
Context-Free Valence Grammars – Revisited∗

H.J. Hoogeboom, Universiteit Leiden
http://www.liacs.nl/~hoogeboo/

Abstract

Context-free valence languages (over Zk) are shown to be cod-
ings of the intersection of a context-free language and a blind k-
counter language. This afl-style characterization allows one to
infer some of the properties of the family of valence languages, in
particular the λ-free normal form proved by Fernau and Stiebe.

1 Introduction

Valence grammars were introduced by Păun as a new way of regulated
rewriting ([Pau80], or [DP89, p. 104]): associate with each production of
a Chomsky grammar an integer value, the valence of the production, and
consider only those derivations for which the valences of the productions
used add to zero. The formalism is surprisingly simple, and adding va-
lences to context-free grammars one obtains a family of languages strictly
in between context-free and context-sensitive. More importantly, that
family has convenient closure properties.

The formalism has been extended to valence monoids other than Z,
like positive rational numbers (Q+ under multiplication), or vectors of
integers (Zk under componentwise addition).

Fernau and Stiebe study the context-free valence grammars over ar-
bitrary monoids in a uniform presentation, and give additional results for
the context-free valence grammars over Zk ([FS97], full paper [FS00]).
One of their important contributions is that the Chomsky and Greibach
normal forms hold in the valence case. This is somewhat unexpected,
as chain productions and λ-productions do not contribute to the derived
string, and yet their valences have to be taken into account – which makes
their removal a nontrivial task.

This paper reconsiders those basic properties of context-free valence
grammars over Zk. It has been observed in the cited papers that the
valence mechanism is very similar to the storage type used by the blind
∗LIACS Technical Report 01-06. Presentation at Developments in Language Theory,

July 2001, Vienna, Austria.

counter automata of Greibach [Gre78], in fact, regular valence grammars
are easily seen to be equivalent to blind counter automata. Here we
make this connection explicit in another way. In the style of afl the-
ory [Gin75] we characterize context-free valence languages (over Zk) as
homomorphic images of the intersection of a context-free language and a
blind k-counter language, see Lemma 3. In this fashion we have explicitly
separated the context-free derivation process from the phase where the
valences are checked. As the context-free languages and the blind counter
language share specific closure properties, generic results from afl theory
allow us to conclude those properties for context-free valence languages
(Theorem 6).

Then the characterization is improved by replacing the (arbitrary)
homomorphisms by codings (Theorem 5). Technically this is much more
complicated, involving the prediction of the valences of derivations that
yield the empty string (ending in λ-productions). Apart from its elegance,
this characterization has some immediate use. A classic result of Latteux
shows that the blind k-counter languages are accepted by real-time au-
tomata, i.e., automata reading a symbol in each step. The construction
of a valence grammar starting with a context-free grammar and such
a real-time blind counter automaton does not change the shape of the
grammar. From this we immediately conclude the existence of Chomsky
and Greibach normal forms for context-free valence grammars, see The-
orems 8 and 9, i.e., directly from the existence of those normal forms for
context-free grammars. This means that we have avoided the lengthy and
involved technical analysis of the derivations in valence grammars [FS00,
Sections 5.3–5.5], at the “cost” of applying an abstract result from afl

theory (which thus hides the actual complexity of the construction).
Our motivation to study valence language comes from the formal lan-

guage theory of splicing. The valence families are powerful enough to
model certain restricted types of splicing, while (unlike the larger family of
context-sensitive languages) having suitable closure properties [HvV01].

2 Preliminaries

The reader is assumed to be familiar with standard formal language no-
tions, see [Sal73] for a broad introduction. After some generalities, this
section presents basic facts on language families, valence grammars, and
blind counter automata.

We use λ to denote the empty string, and || to denote the shuffle
operation on languages.

2

For a vector ~v ∈ Zk, ‖~v‖ denotes the 1-norm
∑k

i=1 |vi|, where ~v =
(v1, . . . , vk). Vectors in Zk are added componentwise; the vector all of
which elements are 0 is denoted by ~0.

