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Abstra
t

The �rst main result is that if a ma
ro tree translation is of linear size in
rease,

i.e., if the size of every output tree is linearly bounded by the size of the 
orresponding

input tree, then the translation is MSO de�nable (i.e., de�nable in monadi
 se
ond-

order logi
). This gives a new 
hara
terization of the MSO de�nable tree translations

in terms of ma
ro tree transdu
ers: they are exa
tly the ma
ro tree translations of

linear size in
rease. The se
ond main result is that given a ma
ro tree transdu
er,

it 
an be de
ided whether or not its translation is MSO de�nable, and if it is then

an equivalent MSO transdu
er 
an be 
onstru
ted. Similar results hold for attribute

grammars, whi
h de�ne a sub
lass of the ma
ro tree translations.

1 Introdu
tion

Very often, a 
omplex obje
t has a stru
ture that shows how it is 
omposed from smaller

obje
ts by the appli
ation of 
ertain operations. The smaller obje
ts may themselves be


omposed of other obje
ts. Su
h a stru
ture 
an naturally be des
ribed by a tree, and

hen
e the obje
ts are \tree-stru
tured". Examples of tree-stru
tured obje
ts are the words

of a 
ontext-free language (with derivation trees as stru
ture) or the graphs of bounded

tree-width (with tree de
ompositions as stru
ture). Now 
onsider the transformation of a

tree-stru
tured obje
t, based on its stru
ture and independent of the interpretation of the

operations, i.e., a tree-to-tree transformation. We are interested in models of su
h trans-

formations: tree transdu
ers. Well-known examples of tree transdu
ers are top-down tree

transdu
ers [Rou70, Tha70, AU71, GS97℄ and attribute grammars [EF81, F�ul81, FV98℄

(motivated by syntax-dire
ted semanti
s and 
ompilers, 
f. [Iro61, Knu68, KV97, WM95℄),

unranked tree transdu
ers [MN00, BMN00℄ and pebble tree transdu
ers [MSV00℄ (mo-

tivated by the transformation of XML do
uments, 
f. [Via01℄), and ma
ro tree trans-

du
ers [Eng80, CF82, EV85, FV98℄ (motivated by syntax-dire
ted and denotational se-

manti
s [Iro61, Sto77℄, and used as a model in, e.g., fun
tional programming [Vog91,

�
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K�uh98, KV01℄, language prototyping [vDHK96℄, and linguisti
s [KMMM01, MMM01℄).

Motivated by model theory is the idea of \interpretation", meaning the de�nition of a

(logi
al) stru
ture in terms of logi
al formulas over another stru
ture (
f. Chapter 10

of [EF95℄). For monadi
 se
ond-order (MSO) logi
, su
h MSO interpretations have re-


ently been used to 
hara
terize the generation of graphs by 
ontext-free graph gram-

mars [Cou94, CE95, EvO97, Eng97℄ (see also [KS94℄). Taking trees as logi
al stru
-

ture, another type of tree transdu
er is obtained: the MSO tree transdu
er, studied

in [BE00, EM99℄ (for strings, see [EH01℄). An important part of tree transdu
er theory is

to 
ompare the formal power of these di�erent models of transformation of tree-stru
tured

obje
ts and to provide e�e
tive translations between these models. This paper 
ompares

the power of ma
ro tree transdu
ers and MSO tree transdu
ers.

The ma
ro tree transdu
er (MTT) is a �nite state devi
e that translates, in a re
ursive

top-down fashion, an input tree into an output tree, handling 
ontext information by the

use of parameters. The states of the MTT 
an be viewed as fun
tions that 
all ea
h other

re
ursively; the initial state is the main fun
tion. The (tree-to-tree) translations of MTTs

form a large 
lass, 
ontaining the translations of top-down tree transdu
ers and attribute

grammars. In order to prove our results, we add the feature of regular look-ahead (see,

e.g., Se
tion 18 of [GS97℄) to top-down tree transdu
ers, attribute grammars, and ma
ro

tree transdu
ers. Note that in the 
ase of MTTs this has no in
uen
e on the translations:

the 
lasses of translations realized by MTTs with and without regular look-ahead are the

same [EV85℄.

The MSO tree transdu
er uses formulas in monadi
 se
ond-order logi
 to de�ne tree-to-

tree translations. This provides a de
larative way of de�ning a tree translation, as opposed

to the operational way of an MTT. The idea is to de�ne the nodes and edges of the output

tree in terms of MSO formulas that are interpreted in the input tree, or, more pre
isely,

in a �xed number of disjoint 
opies of the input tree. Tree translations de�nable in MSO

logi
 have ni
e properties, 
omparable to those of �nite state transdu
tions on strings. In

parti
ular, they are 
losed under 
omposition and they 
an be 
omputed in linear time.

Ma
ro tree translations do not possess these properties.

The question arises, what is the pre
ise relationship between these two di�erent models?

From [BE00, EM99℄ it is known that every MSO de�nable tree translation 
an be realized

by an MTT. However, the 
onverse does not hold, for obvious reasons: by de�nition, MSO

de�nable tree translations are of linear size in
rease: the size of the output tree is at most

k times the size of the input tree, where k is the number of disjoint 
opies of the input tree,

used to de�ne the output tree. On the other hand, the translations realized by MTTs 
an

be of double exponential size in
rease (
f. Lemma 4.22 of [FV98℄). Our �rst main result is

that if we restri
t ourselves to translations of linear size in
rease, then the two formalisms,

MSO tree transdu
ers and ma
ro tree transdu
ers, have exa
tly the same power, i.e., the

respe
tive 
lasses of translations 
oin
ide.

Let us brie
y dis
uss the proof of the �rst main result. As mentioned before, our MTTs

are equipped with regular look-ahead. In [EM99℄ a 
hara
terization of the MSO de�nable

tree translations in terms of MTTs is given: they are the translations realized by \�nite


opying" MTTs. The notion of �nite 
opying was introdu
ed in [AU71℄ for generalized

syntax-dire
ted translation s
hemes, whi
h are 
losely related to top-down tree transdu
-
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ers. It requires that there is a bound on the number of states that translate a given node

of the input tree. For MTTs this requirement is 
alled \�nite 
opying in the input" and an

MTT is �nite 
opying [EM99℄, if it is both �nite 
opying in the input and \�nite 
opying

in the parameters"; the latter means that there is a bound on the number of 
opies made

of a parameter. We want to prove that if the translation realized by an MTT is of linear

size in
rease, then it is MSO de�nable. By the above this is equivalent to showing that for

every MTT M that is of linear size in
rease (i.e., whi
h realizes a translation of linear size

in
rease), there is an equivalent MTT M

0

that is �nite 
opying. How 
an we 
onstru
t

M

0

, given M? The idea is that every MTTM 
an be transformed into a normal formM

0

,


alled the \proper normal form" of M , su
h that if M is of linear size in
rease then M

0

is

�nite 
opying. Roughly speaking this normal form requires that all states and parameters

of M

0

are really \needed", more pre
isely, ea
h state generates in�nitely many output

trees (
onsidering all possible input trees), and for ea
h parameter y there are in�nitely

many a
tual parameter trees being substituted for y (for all possible input trees). Then

for a proper MTT M

0

it 
an be shown that (i) if M

0

is of linear size in
rease, then it is

�nite 
opying in the parameters, and (ii) if M

0

is �nite 
opying in the parameters and of

linear size in
rease, then it is �nite 
opying in the input. Both (i) and (ii) are proved by

a pumping argument, i.e., it is shown that if M

0

is not �nite 
opying in the parameters,

then it is not of linear size in
rease, and similarly for (ii).

Our se
ond main result 
on
erns de
idability. Given a ma
ro tree transdu
er it 
an be

de
ided whether or not its translation is MSO de�nable, and if so, an equivalent MSO

tree transdu
er 
an be 
onstru
ted. The proof is based on the following results: (1) the

translation realized by an MTT M is MSO de�nable { i.e., of linear size in
rease { if and

only if its proper normal form M

0

is �nite 
opying (by the proof of our �rst main result,

as dis
ussed above), (2) for an MTT it is de
idable whether or not it is �nite 
opying (the

proof is based on the fa
t that the �niteness of ranges of MTTs is de
idable [DE98℄), and

(3) from [EM99, BE00℄ it follows that given a �nite 
opying MTT, an equivalent MSO

tree transdu
er 
an be 
onstru
ted.

Note that very often membership in a sub
lass is unde
idable (su
h as regularity of a


ontext-free language). In 
ases of de
idability there is often a 
hara
terization of the

sub
lass that is independent of the devi
e that de�nes the whole 
lass, i.e., a \semanti
"

rather than \synta
ti
" 
hara
terization, su
h as our linear size in
rease 
hara
terization.

As another example, in [Cou95℄ it is shown that an NR (node repla
ement) 
ontext-free

graph language 
an be generated by an HR (hyperedge repla
ement) 
ontext-free graph

grammar if and only if the number of edges of its graphs is linearly bounded by the number

of nodes.

The idea for our main results stems from [AU71℄; there it is shown that a generalized

syntax-dire
ted translation (gsdt) s
heme 
an be realized by a tree-walking transdu
er if

and only if it is of linear size in
rease. Sin
e gsdt s
hemes are a variation of top-down

tree transdu
ers, and tree-walking transdu
ers are 
losely related to �nite 
opying top-

down tree transdu
ers [ERS80℄, our result 
an be viewed as a generalization of the result

of [AU71℄, from top-down tree transdu
ers to ma
ro tree transdu
ers. In fa
t, sin
e the

proper normal form of a top-down tree transdu
er is again a top-down tree transdu
er,

we reobtain their result (in our formalism): the top-down tree translations of linear size

in
rease are exa
tly the translations realized by �nite 
opying top-down tree transdu
ers.
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Moreover, they are exa
tly the MSO de�nable top-down tree translations.

The main result of [EM99℄, on whi
h this paper is based, is on its turn based on the main

result of [BE00℄ whi
h states that the MSO de�nable tree translations 
an be 
hara
terized

by attribute grammars (more pre
isely: by attributed tree transdu
ers with look-ahead)

that are single use restri
ted. The single use restri
tion [Gie88, Gan83, K�uh98, KV01℄

is interesting, be
ause attribute grammars are 
losed under left-
omposition with single

use restri
ted attribute grammars. Our results now imply that given an attributed tree

transdu
er (with look-ahead) it 
an be de
ided whether or not there exists an equivalent

one that is single use restri
ted, and furthermore, that the linear size in
rease attributed

tree translations are pre
isely the MSO de�nable tree translations.

This paper is stru
tured as follows. In Se
tion 2 trees and tree substitutions are de�ned.

In parti
ular, the de�nition of se
ond-order tree substitution is given, whi
h is the type

of substitution that ma
ro tree transdu
ers are based on. Various results about these

substitutions are proved, for example, how to 
ompute the number of o

urren
es of a

parti
ular symbol in a tree to whi
h a se
ond-order tree substitution is applied. Then,

tree languages and tree translations are de�ned, and the notion of MSO de�nable tree

translation is re
alled brie
y. Se
tion 3 de�nes ma
ro tree transdu
ers, whi
h are total de-

terministi
 and equipped with regular look-ahead. Some basi
 results needed in the paper

are re
alled, and two sub
lasses de�ned by restri
tions on the parameters are 
onsidered.

Se
tion 4 re
alls the notion of �nite 
opying, whi
h 
onsists of two parts: �nite 
opying

in the input and �nite 
opying in the parameters. It is proved that it is de
idable for an

MTT whether or not it is �nite 
opying. Moreover, although this is already known from

the result of [EM99℄, it is proved for 
ompleteness sake that if an MTT is �nite 
opying,

then it is of linear size in
rease. The proof is based on an intermediate, very natural no-

tion of bounded 
opying: \�nite 
ontribution". An MTT is �nite 
ontribution if there is

a bound on the number of output nodes that are 
ontributed by a given node of the input

tree. Also in this se
tion the notion of \�nite nested 
opying in the input" is introdu
ed;

it requires a bound on the amount of nesting of the states that translate a given node of

the input tree. In Se
tion 5 the proper normal form is introdu
ed, and it is shown how to


onstru
t, given an MTT, an equivalent one in proper normal form. Se
tion 6 proves our

main results: if the translation realized by a proper MTT M is of linear size in
rease (for

short, \M is lsi"), then M is �nite 
opying. The proof goes in three stages: (I) If M is

lsi, then it is �nite nested 
opying in the input, (II) if M is lsi and �nite nested 
opying

in the input, then it is �nite 
opying in the parameters, and �nally, (III) if M is lsi, �nite

nested 
opying in the input, and �nite 
opying in the parameters, then it is �nite 
opying

in the input. Se
tion 7 presents the main results, and their 
onsequen
es for top-down

tree transdu
ers, attribute grammars, and 
ontext-free graph grammars. At last, some

open problems and further resear
h topi
s are mentioned.

We note that te
hni
ally this paper is 
on
erned with ma
ro tree transdu
ers only. The

links to MSO tree transdu
ers were established in [BE00, EM99℄.
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2 Preliminaries

The set f0; 1; : : : g of natural numbers is denoted by N. The empty set is denoted by ?.

For k 2 N, [k℄ denotes the set f1; : : : ; kg; thus [0℄ = ?. For a set A, jAj is the 
ardinality

of A, and A

�

is the set of all strings over A. The empty string is denoted by ". The

length of a string w is denoted jwj and the number of o

urren
es of the symbol a in

w is denoted by #

a

(w). For a set B � A, #

B

(w) =

P

f#

a

(w) j a 2 Bg. For strings

v; w

1

; : : : ; w

n

2 A

�

and distin
t a

1

; : : : ; a

n

2 A, we denote by v[a

1

 w

1

; : : : ; a

n

 w

n

℄ the

result of (simultaneously) substituting w

i

for every o

urren
e of a

i

in v. Note that the

substitution [a

1

 w

1

; : : : ; a

n

 w

n

℄ is a homomorphism on strings. Let P be a 
ondition

on a and w su
h that f(a;w) j Pg is a partial fun
tion; then we use, similar to set notation,

[a  w j P ℄ to denote the substitution [L℄, where L is the list of all a  w for whi
h


ondition P holds.

2.1 Trees

A set � together with a mapping rank

�

: �! N is 
alled a ranked set. For k � 0, �

(k)

is the

set f� 2 � j rank

�

(�) = kg; we also write �

(k)

to indi
ate that rank

�

(�) = k. For sets �

and A, h�; Ai = ��A; if � is ranked, then so is h�; Ai, with rank

h�;Ai

(h�; ai) = rank

�

(�)

for every h�; ai 2 h�; Ai. A ranked alphabet is a �nite ranked set.

For the rest of this paper we 
hoose the set of input variables to be X = fx

1

; x

2

; : : : g

and the set of parameters to be Y = fy

1

; y

2

; : : : g. For k � 0, X

k

= fx

1

; : : : ; x

k

g and

Y

k

= fy

1

; : : : ; y

k

g.

Let � be a ranked set. The set of trees over �, denoted by T

�

, is the smallest set of strings

T � �

�

su
h that if � 2 �

(k)

, k � 0, and t

1

; : : : ; t

k

2 T , then � t

1

� � � t

k

2 T . For better

readability we write �(t

1

; : : : ; t

k

) for � t

1

� � � t

k

and k � 1. For a set A with � \ A = ?,

the set of trees over � indexed by A, denoted by T

�

(A), is the set T

�[A

, where for every

a 2 A, rank

�[A

(a) = 0. If A = Y , then T

�

(Y ) is the set of trees (over �) with parameters.

For every tree t 2 T

�

, the set of nodes of t, denoted by V (t), is a subset of N

�

whi
h

is indu
tively de�ned as follows: if t = �(t

1

; : : : ; t

k

) with � 2 �

(k)

, k � 0, and for all

i 2 [k℄; t

i

2 T

�

, then V (t) = f"g [ fiu j u 2 V (t

i

); i 2 [k℄g. Thus, " represents the root of

a tree and for a node u the i-th 
hild of u is represented by ui. A leaf is a node without


hildren. If u = vw with w 2 N

�

, then v is an an
estor of u and u is a des
endant of v;

if w 6= ", then v is a proper an
estor of u, and u is a proper des
endant of v. The label

of t at node u is denoted by t[u℄; we also say that t[u℄ o

urs in t (at u). The subtree

of t at node u is denoted by t=u. The substitution of the tree s 2 T

�

at node u in t is

denoted by t[u  s℄; it means that the subtree t=u is repla
ed by s. Formally, these

notions 
an be de�ned as follows: t["℄ is the �rst symbol of t (in �), t=" = t, t[" s℄ = s,

and if t = �(t

1

; : : : ; t

k

), i 2 [k℄, and u 2 V (t

i

), then t[iu℄ = t

i

[u℄, t=iu = t

i

=u, and

t[iu s℄ = �(t

1

; : : : ; t

i

[u s℄; : : : ; t

k

).

The usual pre-order of the nodes of t (whi
h, in fa
t, is the lexi
ographi
al order on N

�

)

is denoted <; thus, " < iu (for i � 1), if u < v then iu < iv, and if i < j then iu < jv.

The size of a tree t, denoted by size(t), is the number jV (t)j of nodes of t. For t =

�(t

1

; : : : ; t

k

), size(t) equals 1+size(t

1

)+� � �+size(t

k

); note that size(t) =

P

�2�

#

�

(t) = jtj.

5



For � 2 �, V

�

(t) denotes the set of nodes of t whi
h are labeled by �, i.e., fu 2 V (t) j

t[u℄ = �g; note that jV

�

(t)j = #

�

(t): the number of o

urren
es of � in t. For a set S � �,

V

S

(t) =

S

�2S

V

�

(t). The height of t is denoted by height(t); for t = �(t

1

; : : : ; t

k

) it equals

1 + maxfheight(t

i

) j i 2 [k℄g.

2.2 Tree Substitution

In the previous subse
tion on trees we already de�ned a parti
ular tree substitution: for

trees t; s and a node u of t, t[u  s℄ is the result of repla
ing in t the subtree t=u by s.

Now we want to 
onsider repla
ing in t all o

urren
es of a symbol �.

Trees are parti
ular strings and therefore string substitution as de�ned in the beginning of

these Preliminaries is appli
able to a tree. In order to guarantee that the resulting string

is again a tree, we require that only symbols of rank zero, i.e., leaves, may be repla
ed

by trees; we refer to this type of substitution as \�rst-order tree substitution". Note

that top-down tree transdu
ers are based on �rst-order tree substitution. In 
ontrast

to this, \se
ond-order tree substitution" means that symbols of arbitrary rank 
an be

repla
ed. This is the type of substitution ma
ro tree transdu
ers are based on. Consider

the repla
ement of a symbol � of rank k by a tree s. Then in s we use the parameters

y

1

; : : : ; y

k

to indi
ate where the subtrees of � have to be inserted. That is, if � appears at

a node u of the tree t, then repla
ing it by s means to repla
e in t the subtree at u by s,

in whi
h ea
h y

j

is repla
ed by the j-th subtree of u, i.e., by the tree t=uj. This is now

de�ned formally.

Let � be a ranked set and let �

1

; : : : ; �

n

be distin
t elements of ��Y , n � 1, and for ea
h

i 2 [n℄ let s

i

be a tree in T

��Y

(Y

r

), where r = rank

�

(�

i

). For t 2 T

�

, the se
ond-order tree

substitution of �

i

by s

i

in t, denoted by t[[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ is indu
tively de�ned as

follows (abbreviating [[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ by [[: : :℄℄). For t = �(t

1

; : : : ; t

k

) with � 2 �

(k)

,

k � 0, and t

1

; : : : ; t

k

2 T

�

, (i) if � = �

i

for an i 2 [n℄, then t[[: : :℄℄ = s

i

[y

j

 t

j

[[: : :℄℄ j j 2 [k℄℄

and (ii) otherwise t[[: : :℄℄ = �(t

1

[[: : :℄℄; : : : ; t

k

[[: : :℄℄). We will say that [[�

1

 s

1

; : : : ; �

n

 s

n

℄℄

is a se
ond-order tree substitution over �. Note that it is a mapping from T

�

to T

�

. In

fa
t, it is a tree homomorphism [GS84℄. Note also that (just as ordinary substitution)

se
ond-order tree substitution is asso
iative (by the 
losure of tree homomorphisms under


omposition, 
f. Theorem IV.3.7 of [GS84℄), i.e., t[[�  s℄℄[[�  s

0

℄℄ = t[[�  s[[�  s

0

℄℄℄℄

and if �

0

6= � then t[[�  s℄℄[[�

0

 s

0

℄℄ = t[[�

0

 s

0

; �  s[[�

0

 s

0

℄℄℄℄, and similarly for the

general 
ase (
f. Se
tions 3.4 and 3.7 of [Cou83℄). Let P be a 
ondition on � and s su
h

that f(�; s) j Pg is a partial fun
tion; then we use [[�  s j P ℄℄ to denote the substitution

[[L℄℄, where L is the list of all �  s for whi
h 
ondition P holds. In se
ond-order tree

substitutions we use for the relabeling �  Æ(y

1

; : : : ; y

k

) of �

(k)

by Æ

(k)

the abbreviation

�  Æ; note that this is, in fa
t, a string substitution.

The se
ond-order tree substitution [[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ is nondeleting if for every

i 2 [n℄: #

y

j

(s

i

) � 1 for all j 2 [rank

�

(�

i

)℄, and it is nonerasing if for every i 2 [n℄, s

i

62 Y .

It is produ
tive, if it is both nondeleting and nonerasing.

Lemma 2.1 Let � be a ranked alphabet and let � = [[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ be a

nondeleting se
ond-order tree substitution over �. For all t; t

0

2 T

�

, if t

0

is a subtree of t,

then t

0

� is a subtree of t�. In parti
ular, for y 2 Y , if #

y

(t) � 1 then #

y

(t�) � 1.

6



Proof. For t = �(t

1

; : : : ; t

k

), t

j

� is a subtree of t�. Hen
e the result follows immediately,

by indu
tion on the stru
ture of t.

If #

y

(t) � 1 then y is a subtree of t whi
h means, by the �rst part of this lemma, that y

is also a subtree of t�, i.e., #

y

(t�) � 1. Note that y� = y be
ause, by the de�nition of

se
ond-order tree substitution, �

i

62 Y for all i 2 [n℄. 2

Lemma 2.2 Let � be a ranked alphabet and let � = [[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ be a

nonerasing se
ond-order tree substitution over �. For every t 2 T

�

, if t 62 Y then t� 62 Y .

Proof. Let t = �(t

1

; : : : ; t

k

) with � 2 �

(k)

� Y . If � 62 f�

1

; : : : ; �

n

g then t� =

�(t

1

�; : : : ; t

k

�) 62 Y . If � = �

i

for some i 2 [n℄, then t� = s

i

[y

j

 t

j

� j j 2 [k℄℄ 62 Y

(be
ause s

i

62 Y ). 2

In order to 
al
ulate the number of times that a parti
ular node u of a tree is 
opied by

the appli
ation of a se
ond-order tree substitution, we need to know whi
h symbols appear

at the an
estors of u. For this we de�ne the string obtained by reading the labels of the

an
estors of u in des
ending order, starting at the root; if u is labeled by a parameter, then

we do not in
lude its label in this string, be
ause in trees of the form t[[�

1

 s

1

; : : : ; �

n

 

s

n

℄℄ the parameters present in the trees s

i

do not appear. For a tree t 2 T

�

and a node

u 2 V (t), the label path to u (in t), denoted by lpath(t; u), is the string in (� � Y )

�

de�ned re
ursively as follows: lpath(t; ") = " if t 2 Y and otherwise lpath(t; ") = t["℄; for

u = iu

0

, i � 1, and u

0

2 N

�

, lpath(t; u) = t["℄ lpath(t=i; u

0

). For example, let t be the tree


(�(a; y

1

)); then lpath(t; 12) = lpath(t; 1) = 
� and lpath(t; 11) = 
�a.

The following lemma shows how a label path in t 
hanges, if a se
ond-order tree substitu-

tion is applied to t.

Lemma 2.3 Let � be a ranked alphabet. Let � be the se
ond-order tree substitution

[[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ over �, and let t 2 T

�

.

(i) Every label path in t� is of the form

w

0

v

1

w

1

� � � v

m

w

m

;

wherem � 0, w

0

�

i

1

w

1

� � � �

i

m

w

m

is a label path in t, i

1

; : : : ; i

m

2 [n℄, and for j 2 [m℄,

v

j

is a label path in s

i

j

and w

j

2 (�� f�

1

; : : : ; �

n

g)

�

.

(ii) If � is nondeleting, then for every w; v 2 �

�

su
h that w�

i

is a label path in t and

v is a label path in s

i

, there is a w

0

2 �

�

su
h that w

0

v is a label path in t�.

2.3 Number of O

urren
es

Sin
e this paper is about the size in
rease of ma
ro tree transdu
ers, and they are based

on se
ond-order tree substitution, we need to know how the size of a tree t 
hanges when

a se
ond-order tree substitution � is applied to t. Re
all that size(t�) is the sum of

7



the numbers #

�

(t�) of o

urren
es of � in t�, for all symbols �. Thus, we need to

determine the number #

�

(t�). Sin
e se
ond-order tree substitution is based on �rst-order

tree substitution whi
h is a parti
ular string substitution, we �rst determine the number

#

a

(w[: : : ℄), where w is a string and [: : : ℄ is a string substitution.

The following lemma 
an be proved by straightforward indu
tion on the length of w.

Lemma 2.4 Let A be an alphabet. Let w; v

1

; : : : ; v

n

2 A

�

and let a

1

; : : : ; a

n

be distin
t

elements of A. For every a 2 A,

#

a

(w[a

1

 v

1

; : : : ; a

n

 v

n

℄) = S +

X

i2[n℄

#

a

i

(w) �#

a

(v

i

);

where S = #

a

(w) if a 62 fa

1

; : : : ; a

n

g and otherwise S = 0.

In the next lemma we prove the generalization of Lemma 2.4 to se
ond-order tree sub-

stitution. Intuitively we now have to take into a

ount, for a node u of the tree t,

how many times it is 
opied by the appli
ation of the se
ond-order tree substitution

� = [[�

1

 s

1

; : : : ; �

n

 s

n

℄℄: for ea
h �

i

that o

urs at a proper an
estor u

0

of u, u is in

some subtree t=u

0

j of u

0

; thus, repla
ing �

i

by s

i

generates #

y

j

(s

i

) 
opies of t=u

0

j. Hen
e,

the produ
t of these numbers #

y

j

(s

i

), for all proper an
estors u

0

, determines the number

of 
opies of u in t�. In the lemma this produ
t is denoted

Q

F

�

t;u

, where the family F

�

t;u

of numbers is de�ned as follows.

De�nition 2.5 (the family F

�

t;u

)

Let � be a ranked alphabet and let � = [[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ be a se
ond-order tree sub-

stitution over �. For every t 2 T

�

and u 2 V (t), F

�

t;u

is the family ff

u

0

g

u

0

proper an
estor of u

where

f

u

0

=

�

1 if t[u

0

℄ 62 f�

1

; : : : ; �

n

g

#

y

j

(s

i

) if t[u

0

℄ = �

i

; i 2 [n℄; and u = u

0

ju

00

with j � 1; u

00

2 N

�

:

Note that, as usual, if F

�

t;u

is empty (i.e., u = ") then

Q

F

�

t;u

= 1.

Lemma 2.6 Let � be a ranked alphabet and let � = [[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ be a

se
ond-order tree substitution over �. For every � 2 � and t 2 T

�

,

#

�

(t�) = S

1

+ S

2

;

where

S

1

=

X

u2V

�

(t)

Y

F

�

t;u

if � 62 f�

1

; : : : ; �

n

g and otherwise S

1

= 0;

S

2

=

X

u2V

�

i

(t);i2[n℄

#

�

(s

i

) �

Y

F

�

t;u

if � 62 Y and otherwise S

2

= 0:
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Proof. Denote f�

1

; : : : ; �

n

g by �

n

. Let O

"

= V

�

(t) \ f"g, O = V

�

(t) � f"g, and for

i 2 [n℄, O

";i

= V

�

i

(t) \ f"g and O

i

= V

�

i

(t) � f"g. Clearly, S

1

= T

1

+ S

0

1

, where for

� 62 �

n

, T

1

=

P

u2O

"

Q

F

�

t;u

and S

0

1

=

P

u2O

Q

F

�

t;u

and otherwise T

1

= 0 and S

0

1

= 0.

Similarly, S

2

= T

2

+ S

0

2

, where for � 62 Y , T

2

=

P

u2O

";i

;i2[n℄

#

�

(s

i

) �

Q

F

�

t;u

and S

0

2

=

P

u2O

i

;i2[n℄

#

�

(s

i

) �

Q

F

�

t;u

and otherwise T

2

= 0 and S

0

2

= 0.

The proof that S

1

+ S

2

equals #

�

(t�) is by indu
tion on the stru
ture of t. Let t =

�

0

(t

1

; : : : ; t

k

) with �

0

2 �

(k)

, k � 0, and t

1

; : : : ; t

k

2 T

�

.

Case 1: �

0

2 �� �

n

.

Then t["℄ 62 �

n

and hen
e, for every j 2 [k℄ and v 2 V (t

j

),

Q

F

�

t;jv

=

Q

F

�

t

j

;v

. Sin
e

O =

S

j2[k℄

fjv j v 2 V

�

(t

j

)g, it follows that

P

u2O

Q

F

�

t;u

equals

P

v2V

�

(t

j

);j2[k℄

Q

F

�

t

j

;v

and

similarly for O

i

. We 
an apply the indu
tion hypothesis for t

j

to S

1;j

+S

2;j

, where S

1;j

=

P

v2V

�

(t

j

)

Q

F

�

t

j

;v

if � 62 �

n

and otherwise S

1;j

= 0, and S

2;j

=

P

v2V

�

i

(t

j

);i2[n℄

#

�

(s

i

) �

Q

F

�

t

j

;v

if � 62 Y and otherwise S

2;j

= 0. Sin
e O

";i

= ? we get that T

2

= 0 and hen
e

S

1

+ S

2

= T

1

+

X

j2[k℄

#

�

(t

j

�):

Now T

1

equals 1 if �

0

= � and 0 otherwise. By the de�nition of #

�

this means that the

above is equal to #

�

(�

0

(t

1

�; : : : ; t

k

�)). This equals #

�

(t�), by the de�nition of se
ond-

order tree substitution.

Case 2: �

0

= �

i

for some i 2 [n℄.

For every j 2 [k℄ and v 2 V (t

j

),

Q

F

�

t;jv

= #

y

j

(s

i

)�

Q

F

�

t

j

;v

. Thus, S

0

1

=

P

j2[k℄

#

y

j

(s

i

)�S

1;j

and S

0

2

=

P

j2[k℄

#

y

j

(s

i

) � S

2;j

. By indu
tion, S

1;j

+ S

2;j

= #

�

(t

j

�). Hen
e S

0

1

+ S

0

2

=

P

j2[k℄

#

y

j

(s

i

) � #

�

(t

j

�). Now T

1

= 0, and if � 62 Y then T

2

= #

�

(s

i

) and otherwise

T

2

= 0. We 
an apply Lemma 2.4 to T

1

+T

2

+S

0

1

+S

0

2

(with S = T

2

) to obtain #

�

(s

i

[y

j

 

t

j

� j j 2 [k℄℄) whi
h equals #

�

(t�) by the de�nition of se
ond-order tree substitution. 2

Re
all from Se
tion 2.2 that the se
ond-order tree substitution � = [[�

1

 s

1

; : : : ; �

n

 s

n

℄℄

is nondeleting if ea
h s

i


ontains at least one o

urren
e of y

j

for every j 2 [rank

�

(�

i

)℄, and

nonerasing if ea
h s

i


ontains at least one symbol in �� Y . We 
an now use Lemma 2.6

to prove that if � is produ
tive, i.e., both nondeleting and nonerasing, then its appli
ation

does not de
rease the size of a tree.

Lemma 2.7 Let � be a ranked alphabet and let � = [[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ be a

se
ond-order tree substitution over �. If � is produ
tive then size(t�) � size(t) for every

t 2 T

�

.

Proof. Let �

n

= f�

1

; : : : ; �

n

g. Sin
e size(t�) =

P

�2�

#

�

(t�), we 
an apply Lemma 2.6

to obtain

P

�2�

S

1

+

P

�2�

S

2

, where S

1

and S

2

are as in Lemma 2.6.

Sin
e � is nondeleting, for every u 2 V

�

(t),

Q

F

�

t;u

� 1. Thus

size(t�) �

X

�2���

n

;u2V

�

(t)

1 +

X

u2V

�

i

(t);i2[n℄

X

�2��Y

#

�

(s

i

):
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Using the fa
t that � is nonerasing, we get size(t�) �

P

�2���

n

;u2V

�

(t)

1+

P

�2�

n

;u2V

�

(t)

1

=

P

�2�;u2V

�

(t)

1 = size(t). 2

2.4 Tree Languages

Let � be a ranked alphabet. A subset L of T

�

is 
alled a tree language.

A �nite state tree automaton is a tuple (P;�; h), where P is a �nite set of states, � is a

ranked alphabet of input symbols su
h that � is disjoint with P , and h is a 
olle
tion of

mappings su
h that for every � 2 �

(k)

, h

�

is a mapping from P

k

to P . The extension

~

h of h

to a mapping from T

�

to P is re
ursively de�ned as

~

h(�(s

1

; : : : ; s

k

)) = h

�

(

~

h(s

1

); : : : ;

~

h(s

k

))

for every � 2 �

(k)

, k � 0, and s

1

; : : : ; s

k

2 T

�

. Throughout this paper we simply write

h(s) to mean

~

h(s), for s 2 T

�

. For p 2 P the tree language fs 2 T

�

j h(s) = pg = h

�1

(p)

is denoted by L

p

.

A tree language L is regular (or, re
ognizable) if there is a �nite state tree automaton

(P;�; h) and a subset F of P su
h that L = fs 2 T

�

j h(s) 2 Fg. Note that, in parti
ular,

L

p

is regular for every p 2 P .

