that are not fci (Lemma 6.5) and

fci. We first define, in general, what is required of an MTT® in order to get a repetition
of states by pumping a part of an input tree; this is called input pumpable. It means that
there is a state ¢; that is reachable, i.e., appears in Mqo(so[uo + p]) for some input tree
so and node ug of so (with p = h(sg/ug)), and going from node uy to node upu; in sg, ¢1
will generate a copy of itself and of a state go; furthermore, the state go generates a copy
of itself when going from uy to upu;.

Definition 6.4 (input pumpable)

An MTTR M = (Q,P, %, A, qo, R, h) is input pumpable, if there are q1,q2 € Q, so € Tk,
upg € V(so), u1 € V(sp/up), and p € P such that the following four conditions hold.

(1) {q1,p)) occurs in Mqo(so[uo «—p]),
(2) {a1,p) and {ga,p)) occur at distinct nodes of My, (so/uo[u1 < pl),
(3) (g2, p)) occurs in My, (so/ug[u; < p]), and

(4) p = h(so/uo) = h(so/uour)- O

The following pumping lemma can be viewed as a generalization of Lemma 4.2 of [AU71]
from top-down tree transducers to macro tree transducers.

Lemma 6.5 Let M be a nondeleting MTT&QSt’pr. If M is not fci, then it is input

pumpable.
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Proof. Let M = (Q,P,%,A,qo,R,h). We first define some auxiliary notions. Let
t € Ts and u,v € V(t) such that v is an ancestor of v, i.e., v = uv' for some v’ € N*,
and let p, = h(t/v). For q € Q, if n = #«Q,{pv}»(Mq(t/u[v’ < py])), then we say that
q contributes n states at u to v. If n > 1, then we say that ¢ contributes at u to v. For
¢,q € Q we write ¢ =, ¢ if (¢, py)) occurs in Mq(t/u[v’ — pyl]). For r1,7m5 € Q we write
q —uw 71,72 1if {11,y ) and (2, py)) occur at distinct nodes of M, (t/uv’ + p,]). Observe
the following easy properties:

(P0) g =y, ¢ iff ¢ = ¢'; ¢ contributes one state at v to v.
(P1) qo =, q iff ¢ occurs in stspz(t,v); go contributes |stsa (¢, v)| states at € to v.

(P2) ¢ contributes at u to v iff there is a ¢’ € @ such that ¢ —,, ¢'.
Let w be a node of ¢ that is a descendant of v and an ancestor of v.

(P3) If ¢ >y ¢" and ¢" =y ¢/, then ¢ —,,, ¢'.

(P4) If ¢ =y ¢, then there is a ¢" € Q such that ¢ =4, ¢" and ¢" —,, ¢'.

Note that P3 and P4 can be proved using Lemma 4.14: Let w’,v"” € N* such that w = uw’
and v = wv” (and so v of above equals w'v"), and let p,, = h(t/w). For P3, the number

4 1y (Mg (0’ < pu])) i > 1 because q >y gy and # gy (Mo (tul”  p,]))
is > 1 because ¢" —,, ¢'; hence the product of these two numbers is > 1 and so the sum
S of Lemma 4.14 is > 1. Thus, by part (i) of that lemma, #«q/,pv»(Mq(t/u[v' —py])) > 1,
ie., ¢ =yup ¢'. For P4, ¢ =, , ¢ implies that the sum in (x) of the proof of Lemma 4.14 is
> 1 and thus there is an occurrence of some (¢”,p,) € (Q, {pw}) in My(s/u[w' + py])
w1th #uo ) y( Aqu(t/w[v” < py])) > 1, i.e., there is a ¢" € @ such that ¢ —, ¢” and
q" —ww q.

(P5) ¢ contributes > 2 states at u to v iff there are v,y € @ such that g =, r1,r2.

(P6) Let r},r, € Q and w as above. If ¢ —,, 71,72 and r; —,, 7, for i € [2], then
q —up T T

Let us prove property P6. If 7} # rf, then by P3, ¢ —,,, r] and ¢ =y, 75, which means that
q —up 71,75 Now assume that r{ = ry. By Lemma 4.14(i), # v 5,y (Mq(t/ulv" < py]))
is greater than or equal to

Y # o) M/ wl" = o)) - H e py (M (t/ u[w = pu))), (%)
reQ

where p,,, w', and v" are as in the proof of P3. We distinguish the following two cases:
(i) r1 # ro: For r =ry and r = o, #«r,pw»(Mq(t/u[w’ — pwl])) > 1, because g —y, 71, 2.

Thus, the sum in (*) Is > #((r’l,pv»(Mf‘l (t/w[v” A pv])) + #((r’l,pv»(Mrz (t/w[v” A pv]))
which is > 2, because r; —,, r; for i € [2].

(ii) r1 = ro: For r = rq, #«r,pw»(Mq(t/u[w’ — pwl)) > 2, because ¢ —>y, 4 r1,71. Thus, the
s i (4) i8> (5, (Vo (/{0 & py]) -2 which is > 2, becase 1 71
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In terms of the —-notation the four conditions of input pumpability (cf. Definition 6.4)
say that there are states q; and g3, a tree sg € T, and nodes ug and ugu; of sg such that

1) qo —reuo 41,

2 q1 _>u0,u0u1 q1,492,

(1)
(2)
(3) 42 =upuous g2, and
(4)

4 h(So/Ug) = h(SO/U()ul).

Since M is not fci, arbitrary long state sequences can be generated. Thus, for every m > 1
there are ¢t € T, and v € V(t) such that [stsy/(¢,v)| > m, which, by P1, means that ¢
contributes more than m states at € to v. In the following Claim 1 we will show that if a
state g contributes ‘many’ states at u to v, then there must be an intermediate node w (a
descendant of u and ancestor of v) such that ¢ contributes at least two states at u to w
that contribute at w to v, and at least one of these states still contributes ‘many’ states at
w to v. The application of this claim can be iterated to show the existence of a sequence
of intermediate nodes w, which will eventually lead to an appropriate repetition of states
(and look-ahead states) that allows us to define sy and nodes ug, ugu; for which (1) — (4)
hold.