Language Families

We use REG and CF to denote the families of regular and of context-free
languages. The family of homorphisms is denoted by HOM; the family of
codings (letter-to-letter homomorphisms) by COD. Thus, e.g., HOM(F)
denotes the family of homomorphic images of languages from F .

For language families F and G, F∧G denotes {F ∩G | F ∈ F , G ∈ G}.
The family F is a trio (or faithful cone) if it is closed under λ-free

homomorphisms, inverse homomorphisms, and intersection with regular
languages. A full trio (or cone) is additionally closed under (arbitrary)
homomorphisms. The smallest trio and full trio containing the language
L are denoted by M(L), and M̂(L), respectively. It can be shown that

M̂(L) = { g(h−1(L) ∩R) | h, g ∈ HOM, R ∈ REG }.

ForM(L) there is an analogous characterization where g is λ-free (Corol-
lary 1 to Theorem 3.2.1 in [Gin75]). A (full) trio of this form is called
(full) principal, i.e., it is generated by a single language L. It is auto-
matically a (full) semi-afl, i.e., additionally closed under union [Gin75,
Proposition 5.1.1].

As explained in [Gin75, Example 5.1.1], it follows from the Chomsky-
Schutzenberger Theorem that CF equals M̂(D2); the full trio generated
by D2, the Dyck set on two symbols, a language generated by the context-
free grammar with productions S → SS | a1Sb1 | a2Sb2 | λ.

Valence Grammars

A valence grammar over Zk is a context-free grammar in which every
production has an associated value (the valence) from Z

k. A string is in
the language of the valence grammar if it can be derived in the usual way,
under the additional constraint that the valences of the productions used
add up to ~0.

Formally the grammar is specified as four-tuple G = (N,T,R, S),
where N,T are alphabets of nonterminals and terminals, S ∈ N is the
axiom, and R is a finite subset of N × (N ∪ T)∗ × Zk, the rules. When
(A,w,~r) is an element of R, then we write as usual (A → w,~r), and
A→ w is the (underlying) production and ~r the valence of the rule.

3

Omitting the valences from the rules of G, we obtain the underlying
context-free grammar of G. The derivation relation of G is an obvious
extension of the one for context-free grammars; for x, y ∈ (N ∪ T)∗ and
~v ∈ Zk we write (x,~v) ⇒ (y,~v + ~r) if there is a rule (A → w,~r), such
that x = x1Ax2, and y = x1wx2. Then, the language of G equals L(G) =
{ w | w ∈ T ∗, (S,~0)⇒∗ (w,~0) }. The family of all valence languages over
Z
k is denoted here by VAL(Zk).

Blind Counter Automata

Let k ≥ 0. A k blind counter automaton, or kbca, is a finite state automa-
ton with k integers ~v = (v1, v2, . . . , vk) as additional external storage. In
each step the automaton may increment and decrement each of its coun-
ters. The storage is called blind as the automaton is not allowed to test
the contents of the counters during the computation. The only, implicit,
test is at the end of the computation, as we accept only computations
from initial state to final state, that start and end with empty counters.

Formally, an instruction of a kbca is of the form (p, a, q, ~r), where
p, q are states, a is an input symbol or λ, and ~r ∈ Zk. Executing this
instruction, the automaton changes from state p into state q, reads a from
its input tape, and changes the counter values from ~v into ~v + ~r.

The automaton is called real-time if none of the instructions read λ.
We use kBC to denote the family of languages accepted by kbca.

According to standard afa interpretation (cf. [Gin75, Lemma 5.2.3])
an automaton can be seen as a finite state transducer translating input
symbols into sequences of storage instructions; the input string is accepted
only if the resulting sequence of storage instructions is “legal”, i.e., it can
be executed by the storage, leading from initial to final storage. This
implies that the languages accepted are precisely the inverses under finite
state transductions of the language of legal storage instructions.

Let Σk be the alphabet {a1, b1, . . . , ak, bk}. Define Bk = {x ∈ Σ∗k |
#ai(x) = #bi(x) for each 1 ≤ i ≤ k}. Observe that Bk models the possi-
ble legal instruction sequences to the blind counter storage, interpreting
ai and bi as increments and decrements of the i-th counter.