2.5 Tree Translations

Let � and � be ranked alphabets. A (total) fun
tion � : T

�

! T

�

is 
alled a tree

translation or simply translation. For a tree language L � T

�

, �(L) denotes the set

ft 2 T

�

j t = �(s) for some s 2 Lg. For a 
lass T of tree translations and a 
lass L of tree

languages, T (L) denotes the 
lass of tree languages f�(L) j � 2 T ; L 2 Lg.

A tree translation � : T

�

! T

�

is of linear size in
rease (for short, lsi) if there is a 
 2 N

su
h that size(�(s)) � 
 � size(s) for all s 2 T

�

. The 
lass of all tree translations of linear

size in
rease is denoted LSI.

We will now shortly de�ne MSO de�nability of a tree translation. This de�nition will,

however, not be needed in the paper. Let k be the maximal rank of a symbol in �. The

tree translation � : T

�

! T

�

is MSO de�nable (i.e., de�nable in monadi
 se
ond-order

logi
) if there is an MSO tree transdu
er whi
h realizes � , that is, if there exist a �nite

set C and MSO(�)-formulas �




(x),  

Æ;


(x), and �

i;
;d

(x; y), with 
; d 2 C, Æ 2 �, and

1 � i � k, su
h that for every s 2 T

�

, �(s) 2 T

�

is isomorphi
 to the tree t with set of

nodes f(
; x) 2 C � V (s) j s j= �




(x)g, node (
; x) has label Æ i� s j=  

Æ;


(x), and (d; y)

is the i-th 
hild of (
; x) i� s j= �

i;
;d

(x; y). An MSO(�)-formula is a formula of monadi


se
ond-order logi
 that uses atomi
 formulas lab

�

(x) and 
hild

i

(x; y), with � 2 � and

i � 1, to express that x has label � and y is the i-th 
hild of x, respe
tively. The 
lass of

all MSO de�nable tree translations is denoted MSOTT. For examples and more details,

see, e.g., [Cou94, BE00℄. Note that, by de�nition, every MSO de�nable tree translation �

is of linear size in
rease: size(�(s)) � jCj � size(s). Thus, MSOTT � LSI.
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3 Ma
ro Tree Transdu
ers

In this se
tion we re
all the de�nition of ma
ro tree transdu
ers and some basi
 lemmas

about them. Furthermore, we 
onsider two sub
lasses of ma
ro tree transdu
ers whi
h are

de�ned by 
ertain (stati
) restri
tions on the rules of the transdu
ers.

3.1 Basi
 De�nitions and Results

A ma
ro tree transdu
er is a syntax-dire
ted translation devi
e in whi
h the translation of

an input tree may depend on its subtrees, represented by input variables x

1

; x

2

; : : : , and

on its 
ontext, represented by parameters y

1

; y

2

; : : : . We only 
onsider total deterministi


ma
ro tree transdu
ers. For te
hni
al reasons we add the feature of regular look-ahead to

them (this does not 
hange the 
lass of translations, 
f. Theorem 4.21 of [EV85℄).

De�nition 3.1 (ma
ro tree transdu
er with regular look-ahead)

A ma
ro tree transdu
er with regular look-ahead (for short, MTT

R

) is a tuple M =

(Q;P;�;�; q

0

; R; h), where Q is a ranked alphabet of states, � and � are ranked al-

phabets of input and output symbols, respe
tively, � \ Y = ?, q

0

2 Q

(0)

is the initial

state, (P;�; h) is a �nite state tree automaton, 
alled the look-ahead automaton of M,

and R is a �nite set of rules of the following form. For every q 2 Q

(m)

, � 2 �

(k)

, and

p

1

; : : : ; p

k

2 P with m; k � 0 there is exa
tly one rule of the form

hq; �(x

1

; : : : ; x

k

)i(y

1

; : : : ; y

m

)! � hp

1

; : : : ; p

k

i (�)

in R, where � 2 T

hQ;X

k

i[�

(Y

m

). 2

A rule r of the form (�) is 
alled the (q; �; hp

1

; : : : ; p

k

i)-rule and its right-hand side � is

denoted by rhs(r) or by rhs

M

(q; �; hp

1

; : : : ; p

k

i); it is also 
alled a q-rule, a �-rule, or a

(q; �)-rule. A top-down tree transdu
er with regular look-ahead (for short, T

R

) is an MTT

R

all states of whi
h are of rank zero. If the look-ahead automaton is trivial, i.e., P = fpg

and h

�

(p; : : : ; p) = p for all � 2 �, then M is 
alled a ma
ro tree transdu
er (for short,

MTT) and if M is a T

R

, then M is 
alled a top-down tree transdu
er. In su
h 
ases we

omit the look-ahead automaton and simply denote M by (Q;�;�; q

0

; R); we also omit

the look-ahead part hp

1

; : : : ; p

k

i in every rule (�).

We now de�ne the derivation relation indu
ed by an MTT

R

M . Re
all from Se
tion 2.2

that in a se
ond-order tree substitution hq

0

; x

i

i  hq

0

; s

i

i is a shorthand for hq

0

; x

i

i  

hq

0

; s

i

i(y

1

; : : : ; y

n

), where n is the rank of q

0

.

De�nition 3.2 (derivation relation, translation)

LetM = (Q;P;�;�; q

0

; R; h) be an MTT

R

. The derivation relation indu
ed by M, denoted

by )

M

, is the binary relation on T

hQ;T

�

i[�

(Y ) su
h that, for every �

1

; �

2

2 T

hQ;T

�

i[�

(Y ),

�

1

)

M

�

2

if and only if there exist u 2 V (�

1

), � 2 �

(k)

, s

1

; : : : ; s

k

2 T

�

, q 2 Q

(m)

,

and t

1

; : : : ; t

m

2 T

hQ;T

�

i[�

(Y ) su
h that �

1

=u = hq; �(s

1

; : : : ; s

k

)i(t

1

; : : : ; t

m

) and �

2

equals

�

1

[u �℄ with

� = rhs

M

(q; �; hh(s

1

); : : : ; h(s

k

)i)[[hq

0

; x

i

i  hq

0

; s

i

i j hq

0

; x

i

i 2 hQ;X

k

i℄℄[y

j

 t

j

j j 2 [m℄℄:

11



The translation realized by M, denoted by �

M

, is the total fun
tion

f(s; t) 2 T

�

� T

�

j hq

0

; si )

�

M

tg:

2

An MTT

R

is of linear size in
rease (for short, lsi) if �

M

is of linear size in
rease (
f.

Se
tion 2.5).

Two MTT

R

s M and M

0

are equivalent, if �

M

= �

M

0

. The 
lass of all translations whi
h


an be realized by MTTs and MTT

R

s is denoted by MTT and MTT

R

, respe
tively. The


lass of all translations whi
h 
an be realized by T

R

s is denoted by T

R

.

Lemma 3.3 (Theorem 4.21 of [EV85℄) MTT

R

= MTT (e�e
tively).

As mentioned in the Introdu
tion, ma
ro tree translations 
an be of double exponential

size in
rease. This is shown in the following example.

Example 3.4 LetM = (Q;�;�; q

0

; R) be the MTT withQ = fq

(0)

0

; q

(1)

g, � = f�

(1)

; �

(0)

g,

� = fÆ

(2)

; �

(0)

g, and R 
onsisting of the following rules.

hq

0

; �(x

1

)i ! hq; x

1

i(�)

hq

0

; �i ! �

hq; �(x

1

)i(y

1

) ! hq; x

1

i(hq; x

1

i(y

1

))

hq; �i(y

1

) ! Æ(y

1

; y

1

)

The MTT M translates � into �, and for n � 0 it translates the input tree s

n

= �(�

n

(�))

into a full binary tree of height 2

n

(i.e., a tree with 2

2

n

leaves): First hq

0

; s

n

i )

M

hq; �

n

(�)i(�). Then, due to the 
opying of states of the (q; �)-rule, hq; �

n

(�)i(�) is trans-

lated into the monadi
 tree hq; �i(hq; �i(� � � hq; �i(�) : : : )) 
ontaining 2

n

o

urren
es of

hq; �i. At last, due to the 
opying of parameters of the (q; �)-rule, this monadi
 tree is

translated into a full binary tree of height 2

n

. Thus, the input tree s

n

of size n + 2 is

translated into a tree of size 2

2

n

+1

�1 and hen
e the translation realized byM is of double

exponential size in
rease. 2

Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. For every q 2 Q

(m)

and s 2 T

�

let

the q-translation of s, denoted by M

q

(s), be the unique tree t 2 T

�

(Y

m

) su
h that

hq; si(y

1

; : : : ; y

m

) )

�

M

t. Note that, for s 2 T

�

, �

M

(s) = M

q

0

(s). The q-translations

of trees in T

�


an be 
hara
terized indu
tively as follows, using se
ond-order tree substi-

tution.

Lemma 3.5 (Lemma 4.8 of [EV94℄) Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. For

every q 2 Q, � 2 �

(k)

, k � 0, and s

1

; : : : ; s

k

2 T

�

,

M

q

(�(s

1

; : : : ; s

k

)) = rhs

M

(q; �; hh(s

1

); : : : ; h(s

k

)i)[[hq

0

; x

i

i  M

q

0

(s

i

) j hq

0

; x

i

i 2 hQ;X

k

i℄℄:

The following two results are often used in this paper.
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Lemma 3.6 (Lemma 7.4(1) of [EV85℄) Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. For

every q 2 Q

(m)

, m � 0, and regular tree language L � T

�

(Y

m

), M

�1

q

(L) is regular and


an be de�ned e�e
tively.

Proof. In Lemma 7.4(1) of [EV85℄ the result is stated for the 
ase m = 0. The general


ase 
an be redu
ed to this 
ase as follows. For every r 2 Q let r be a symbol not in �.

De�ne the MTT

R

M = (Q;P;� [ fr

(1)

j r 2 Qg;� [ fy

(0)

j

j j 2 [m℄g; q

0

; R [ R; h [ h)

where m is the maximal rank of a state of M . For every r 2 Q

(n)

, n � 0, and p 2 P let

h

r

(p) = p, and let the rule

hq

0

; r(x

1

)i ! hr; x

1

i(y

1

; : : : ; y

n

) hpi

be in R. Clearly, �

M

(r(s)) = M

r

(s)[y

j

 y

j

j j 2 [n℄℄ for every s 2 T

�

. Let L = ft[y

j

 

y

j

j j 2 [m℄℄ j t 2 Lg. By Lemma 7.4(1) of [EV85℄, �

�1

M

(L) is (e�e
tively) regular. Then

also �

�1

M

(L) \ q(T

�

) = q(M

�1

q

(L)) is (e�e
tively) regular (be
ause regular tree languages

are e�e
tively 
losed under interse
tion, 
f., e.g., Theorem II.4.2 of [GS84℄). Sin
e there is

a linear top-down tree transdu
er that translates ea
h tree q(t) into the tree t, and regular

tree languages are (e�e
tively) 
losed under linear top-down tree translations (see, e.g.,

Corollary IV.6.6 of [GS84℄), we obtain that M

�1

q

(L) is (e�e
tively) regular. 2

The next lemma follows from Theorem 4.5 of [DE98℄ and Theorem 7.3 of [EV85℄ (and

the obvious fa
t that every regular tree language is the range of a nondeterministi
 top-

down tree transdu
er, 
f., e.g., Proposition 20.1(ii) of [GS97℄). Note that we have not

de�ned nondeterministi
 MTT

R

s and that we need to apply Lemma 3.7 only on
e to a

nondeterministi
 (top-down) tree transdu
er (in Lemma 5.7).

Lemma 3.7 (Theorem 4.5 of [DE98℄) For a regular tree language L and a �nite num-

ber of (possibly nondeterministi
) MTT

R

s M

1

; : : : ;M

n

it is de
idable whether or not

�

M

n

(�

M

n�1

(� � � �

M

1

(L) � � � )) is �nite. Moreover, if it is �nite, it 
an be 
onstru
ted.

3.2 Sub
lasses De�ned by Restri
tions on the Parameters

We now de�ne two restri
tions on the o

urren
es of parameters in the right-hand sides

of the rules of an MTT

R

M , and then show that these restri
tions 
arry over to the

q-translations M

q

(s) of M .

De�nition 3.8 (nondeleting, nonerasing, produ
tive)

LetM = (Q;P;�;�; q

0

; R; h) be an MTT

R

. If for every q 2 Q

(m)

, m � 1, � 2 �

(k)

, k � 0,

p

1

; : : : ; p

k

2 P , and j 2 [m℄,

� y

j

o

urs at least on
e in rhs

M

(q; �; hp

1

; : : : ; p

k

i), then M is nondeleting

� rhs

M

(q; �; hp

1

; : : : ; p

k

i) 62 Y , then M is nonerasing.

If M is both nondeleting and nonerasing, then it is produ
tive. 2
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Lemma 3.9 (Lemma 7.11 of [EM99℄) For every MTT

R

M there is a produ
tive MTT

R

M

0

equivalent to M .

The following lemma shows that the restri
tions nondeleting and nonerasing 
arry over

from the right-hand sides of an MTT

R

to the q-translations ofM . In Lemma 6.7 of [EM99℄

a similar result is proved: if in the right-hand side of every q-rule ea
h parameter y

j

of q

o

urs exa
tly on
e, then y

j

o

urs exa
tly on
e in M

q

(s).

Lemma 3.10 Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. For every q 2 Q

(m)

, m � 0,

j 2 [m℄, and s 2 T

�

,

(1) if M is nondeleting, then #

y

j

(M

q

(s)) � 1, and

(2) if M is nonerasing, then M

q

(s) 62 Y .

Proof. The proof is by indu
tion on the stru
ture of s. Let s = �(s

1

; : : : ; s

k

) with k � 0

and s

1

; : : : ; s

k

2 T

�

. Denote by t the tree rhs

M

(q; �; hh(s

1

); : : : ; h(s

k

)i). By Lemma 3.5,

M

q

(s) = t� with � = [[hq

0

; x

i

i  M

q

0

(s

i

) j hq

0

; x

i

i 2 hQ;X

k

i℄℄.

(1) By indu
tion #

y

�

(M

q

0

(s

i

)) � 1 for all hq

0

; x

i

i 2 hQ;X

k

i

(n)

and � 2 [n℄, i.e., the

substitution � is nondeleting. Sin
eM is nondeleting, #

y

j

(t) � 1 and thus, by Lemma 2.1,

#

y

j

(t�) � 1.

(2) By indu
tion M

q

0

(s

i

) 62 Y for all hq

0

; x

i

i 2 hQ;X

k

i, i.e., the substitution � is noneras-

ing. Sin
e M is nonerasing, t 62 Y and thus, by Lemma 2.2, t� 62 Y . 2

4 Finite Copying Restri
tions

In this se
tion we de�ne various restri
tions on the 
opying that is performed by an MTT

R

.

First, in Se
tion 4.1, 
opying restri
tions for the input variables and for the parameters

are de�ned. Both together form the `�nite 
opying' restri
tion whi
h was introdu
ed

in [EM99℄; there it was shown (in Theorem 7.1) that the translations realized by �nite


opying MTT

R

s are pre
isely the MSO de�nable tree translations (
f. Se
tion 2.5). Sin
e,

by their de�nition, the MSO de�nable tree translations are of linear size in
rease, this

means that �nite 
opying MTT

R

s are of linear size in
rease. To keep this paper self-


ontained, we give, in Se
tion 4.3, a dire
t proof of this fa
t whi
h is based on the notion

of `�nite 
ontribution'. Intuitively, an MTT

R

is �nite 
ontribution if there is a bound

on the number of output nodes 
ontributed by a single node u of the input tree. In the

terminology of [vDKT96℄, the node u is 
alled the `origin' of the nodes of the output tree

that it 
ontributes; so, �nite 
ontribution means that there is a bound on the number of

nodes that have the same origin. In [vDKT96℄ it is shown that for a primitive re
ursive

s
heme, whi
h is a ma
ro tree transdu
er, every node of an output tree has exa
tly one

origin.

We also de�ne, in Se
tion 4.2, a restri
tion on the 
opying that o

urs on one path of the

output tree, i.e., a restri
tion on the amount of nesting of states that o

urs during the

14



derivation of an MTT

R

. This notion will play an essential role in Se
tion 6 where it is

proved that if the translation of an MTT

R

is of linear size in
rease then it 
an also be

realized by a �nite 
opying MTT

R

(and hen
e is MSO de�nable).

4.1 Finite Copying in the Input and in the Parameters

Here we re
all the de�nition of �nite 
opying MTT

R

s from [EM99℄ and show that for an

MTT

R

it is de
idable whether or not it is �nite 
opying. The �nite 
opying restri
tion

was introdu
ed in [AU71℄ for generalized syntax-dire
ted translation s
hemes. For top-

down tree transdu
ers it was investigated in [ERS80℄. A top-down tree transdu
er is �nite


opying, if every subtree of the input tree is translated by boundedly many states, i.e., the

length of the state sequen
e is bounded, where the state sequen
e at a subtree s=u 
onsists

of the states that translate s=u. For a ma
ro tree transdu
er this restri
tion is 
alled �nite


opying in the input (f
i) and we additionally have a restri
tion for the parameters, 
alled

�nite 
opying in the parameters (f
p). The f
p restri
tion requires that, for every state q

and input tree s, the number of parameters that o

ur in the q-translation M

q

(s) of s is

bounded.

In order to de�ne the state sequen
e of a tree s at the node u of s, we �rst extend an MTT

R

in su
h a way that the output tree t, for the input tree s[u p℄, 
ontains the states whi
h

pro
ess the subtree s=u (assuming that p = h(s=u)). More pre
isely, t 
ontains hhq; pii if

the state q translates s=u. Analogous to the de�nition of h�; Ai let, for a ranked set �

and a set A, hh�; Aii be the ranked set of all symbols hh�; aii of rank m for � 2 �

(m)

and

a 2 A.

De�nition 4.1 (De�nition 3.5 of [EM99℄: extension)

Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. The extension of M , denoted by

^

M , is

the MTT

R

(Q;P;

^

�;

^

�; q

0

;

^

R;

^

h), where

^

� = � [ fp

(0)

j p 2 Pg,

^

� = � [ hhQ;P ii,

^

R =

R [ fhq; pi(y

1

; : : : ; y

m

)! hhq; pii(y

1

; : : : ; y

m

) j hq; pi 2 hQ;P i

(m)

g,

^

h

p

() = p for p 2 P , and

^

h

�

(p

1

; : : : ; p

k

) = h

�

(p

1

; : : : ; p

k

) for � 2 �

(k)

, k � 0, and p

1

; : : : ; p

k

2 P . 2

Note that ifM is nondeleting or nonerasing, then so is

^

M . Before state sequen
es and the

f
i and f
p properties are de�ned, we present two useful lemmas about the q-translations

of

^

M . The �rst lemma shows that the q-translation of an input tree s 
an be obtained by

repla
ing in the q-translation of the \
ontext" of a node u of s,

^

M

q

(s[u p℄), ea
h hhq

0

; pii

by the q

0

-translation M

q

0

(s=u) of the subtree of s at u. In fa
t, the lemma is stated in the

more general 
ase that s=u may 
ontain o

urren
es of symbols in P . The lemma 
an be

seen as a generalization of Lemma 3.5 from the appli
ation of a rule at the root of s, to

the translation of the 
ontext of an arbitrary node u.

Lemma 4.2 (Lemma 3.6 of [EM99℄) Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

and

^

M = (Q;P;

^

�;

^

�; q

0

;

^

R;

^

h) its extension. Let q 2 Q, s 2 T

^

�

, u 2 V (s), and p =

^

h(s=u),

su
h that s[u p℄ 
ontains exa
tly one o

urren
e of an element of P . Then

^

M

q

(s) =

^

M

q

(s[u p℄)[[hhq

0

; pii  

^

M

q

0

(s=u) j q

0

2 Q℄℄:
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The next lemma is obtained by appli
ation of Lemma 3.5 to the

^

M

q

0

(s=u) in the substitu-

tion of Lemma 4.2. It shows how to express the translation of the 
ontext of a 
hild node

in terms of the translation of the 
ontext of its parent and the translations of the subtrees

of its siblings.

Lemma 4.3 Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. Let q 2 Q, s 2 T

�

, and

u 2 V (s). If s[u℄ = � 2 �

(k)

, i 2 [k℄, p

i

2 P , p

j

= h(s=uj) for every j 2 [k℄ � fig, and

p = h

�

(p

1

; : : : ; p

k

), then

^

M

q

(s[ui p

i

℄) =

^

M

q

(s[u p℄)[[rhs℄℄[[::℄℄[[i℄℄;

where [[rhs℄℄ = [[hhq

0

; pii  rhs

M

(q

0

; �; hp

1

; : : : ; p

k

i) j q

0

2 Q℄℄;

[[::℄℄ = [[hr; x

j

i  M

r

(s=uj) j r 2 Q; j 2 [k℄� fig℄℄; and

[[i℄℄ = [[hr; x

i

i  hhr; p

i

ii j r 2 Q℄℄:

Proof. Let s

0

= s[ui  p

i

℄. Sin
e p =

^

h(s

0

=u) and s

0

[u  p℄ 
ontains exa
tly one

o

urren
e of an element of P , we 
an apply Lemma 4.2 to get

^

M

q

(s

0

) =

^

M

q

(s[u  

p℄)[[hhq

0

; pii  

^

M

q

0

(s

0

=u) j q

0

2 Q℄℄. Now s

0

=u = �(s

1

; : : : ; s

k

) with s

i

= p

i

and s

j

= s=uj

for every j 2 [k℄ � fig. By appli
ation of Lemma 3.5 to

^

M

q

0

(s

0

=u) the above equals

^

M

q

(s[u  p℄)[[hhq

0

; pii  rhs

M

(q

0

; �; hp

1

; : : : ; p

k

i)[[: : :℄℄ j q

0

2 Q℄℄, where [[: : :℄℄ denotes

[[hr; x

j

i  

^

M

r

(s

j

) j r 2 Q; j 2 [k℄℄℄. We now use the asso
iativity of se
ond-order tree

substitution, 
f. Se
tion 2.2. Sin
e

^

M

q

(s[u p℄) does not 
ontain elements of hQ;X

k

i we


an move [[: : :℄℄ out of the substitution to get

^

M

q

(s[u p℄)[[rhs℄℄[[: : :℄℄. For every j 2 [k℄�fig,

^

M

r

(s

j

) =M

r

(s

j

) does not 
ontain elements of hQ; fx

i

gi; moreover,

^

M

r

(s

i

) = hhr; p

i

ii. Thus

we 
an write [[: : :℄℄ as [[::℄℄[[i℄℄. 2

We now turn to the de�nition of state sequen
e and the �nite 
opying properties. Re
all

that the pre-order of the nodes of a tree is denoted by <.

De�nition 4.4 (De�nition 3.7 of [EM99℄: state sequen
e)

Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

, s 2 T

�

, and u 2 V (s). Let p = h(s=u) and

� =

^

M

q

0

(s[u  p℄) 2 T

hhQ;fpgii[�

, and let fv 2 V (�) j �[v℄ 2 hhQ; fpgiig = fv

1

; : : : ; v

n

g

with v

1

< � � � < v

n

. The state sequen
e of s at u, denoted by sts

M

(s; u), is the sequen
e of

states q

1

� � � q

n

su
h that �[v

i

℄ = hhq

i

; pii for every i 2 [n℄. 2

Note that jsts

M

(s; u)j = #

hhQ;fpgii

(

^

M

q

0

(s[u p℄)), where p = h(s=u).

De�nition 4.5 (De�nition 6.1 of [EM99℄: �nite 
opying in the input)

Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. Then M is �nite 
opying in the input (for

short, f
i), if there is an N 2 N su
h that for every s 2 T

�

and u 2 V (s): jsts

M

(s; u)j � N .

The number N is an input 
opying bound for M . 2

De�nition 4.6 (De�nition 6.2 of [EM99℄: �nite 
opying in the parameters)

Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. Then M is �nite 
opying in the parameters

(for short, f
p), if there is an N 2 N su
h that for every q 2 Q

(m)

, s 2 T

�

, and j 2 [m℄,

#

y

j

(M

q

(s)) � N . The number N is a parameter 
opying bound for M . 2
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Note that the MTT M of Example 3.4 is neither f
i nor f
p. There is exponential state


opying: the state sequen
e sts

M

(s

n

; 11

n

) of s

n

= �(�

n

(�)) at 11

n

equals q

2

n

, and there

is double exponential parameter 
opying: #

y

1

(M

q

(�

n

(�))) = 2

2

n

.

The following lemma shows that ifM is �nite 
opying in the parameters, i.e., if the number

of o

urren
es of y

j

in M

q

(s) is bounded by some N , for all states q and parameters y

j

of

q, then also for the q-translations of

^

M of input trees s[u p℄, the number of o

urren
es

of y

j

is bounded by N . However, we must assume that M is nondeleting.

Lemma 4.7 Let M = (Q;P;�;�; q

0

; R; h) be a nondeleting f
p MTT

R

and let N be a

parameter 
opying bound for M . For every q 2 Q

(m)

, j 2 [m℄, s 2 T

�

, and u 2 V (s),

#

y

j

(

^

M

q

(s[u h(s=u)℄)) � N .

Proof. Let p = h(s=u). By Lemma 4.2, M

q

(s) = �[[: : :℄℄ with � =

^

M

q

(s[u  p℄) and

[[: : :℄℄ = [[hhq

0

; pii  M

q

0

(s=u) j q

0

2 Q℄℄. By Lemma 2.6, #

y

j

(�[[: : :℄℄) =

P

v2V

y

j

(�)

Q

F

[[:::℄℄

�;v

.

Let V

y

j

(�) = fv

1

; : : : ; v

n

g. Then the above sum equals

Y

F

[[:::℄℄

�;v

1

+ � � �+

Y

F

[[:::℄℄

�;v

n

= #

y

j

(M

q

(s)) � N;

whi
h implies that n = #

y

j

(�) � N be
ause

Q

F

[[:::℄℄

�;v

i

� 1 for every i 2 [n℄, by the fa
t that

M is nondeleting, and hen
e, by Lemma 3.10(1), #

y

k

(M

q

0

(s=u)) � 1 for every q

0

2 Q

(m

0

)

and k 2 [m

0

℄. 2

Finally, the 
ombination of f
i and f
p yields the �nite 
opying property.

De�nition 4.8 (�nite 
opying)

An MTT

R

is �nite 
opying (for short, f
), if it is both f
i and f
p.

We use the subs
ripts `f
i', `f
p', or `f
' for 
lasses of translations, to denote that the


orresponding MTT

R

s are f
i, f
p, or f
, respe
tively. Thus MTT

R

f


= MTT

R

f
i;f
p

. The

main result of [EM99℄ is that the translations of �nite 
opying MTT

R

s are pre
isely the

MSO de�nable tree translations (see Se
tion 2.5).

Lemma 4.9 (Theorem 7.1 of [EM99℄) MSOTT = MTT

R

f


(e�e
tively).

The main results of this paper are: (i) the translations of �nite 
opying MTT

R

s are

pre
isely the translations of MTT

R

s that are of linear size in
rease (i.e., MTT

R

\ LSI =

MTT

R

f


), and (ii) it is de
idable for an MTT

R

M whether or not there exists an equivalent

�nite 
opying MTT

R

(i.e., whether �

M

2 MTT

R

f


). We now show that it is de
idable for

an MTT

R

M whether or not M is �nite 
opying. The proof is based on Lemma 3.7.

Lemma 4.10 It is de
idable for an MTT

R

M

(i) whether or not M is f
i, and
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(ii) whether or not M is f
p,

and if so, a 
opying bound 
an be obtained e�e
tively.

Proof. Let M = (Q;P;�;�; q

0

; R; h).

(i) De�ne the MTT N = (Q

0

;� [ hhQ;P ii;�; r

0

; R

0

) with Q

0

= fr

(0)

0

; r

(1)

g and � = fq

(1)

j

q 2 Qg [ fe

(0)

g. For every k � 0, hhq; pii 2 hhQ;P ii

(k)

, and Æ 2 �

(k)

let the following rules

be in R

0

.

hr

0

; hhq; pii(x

1

; : : : ; x

k

)i ! q(hr; x

1

i(hr; x

2

i(� � � hr; x

k

i(e) � � � )))

hr

0

; Æ(x

1

; : : : ; x

k

)i ! hr; x

1

i(hr; x

2

i(� � � hr; x

k

i(e) � � � ))

hr; hhq; pii(x

1

; : : : ; x

k

)i(y

1

) ! q(hr; x

1

i(hr; x

2

i(� � � hr; x

k

i(y

1

) � � � )))

hr; Æ(x

1

; : : : ; x

k

)i(y

1

) ! hr; x

1

i(hr; x

2

i(� � � hr; x

k

i(y

1

) � � � ))

Then, for every s 2 T

�

and u 2 V (s), lpath(�

N

(�

^

M

(s[u  h(s=u)℄)); v) = sts

M

(s; u)e,

where v is the unique leaf of �

N

(�

^

M

(s[u h(s=u)℄)).

Let L be the tree language fs[u  h(s=u)℄ j s 2 T

�

; u 2 V (s)g. Then M is f
i i�

K = �

N

(�

^

M

(L)) is �nite. Note that L = fs 2 T

�

(P

0

) j #

P

0

(s) = 1g where P

0

= fp 2

P j L

p

6= ?g; hen
e L is (e�e
tively) regular. Thus, �niteness of K 
an be de
ided by

Lemma 3.7; in 
ase of �niteness, K 
an be 
onstru
ted and an input 
opying bound for

M is maxfsize(t) j t 2 Kg � 1.

(ii) Let M be the MTT

R

de�ned in the proof of Lemma 3.6 and let � = � [ fy

(0)

j

j

j 2 [m℄g be its output alphabet, where m is the maximal rank of a state of M . Let

N = (fr

(0)

0

; r

(1)

g;�;�; r

0

; R

N

) be the MTT with � = fy

(1)

j

j j 2 [m℄g [ fe

(0)

g. For

Æ 2 �

(k)

with k � 0 the (r

0

; Æ)- and (r; Æ)-rules are de�ned as for N in (i). For j 2 [m℄ let

the rules hr

0

; y

j

i ! y

j

(e) and hr; y

j

i(y

1

)! y

j

(y

1

) be in R

N

.

Clearly, for every q 2 Q and s 2 T

�

, size(�

N

(�

M

(q(s))) = 1 + #

Y

(M

q

(s)). Now, for the

regular tree language L = fq(s) j q 2 Q; s 2 T

�

g: M is f
p i� K = �

N

(�

M

(L)) is �nite.

As in (i), this 
an be de
ided by Lemma 3.7; in 
ase of �niteness, K 
an be 
onstru
ted

and a parameter 
opying bound for M is maxfsize(t) j t 2 Kg � 1. 2

In fa
t, the e�e
tiveness of Lemma 4.9 was not 
ompletely proved in [EM99℄, but with

Lemma 4.10 it 
an be shown as follows: given an MTT

R

f


M we 
an use Lemma 4.10 to

obtain a parameter 
opying boundN forM . Then, givenM and N we 
an, by the proof of

Lemma 6.3 of [EM99℄, 
onstru
t an MTT

R

f
i;surp

M

0

equivalent to M (where `surp' means

`single use restri
ted in the parameters'). Now, again by Lemma 4.10 we 
an determine an

input 
opying boundN forM

0

. Then, givenM

0

and N we 
an, by the proof of Lemma 6.10

of [EM99℄, 
onstru
t a single use restri
ted MTT

R

M

00

equivalent toM

0

. Now by the proofs

of Lemmas 5.9, 5.12, and 4.1 of [EM99℄, a single use restri
ted attributed tree transdu
er

with look-ahead (for short, ATT

R

) A equivalent to M

00


an be 
onstru
ted. Given A, the

proof of Lemma 7 of [BE00℄ shows how to 
onstru
t an equivalent MSO tree transdu
er.

This proves the e�e
tiveness going from MTT

R

f


to MSOTT. For the other dire
tion, that

is, starting with an MSO tree transdu
er M , we 
an pro
eed as follows: the proof of

Theorem 14 of [BE00℄ gives a 
onstru
tion of an equivalent single use restri
ted ATT

R

A.

The proofs of Lemmas 4.2 and 5.11 of [EM99℄ show how to 
onstru
t an equivalent single

use restri
ted MTT

R

M

0

. By the proof of Theorem 6.12 of [EM99℄, M

0

is �nite 
opying.
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4.2 Finite Nested Copying in the Input

Consider the translation � =

^

M

q

0

(s[u p℄) of the 
ontext of a node u of the input tree s,

where p = h(s=u). The symbols of hhQ; fpgii 
an o

ur nested in �, i.e., they 
an o

ur on

a 
ommon label path lpath(�; v) to some node v of �. Assuming that M is nondeleting,

this means that a lot of 
opies of v will be generated; namely,

Q

F

[[:::℄℄

�;v


opies, where [[: : :℄℄

repla
es hhq; pii by M

q

(s=u). Thus, a way to bound the 
opying 
arried out by M , is to

bound by some B 2 N the number of elements of hhQ; fpgii that o

ur on a label path in

�, i.e., to bound the nesting of states. This implies that the number of elements in the

family F

[[:::℄℄

�;v

is bounded by B. We 
all this property �nite nested 
opying in the input (for

short, fnest). Clearly, it is a mu
h weaker restri
tion than the f
i restri
tion. However, if

an MTT

R

is fnest and f
p, then

Q

F

[[:::℄℄

�;v

is bounded by N

B

, if N is a parameter 
opying

bound for M .

De�nition 4.11 (�nite nested 
opying in the input)

Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. Then M is �nite nested 
opying in the input

(for short, fnest), if there is a B 2 N su
h that for every s 2 T

�

, u 2 V (s), p = h(s=u),

and label path � in

^

M

q

0

(s[u  p℄), #

hhQ;fpgii

(�) � B. The number B is a nesting bound

for M . 2

We use the subs
ript `fnest' for 
lasses of translations of MTT

R

s to denote that the 
or-

responding transdu
ers are fnest. The next lemma shows that the nesting bound B also

holds for trees

^

M

q

(s[u  p℄) with s 2 L

p

0

, provided that hhq; p

0

ii is rea
hable, in the

following sense.