Let x > 1 be an upper bound for the number of occurrences of elements of (@, {z;}) for
an ¢ > 1 in the right-hand side of any rule of R, i.e., K > # g 14,})(ths(p)) for every p € R
and ¢ > 1. Let n be the maximal height of the right-hand side of any rule in R, i.e.,
n = max{height(rhs(p)) | p € R}. Let N > 1 be a parameter copying bound for M and
let B > 1 be a nesting bound for M.

Claim 1: Let {(q,p)) € (Q, P)) be reachable, t € Ty, and u,v € V(t) such that t/u € L,
and wu is an ancestor of v. Let ¢ > 1. If ¢ contributes more than (kN25+7) . ¢ states at
u to v, then there is a proper descendant w of v which is an ancestor of v and there are
states r, 7’ € @) such that

(a) q —uw T ,r/,
(b) r contributes more than ¢ states at w to v, and

(c) ' contributes at w to v.

Proof of Claim 1: Let w be the first (shortest) descendant of v and ancestor of v such that
there are ri,ro € QQ with ¢ =4 71,72 and r{,m2 contribute at w to v. Clearly such a w
exists, because ¢ contributes > 2 states at u to v, and thus, by P5, there are r1,r9 € @
such that ¢ —,, 71,72, and, by PO, r;,72 contribute at v to v. By PO, ¢ contributes
exactly one state at u to u and therefore w # u. It remains to show that there is an r € Q
such that ¢ =, 7 and r contributes more than ¢ states at w to v; then 7’ is chosen to be
one of the ri,r such that (a) holds.

In (sub)Claim 2 below we will show that ¢ contributes at most x - NB¥7 states r at u to
w that contribute at w to v. We now show that the number of states that ¢ contributes
at u to v is at most NP times the sum of the contributions of the states r at w to v, and
hence that at least one of these » must contribute > ¢ states.
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Let w',v',v" € N* such that w = ww' and v = wv' = wv”. Let p, = h(t/w) and
py = h(t/v). By assumption, q contributes > (kN2B+7).c states at u to v, i.e., (kN2B+7).c
is smaller than #q 15,1y (M, (t/uv' + p,])) which, by Lemma, 4.14(ii) (using the fact that
(g, h(t/u))) is reachable, and summing over all (¢', p,)) in (Q,{py})), is

< NPT #H 0oy M (E/wl” < o)) - #rpuy (Mg (E/u[w” < py))).
reqQ

If #«Q,{pv}»(Mr(t/w[v” < py])) # 0, then r contributes at w to v. Thus, we can re-
strict the above sum to states in Q,, = {r € Q | r contributes at w to v}. Now let
r € Quyp be such that ¢ —,, 7 (ie., #«r,pw»(Mq(t/u[w’ < pw])) > 1) and the num-
ber of states it contributes at w to v is maximal, i.e., for all ' # r with ¢ =y 7',
#«Q,{pu}»(MT' (t/w[v” — pv])) < #«Q,{pu}»(MT (t/w[v” — pv])). Then the above number

1S
< NP 00 oy M (/00" = po])) - #(Qun ipury Mo (t/ult’  py)))

which, by Claim 2, is < NP . #«Q’{pv}»(Mr(t/w[v” — py])) - (kNBH1). Thus we get
c < #((Q,{pv}»(Mr (t/w[v" < py])), i.e., r contributes more than ¢ states at w to v, which
concludes the proof of Claim 1.

Claim 2: # (0., {po}y (Mg (t/ulw' < py])) < k- NB.

Proof of Claim 2: Since w # u it follows that w’ # ¢, i.e., there are 1 > 1 and w’ € N* such
that w' = w'i. Let w = ww', i.e., w is the 4-th child of w. In the remainder of this proof
we will always write wi in place of w and w'i in place of w', in particular, p,; = p,, and

Quip = Quw- Let p, = h(t/w). Using the fact that (g, h(¢/w))) is reachable, we can apply
Lemma 4.14(ii) to ¢ and u,w,wi € V (¢), summing over all ((¢',pwi)) in (Quiv, {Pwil)), to

get that # o, , (puit) (Mg(t/ulw'i < pl)) is

SNZ S #Quimdpoity M (£ Wi puil)) - # (rpuy (Mo (H/ulw’ < pu))).
reqQ

If #«Qwi,vy{pwi}»(Mr(t/w[i < Pwi])) # 0, then there is an occurrence of some (1, p,;)) in
Mr(t/w[i — Duwil), 1.6, 7 =i 7', and 7' contributes at wi to v, i.e., ' =y, r” for some
r" € Q. Thus, by P3, r —,, ", which means by P2 that r contributes at w to v. By
the definition of the node wi there is at most one occurrence of a (¢, pn)) € (Q,{pwu})
in Mq(t/u[w’ + pw]) such that ¢’ contributes at w to v, and since ¢ contributes at u to
v, by P4 there is at least one such occurrence. Hence, in the above sum there is only one
non-zero product, namely for r = ¢/, and #«q/’{pw}»(Mq(t/u[w’ —py])) = 1. We get

NP (o tpoity My (t/wli < pui])) < NP - 40 4poipy My (Hwli < pui)).

By Lemma 4.3 with s = t/w and u = ¢, and since Mq:(t/w[e — pu]) = (d',pn), the
tree My (t/wli + pui)) equals thsa(q', o, (p1, ..., pp))[-][i], where [.] = [(',z;) «
My (t/wj) [ r' € Q,j € [k] = {i}] and [i] = [{r', 25} < (r',pui)) | ' € Q] with tlw] =0 €
2®), k > 1, and p; = h(t/wj) for each j € [k]. Thus, N5 - # o 0, 1y (Mg (t/w]i < pui]))
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equals NB . #0,{poity (thsar(d's 0, (p1, - - -, pi))[-][7]), which, avoiding the relabeling [],
can be written as

NB : #(Q,{IZD (rhSM(qla a, (pla v 7pk>)[[<,r,7 x]) « MT" (t/w]) | r! € Qa] 7é 7’]])
The application of Lemma 2.6 and the fact that the trees M,/ (t/wj) do not contain ele-

G2

ments of (Q, {z;}) gives the number NP . Zﬁev(Q ey (©) IT FI1 where ¢ = rhsp (¢, o, (p1,

.., Pk)). Since the height of ¢ is at most 7, HFC[ﬂﬂ < N7, and thus the above number is

< NBH1 Vg (21 (Q)] which is < k- NBF by the definition of . This ends the proof of
Claim 2.