As every transducer (and its inverse) can be decomposed into ho-
momorphisms and intersection with regular languages (known as Nivat’s
Theorem, cf. equation 2.4 in [Sal73, Chapter IV]), the language accepted
by a kbca can be written as g(h−1(Bk) ∩ R)), where h, g are homomor-
phisms, and R is a regular language.

This being the characterization of M̂(Bk) that was recalled on the

4

previous page, it then follows that kBC equals M̂(Bk); the full trio gen-
erated by Bk. For real-time kbca h is a λ-free homomorphism, and we
obtain along the same lines the trio M(Bk) generated by Bk.

By a result of Greibach, [Gre78, Theorem 2], blind counter automata
are equivalent to their real-time restriction. Unfortunately, the proof of
this result does not keep the number of counters constant, see the proof
of Lemma 1 in [Gre78], which states “[..] this can be done [..] with delay
0, by adding another counter”.

The equivalence of the real-time restriction for k blind counter au-
tomata, for every fixed k, is a special case of a general language theoretic
result of Latteux [Lat79].

Proposition 1 Real-time kbca are as powerful as (unrestricted) kbca.

Proof. By [Lat79, Theorem II.11] M̂(L) =M(L) for every permutation
closure L of a regular language. Hence the proposition follows, as Bk is
the permutation closure of the regular language (a1b1)∗ · · · (akbk)∗. �

For kbca we have a normal form in which the automaton never
changes more than one of its counter values in each step.

Proposition 2 For each (real-time) kbca there exists an equivalent (real-
time) kbca such that ‖~r ‖ ≤ 1 for each instruction (p, a, q, ~r).

Proof. We use a variant of the normalisation procedure for counter au-
tomata, see [FMR68] – a rather flexible method, cf. [HvV00, Lemma 11].

Let m be the maximal amount by which any of the counters can
change in one step; hence in k consecutive steps each of the counters
is changed by a value at most ±km. The normal form is obtained by
accessing the counters in turn, such that in k consecutive steps each of
the counters is changed (at most) once. We store the original counter
value divided by 2km on the counter, while leaving the remainder (the
original counter value modulo 2km) in the finite state.

To be more precise, when a particular counter has just been ac-
cessed, the finite state keeps a remainder for that counter in the interval
[−km, . . . , km−1]. In the next k−1 steps we do not update that counter,
but store the changes in the finite memory. Thus, the remainder grows to
v ∈ [−2km+m, . . . , 2km−m−1]. After the k steps we may again access
that particular counter. If the original automaton at that moment wants
to add r ∈ [−m, . . . ,m] to the counter, the new automaton now computes
v′ = v+r in its finite state. If v′ ≥ km it increments the counter (by one)

5

and stores v′ − 2km in the state; if v′ < −km it decrements the counter
and stores v′ + 2km in the state.

Acceptance as before, by final state and empty counter; a state is final
if it is final in the original automaton and if it stores ~0. �

3 Characterization of VAL(Zk)

Let G be a valence grammar. We say that G is in 2-normal form if
G has only productions of the form A → BC, A → B, A → a, and
A → λ, where A,B,C ∈ N , and a ∈ T . Indeed this is a normal
form, and can be obtained easily similar to Chomsky normal form for
context-free grammars, by splitting longer productions, and by introduc-
ing “shadow”-nonterminals that introduce terminals (Na → a) whenever
necessary [FS00, Theorem 4.2].

We start by showing that valence languages are the homomorphic im-
ages of the intersection of a context-free language and a blind k-counter
language. This reminds us of the characterization in the proof of The-
orem 6 in [Pau80], in our notation L(G) = h(L(G′) ∩ (B1||T ∗)), where
G is a regular valence grammar over Z1 and G′ is a regular grammar
constructed from G.

Lemma 3 VAL(Zk) = HOM(CF ∧ kBC).

Proof. Let G be a valence grammar over Zk with terminal alphabet
T . We obtain a context-free grammar G′ from G by replacing each rule
(A→ w,~r) by the production A→ ~rw, and by adding the valence vectors
that occur in the rules of G to the terminal alphabet T .