De�nition 4.12 (rea
hable)

Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

, q 2 Q, and p 2 P . Then, hhq; pii is rea
hable,

if there are s 2 T

�

and u 2 V (s) su
h that hhq; pii o

urs in

^

M

q

0

(s[u p℄). 2

Note that rea
hability does not require that h(s=u) = p; however, for L

p

6= ? this 
an

always be assumed (simply take s

0

= s[u t℄ for some t 2 L

p

, if h(s=u) 6= p). Note that

in that 
ase, q o

urs in the state sequen
e of s at u.

Lemma 4.13 Let M = (Q;P;�;�; q

0

; R; h) be a nondeleting fnest MTT

R

and let B be

a nesting bound for M . If hhq; pii 2 hhQ;P ii is rea
hable, then for every s 2 L

p

, u 2 V (s),

p

u

= h(s=u), and label path � in

^

M

q

(s[u p

u

℄), #

hhQ;fp

u

gii

(�) � B.

Proof. Sin
e hhq; pii is rea
hable, there are t 2 T

�

, v 2 V (t), and � 2 V

hhq;pii

(

^

M

q

0

(t[v  

p℄)). We may assume that t=v = s and hen
e t=vu = s=u. By Lemma 4.2,

^

M

q

0

(t[vu  

p

u

℄) =

^

M

q

0

(t[v  p℄)[[: : :℄℄ with [[: : :℄℄ = [[hhq

0

; pii  

^

M

q

0

(s[u  p

u

℄) j q

0

2 Q℄℄. Clearly,

lpath(

^

M

q

0

(t[v  p℄); �) = whhq; pii for some w 2 (hhQ; fpgii [�)

�

. Sin
e M is nondeleting

(and hen
e so is

^

M), the substitution [[: : :℄℄ is nondeleting by Lemma 3.10(1), and thus,

by Lemma 2.3(ii), there is a w

0

2 (hhQ; fp

u

gii [ �)

�

su
h that w

0

� is a label path in

^

M

q

0

(t[v  p℄)[[: : :℄℄, i.e., in

^

M

q

0

(t[vu  p

u

℄). Now, #

hhQ;fp

u

gii

(�) � #

hhQ;fp

u

gii

(w

0

�) whi
h

is � B, be
ause B is a nesting bound for M . 2
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u

v

Figure 1: the tree s with shaded part s=u[v

0

 p

v

℄

Consider a nondeleting MTT

R

M and an input tree s 2 T

�

. In Se
tion 6 we will often be

interested in the part of s that lies between two nodes u and v of s, where v is a des
endant

of u; this part 
an be represented by the tree s=u[v

0

 p

v

℄, where v = uv

0

and p

v

= h(s=v).

The shaded region in Fig. 1 shows su
h a part of s. In parti
ular, in Se
tion 6.2, we will need

to know, if a state q of M pro
esses this part, how many times the node v

0

is pro
essed by

a state q

0

, i.e., how many o

urren
es of hhq

0

; p

v

ii there are in the tree

^

M

q

(s=u[v

0

 p

v

℄). If

M is nondeleting and w is a node between u and v, i.e., a des
endant of u and an
estor of v,

then a lower bound for this number is given by summing for all states r, the produ
t of the

number of o

urren
es of hhr; p

w

ii in

^

M

q

(s=u[w

0

 p

w

℄) and #

hhq

0

;p

v

ii

(

^

M

r

(s=w[v

00

 p

v

℄)),

where v = wv

00

. This is intuitively true be
ause, due to nondeletion, for ea
h o

urren
e

of hhr; p

w

ii in

^

M

q

(s=u[w

0

 p

w

℄) there is in

^

M

q

(s=u[v

0

 p

v

℄) at least one o

urren
e of

the tree

^

M

r

(s=w[v

00

 p

v

℄) (without the parameters), and, due to parameter 
opying,

there 
ould be more than one su
h o

urren
e. This is stated in part (i) of the following

lemma. Part (ii) of the lemma 
onsiders the 
ase that M is �nite nested 
opying in the

input and �nite 
opying in the parameters; then we 
an also give an upper bound for the

number of o

urren
es of hhq

0

; p

v

ii in

^

M

q

(s=u[v

0

 p

v

℄), be
ause ea
h o

urren
e of hhr; p

w

ii

in

^

M

q

(s=u[w

0

 p

w

℄) 
an only be 
opied a bounded number of times.

Lemma 4.14 Let M = (Q;P;�;�; q

0

; R; h) be a nondeleting MTT

R

. Let q; q

0

2 Q,

s 2 T

�

, and u;w; v 2 V (s) su
h that u is an an
estor of w and w is an an
estor of v,

i.e., w = uw

0

and v = wv

00

for some w

0

; v

00

2 N

�

, and let v

0

= w

0

v

00

, p

w

= h(s=w), and

p

v

= h(s=v). Finally, let

S =

X

r2Q

#

hhq

0

;p

v

ii

(

^

M

r

(s=w[v

00

 p

v

℄)) �#

hhr;p

w

ii

(

^

M

q

(s=u[w

0

 p

w

℄)):

Then the following two statements hold.

(i) #

hhq

0

;p

v

ii

(

^

M

q

(s=u[v

0

 p

v

℄)) � S.

(ii) If M is fnest and f
p with nesting bound B and parameter 
opying bound N , and

hhq; h(s=u)ii is rea
hable, then #

hhq

0

;p

v

ii

(

^

M

q

(s=u[v

0

 p

v

℄)) � N

B

� S.
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Proof. Note that for s

0

= s=u[v

0

 p

v

℄:

^

h(s

0

=w

0

) = p

w

, s

0

[w

0

 p

w

℄ = s=u[w

0

 p

w

℄, and

s

0

=w

0

= s=w[v

00

 p

v

℄. Hen
e, by Lemma 4.2 applied to s

0

and w

0

,

^

M

q

(s=u[v

0

 p

v

℄) =

�[[: : :℄℄, where � =

^

M

q

(s=u[w

0

 p

w

℄) and [[: : :℄℄ = [[hhr; p

w

ii  

^

M

r

(s=w[v

00

 p

v

℄) j r 2 Q℄℄,

and thus, by Lemma 2.6,

#

hhq

0

;p

v

ii

(

^

M

q

(s=u[v

0

 p

v

℄)) =

X

~u2V

hhr;p

w

ii

(�);r2Q

#

hhq

0

;p

v

ii

(

^

M

r

(s=w[v

00

 p

v

℄)

Y

F

[[:::℄℄

�;~u

: (�)

Sin
e M is nondeleting, by Lemma 3.10(1), #

y

j

(

^

M

r

0

(s=w[v

00

 p

v

℄)) � 1 for every r

0

2

Q

(m)

and j 2 [m℄. This implies that

Q

F

[[:::℄℄

�;~u

� 1. Thus, the sum in (�) is � S, be
ause

jV

hhr;p

w

ii

(�)j equals #

hhr;p

w

ii

(

^

M

q

( s=u[w

0

 p

w

℄)). This proves part (i).

For (ii),

Q

F

[[:::℄℄

�;~u

� N

B

, be
ause the number of elements of hhQ; fp

w

gii that o

ur in

lpath(�; ~u) is � B by Lemma 4.13 (using the assumption that hhq; h(s=u)ii is rea
hable)

and be
ause, by Lemma 4.7, #

y

j

(

^

M

r

0

(s=w[v

00

 p

v

℄)) � N for every r

0

2 Q

(m)

and j 2 [m℄.

Thus, the sum in (�) is � N

B

�

P

~u2V

hhr;p

w

ii

(�);r2Q

#

hhq

0

;p

v

ii

(

^

M

r

(s=w[v

00

 p

v

℄)) = N

B

� S.

2

Note that point (ii) of Lemma 4.14 
an be strengthened by proving an upper bound of

N

B�1

� S for the number of o

urren
es of hhq

0

; p

v

ii in

^

M

q

(s=u[v

0

 p

v

℄)). This is true

be
ause in F

[[:::℄℄

�;~u

, the node ~u itself (whi
h is labeled by hhr; p

w

ii for some state r) is not taken

into a

ount, i.e., only proper an
estors of ~u that are labeled by elements of hhQ; fp

w

gii are


ounted; thus there are at most B� 1 of them. We de
ided to leave out the `�1', be
ause

in the appli
ation of the lemma in the proof of Lemma 6.5 this will keep the numbers

better readable.

4.3 Finite Copying implies Linear Size In
rease

In this subse
tion it is proved that if an MTT

R

is �nite 
opying, then it is of linear size

in
rease. Note that this result is not needed, be
ause it follows from Lemma 4.9 (as

dis
ussed in the beginning of this se
tion). The proof uses an intermediate, very natural

notion, 
alled �nite 
ontribution. Intuitively, an MTT

R

M is �nite 
ontribution, if there

is a bound 
 on the number of output nodes that are 
ontributed by a node of the input

tree. Clearly, if M is �nite 
ontribution, then it is of linear size in
rease (with bound 
).

Thus, in order to prove that �nite 
opying implies linear size in
rease, it suÆ
es to prove

that ifM is �nite 
opying then it is �nite 
ontribution (Lemma 4.18). In fa
t, sin
e one of

the main results of this paper is that MTT

R

s of linear size in
rease realize the same 
lass

of translations as �nite 
opying MTT

R

s (Theorem 7.2 and Lemma 4.9), it means that this

is also the 
lass of translations realized by �nite 
ontribution MTT

R

s.

In order to 
ompute the 
ontribution by a node of the input tree s, we de�ne an MTT

R

M

s

, whi
h keeps in the label of ea
h output node v the 
orresponding input node u that

generated v. More pre
isely, if � is the output alphabet of M , then M

s

has output

alphabet h�; V (s)i, and the 
ontribution by the node u of s is the number of symbols in

h�; fugi that appear inM

s

q

0

(s

0

), where s

0

is the \de
orated version" of s, i.e., s

0

is obtained

from s by 
hanging, for every node w, its label � into h�;wi.
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De�nition 4.15 (The MTT

R

M

s

, de
orated version, 
ontribution)

Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

and let s 2 T

�

. Then M

s

= (Q;P; h�; V (s)i;

h�; V (s)i; q

0

; R

s

; h

s

) is the MTT

R

su
h that for every h�; ui 2 h�; V (s)i

(k)

, k � 0, and

p

1

; : : : ; p

k

2 P :

� h

s

h�;ui

(p

1

; : : : ; p

k

) = h

�

(p

1

; : : : ; p

k

) and

� rhs

M

s

(q; h�; ui; hp

1

; : : : ; p

k

i) = rhs

M

(q; �; hp

1

; : : : ; p

k

i)[[Æ  hÆ; ui j Æ 2 �℄℄.

The de
orated version of s, denoted by de
(s), is the unique tree in T

h�;V (s)i

su
h that

V (de
(s)) = V (s), and for every u 2 V (s): de
(s)[u℄ = hs[u℄; ui.

For a node u of s, the set V

h�;fugi

(M

s

q

0

(de
(s))) � V (M

q

0

(s)) is the set of output nodes


ontributed by u, and the 
ontribution by u, denoted by Contrib

M

(s; u), is the 
ardinality

#

h�;fugi

(M

s

q

0

(de
(s))) of this set. 2

Note that every output node is 
ontributed by a unique input node u (
alled its origin

in [vDKT96℄). Before we prove our �rst lemma about 
ontribution, let us note some easy

properties of the MTT

R

M

s

. Let u 2 V (s) and q 2 Q.

(P1) h

s

(de
(s)=u) = h(s=u).

(P2) For s

0

2 T

h�;V (s)i

, �

�

(M

s

q

(s

0

)) = M

q

(�

�

(s

0

)), where �

�


hanges ea
h symbol hÆ; ui

into Æ, i.e., it is the 
anoni
al proje
tion from h�; V (s)i to �. For

^

M

s

and

^

M a

similar statement holds.

Additionally, note the following two obvious fa
ts about the proje
tion �

�

. Let


 be a ranked alphabet disjoint with h�; V (s)i, � 2 T


[h�;V (s)i

(Y ), and �

0

2

T


[h�;fugi

(Y ). We assume that �

�

is the identity on elements of 
.

(D1) For � 2 (
 [ Y ) : V

�

(�

�

(�)) = V

�

(�).

(D2) For Æ 2 � : V

Æ

(�

�

(�

0

)) = V

hÆ;ui

(�

0

).

(P3) Let P

0

= fp

(0)

j p 2 Pg.

(a) For � 2 T

h�;V (s)i

: If #

h�;fugi

(�) = 0 then #

h�;fugi

(M

s

q

(�)) = 0.

(b) For � 2 T

h�;V (s)i[P

0

: If #

h�;fugi

(�) = 0 then #

h�;fugi

(

^

M

s

q

(�)) = 0.

Let us prove property P3, by indu
tion on the stru
ture of �. Let � = h�; vi(�

1

; : : : ; �

k

)

with h�; vi 2 h�; V (s)i

(k)

and k � 0 su
h that #

h�;fugi

(�) = 0. By Lemma 3.5, M

s

q

(�) =

�[[hq

0

; x

i

i  M

s

q

0

(�

i

) j hq

0

; x

i

i 2 hQ;X

k

i℄℄ with � = rhs

M

s

(q; h�; vi; hh

s

(�

1

); : : : ; h

s

(�

k

)i), and

thus, by Lemma 2.6, #

h�;fugi

(M

s

q

(�)) = S

1

+ S

2

, where S

1

and S

2

are the sums de�ned

in that lemma. Now S

1

= 0 be
ause V

h�;fugi

(�) = ? by the de�nition of the rules of M

s

and by the fa
t that v 6= u (be
ause #

h�;fugi

(�) = 0). By indu
tion, #

h�;fugi

(M

s

q

0

(�

i

)) = 0

and therefore also S

2

= 0, whi
h 
on
ludes the proof for the (a) 
ase. For the (b) 
ase

the same proof holds, ex
ept that we have to 
onsider the additional 
ase � = p 2 P

0

: the

right-hand side � of the p-rule of

^

M

s

is in T

hhQ;fpgii

(Y ) and thus #

h�;fugi

(�) = 0.

First, we want to present a lemma that 
omputes, in the style of Lemma 2.6, the number

Contrib

M

(s; u) of output nodes 
ontributed by u.
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Lemma 4.16 Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

, s 2 T

�

, and u 2 V (s). Then

Contrib

M

(s; u) =

X

v 2 V

hhq;pii

(t)

q 2 Q

X

w2V

�

(�

q

)

Y

F

[[ ℄℄

�

q

;w

Y

F

[[:::℄℄

t;v

with p = h(s=u), t =

^

M

q

0

(s[u  p℄), �

q

= rhs

M

(q; �; hp

1

; : : : ; p

k

i) for all q 2 Q where

� = s[u℄ 2 �

(k)

, k � 0, and p

i

= h(s=ui) for all i 2 [k℄, [[ ℄℄ = [[hq

0

; x

i

i  M

q

0

(s=ui) j

hq

0

; x

i

i 2 hQ;X

k

i℄℄, and [[: : :℄℄ = [[hhq; pii  M

q

(s=u) j q 2 Q℄℄.

Proof. By de�nition, Contrib

M

(s; u) = #

h�;fugi

(M

s

q

0

(de
(s))). Sin
e, by the de�nition

of de
, de
(s)[u℄ = h�; ui 2 h�; V (s)i

(k)

, we get by Lemmas 4.2 and 3.5, and property P1,

M

s

q

0

(de
(s)) = t

0

[[rhs℄℄[[ ℄℄

0

where t

0

=

^

M

s

q

0

(de
(s)[u  p℄), [[rhs℄℄ = [[hhq; pii  �

0

q

j q 2 Q℄℄

with �

0

q

= rhs

M

s

(q; h�; ui; hp

1

; : : : ; p

k

i) for q 2 Q, and [[ ℄℄

0

= [[hq; x

i

i  M

s

q

(de
(s)=ui) j

hq; x

i

i 2 hQ;X

k

i℄℄. The appli
ation of Lemma 2.6 to #

h�;fugi

(t

00

[[ ℄℄

0

) with t

00

= t

0

[[rhs℄℄

gives S

0

1

+ S

0

2

, where S

0

2

= 0 be
ause #

h�;fugi

(M

s

q

(de
(s)=ui)) = 0 by property P3(a) and

the fa
t that de
(s)=ui 
ontains no symbol in h�; fugi (by the de�nition of de
). Thus,

Contrib

M

(s; u) = S

0

1

, whi
h equals

X

v2V

h�;fugi

(t

0

[[rhs℄℄)

Y

F

[[ ℄℄

0

t

0

[[rhs℄℄;v

: (�)

By the 
laim below, for � = [[rhs℄℄ and 	 = [[ ℄℄

0

, the sum in (�) equals

P


2h�;fugi

(S

1

+S

2

).

Now S

1

equals zero, be
ause V

h�;fugi

(t

0

) = ?, whi
h holds by property P3(b) and the

fa
t that de
(s)[u  p℄ 
ontains no symbol in h�; fugi. Thus, the sum in (�) equals

P


2h�;fugi

S

2

=

X

v 2 V

hhq;pii

(t

0

)

q 2 Q

X

w2V

h�;fugi

(�

0

q

)

Y

F

[[ ℄℄

0

�

0

q

;w

Y

F

[[:::℄℄

0

t

0

;v

;

where [[: : :℄℄

0

is the substitution [[hhq; pii  M

s

q

(de
(s)=u) j q 2 Q℄℄. Let us now show that

this sum equals the one of the lemma. For every q 2 Q it follows from property D1 (for


 = hhQ; fpgii and � = hhq; pii) that V

hhq;pii

(t

0

) = V

hhq;pii

(�

�

(t

0

)) whi
h equals V

hhq;pii

(t)

by (the

^

M -version of) property P2, where �

�

is the proje
tion de�ned in that property.

Sin
e �

0

q

2 T

hQ;X

k

i[h�;fugi

(Y ) it follows from property D2 that V

h�;fugi

(�

0

q

) = V

�

(�

�

(�

0

q

)),

whi
h equals V

�

(�

q

) be
ause �

�

(�

0

q

) = �

q

by the de�nition of the rules of M

s

. Now

for w 2 V (�

0

q

) = V (�

q

),

Q

F

[[ ℄℄

0

�

0

q

;w

=

Q

F

[[ ℄℄

�

q

;w

be
ause for q

0

2 Q, by D1, V

hq

0

;x

i

i

(�

0

q

) =

V

hq

0

;x

i

i

(�

�

(�

0

q

)) whi
h equals V

hq

0

;x

i

i

(�

q

) and for y 2 Y , by D1, #

y

(M

s

q

(de
(s)=ui)) =

#

y

(�

�

(M

s

q

(de
(s)=ui))), whi
h equals #

y

((M

q

(s=ui)) by P2. Similarly,

Q

F

[[:::℄℄

0

t

0

;v

=

Q

F

[[:::℄℄

t;v

for v 2 V (t

0

) = V (t) be
ause, as shown above, V

hhq;pii

(t

0

) = V

hhq;pii

(t) for q 2 Q, and for

y 2 Y , by D1, #

y

(M

s

q

(de
(s)=u)) = #

y

(�

�

(M

s

q

(de
(s)=u))) whi
h equals #

y

(M

q

(s)) by

P2.

It remains to show the following 
laim, whi
h is a generalization of Lemma 2.6 to two

se
ond-order tree substitutions � and 	 (more pre
isely, taking the substitution 	 as the
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identity on �� Y gives Lemma 2.6 for the 
ase � = 
 62 f�

1

; : : : ; �

n

g [ Y ). Note that �	

denotes the 
omposition of 	 after �, i.e., t(�	) = (t�)	.

Claim: Let � be a ranked alphabet. Let � = [[�

i

 s

i

j i 2 [n℄℄℄ and 	 = [[�

j

 

�

j

j j 2 [m℄℄℄ be se
ond-order tree substitutions over �. Then for t 2 T

�

and 
 2 � �

(f�

1

; : : : ; �

n

; �

1

; : : : ; �

m

g [ Y ),

X

v2V




(t�)

Y

F

	

t�;v

= S

1

+ S

2

; (�)

where

S

1

=

X

v2V




(t)

Y

F

�	

t;v

and S

2

=

X

v 2 V

�

i

(t)

i 2 [n℄

X

w2V




(s

i

)

Y

F

	

s

i

;w

Y

F

�	

t;v

:

Proof of the 
laim: Note that the statement does not depend on the numbers #




(�

j

). This

is true be
ause the substitution 	 only appears in the F s. In fa
t, for any node v of a

tree �,

Q

F

	

�;v

=

Q

F

	

0

�;v

, for every substitution 	

0

= [[�

j

 �

0

j

j j 2 [m℄℄℄ with the property

that #

y

(�

0

j

) = #

y

(�

j

) for every y 2 Y and j 2 [m℄; we denote this property by E(	;	

0

).

For S

1

and S

2

a similar statement holds. (Note that if E(	;	

0

) then E(�	;�	

0

); this is

true be
ause, by asso
iativity of se
ond-order substitution, �	 = [[�

i

 s

i

	; �

j

 �

j

j G℄℄

and �	

0

= [[�

i

 s

i

	

0

; �

j

 �

0

j

j G℄℄, where G denotes the statement `i 2 [n℄; j 2 [m℄ with

�

j

62 f�

1

; : : : ; �

n

g'; by the above, E(	;	

0

) implies that

Q

F

	

s

i

;v

=

Q

F

	

0

s

i

;v

for any node v

of s

i

, and thus for every y 2 Y ,

P

v2V

y

(s

i

)

Q

F

	

s

i

;v

=

P

v2V

y

(s

i

)

Q

F

	

0

s

i

;v

whi
h means, by

Lemma 2.6, that #

y

(s

i

	) = #

y

(s

i

	

0

).)

The idea of the proof is as follows. We will apply Lemma 2.6 twi
e: �rst to #




(t

0

	

0

), where

t

0

= t� and 	

0

is a substitution with E(	;	

0

), and se
ond to #




(tB) with B = �	

0

. The

�rst appli
ation will give the left-hand side of the equation (�), and the se
ond one will

give the right-hand side of that equation. Clearly, by de�nition of the 
omposition of

se
ond-order tree substitutions, #




(t

0

	

0

) = #




(tB).

De�ne 	

0

= [[�

j

 �

0

j

j j 2 [m℄℄℄ with E(	;	

0

) and #




(�

0

j

) = 0 for all j 2 [m℄. Then

for t

0

= t�, #




(t

0

	

0

) equals, by Lemma 2.6, S

0

1

+ S

0

2

with S

0

1

=

P

v2V




(t�)

Q

F

	

0

t�;v

and

S

0

2

= 0 be
ause all the numbers #




(�

0

j

) are zero by the de�nition of 	

0

. Sin
e E(	;	

0

),

this means that #




(t

0

	

0

) =

P

v2V




(t�)

Q

F

	

t�;v

, whi
h is the left-hand side of the equation

(�).

By the asso
iativity of se
ond-order tree substitution, B = �	

0

equals

[[�

i

 s

i

	

0

; �

j

 �

0

j

j i 2 [n℄; j 2 [m℄ with �

j

62 �

n

℄℄;

where �

n

= f�

1

; : : : ; �

n

g. The appli
ation of Lemma 2.6 to #




(tB) gives S

0

1

+S

0

2

with S

0

1

=

P

v2V




(t)

Q

F

�	

0

t;v

and S

0

2

=

P

v2V

�

i

(t);i2[n℄

#




(s

i

	

0

) �

Q

F

�	

0

t;v

+

P

v2V

�

j

(t);j2[m℄;�

j

62�

n

#




(�

0

j

) �

Q

F

�	

0

t;v

. Sin
e #




(�

0

j

) = 0, the se
ond term of S

0

2

equals zero. In the �rst term of S

0

2

we

apply Lemma 2.6 to #




(s

i

	

0

) whi
h gives T

1

+ T

2

, where T

2

= 0 be
ause #




(�

0

j

) = 0,

and T

1

=

P

v2V

�

i

(t);i2[n℄

P

w2V




(s

i

)

Q

F

	

0

s

i

;w

Q

F

�	

0

t;v

. Sin
e E(	;	

0

), S

0

1

= S

1

and T

1

= S

2

whi
h 
on
ludes the proof of the 
laim. 2
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Using Lemma 4.16 we 
an now prove that if an MTT

R

is �nite 
opying then it is �nite


ontribution, whi
h is de�ned next.

De�nition 4.17 (�nite 
ontribution)

Let M be an MTT

R

with input alphabet �. Then M is �nite 
ontribution if there is a


 2 N su
h that Contrib

M

(s; u) � 
 for every s 2 T

�

and u 2 V (s). 2

Consider now a �nite 
opying MTT

R

M . In the translations ofM , every node of the input

tree is translated at most I �N

I�1

times (
f. the dis
ussion on page 71 of [EM99℄), where

I and N are input and parameter 
opying bounds for M , respe
tively. This implies that

the number Contrib

M

(s; u) of output nodes 
ontributed by the node u is bounded.

Lemma 4.18 Let M be an MTT

R

. If M is �nite 
opying, then it is �nite 
ontribution.

Proof. Let M = (Q;P;�;�; q

0

; R; h), s 2 T

�

, and u 2 V (s). Let I be an input 
opying

bound for M and let N be a parameter 
opying bound for M . Furthermore, let m be the

maximal size of the right-hand side of a rule ofM . By the de�nition of f
i it follows that for

t =

^

M

q

0

(s[u p℄) and p = h(s=u), #

hhQ;fpgii

(t) � I. By the de�nition of f
p it follows that,

for every v 2 V

hhq;pii

(t) and q 2 Q,

Q

F

[[:::℄℄

t;v

� N

I�1

, where [[: : :℄℄ = [[hhq; pii  M

q

(s=u) j q 2

Q℄℄. By Lemma 4.16 this means that Contrib

M

(s; u) � I �N

I�1

�maxf

P

w2V

�

(�

q

)

Q

F

[[ ℄℄

�

q

;w

j

q 2 Qg, where [[ ℄℄ = [[hq

0

; x

i

i  M

q

0

(s=ui) j hq

0

; x

i

i 2 hQ;X

k

i℄℄. By the de�nition of m this

is � I �N

I�1

�m �maxf

Q

F

[[ ℄℄

�

q

;w

j q 2 Q;w 2 V

�

(�

q

)g � I �N

I�1

�m �N

m�1

= 
. 2

As dis
ussed in the beginning of this subse
tion, if an MTT

R

is �nite 
ontribution then

it is of linear size in
rease. This holds be
ause, by P2, size(M

q

0

(s)) = size(M

s

q

0

(de
(s)))

=

P

u2V (s)

Contrib

M

(s; u) � 
�size(s). Together with Lemma 4.18 this gives us the desired

result: �nite 
opying implies linear size in
rease.

Theorem 4.19 If an MTT

R

is �nite 
opying, then it is of linear size in
rease.

5 Proper Normal Form

In Se
tion 4.3 we showed that if an MTT

R

is �nite 
opying, then it is of linear size in
rease.

In Se
tions 6 and 7 we want to prove that the 
onverse also holds, i.e., that linear size

in
rease implies �nite 
opying. However, in general this does not hold: there are MTT

R

s

of linear size in
rease that are not �nite 
opying. Roughly speaking, the reason for this

is that the part of the output tree that is being 
opied unboundedly, by means of input

variables or parameters, might be a �xed tree that does not 
hange for di�erent input. So,

an input tree s

n

of size n might generate a state sequen
e of length n, but, the number

of di�erent output trees that are eventually generated by the states in the state sequen
e

might be bounded. Then the MTT

R

is not �nite 
opying in the input, but the translation

it realizes might still be of linear size in
rease (
f. the MTT

R

M at the beginning of

Se
tion 5.1). Similarly, a tree M

q

(s

n

) might 
ontain n 
opies of a parameter y

j

, but there
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are only boundedly many di�erent output trees that will be substituted for y

j

in the a
tual

output M

q

0

(s). Then M is not �nite 
opying in the parameters, but the translation it

realizes might be of linear size in
rease (
f. the MTT

R

at the beginning of Se
tion 5.2).

Intuitively it should be 
lear that a state that generates, for any input, only a bounded

number of di�erent output trees t, is not needed; it 
an be eliminated by immediately

substituting the 
orre
t tree t, whi
h 
an be determined by regular look-ahead. This gives

rise to a normal form, 
alled input proper, whi
h is treated in Se
tion 5.1. Similarly for a

parameter y

j

of a state q: if the number of a
tual output trees t that will be substituted

for y

j

is bounded, then this parameter is not needed; it 
an be eliminated by immediately

substituting the 
orre
t t, whi
h 
an be 
omputed in the states of the MTT

R

. This gives

rise to a normal form, 
alled parameter proper ; it is treated in Se
tion 5.2.

Altogether, an MTT

R

will be 
alled proper, if it is input proper, parameter proper, and

produ
tive. Again, this is a normal form, i.e., for every MTT

R

there is an equivalent one

whi
h is proper. Then, in Se
tion 6 it 
an be proved that if a proper MTT

R

is of linear

size in
rease, then it is �nite 
opying.

5.1 Input Proper

Consider the following MTT

R

M , whi
h is of linear size in
rease, but not �nite 
opying

in the input. Let M = (Q;�;�; q

0

; R) with Q = fq

(0)

0

; q

(0)

; q

0

(0)

g, � = f


(1)

; a

(0)

; b

(0)

g,

� = f�

(2)

; a

(0)

; b

(0)

g, and R 
onsisting of the following rules.

hq

0

; 
(x

1

)i ! �(hq; x

1

i; hq

0

; x

1

i)

hq; 
(x

1

)i ! hq; x

1

i

hq

0

; 
(x

1

)i ! �(hq; x

1

i; hq

0

; x

1

i)

hr; �i ! � (for every r 2 Q and � 2 fa; bg)

Note that M is in fa
t a top-down tree transdu
er. Intuitively, M translates every

monadi
 tree s

n

= 
(: : : 
(�) : : : ) = 


n

(�) of height n (with � 2 fa; bg) into a 
omb

t

n

= �(�; �(�; : : : �(�; �) : : : )) of height n. Thus, size(�

M

(s)) � 2 � size(s) for every s 2 T

�

and so M is lsi. Clearly, M is not f
i be
ause sts

M

(s

n

; u) = q

n

q

0

for n � 1 and u = 1

n

the

unique leaf of s

n

. The reason for this is thatM generates many 
opies of q, but q generates

only a �nite number of di�erent trees (viz. the trees a and b). How 
an we 
hange M

into an equivalent MTT

R

whi
h is f
i? The idea is to simply delete the state q and to

determine by regular look-ahead the appropriate tree in fa; bg. In this example we just

need L

p

= f


n

(a) j n � 0g and L

p

0

= f


n

(b) j n � 0g and then the q

0

-rule ofM is repla
ed

by two q

0

-rules with right-hand sides �(a; hq

0

; x

1

i) and �(b; hq

0

; x

1

i) for look-ahead p and

p

0

, respe
tively, and similarly for the q

0

-rule.

We will say that an MTT

R

M is `input proper' if every state, ex
ept possibly the initial

one, produ
es in�nitely many output trees (in T

�

(Y )). More pre
isely, for every look-

ahead state p of M and every state q, M should produ
e in�nitely many output trees

taking L

p

(the trees for whi
h the look-ahead automaton arrives in state p) as input; in

fa
t, this is only required if hhq; pii is rea
hable, i.e., if hhq; pii o

urs in

^

M

q

0

(s[u  p℄) for

some s and u (see De�nition 4.12).
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The notion of input properness was de�ned in [AU71℄ for generalized syntax-dire
ted

translation s
hemes (whi
h are a variant of top-down tree transdu
ers) and was there


alled `redu
ed'. We add two useful te
hni
al properties to it.

De�nition 5.1 (input proper)

An MTT

R

M = (Q;P;�;�; q

0

; R; h) is input proper (for short, i-proper), if

(i) for every q 2 Q and p 2 P su
h that q 6= q

0

and hhq; pii is rea
hable, the set

Out(q; p) = fM

q

(s) j s 2 L

p

g is in�nite,

(ii) q

0

does not o

ur in the right-hand sides of the rules in R, and

(iii) L

p

6= ? for every p 2 P . 2

Note that Out(q; p) � T

�

(Y

m

) for q 2 Q

(m)

. Before it is proved (in Lemma 5.4) that i-

properness is a normal form for MTT

R

s, we need the following two straightforward lemmas

about �niteness of Out(q; p).

Lemma 5.2 Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. For given q 2 Q

(m)

and p 2 P

it is de
idable whether or not Out(q; p) is �nite. Moreover, Out(q; p) 
an be 
onstru
ted,

if it is �nite.

Proof. Let M be the MTT

R


onstru
ted in the proof of Lemma 3.6. Then, for every

s 2 T

�

, �

M

(q(s)) = M

q

(s)[y

j

 y

j

j j 2 [m℄℄ and hen
e M

q

(s) = �

M

(q(s))�, where

� = [y

j

 y

j

j j 2 [m℄℄. The substitution � 
an be realized by a (very simple) top-down

tree transdu
er. Thus, for the regular tree language L = fq(s) j s 2 L

p

g, Out(q; p) =

fM

q

(s) j s 2 L

p

g = f�

M

(s)� j s 2 Lg = �

N

(�

M

(L)). By Lemma 3.7 the �niteness of

�

N

(�

M

(L)) is de
idable, and in 
ase of �niteness �

N

(�

M

(L)) 
an be 
onstru
ted. 2

Lemma 5.3 LetM = (Q;P;�;�; q

0

; R; h) be a nondeleting MTT

R

. Let q 2 Q, � 2 �

(k)

,

k � 1, and p; p

1

; : : : ; p

k

2 P su
h that p = h

�

(p

1

; : : : ; p

k

) and L

p

j

6= ? for every j 2 [k℄.

If hr; x

i

i 2 hQ;X

k

i o

urs in rhs

M

(q; �; hp

1

; : : : ; p

k

i) and Out(q; p) is �nite,

then Out(r; p

i

) is �nite.