Let v = kN2B+1. Since M is not fci, for every n > 1 there are t,, € Ts, and v, € V (t,)
such that [stsps(tn,vn)| > ™. Let 1o = go and wy = e. We now apply Claim 1 for
i=0,....,n—1toq=r; p=nh(ty/w), t =ty, v =w;, v =0vyp,and c=~"""1. Fori=0
this is possible because ((qo, h(ty))) is reachable, and by P1, gg contributes more than "
states at € to v,. We obtain that there exists a proper descendant w;; of w; and states
7°i+1a7”2+1 such that 7, —y; w4, ri+1,r;+1, the state ;11 contributes more than *y"*i*2
states at w;y1 to vy, and r;H contributes at w; 1 to v,. Note that since qo —¢ w,,, Tit1
and qo —¢w;y, Ty by P3, both riyy and 7, | occur in stsas(tn,wit1) by P1 (and thus,
{(rit1, h(tn/wiy1))) is reachable). For an ancestor w of v, let csts(w) denote stsys(t,, w)
restricted to the states ¢ which contribute at w to vy, (i.e., all states that do not contribute
to vy, are erased from stsps(t,,w)). Hence, r occurs in csts(w) iff go —cu ¥ —ww ¢ for
some state ¢. In particular, r;41 and rj,; occur in csts(w;41). Figure 2 shows the nodes w;
and the corresponding sequences csts(w;) with the states r;, r}; the arrows mean —,,

Wig1®
wo 290 = csts(e)
= csts(wn)
= csts(wa)
n—1'"" =csts(wn—1)
= csts(wn)

= stsa (tn, vn)

Figure 2: the tree %, with contributing states

Now take n = |Q|-|P|- 2|9l and let t,, v, w;, r;, and ! be as above for 0 < 4 < n. Clearly
this means that there are indices 0 <7 < 7 < m such that

e T, =Ty,

o p = h(t,/w;) = h(t,/w;), and
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o {r e @Q|roccurs in csts(w;)} = {r € Q | r occurs in csts(w;)},

because there are exactly |Q| - |P| - 2|9 different possibilities (r;,p, S), for r; € Q, p € P,
and § C Q. Let ¢ = r; and let ¢5 € Q such that r} ;| —u,,, w; ¢ and ¢ occurs in
csts(wj). Such a ¢ exists by the fact that r; 41 contributes at w;;1 to vy, using property
P4 (and also P2 and P3). Since 711 —vuw,,,,w; i, We can apply P6 to get q; —w, w; 41, d5-
Thus, conditions (1), (2), and (4) of input pumpability hold for ¢1 = ¢}, ¢2 = ¢4, so = tn,
up = wj, and upu; = w;. Clearly, if ¢] = ¢4, then also (3) holds, which proves the lemma
for that case. Thus, from now on we assume that ¢} # ¢,. To realize (3), we will pump
the tree ¢, /w;[w} < p] in ¢,, where w; = w;w}.

For every r € @ that occurs in csts(w;), there is an v’ € Q with r —,, ,,; 7' and r’ occurs
in csts(w;), by P4. Since the same states appear in csts(w;) and csts(w;), this means that
r’" also occurs in csts(w;). Thus, there is a sequence

! !/ !/ ! !
q1 _>u)i,’wj q2 _>w,',wj qs3 _>’wi,u)j e _>u)i,’wj qm _>’wi,u)j m—v»

where 2 < m < |Q|, 0 < v < m, and ¢},...,q,, are pairwise different states that occur
in csts(w;). Hence, after m — v — 1 steps of —rw;w;, starting at q}, states will repeat
with period v 4+ 1. Let d be a multiple of v + 1 with d > m — v — 1. Then, there is a
p € {m —v,...,m} such that after d steps of =, w;, ¢ reaches ¢), and ¢, reaches g,.

Figure 3: conditions (2) and (3) of input pumpability for ¢; = ¢| and ¢2 = ¢}
Let g1 = q1, @2 = qp,,
50 = (tn[w; < p]) ® (tn/w;[w] < p)? o (tn/w;),

ug = w;, and u; = (w})d. Then h(so/w;(w})?) = p forall 0 < v < d, which easily follows by
induction, using the fact that h(t, /wiw) < p]) = h(ty /wilw} + h(tn/w;)]) = h(tn /w;) =
p. In particular h(sg/ug) = h(so/uoui) = p, i.e., condition (4) of input pumpability holds.
Clearly, for 0 < v < d, ¢ —w,;w, q in the tree t, iff ¢ (w7 w(w] )T+ q' in the tree
so and similarly ¢ =y, w; ¢',¢" in the tree t, iff ¢ =y () s (] )1+ q,q" in the tree sg;
this is true because so/w;(w})[w; < p| = tn/wi[w}; < p]. Thus, in so, g2 —ueuous G2
by the definition of ¢, (using P3), which proves condition (3) of the input pumpable
property. To show condition (2) we use P6: Since ¢} s 41, qb, also ¢} s wi q,
and thus, by the above and by P3, ¢} = il s (w! ) qy holds in sq. By the definition of g;,,
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05 g i (w) )1 q,,- Therefore, by P6, 1 —uguou; q1,q2- Clearly, (1) of input pumpability
holds because gy —¢ ., 7i in t, by the definition of r;, so[ug < p] = t,[w; < p], and thus
g0 —*cup i = q1 holds in sg. Figure 3 outlines the choice of ¢ for m =5 and v = 2 (thus
d=3and p=4). O

Lemma 6.6 Let M be a proper MTTR. If M is input pumpable, then it is not Isi.