Let A be the blind counter automaton that operates on the terminal
alphabet of G′, and which interpretes the vectors ~r by adding their values
to its counters. The automaton ignores the terminal symbols from T . It is
clear that L(G) is equal to h(L(G′)∩L(A)), where h is the homomorphism
that acts as identity on T , while it erases the valence vectors.

The converse implication can be obtained using a variant of the clas-
sical triple construction for the intersection of a context-free language
with a regular language, as used in [FS00, Theorem 4.1] to show clo-
sure properties of VAL(Zk). Starting with a context-free grammar G in
Chomsky normalform, a real-time blind counter automaton A, and a ho-
momorphism h, we introduce rules ([p,A, r]→ [p,B, q][q, C, r],~0) for each
production A→ BC of G and states p, q, r of A. Moreover we add termi-
nal rules ([p,A, q]→ h(a), ~r) whenever there is an instruction (p, a, q, ~r)
of A, and a production A→ a of G.

6

The axiom S of the valence grammar gets rules (S → [p, S, q],~0) such
that p is the initial state of A, and q a final state of A. If we want, we
can get rid of those initial chain-rules by combining them with rules for
the nonterminals [p, S, q]. �

As an immediate consequence of this basic characterization we can
infer the main closure properties of VAL(Zk), see Theorem 6 below.

The main difficulty in improving the characterization to codings in-
stead of arbitrary homomorphisms, is the removal of λ-rules from the
grammar, while taking into account their valences. The main tool is the
observation that the Szilard language of a context-free grammar, the pro-
duction sequences used in derivations, has a semilinear Parikh image (see
[DP89, Lemma 2.1.9], [FS00, Proposition 5.6]). This implies that we can
count the corresponding valences using a sequential device, in our case a
blind counter automaton.

For a sequence p of productions, we write x⇒p y if y is derived from
x using the sequence p.

Lemma 4 Let G = (N,T, P, S) be a context-free grammar, and let A and
B be nonterminals of G. The set {p ∈ P ∗ | A ⇒p B} has a semilinear
Parikh image.

Proof. Replace each production π : C → α by the production C → πα,
where π is used as a label to represent the production. Consider the
sentential forms of the new grammar, using A as axiom. This is a context-
free language, and it remains context-free after intersection with P ∗BP ∗

to select the derivations matching A ⇒∗ B. By Parikh’s theorem, the
resulting language has a semilinear image (from which we may drop the
occurrence of B). �

We now show that it is possible to replace the homomorphisms in
Lemma 3 by codings. For this we need the notion of the binary struc-
ture of a derivation tree of a valence grammar in 2-normal form (or of
its underlying context-free grammar). It suffices to introduce that notion
in an informal way. This binary structure is created from the derivation
tree by deleting each node that has no terminal symbols among its de-
scendants. The remaining tree can be decomposed into “linear” deriva-
tions (A,~0) ⇒∗G (A′, ~v) leading into a rule which is either of the type
(A′ → BC,~r) or of the type (A′ → a,~r). In fact, this decomposition by
the binary structure induces a decomposition of the original derivation
itself (but we need to find a way to include the valences of the rules that
were cut from the tree).

7

Theorem 5 VAL(Zk) = COD(CF ∧ kBC).

Proof. By Lemma 3 it suffices to prove the inclusion from left to right.
Let G = (N,T,R, S) be a valence grammar over Zk. We may assume that
G is in 2-normal form. In Lemma 3 the new grammar G′ was constructed
such that the (valence of) every production used in the derivation accord-
ing to G was present in the language. As a coding cannot remove symbols,
we cannot insert information in the string other than by associating it to
terminals of L(G).

Thus, we will code in our new grammar G′ only the binary structure
of the derivation tree. Actually, this structure is a presentation of the full
derivation, up to derivations of the form A⇒∗ B. These “linear” deriva-
tions may not only involve chain productions, but also large subtrees with
empty yield. The blind counter language used in the intersection will not
only take care of the computation of the valences, but it will also verify
that those “linear” derivations exist in G.

The context-free grammar G′ contains the productions

• A→ B[A.BC]C, for A,B,C ∈ N , where [A.BC] is a new terminal
symbol making the applied production visible in the language;

• A → [A.a], for A ∈ N and a ∈ T , where again [A.a] is a new
terminal symbol;

• S′ → [.S]S, S′ → λ.