Proof. For j 2 [k℄ � fig �x trees s

j

2 T

�

with h(s

j

) = p

j

. Let � = �[[: : :℄℄ with

� = rhs

M

(q; �; hp

1

; : : : ; p

k

i) and [[: : :℄℄ = [[hq

0

; x

j

i  M

q

0

(s

j

) j q

0

2 Q; j 2 [k℄ � fig℄℄. By

the de�nition of Out(q; p), Lemma 3.5, and asso
iativity of se
ond-order tree substitution,

O = fM

q

(�(s

1

; : : : ; s

k

)) j s

i

2 L

p

i

g = f�[[s

i

℄℄ j s

i

2 L

p

i

g where [[s

i

℄℄ denotes the substitution

[[hq

0

; x

i

i  M

q

0

(s

i

) j q

0

2 Q℄℄ is a subset of Out(q; p) and hen
e �nite. Sin
eM is nondelet-

ing, both [[: : :℄℄ and [[s

i

℄℄ are nondeleting, by Lemma 3.10(1). Hen
e, by Lemma 2.1, � has a

subtree hr; x

i

i(�

1

; : : : ; �

m

), where m = rank

Q

(r). Again by Lemma 2.1, �[[s

i

℄℄ has a subtree

hr; x

i

i(�

1

; : : : ; �

m

)[[s

i

℄℄ = M

r

(s

i

)[y

j

 �

j

[[s

i

℄℄ j j 2 [m℄℄. Thus, for every t 2 Out(r; p

i

) (i.e.,

t =M

r

(s

i

) for some s

i

2 L

p

i

) the tree t[y

j

 �

j

[[s

i

℄℄ j j 2 [m℄℄ is a subtree of �[[s

i

℄℄, i.e., it

is a subtree of a tree in the �nite set O. This implies �niteness of Out(r; p

i

). 2
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We are now ready to prove that i-properness is a normal form. The 
onstru
tion involved

is similar to the one of Lemma 5.5 of [AU71℄ ex
ept that we apply it repeatedly to obtain

an i-proper MTT

R

as opposed to their single appli
ation whi
h is insuÆ
ient (also in their

formalism, whi
h means that their proof of the lemma is in
orre
t).

Lemma 5.4 For every MTT

R

M there is (e�e
tively) an i-proper and produ
tive MTT

R

M

0

equivalent to M . If M is a T

R

, then so is M

0

.

Proof. Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. By Lemma 3.9 we may assume that

M is produ
tive. Moreover, we may assume that q

0

does not o

ur in the right-hand side

of any rule of M (if it does, repla
e it in all rules by a new state q

0

0

whi
h has the same

rules as q

0

).

Before we 
onstru
t the MTT

R

M

0

whi
h is i-proper and realizes the same translation

as M , let us de�ne an auxiliary notion. For ea
h p 2 P , let F

p

denote the set fq 2 Q j

Out(q; p) is �niteg of states whi
h produ
e �nitely many output trees in T

�

(Y ) on input

trees in L

p

. Note that F

p


an be 
onstru
ted e�e
tively, be
ause, by Lemma 5.2, it is

de
idable whether or not Out(q; p) is �nite. Moreover, Out(q; p) 
an be 
onstru
ted for

every q 2 F

p

.

The MTT

R

M

0

is 
onstru
ted in su
h a way that, if hr; x

i

i o

urs in rhs

M

0

(q; �; hp

1

; : : : ;

p

k

i), then r 62 F

p

i

. This implies point (i) of i-properness of M

0

as follows. If hhr; pii 2

hhQ;P ii is rea
hable (with r 6= q

0

), then there are s 2 T

�

and u 2 V (s) su
h that hhr; pii

o

urs in

^

M

0

q

0

(s[u p℄). Sin
e r 6= q

0

, u = vi for some i � 1 and v 2 N

�

. By Lemma 4.3

this implies that hr; x

i

i o

urs in the right-hand side of a rule of M

0

with p

i

= p. This

means that r 62 F

p

, i.e., Out(r; p) is in�nite.

We �rst 
onstru
t the MTT

R

�(M) by simply deleting o

urren
es of hr; x

i

i with r 2

F

p

i

and repla
ing them by the 
orre
t tree in Out(r; p

i

) whi
h is determined by regular

look-ahead. Due to the 
hange of look-ahead automaton, an o

urren
e of hr; x

i

i in the

(q; �; hp

1

; : : : ; p

k

i)-rule of M with r 62 F

p

i

might produ
e only �nitely many trees for the

new look-ahead states (p

i

; '

i

). For this reason we have to iterate the appli
ation of � until

the sets F

p

do not 
hange anymore. This results in the desired MTT

R

M

0

.

For ea
h p 2 P let �

p

be the (�nite) set of all mappings ' : F

p

! T

�

(Y ) su
h that there

is an s 2 L

p

with '(q) = M

q

(s) for every q 2 F

p

. Note that �

p

is �nite be
ause '(q) 2

Out(q; p), whi
h is �nite for q 2 F

p

. This also implies that �

p


an be obtained e�e
tively by


he
king, for the (�nitely many) mappings ' : F

p

!

S

q2F

p

Out(q; p), whether or not ' is in

�

p

. This is de
idable be
ause ' 2 �

p

i�K

p;'

= L

p

\

T

q2F

p

M

�1

q

(f'(q)g) is nonempty; K

p;'

is regular by Lemma 3.6 (and the 
losure of the regular tree languages under interse
tion),

and hen
e has a de
idable emptiness problem (
f., e.g., Theorem II.10.2 of [GS84℄). The

mappings in �

p

partition L

p

into the sets K

p;'

whi
h 
an be determined by regular look-

ahead.

We now 
onstru
t the MTT

R

�(M) = (Q;P

0

;�;�; q

0

; R

0

; h

0

) as follows. Let P

0

= f(p; ') j

p 2 P;' 2 �

p

g. For � 2 �

(k)

and (p

1

; '

1

); : : : ; (p

k

; '

k

) 2 P

0

let, for every q 2 Q

(m)

, the

rule

hq; �(x

1

; : : : ; x

k

)i(y

1

; : : : ; y

m

)! �

q

� h(p

1

; '

1

); : : : ; (p

k

; '

k

)i

28



be in R

0

, where �

q

= rhs

M

(q; �; hp

1

; : : : ; p

k

i) and � = [[hr; x

i

i  '

i

(r) j r 2 F

p

i

; i 2 [k℄℄℄,

and let h

0

�

((p

1

; '

1

); : : : ; (p

k

; '

k

)) = (p; '), where p = h

�

(p

1

; : : : ; p

k

) and ' = f(q; �

q

�) j

q 2 F

p

; �

q

= rhs

M

(q; �; hp

1

; : : : ; p

k

i)g.

Before we prove that the look-ahead automaton of �(M) is as desired, let us show that

it is well de�ned, i.e., that ' 2 �

p

. We must show that there is an s 2 L

p

su
h that,

for every q 2 F

p

, '(q) = M

q

(s). Sin
e '

i

2 �

p

i

for i 2 [k℄, there are s

i

2 L

p

i

su
h that

'

i

(r) = M

r

(s

i

) for all i 2 [k℄ and r 2 F

p

i

. Hen
e, for q 2 F

p

, '(q) = �

q

� with �

q

=

rhs

M

(q; �; hp

1

; : : : ; p

k

i) and � = [[hr; x

i

i  M

r

(s

i

) j hr; x

i

i 2 hF

p

i

;X

k

i℄℄. By Lemma 5.3

and the de�nition of F

p

, only hr; x

i

i with r 2 F

p

i

o

ur in �

q

. Therefore we 
an extend

� to all elements of hQ;X

k

i. By Lemma 3.5 we get '(q) = M

q

(s), for s = �(s

1

; : : : ; s

k

).

Sin
e p = h

�

(p

1

; : : : ; p

k

), s 2 L

p

.

Claim 1: Let s 2 T

�

. If h

0

(s) = (p; '), then p = h(s) and '(q) =M

q

(s) for every q 2 F

p

.

The proof is by indu
tion on the stru
ture of s. Let s = �(s

1

; : : : ; s

k

) with s

1

; : : : ; s

k

2 T

�

and h

0

(s

i

) = (p

i

; '

i

) 2 P

0

for i 2 [k℄. By de�nition, p = h

�

(p

1

; : : : ; p

k

) = h(s). For q 2 F

p

,

'(q) = rhs

M

(q; �; hp

1

; : : : ; p

k

i)�. By indu
tion, '

i

(r) =M

r

(s

i

), for all i 2 [k℄ and r 2 F

p

i

.

For the same reason as above we 
an extend � to all elements of hQ;X

k

i to get M

q

(s).

This 
laim implies that �(M) satis�es point (iii) of i-properness. In fa
t, if (p; ') 2 P

0

then ' 2 �

p

, and so there exists s 2 L

p

su
h that '(q) = M

q

(s) for every q 2 F

p

. Thus,

by Claim 1, h

0

(s) = (p; '). Hen
e, L

(p;')

6= ?.

The MTT

R

�(M) realizes the same translation asM . This follows from Claim 2 for q = q

0

.

Claim 2: For q 2 Q and s 2 T

�

, �(M)

q

(s) =M

q

(s).

Again we prove this by indu
tion on s. Let s = �(s

1

; : : : ; s

k

) with s

1

; : : : ; s

k

2 T

�

and

h

0

(s

i

) = (p

i

; '

i

) 2 P

0

for i 2 [k℄. By the de�nition of the rules of �(M) and by Lemma 3.5,

�(M)

q

(s) equals rhs

M

(q; �; hp

1

; : : : ; p

k

i)�[[ ℄℄, where [[ ℄℄ = [[hq

0

; x

i

i  �(M)

q

0

(s

i

) j hq

0

; x

i

i 2

hQ;X

k

i℄℄. By Claim 1, � equals [[hr; x

i

i  M

r

(s

i

) j r 2 F

p

i

; i 2 [k℄℄℄, and by in-

du
tion [[ ℄℄ = [[hq

0

; x

i

i  M

q

0

(s

i

) j hq

0

; x

i

i 2 hQ;X

k

i℄℄. Thus �[[ ℄℄ = [[ ℄℄ and we get

rhs

M

(q; �; hp

1

; : : : ; p

k

i)[[ ℄℄ whi
h, by Lemma 3.5, equals M

q

(s).

The MTT

R

�(M) is produ
tive be
auseM is produ
tive and the appli
ation of � does not

delete nodes. Formally, 
onsider a right-hand side �

q

� of �(M) with �

q

= rhs

M

(q; �; hp

1

;

: : : ; p

k

i), q 2 Q

(m)

, and m � 0. For every r 2 F

p

i

, '

i

(r) = M

r

(s) for some s 2 T

�

.

Thus, by Lemma 3.10(1), #

y

�

('

i

(r)) � 1 for every � 2 [rank

Q

(r)℄, i.e., the substitution

� is nondeleting. Sin
e, for j 2 [m℄, #

y

j

(�

q

) � 1 this implies, by Lemma 2.1, that

#

y

j

(�

q

�) � 1, i.e., �(M) is nondeleting. Analogously, by Lemma 3.10(2), #

y

�

('

i

(r)) 62 Y

for r 2 F

p

i

and � 2 [rank

Q

(r)℄, i.e., the substitution � is nonerasing. Sin
e, for j 2 [m℄,

�

q

62 Y this implies, by Lemma 2.2, that �

q

� 62 Y , i.e., �(M) is nonerasing.

Sin
e �(M) has the same states as M , �(M) is a T

R

, if M is.

We now dis
uss the reason for iterating �. Consider an o

urren
e of hr; x

i

i in the right-

hand side of a rule of �(M). We know that r 62 F

p

i

, be
ause ea
h su
h o

urren
e is

removed by the substitution � in the de�nition of the rules of �(M). Thus, Out(r; p

i

) is

in�nite. However, through the new look-ahead, the set L

p

i

is partitioned into sets L

(p

i

;'

i

)

,

'

i

2 �

p

i

(to see this, 
onsider an s 2 L

p

i

; then, by Claim 1, s 2 L

(p

i

;'

i

)

, where '

i

is de�ned

as '

i

(q) = M

q

(s) for every q 2 F

p

i

). Thus, we merely know, by Claim 2, that the union

of Out(r; (p

i

; '

i

)) for all '

i

2 �

p

i

is in�nite, but for a parti
ular '

i

2 �

p

i

, Out(r; (p

i

; '

i

))
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might be �nite, whi
h means that �(M) is not i-proper (see Example 5.5).

Let us now show that the iterative appli
ation of � yields an i-proper MTT

R

. In parti
ular,

we iterate the appli
ation of � until

F

(p;')

= F

p

for every (p; ') 2 P

0

: (�)

It follows from (�) that if hr; x

i

i o

urs in the right-hand side of a rule of �(M), then by

the de�nition of �, r 62 F

p

i

, and hen
e by (�), r 62 F

(p

i

;'

i

)

. Thus (�) implies (point (i) of)

i-properness of �(M), as argued in the beginning of this proof.

It remains to show that after a �nite number of appli
ations of �, (�) holds. Clearly, F

p

�

F

(p;')

� Q, be
ause Out(q; (p; ')) � Out(q; p) as argued above. Let us �rst show that, for

every (p; ') 2 P

0

, F

(p;')

= F

p

implies that (after 
onstru
ting �(�(M))) F

((p;');'

0

)

= F

(p;')

for every '

0

2 �

(p;')

. Let '

0

2 �

(p;')

, i.e., there is an s 2 L

(p;')

su
h that '

0

(q) = �(M)

q

(s)

for every q 2 F

(p;')

= F

p

. Sin
e, by Claims 1 and 2, �(M)

q

(s) = M

q

(s) = '(q) for every

q 2 F

p

, it follows that '

0

= '. This means that L

((p;');'

0

)

= fs 2 L

(p;')

j �(M)

q

(s) = '

0

(q)

for all q 2 F

(p;')

g equals fs 2 L

(p;')

j M

q

(s) = '(q) for all q 2 F

p

g = L

(p;')

. This implies

that Out(q; ((p; '); '

0

)) = Out(q; (p; ')) and thus F

((p;');'

0

)

= fq 2 Q j Out(q; ((p; '); '

0

))

is �niteg = fq 2 Q j Out(q; (p; ')) is �niteg = F

(p;')

.

Now, after at most k = jQj iterations of �, (�) holds. Let (� � � ((p; '

1

); '

2

) : : : ; '

k

) be

denoted by (p; '

1

; : : : ; '

k

). Then, for every look-ahead state (p; '

1

; : : : ; '

k

) of �

k

(M):

F

(p;'

1

;:::;'

k�1

)

= F

(p;'

1

;:::;'

k

)

. This is true be
ause F

p

= ? implies F

(p;'

1

)

= ? (sin
e

�

p

= f'

1

g), and F

(p;'

1

;:::;'

i

)

= F

(p;'

1

;:::;'

i+1

)

implies that F

(p;'

1

;:::;'

j

)

= F

(p;'

1

;:::;'

i

)

for all

j � i (by the above). Sin
e a sequen
e of nonempty subsets of Q in whi
h ea
h set is a

proper subset of the next one has length at most jQj = k, F

(p;'

1

;:::;'

k�1

)

= F

(p;'

1

;:::;'

k

)

.

Thus, M

0

= �

k

(M) is i-proper. 2

The next example illustrates the 
onstru
tion of an i-proper MTT

R

following the proof of

Lemma 5.4.

Example 5.5 For simpli
ity let us 
onsider an MTT

R

without parameters, i.e., a T

R

. Let

M = (Q;P;�;�; q

0

; R; h) be a T

R

with Q = fq

0

; q; q

0

; ig, P = fpg, � = f�

(0)

; 


(1)

; �

(1)

g,

� = f�

(0)

; �

(0)

; 


(1)

; �

(1)

; Æ

(2)

g, and let R 
onsist of the following rules.

hq

0

; 
(x

1

)i ! Æ(hq; x

1

i; hi; x

1

i) hpi

hq

0

; �(x

1

)i ! hq

0

; x

1

i hpi

hq; 
(x

1

)i ! � hpi

hq; �(x

1

)i ! � hpi

hq

0

; 
(x

1

)i ! � hpi

hq

0

; �(x

1

)i ! �(hi; x

1

i) hpi

hi; 
(x

1

)i ! 
(hi; x

1

i) hpi

hi; �(x

1

)i ! �(hi; x

1

i) hpi

hr; �i ! � for ea
h r 2 Q

Let us now de�ne M

1

= �(M) = (Q;P

0

;�;�; q

0

; R

0

; h

0

). We obtain F

p

= fqg and �

p

=

f'

�

; '

�

g with '

�

= f(q; �)g and '

�

= f(q; �)g, and thus P

0

= f(p; '

�

); (p; '

�

)g. As 
an
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easily be veri�ed, the rules of the look-ahead automaton of M

1

look as follows: h

0

�

=

(p; '

�

), h

0




((p; '

�

)) = h

0




((p; '

�

)) = (p; '

�

), h

0

�

((p; '

�

)) = h

0

�

((p; '

�

)) = (p; '

�

).

The q-, q

0

-, and i-rules in R

0

are identi
al to the ones in R for both new look-ahead states.

The q

0

-rules in R

0

look as follows:

hq

0

; 
(x

1

)i ! Æ(�; hi; x

1

i) h(p; '

�

)i

hq

0

; 
(x

1

)i ! Æ(�; hi; x

1

i) h(p; '

�

)i

hq

0

; �(x

1

)i ! hq

0

; x

1

i h(p; '

�

)i

hq

0

; �(x

1

)i ! hq

0

; x

1

i h(p; '

�

)i

Note that L

(p;'

�

)

= f�g [ f
(s) j s 2 T

�

g and L

(p;'

�

)

= f�(s) j s 2 T

�

g. Hen
e

Out(q

0

; (p; '

�

)) = f�g, and so the T

R

M

1

is not i-proper yet, be
ause F

(p;'

�

)

= fq; q

0

g 6=

F

p

. Thus we have to apply � again. Let M

0

= �(M

1

) = (Q;P

00

;�;�; q

0

; R

00

; h

00

).

We get �

(p;'

�

)

= f'g, with ' = f(q; �); (q

0

; �)g and �

(p;'

�

)

= f'

�

g. Thus P

00

=

f((p; '

�

); '); ((p; '

�

); '

�

)g. The look-ahead automaton of M

0

stays the same as for M

1

ex
ept for a renaming of states: (p; '

�

) by ((p; '

�

); ') and (p; '

�

) by ((p; '

�

); '

�

). The

q-, q

0

- and i-rules in R

00

are identi
al to the ones in R

0

(and R) for all look-ahead states.

The q

0

-rules in R

00

look as follows:

hq

0

; 
(x

1

)i ! Æ(�; hi; x

1

i) h((p; '

�

); ')i

hq

0

; 
(x

1

)i ! Æ(�; hi; x

1

i) h((p; '

�

); '

�

)i

hq

0

; �(x

1

)i ! � h((p; '

�

); ')i

hq

0

; �(x

1

)i ! hq

0

; x

1

i h((p; '

�

); '

�

)i

The T

R

M

0

is i-proper be
ause F

((p;'

�

);')

= fq; q

0

g = F

(p;'

�

)

and F

((p;'

�

);'

�

)

= fqg =

F

(p;'

�

)

. We �nally note that it is easy to transform M into a generalized syntax-dire
ted

translation s
heme that forms a 
ounter-example to the proof of Lemma 5.5 of [AU71℄. 2

5.2 Parameter Proper

Consider the following MTT M whi
h is of linear size in
rease, but not �nite 
opying in

the parameters. LetM = (Q;�;�; q

0

; R) with Q = fq

(0)

0

; q

(1)

g, � = f�

(2)

; 


(2)

; �

(0)

; �

(0)

g,

and � = f�

(2)

; 


(2)

; �

(1)

; �

(1)

; ��

(0)

; �


(0)

g. For all Æ 2 f�; 
g and a 2 f�; �g, let the following

rules be in R.

hq

0

; Æ(x

1

; x

2

)i ! Æ(hq; x

1

i(

�

Æ); hq; x

2

i(

�

Æ))

hq; Æ(x

1

; x

2

)i(y

1

) ! Æ(hq; x

1

i(y

1

); hq; x

2

i(y

1

))

hq

0

; ai ! a(�a)

hq; ai(y

1

) ! a(y

1

)

Intuitively, M moves the root symbol of the input tree to ea
h of its leaves; e.g., for s =

�(
(�; �); �) we get �

M

(s) = �(
(�(��); �(��); �(��))). Thus,M is lsi (be
ause size(�

M

(s)) �

2 � size(s)). Clearly, M is not f
p, be
ause #

y

1

(M

q

(s)) equals the number of leaves of s.

This time, the reason is that M generates a lot of parameter o

urren
es whi
h have only

�nitely many `argument trees' (viz., �� and �
). A j-th argument tree for q and p is a tree

�

j

su
h that hhq; pii(�

1

; : : : ; �

m

) is a subtree of some

^

M

q

0

(s[u p℄).
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The idea of the next normal form is to eliminate parameters y

j

of q for whi
h there are

only �nitely many j-th argument trees (for look-ahead p). This 
an be done by keeping the

information on these argument trees in the states of the new MTT

R

and by appropriately

repla
ing y

j

by the 
orre
t argument tree in ea
h right-hand side. For the example MTT

M of above we have to add states q

Æ

, Æ 2 f�; 
g of rank zero, and take as rules

hq

0

; Æ(x

1

; x

2

)i ! Æ(hq

Æ

; x

1

i; hq

Æ

; x

2

i)

hq

Æ

; �(x

1

; x

2

)i ! �(hq

Æ

; x

1

i; hq

Æ

; x

2

i) for � 2 f�; 
g

hq

0

; ai ! a(�a) for a 2 f�; �g

hq

Æ

; ai ! a(

�

Æ) for a 2 f�; �g

This shows that the translation �

M


an a
tually be realized by a top-down tree transdu
er.

De�nition 5.6 (parameter proper, proper)

An MTT

R

M = (Q;P;�;�; q

0

; R; h) is parameter proper (for short, p-proper), if for every

q 2 Q

(m)

, m � 1, j 2 [m℄, and p 2 P

(i) if hhq; pii is rea
hable, then the set Arg(q; j; p) =

ft=vj j 9s 2 T

�

; u 2 V (s) : t =

^

M

q

0

(s[u p℄); v 2 V (t); t[v℄ = hhq; piig

is in�nite, and

(ii) if hhq; pii is not rea
hable, then #

y

j

(M

q

(s)) � 1 for all s 2 L

p

.

The MTT

R

M is proper, if it is produ
tive and both i-proper and p-proper. 2

Note that Arg(q; j; p) � T

hhQ;fpgii[�

. Note also that hhq; pii is rea
hable if and only if

Arg(q; j; p) 6= ?.

Point (ii) in De�nition 5.6 says that if a parameter appears more than on
e in M

q

(s),

then hhq; h(s)ii is rea
hable. This (mild) additional requirement is needed to for
e an lsi

MTT

R

to be f
p, be
ause De�nition 4.6 of the f
p property requires #

y

j

(M

q

(s)) � N for

all states q, i.e., hhq; h(s)ii might not be rea
hable.

Similar to the 
ase of i-properness, we present two lemmas 
on
erning the �niteness of

Arg(q; j; p). First, let us show that it is de
idable whether Arg(q; j; p) is in�nite.

Lemma 5.7 Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. For given q 2 Q

(m)

, m � 1, j 2

[m℄, and p 2 P , it is de
idable whether or not Arg(q; j; p) is �nite. Moreover, Arg(q; j; p)


an be 
onstru
ted, if it is �nite.

Proof. Let K

p

be the regular tree language fs 2 T

^

�

j p o

urs exa
tly on
e in sg with

^

� = �[fp

(0)

g. Then �

^

M

(K

p

) � T

hhQ;fpgii[�

. We now 
onstru
t a partial nondeterministi


top-down tree transdu
er N whi
h takes a tree in T

hhQ;fpgii[�

as input and generates as

output the j-th subtree of an o

urren
e of hhq; pii. (A partial nondeterministi
 top-down

tree transdu
er is de�ned as in De�nitions 3.1 and 3.2 but for q and � there may be none

or several rules of the form hq; �(x

1

; : : : ; x

k

)i ! �.) Let N = (fr

(0)

; id

(0)

g;�;�; r; R

0

),

where � = hhQ; fpgii [� and R

0


onsists of the following rules.
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hr; 
(x

1

; : : : ; x

k

)i ! hr; x

i

i 8
 2 �

(k)

; k � 1; i 2 [k℄

hr; hhq; pii(x

1

; : : : ; x

m

)i ! hid; x

j

i

hid; 
(x

1

; : : : ; x

k

)i ! 
(hid; x

1

i; : : : ; hid; x

k

i) 8
 2 �

(k)

; k � 0

Clearly, �

N

(�

^

M

(K

p

)) = Arg(q; j; p), be
ause every tree t in �

^

M

(K

p

) equals

^

M

q

0

(s[u p℄)

for some s and u, and for every subtree hhq; pii(�

1

; : : : ; �

m

) of t: (t; �

j

) 2 �

N

. The �niteness

of L = �

N

(�

^

M

(K

p

)) 
an be de
ided by Lemma 3.7, and in 
ase of �niteness L 
an be


onstru
ted. 2

Lemma 5.8 Let M = (Q;P;�;�; q

0

; R; h) be an i-proper and produ
tive MTT

R

. Let

q 2 Q

(n)

, � 2 �

(k)

, n; k � 0, and p; p

1

; : : : ; p

k

2 P su
h that p = h

�

(p

1

; : : : ; p

k

) and hhq; pii

is rea
hable. Let hr; x

i

i(t

1

; : : : ; t

m

) be a subtree of rhs

M

(q; �; hp

1

; : : : ; p

k

i) with r 2 Q

(m)

,

m � 0, i 2 [k℄, and t

1

; : : : ; t

m

2 T

hQ;X

k

i[�

(Y

n

).

For j 2 [m℄, the set Arg(r; j; p

i

) is in�nite if in t

j

there is

(i) an o

urren
e of y

�

2 Y

n

, where Arg(q; �; p) is in�nite, or

(ii) an o

urren
e of an element of hQ;X

k

� fx

i

gi, or

(iii) an o

urren
e of y

�

2 Y

n

su
h that there is a � 2 Arg(q; �; p) for whi
h �[[rhs℄℄


ontains an o

urren
e of an element of hQ;X

k

� fx

i

gi, where [[rhs℄℄ denotes the

substitution [[hhq

0

; pii  rhs

M

(q

0

; �; hp

1

; : : : ; p

k

i) j q

0

2 Q℄℄.

Proof. Consider s 2 T

�

, u 2 V (s), and �

1

; : : : ; �

n

2 T

hhQ;fpgii[�

su
h that hhq; pii(�

1

; : : : ;

�

n

) is a subtree of

^

M

q

0

(s[u p℄). Consider also s

�

2 L

p

�

for � 2 [k℄. Note that su
h trees

exist be
ause hhq; pii is rea
hable and be
ause M satis�es point (iii) of i-properness.

Let s

0

= s[u �(s

1

; : : : ; s

k

)℄. Note that s

0

=u = �(s

1

; : : : ; s

k

) is in L

p

and that s

0

[u p℄ =

s[u  p℄. By Lemma 4.3,

^

M

q

0

(s

0

[ui  p

i

℄) =

^

M

q

0

(s[u  p℄)[[rhs℄℄	

s

1

;:::;s

k

[[i℄℄, with [[rhs℄℄

as in (iii), 	

s

1

;:::;s

k

= [[hq

0

; x

�

i  M

q

0

(s

�

) j q

0

2 Q; � 2 [k℄ � fig℄℄, and [[i℄℄ = [[hq

0

; x

i

i  

hhq

0

; p

i

ii j q

0

2 Q℄℄.

Sin
e M is nondeleting, so is [[rhs℄℄ and, by Lemma 3.10(1), so is 	

s

1

;:::;s

k

. Then, by

Lemma 2.1, the tree

^

M

q

0

(s

0

[ui  p

i

℄) has a subtree hhq; pii(�

1

; : : : ; �

n

)[[rhs℄℄	

s

1

;:::;s

k

[[i℄℄ =

��

�

1

;:::;�

n

	

s

1

;:::;s

k

[[i℄℄ with � = rhs

M

(q; �; hp

1

; : : : ; p

k

i) and �

�

1

;:::;�

n

= [y

�

 �

�

[[rhs℄℄ j � 2

[n℄℄. Again by Lemma 2.1 it has a subtree hhr; p

i

ii(t

0

1

; : : : ; t

0

m

), where, for j 2 [m℄,

t

0

j

= t

j

�

�

1

;:::;�

n

	

s

1

;:::;s

k

[[i℄℄ 2 Arg(r; j; p

i

): (�)

(i) Let j 2 [m℄ su
h that y

�

is a subtree of t

j

. By Lemma 2.1, y

�

�

�

1

;:::;�

n

	

s

1

;:::;s

k

[[i℄℄ =

�

�

[[rhs℄℄	

s

1

;:::;s

k

[[i℄℄ is a subtree of t

0

j

. Thus size(t

0

j

) � size(�

�

[[rhs℄℄	

s

1

;:::;s

k

[[i℄℄) whi
h is �

size(�

�

) by Lemma 2.7 and the fa
t that [[rhs℄℄ and 	

s

1

;:::;s

k

are produ
tive by Lemma 3.10.

We now let �

1

; : : : ; �

n

vary in (�): For every �

�

in the in�nite set Arg(q; �; p) there are

s 2 T

�

, u 2 V (s), and �

�

, � 2 [n℄ � f�g su
h that hhq; pii(�

1

; : : : ; �

n

) is a subtree of

^

M

q

0

(s[u  p℄); then the size of t

j

�

�

1

;:::;�

n

	

s

1

;:::;s

k

[[i℄℄ 2 Arg(r; j; p

i

) is � size(�

�

). Thus,

Arg(r; j; p

i

) is in�nite.
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(ii) Let j 2 [m℄, q

0

2 Q

(l)

, l � 0, and � 2 [k℄ � fig su
h that t

j

has a subtree

hq

0

; x

�

i(

�

t

1

; : : : ;

�

t

l

) for some trees

�

t

1

; : : : ;

�

t

l

. Then hhq

0

; p

�

ii is rea
hable, by the same ar-

gument as given above equation (�) (where we showed that hhr; p

i

ii is rea
hable). By

Lemma 2.1, t

0

j

has the subtree M

q

0

(s

�

)[y

�

 

�

t

�

�

�

1

;:::;�

n

	

s

1

;:::;s

k

[[i℄℄ j � 2 [l℄℄ the size of

whi
h is � size(M

q

0

(s

�

)). Sin
e M satis�es points (i) and (ii) of i-properness, the set

Out(q

0

; p

�

) = fM

q

0

(s

�

) j s

�

2 L

p

�

g is in�nite. We now let s

�

vary in (�): For ev-

ery s

�

2 L

p

�

the size of t

j

�

�

1

;:::;�

n

	

s

1

;:::;s

k

[[i℄℄ 2 Arg(r; j; p

i

) is � size(M

q

0

(s

�

)). Thus,

Arg(r; j; p

i

) is in�nite.

(iii) Let s 2 T

�

and u 2 V (s) su
h that

^

M

q

0

(s[u  p℄) has a subtree hhq; pii(�

1

; : : : ; �

n

)

for trees �

1

; : : : ; �

n

and �

�

[[rhs℄℄ has a subtree hq

0

; x

�

i(

�

t

1

; : : : ;

�

t

l

) for some q

0

2 Q

(l)

, l � 0,

� 2 [k℄ � fig, and trees

�

t

1

; : : : ;

�

t

l

. It follows from Lemma 2.6 (S

1

= 0) that �

�


ontains

some hhq

00

; pii, q

00

2 Q, su
h that rhs

M

(q

00

; �; hp

1

; : : : ; p

k

i) 
ontains hq

0

; x

�

i. Sin
e hhq

00

; pii

is rea
hable (be
ause �

�

is a subtree of

^

M

q

0

(s[u p℄)), hhq

0

; p

�

ii is rea
hable by the same

argument as used above (�). Thus, Out(q

0

; p

�

) is in�nite. Let j 2 [m℄ su
h that y

�

o

urs

in t

j

. Then, by Lemma 2.1, t

0

j

has a subtree M

q

0

(s

�

)[y

�

 

�

t

�

	

s

1

;:::;s

k

[[i℄℄ j � 2 [l℄℄ the size

of whi
h is � size(M

q

0

(s

�

)). Letting s

�

range over L

p

�

in (�) this implies, analogous to


ase (ii), that Arg(r; j; p

i

) is in�nite. 2

We are now ready to prove that properness (i.e., i-properness, p-properness, and produ
-

tiveness) is a normal form for MTT

R

s.

Theorem 5.9 For every MTT

R

M there is (e�e
tively) a proper MTT

R

prop(M) equiv-

alent to M . If M is a T

R

, then so is prop(M).

Proof. Let M = (Q;P;�;�; q

0

; R; h). By Lemma 5.4 we may assume that M is pro-

du
tive and i-proper. Let q 2 Q

(n)

and p 2 P . The idea of 
onstru
ting prop(M) is to

delete all parameters y

j

of q for whi
h Arg(q; j; p) is �nite, and to keep the parameters

y

j

1

; : : : ; y

j

m

of q for whi
h Arg(q; j

�

; p) is in�nite. The information on the a
tual parameter

tree whi
h has to be substituted for y

j

is stored in the states of prop(M). More pre
isely,

a state of prop(M) will be of the form (q; '), where ' is a mapping whi
h asso
iates with

j

�

the new parameter y

�

, and with j a tree �

j

in the �nite set Arg(q; j; p).