Proof. Let M = (Q,%,A, qo, R, P,h) be input pumpable, i.e., there are q1,q2 € Q,
so € T, ug € V(so), ur € V(so/up), and p € P such that (1)—(4) of Definition 6.4 hold.
Assume now that M is lsi, i.e., there is a ¢ € N such that for every input tree ¢t € T,

size(Tar(t)) < ¢ - size(t). (%)

In the sequel we will derive a contradiction by constructing an input tree ¢ such that
size(Tar(t)) > c - size(t). Note first that if we replace in sg the subtree at ugu; by any
tree s in Ly, then (1)—(4) still hold. Similar to the proof of Theorem 6.3, the idea of
constructing ¢ is as follows. Consider input trees t; obtained by ¢ times pumping the tree
s0/ugluy < p] in the tree sgluguy < s]. Then the trees ¢; grow at most linearly with
constant size(sg/ug[u1 < p|). In the output tree 7a/(¢;) there are at least ¢ occurrences of
the tree M, (s). Hence, the trees 7)/(¢;) grow at least linearly with constant size(My,(s)).
Thus, if we choose s in such a way that size(My,(s)) is larger than the product of ¢ and
the size of so/ug[uy < p|, then size(ps(;)) grows faster than c - size(t;), i.e., we can find
an ¢ such that () does not hold for ¢ = ;.

In order to choose the tree s appropriately, we need that the set Out(g2,p) = {My,(s) |
s € Ly} is infinite, i.e., that it contains trees with arbitrarily many output symbols. This
is guaranteed by i-properness (cf. point (i) of Definition 5.1), if (a) (g2, p)) is reachable

and (b) g2 # qo.

(a) Clearly, (g2,p)) is reachable because it occurs in My, (so[ugu1 < p]); this follows from
(1) and (2) using Lemma 4.14(i) (analogous to the proof of P3 in the proof of Lemma 6.5;
in fact, using the —-notation of the proof of that lemma, it follows from (1) and (2) by
P3 that gy —¢ugu, g2, Which means that (g2, p)) occurs in My, (so[uour < p]))-

(b) By (2), Mg, (so/uolur < pl) # (a1.p)) = Mg, (so/uole < p]), and thus uy # ¢, ie,
uy = u}i for some v} € N* and i > 1. Also by (2), ((g2,p)) occurs in My, (so/uo[uy < p]).
Hence (by Lemma 4.3 applied to g1, so/ug, and u}), (g2, ;) occurs in the right-hand side
of a rule of M. By (ii) of i-properness this implies that g2 # qo.

We now pump the tree so/ug[u1 < p] in the tree so[ugu; < s] = (so[uo < p])e(so/uo[ur
p|)es: fori >0, let t; = (so[ug < p])® (s0/uo[us < p])*es. It follows from (1)—(4) that for
every i > 0, stspr(t;, uou’i) contains at least one occurrence of ¢; and at least 7 occurrences
of qo; this is sketched in Fig. 4 and formalized in the following claim.

Claim: For all i > 0, #((th,p)) (fl) > 1 and #((q2,p)> (61) > 1, where & = Mqo (ti[uoui — p])

The proof of the claim is by induction on i. For i = 0, t;[ugu} < p] = solug + p]
and by (1), # g, p)(Mg(s0[uo + p]) > 1. For i+ 1 we apply Lemma 4.14(i) to Z;41,

u=¢ w=uyuj, v= uoullﬂ, and ¢ = qo. Since h(ti11/uou}) = h(so/uoluy + s]) =

52



stsar(ti €) = o

stsas(ti,ug) = --qe--
N
stsar(ti, uour) = oo qree-qo
AN
stsar(ti, upu?) = --oqr- oo
AN
stsar(ti, upul) = - qu Qoo qa Qo

Figure 4: states that appear in state sequences of ¢;

h(so/uo[u1 < p]) = p by (4) and the fact that s € Ly, h(tip1/uouitt) = h(s) = p, and
tiv1[ugul + p] = t;[ugul < p, we get

# o (Gr) =D H# oy (M (s0/uolur < p))) - # ey (€)-
re@

Let ¢ = ¢. Surely restricting the above sum to r = q1 does not increase the result.
Thus, the sum is > # 4, ) (Mg, (so/uolur < pl)) - #¢q py(&). This is > 1 because

#((ql,p»(Mql(So/Uo[m < p])) > 1 by (2), and #(q1.p) (fz) > 1 by induction.

Let ¢ = go. Now restrict the sum to r € {q1,¢2}. If 1 = go, then the sum is
> #(<q2,p>>(Mql(30/u0[u1 = E #(q1.p) ({Z) this is > 2 - max{l i} > i+ 1, because,
by (2), #(<q2,p>>(Mq1(so/u0[u1 < pl)) > 2, and by induction # 4, 1y (&) = #(gopy (&) >
max{l,i}. If g1 # go, then the sum is > # ¢, »y (Mql(so/uo[ul — pl) - F#Fqpy (i) +
#((qw»(qu(SO/UO[Ul < p1)) - #(go,py (&); this is > i + 1 because # 4, n) (Mql(so/uo[ul —
p])) > 1by (2), #(<q2,p)>(qu (SO/UO [u1 — p])) > 1by ( ), and, by induction, #((ql P (61) >1
and # g, py (&) > i. This ends the proof of the claim.

Since # g, py (&) > %, we obtain size(ras(t:)) > i - #a(My,(s)) as follows. By Lemma 4.2
and the fact that t; /uoul =5, (i) = My (t;) = &[] with [...] = [{g.p)) < My(s) |
g € Q]- By Lemma 2.6 (summlng for all § € A), size(tayr(t;)) = #a&[--]) = S1+
Sy > Sy = ZUEV ) (€).0€Q #A(My(s)) - HFg[EJ] Since M is nondeleting, it follows from

Lemma 3.10(1) that #y,(My(s)) > 1 for all g € Q) and j € [m], and thus HFg[EJ] > 1.
We get S > e, eracq #aMi(9) > Yoeve o) #aMn(s) > i #a (M (3))
Now let s € L, such that

#a(Mg,(s)) > c-ci,

where ¢ = size(so/uglu1 < p]) — 1. Then size(rar(t;)) > i - (cc1 + 1) = icey +i. Let
i > ¢(co+c2), where ¢ = size(so[up < p])—1 and ¢y = size(s). Since size(t;) = co+ici+co
this means that size(ras(t;)) > c - size(t;) because size(rar(t;)) > icer + c(eg + ¢2) =
c(co +icy + ¢3) = ¢ - size(t;). This contradicts (x) and concludes the proof. 0
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We are now ready to prove step (III).
Theorem 6.7 Let M be a proper 1\/ITT§lest fep- If M is Isi, then it is fci.