The terminal alphabet of G′ consists the new symbols [A.BC], [A.a],
and [.S]. The axiom of G′ is the new nonterminal S′; the other nonter-
minals of G′ are copied from G. Note G′ does not depend on R.

Observe that L(G′) consists of strings of the form π1ρ1π2ρ2 . . . πnρn
recording the binary structure of a possible derivation tree in the in-order
of the nodes in the tree. Each πi is of type [A.BC], each ρi is of type
[A.a] (with the exception of π1 = [.S], which was introduced to obtain an
even number of symbols). If ρi = [Ai.ai], then a1a2 . . . an is a string over
the terminal alphabet of G, which may have a derivation with the given
binary structure. The intersection with the blind counter language will
get rid of unwanted binary structures.

We now consider the blind counter automaton A that should accept
input of the form π1ρ1π2ρ2 . . . πnρn only if the productions coded in that
string correspond to “linear” derivations in G, with valences adding to ~0.

Reading a symbol π, with π = [A.BC], A tries to accomplish the fol-
lowing. It guesses a rule (A′ → BC,~r) of G, and a derivation (A,~0)⇒∗G

8

(A′, ~v) to match a part of a derivation in G. The resulting vectors ~r and
~v are added using the counters of A. Once the production A′ → BC
is guessed, the nondeterministic simulation of the “linear” derivation
A ⇒∗G A′ can be done by A using Lemma 4. As the sequence of pro-
ductions for such a derivation is an element of a semilinear set, A may
simulate a finite state automaton that accepts a regular language with
the same semilinear image.

For a symbol ρ = [A.a], A guesses a rule (A′ → a,~r) and a matching
derivation (A,~0) ⇒∗G (A′, ~v) following the same principle. The symbol
π1 = [.S] can be ignored.

When A receives the empty string as input, it guesses a derivation
(S,~0)⇒∗G (A,~v) and a rule (A→ λ,~r).

It is now straightforward to verify that the intersection L(G′)∩L(A)
represents L(G) in the above manner, and that L(G) can be obtained
from this intersection in CF ∧ kBC by projecting the [A.a] symbols to
their a-components.

Of course, we cannot hide the πi using a coding. The languages we
need are obtained from L(G′) and L(A) by an inverse homomorphism
g−1 which combines πiρi into a single symbol [πiρi]. Recall that both CF
and kBC are closed under inverse homomorphisms.

Again, g−1(L(G′))∩g−1(L(A)) = g−1(L(G′)∩L(A)) represents L(G),
which can be obtained from this new language using a coding that maps
[πiρi] into ai. �

4 Implications

In this section we apply our basic characterizations of VAL(Zk) to obtain
some of the (known) properties of this family.

Theorem 6 VAL(Zk) is a (full) principal semi-afl.

Proof. According to Theorem 5.5.1(e) in [Gin75], if F and G are full
principal semi-afls, then so is HOM(F ∧ G). Both CF and kBC are full
principal semi-afls, as discussed, hence so is VAL(Zk) = HOM(CF∧kBC).
Similarly we find that VAL(Zk) is a principal semi-afl, i.e., it is of the
form M(L) rather than M̂(L), by [Gin75, Theorem 5.5.1(d)] and the
characterization with codings, Theorem 5. Here we additionally use the
fact that both CF and kBC are principal semi-afls, by the real-time
results (of Greibach and Latteux). �

9

In fact, as is shown in [Gin75], the generator of the full principal semi-
aflVAL(Zk) is the shuffle D2||Bk of the respective generators for CF and
kBC, after renaming one of the alphabets to make them disjoint.

This also suggests a machine interpretation as (obviously) D2||Bk de-
scribes the “legal” instruction sequences of the storage type push-down
combined with k blind counters cf. [FS00, Remark. 5.3]. The connection
between afl and automata discussed before Proposition 1 for kbca now
yields the following characterization (cf. [Gin75, Section 4.6]).

Theorem 7 VAL(Zk) is the family of languages accepted by (real-time)
automata equipped with a push-down and k blind counters.