Let us �rst de�ne an auxiliary notion. For every q 2 Q

(n)

, n � 0, and p 2 P , let �

q;p

be

the (�nite) set of all mappings ' from [n℄ to T

hhQ;fpgii[�

[ Y su
h that there are s 2 T

�

,

u 2 V (s), and �

1

; : : : ; �

n

2 T

hhQ;fpgii[�

:

^

M

q

0

(s[u  p℄) has a subtree hhq; pii(�

1

; : : : ; �

n

)

and F

q;p

('; �

1

; : : : ; �

n

). The predi
ate F

q;p

('; �

1

; : : : ; �

n

) holds if for all j 2 [n℄: if j = j

�

for an � 2 [m℄ then '(j) = y

�

, and otherwise '(j) = �

j

, where fj

1

; : : : ; j

m

g = fj 2 [n℄ j

Arg(q; j; p) is in�niteg and j

1

< � � � < j

m

.

By the de�nition of Arg, '(j) 62 Y implies '(j) 2 Arg(q; j; p). Note that �

q;p

is �nite

be
ause '(j) 2 Y

m

[K

j

withK

j

= Arg(q; j; p) for �nite Arg(q; j; p) and K

j

= ? otherwise.

Therefore, �

q;p


an be obtained e�e
tively by 
he
king, for the (�nitely many) mappings

' : [n℄ ! K, whether or not ' 2 �

q;p

(where K = Y

m

[

S

j2[n℄

K

j


an be 
onstru
ted by

Lemma 5.7). This is de
idable be
ause, apart from the requirement that '(j

�

) = y

�

for

all � 2 [m℄ (whi
h is de
idable by Lemma 5.7), ' is in �

q;p

i� �

�1

^

M

(L) \ S is nonempty,

where S = fs[u  p℄ j s 2 T

�

; u 2 V (s)g and L 
onsists of all trees in T

hhQ;fpgii[�

whi
h

have a subtree hhq; pii(�

1

; : : : ; �

n

) with �

j

= '(j) for all j 62 '

�1

(Y ). Clearly, L is regular
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and hen
e, by Lemma 3.6, �

�1

^

M

(L) is regular. Sin
e S is regular, so is �

�1

^

M

(L) \ S, whi
h

implies that its emptiness is de
idable.

We �rst 
onstru
t the MTT

R

�(M) by deleting, in the right-hand side of a rule (with

look-ahead hp

1

; : : : ; p

k

i), all parameters y

j

of hr; x

i

i for whi
h Arg(r; j; p

i

) is �nite and

repla
e them by the appropriate tree in Arg(r; j; p

i

). This tree is 
oded in the states of

�(M). Due to the new states of �(M), a parameter y

j

�

of r with Arg(r; j

�

; p

i

) in�nite

might 
orrespond in �(M) to the parameter y

�

of a state (r; ') with �nite Arg((r; '); �; p

i

).

For this reason we have to iterate the appli
ation of � (as in the 
onstru
tion in the proof

of Lemma 5.4) until the ranks of the states do not 
hange anymore. This results in the

desired MTT

R

prop(M).

De�ne �(M) = (Q

0

; P;�;�; (q

0

;?); R

0

; h) with Q

0

= f(q; ')

(m)

j q 2 Q;9p 2 P : ' 2

�

q;p

;m = j'

�1

(Y )jg. For every (q; ') 2 Q

0

(m)

, � 2 �

(k)

, q 2 Q

(n)

, m;n; k � 0, and

p; p

1

; : : : ; p

k

2 P with p = h

�

(p

1

; : : : ; p

k

), let the rule

h(q; '); �(x

1

; : : : ; x

k

)i(y

1

; : : : ; y

m

)! � hp

1

; : : : ; p

k

i

be in R

0

su
h that if ' 62 �

q;p

then � is an arbitrary (\dummy") tree in T

�

(Y

m

)� Y with

#

y

j

(�) = 1 for every j 2 [m℄, and if ' 2 �

q;p

then � = repl(rhs(�)�), where � is the

(q; �; hp

1

; : : : ; p

k

i)-rule of M , � denotes the substitution

[y

j

 '(j)[[rhs℄℄ j j 2 [n℄℄ with [[rhs℄℄ = [[hhr; pii  rhs

M

(r; �; hp

1

; : : : ; p

k

i) j r 2 Q℄℄;

and for every subtree t 2 T

hQ;X

k

i[�

(Y

m

) of rhs(�)� the tree repl(t) is re
ursively de�ned

as follows:

� for t 2 Y

m

, repl(t) = t,

� for t = Æ(t

1

; : : : ; t

l

) with Æ 2 �

(l)

, l � 0, and t

1

; : : : ; t

l

2 T

hQ;X

k

i[�

(Y

m

), repl(t) =

Æ(repl(t

1

); : : : ; repl(t

l

)), and

� for t = hq

0

; x

i

i(t

1

; : : : ; t

l

), hq

0

; x

i

i 2 hQ;X

k

i

(l)

, l � 0, and t

1

; : : : ; t

l

2 T

hQ;X

k

i[�

(Y

m

),

repl(t) = h(q

0

; '

0

); x

i

i(repl(t

j

1

); : : : ; repl(t

j

�

));

where fj

1

; : : : ; j

�

g = fj 2 [l℄ j Arg(q

0

; j; p

i

) is in�niteg, j

1

< � � � < j

�

, and for j 2 [l℄,

'

0

(j) =

�

y

�

if j = j

�

for an � 2 [�℄

t

j

[[i℄℄ otherwise

with [[i℄℄ = [[hr; x

i

i  hhr; p

i

ii j r 2 Q℄℄.

This ends the 
onstru
tion of �(M).

Well-de�nedness of �(M): To prove that �(M) is well de�ned, we have to show that

repl(rhs(�)�) is in T

hQ

0

;X

k

i[�

(Y

m

). Sin
e rhs(�) 2 T

hQ;X

k

i[�

(Y

n

) and '(Y

n

) � Y

m

[

T

hhQ;fpgii[�

(be
ause ' 2 �

q;p

), it follows that rhs(�)� 2 T

hQ;X

k

i[�

(Y

m

). To prove

that repl(rhs(�)�) 2 T

hQ

0

;X

k

i[�

(Y

m

) we must show that, in the de�nition of repl, if

hq

0

; x

i

i(t

1

; : : : ; t

l

) is a subtree of rhs(�)�, then (q

0

; '

0

) 2 Q

0

, i.e., there is a p

0

su
h that

'

0

2 �

q

0

;p

0

.
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We will show that '

0

2 �

q

0

;p

i

, i.e., that there are s

0

2 T

�

, u

0

2 V (s

0

), and �

0

1

; : : : ; �

0

l

2

T

hhQ;fp

i

gii[�

su
h that hhq

0

; p

i

ii(�

0

1

; : : : ; �

0

l

) is a subtree of

^

M

q

0

(s

0

[u

0

 p

i

℄) and F

q

0

;p

i

('

0

; �

0

1

;

: : : ; �

0

l

). Sin
e ' 2 �

q;p

, there are s 2 T

�

, u 2 V (s), and �

1

; : : : ; �

n

2 T

hhQ;fpgii[�

su
h that

hhq; pii(�

1

; : : : ; �

n

) is a subtree of

^

M

q

0

(s[u p℄) and F

q;p

('; �

1

; : : : ; �

n

). Note in parti
ular

that hhq; pii is rea
hable. Take s

0

= s[u  �(s

1

; : : : ; s

k

)℄ with s

�

2 L

p

�

for all � 2 [k℄,

and take u

0

= ui. The s

�

exist, be
ause M is i-proper (point (iii)). By Lemma 4.3,

^

M

q

0

(s

0

[u

0

 p

i

℄) equals

^

M

q

0

(s[u  p℄)[[rhs℄℄[[::℄℄[[i℄℄, where [[::℄℄ denotes [[hr; x

�

i  M

r

(s

�

) j

hr; x

�

i 2 hQ;X

k

� fx

i

gi℄℄, and [[rhs℄℄ and [[i℄℄ are as in the de�nition of �(M). Sin
e

hhq; pii(�

1

; : : : ; �

n

) is a subtree of

^

M

q

0

(s[u p℄) it follows, by Lemma 2.1 and the fa
t that

[[::℄℄ is nondeleting by Lemma 3.10(1), that

^

M

q

0

(s

0

[u

0

 p

i

℄) has a subtree rhs(�)�

0

[[::℄℄[[i℄℄,

where �

0

= [y

�

 �

�

[[rhs℄℄ j � 2 [n℄℄.

Consider the two 
ases (i) there are t

0

1

; : : : ; t

0

l

2 T

hQ;X

k

i[�

(Y

n

) su
h that hq

0

; x

i

i(t

0

1

; : : : ; t

0

l

)

is a subtree of rhs(�) and t

0

j

� = t

j

for all j 2 [l℄, and (ii) hq

0

; x

i

i(t

1

; : : : ; t

l

) is a subtree of

'(�)[[rhs℄℄ for some � 2 [n℄.

(i) Sin
e rhs(�) has a subtree hq

0

; x

i

i(t

0

1

; : : : ; t

0

l

), it follows, by appli
ation of �

0

[[::℄℄[[i℄℄ (and

Lemma 2.1), that

^

M

q

0

(s

0

[u

0

 p

i

℄) has a subtree hhq

0

; p

i

ii(�

0

1

; : : : ; �

0

l

) with �

0

j

= t

0

j

�

0

[[::℄℄[[i℄℄ for

every j 2 [l℄. Let j 2 [l℄ su
h that Arg(q

0

; j; p

i

) is �nite. Then by Lemma 5.8(ii) and (iii),

both t

0

j

and all �

�

[[rhs℄℄ su
h that y

�

o

urs in t

0

j

, do not 
ontain elements of hQ;X

k

�fx

i

gi.

Thus �

0

j

= t

0

j

�

0

[[::℄℄[[i℄℄ equals t

0

j

�

0

[[i℄℄. By Lemma 5.8(i), t

0

j

does not 
ontain any y

�

2 Y

n

su
h that Arg(q; �; p) is in�nite. Thus, sin
e F

q;p

('; �

1

; : : : ; �

n

), t

0

j

�

0

[[i℄℄ = t

0

j

�[[i℄℄ = t

j

[[i℄℄.

By the de�nition of '

0

this shows that F

q

0

;p

i

('

0

; �

0

1

; : : : ; �

0

l

).

(ii) There is an o

urren
e of y

�

in rhs(�), be
ause M is nondeleting. Sin
e '(�) = �

�

, by

the fa
t that F

q;p

('; �

1

; : : : ; �

n

) holds, this means that in rhs(�)�

0

[[::℄℄[[i℄℄ there is a subtree

hhq

0

; p

i

ii(�

0

1

; : : : ; �

0

l

) with �

0

j

= t

j

[[::℄℄[[i℄℄ for j 2 [l℄. Sin
e hq

0

; x

i

i(t

1

; : : : ; t

l

) is a subtree

of �

�

[[rhs℄℄, it follows from the de�nition of se
ond-order tree substitution that �

�

has a

subtree hhq

00

; pii(�

1

; : : : ; �

�

) and the right-hand side of the (q

00

; �; hp

1

; : : : ; p

k

i)-rule �

00

has a

subtree hq

0

; x

i

i(t

0

1

; : : : ; t

0

l

) su
h that t

j

= t

0

j

[y

�

 �

�

[[rhs℄℄ j � 2 [�℄℄ for every j 2 [l℄. Note

that hhq

00

; pii is rea
hable be
ause it o

urs in �

�

. Now let j 2 [l℄ su
h that Arg(q

0

; j; p

i

)

is �nite. Then, as in 
ase (i), by Lemma 5.8(ii) and (iii) applied to �

00

, both t

0

j

and all

�

�

[[rhs℄℄ su
h that y

�

o

urs in t

0

j

do not 
ontain elements of hQ;X

k

�fx

i

gi. Hen
e t

j

does

not 
ontain elements of hQ;X

k

�fx

i

gi and thus �

0

j

= t

j

[[::℄℄[[i℄℄ = t

j

[[i℄℄. By the de�nition of

'

0

this shows that F

q

0

;p

i

('

0

; �

0

1

; : : : ; �

0

l

).

Equivalen
e of �(M) and M : We now prove that �(M) realizes the same translation as

M . This follows from Claim 1 for (q; ') = (q

0

;?).

Claim 1: Let s 2 T

�

, q 2 Q

(n)

, n � 0, and p = h(s). For every ' 2 �

q;p

, �(M)

(q;')

(s) =

M

q

(s)�

0

, where �

0

= [y

j

 '(j)[[hhr; pii  M

r

(s) j r 2 Q℄℄ j j 2 [n℄℄.

This 
laim is proved by indu
tion on the stru
ture of s. Let the indu
tion hypothesis be

denoted by IH1. Let s = �(s

1

; : : : ; s

k

) with � 2 �

(k)

, k � 0, and s

1

; : : : ; s

k

2 T

�

. For

i 2 [k℄ let p

i

= h(s

i

) and let m = rank

Q

0

((q; ')).

By Lemma 3.5, �(M)

(q;')

(�(s

1

; : : : ; s

k

)) = rhs

�(M)

((q; '); �; hp

1

; : : : ; p

k

i)[[ ℄℄, where [[ ℄℄ =

[[hr; x

i

i  �(M)

r

(s

i

) j hr; x

i

i 2 hQ

0

;X

k

i℄℄. By the de�nition of the right-hand sides of the

rules of �(M) we get repl(rhs(�)�)[[ ℄℄, where repl, �, and � are as in the de�nition of the

rules of �(M).
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For t = rhs(�)� it follows from Claim 2 that repl(rhs(�)�)[[ ℄℄ = rhs(�)�[[: : :℄℄, where

[[: : :℄℄ = [[hr; x

i

i  M

r

(s

i

) j hr; x

i

i 2 hQ;X

k

i℄℄. If we apply [[: : :℄℄ to rhs(�)� and use

Lemma 3.5 for M , then we get M

q

(s)�

0

whi
h proves Claim 1.

Claim 2: Let t 2 T

hQ;X

k

i[�

(Y

m

) be a subtree of rhs(�)�. Then repl(t)[[ ℄℄ = t[[: : :℄℄.

This 
laim is proved by indu
tion on the stru
ture of t. The indu
tion hypothesis is

denoted by IH2.

If t 2 Y

m

, then repl(t)[[ ℄℄ = t[[ ℄℄ = t = t[[: : :℄℄. If t = Æ(t

1

; : : : ; t

l

) with Æ 2 �

(l)

, l � 0, and

t

1

; : : : ; t

l

2 T

hQ;X

k

i[�

(Y

m

), then repl(Æ(t

1

; : : : ; t

l

))[[ ℄℄ equals Æ(repl(t

1

)[[ ℄℄; : : : ; repl(t

l

)[[ ℄℄).

By IH2 this equals Æ(t

1

[[: : :℄℄; : : : ; t

l

[[: : :℄℄) = t[[: : :℄℄.

If t = hq

0

; x

i

i(t

1

; : : : ; t

l

) with hq

0

; x

i

i 2 hQ;X

k

i

(l)

, l � 0, and t

1

; : : : ; t

l

2 T

hQ;X

k

i[�

(Y

m

),

then repl(t)[[ ℄℄ equals h(q

0

; '

0

); x

i

i(repl(t

j

1

); : : : ; repl(t

j

�

))[[ ℄℄ with fj

1

; : : : ; j

�

g = fj 2 [l℄ j

Arg(q

0

; j; p

i

) is in�niteg and '

0

as in the de�nition of repl. Applying the substitution [[ ℄℄

we get

�(M)

(q

0

;'

0

)

(s

i

)[y

�

 repl(t

j

�

)[[ ℄℄ j � 2 [�℄℄:

Sin
e '

0

2 �

q

0

;p

i

(as shown for the well-de�nedness of �(M)), we 
an apply IH1 to

�(M)

(q

0

;'

0

)

(s

i

) and IH2 to repl(t

j

�

[[ ℄℄) to get

M

q

0

(s

i

)�

00

[y

�

 t

j

�

[[: : :℄℄ j � 2 [�℄℄

with �

00

= [y

j

 '

0

(j)[[:℄℄ j j 2 [l℄℄ and [[:℄℄ = [[hhr; p

i

ii  M

r

(s

i

) j r 2 Q℄℄.

By the de�nition of '

0

we 
an write this as

M

q

0

(s

i

)[y

j

 t

j

[[i℄℄[[:℄℄ j j 2 [l℄; j 6= j

�

for � 2 [�℄℄[y

j

�

 y

�

j � 2 [�℄℄[y

�

 t

j

�

[[: : :℄℄ j � 2 [�℄℄:

Sin
e '

0

2 �

q

0

;p

i

, t

j

is in T

hQ;fx

i

gi[�

for j 6= j

�

. Therefore, in t

j

[[i℄℄[[:℄℄ = t

j

[[hr; x

i

i  

M

r

(s

i

) j r 2 Q℄℄ we 
an extend the substitution to all elements of hQ;X

k

i to get t

j

[[: : :℄℄.

Altogether we get

M

q

0

(s

i

)[y

j

 t

j

[[: : :℄℄ j j 2 [l℄; j 6= j

�

for � 2 [�℄℄[y

j

�

 t

j

�

[[: : :℄℄ j � 2 [�℄℄

whi
h equals M

q

0

(s

i

)[y

j

 t

j

[[: : :℄℄ j j 2 [l℄℄ = hq

0

; x

i

i(t

1

; : : : ; t

l

)[[: : :℄℄. This ends the proof

of Claim 2.

Nondeleting of �(M): Consider the ((q; '); �; hp

1

; : : : ; p

k

i)-rule r of �(M) and let '

�1

(Y

m

) =

fj

1

; : : : ; j

m

g with j

1

< � � � < j

m

. Let � 2 [m℄. If r is a dummy rule, then #

y

�

(rhs(r)) = 1.

Otherwise rhs(r) = repl(rhs(�)�), where � is the (q; �; hp

1

; : : : ; p

k

i)-rule of M . Sin
e M

is nondeleting, y

j

�

o

urs in rhs(�). Sin
e ' 2 �

q;p

, '(j

�

) = y

�

; this means that the

substitution � repla
es y

j

�

by y

�

, and hen
e y

�

o

urs in rhs(�)�. To show that y

�

o

urs

in repl(rhs(�)�), we prove that for t 2 T

hQ;X

k

i[�

(Y

m

): if y

�

o

urs in t, then it also o

urs

in repl(t). The proof is by indu
tion on the stru
ture of t. It is obvious for t 2 Y

m

and

t = Æ(t

1

; : : : ; t

l

). For t = hq

0

; x

i

i(t

1

; : : : ; t

l

), let j 2 [l℄ su
h that y

�

o

urs in t

j

, and let

'

0

be as in the de�nition of repl. By indu
tion, y

�

o

urs in repl(t

j

). Then y

�

o

urs

also in t

j

[[i℄℄, where [[i℄℄ is as in the de�nition of repl. This means that t

j

[[i℄℄ 62 T

hhQ;fp

i

gii[�

and sin
e '

0

2 �

q

0

;p

i

, this implies that '

0

(j) = y

�

for some � 2 [�℄ with j = j

0

�

, where
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fj

0

1

; : : : ; j

0

�

g = '

0

�1

(Y

�

) and j

0

1

< � � � < j

0

�

. By the de�nition of repl, repl(t

j

0

�

) = repl(t

j

) is

a subtree of repl(t) and therefore y

�

o

urs in repl(t).

Nonerasing of �(M): Clearly, from the de�nition of repl, if repl(t) 2 Y , then t 2 Y . Hen
e

repl(rhs(�)�) 2 Y implies rhs(�)� 2 Y and so, obviously, rhs(�) 2 Y . Thus, sin
e M is

nonerasing, so is �(M).

I-properness of �(M): Sin
e �(M) has the same look-ahead automaton as M , point (iii)

of i-properness is preserved. It follows from the de�nition of � and repl and from i-

properness of M that no (q

0

; ') appears in the right-hand side of a rule of �(M). Using

Lemma 4.3 (and the fa
t that, in the de�nition of repl(t), '

0

2 �

q

0

;p

i

) it is not diÆ
ult

to see that if hh(q; '); pii is rea
hable, then ' 2 �

q;p

and hen
e, by the de�nition of �

q;p

,

hhq; pii is rea
hable. Also by Lemma 4.3, if (q; ') 6= (q

0

;?) then (q; ') appears in the right-

hand side of a rule of �(M), and so q 6= q

0

. By Claim 1, �(M)

(q;')

(s) = M

q

(s)�

0

with

�

0

= [y

j

 '(j)[[hhr; pii  M

r

(s) j r 2 Q℄℄ j j 2 [n℄℄. Sin
e size(M

q

(s)�

0

) � size(M

q

(s)),

Out((q; '); p) = fM

q

(s)�

0

j s 2 L

p

g is in�nite if fM

q

(s) j s 2 L

p

g = Out(q; p) is in�nite,

whi
h holds by i-properness of M .

P-properness: By 
onstru
ting �(M) we have kept only those parameter positions j of

q, for whi
h Arg(q; j; p) is in�nite. But even if Arg(q; j; p) is in�nite, there might be

a ' 2 �

q;p

for whi
h Arg((q; '); j; p) is �nite. This means that �(M) need not be p-

proper yet (see Example 5.10), and, as in the 
ase of i-properness, we have to iterate the

appli
ation of �. For the termination 
ondition of this iteration we only need to 
onsider

parti
ular states, whi
h are a
tually used in the derivations of �

k

(M). Denote the state

(� � � ((q; '

1

); '

2

) : : : ; '

k

) of �

k

(M) by (q; '

1

; : : : ; '

k

). The state (q; '

1

; : : : ; '

k

) is p-uniform

if for ea
h 0 � i � k � 1: '

i+1

2 �

(q;'

1

;:::;'

i

);p

. We iterate the appli
ation of � until we

obtain the MTT

R

N (with set of states Q

N

) su
h that

for every p 2 P and p-uniform state (q; ') of M

0

= �(N) :

rank

Q

0

((q; ')) = rank

Q

N

(q); (�)

where Q

0

is the set of states of M

0

.

Let us now show that, indeed, after a �nite number of appli
ations of �, (�) holds. For q 2

Q and p 2 P , de�ne the tree T

q;p

as follows. For k � 0, the state (q; '

1

; : : : ; '

k

) of �

k

(M)

is a node of T

q;p

if it is p-uniform and there is a p-uniform state (q; '

1

; : : : ; '

k

; : : : ; '

l

) of

�

l

(M) with l > k whi
h is of smaller rank than (q; '

1

; : : : ; '

k

). There is an edge in T

q;p

from every node (q; '

1

; : : : ; '

k

) to every node (q; '

1

; : : : ; '

k

; '

k+1

). Clearly, if T

q;p

is �nite

for every q 2 Q and p 2 P , then the iteration of � terminates: Let l be maximal su
h that

(q; '

1

; : : : ; '

l

) is a leaf of T

q;p

for some q 2 Q and p 2 P . Then the statement in (�) holds

for N = �

l+1

(M), be
ause no p-uniform state (q; '

1

; : : : ; '

l

; '

l+1

) is a node of T

q;p

and

hen
e, by the de�nition of the nodes of T

q;p

, every p-uniform state (q; '

1

; : : : ; '

l+1

; '

l+2

)

has the same rank as (q; '

1

; : : : ; '

l+1

). To show the �niteness of T

q;p

it suÆ
es, by K�onig's

Lemma, to show that every path � of T

q;p

is �nite. Assume to the 
ontrary that � is

in�nite. Let u = (q; '

1

; : : : ; '

k

) be a node of �. Then there is a des
endant of u on the

path �, that has lower rank than u. This 
an be seen as follows. By the de�nition of the

node u, there is a p-uniform state (q; '

1

; : : : ; '

k

; : : : ; '

l

) of �

l

(M), l > k, whi
h has lower

rank than u. Now, for ea
h i 2 fk + 1; : : : ; lg su
h that v = (q; '

1

; : : : ; '

k

; : : : ; '

i�1

) is on

the path �: either v

0

= (v; '

i

) = (q; '

1

; : : : ; '

k

; : : : ; '

i

) has the same rank as v and then
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v

0

is on the path � be
ause �

v;p

= fv

0

g by the de�nition of �

v;p

, or, v

0

has a lower rank n

than v, and then, by the de�nition of �

v;p

, ea
h state (v; ') has rank n, in parti
ular the


hild of v that is on the path �. Sin
e ea
h node u of � has a des
endant on � that has

a lower rank than u, there is an in�nite sequen
e of nodes on � with stri
tly de
reasing

ranks. This 
ontradi
ts the �niteness of the rank of q.

Before we show that M

0

is p-proper, we prove a 
laim about p-uniformity.

Claim 3: Let k � 0, let q be a state of �

k

(M), and let p 2 P .

(i) If hq; x

i

i appears in the right-hand side of a (q

0

; �; hp

1

; : : : ; p

k

0

i)-rule of �

k

(M) for

some state q

0

of �

k

(M), k

0

� 0, i 2 [k

0

℄, and p

1

; : : : ; p

k

0

2 P , then q is p

i

-uniform.

(ii) If hhq; pii is rea
hable (by �

k

(M)), then q is p-uniform.

The proof of part (i) of Claim 3 is by indu
tion on k. For k = 0, every state is p-

uniform for all p 2 P , and thus the statement holds. Now assume the statement holds for

�

k

(M). If h(q; '); x

i

i appears in the right-hand side � of the ((q

0

; '

0

); �; hp

1

; : : : ; p

k

0

i)-rule of

�(�

k

(M)), then, by the de�nition of the rules of �(�

k

(M)), � is of the form repl(rhs(�)�),

where � is the (q

0

; �; hp

1

; : : : ; p

k

0

i)-rule of �

k

(M). Thus, by the de�nition of repl and �,

hq; x

i

i o

urs in rhs(�), whi
h means, by indu
tion, that q is p

i

-uniform. In the proof of

well-de�nedness of �(M) it is shown that ' 2 �

q;p

i

, and hen
e also (q; ') is p

i

-uniform.

This proves part (i) of the 
laim. To prove part (ii), we may assume that q 6= r

0

, the

initial state of �

k

(M); in fa
t, r

0

= (q

0

;?; : : : ;?) is p-uniform for every p. If hhq; pii is

rea
hable (by �

k

(M)) then, by de�nition, it appears in

\

�

k

(M)

r

0

(s[u  p℄) for some tree

s and node u of s, where

\

�

k

(M) denotes the extension of �

k

(M). Sin
e q 6= r

0

, u must be

of the form u

0

j with u

0

2 N

�

and j � 1. Hen
e, by Lemma 4.3, hq; x

j

i must o

ur in the

right-hand side of some rule of �

k

(M) with look-ahead hp

1

; : : : ; p

l

i, l � 1, and p

j

= p. By

part (i) of the 
laim this implies that q is p-uniform. This 
on
ludes the proof of Claim 3.

Let us now prove (i) of p-properness for N . Let hhq; pii be rea
hable (by N). By

Claim 3(ii), q is p-uniform. Sin
e hhq; pii is rea
hable, the set �

q;p

must, by de�ni-

tion, 
ontain some element '. Then (q; ') is p-uniform and it follows from (�) that

n = j'

�1

(Y )j and thus fj 2 [n℄ j Arg(q; j; p) is in�niteg = f1; : : : ; ng. Thus (i) of p-

properness holds for N . Now 
onsider M

0

. Note that, by the previous argument, if

(q; ') is a p-uniform state of M

0

then ' = '

n

, where q 2 Q

(n)

N

and '

n

(j) = y

j

for ev-

ery j 2 [n℄. Clearly, (i) of p-properness also holds for M

0

. Formally this 
an be shown

by proving that Arg((q; '

n

); j; p) = Arg(q; j; p)[[rel℄℄, where [[rel℄℄ denotes the relabeling

[[hhq

0

; pii  hh(q

0

; '

n

0

); pii j q

0

2 Q

(n

0

)

N

; n

0

� 0℄℄. This follows from Claim 4 (for q equal to the

initial state of N and ' equal to ?).

Claim 4: Let s 2 T

�

, u 2 V (s), and p 2 P , and let (q; ') be an h(s[u p℄)-uniform state

of M

0

. Then

^

M

0

(q;')

(s[u p℄) =

^

N

q

(s[u p℄)[[rel℄℄:

The proof is by indu
tion on the stru
ture of s. Let s = �(s

1

; : : : ; s

k

) with � 2 �

(k)

,

k � 0, and s

1

; : : : ; s

k

2 T

�

. For u = " we get

^

M

0

(q;')

(s[u  p℄) = hh(q; '); pii. Sin
e

' = '

n

, where n is the rank of q, hh(q; '); pii = hhq; pii[[rel℄℄ =

^

N

q

(s[u  p℄)[[rel℄℄. For
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u = ju

0

with j � 1 and u

0

2 N

�

, s[u  p℄ = �(~s

1

; : : : ; ~s

k

) with ~s

j

= s

j

[u

0

 p℄ and

~s

i

= s

i

for i 2 [k℄ � fjg. By Lemma 3.5 and the de�nition of the right-hand sides of

M

0

,

^

M

0

(q;')

(s[u  p℄) = repl(rhs(�)�)[[ ℄℄, where � is the (q; �; hh(~s

1

); : : : ; h(~s

k

)i)-rule of

N and [[ ℄℄ = [[h(q

0

; '

0

); x

i

i  

^

M

0

(q

0

;'

0

)

(~s

i

) j h(q

0

; '

0

); x

i

i 2 hQ

0

;X

k

i℄℄. By Claim 3(i), if

h(q

0

; '

0

); x

i

i o

urs in repl(rhs(�)�), then (q

0

; '

0

) is h(~s

i

)-uniform and, by the argument

given above Claim 4, '

0

= '

n

0

where q

0

2 Q

(n

0

)

N

. Clearly, repl(rhs(�)�) equals rhs(�)[[ ℄℄

with [[ ℄℄ = [[hq

0

; x

i

i  h(q

0

; '

n

0

); x

i

i j hq

0

; x

i

i 2 hQ

N

;X

k

i

(n

0

)

; n

0

� 0℄℄. Furthermore, we 
an

restri
t the substitution [[ ℄℄ to those h(q

0

; '

0

); x

i

i whi
h o

ur in repl(rhs(�)�), and then

apply the indu
tion hypothesis to ~s

j

= s

j

[u p℄. If we 
ombine the resulting substitution

with [[ ℄℄ and apply Claim 1 to ~s

i

= s

i

for i 2 [k℄� fjg (where �

0

is the identity), then we

get rhs(�)[[hq

0

; x

i

i  

^

N

q

0

(~s

i

)[[rel℄℄ j hq

0

; x

i

i 2 hQ

N

;X

k

i o

urs in rhs(�)℄℄ = rhs(�)[[hq

0

; x

i

i  

^

N

q

0

(~s

i

)[[rel℄℄ j hq

0

; x

i

i 2 hQ

N

;X

k

i℄℄, whi
h equals

^

N

q

(s[u p℄)[[rel℄℄. This proves Claim 4.

To show (ii) of p-properness of M

0

, note that if ' 2 �

q;p

, then hhq; pii is rea
hable (by

N) and hen
e, by Claim 3(ii), q is p-uniform; then also (q; ') is p-uniform, ' = '

n

, and,

by Claim 4, hh(q; '); pii is rea
hable (by M

0

). Thus, if hh(q; '); pii is not rea
hable, then

' 62 �

q;p

. This implies a dummy right-hand side for all ((q; '); �; hp

1

; : : : ; p

k

i)-rules with

h

�

(p

1

; : : : ; p

k

) = p and therefore #

y

j

(M

0

(q;')

(s)) = 1 for all s 2 L

p

. This proves (ii) of

p-properness and 
on
ludes the proof of properness of M

0

. Hen
e, the lemma holds for

prop(M) =M

0

. 2

The following example illustrates the 
onstru
tion of a proper MTT

R

as given in the proof

of Theorem 5.9.

Example 5.10 Let M = (Q; fpg;�;�; q

0

; R; h) be the MTT with Q = fq

(0)

0

; q

(2)

g, � =

fa

(1)

; b

(1)

; e

(0)

g, � = f�

(3)

; 


(1)

; a

(0)

; b

(0)

; e

(0)

g, and R 
onsisting of the following rules

(where the only look-ahead hpi is omitted, as usual).

hq

0

; a(x

1

)i ! hq; x

1

i(a; a) hq; a(x

1

)i(y

1

; y

2

) ! �(y

1

; y

2

; hq; x

1

i(a; a))

hq

0

; b(x

1

)i ! hq; x

1

i(b; b) hq; b(x

1

)i(y

1

; y

2

) ! �(y

1

; y

2

; hq; x

1

i(b; 
(y

2

)))

hq

0

; ei ! e hq; ei(y

1

; y

2

) ! �(y

1

; y

2

; e)

Note that M is produ
tive and i-proper. Let us now 
onstru
t the MTT �(M) as de�ned

in the proof of Theorem 5.9. Clearly, Arg(q; 1; p) = fa; bg and Arg(q; 2; p) = f


n

(
) j

n � 0; 
 2 fa; bgg. Thus, �

q;p


onsists of the two mappings '

a

and '

b

with '

a

(1) =

a, '

a

(2) = y

1

, '

b

(1) = b, and '

b

(2) = y

1

. Therefore the states of M

1

= �(M) are

(q

0

;?)

(0)

; (q; '

a

)

(1)

; (q; '

b

)

(1)

, abbreviated by q

0

; q

a

; q

b

, respe
tively. For every 
 2 fa; bg,

M

1

has the following rules.

hq

0

; a(x

1

)i ! hq

a

; x

1

i(a) hq




; a(x

1

)i(y

1

) ! �(
; y

1

; hq

a

; x

1

i(a))

hq

0

; b(x

1

)i ! hq

b

; x

1

i(b) hq




; b(x

1

)i(y

1

) ! �(
; y

1

; hq

b

; x

1

i(
(y

1

)))

hq

0

; ei ! e hq




; ei(y

1

) ! �(
; y

1

; e)

Now for M

1

, Arg(q

a

; 1; p) = fag and Arg(q

b

; 1; p) = f


n

(
) j n � 0; 
 2 fa; bgg. Sin
e

hhq

a

; pii is rea
hable this means that M

1

is not p-proper.