Proof. If M is not fci, then, by Lemma 6.5, M it is input pumpable and thus, by
Lemma 6.6, M is not Isi. |

6.3 From lsi to fnest (I)

In Lemma 6.6 it was proved that if a proper MTTR M is input pumpable, then it is not
Isi. So, in order to prove that M is not lsi if it is not fnest, we would like to show that
if M is not fnest, then it is input pumpable. This could be done by proving a pumping
argument that works on the paths of trees My, (s[u < p]). We have chosen the following
alternative: we can associate with M a top-down tree transducer A (with the same regular
look-ahead as M) in such a way that

(i) the number of elements (¢, p)) of (@, {p})) that appear on a path of M, (s[u < p])
is bounded by the number of such elements that appear in A,(s[u < p]) and

(ii) if there are n occurrences of ((¢',p)) in Ay(s[u < p]), then there are at least n
occurrences of ((¢',p)) in My(s[u < p]).

Thus, (i) implies that if M is not fnest then A is not fci, and (ii) implies that if A is
input pumpable then so is M. Hence we need to show that if A is not fci, then A is input
pumpable. This is exactly what the application of Lemma 6.5 to A gives (the lemma is
applicable because, obviously, every top-down tree transducer is nondeleting, fnest with
nesting bound 1, and fcp).

In order to prove (i) and (ii) we merely need to require from the T® A that it has the
same states as M (but of rank zero) and that every rule of A has the same number of
occurrences of each element of (@, X') as the corresponding rule of M.

Definition 6.8 (associated TR, globally fci)

Let M = (Q,P,%,A,qo, R,h) be an MTTR, The TR A = (Q4,P, %, A, qo,Ra,h) is
associated with M, if Q4 = {¢*) | ¢ € Q} and for every ¢,¢' € Q, 0 € ¥, k>0, i € [K],
and p1,...,px € P,

#(q’,xi)(rhsA(qa ag, (pla s 7pk>)) = #(q’,xi>(rhSM(qa g, (pla v 7pk>))

The MTTR M is globally fci (for short, gfci), if every TR associated with M is fei. a

We use the subscript ‘gfci’ for classes of translations of MTTRs to denote that the corre-
sponding transducers are gfci. Note that for TRs A; and A, associated with M, sts 4, (s, u)
is a permutation of sts4, (s, u) (cf. Lemma 6.9 of [EM99]). Hence, M is gfci iff there exists
a TE. associated with M. For every MTTR M there is (effectively) an associated TR A; it

fci
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can be obtained from M by simply changing every right-hand side of M into an arbitrary
right-hand side in Tig, x,)ua Wwhile preserving the number of occurrences of (g, z;) for
every (anZ> € (Qan>

Let us first prove property (ii) mentioned above.

Lemma 6.9 Let M = (Q, P,%, A, qo, R, h) be a nondeleting MTTR and let A = (Q4, P,
3, A, qo,Ra,h) be a T® associated with M. For every q,¢' € Q, s € Ts;, u € V(s), and

~

p € Pt # g py (My(s[u < pl)) = #(q py (Ag(s[u < pl)).

Proof. The proof is by induction on the structure of s. Let s = o(sq,...,s;) with
o € %) and k > 0. Let m = rankg(q).

If u = ¢, then #((q’,p))(Mq(S[u <~ pl) = #((q’,p))(<<Qap>>(yla- .+»Ym)) which equals (now
with ¢ € Q). #(y) ((2.P)) = # (0 (Ag(su + p]))-

Otherwise u = iv with i € [k] and v € V(s;). Thus M,(s[u + p]) equals M, (o (51,. .. ,5),
where 5, = s, for v € [k] — {i} and §; = s;j[v < p|. For v € [k] let p, = h(3,). By
Lemma 3.5, My(o(81,...,3;)) = t[...], where t = rhsa(q,0, (p1,...,p%)) and [...] =
[(r, ) = M,.(3,) | (r,7,) € (Q, X)]. Applying Lemma 2.6 we obtain that # ., ,y (.. .])
equals

2 oy (V(30) - T] FEL

w € Vip oy (1),
(T,:E,,) € <Q:Xk>

Since M is nondeleting, by Lemma 3.10(1), #yj(Mr(g,,)) > 1forallr € QM, j € [n], and
v € [k]. This implies that HFt[Ew]] > 1. Hence,

# (g oy (Mo slu < p])) > S (V). (%)

w e ‘/(r,zy)(t)z
(r,zv) €(Q, Xi)

By induction, #«q,’p»(Mr(éi)) > #«q/,p»(/ir(gi)). For v € [k] — {i}, 3, € Ty, and therefore

#(q ) (Mr(50)) = #g py (Mr(50)) = 0 = F#q p) (Ar(50)) = # (g p)(Ar(50)). Thus, the

~

sum in (*) is > ZwEV(”, (1)) E(Q.X0) #q py(Ar(3,)). Since A is associated with M,

Vira,) (O = [Vipa,) ()] for every (r,z,) € (Q, Xi), where ¢ = rhsa(g, 0, (p1, ..., pk))-
Therefore the above sum does not change if we replace ¢t by (. Then, by Lemma 2.4 we

get #«q/’p»(C[. ) with [...] = [(r,z,) < Ar(g,,) | (r,z,) € (Qa,Xg)]- By Lemma 3.5 and

~

the fact that A is a TR, this equals #q py (Ag(s[u < p]). O

For a nondeleting MTT® M it follows immediately from Lemma 6.9 and Definition 6.4
that if a T® A associated with M is input pumpable, then also M is input pumpable.