As a corollary to our characterizations we now obtain the “Chomsky
II” normal form, Proposition 5.16 from [FS00].

Theorem 8 For each valence grammar over Zk there is an equivalent
valence grammar G = (N,T,R, S) over Zk, such that each rule is either
of the form (A → BC,~0), or of the form (A → a,~r), with A,B,C ∈ N ,
a ∈ T , and ‖~r ‖ ≤ 1.

Proof. Let G be an arbitrary valence grammar over Zk. By Theorem 5,
we may write L(G) = h(L(G′)∩L(A)), where h is a coding, G′ a context-
free grammar, and A is a kbca. By classic formal language theory we
may assume that G′ is in Chomsky normal form, and according to Lat-
teux we may assume that A is real-time (Proposition 1). Additionally
we may assume that ‖~r ‖ ≤ 1 for each of the counter instructions of A
(Proposition 2).

Now reassemble G′ and A into a valence grammar, using the triple
construction, cf. the proof of Lemma 3. We obtain a valence grammar in
Chomsky II normal form. �

Of course, an important consequence of this normal form is the equiva-
lence of context-free valence grammars with their λ-free restriction, one of
the important contributions of [FS00]; in their notation L(Val,CF,Zk) =
L(Val,CF-λ,Zk).

In the same way as Chomsky II above, we obtain Greibach normal
form, [FS00, Proposition 5.17]. Note that we do not have to extend the
classical construction (to obtain Greibach starting from Chomsky) from
CF to VAL(Zk) as we directly use the classical result for the context-free
languages.

10

Theorem 9 For each valence grammar over Zk there is an equivalent
valence grammar G = (N,T,R, S) over Zk, such that each rule is of the
form (A→ aα,~r), with A ∈ N , α ∈ N∗, |α| ≤ 2, a ∈ T , and ‖~r ‖ ≤ 1.

Proof. Similar to the previous proof. Reassemble a context-free gram-
mar G′ in Greibach normal form with a real-time kbca with the ‖~r ‖ ≤
1 restriction: productions of the form A → a, A → aB1, and A →
aB1B2 can be combined with the instruction (p, a, q, ~r) to form the rules
([p,A, q] → h(a), ~r), ([p,A, s] → h(a)[q,B1, s], ~r), and ([p,A, s] → h(a)
[q,B1, q1][q1, B2, s], ~r) respectively, for all states q1, s. �

5 Final Words

The generality of the result of Latteux, M(L) = M̂(L) for the permu-
tation closure L of any regular language, suggests other types of valence
grammars to apply the afl techniques. Consider the permutation closure
Ak of (a1 . . . ak)∗, i.e., the strings in which each letter from {a1, . . . , ak}
occurs an equal number of times. Then Ak describes a set of legal stor-
age operations, here interpreted as increments on a vector of k natural
numbers, with acceptance if all these “counters” are equal.

Then we have, in the style of Theorem 5, VAL(Nk) = COD(CF ∧
M(Ak)), where VAL(Nk) denotes the family accepted by the correspond-
ing context-free valence grammars, i.e., valences in Nk and the condition
that all components in the total valence of the derivation are equal. At
first glance this type of valence grammar does not seem to fit the frame-
work of [FS00] as the additional valence condition is not on the identity
~0 but on equality of the components.

Unfortunately, this does not lead to an extension of the model, as it
can be shown that VAL(Nk+1) = VAL(Zk), either directly, or by observing
that M(Ak+1) =M(Bk). For example, VAL(Nk+1) ⊇ VAL(Zk), as Bk =
h−1(Ak+1) for the homomorphism that maps bi to a1 . . . ai−1ai+1 . . . ak+1

(the string of all a’s, except ai) and leaves each ai unchanged. This rela-
tion can be better understood if we interpret the symbols a1, . . . , ak, ak+1

in another way as storage instructions: a1, . . . , ak increment a counter, as
before, but ak+1 acts as a synchronous decrement on all k counters.

Acknowledgements. The author is most obliged to Joost Engelfriet:
for lending his copy of [Gin75] and teaching how to read it. The referees
of DLT’01 kindly commented on a previous version of this paper.