Following the proof of Theorem 5.9, we have to 
onstru
t the MTT N = �(M

1

), be
ause

rank

Q

0

((q; '

a

)) < rank

Q

(q). Clearly, �

q

a

;p

= f'

0

a

g with '

0

a

(1) = a, and �

q

b

;p

= f'

1

g
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with '

1

(1) = y

1

. Thus, the states of N are (q

0

;?)

(0)

; (q

a

; '

0

a

)

(0)

; (q

b

; '

1

)

(1)

, abbreviated

by q

0

; q

a

; q

b

, respe
tively. The rules of N are as follows.

hq

0

; a(x

1

)i ! hq

a

; x

1

i

hq

0

; b(x

1

)i ! hq

b

; x

1

i(b)

hq

0

; ei ! e

hq

a

; a(x

1

)i ! �(a; a; hq

a

; x

1

i)

hq

b

; a(x

1

)i(y

1

) ! �(b; y

1

; hq

a

; x

1

i)

hq

a

; b(x

1

)i ! �(a; a; hq

b

; x

1

i(
(a)))

hq

b

; b(x

1

)i(y

1

) ! �(b; y

1

; hq

b

; x

1

i(
(y

1

)))

hq

a

; ei ! �(a; a; e)

hq

b

; ei(y

1

) ! �(b; y

1

; e)

The MTT N is p-proper be
ause Arg(q

b

; 1; p) = f


n

(
) j n � 0; 
 2 fa; bgg (and all

elements of hhQ

N

; fpgii are rea
hable). It is easy to see that N is equivalent to M . 2

6 From Linear Size In
rease to Finite Copying

In this se
tion we prove that if a proper MTT

R

M is of linear size in
rease (lsi), then it

is �nite 
opying (f
, i.e., both f
i and f
p, see Se
tion 4.1). The proof is split up into the

following three stages, using �nite nested 
opying (fnest, see Se
tion 4.2) as an intermediate

notion:

(I) If M is lsi, then it is fnest.

(II) If M is lsi and fnest, then it is f
p.

(III) If M is lsi, fnest, and f
p, then it is f
i.

We �rst prove (II) and then (III), and �nally (I). The reason for this order is that the

proof of (I) will use results that are proved in (III). The idea in ea
h stage is roughly as

follows: First, it is proved that if M 's 
opying is not bounded (i.e., M is not f
p, not f
i,

and not fnest, for (II), (III), and (I), respe
tively), then we 
an �nd an input tree in whi
h

some part s 
an be pumped, i.e., repeated; ea
h repetition of s will produ
e a 
opy of a


ertain parameter (for (II)) or of a 
ertain state (for (III) and (I)). Se
ond, it is shown

that this repetition gives a size in
rease that is not linearly bounded (by any 
); in this

part the properness ofM is used: it is shown that for any 
 we 
an pi
k a suÆ
iently large

output tree t, a 
opy of whi
h is generated with ea
h repetition of s, and a suÆ
iently

large i su
h that after i repetitions of s the size of the 
orresponding output tree is larger

than 
 times the size of the input tree.

6.1 From lsi and fnest to f
p (II)

We now present (in Lemma 6.2) a pumping lemma for non-f
p MTT

R

fnest

s, whi
h allows

us to prove (in Theorem 6.3) that if a proper MTT

R

fnest

is of linear size in
rease, then it is

�nite 
opying in the parameters.
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First, for an MTT

R

M , 
onsider the number k of o

urren
es of y

�

in

^

M

r

(t[u p℄) with

p = h(t=u). Clearly, if

^

M

r

(t[u p℄) has a subtree hhr

1

; pii(�

1

; : : : ; �

m

1

) su
h that y

�

o

urs

in �

�

1

for some �

1

2 [m

1

℄, then, assuming that M is nondeleting, the number of y

�

's in

M

r

(t) must be at least k � 1 plus the number of y

�

1

's in M

r

1

(t=u). This is proved in the

next lemma, in su
h a way that the idea 
an be iterated.

Lemma 6.1 Let M = (Q;P;�;�; q

0

; R; h) be a nondeleting MTT

R

. For r

0

2 Q

(m

0

)

,

r

1

2 Q

(m

1

)

, �

0

2 [m

0

℄, �

1

2 [m

1

℄, t

0

2 T

�

, u

1

2 V (t

0

), and k 2 N,

let P(r

0

; �

0

; t

0

; r

1

; �

1

; u

1

; k) be the following statement, with p

1

denoting h(t

0

=u

1

):

#

y

�

0

(

^

M

r

0

(t

0

[u

1

 p

1

℄)) � k and

^

M

r

0

(t

0

[u

1

 p

1

℄) has a subtree hhr

1

; p

1

ii(�

1

; : : : ; �

m

1

)

for 
ertain �

1

; : : : ; �

m

1

su
h that #

y

�

0

(�

�

1

) � 1.

Let r

2

2 Q

(m

2

)

, �

2

2 [m

2

℄, u

2

2 V (t

0

=u

1

), and l 2 N. If P(r

0

; �

0

; t

0

; r

1

; �

1

; u

1

; k) and

P(r

1

; �

1

; t

0

=u

1

; r

2

; �

2

; u

2

; l), then P(r

0

; �

0

; t

0

; r

2

; �

2

; u

1

u

2

; k + l � 1).

Proof. Note that t

0

=u

1

u

2

= (t

0

=u

1

)=u

2

. Let t

1

= t

0

=u

1

, p

1

= h(t

1

) and p

2

=

h(t

0

=u

1

u

2

) = h(t

1

=u

2

). By Lemma 4.2,

^

M

r

0

(t

0

[u

1

u

2

 p

2

℄) equals t[[: : :℄℄ with t =

^

M

r

0

(t

0

[u

1

 p

1

℄) and [[: : :℄℄ = [[hhq

0

; p

1

ii  

^

M

q

0

(t

1

[u

2

 p

2

℄) j q

0

2 Q℄℄. We use Lemma 2.6

to 
ompute the number of o

urren
es of y

�

0

's in this tree. By the �rst assumption, t has

at least k leaves u 2 V

y

�

0

(t), and it has a subtree hhr

1

; p

1

ii(�

1

; : : : ; �

m

1

) with #

y

�

0

(�

�

1

) � 1.

Thus, t has a leaf u 2 V

y

�

0

(t) su
h that

Q

F

[[:::℄℄

t;u

� #

y

�

1

(

^

M

r

1

(t

1

[u

2

 p

2

℄)), whi
h is � l

by the se
ond assumption. Hen
e, S

1

+ S

2

of Lemma 2.6 equals S

1

� k � 1 + l. We

have used the fa
t that #

y

�

(

^

M

q

0

(t

1

[u

2

 p

2

℄)) � 1 for all � and q

0

, whi
h follows from

Lemma 3.10(1) be
ause M is nondeleting (and hen
e so is

^

M).

The substitution [[: : :℄℄ is nondeleting, be
ause

^

M is nondeleting. Thus, sin
e t has a

subtree hhr

1

; p

1

ii(�

1

; : : : ; �

m

1

), it follows from Lemma 2.1 that

^

M

r

0

(t

0

[u

1

u

2

 p

2

℄) = t[[: : :℄℄

has a subtree hhr

1

; p

1

ii(�

1

; : : : ; �

m

1

)[[: : :℄℄ =

^

M

r

1

(t

1

[u

2

 p

2

℄)[: : : ℄, where [: : : ℄ denotes [y

j

 

�

j

[[: : :℄℄ j j 2 [m

1

℄℄.

By the se
ond assumption,

^

M

r

1

(t

1

[u

2

 p

2

℄) has a subtree hhr

2

; p

2

ii(�

1

; : : : ; �

m

2

) with

#

y

�

1

(�

�

2

) � 1. Thus we obtain a subtree hhr

2

; p

2

ii(�

1

[: : : ℄; : : : ; �

m

2

[: : : ℄) and �

�

2

[: : : ℄ has a

subtree �

�

1

[[: : :℄℄ whi
h 
ontains y

�

0

(be
ause #

y

�

0

(�

�

1

) � 1 and M is nondeleting). 2

Lemma 6.2 Let M = (Q;P;�;�; q

0

; R; h) be a nondeleting MTT

R

fnest

with the property:

if hhq; pii 2 hhQ;P ii

(m)

is not rea
hable, then #

y

j

(M

q

(s)) � 1 for all j 2 [m℄ and s 2 L

p

(property (ii) of De�nition 5.6 of p-properness).

If M is not f
p, then there are m � 1, q 2 Q

(m)

, j 2 [m℄, s 2 T

�

, u 2 V (s), and p 2 P

su
h that

(1) #

y

j

(

^

M

q

(s[u p℄)) � 2,

(2)

^

M

q

(s[u p℄) has a subtree hhq; pii(�

1

; : : : ; �

m

) with #

y

j

(�

j

) � 1, and

(3) p = h(s) = h(s=u).
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Proof. We �rst de�ne an auxiliary notion. For t 2 T

�

, u an an
estor of v 2 V (t),

q 2 Q

(m)

, � 2 [m℄, q

0

2 Q

(m

0

)

, �

0

2 [m

0

℄, de�ne (q; �) !

u;v

(q

0

; �

0

) if, for �

q;u;v

=

^

M

q

(t=u[v

0

 p

v

℄) with v = uv

0

and p

v

= h(t=v): #

y

�

(�

q;u;v

) � 2 and �

q;u;v

has a

subtree hhq

0

; p

v

ii(�

1

; : : : ; �

m

0

) su
h that #

y

�

(�

�

0

) � 1. Note that (q; �) !

u;v

(q

0

; �

0

) i�

P(q; �; t=u; q

0

; �

0

; v

0

; 2), where P is the statement of Lemma 6.1. The relation ! is tran-

sitive, i.e., for a des
endant w of v,

if (q; �)!

u;v

(q

0

; �

0

) and (q

0

; �

0

)!

v;w

(q

00

; �

00

) then (q; �)!

u;w

(q

00

; �

00

):

This follows from Lemma 6.1, be
ause (q; �) !

u;v

(q

0

; �

0

) and (q

0

; �

0

)!

v;w

(q

00

; �

00

) imply

that P(q; �; t=u; q

00

; �

00

; v

0

w

0

; 3) with w

0

2 N

�

su
h that w = vw

0

, and thus (q; �) !

u;w

(q

00

; �

00

).

Assume that M is not f
p. Then, in terms of the !-notation, the lemma says that there

are m � 1, q 2 Q

(m)

, j 2 [m℄, s 2 T

�

, u 2 V (s), and p 2 P su
h that

(1; 2) (q; j)!

";u

(q; j) and

(3) p = h(s) = h(s=u):

Sin
e M is not f
p, for every n 2 N, there are q 2 Q

(m)

, j 2 [m℄, and t 2 T

�

su
h that

#

y

j

(M

q

(t)) > n. The following 
laim shows that if #

y

j

(M

q

(t=u)) is `large' for a node u

of t, then there must be a des
endant v of u, a state r, and a parameter y

�

of r su
h that

(q; j) !

u;v

(r; �) and #

y

�

(M

r

(t=v)) is still `large'. The appli
ation of this 
laim 
an be

iterated to show the existen
e of a sequen
e of des
endants v and a sequen
e of steps !,

whi
h will eventually lead to a repetition of a state-parameter pair that allows us to de�ne

s and u su
h that (1){(3) holds.

Let B be a nesting bound for M . Let � be the maximal height of the right-hand side of

a rule of M , i.e., � = maxfheight(rhs(�)) j � 2 Rg, and let � � 1 be an upper bound for

the number of o

urren
es of one parti
ular parameter in the right-hand side of a rule of

M , i.e., #

y

(rhs(�)) � � for every y 2 Y and � 2 R.

Claim: For every 
 � 1, t 2 T

�

, u 2 V (t), q 2 Q

(m)

, and � 2 [m℄, if #

y

�

(M

q

(t=u)) >




B�

� �

B

, then there exist a des
endant v of u, a state r 2 Q

(m

0

)

, and a � 2 [m

0

℄ su
h that

(q; �)!

u;v

(r; �) and #

y

�

(M

r

(t=v)) > 
.

Proof of the 
laim: Let w be a longest des
endant of u su
h that #

y

�

(�

q;u;w

) = 1. Clearly,

su
h a w exists, be
ause #

y

�

(�

q;u;u

) = 1. Then there must be a 
hild v of w that satis�es

the requirements of the 
laim. Assume to the 
ontrary, that if v is a 
hild of w, then it does

not satisfy the requirements, i.e., for every r 2 Q

(m

0

)

and � 2 [m

0

℄ with (q; �)!

u;v

(r; �),

#

y

�

(M

r

(t=v)) � 
. This will lead to a 
ontradi
tion.

By Lemmas 4.2 (applied to t=u and w) and 3.5,

M

q

(t=u) = �

q;u;w

[[rhs℄℄[[: : :℄℄;

where [[rhs℄℄ = [[hhr; p

w

ii  rhs

M

(r; �; hp

1

; : : : ; p

k

i) j r 2 Q℄℄ with � = t[w℄ 2 �

(k)

, k � 0,

p

w

= h(t=w), p

i

= h(t=wi) for i 2 [k℄, and [[: : :℄℄ = [[hr; x

i

i  M

r

(t=wi) j hr; x

i

i 2 hQ;X

k

i℄℄.

Now, #

y

�

(�

q;u;w

[[rhs℄℄) � �

B

. This is true be
ause by Lemma 2.6, #

y

�

(�

q;u;w

[[rhs℄℄) =

S

1

=

P

z2V

y

�

(�

q;u;w

)

Q

F

[[rhs℄℄

�

q;u;w

;z

, whi
h equals

Q

F

[[rhs℄℄

�

q;u;w

;z

for the unique z with V

y

�

(�

q;u;w

) =

fzg. Sin
e #

y

�

(M

q

(t=u)) > 1, hhq; h(t=u)ii is rea
hable by the assumption of the lemma.
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Thus, by Lemma 4.13, there are at most B o

urren
es of elements of hhQ; fp

w

gii on

the label path lpath(�

q;u;w

; z). Hen
e,

Q

F

[[rhs℄℄

�

q;u;w

;z

is the produ
t of at most B numbers

#

y

�

(rhs

M

(r; �; hp

1

; : : : ; p

k

i)) � � for r 2 Q and � 2 [rank

Q

(r)℄, and therefore

Q

F

[[rhs℄℄

�

q;u;w

;z

�

�

B

.

Sin
e every label path of �

q;u;w

is of the form w

0

hhq

1

; p

w

iiw

1

� � � hhq

l

; p

w

iiw

l

with l � B,

q

1

; : : : ; q

l

2 Q and w

0

; : : : ; w

l

2 �

�

, it follows from Lemma 2.3(i) that every label path � in

�

q;u;w

[[rhs℄℄ is of the form w

0

v

1

w

1

� � � v

l

w

l

, where ea
h v

i

is a label path in rhs

M

(q

i

; �; hp

1

; : : : ;

p

k

i). By the de�nition of �, the length of v

i

is� �. Thus, #

hQ;X

k

i

(�) =

P

i2[l℄

#

hQ;X

k

i

(v

i

) �

B�.

Let � = �

q;u;w

[[rhs℄℄. By Lemma 2.6, #

y

�

(�[[: : :℄℄) =

P

z2V

y

�

(�)

Q

F

[[:::℄℄

�;z

. This is � �

B

�

Q

F

[[:::℄℄

�;z

, where z 2 V

y

�

(�) su
h that

Q

F

[[:::℄℄

�;z

is maximal, be
ause #

y

�

(�) � �

B

. Sin
e

#

hQ;X

k

i

(�) � B� for � = lpath(�; z),

Q

F

[[:::℄℄

�;z

is the produ
t of at most B� numbers

#

y

�

(M

r

(t=wi)). Let us now show that ea
h su
h number is � 
. We need to show that

(q; �) !

u;wi

(r; �). By the de�nition of w, #

y

�

(�

q;u;wi

) 6= 1. Sin
e M is nondeleting it

follows from Lemma 3.10(1) that #

y

�

(�

q;u;wi

) � 1, and thus #

y

�

(�

q;u;wi

) � 2. Sin
e hr; x

i

i

o

urs in � at some node z

0

with z = z

0

�z

00

, � has a subtree hr; x

i

i(�

1

; : : : ; �

m

0

) for some

�

1

; : : : ; �

m

0

2 T

hQ;X

k

i[�

(Y

m

), and y

�

o

urs in �

�

. By Lemma 4.3, �

q;u;wi

= �[[::℄℄[[i℄℄, with

[[::℄℄ and [[i℄℄ as in that lemma. It follows from Lemma 3.10(1) that [[::℄℄[[i℄℄ is nondeleting.

Thus, by Lemma 2.1, �

q;u;wi

has a subtree hhr; p

i

ii(�

1

[[::℄℄[[i℄℄; : : : ; �

m

0

[[::℄℄[[i℄℄) and y

�

o

urs in

�

�

[[::℄℄[[i℄℄. This proves that (q; �)!

u;wi

(r; �) and thus, by assumption, #

y

�

(M

r

(t=wi)) � 
.

We get #

y

�

(M

q

(t=u)) � 


B�

��

B

whi
h is a 
ontradi
tion and ends the proof of the 
laim.

Now, let 


0

= 1 and 


i

= 


B�

i�1

�

B

for i � 1. Sin
e M is not f
p, for every n � 1 there

exist r

0

2 Q

(m

0

)

, �

0

2 [m

0

℄, and t 2 T

�

su
h that #

y

�

0

(M

r

0

(t)) > 


n

. Let v

0

= ". We

apply the 
laim for i = 0; 1; : : : ; n � 1 to u = v

i

, q = r

i

, and � = �

i

to obtain that

there exist a des
endant v

i+1

of v

i

, a state r

i+1

2 Q

(m

i+1

)

, and �

i+1

2 [m

i+1

℄ su
h that

(r

i

; �

i

)!

v

i

;v

i+1

(r

i+1

; �

i+1

) and #

y

�

i+1

(M

r

i+1

(t=v

i+1

)) > 


n�(i+1)

.

Take n = jQj �m � jP j where m is the maximal rank of a state ofM . Then there are indi
es

0 � i < i

0

� n su
h that q = r

i

= r

i

0

, j = �

i

= �

i

0

, and p = h(t=v

i

) = h(t=v

i

0

). Then

(q; j)!

v

i

;v

i

0

(q; j) by the transitivity of !. Let s = t=v

i

and v

i

u = v

i

0

. Clearly (3) holds.

Moreover, in s, (q; j)!

";u

(q; j) whi
h means that (1) and (2) hold. 2

We now prove that if a proper MTT

R

fnest

M is of linear size in
rease, then it is �nite 
opying

in the parameters, i.e., we prove step (II). The idea is to assume that M is not f
p, and

then to \pump" the tree s[u  p℄ of Lemma 6.2 in order to show that this implies that

M is not lsi. We use the following notation to pump a tree. For s 2 T

�

, u 2 V (s), p 2 P ,

and s

0

2 T

�

(P ), let s[u p℄ � s

0

denote s[u s

0

℄. Let (s[u p℄)

0

= p, and for n 2 N let

(s[u p℄)

n+1

= (s[u p℄) � (s[u p℄)

n

. Thus, e.g.,

(s[u p℄)

1

= s[u p℄ � p = s[u p℄;

(s[u p℄)

2

= (s[u p℄) � (s[u p℄) = s[u s[u p℄℄, and

(s[u p℄)

3

= (s[u p℄) � s[u s[u p℄℄ = s[u s[u s[u p℄℄℄:

We will only pump the tree s[u  p℄, for a given MTT

R

, if

^

h(s[u  p℄) = p. Note that

this 
ondition is satis�ed in Lemma 6.2 by point (3).
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Theorem 6.3 Let M be a proper MTT

R

fnest

. If M is lsi, then it is f
p.

Proof. Let M = (Q;�;�; q

0

; R; P; h) be lsi, i.e., there is a 
 2 N su
h that for every

input tree t,

size(�

M

(t)) � 
 � size(t): (�)

Assume now that M is not f
p. We will derive a 
ontradi
tion by 
onstru
ting an input

tree t su
h that size(�

M

(t)) > 
 � size(t). Let q 2 Q

(m)

, m � 1, j 2 [m℄, s 2 T

�

, p = h(s),

and u 2 V (s) be su
h that (1) { (3) of Lemma 6.2 hold. Note that sin
e M is proper it

satis�es the 
onditions of Lemma 6.2.

The idea of 
onstru
ting a t su
h that (�) does not hold is as follows. Let s

0

2 T

�

and

u

0

2 V (s

0

) su
h that

^

M

q

0

(s

0

[u

0

 p℄) has a subtree hhq; pii(�

1

; : : : ; �

m

) (y)

for some trees �

1

; : : : ; �

m

. Consider input trees t

i

obtained by i times pumping the tree

s[u p℄ in the tree s

0

[u

0

 s℄. Then the size of the trees t

i

grows at most linearly with


onstant size(s[u  p℄). In the output tree �

M

(t

i

) there are at least i o

urren
es of the

subtree �

j

[[: : :℄℄ for some se
ond-order tree substitution [[: : :℄℄. Hen
e, the size of the trees

�

M

(t

i

) grows at least linearly with 
onstant size(�

j

). Thus, if we 
hoose s

0

and u

0

in su
h

a way that size(�

j

) is larger than the produ
t of 
 and size(s[u  p℄), then size(�

M

(t

i

))

grows faster than 
 � size(t

i

), whi
h implies that we 
an �nd an i su
h that (�) does not

hold for t = t

i

.

Re
all De�nition 5.6 of p-properness. In order to 
hoose s

0

and u

0

appropriately we need

that the set Arg(q; j; p) is in�nite, i.e., that it 
ontains arbitrarily large trees. This is

guaranteed by point (i) of De�nition 5.6, if hhq; pii is rea
hable. The latter holds for the

following reason. Sin
e M is nondeleting, by Lemma 3.10(1), #

y

�

(M

r

(s=u)) � 1 for every

r 2 Q

(m

0

)

and � 2 [m

0

℄. By Lemmas 4.2 and 2.6 and the fa
t that #

y

j

(

^

M

q

(s[u p℄)) � 2

by (1), this implies that #

y

j

(M

q

(s)) � 2. Thus, hhq; pii is rea
hable by point (ii) of

De�nition 5.6.

We now show the e�e
t of pumping the tree s[u p℄ in the input tree s = s[u p℄ � s=u.

For i � 0 let t

0

i

= (s[u  p℄)

i

� s=u. Then #

y

j

(M

q

(t

0

i

)) > i. Using the fa
t that M is

nondeleting this follows (as above, by Lemmas 4.2 and 2.6) from #

y

j

(

^

M

q

(t

0

i

[u

i

 p℄)) > i

whi
h is a 
onsequen
e of the next 
laim and the de�nition of P (
f. Lemma 6.1).

Claim: For i � 0, P(q; j; t

0

i

; q; j; u

i

; i+ 1).

The proof of this 
laim is by indu
tion on i. For i = 0, P(q; j; t

0

i

; q; j; u

i

1

; i + 1) be-


ause � =

^

M

q

(s=u["  p℄) = hhq; pii(y

1

; : : : ; y

m

) and thus #

y

j

(�) � 1 and � has a

subtree hhq; pii(�

1

; : : : ; �

m

) with #

y

j

(�

j

) = #

y

j

(y

j

) = 1. For i + 1 > 0, by indu
tion,

P(q; j; t

0

i

; q; j; u

i

; i + 1). Clearly, by (3), h(t

0

i+1

=u

i

) = h(s) = p = h(s=u) = h(t

0

i

=u

i

), and

t

0

i+1

[u

i

 p℄ = t

0

i

[u

i

 p℄. Thus, P(q; j; t

0

i+1

; q; j; u

i

; i+1). By (1) and (2), P(q; j; s; q; j; u; 2)

whi
h is equivalent to P(q; j; t

0

i+1

=u

i

; q; j; u; 2) be
ause t

0

i+1

=u

i

= s. By Lemma 6.1 this

means that P(q; j; t

0

i+1

; q; j; u

i

u; i+ 2), whi
h 
on
ludes the proof of the 
laim.

Now let t

i

= s

0

[u

0

 t

0

i

℄ where s

0

2 T

�

and u

0

2 V (s

0

) satisfy (y). Thus, t

i

is the result of

pumping the tree s[u p℄ in the input tree s

0

[u

0

 s℄. Sin
e #

y

j

(

^

M

q

(t

0

i

) > i, we obtain
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size(�

M

(t

i

)) > i � size(�

j

) as follows. By Lemma 4.2, �

M

(t

i

) =

^

M

q

0

(s

0

[u

0

 p℄)[[: : :℄℄, where

[[: : :℄℄ = [[hhr; pii  M

r

(t

0

i

) j r 2 Q℄℄. By Lemma 2.1,

^

M

q

0

(s

0

[u

0

 p℄)[[: : :℄℄ has a subtree

� = hhq; pii(�

1

; : : : ; �

m

)[[: : :℄℄ = M

q

(t

0

i

)[y

�

 �

�

[[: : :℄℄ j � 2 [m℄℄. By Lemma 2.4 (summing

for all Æ 2 �), size(�) = #

�

(�) = #

�

(M

q

(t

0

i

)) +

P

�2[m℄

#

y

�

(M

q

(t

0

i

)) � #

�

(�

�

[[: : :℄℄) �

P

�=j

#

y

�

(M

q

(t

0

i

)) � #

�

(�

�

[[: : :℄℄) = #

y

j

(M

q

(t

0

i

)) � size(�

j

[[: : :℄℄). Sin
e M is produ
tive,

Lemma 2.7 and Lemma 3.10 imply that size(�

j

[[: : :℄℄) � size(�

j

). Sin
e #

y

j

(M

q

(t

0

i

)) > i,

this implies that size(�

M

(t

i

)) > i � size(�

j

).

Sin
e Arg(q; j; p) is in�nite, we 
an 
hoose s

0

and u

0

su
h that (y) and

size(�

j

) > 
 � 


1

;

where 


1

= size(s[u  p℄) � 1. Let i = 
(


0

+ 


2

) for 


0

= size(s

0

[u

0

 p℄) � 1 and




2

= size(s=u). Sin
e size(t

i

) = 


0

+i


1

+


2

this means that size(�

M

(t

i

)) > 
�size(t

i

) be
ause

size(�

M

(t

i

)) > i � size(�

j

) � i � (
 � 


1

+1) = i



1

+ 
(


0

+ 


2

) = 
(


0

+ i


1

+ 


2

) = 
 � size(t

i

).

This 
ontradi
ts (�) and 
on
ludes the proof. 2

6.2 From lsi, fnest, and f
p to f
i (III)

Here we present a pumping lemma for MTT

R

fnest;f
p

s that are not f
i (Lemma 6.5) and

apply it in Lemma 6.6 to show that if a MTT

R

fnest;f
p

is of linear size in
rease, then it is

f
i. We �rst de�ne, in general, what is required of an MTT

R

in order to get a repetition

of states by pumping a part of an input tree; this is 
alled input pumpable. It means that

there is a state q

1

that is rea
hable, i.e., appears in

^

M

q

0

(s

0

[u

0

 p℄) for some input tree

s

0

and node u

0

of s

0

(with p = h(s

0

=u

0

)), and going from node u

0

to node u

0

u

1

in s

0

, q

1

will generate a 
opy of itself and of a state q

2

; furthermore, the state q

2

generates a 
opy

of itself when going from u

0

to u

0

u

1

.

De�nition 6.4 (input pumpable)

An MTT

R

M = (Q;P;�;�; q

0

; R; h) is input pumpable, if there are q

1

; q

2

2 Q, s

0

2 T

�

,

u

0

2 V (s

0

), u

1

2 V (s

0

=u

0

), and p 2 P su
h that the following four 
onditions hold.

(1) hhq

1

; pii o

urs in

^

M

q

0

(s

0

[u

0

 p℄),

(2) hhq

1

; pii and hhq

2

; pii o

ur at distin
t nodes of

^

M

q

1

(s

0

=u

0

[u

1

 p℄),

(3) hhq

2

; pii o

urs in

^

M

q

2

(s

0

=u

0

[u

1

 p℄), and

(4) p = h(s

0

=u

0

) = h(s

0

=u

0

u

1

). 2

The following pumping lemma 
an be viewed as a generalization of Lemma 4.2 of [AU71℄

from top-down tree transdu
ers to ma
ro tree transdu
ers.

Lemma 6.5 Let M be a nondeleting MTT

R

fnest;f
p

. If M is not f
i, then it is input

pumpable.
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Proof. Let M = (Q;P;�;�; q

0

; R; h). We �rst de�ne some auxiliary notions. Let

t 2 T

�

and u; v 2 V (t) su
h that u is an an
estor of v, i.e., v = uv

0

for some v

0

2 N

�

,

and let p

v

= h(t=v). For q 2 Q, if n = #

hhQ;fp

v

gii

(

^

M

q

(t=u[v

0

 p

v

℄)), then we say that

q 
ontributes n states at u to v. If n � 1, then we say that q 
ontributes at u to v. For

q; q

0

2 Q we write q !

u;v

q

0

if hhq

0

; p

v

ii o

urs in

^

M

q

(t=u[v

0

 p

v

℄). For r

1

; r

2

2 Q we write

q !

u;v

r

1

; r

2

if hhr

1

; p

v

ii and hhr

2

; p

v

ii o

ur at distin
t nodes of

^

M

q

(t=u[v

0

 p

v

℄). Observe

the following easy properties:

(P0) q !

v;v

q

0

i� q = q

0

; q 
ontributes one state at v to v.

(P1) q

0

!

";v

q i� q o

urs in sts

M

(t; v); q

0


ontributes jsts

M

(t; v)j states at " to v.

(P2) q 
ontributes at u to v i� there is a q

0

2 Q su
h that q !

u;v

q

0

.

Let w be a node of t that is a des
endant of u and an an
estor of v.

(P3) If q !

u;w

q

00

and q

00

!

w;v

q

0

, then q !

u;v

q

0

.

(P4) If q !

u;v

q

0

, then there is a q

00

2 Q su
h that q !

u;w

q

00

and q

00

!

w;v

q

0

.

Note that P3 and P4 
an be proved using Lemma 4.14: Let w

0

; v

00

2 N

�

su
h that w = uw

0

and v = wv

00

(and so v

0

of above equals w

0

v

00

), and let p

w

= h(t=w). For P3, the number

#

hhq

00

;p

w

ii

(

^

M

q

(t=u[w

0

 p

w

℄)) is � 1 be
ause q !

u;w

q

00

, and #

hhq

0

;p

v

ii

(

^

M

q

00

(t=w[v

00

 p

v

℄))

is � 1 be
ause q

00

!

w;v

q

0

; hen
e the produ
t of these two numbers is � 1 and so the sum

S of Lemma 4.14 is � 1. Thus, by part (i) of that lemma, #

hhq

0

;p

v

ii

(

^

M

q

(t=u[v

0

 p

v

℄)) � 1,

i.e., q !

u;v

q

0

. For P4, q !

u;v

q

0

implies that the sum in (�) of the proof of Lemma 4.14 is

� 1 and thus there is an o

urren
e of some hhq

00

; p

w

ii 2 hhQ; fp

w

gii in

^

M

q

(s=u[w

0

 p

w

℄)

with #

hhq

0

;p

v

ii

(

^

M

q

00

(t=w[v

00

 p

v

℄)) � 1, i.e., there is a q

00

2 Q su
h that q !

u;w

q

00

and

q

00

!

w;v

q

0

.

(P5) q 
ontributes � 2 states at u to v i� there are r

1

; r

2

2 Q su
h that q !

u;v

r

1

; r

2

.

(P6) Let r

0

1

; r

0

2

2 Q and w as above. If q !

u;w

r

1

; r

2

and r

i

!

w;v

r

0

i

for i 2 [2℄, then

q !

u;v

r

0

1

; r

0

2

.

Let us prove property P6. If r

0

1

6= r

0

2

then by P3, q !

u;v

r

0

1

and q !

u;v

r

0

2

, whi
h means that

q !

u;v

r

0

1

; r

0

2

. Now assume that r

0

1

= r

0

2

. By Lemma 4.14(i), #

hhr

0

1

;p

v

ii

(

^

M

q

(t=u[v

0

 p

v

℄))

is greater than or equal to

X

r2Q

#

hhr

0

1

;p

v

ii

(

^

M

r

(t=w[v

00

 p

v

℄)) �#

hhr;p

w

ii

(

^

M

q

(t=u[w

0

 p

w

℄)); (�)

where p

w

, w

0

, and v

00

are as in the proof of P3. We distinguish the following two 
ases:

(i) r

1

6= r

2

: For r = r

1

and r = r

2

, #

hhr;p

w

ii

(

^

M

q

(t=u[w

0

 p

w

℄)) � 1, be
ause q !

u;w

r

1

; r

2

.

Thus, the sum in (�) is � #

hhr

0

1

;p

v

ii

(

^

M

r

1

(t=w[v

00

 p

v

℄)) + #

hhr

0

1

;p

v

ii

(

^

M

r

2

(t=w[v

00

 p

v

℄))

whi
h is � 2, be
ause r

i

!

w;v

r

0

i

for i 2 [2℄.

(ii) r

1

= r

2

: For r = r

1

, #

hhr;p

w

ii

(

^

M

q

(t=u[w

0

 p

w

℄)) � 2, be
ause q !

u;w

r

1

; r

1

. Thus, the

sum in (�) is � #

hhr

0

1

;p

v

ii

(

^

M

r

1

(t=w[v

00

 p

v

℄)) � 2 whi
h is � 2, be
ause r

1

!

w;v

r

0

1

.
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In terms of the !-notation the four 
onditions of input pumpability (
f. De�nition 6.4)

say that there are states q

1

and q

2

, a tree s

0

2 T

�

, and nodes u

0

and u

0

u

1

of s

0

su
h that

(1) q

0

!

";u

0

q

1

,

(2) q

1

!

u

0

;u

0

u

1

q

1

; q

2

,

(3) q

2

!

u

0

;u

0

u

1

q

2

, and

(4) h(s

0

=u

0

) = h(s

0

=u

0

u

1

).