Lemma 6.10 Let M be a nondeleting MTT® and let A be a T® associated with M. If
A is input pumpable, then so is M.
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From Lemma 6.9 it also follows that gfci is a generalization of fci: if #«Q’{p}»(Mqo(s[u —
p])) is bounded by some N, then so is #¢q p1) (Ago (s[u < p))), i.e., if M is fci, then it is
gfci. However, the converse is not true: there are MTTRs which are gfci but not fci. In
fact, even for fcp MTTRs, gfci does not imply fci. To see this consider an MTT M which
contains the following rules (and trivial look-ahead P = {p}).

(qo, o (71, 22)) = {g,71)({q0, z2))
(qo, ) - «
(g,0(z1,22)) (1) — o(y1,51)

(g, a)(y1) — oy, y1)

Now let sg = o and for n > 0 let s,41 = o(a, s,). Then

<QO7 3n> =>M <q7 O() (<QO7 3n—1>)
=M U(<QU,Sn71>,<qO,Sn71>)
i*M U(U(<q07 3n—2>7 <QO7 Sn—2>)7 U(<q07 Sn—?)a <q07 8n—2>))-

Hence, My, (s,[2" « p]) is a full binary tree of height n with all leaves labeled ((go,p)).
Thus stsar(sn,2") = g8 which means that M is not fci. However, M is gfci and fcp, with
bounds 1 and 2, respectively. To see that M is gfci, consider the TR A with right-hand
side o({q, 1), (qo, z2)) for the (qo,o)-rule and right-hand side « for all other rules. Now A
is associated with M, and it is linear in the input variables z;, i.e., A is fci with bound 1.
Moreover, M is not of linear size increase (because 7y/(sy,) is a full binary tree of height
n). Thus, gfci plus fcp cannot be taken as an alternative to the definition of finite copying:

R R
MTchi,fcp g MTTgfci,fcp'

As illustrated by the example above, a gfci MTTR M need not be fci and thus, the number
of occurrences of elements of (Q,{p})) in My, (s[u + p]) is in general unbounded, due to
parameter copying (in the example above by the rules with right-hand side o(y1,y1)).
However, the number of such elements that appear on one path in Mqo(s[u «— p]) is
bounded, and thus M is fnest. To see this intuitively, consider a label path 7 in a tree in
T(@,r)ua- The application of a rule r of an MTTR does not copy any states on the path
; thus, it increases the number of occurrences of ¢’ on m by at most # (4}, x)(rhs(r)),
which equals # (4}, x)(rhs(r)) for the corresponding rule 7' of a TR associated with M.
We now give a formal proof, of property (i) mentioned above.

Lemma 6.11 Let M = (Q,P,%, A, qo, R,h) be an MTTR and let A = (Qa,P, %, A, qo,
R4, h) be a TR associated with M. For every ¢,¢' € Q, s € T, u € V(s), p € P, and
every label path 7 in M (s[u < p]): #«q/’p»(ﬂ) < #q ) (Aq(s[u < p])).

Proof.  The proof is by induction on the length of u.

For u = ¢, #((q’,p)) (7() = #((q’,p»(«Qap») = #((q’,p» (Aq(s[u «— p]))

For u = /i it follows from Lemma 4.3 that M,(s[u < p]) = t[i][..] with t = M, (s[u’ «
pDIrhs], p' = h(s/u'[i + p]), and the substitutions [rhs], [..], and [i] defined as in
Lemma 4.3 (with u' instead of u, p’ instead of p, and p instead of p;). By Lemma 2.3(i)
applied to #'[..] with ¢ = ¢[i], the label path 7 is of the form woviw; - - - vy Wy, m > 0,
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where ' = wo(ri, 2y, )wi - -+ (rm, Ty,,)Wn, is a label path in ¢/, and for j € [m], r; € Q,
v; € [k] —{i}, v; is a label path in M, (s/u'v;), and wo, . .., wy, do not contain elements of
(Q, Xy — {zi}). Since My, (s/u'vj) € TA(Y), #¢q py(vj) = 0 for all j € [m] which means
that # g p) (1) = #(q py (7)-

Clearly, by the definition of [i], # (g py(7') = # (g @) (7") for some label path 7" in ¢.

)
Hence, it remains to show tlilat #iq oy (") < F g py (Ag(s[u <)) = #¢q py (E[rhs][][1])
#(¢' i) (§[rhs]), where { = Ay(s[u’ < p']) and [rhs], [..], [i] are the (corresponding first-order
variants of the) substitutions of Lemma 4.3.

~

By Lemma 2.3(i) applied to t = My(s[u’ < p'])[rhs], 7" is of the form woviw; - - - VW,
m > 0, where p = wo{(r1,p'Yw; - - {rm,p'Ywp is a label path in M,(s[u' < p']) and
for j € [m], r; € Q, v; is a label path in rhsy/(rj, 0, (p1,...,pk)), and wy, ..., wy, con-
tain no elements of (Q,{p'}) (i.e., w; is a string over A UY). Thus, #y ., (7") =
Zje[m} #(q',2:)(vj). Since, for j € [m], v; is a label path in rhsy/(rj, 0, (p1, ..., pk)), this
sum is surely

< Z #(qI’Iﬁ(I'hSM(Tj,O', (plaapk») = Z #(q’,zi)(rhs/‘(lrj?o-v (pla-"vpk>))7

j€[m] j€[m]

which can be written as

Z #«T:I),» (p) ’ #<q/’$i>(rhSA(’f‘, g, <p17 e 7pk>))
re@

By induction this is < EreQ #rpy (&) - #(q 2y (hsa(r,o,(p1,...,px))) which equals
#(¢' z;) (€[rhs]) by Lemma 2.4. o

Taking g = ¢p and summing over all ¢’ € Q, it follows immediately from Lemma 6.11 that
if A is fci then M is fnest, with the same bound. This is stated in the next lemma.

Lemma 6.12 If an MTTR is gfci, then it is fnest.
We are now ready to prove step (I), i.e., that for a proper MTTR, Isi implies fnest.
Theorem 6.13 Let M be a proper MTTR. If M is Isi, then it is fnest.