11

References

[DP89] J. Dassow, G. Păun. Regulated Rewriting in Formal Language
Theory. EATCS Monographs in Theoretical Computer Sci-
ence, vol. 18. Springer-Verlag, 1989.

[FS97] H. Fernau, R. Stiebe. Regulation by Valences. In: B. Rovan
(ed.) Proceedings of MFCS’97, Lecture Notes in Computer
Science, vol. 1295, pages 239-248. Springer-Verlag, 1997.

[FS00] H. Fernau, R. Stiebe. Sequential Grammars and Au-
tomata with Valences. Technical Report WSI-2000-25,
Wilhelm- Schickard-Institut für Informatik, Universität
Tübingen, 2000. Submitted. Available via www.informatik.
uni-tuebingen.de/bibliothek/wsi-reports.html

[FMR68] P.C. Fischer, A.R. Meyer, A.R. Rosenberg. Counter Ma-
chines and Counter Languages. Mathematical Systems Theory
2 (1968) 265-283.

[Gin75] S. Ginsburg. Algebraic and Automata-theoretic Properties of
Formal Languages, Fundamental Studies in Computer Science,
vol. 2, North-Holland, 1975.

[Gre78] S.A. Greibach. Remarks on Blind and Partially Blind One-
Way Multicounter Machines. Theoretical Computer Science 7
(1978) 311- 324.

[HvV00] H.J. Hoogeboom, N. van Vugt. Fair Sticker Languages. Acta
Informatica 37 (2000) 213-225.

[HvV01] H.J. Hoogeboom, N. van Vugt. Upper Bounds for Restricted
Splicing. LIACS Technical Report 01-05, 2001. Submitted.

[Lat79] M. Latteux. Cônes Rationnels Commutatifs. Journal of Com-
puter and Systems Sciences 18 (1979) 307-333.

[Pau80] G. Păun. A New Generative Device: Valence Grammars. Re-
vue Roumaine de Mathématiques Pures et Appliquées 6 (1980)
911-924.

[Sal73] A. Salomaa. Formal Languages. ACM Monograph Series, Aca-
demic Press, 1973.

12

A Motivation

This appendix describes our motivation for considering valence grammars.
In the language theory of splicing systems the cutting and recombina-

tion of DNA molecules with the help of restriction enzymes is modelled
by an operation on languages: two strings x = x1x2 and y = y1y2 are
recombined to give the new string z = x1y2. The place where the two
original strings are cut (in between x1 and x2, and y1 and y2, respectively)
is specified by a set of rules. We refer to [HPP97] for an overview.

The power of this operation is studied by looking at its effect on lan-
guages in the Chomsky hierarchy under different types of rules. If the
initial language L is regular and the rules are given as context-free lan-
guage R (or reversely, L is context-free and R regular) then the operation
can be modelled as follows. Both L and R are coded in a context-free
language LR in which the strings are of the form x1#x2$y1#y2, the splic-
ing operation σ can be performed by a finite state transduction, mapping
the above string into the result x1y2. Consequently, the resulting splicing
language σ(L,R) is context-free.

Additional constraints involving the lengths of the two strings that
participate in the splicing (increasing splicing, same length splicing [KPS96])
require that |x1x2| = |y1y2| or that |x1| ≥ |y1|. As a consequence, LR is
no longer context-free, but context-sensitive, a family not closed under
finite state transductions.

In order to get a reasonable upper bound on the family to which
σ(L,R) belongs, we discovered the valence grammars (more precisely,
additive context-free valence grammars) to be a suitable formalism. The
family of valence languages is powerful enough to model initial language
L and rules R with additional constraints, it is strictly within the family
of context sensitive languages, and finally, is closed under finite state
transductions.

References

[HPP97] T. Head, G. Păun, D. Pixton. Language Theory and Molecular
Genetics: Generative Mechanisms Suggested by DNA Recom-
bination. In: G. Rozenberg and A. Salomaa (eds.) Handbook
of Formal Languages, volume 2. Springer-Verlag, 1997.

[KPS96] L. Kari, G. Păun, A. Salomaa. The Power of Restricted Splic-
ing with Rules from a Regular Language. Journal of Universal
Computer Science, 2 (224-240) 1996.

13