Sin
eM is not f
i, arbitrary long state sequen
es 
an be generated. Thus, for every m � 1

there are t 2 T

�

and v 2 V (t) su
h that jsts

M

(t; v)j > m, whi
h, by P1, means that q

0


ontributes more than m states at " to v. In the following Claim 1 we will show that if a

state q 
ontributes `many' states at u to v, then there must be an intermediate node w (a

des
endant of u and an
estor of v) su
h that q 
ontributes at least two states at u to w

that 
ontribute at w to v, and at least one of these states still 
ontributes `many' states at

w to v. The appli
ation of this 
laim 
an be iterated to show the existen
e of a sequen
e

of intermediate nodes w, whi
h will eventually lead to an appropriate repetition of states

(and look-ahead states) that allows us to de�ne s

0

and nodes u

0

, u

0

u

1

for whi
h (1) { (4)

hold.

Let � � 1 be an upper bound for the number of o

urren
es of elements of hQ; fx

i

gi for

an i � 1 in the right-hand side of any rule of R, i.e., � � #

hQ;fx

i

gi

(rhs(�)) for every � 2 R

and i � 1. Let � be the maximal height of the right-hand side of any rule in R, i.e.,

� = maxfheight(rhs(�)) j � 2 Rg. Let N � 1 be a parameter 
opying bound for M and

let B � 1 be a nesting bound for M .

Claim 1: Let hhq; pii 2 hhQ;P ii be rea
hable, t 2 T

�

, and u; v 2 V (t) su
h that t=u 2 L

p

and u is an an
estor of v. Let 
 � 1. If q 
ontributes more than (�N

2B+�

) � 
 states at

u to v, then there is a proper des
endant w of u whi
h is an an
estor of v and there are

states r; r

0

2 Q su
h that

(a) q !

u;w

r; r

0

,

(b) r 
ontributes more than 
 states at w to v, and

(
) r

0


ontributes at w to v.

Proof of Claim 1: Let w be the �rst (shortest) des
endant of u and an
estor of v su
h that

there are r

1

; r

2

2 Q with q !

u;w

r

1

; r

2

and r

1

,r

2


ontribute at w to v. Clearly su
h a w

exists, be
ause q 
ontributes � 2 states at u to v, and thus, by P5, there are r

1

; r

2

2 Q

su
h that q !

u;v

r

1

; r

2

, and, by P0, r

1

; r

2


ontribute at v to v. By P0, q 
ontributes

exa
tly one state at u to u and therefore w 6= u. It remains to show that there is an r 2 Q

su
h that q !

u;w

r and r 
ontributes more than 
 states at w to v; then r

0

is 
hosen to be

one of the r

1

; r

2

su
h that (a) holds.

In (sub)Claim 2 below we will show that q 
ontributes at most � �N

B+�

states r at u to

w that 
ontribute at w to v. We now show that the number of states that q 
ontributes

at u to v is at most N

B

times the sum of the 
ontributions of the states r at w to v, and

hen
e that at least one of these r must 
ontribute > 
 states.
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Let w

0

; v

0

; v

00

2 N

�

su
h that w = uw

0

and v = uv

0

= wv

00

. Let p

w

= h(t=w) and

p

v

= h(t=v). By assumption, q 
ontributes > (�N

2B+�

)�
 states at u to v, i.e., (�N

2B+�

)�


is smaller than #

hhQ;fp

v

gii

(

^

M

q

(t=u[v

0

 p

v

℄)) whi
h, by Lemma 4.14(ii) (using the fa
t that

hhq; h(t=u)ii is rea
hable, and summing over all hhq

0

; p

v

ii in hhQ; fp

v

gii), is

� N

B

�

X

r2Q

#

hhQ;fp

v

gii

(

^

M

r

(t=w[v

00

 p

v

℄)) �#

hhr;p

w

ii

(

^

M

q

(t=u[w

0

 p

w

℄)):

If #

hhQ;fp

v

gii

(

^

M

r

(t=w[v

00

 p

v

℄)) 6= 0, then r 
ontributes at w to v. Thus, we 
an re-

stri
t the above sum to states in Q

w;v

= fr 2 Q j r 
ontributes at w to vg. Now let

r 2 Q

w;v

be su
h that q !

u;w

r (i.e., #

hhr;p

w

ii

(

^

M

q

(t=u[w

0

 p

w

℄)) � 1) and the num-

ber of states it 
ontributes at w to v is maximal, i.e., for all r

0

6= r with q !

u;w

r

0

,

#

hhQ;fp

v

gii

(

^

M

r

0

(t=w[v

00

 p

v

℄)) � #

hhQ;fp

v

gii

(

^

M

r

(t=w[v

00

 p

v

℄)). Then the above number

is

� N

B

�#

hhQ;fp

v

gii

(

^

M

r

(t=w[v

00

 p

v

℄)) �#

hhQ

w;v

;fp

w

gii

(

^

M

q

(t=u[w

0

 p

w

℄))

whi
h, by Claim 2, is � N

B

� #

hhQ;fp

v

gii

(

^

M

r

(t=w[v

00

 p

v

℄)) � (�N

B+�

). Thus we get


 < #

hhQ;fp

v

gii

(

^

M

r

(t=w[v

00

 p

v

℄)), i.e., r 
ontributes more than 
 states at w to v, whi
h


on
ludes the proof of Claim 1.

Claim 2: #

hhQ

w;v

;fp

w

gii

(

^

M

q

(t=u[w

0

 p

w

℄)) � � �N

B+�

.

Proof of Claim 2: Sin
e w 6= u it follows that w

0

6= ", i.e., there are i � 1 and !

0

2 N

�

su
h

that w

0

= !

0

i. Let ! = u!

0

, i.e., w is the i-th 
hild of !. In the remainder of this proof

we will always write !i in pla
e of w and !

0

i in pla
e of w

0

, in parti
ular, p

!i

= p

w

and

Q

!i;v

= Q

w;v

. Let p

!

= h(t=!). Using the fa
t that hhq; h(t=u)ii is rea
hable, we 
an apply

Lemma 4.14(ii) to t and u; !; !i 2 V (t), summing over all hhq

0

; p

!i

ii in hhQ

!i;v

; fp

!i

gii, to

get that #

hhQ

!i;v

;fp

!i

gii

(

^

M

q

(t=u[!

0

i p

!i

℄)) is

� N

B

�

X

r2Q

#

hhQ

!i;v

;fp

!i

gii

(

^

M

r

(t=![i p

!i

℄)) �#

hhr;p

!

ii

(

^

M

q

(t=u[!

0

 p

!

℄)):

If #

hhQ

!i;v

;fp

!i

gii

(

^

M

r

(t=![i  p

!i

℄)) 6= 0, then there is an o

urren
e of some hhr

0

; p

!i

ii in

^

M

r

(t=![i  p

!i

℄), i.e., r !

!;!i

r

0

, and r

0


ontributes at !i to v, i.e., r

0

!

!i;v

r

00

for some

r

00

2 Q. Thus, by P3, r !

!;v

r

00

, whi
h means by P2 that r 
ontributes at ! to v. By

the de�nition of the node !i there is at most one o

urren
e of a hhq

0

; p

!

ii 2 hhQ; fp

!

gii

in

^

M

q

(t=u[!

0

 p

!

℄) su
h that q

0


ontributes at ! to v, and sin
e q 
ontributes at u to

v, by P4 there is at least one su
h o

urren
e. Hen
e, in the above sum there is only one

non-zero produ
t, namely for r = q

0

, and #

hhq

0

;fp

!

gii

(

^

M

q

(t=u[!

0

 p

!

℄)) = 1. We get

N

B

�#

hhQ

!i;v

;fp

!i

gii

(

^

M

q

0

(t=![i p

!i

℄)) � N

B

�#

hhQ;fp

!i

gii

(

^

M

q

0

(t=![i p

!i

℄)):

By Lemma 4.3 with s = t=! and u = ", and sin
e

^

M

q

0

(t=!["  p

!

℄) = hhq

0

; p

!

ii, the

tree

^

M

q

0

(t=![i  p

!i

℄) equals rhs

M

(q

0

; �; hp

1

; : : : ; p

k

i)[[::℄℄[[i℄℄, where [[::℄℄ = [[hr

0

; x

j

i  

M

r

0

(t=!j) j r

0

2 Q; j 2 [k℄ � fig℄℄ and [[i℄℄ = [[hr

0

; x

i

i  hhr

0

; p

!i

ii j r

0

2 Q℄℄ with t[!℄ = � 2

�

(k)

, k � 1, and p

j

= h(t=!j) for ea
h j 2 [k℄. Thus, N

B

�#

hhQ;fp

!i

gii

(

^

M

q

0

(t=![i  p

!i

℄))

49



equals N

B

� #

hhQ;fp

!i

gii

(rhs

M

(q

0

; �; hp

1

; : : : ; p

k

i)[[::℄℄[[i℄℄), whi
h, avoiding the relabeling [[i℄℄,


an be written as

N

B

�#

hQ;fx

i

gi

(rhs

M

(q

0

; �; hp

1

; : : : ; p

k

i)[[hr

0

; x

j

i  M

r

0

(t=!j) j r

0

2 Q; j 6= i℄℄):

The appli
ation of Lemma 2.6 and the fa
t that the trees M

r

0

(t=!j) do not 
ontain ele-

ments of hQ; fx

i

gi gives the number N

B

�

P

~u2V

hQ;fx

i

gi

(�)

Q

F

[[::℄℄

�;~u

, where � = rhs

M

(q

0

; �; hp

1

;

: : : ; p

k

i). Sin
e the height of � is at most �,

Q

F

[[::℄℄

�;~u

� N

�

, and thus the above number is

� N

B+�

� jV

hQ;fx

i

gi

(�)j whi
h is � � �N

B+�

by the de�nition of �. This ends the proof of

Claim 2.

Let 
 = �N

2B+�

. Sin
e M is not f
i, for every n � 1 there are t

n

2 T

�

and v

n

2 V (t

n

)

su
h that jsts

M

(t

n

; v

n

)j > 


n

. Let r

0

= q

0

and w

0

= ". We now apply Claim 1 for

i = 0; : : : ; n� 1 to q = r

i

, p = h(t

n

=w

i

), t = t

n

, u = w

i

, v = v

n

, and 
 = 


n�i�1

. For i = 0

this is possible be
ause hhq

0

; h(t

n

)ii is rea
hable, and by P1, q

0


ontributes more than 


n

states at " to v

n

. We obtain that there exists a proper des
endant w

i+1

of w

i

and states

r

i+1

; r

0

i+1

su
h that r

i

!

w

i

;w

i+1

r

i+1

; r

0

i+1

, the state r

i+1


ontributes more than 


n�i�2

states at w

i+1

to v

n

, and r

0

i+1


ontributes at w

i+1

to v

n

. Note that sin
e q

0

!

";w

i+1

r

i+1

and q

0

!

";w

i+1

r

0

i+1

by P3, both r

i+1

and r

0

i+1

o

ur in sts

M

(t

n

; w

i+1

) by P1 (and thus,

hhr

i+1

; h(t

n

=w

i+1

)ii is rea
hable). For an an
estor w of v

n

let 
sts(w) denote sts

M

(t

n

; w)

restri
ted to the states q whi
h 
ontribute at w to v

n

(i.e., all states that do not 
ontribute

to v

n

are erased from sts

M

(t

n

; w)). Hen
e, r o

urs in 
sts(w) i� q

0

!

";w

r !

w;v

q for

some state q. In parti
ular, r

i+1

and r

0

i+1

o

ur in 
sts(w

i+1

). Figure 2 shows the nodes w

i

and the 
orresponding sequen
es 
sts(w

i

) with the states r

i

; r

0

i

; the arrows mean!

w

i

;w

i+1

.

.

.

.

.

.

.

w

1

w

2

w

n

v

n

= 
sts(w

2

)

= 
sts(w

n

)

� � � r

2

� � � r

0

2

� � �

q

0

= 
sts(")

= 
sts(w

1

)

� � � � � � � � � = sts

M

(t

n

; v

n

)

� � � r

n�1

� � � r

0

n�1

� � �

� � � r

1

� � � r

0

1

� � �

� � � r

n

� � � r

0

n

� � �

w

n�1

= 
sts(w

n�1

)

w

0

Figure 2: the tree t

n

with 
ontributing states

Now take n = jQj � jP j �2

jQj

and let t

n

, v

n

, w

i

, r

i

, and r

0

i

be as above for 0 � i � n. Clearly

this means that there are indi
es 0 � i < j � n su
h that

� r

i

= r

j

,

� p = h(t

n

=w

i

) = h(t

n

=w

j

), and
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� fr 2 Q j r o

urs in 
sts(w

i

)g = fr 2 Q j r o

urs in 
sts(w

j

)g,

be
ause there are exa
tly jQj � jP j � 2

jQj

di�erent possibilities (r

i

; p; S), for r

i

2 Q, p 2 P ,

and S � Q. Let q

0

1

= r

i

and let q

0

2

2 Q su
h that r

0

i+1

!

w

i+1

;w

j

q

0

2

and q

0

2

o

urs in


sts(w

j

). Su
h a q

0

2

exists by the fa
t that r

0

i+1


ontributes at w

i+1

to v

n

, using property

P4 (and also P2 and P3). Sin
e r

i+1

!

w

i+1

;w

j

r

i

, we 
an apply P6 to get q

0

1

!

w

i

;w

j

q

0

1

; q

0

2

.

Thus, 
onditions (1), (2), and (4) of input pumpability hold for q

1

= q

0

1

, q

2

= q

0

2

, s

0

= t

n

,

u

0

= w

i

, and u

0

u

1

= w

j

. Clearly, if q

0

1

= q

0

2

, then also (3) holds, whi
h proves the lemma

for that 
ase. Thus, from now on we assume that q

0

1

6= q

0

2

. To realize (3), we will pump

the tree t

n

=w

i

[w

0

j

 p℄ in t

n

, where w

j

= w

i

w

0

j

.

For every r 2 Q that o

urs in 
sts(w

i

), there is an r

0

2 Q with r !

w

i

;w

j

r

0

and r

0

o

urs

in 
sts(w

j

), by P4. Sin
e the same states appear in 
sts(w

i

) and 
sts(w

j

), this means that

r

0

also o

urs in 
sts(w

i

). Thus, there is a sequen
e

q

0

1

!

w

i

;w

j

q

0

2

!

w

i

;w

j

q

0

3

!

w

i

;w

j

� � � !

w

i

;w

j

q

0

m

!

w

i

;w

j

q

0

m��

;

where 2 � m � jQj, 0 � � < m, and q

0

1

; : : : ; q

0

m

are pairwise di�erent states that o

ur

in 
sts(w

i

). Hen
e, after m � � � 1 steps of !

w

i

;w

j

, starting at q

0

1

, states will repeat

with period � + 1. Let d be a multiple of � + 1 with d � m � � � 1. Then, there is a

� 2 fm� �; : : : ;mg su
h that after d steps of !

w

i

;w

j

, q

0

1

rea
hes q

0

�

and q

0

�

rea
hes q

0

�

.

q

0

1

� � � q

0

2

� � � q

0

3

� � � q

0

4

� � � q

0

5

q

0

1

� � � q

0

2

� � � q

0

3

� � � q

0

4

� � � q

0

5

q

0

1

� � � q

0

2

� � � q

0

3

� � � q

0

4

� � � q

0

5

q

0

1

� � � q

0

2

� � � q

0

3

� � � q

0

4

� � � q

0

5

Figure 3: 
onditions (2) and (3) of input pumpability for q

1

= q

0

1

and q

2

= q

0

4

Let q

1

= q

0

1

, q

2

= q

0

�

,

s

0

= (t

n

[w

i

 p℄) � (t

n

=w

i

[w

0

j

 p℄)

d

� (t

n

=w

j

);

u

0

= w

i

, and u

1

= (w

0

j

)

d

. Then h(s

0

=w

i

(w

0

j

)




) = p for all 0 � 
 � d, whi
h easily follows by

indu
tion, using the fa
t that

^

h(t

n

=w

i

[w

0

j

 p℄) =

^

h(t

n

=w

i

[w

0

j

 h(t

n

=w

j

)℄) = h(t

n

=w

i

) =

p. In parti
ular h(s

0

=u

0

) = h(s

0

=u

0

u

1

) = p, i.e., 
ondition (4) of input pumpability holds.

Clearly, for 0 � 
 < d, q !

w

i

;w

j

q

0

in the tree t

n

i� q !

w

i

(w

0

j

)




;w

i

(w

0

j

)


+1
q

0

in the tree

s

0

and similarly q !

w

i

;w

j

q

0

; q

00

in the tree t

n

i� q !

w

i

(w

0

j

)




;w

i

(w

0

j

)


+1
q

0

; q

00

in the tree s

0

;

this is true be
ause s

0

=w

i

(w

0

j

)




[w

0

j

 p℄ = t

n

=w

i

[w

0

j

 p℄. Thus, in s

0

, q

2

!

u

0

;u

0

u

1

q

2

by the de�nition of q

0

�

(using P3), whi
h proves 
ondition (3) of the input pumpable

property. To show 
ondition (2) we use P6: Sin
e q

0

1

!

w

i

;w

i

w

0

j

q

0

1

; q

0

2

, also q

0

1

!

w

i

;w

i

w

0

j

q

0

1

and thus, by the above and by P3, q

0

1

!

w

i

w

0

j

;w

i

(w

0

j

)

d

q

0

1

holds in s

0

. By the de�nition of q

0

�

,
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q

0

2

!

w

i

w

0

j

;w

i

(w

0

j

)

d

q

0

�

. Therefore, by P6, q

1

!

u

0

;u

0

u

1

q

1

; q

2

. Clearly, (1) of input pumpability

holds be
ause q

0

!

";w

i

r

i

in t

n

by the de�nition of r

i

, s

0

[u

0

 p℄ = t

n

[w

i

 p℄, and thus

q

0

!

";u

0

r

i

= q

1

holds in s

0

. Figure 3 outlines the 
hoi
e of q

2

for m = 5 and � = 2 (thus

d = 3 and � = 4). 2

Lemma 6.6 Let M be a proper MTT

R

. If M is input pumpable, then it is not lsi.

Proof. Let M = (Q;�;�; q

0

; R; P; h) be input pumpable, i.e., there are q

1

; q

2

2 Q,

s

0

2 T

�

, u

0

2 V (s

0

), u

1

2 V (s

0

=u

0

), and p 2 P su
h that (1){(4) of De�nition 6.4 hold.

Assume now that M is lsi, i.e., there is a 
 2 N su
h that for every input tree t 2 T

�

,

size(�

M

(t)) � 
 � size(t): (�)

In the sequel we will derive a 
ontradi
tion by 
onstru
ting an input tree t su
h that

size(�

M

(t)) > 
 � size(t). Note �rst that if we repla
e in s

0

the subtree at u

0

u

1

by any

tree s in L

p

, then (1){(4) still hold. Similar to the proof of Theorem 6.3, the idea of


onstru
ting t is as follows. Consider input trees t

i

obtained by i times pumping the tree

s

0

=u

0

[u

1

 p℄ in the tree s

0

[u

0

u

1

 s℄. Then the trees t

i

grow at most linearly with


onstant size(s

0

=u

0

[u

1

 p℄). In the output tree �

M

(t

i

) there are at least i o

urren
es of

the tree M

q

2

(s). Hen
e, the trees �

M

(t

i

) grow at least linearly with 
onstant size(M

q

2

(s)).

Thus, if we 
hoose s in su
h a way that size(M

q

2

(s)) is larger than the produ
t of 
 and

the size of s

0

=u

0

[u

1

 p℄, then size(�

M

(t

i

)) grows faster than 
 � size(t

i

), i.e., we 
an �nd

an i su
h that (�) does not hold for t = t

i

.

In order to 
hoose the tree s appropriately, we need that the set Out(q

2

; p) = fM

q

2

(s) j

s 2 L

p

g is in�nite, i.e., that it 
ontains trees with arbitrarily many output symbols. This

is guaranteed by i-properness (
f. point (i) of De�nition 5.1), if (a) hhq

2

; pii is rea
hable

and (b) q

2

6= q

0

.

(a) Clearly, hhq

2

; pii is rea
hable be
ause it o

urs in

^

M

q

0

(s

0

[u

0

u

1

 p℄); this follows from

(1) and (2) using Lemma 4.14(i) (analogous to the proof of P3 in the proof of Lemma 6.5;

in fa
t, using the !-notation of the proof of that lemma, it follows from (1) and (2) by

P3 that q

0

!

";u

0

u

1

q

2

, whi
h means that hhq

2

; pii o

urs in

^

M

q

0

(s

0

[u

0

u

1

 p℄)).

(b) By (2),

^

M

q

1

(s

0

=u

0

[u

1

 p℄) 6= hhq

1

; pii =

^

M

q

1

(s

0

=u

0

["  p℄), and thus u

1

6= ", i.e.,

u

1

= u

0

1

i for some u

0

1

2 N

�

and i � 1. Also by (2), hhq

2

; pii o

urs in

^

M

q

1

(s

0

=u

0

[u

1

 p℄).

Hen
e (by Lemma 4.3 applied to q

1

, s

0

=u

0

, and u

0

1

), hq

2

; x

i

i o

urs in the right-hand side

of a rule of M . By (ii) of i-properness this implies that q

2

6= q

0

.

We now pump the tree s

0

=u

0

[u

1

 p℄ in the tree s

0

[u

0

u

1

 s℄ = (s

0

[u

0

 p℄)�(s

0

=u

0

[u

1

 

p℄)�s: for i � 0, let t

i

= (s

0

[u

0

 p℄)� (s

0

=u

0

[u

1

 p℄)

i

�s. It follows from (1){(4) that for

every i � 0, sts

M

(t

i

; u

0

u

i

1

) 
ontains at least one o

urren
e of q

1

and at least i o

urren
es

of q

2

; this is sket
hed in Fig. 4 and formalized in the following 
laim.

Claim: For all i � 0, #

hhq

1

;pii

(�

i

) � 1 and #

hhq

2

;pii

(�

i

) � i, where �

i

=

^

M

q

0

(t

i

[u

0

u

i

1

 p℄).

The proof of the 
laim is by indu
tion on i. For i = 0, t

i

[u

0

u

i

1

 p℄ = s

0

[u

0

 p℄

and by (1), #

hhq

1

;pii

(

^

M

q

0

(s

0

[u

0

 p℄) � 1. For i + 1 we apply Lemma 4.14(i) to t

i+1

,

u = ", w = u

0

u

i

1

, v = u

0

u

i+1

1

, and q = q

0

. Sin
e h(t

i+1

=u

0

u

i

1

) = h(s

0

=u

0

[u

1

 s℄) =
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sts

M

(t

i

; u

0

u

3

1

) =

sts

M

(t

i

; ") =

sts

M

(t

i

; u

0

u

2

1

) =

sts

M

(t

i

; u

0

u

1

) =

sts

M

(t

i

; u

0

) =

q

0

� � � q

1

� � �

� � � q

1

� � � q

2

� � � q

1

� � � q

2

� � � q

2

� � � q

1

� � � q

2

� � � q

2

� � � q

2

Figure 4: states that appear in state sequen
es of t

i

^

h(s

0

=u

0

[u

1

 p℄) = p by (4) and the fa
t that s 2 L

p

, h(t

i+1

=u

0

u

i+1

1

) = h(s) = p, and

t

i+1

[u

0

u

i

1

 p℄ = t

i

[u

0

u

i

1

 p℄, we get

#

hhq

0

;pii

(�

i+1

) �

X

r2Q

#

hhq

0

;pii

(

^

M

r

(s

0

=u

0

[u

1

 p℄)) �#

hhr;pii

(�

i

):

Let q

0

= q

1

. Surely restri
ting the above sum to r = q

1

does not in
rease the result.

Thus, the sum is � #

hhq

1

;pii

(

^

M

q

1

(s

0

=u

0

[u

1

 p℄)) � #

hhq

1

;pii

(�

i

). This is � 1 be
ause

#

hhq

1

;pii

(

^

M

q

1

(s

0

=u

0

[u

1

 p℄)) � 1 by (2), and #

hhq

1

;pii

(�

i

) � 1 by indu
tion.

Let q

0

= q

2

. Now restri
t the sum to r 2 fq

1

; q

2

g. If q

1

= q

2

, then the sum is

� #

hhq

2

;pii

(

^

M

q

1

(s

0

=u

0

[u

1

 p℄)) � #

hhq

1

;pii

(�

i

); this is � 2 � maxf1; ig � i + 1, be
ause,

by (2), #

hhq

2

;pii

(

^

M

q

1

(s

0

=u

0

[u

1

 p℄)) � 2, and by indu
tion #

hhq

1

;pii

(�

i

) = #

hhq

2

;pii

(�

i

) �

maxf1; ig. If q

1

6= q

2

, then the sum is � #

hhq

2

;pii

(

^

M

q

1

(s

0

=u

0

[u

1

 p℄)) � #

hhq

1

;pii

(�

i

) +

#

hhq

2

;pii

(

^

M

q

2

(s

0

=u

0

[u

1

 p℄)) �#

hhq

2

;pii

(�

i

); this is � i+1 be
ause #

hhq

2

;pii

(

^

M

q

1

(s

0

=u

0

[u

1

 

p℄)) � 1 by (2), #

hhq

2

;pii

(

^

M

q

2

(s

0

=u

0

[u

1

 p℄)) � 1 by (3), and, by indu
tion, #

hhq

1

;pii

(�

i

) � 1

and #

hhq

2

;pii

(�

i

) � i. This ends the proof of the 
laim.

Sin
e #

hhq

2

;pii

(�

i

) � i, we obtain size(�

M

(t

i

)) � i �#

�

(M

q

2

(s)) as follows. By Lemma 4.2

and the fa
t that t

i

=u

0

u

i

1

= s, �

M

(t

i

) = M

q

0

(t

i

) = �

i

[[: : :℄℄ with [[: : :℄℄ = [[hhq; pii  M

q

(s) j

q 2 Q℄℄. By Lemma 2.6 (summing for all Æ 2 �), size(�

M

(t

i

)) = #

�

(�

i

[[: : :℄℄) = S

1

+

S

2

� S

2

=

P

u2V

hhq;pii

(�

i

);q2Q

#

�

(M

q

(s)) �

Q

F

[[:::℄℄

�

i

;u

. Sin
e M is nondeleting, it follows from

Lemma 3.10(1) that #

y

j

(M

q

(s)) � 1 for all q 2 Q

(m)

and j 2 [m℄, and thus

Q

F

[[:::℄℄

�

i

;u

� 1.

We get S

2

�

P

u2V

hhq;pii

(�

i

);q2Q

#

�

(M

q

(s)) �

P

u2V

hhq

2

;pii

(�

i

)

#

�

(M

q

2

(s)) � i �#

�

(M

q

2

(s)).

Now let s 2 L

p

su
h that

#

�

(M

q

2

(s)) > 
 � 


1

;

where 


1

= size(s

0

=u

0

[u

1

 p℄) � 1. Then size(�

M

(t

i

)) � i � (



1

+ 1) = i



1

+ i. Let

i > 
(


0

+


2

), where 


0

= size(s

0

[u

0

 p℄)�1 and 


2

= size(s). Sin
e size(t

i

) = 


0

+i


1

+


2

this means that size(�

M

(t

i

)) > 
 � size(t

i

) be
ause size(�

M

(t

i

)) > i



1

+ 
(


0

+ 


2

) =


(


0

+ i


1

+ 


2

) = 
 � size(t

i

). This 
ontradi
ts (�) and 
on
ludes the proof. 2
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We are now ready to prove step (III).

Theorem 6.7 Let M be a proper MTT

R

fnest;f
p

. If M is lsi, then it is f
i.

Proof. If M is not f
i, then, by Lemma 6.5, M it is input pumpable and thus, by

Lemma 6.6, M is not lsi. 2

6.3 From lsi to fnest (I)

In Lemma 6.6 it was proved that if a proper MTT

R

M is input pumpable, then it is not

lsi. So, in order to prove that M is not lsi if it is not fnest, we would like to show that

if M is not fnest, then it is input pumpable. This 
ould be done by proving a pumping

argument that works on the paths of trees

^

M

q

0

(s[u  p℄). We have 
hosen the following

alternative: we 
an asso
iate withM a top-down tree transdu
er A (with the same regular

look-ahead as M) in su
h a way that

(i) the number of elements hhq

0

; pii of hhQ; fpgii that appear on a path of

^

M

q

(s[u p℄)

is bounded by the number of su
h elements that appear in

^

A

q

(s[u p℄) and

(ii) if there are n o

urren
es of hhq

0

; pii in

^

A

q

(s[u  p℄), then there are at least n

o

urren
es of hhq

0

; pii in

^

M

q

(s[u p℄).

Thus, (i) implies that if M is not fnest then A is not f
i, and (ii) implies that if A is

input pumpable then so is M . Hen
e we need to show that if A is not f
i, then A is input

pumpable. This is exa
tly what the appli
ation of Lemma 6.5 to A gives (the lemma is

appli
able be
ause, obviously, every top-down tree transdu
er is nondeleting, fnest with

nesting bound 1, and f
p).

In order to prove (i) and (ii) we merely need to require from the T

R

A that it has the

same states as M (but of rank zero) and that every rule of A has the same number of

o

urren
es of ea
h element of hQ;Xi as the 
orresponding rule of M .

De�nition 6.8 (asso
iated T

R

, globally f
i)

Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

. The T

R

A = (Q

A

; P;�;�; q

0

; R

A

; h) is

asso
iated with M , if Q

A

= fq

(0)

j q 2 Qg and for every q; q

0

2 Q, � 2 �

(k)

, k � 0, i 2 [k℄,

and p

1

; : : : ; p

k

2 P ,

#

hq

0

;x

i

i

(rhs

A

(q; �; hp

1

; : : : ; p

k

i)) = #

hq

0

;x

i

i

(rhs

M

(q; �; hp

1

; : : : ; p

k

i)):

The MTT

R

M is globally f
i (for short, gf
i), if every T

R

asso
iated with M is f
i. 2

We use the subs
ript `gf
i' for 
lasses of translations of MTT

R

s to denote that the 
orre-

sponding transdu
ers are gf
i. Note that for T

R

s A

1

and A

2

asso
iated withM , sts

A

1

(s; u)

is a permutation of sts

A

2

(s; u) (
f. Lemma 6.9 of [EM99℄). Hen
e, M is gf
i i� there exists

a T

R

f
i

asso
iated withM . For every MTT

R

M there is (e�e
tively) an asso
iated T

R

A; it
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an be obtained from M by simply 
hanging every right-hand side of M into an arbitrary

right-hand side in T

hQ

A

;X

k

i[�

while preserving the number of o

urren
es of hq; x

i

i for

every hq; x

i

i 2 hQ;X

k

i.

Let us �rst prove property (ii) mentioned above.

Lemma 6.9 Let M = (Q;P;�;�; q

0

; R; h) be a nondeleting MTT

R

and let A = (Q

A

; P;

�;�; q

0

; R

A

; h) be a T

R

asso
iated with M . For every q; q

0

2 Q, s 2 T

�

, u 2 V (s), and

p 2 P : #

hhq

0

;pii

(

^

M

q

(s[u p℄)) � #

hhq

0

;pii

(

^

A

q

(s[u p℄)).

Proof. The proof is by indu
tion on the stru
ture of s. Let s = �(s

1

; : : : ; s

k

) with

� 2 �

(k)

and k � 0. Let m = rank

Q

(q).

If u = ", then #

hhq

0

;pii

(

^

M

q

(s[u  p℄)) = #

hhq

0

;pii

(hhq; pii(y

1

; : : : ; y

m

)) whi
h equals (now

with q 2 Q

(0)

A

), #

hhq

0

;pii

(hhq; pii) = #

hhq

0

;pii

(

^

A

q

(s[u p℄)).

Otherwise u = iv with i 2 [k℄ and v 2 V (s

i

). Thus

^

M

q

(s[u p℄) equals

^

M

q

(�(~s

1

; : : : ; ~s

k

),

where ~s

�

= s

�

for � 2 [k℄ � fig and ~s

i

= s

i

[v  p℄. For � 2 [k℄ let p

�

=

^

h(~s

�

). By

Lemma 3.5,

^

M

q

(�(~s

1

; : : : ; ~s

k

)) = t[[: : :℄℄, where t = rhs

M

(q; �; hp

1

; : : : ; p

k

i) and [[: : :℄℄ =

[[hr; x

�

i  

^

M

r

(~s

�

) j hr; x

�

i 2 hQ;X

k

i℄℄. Applying Lemma 2.6 we obtain that #

hhq

0

;pii

(t[[: : :℄℄)

equals

X

w 2 V

hr;x

�

i

(t);

hr; x

�

i 2 hQ;X

k

i

#

hhq

0

;pii

(

^

M

r

(~s

�

)) �

Y

F

[[:::℄℄

t;w

:

Sin
e M is nondeleting, by Lemma 3.10(1), #

y

j

(

^

M

r

(~s

�

)) � 1 for all r 2 Q

(n)

, j 2 [n℄, and

� 2 [k℄. This implies that

Q

F

[[:::℄℄

t;w

� 1. Hen
e,

#

hhq

0

;pii

(

^

M

q

(s[u p℄)) �

X

w 2 V

hr;x

�

i

(t);

hr; x

�

i 2 hQ;X

k

i

#

hhq

0

;pii

(

^

M

r

(~s

�

)): (�)

By indu
tion, #

hhq

0

;pii

(

^

M

r

(~s

i

)) � #

hhq

0

;pii

(

^

A

r

(~s

i

)). For � 2 [k℄� fig, ~s

�

2 T

�

and therefore

#

hhq

0

;pii

(

^

M

r

(~s

�

)) = #

hhq

0

;pii

(M

r

(~s

�

)) = 0 = #

hhq

0

;pii

(A

r

(~s

�

)) = #

hhq

0

;pii

(

^

A

r

(~s

�

)). Thus, the

sum in (�) is �

P

w2V

hr;x

�

i

(t);hr;x

�

i2hQ;X

k

i

#

hhq

0

;pii

(

^

A

r

(~s

�

)). Sin
e A is asso
iated with M ,

jV

hr;x

�

i

(�)j = jV

hr;x

�

i

(t)j for every hr; x

�

i 2 hQ;X

k

i, where � = rhs

A

(q; �; hp

1

; : : : ; p

k

i).