Proof. If M is not fnest, then by Lemma 6.12 it is not gfci. By the definition of gfci
this means that any TR A associated with M is not fci. The application of Lemma 6.5 to
A gives that A is input pumpable, and thus by Lemma 6.10 M is input pumpable. Now
Lemma 6.6 implies that M is not Isi. |

From Theorems 6.13, 6.3, and 6.7 we obtain the main result of this section: the converse
of Theorem 4.19, for proper MTTRs,

Theorem 6.14 Let M be a proper MTTR. If M is of linear size increase, then it is finite
copying.
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Recall from Section 4.3 the notion of finite contribution. By Lemma 4.18, every finite
copying MTTR® is finite contribution, and by the discussion before Theorem 4.19, every
finite contribution MTT® is of linear size increase. Together with Theorem 6.14 this shows
that a proper MTTR® is finite copying iff it is finite contribution. It can be proved that this
even holds for a productive MTT® that satisfies (ii) of Definition 5.6 (of p-properness).
Thus, the notions of finite copying and finite contribution are closely related.

7 Main Results and Consequences

In this final section we prove our main results: (i) a translation is MSO definable iff
it is a macro tree translation of linear size increase, and (ii) for a given MTT M it is
decidable whether or not 7a; is MSO definable. Then we discuss some consequences of
these results for top-down tree transducers, attributed tree transducers, and context-free
graph grammars. At last some open problems and further research topics are mentioned.

Theorem 7.1 Let M be an MTTR. Then the following statements are equivalent:

(1) 7ar is MSO definable.
(2) T is of linear size increase.

(3) prop(M) is finite copying.

Proof. Since every MSO definable tree translation is of linear size increase (see Sec-
tion 2.5), (1) = (2). Note that this can also be proved using the results from Section 4:
If 727 is MSO definable, then by Lemma 4.9, 73y € MTTfi and thus, by Theorem 4.19,
Tar 18 of linear size increase. To show (2) = (3), let 7as be of linear size increase. By
Theorem 5.9, there is a proper MTTR® prop(M) with Tprop(M) = TM; 1-€.; Tprop(ar) 18 Of
linear size increase. By Theorem 6.14, prop(M) is finite copying. Finally, if prop(M) is
finite copying then, by Lemma 4.9, 7as = T,rop(ary is MSO definable. Thus (3) = (1). O

Note that, as discussed at the end of Section 6, we could have included “(4) prop(M) is
finite contribution” as another equivalent statement in Theorem 7.1.

Theorem 7.1 shows that the class MSOTT of MSO definable tree translations can be
characterized as those macro tree translations that are of linear size increase. Recall (from
Section 2.5) that LSI denotes the class of all tree translations of linear size increase.

Theorem 7.2 MSOTT = MTT N LSI.

Proof. If 7 € MTT N LSI then there is an MTT M such that 7py = 7 is of linear
size increase. By Theorem 7.1 7, is MSO definable, and thus MTT N LSTIC MSOTT. 1f
T € MSOTT, then by Lemma 4.9 there is an MTTR M with 7j; = 7. By Theorem 7.1 73/ is
of linear size increase, and thus MSOTT C MTT®NLSI. By Lemma 3.3, MTT® = MTT.

O
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By Theorem 7.1, the proper normal form prop(M) (which can be constructed by Theo-
rem 5.9) of an MTT M is finite copying iff 7p; is MSO definable. Since the finite copying
property is decidable (Lemma 4.10) this implies that for M it is decidable whether or not
7y is MSO definable. If prop(M) is finite copying, then an MSO tree transducer that
realizes 7); can be constructed, because the equality MSOTT = M TTfE of Lemma 4.9 is
effective (cf. the discussion following Lemma 4.10).

Theorem 7.3 It is decidable for an MTT M whether or not 73; is MSO definable, and
if it is, then an MSO tree transducer for 7a; can be constructed.

7.1 Top-Down Tree Transducers

A top-down tree transducer can translate a monadic tree (of height n) into a full binary
tree (of height n). This translation is of exponential size increase and hence it is not
MSO definable. On the other hand, there are MSO definable tree translations that cannot
be realized by top-down tree transducers: consider the translation that associates with a
tree its yield (i.e., the left-to-right sequence of the labels of its leaves), seen as a monadic
tree. This translation is MSO definable (cf. Example 1(6, yield) of [BE0O]) but it cannot
be realized by a top-down tree transducer, because it is of exponential height increase
(viz. it translates a full binary tree of height n into its yield, a monadic tree of height
2") whereas top-down tree translations are of linear height increase (cf. Lemma 3.27
of [FV98]). Now, which translations realized by top-down tree transducers (with regular
look-ahead) are MSO definable? By our results, they are exactly the translations realized
by finite copying TRs.

Theorem 7.4 TR N MSOTT = TE.

Proof.  Let M be a TR such that )7 is MSO definable. By Theorem 7.1, prop(M) is
finite copying. By Theorem 5.9, prop(M) is a TR. Thus, 7y = Tprop(M) € TE. Hence,
TRNMSOTT C TE. The inclusion TF C TR N MSOTT is immediate from Lemma 4.9.

O

Note that it follows immediately from Theorem 7.1 that T®NMSOTT = T®N LSI. Thus,
Tf}g' = TRNLSI Since Tgs are closely related to tree-walking transducers (see Theorem 4.9
of [ERS80]), this may be viewed as the result of [AU71] that the translations realized by
tree-walking transducers are exactly the generalized syntax-directed translations of linear
size increase.

7.2 Attributed Tree Transducers

Attributed tree transducers [Fil81, FV98] serve as a formal model for attribute gram-
mars [Knu68]. As argued in [BE0O], adding the feature of look-ahead to them, yields a
better model of attribute grammars, and a more robust class of tree translations. Let
ATT?® denote the class of translations realized by attributed tree transducers with look-
ahead (see [BE00, EM99]) and let the subscript ‘sur’ denote that the transducers are
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“single use restricted” (cf. Section 5 in [EM99]), i.e., for every input symbol o, each out-
side attribute is used at most once in the set of rules for o. It is proved in Theorem 17
of [BE0O] that MSOTT = ATTE.. Hence MSOTT C ATT® N LSI. Equality of these
classes now follows from Theorem 7.2 and the fact that ATT® C MTT. (The latter in-
clusion can be proved as follows: by definition, ATT? consists of all translations that
can be realized by the composition of an attributed relabeling, followed by an attributed
tree translation. It follows from Theorem 4.4 of [EM99] that attributed relabelings can be
realized by TRs. Thus, ATT® C T® o ATT, where ATT denotes the class of translations
realized by attributed tree transducers. By Lemma 5.11 of [EM99], ATT C MTT® and
so TR o ATT C TR o MTT® which, by Lemma 3.3, equals T o MTT. Since regular look-
ahead can be realized by first running a finite state relabeling, i.e., applying a translation
in DBQREL (cf. Theorem 2.6 of [Eng77]), we get the inclusion in DBQRELoT o MTT
which is C DBQREL o MTT by Corollary 4.10 of [EV85], and thus we have the inclusion
in MTT® = MTT.)

Theorem 7.5 MSOTT = ATT® N LSI.

From the fact that ATT™ C MTT (effectively) together with Theorem 7.3 and the fact
that MSOTT = ATTE  (effectively), we obtain the following decidability result for at-

sur
tributed tree transducers.

Theorem 7.6 For an ATTR A it is decidable whether or not there exists an equivalent
single use restricted ATTR A’, and if so, A’ can be constructed.

The interpretation of Theorem 7.6 in terms of classical attribute grammars involves a
technical detail: roughly speaking, the look-ahead part of an ATT® corresponds to the
underlying context-free grammar of an attribute grammar. If we want to apply Theo-
rem 7.6 to an attribute grammar G, then we first have to turn G into an equivalent ATTR
A, i.e., into an ATTR that realizes the same tree-to-tree translation as G (translating the
non-derivation-trees of G' into some error symbol). Now assume that for A there is an
equivalent single use restricted ATTR A’. In general the look-ahead of A’ will be different
from the one of A, which implies that an attribute grammar G’ equivalent to A’ does not
have the same underlying context-free grammar as GG, and hence the tree-to-tree transla-
tion realized by G’ is different from the one realized by G. This problem can be avoided by
adding boolean-valued attributes to G’ (cf. the Introduction of [BE0O]), which simulate
the look-ahead part of A’. In this way G’ and G have the same underlying context-free
grammar and they realize the same tree-to-tree translation (however, the boolean-valued
attributes are, in general, not single use restricted).

7.3 Context-Free Graph Grammars

A context-free graph grammar (see, e.g., [Eng97]) generates a graph language. If the
graphs are restricted to trees, then we obtain a tree language. As discussed in the In-
troduction of [EM99], the class of tree languages that can be generated by context-free
graph grammars (either by hyperedge replacement (HR), or by node replacement (NR), cf.
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Section 6 of [Eng97]) can be obtained by applying the MSO definable tree translations to
the regular tree languages. By Theorem 7.2 it means that this class of tree languages can
be obtained by the application of linear size increase macro tree translations to the regular
tree languages. This is just a straightforward variation of similar statements in the liter-
ature: for single use restricted ATTs in Corollary 19 of [BE0O], for “single use restricted”
MTTs and for finite copying MTTs in Corollary 7.3 of [EM99], and for nondeleting MTTs
that are finite copying and linear in the parameters in Theorem 5 of [EM00b] (based on
Theorem 8.1 of [Dre99al).

Theorem 7.7 The output tree languages of MTTs of linear size increase applied to the
regular tree languages are the tree languages generated by (HR or NR) context-free graph
grammars.

7.4 Open Problems and Further Research Topics

We have proved that for a macro tree transducer it is decidable whether or not the trans-
lation it realizes is MSO definable. What is the complexity of this problem? In fact, the
complexity of deciding the finiteness of ranges of (compositions of) macro tree transduc-
ers [DE98] (cf. Lemma 3.7) is not known, and our decidability proof is based on this
result.

It would be interesting to find a classification of the possible size increases of MTTs. For
top-down tree transducers such a classification is given in [AUT71] and it is shown that the
size increase of every top-down tree transducer is either polynomial or exponential. For
MTTs it could be the case that every size increase is either polynomial, exponential, or
double exponential.

Is polynomial size increase decidable for MTTs? If so, what is the complexity? For top-
down tree transducers it is shown in [Dre99b] that this problem is NLOGSPACE-complete.
It is not clear how MSO definability could be generalized in order to obtain the class of
polynomial size increase macro tree translations. (Note that there are well-established
models of polynomial size increase FO transducers, see, e.g., [EF95, Imm99]).

Composition of MTTs yields a proper hierarchy, i.e., there are translations which can be
realized by the composition of m + 1 MTTs, but not by the composition of m MTTs
(Theorem 4.16 of [EV85]). Now, what happens if we restrict our attention to translations
that are of linear size increase? Maybe then composition does not yield a proper hierarchy,
but rather it remains the class of MSO definable tree translations, i.e., is LSIN{Y, MTT™ =
MSOTT? Since compositions of MTTs can be realized by high-level tree transducers (and
vice versa) [EV88] this question is equivalent to: Are linear size increase high-level tree
translations MSO definable? Again, this question could also be considered for polynomial
instead of linear size increase.

For both, macro tree transducers and MSO transducers there are nondeterministic vari-
ants (cf. [EV85] and [Cou94], respectively). We would like to know whether our result
carries over to the nondeterministic case, i.e., whether the nondeterministic macro tree
translations of linear size increase are precisely the nondeterministic MSO definable tree
translations.
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Last but not least: Given an MTT M, is it decidable whether the translation 7, realized
by M can be realized by an attributed tree transducer (with look-ahead), i.e., is it decidable
whether 7y € ATT (or ATT®)? Of course, if 757 is MSO definable, which can be decided
by Theorem 7.3, then the answer is positive, because MSOTT = ATTE by the result
of [BEOO] (other positive criteria are discussed in [CF82, FV99]). On the other hand, note
that ATTRs are of linear size-to-height increase (cf., e.g., Lemma 5.40 of [FV98]). Denote
by LSHI the class of all translations of linear size-to-height increase. Probably it can be
proved (by methods similar to those in this paper) that MTT N LSHI = MTTfIflest and
that 7py € LSHI iff prop(M) is fnest, which is decidable. Thus, it would be decidable for
an MTT whether or not it is of linear size-to-height increase. If it is not, then it cannot
be realized by an ATTR,
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