Therefore the above sum does not 
hange if we repla
e t by �. Then, by Lemma 2.4 we

get #

hhq

0

;pii

(�[: : : ℄) with [: : : ℄ = [hr; x

�

i  

^

A

r

(~s

�

) j hr; x

�

i 2 hQ

A

;X

k

i℄. By Lemma 3.5 and

the fa
t that

^

A is a T

R

, this equals #

hhq

0

;pii

(

^

A

q

(s[u p℄). 2

For a nondeleting MTT

R

M it follows immediately from Lemma 6.9 and De�nition 6.4

that if a T

R

A asso
iated with M is input pumpable, then also M is input pumpable.

Lemma 6.10 Let M be a nondeleting MTT

R

and let A be a T

R

asso
iated with M . If

A is input pumpable, then so is M .
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From Lemma 6.9 it also follows that gf
i is a generalization of f
i: if #

hhQ;fpgii

(

^

M

q

0

(s[u 

p℄)) is bounded by some N , then so is #

hhQ;fpgii

(

^

A

q

0

(s[u p℄)), i.e., if M is f
i, then it is

gf
i. However, the 
onverse is not true: there are MTT

R

s whi
h are gf
i but not f
i. In

fa
t, even for f
p MTT

R

s, gf
i does not imply f
i. To see this 
onsider an MTT M whi
h


ontains the following rules (and trivial look-ahead P = fpg).

hq

0

; �(x

1

; x

2

)i ! hq; x

1

i(hq

0

; x

2

i)

hq

0

; �i ! �

hq; �(x

1

; x

2

)i(y

1

) ! �(y

1

; y

1

)

hq; �i(y

1

) ! �(y

1

; y

1

)

Now let s

0

= � and for n � 0 let s

n+1

= �(�; s

n

). Then

hq

0

; s

n

i )

M

hq; �i(hq

0

; s

n�1

i)

)

M

�(hq

0

; s

n�1

i; hq

0

; s

n�1

i)

)

�

M

�(�(hq

0

; s

n�2

i; hq

0

; s

n�2

i); �(hq

0

; s

n�2

i; hq

0

; s

n�2

i)):

Hen
e,

^

M

q

0

(s

n

[2

n

 p℄) is a full binary tree of height n with all leaves labeled hhq

0

; pii.

Thus sts

M

(s

n

; 2

n

) = q

2

n

0

whi
h means that M is not f
i. However, M is gf
i and f
p, with

bounds 1 and 2, respe
tively. To see that M is gf
i, 
onsider the T

R

A with right-hand

side �(hq; x

1

i; hq

0

; x

2

i) for the (q

0

; �)-rule and right-hand side � for all other rules. Now A

is asso
iated with M , and it is linear in the input variables x

i

, i.e., A is f
i with bound 1.

Moreover, M is not of linear size in
rease (be
ause �

M

(s

n

) is a full binary tree of height

n). Thus, gf
i plus f
p 
annot be taken as an alternative to the de�nition of �nite 
opying:

MTT

R

f
i;f
p

( MTT

R

gf
i;f
p

.

As illustrated by the example above, a gf
i MTT

R

M need not be f
i and thus, the number

of o

urren
es of elements of hhQ; fpgii in

^

M

q

0

(s[u  p℄) is in general unbounded, due to

parameter 
opying (in the example above by the rules with right-hand side �(y

1

; y

1

)).

However, the number of su
h elements that appear on one path in

^

M

q

0

(s[u  p℄) is

bounded, and thus M is fnest. To see this intuitively, 
onsider a label path � in a tree in

T

hQ;T

�

i[�

. The appli
ation of a rule r of an MTT

R

does not 
opy any states on the path

�; thus, it in
reases the number of o

urren
es of q

0

on � by at most #

hfq

0

g;Xi

(rhs(r)),

whi
h equals #

hfq

0

g;Xi

(rhs(r

0

)) for the 
orresponding rule r

0

of a T

R

asso
iated with M .

We now give a formal proof, of property (i) mentioned above.

Lemma 6.11 Let M = (Q;P;�;�; q

0

; R; h) be an MTT

R

and let A = (Q

A

; P;�;�; q

0

;

R

A

; h) be a T

R

asso
iated with M . For every q; q

0

2 Q, s 2 T

�

, u 2 V (s), p 2 P , and

every label path � in

^

M

q

(s[u p℄): #

hhq

0

;pii

(�) � #

hhq

0

;pii

(

^

A

q

(s[u p℄)).

Proof. The proof is by indu
tion on the length of u.

For u = ", #

hhq

0

;pii

(�) = #

hhq

0

;pii

(hhq; pii) = #

hhq

0

;pii

(

^

A

q

(s[u p℄)).

For u = u

0

i it follows from Lemma 4.3 that

^

M

q

(s[u  p℄) = t[[i℄℄[[::℄℄ with t =

^

M

q

(s[u

0

 

p

0

℄)[[rhs℄℄, p

0

=

^

h(s=u

0

[i  p℄), and the substitutions [[rhs℄℄, [[::℄℄, and [[i℄℄ de�ned as in

Lemma 4.3 (with u

0

instead of u, p

0

instead of p, and p instead of p

i

). By Lemma 2.3(i)

applied to t

0

[[::℄℄ with t

0

= t[[i℄℄, the label path � is of the form w

0

v

1

w

1

� � � v

m

w

m

, m � 0,
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where �

0

= w

0

hr

1

; x

�

1

iw

1

� � � hr

m

; x

�

m

iw

m

is a label path in t

0

, and for j 2 [m℄, r

j

2 Q,

�

j

2 [k℄�fig, v

j

is a label path inM

r

j

(s=u

0

�

j

), and w

0

; : : : ; w

m

do not 
ontain elements of

hQ;X

k

� fx

i

gi. Sin
e M

r

j

(s=u

0

�

j

) 2 T

�

(Y ), #

hhq

0

;pii

(v

j

) = 0 for all j 2 [m℄ whi
h means

that #

hhq

0

;pii

(�) = #

hhq

0

;pii

(�

0

).

Clearly, by the de�nition of [[i℄℄, #

hhq

0

;pii

(�

0

) = #

hq

0

;x

i

i

(�

00

) for some label path �

00

in t.

Hen
e, it remains to show that #

hq

0

;x

i

i

(�

00

) � #

hhq

0

;pii

(

^

A

q

(s[u p℄)) = #

hhq

0

;pii

(�[rhs℄[::℄[i℄) =

#

hq

0

;x

i

i

(�[rhs℄), where � =

^

A

q

(s[u

0

 p

0

℄) and [rhs℄, [::℄, [i℄ are the (
orresponding �rst-order

variants of the) substitutions of Lemma 4.3.

By Lemma 2.3(i) applied to t =

^

M

q

(s[u

0

 p

0

℄)[[rhs℄℄, �

00

is of the form w

0

v

1

w

1

� � � v

m

w

m

,

m � 0, where � = w

0

hhr

1

; p

0

iiw

1

� � � hhr

m

; p

0

iiw

m

is a label path in

^

M

q

(s[u

0

 p

0

℄) and

for j 2 [m℄, r

j

2 Q, v

j

is a label path in rhs

M

(r

j

; �; hp

1

; : : : ; p

k

i), and w

0

; : : : ; w

m


on-

tain no elements of hhQ; fp

0

gii (i.e., w

j

is a string over � [ Y ). Thus, #

hq

0

;x

i

i

(�

00

) =

P

j2[m℄

#

hq

0

;x

i

i

(v

j

). Sin
e, for j 2 [m℄, v

j

is a label path in rhs

M

(r

j

; �; hp

1

; : : : ; p

k

i), this

sum is surely

�

X

j2[m℄

#

hq

0

;x

i

i

(rhs

M

(r

j

; �; hp

1

; : : : ; p

k

i)) =

X

j2[m℄

#

hq

0

;x

i

i

(rhs

A

(r

j

; �; hp

1

; : : : ; p

k

i));

whi
h 
an be written as

X

r2Q

#

hhr;p

0

ii

(�) �#

hq

0

;x

i

i

(rhs

A

(r; �; hp

1

; : : : ; p

k

i)):

By indu
tion this is �

P

r2Q

#

hhr;p

0

ii

(�) � #

hq

0

;x

i

i

(rhs

A

(r; �; hp

1

; : : : ; p

k

i)) whi
h equals

#

hq

0

;x

i

i

(�[rhs℄) by Lemma 2.4. 2

Taking q = q

0

and summing over all q

0

2 Q, it follows immediately from Lemma 6.11 that

if A is f
i then M is fnest, with the same bound. This is stated in the next lemma.

Lemma 6.12 If an MTT

R

is gf
i, then it is fnest.

We are now ready to prove step (I), i.e., that for a proper MTT

R

, lsi implies fnest.

Theorem 6.13 Let M be a proper MTT

R

. If M is lsi, then it is fnest.

Proof. If M is not fnest, then by Lemma 6.12 it is not gf
i. By the de�nition of gf
i

this means that any T

R

A asso
iated with M is not f
i. The appli
ation of Lemma 6.5 to

A gives that A is input pumpable, and thus by Lemma 6.10 M is input pumpable. Now

Lemma 6.6 implies that M is not lsi. 2

From Theorems 6.13, 6.3, and 6.7 we obtain the main result of this se
tion: the 
onverse

of Theorem 4.19, for proper MTT

R

s.

Theorem 6.14 Let M be a proper MTT

R

. If M is of linear size in
rease, then it is �nite


opying.
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Re
all from Se
tion 4.3 the notion of �nite 
ontribution. By Lemma 4.18, every �nite


opying MTT

R

is �nite 
ontribution, and by the dis
ussion before Theorem 4.19, every

�nite 
ontribution MTT

R

is of linear size in
rease. Together with Theorem 6.14 this shows

that a proper MTT

R

is �nite 
opying i� it is �nite 
ontribution. It 
an be proved that this

even holds for a produ
tive MTT

R

that satis�es (ii) of De�nition 5.6 (of p-properness).

Thus, the notions of �nite 
opying and �nite 
ontribution are 
losely related.

7 Main Results and Consequen
es

In this �nal se
tion we prove our main results: (i) a translation is MSO de�nable i�

it is a ma
ro tree translation of linear size in
rease, and (ii) for a given MTT M it is

de
idable whether or not �

M

is MSO de�nable. Then we dis
uss some 
onsequen
es of

these results for top-down tree transdu
ers, attributed tree transdu
ers, and 
ontext-free

graph grammars. At last some open problems and further resear
h topi
s are mentioned.

Theorem 7.1 Let M be an MTT

R

. Then the following statements are equivalent:

(1) �

M

is MSO de�nable.

(2) �

M

is of linear size in
rease.

(3) prop(M) is �nite 
opying.

Proof. Sin
e every MSO de�nable tree translation is of linear size in
rease (see Se
-

tion 2.5), (1) ) (2). Note that this 
an also be proved using the results from Se
tion 4:

If �

M

is MSO de�nable, then by Lemma 4.9, �

M

2 MTT

R

f


and thus, by Theorem 4.19,

�

M

is of linear size in
rease. To show (2) ) (3), let �

M

be of linear size in
rease. By

Theorem 5.9, there is a proper MTT

R

prop(M) with �

prop(M)

= �

M

; i.e., �

prop(M)

is of

linear size in
rease. By Theorem 6.14, prop(M) is �nite 
opying. Finally, if prop(M) is

�nite 
opying then, by Lemma 4.9, �

M

= �

prop(M)

is MSO de�nable. Thus (3) ) (1). 2

Note that, as dis
ussed at the end of Se
tion 6, we 
ould have in
luded \(4) prop(M) is

�nite 
ontribution" as another equivalent statement in Theorem 7.1.

Theorem 7.1 shows that the 
lass MSOTT of MSO de�nable tree translations 
an be


hara
terized as those ma
ro tree translations that are of linear size in
rease. Re
all (from

Se
tion 2.5) that LSI denotes the 
lass of all tree translations of linear size in
rease.

Theorem 7.2 MSOTT = MTT \ LSI.

Proof. If � 2 MTT \ LSI then there is an MTT M su
h that �

M

= � is of linear

size in
rease. By Theorem 7.1 �

M

is MSO de�nable, and thus MTT \ LSI � MSOTT. If

� 2 MSOTT, then by Lemma 4.9 there is an MTT

R

M with �

M

= � . By Theorem 7.1 �

M

is

of linear size in
rease, and thusMSOTT � MTT

R

\LSI. By Lemma 3.3, MTT

R

= MTT.

2
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By Theorem 7.1, the proper normal form prop(M) (whi
h 
an be 
onstru
ted by Theo-

rem 5.9) of an MTT M is �nite 
opying i� �

M

is MSO de�nable. Sin
e the �nite 
opying

property is de
idable (Lemma 4.10) this implies that for M it is de
idable whether or not

�

M

is MSO de�nable. If prop(M) is �nite 
opying, then an MSO tree transdu
er that

realizes �

M


an be 
onstru
ted, be
ause the equality MSOTT = MTT

R

f


of Lemma 4.9 is

e�e
tive (
f. the dis
ussion following Lemma 4.10).

Theorem 7.3 It is de
idable for an MTT M whether or not �

M

is MSO de�nable, and

if it is, then an MSO tree transdu
er for �

M


an be 
onstru
ted.

7.1 Top-Down Tree Transdu
ers

A top-down tree transdu
er 
an translate a monadi
 tree (of height n) into a full binary

tree (of height n). This translation is of exponential size in
rease and hen
e it is not

MSO de�nable. On the other hand, there are MSO de�nable tree translations that 
annot

be realized by top-down tree transdu
ers: 
onsider the translation that asso
iates with a

tree its yield (i.e., the left-to-right sequen
e of the labels of its leaves), seen as a monadi


tree. This translation is MSO de�nable (
f. Example 1(6, yield) of [BE00℄) but it 
annot

be realized by a top-down tree transdu
er, be
ause it is of exponential height in
rease

(viz. it translates a full binary tree of height n into its yield, a monadi
 tree of height

2

n

) whereas top-down tree translations are of linear height in
rease (
f. Lemma 3.27

of [FV98℄). Now, whi
h translations realized by top-down tree transdu
ers (with regular

look-ahead) are MSO de�nable? By our results, they are exa
tly the translations realized

by �nite 
opying T

R

s.

Theorem 7.4 T

R

\MSOTT = T

R

f


.

Proof. Let M be a T

R

su
h that �

M

is MSO de�nable. By Theorem 7.1, prop(M) is

�nite 
opying. By Theorem 5.9, prop(M) is a T

R

. Thus, �

M

= �

prop(M)

2 T

R

f


. Hen
e,

T

R

\MSOTT � T

R

f


. The in
lusion T

R

f


� T

R

\MSOTT is immediate from Lemma 4.9.

2

Note that it follows immediately from Theorem 7.1 that T

R

\MSOTT = T

R

\LSI. Thus,

T

R

f


= T

R

\LSI. Sin
e T

R

f


s are 
losely related to tree-walking transdu
ers (see Theorem 4.9

of [ERS80℄), this may be viewed as the result of [AU71℄ that the translations realized by

tree-walking transdu
ers are exa
tly the generalized syntax-dire
ted translations of linear

size in
rease.

7.2 Attributed Tree Transdu
ers

Attributed tree transdu
ers [F�ul81, FV98℄ serve as a formal model for attribute gram-

mars [Knu68℄. As argued in [BE00℄, adding the feature of look-ahead to them, yields a

better model of attribute grammars, and a more robust 
lass of tree translations. Let

ATT

R

denote the 
lass of translations realized by attributed tree transdu
ers with look-

ahead (see [BE00, EM99℄) and let the subs
ript `sur' denote that the transdu
ers are
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\single use restri
ted" (
f. Se
tion 5 in [EM99℄), i.e., for every input symbol �, ea
h out-

side attribute is used at most on
e in the set of rules for �. It is proved in Theorem 17

of [BE00℄ that MSOTT = ATT

R

sur

. Hen
e MSOTT � ATT

R

\ LSI. Equality of these


lasses now follows from Theorem 7.2 and the fa
t that ATT

R

� MTT. (The latter in-


lusion 
an be proved as follows: by de�nition, ATT

R


onsists of all translations that


an be realized by the 
omposition of an attributed relabeling, followed by an attributed

tree translation. It follows from Theorem 4.4 of [EM99℄ that attributed relabelings 
an be

realized by T

R

s. Thus, ATT

R

� T

R

Æ ATT, where ATT denotes the 
lass of translations

realized by attributed tree transdu
ers. By Lemma 5.11 of [EM99℄, ATT � MTT

R

and

so T

R

ÆATT � T

R

ÆMTT

R

whi
h, by Lemma 3.3, equals T

R

ÆMTT. Sin
e regular look-

ahead 
an be realized by �rst running a �nite state relabeling, i.e., applying a translation

in DBQREL (
f. Theorem 2.6 of [Eng77℄), we get the in
lusion in DBQREL Æ T ÆMTT

whi
h is � DBQREL ÆMTT by Corollary 4.10 of [EV85℄, and thus we have the in
lusion

in MTT

R

= MTT.)

Theorem 7.5 MSOTT = ATT

R

\ LSI.

From the fa
t that ATT

R

� MTT (e�e
tively) together with Theorem 7.3 and the fa
t

that MSOTT = ATT

R

sur

(e�e
tively), we obtain the following de
idability result for at-

tributed tree transdu
ers.

Theorem 7.6 For an ATT

R

A it is de
idable whether or not there exists an equivalent

single use restri
ted ATT

R

A

0

, and if so, A

0


an be 
onstru
ted.

The interpretation of Theorem 7.6 in terms of 
lassi
al attribute grammars involves a

te
hni
al detail: roughly speaking, the look-ahead part of an ATT

R


orresponds to the

underlying 
ontext-free grammar of an attribute grammar. If we want to apply Theo-

rem 7.6 to an attribute grammar G, then we �rst have to turn G into an equivalent ATT

R

A, i.e., into an ATT

R

that realizes the same tree-to-tree translation as G (translating the

non-derivation-trees of G into some error symbol). Now assume that for A there is an

equivalent single use restri
ted ATT

R

A

0

. In general the look-ahead of A

0

will be di�erent

from the one of A, whi
h implies that an attribute grammar G

0

equivalent to A

0

does not

have the same underlying 
ontext-free grammar as G, and hen
e the tree-to-tree transla-

tion realized by G

0

is di�erent from the one realized by G. This problem 
an be avoided by

adding boolean-valued attributes to G

0

(
f. the Introdu
tion of [BE00℄), whi
h simulate

the look-ahead part of A

0

. In this way G

0

and G have the same underlying 
ontext-free

grammar and they realize the same tree-to-tree translation (however, the boolean-valued

attributes are, in general, not single use restri
ted).

7.3 Context-Free Graph Grammars

A 
ontext-free graph grammar (see, e.g., [Eng97℄) generates a graph language. If the

graphs are restri
ted to trees, then we obtain a tree language. As dis
ussed in the In-

trodu
tion of [EM99℄, the 
lass of tree languages that 
an be generated by 
ontext-free

graph grammars (either by hyperedge repla
ement (HR), or by node repla
ement (NR), 
f.
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Se
tion 6 of [Eng97℄) 
an be obtained by applying the MSO de�nable tree translations to

the regular tree languages. By Theorem 7.2 it means that this 
lass of tree languages 
an

be obtained by the appli
ation of linear size in
rease ma
ro tree translations to the regular

tree languages. This is just a straightforward variation of similar statements in the liter-

ature: for single use restri
ted ATTs in Corollary 19 of [BE00℄, for \single use restri
ted"

MTTs and for �nite 
opying MTTs in Corollary 7.3 of [EM99℄, and for nondeleting MTTs

that are �nite 
opying and linear in the parameters in Theorem 5 of [EM00b℄ (based on

Theorem 8.1 of [Dre99a℄).

Theorem 7.7 The output tree languages of MTTs of linear size in
rease applied to the

regular tree languages are the tree languages generated by (HR or NR) 
ontext-free graph

grammars.

7.4 Open Problems and Further Resear
h Topi
s

We have proved that for a ma
ro tree transdu
er it is de
idable whether or not the trans-

lation it realizes is MSO de�nable. What is the 
omplexity of this problem? In fa
t, the


omplexity of de
iding the �niteness of ranges of (
ompositions of) ma
ro tree transdu
-

ers [DE98℄ (
f. Lemma 3.7) is not known, and our de
idability proof is based on this

result.

It would be interesting to �nd a 
lassi�
ation of the possible size in
reases of MTTs. For

top-down tree transdu
ers su
h a 
lassi�
ation is given in [AU71℄ and it is shown that the

size in
rease of every top-down tree transdu
er is either polynomial or exponential. For

MTTs it 
ould be the 
ase that every size in
rease is either polynomial, exponential, or

double exponential.

Is polynomial size in
rease de
idable for MTTs? If so, what is the 
omplexity? For top-

down tree transdu
ers it is shown in [Dre99b℄ that this problem is NLOGSPACE-
omplete.

It is not 
lear how MSO de�nability 
ould be generalized in order to obtain the 
lass of

polynomial size in
rease ma
ro tree translations. (Note that there are well-established

models of polynomial size in
rease FO transdu
ers, see, e.g., [EF95, Imm99℄).

Composition of MTTs yields a proper hierar
hy, i.e., there are translations whi
h 
an be

realized by the 
omposition of m + 1 MTTs, but not by the 
omposition of m MTTs

(Theorem 4.16 of [EV85℄). Now, what happens if we restri
t our attention to translations

that are of linear size in
rease? Maybe then 
omposition does not yield a proper hierar
hy,

but rather it remains the 
lass of MSO de�nable tree translations, i.e., is LSI\

S

n

MTT

n

=

MSOTT? Sin
e 
ompositions of MTTs 
an be realized by high-level tree transdu
ers (and

vi
e versa) [EV88℄ this question is equivalent to: Are linear size in
rease high-level tree

translations MSO de�nable? Again, this question 
ould also be 
onsidered for polynomial

instead of linear size in
rease.

For both, ma
ro tree transdu
ers and MSO transdu
ers there are nondeterministi
 vari-

ants (
f. [EV85℄ and [Cou94℄, respe
tively). We would like to know whether our result


arries over to the nondeterministi
 
ase, i.e., whether the nondeterministi
 ma
ro tree

translations of linear size in
rease are pre
isely the nondeterministi
 MSO de�nable tree

translations.
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Last but not least: Given an MTT M , is it de
idable whether the translation �

M

realized

byM 
an be realized by an attributed tree transdu
er (with look-ahead), i.e., is it de
idable

whether �

M

2 ATT (or ATT

R

)? Of 
ourse, if �

M

is MSO de�nable, whi
h 
an be de
ided

by Theorem 7.3, then the answer is positive, be
ause MSOTT = ATT

R

sur

by the result

of [BE00℄ (other positive 
riteria are dis
ussed in [CF82, FV99℄). On the other hand, note

that ATT

R

s are of linear size-to-height in
rease (
f., e.g., Lemma 5.40 of [FV98℄). Denote

by LSHI the 
lass of all translations of linear size-to-height in
rease. Probably it 
an be

proved (by methods similar to those in this paper) that MTT \ LSHI = MTT

R

fnest

and

that �

M

2 LSHI i� prop(M) is fnest, whi
h is de
idable. Thus, it would be de
idable for

an MTT whether or not it is of linear size-to-height in
rease. If it is not, then it 
annot

be realized by an ATT

R

.

Referen
es

[AU71℄ A. V. Aho and J. D. Ullman. Translations on a 
ontext-free grammar. Inform.

and Control, 19:439{475, 1971.

[BE00℄ R. Bloem and J. Engelfriet. A 
omparison of tree transdu
tions de�ned by

monadi
 se
ond order logi
 and by attribute grammars. J. of Comp. Syst.

S
i., 61:1{50, 2000.

[BMN00℄ J. Bex, S. Maneth, and F. Neven. A formal model for an expressive fragment

of XSLT. In J. Lloyd et. al., editors, Pro
eedings of the First International

Conferen
e on Computational Logi
 (CL'2000), volume 1861 of LNCS, pages

1137{1151. Springer-Verlag, 2000.

[CE95℄ B. Cour
elle and J. Engelfriet. A logi
al 
hara
terization of the sets of hyper-

graphs de�ned by hyperedge repla
ement grammars. Math. Systems Theory,

28:515{552, 1995.

[CF82℄ B. Cour
elle and P. Fran
hi-Zannetta

i. Attribute grammars and re
ursive

program s
hemes. Theoret. Comput. S
i., 17:163{191 and 235{257, 1982.

[Cou83℄ B. Cour
elle. Fundamental properties of in�nite trees. Theoret. Comput. S
i.,

25:95{169, 1983.

[Cou94℄ B. Cour
elle. Monadi
 se
ond-order de�nable graph transdu
tions: a survey.

Theoret. Comput. S
i., 126:53{75, 1994.

[Cou95℄ B. Cour
elle. Stru
tural properties of 
ontext-free sets of graphs generated

by vertex repla
ement. Inform. and Comput., 116:275{293, 1995.

[DE98℄ F. Drewes and J. Engelfriet. De
idability of �niteness of ranges of tree trans-

du
tions. Inform. and Comput., 145:1{50, 1998.

[Dre99a℄ F. Drewes. A 
hara
terization of the sets of hypertrees generated by

hyperedge-repla
ement graph grammars. Theory Comput. Systems, 32:159{

208, 1999.

62



[Dre99b℄ F. Drewes. The 
omplexity of the exponential output size problem for top-

down tree transdu
ers. In G. Ciobanu and Gh. P�aun, editors, Pro
. Fun-

damentals of Computation Theory (FCT'99), volume 1684 of LNCS, pages

234{245. Springer-Verlag, 1999. To appear in Inform. and Comput.

[EF81℄ J. Engelfriet and G. Fil�e. The formal power of one-visit attribute grammars.

A
ta Informati
a, 16:275{302, 1981.

[EF95℄ H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 1995.

[EH01℄ J. Engelfriet and H. J. Hoogeboom. MSO de�nable string transdu
tions and

two-way �nite-state transdu
ers. ACM Transa
tions on Computational Logi
,

2(2):216{254, 2001.

[EM99℄ J. Engelfriet and S. Maneth. Ma
ro tree transdu
ers, attribute grammars,

and MSO de�nable tree translations. Inform. and Comput., 154:34{91, 1999.

[EM00a℄ J. Engelfriet and S. Maneth. Chara
terizing and de
iding MSO-de�nability of

ma
ro tree transdu
tions. In H. Rei
hel and S. Tison, editors, Pro
eedings of

the 17th Annual Symposium on the Theoreti
al Aspe
ts of Computer S
ien
e

(STACS'2000), volume 1770 of LNCS, pages 542{554. Springer-Verlag, 2000.

[EM00b℄ J. Engelfriet and S. Maneth. Tree languages generated by 
ontext-free graph

grammars. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors,

Pro
eedings of the 6th International Workshop on Theory and Appli
ation

of Graph Transformations (TAGT'98), volume 1764 of LNCS, pages 15{29.

Springer-Verlag, 2000.

[Eng77℄ J. Engelfriet. Top-down tree transdu
ers with regular look-ahead. Math.

Systems Theory, 10:289{303, 1977.

[Eng80℄ J. Engelfriet. Some open questions and re
ent results on tree transdu
ers and

tree languages. In R.V. Book, editor, Formal language theory; perspe
tives

and open problems. New York, A
ademi
 Press, 1980.

[Eng97℄ J. Engelfriet. Context-free graph grammars. In G. Rozenberg and A. Salo-

maa, editors, Handbook of Formal Languages, Volume 3, Chapter 3. Springer-

Verlag, 1997.

[ERS80℄ J. Engelfriet, G. Rozenberg, and G. Slutzki. Tree transdu
ers, L systems,

and two-way ma
hines. J. of Comp. Syst. S
i., 20:150{202, 1980.

[EV85℄ J. Engelfriet and H. Vogler. Ma
ro tree transdu
ers. J. of Comp. Syst. S
i.,

31:71{146, 1985.

[EV88℄ J. Engelfriet and H. Vogler. High level tree transdu
ers and iterated pushdown

tree transdu
ers. A
ta Informati
a, 26:131{192, 1988.

[EV94℄ J. Engelfriet and H. Vogler. The translation power of top-down tree-to-graph

transdu
ers. J. of Comp. Syst. S
i., 49:258{305, 1994.

63



[EvO97℄ J. Engelfriet and V. van Oostrom. Logi
al des
ription of 
ontext-free graph

languages. J. of Comp. Syst. S
i., 55(3):489{503, 1997.

[F�ul81℄ Z. F�ul�op. On attributed tree transdu
ers. A
ta Cyberneti
a, 5:261{279, 1981.

[FV98℄ Z. F�ul�op and H. Vogler. Syntax-Dire
ted Semanti
s { Formal Models based

on Tree Transdu
ers. EATCS Monographs on Theoreti
al Computer S
ien
e

(W. Brauer, G. Rozenberg, A. Salomaa, eds.). Springer-Verlag, 1998.

[FV99℄ Z. F�ul�op and H. Vogler. A 
hara
terization of attributed tree transformations

by a sub
lass of ma
ro tree transdu
ers. Theory Comput. Systems, 32:649{

676, 1999.

[Gan83℄ H. Ganzinger. In
reasing modularity and language-independen
y in automat-

i
ally generated 
ompilers. S
ien
e of Computer Programming, 3:223{278,

1983.

[Gie88℄ R. Giegeri
h. Composition and evaluation of attribute 
oupled grammars.

A
ta Informati
a, 25:355{423, 1988.

[GS84℄ F. G�e
seg and M. Steinby. Tree Automata. Akad�emiai Kiad�o, Budapest,

1984.

[GS97℄ F. G�e
seg and M. Steinby. Tree automata. In G. Rozenberg and A. Salo-

maa, editors, Handbook of Formal Languages, Volume 3, Chapter 1. Springer-

Verlag, 1997.

[Imm99℄ N. Immerman. Des
riptive Complexity. Springer-Verlag, New York, 1999.

[Iro61℄ E.T. Irons. A syntax dire
ted 
ompiler for ALGOL 60. Comm. Asso
. Com-

put. Ma
h., 4:51{55, 1961.

[KMMM01℄ H.-P. Kolb, J. Mi
haelis, U. M�onni
h, and F. Morawietz. An operational

and denotational approa
h to non-
ontext-freeness. To appear in Theoret.

Comput. S
i., 2001.

[Knu68℄ D.E. Knuth. Semanti
s of 
ontext-free languages. Math. Systems Theory,

2:127{145, 1968. (Corre
tions in Math. Systems Theory, 5:95-96, 1971).

[KS94℄ N. Klarlund and M. I. S
hwartzba
h. Graphs and de
idable transdu
tions

based on edge 
onstraints. In S. Tison, editor, Pro
eedings of the 19th Col-

loquium on Trees in Algebra and Programming { CAAP 94, volume 787 of

LNCS, pages 187{201. Springer-Verlag, 1994.

[K�uh98℄ A. K�uhnemann. Bene�ts of tree transdu
ers for optimizing fun
tional pro-

grams. In V. Arvind and R. Ramanujam, editors, Pro
eedings of the 18th

Conferen
e on Foundations of Software Te
hnology and Theoreti
al Computer

S
ien
e (FST&TCS'98), volume 1530 of LNCS, pages 146{157. Springer-

Verlag, 1998.

[KV97℄ A. K�uhnemann and H. Vogler. Attributgrammatiken. Vieweg-Verlag, 1997.

64



[KV01℄ A. K�uhnemann and J. Voigtl�ander. Tree transdu
er 
omposition as defor-

estation method for fun
tional programs. Te
hni
al Report TUD-FI01-07,

Te
hni
al University Dresden, Department of Computer S
ien
e, 2001.

[MMM01℄ J. Mi
haelis, U. M�onni
h, and F. Morawietz. On minimalist attribute gram-

mars and ma
ro tree transdu
ers. To appear in Linguisti
 Form and its

Computation, Ch. Rohrer, A. Rossdeuts
her, H. Kamp, editors, 2001.

[MN00℄ S. Maneth and F. Neven. Re
ursive stru
tured do
ument transformations.

In R. Conner and A. Mendelzon, editors, Resear
h Issues in Stru
tured and

Semistru
tured Database Programming { Revised Papers DBPL'99, volume

1949 of LNCS, pages 80{98. Springer-Verlag, 2000.

[MSV00℄ T. Milo, D. Su
iu, and V. Vianu. Type
he
king for XML transformers. In

Pro
eedings of the 19th ACM Symposium on Prin
iples of Database Systems

(PODS'2000), pages 11{22. ACM Press, 2000.

[Rou70℄ W.C. Rounds. Mappings and grammars on trees. Math. Systems Theory,

4:257{287, 1970.

[Sto77℄ J. Stoy. Denotational Semanti
s: The S
ott-Stra
hey Approa
h to Program-

ming Language Theory. The MIT Press, 1977.

[Tha70℄ J.W. That
her. Generalized

2

sequential ma
hine maps. J. of Comp. Syst.

S
i., 4:339{367, 1970.

[vDHK96℄ A. van Deursen, J. Heering, and P. Klint, editors. Language Prototyping,

volume 5 of AMAST Series in Computing. World S
ienti�
, 1996.

[vDKT96℄ A. van Deursen, P. Klint, and F. Tip. Origin tra
king and its appli
ations.

In [vDHK96℄, Chapter 7, pages 249{294. 1996.

[Via01℄ V. Vianu. A Web Odyssey: From Codd to XML. In Pro
eedings of the 20th

ACM Symposium on Prin
iples of Database Systems (PODS'2001). ACM

Press, 2001.

[Vog91℄ H. Vogler. Fun
tional des
ription of the 
ontextual analysis in blo
k-

stru
tured programming languages: a 
ase study of tree transdu
ers. S
ien
e

of Computer Programming, 16(3):251{275, 1991.

[WM95℄ R. Wilhelm and D. Maurer. Compiler Design. Addison-Wesley, 1995.

65


