
Upper Bounds for Restri
ted Spli
ing

?

Hendrik Jan Hoogeboom and Nik�e van Vugt

Universiteit Leiden, Institute of Advan
ed Computer S
ien
e

P.O. Box 9512, 2300 RA Leiden, The Netherlands

Abstra
t. We determine or improve upper bounds for non-iterated spli
-

ing in length-in
reasing, length-de
reasing, same-length and self spli
ing

mode.

1 Introdu
tion

The
utting and re
ombination of dna with the help of restri
tion enzymes has

been abstra
ted as the spli
ing operation for formal languages, see for instan
e

the introdu
tion by Head, P�aun, and Pixton [HPP97℄, or the relevant
hapters

in the book of P�aun, Rozenberg, and Salomaa on
omputational models inspired

by dna
omputing [PRS98℄.

The spli
ing operation takes two strings, and
uts them in a position spe
i�ed

by a spli
ing rule. Then these strings are re
ombined after ex
hanging their post-

�xes (the parts of the strings following the
ut). This operation
an then be

studied within the framework of formal language theory, in order to estimate

its
omputational power. One may study its e�e
t as a
losure operation on

language families, or one may study its power when applied iteratively as if it

were a single step of a
omputing devi
e. Most famous in this latter area is the

result that the family of regular languages is
losed under spli
ing (using a �nite

set of rules) [CH91℄. In fa
t, for the Chomsky hierar
hy the power of spli
ing has

been extensively investigated, and optimal upper bounds within the hierar
hy

have been established (
f. [HPP97℄, or [PRS98℄).

Here we
on
entrate on the non-iterative, single, appli
ation of the spli
ing

operation applied to families of the Chomsky hiera
hy. What is open here is

the power of some modes of restri
ted spli
ing, i.e., spli
ing where there are

additional
onstraints on the two strings involved, as inspired by [PRS96,KPS96℄.

For instan
e, in same-length spli
ing both strings are required to be of the same

length, and in self spli
ing both strings are assumed to be identi
al.

In parti
ular, it is left open whether non-iterated spli
ing in one of the

modes length-de
reasing, same-length, and self spli
ing, stays within the
ontext-

sensitive languages when applied to regular languages, using
ontext-free sets of

rules. We will show that this is indeed the
ase for same-length and length-

de
reasing mode (Corollaries 8(1) and 12(1)), whereas self spli
ing generates

every re
ursively enumarable language (up to a single marker, Corollary 16).

?

July 2001, LIACS Te
hni
al Report 01-05, www.lia
s.nl, submitted.

Moreover, we show that applying either of these spli
ing modes to
ontext-

free languages with �nite or regular sets of rules, results in a
ontext-sensitive

language. This was open for same-length spli
ing (Corollary 8(2)) and self spli
-

ing (Corollary 14).

After de�ning the operation of spli
ing in Se
tion 2, we explain our basi

tools in Se
tion 3. In the next three se
tions we dis
uss same-length spli
ing,

length-in
reasing (and length-de
reasing) spli
ing, and self spli
ing, respe
tively.

2 Spli
ing

A spli
ing rule over an alphabet V is an element of (V

�

)

4

. For su
h a rule

r = (u

1

; v

1

; u

2

; v

2

) and strings x; y; z 2 V

�

we write

(x; y) `

r

z i� x = x

1

u

1

v

1

y

1

; y = x

2

u

2

v

2

y

2

and

z = x

1

u

1

v

2

y

2

; for some x

1

; y

1

; x

2

; y

2

2 V

�

:

We say that the string z is obtained by spli
ing the strings x and y using the

rule r.

x

1

u

1

v

1

y

1

x

2

u

2

v

2

y

2

A spli
ing system (or H system) is a triple h = (V; L;R) where V is an

alphabet, L � V

�

is the initial language and R � (V

�

)

4

is a set of spli
ing rules,

the spli
ing relation.

To estimate the
omplexity of sets of rules using the familiar Chomsky

hierar
hy as a yard sti
k, spli
ing rules are
ommonly represented as strings

rather than 4-tuples: a spli
ing rule r = (u

1

; v

1

; u

2

; v

2

) is given as the string

Z(r) = u

1

#v

1

$u

2

#v

2

(# and $ are spe
ial symbols not in V), i.e., Z is a map-

ping from (V

�

)

4

to V

�

#V

�

$V

�

#V

�

, that gives a string representation of ea
h

spli
ing rule. We extend Z in the natural way to a mapping from sets of spli
ing

rules to languages. In agreement with this poli
y, we usually write, for instan
e,

\regular set of spli
ing rules" when we mean a set of spli
ing rules of whi
h

the Z-representation is a regular language. It was argued in [HvV98℄ that this

representation is quite robust: most of the other, related, representations do not

hange the position in the Chomsky hierar
hy of the families resulting from

(uniterated) spli
ing F

1

-languages using F

2

-rules.

In this paper we
onsider the setting where the general spli
ing operation

(x; y) `

r

z may only be applied in a
ertain
ontext. We re
all the de�nitions of

ertain types of restri
ted spli
ing from [PRS96,KPS96℄. We spli
e in (length-)

in
reasing mode (in for short) if the length of the resulting string is stri
tly

greater than the lengths of the two input strings, in (length-) de
reasing mode

(de) if the length of the resulting string is stri
tly smaller than the lengths of

2

the two input strings, in same-length mode (sl) if the two input strings have the

same length, and in self spli
ing mode (sf) if the two input strings are equal.

We add free spli
ing (f) as a synonym for unrestri
ted spli
ing. Formally, for a

spli
ing rule r we use the following relations.

free (x; y) `

f

r

z i� (x; y) `

r

z unrestri
ted

in
reasing (x; y) `

in

r

z i� (x; y) `

r

z and jzj > maxfjxj; jyjg

de
reasing (x; y) `

de

r

z i� (x; y) `

r

z and jzj < minfjxj; jyjg

same-length (x; y) `

sl

r

z i� (x; y) `

r

z and jxj = jyj

self (x; y) `

sf

r

z i� (x; y) `

r

z and x = y:

Note that the requirement for length-in
reasing spli
ing
an be reformulated in

terms of the two input strings x and y, without expli
itly mentioning the result

z of the spli
ing. If we spli
e x = x

1

u

1

v

1

y

1

and y = x

2

u

2

v

2

y

2

using the rule

r = (u

1

; v

1

; u

2

; v

2

), it is in in
reasing mode i� jx

1

u

1

j > jx

2

u

2

j and jv

1

y

1

j < jv

2

y

2

j.

There is a similar formulation for length-de
reasing spli
ing.

Let h = (V; L;R) be a spli
ing system. With the spli
ing modes given above

we de�ne the (non-iterated spli
ing) languages

�

�

(h) = f z 2 V

�

j (x; y) `

�

r

z for some x; y 2 L and r 2 R g

for � 2 ff; in; de; sl; sf g. Similarly we de�ne the families

S

�

(F

1

;F

2

) = f �

�

(h) j h = (V; L;R) with L 2 F

1

and Z(R) 2 F

2

g:

A spli
ing system with L 2 F

1

and Z(R) 2 F

2

is said to be of (F

1

;F

2

) type.

Example 1. Let h = (fa; b;
g; L;R) be the spli
ing system de�ned by

L =
 b

�

a

�

b

�

R = f (
b

m

a

n

; b

n

;
; b

m

) j m;n � 0g

It is of (REG,LIN) type as the initial language L is regular, and the set of rules

is linear: Z(R) = f
b

m

a

n

#b

n

$
#b

m

 j m;n � 0g.

The only spli
ings possible are of the form (
b

m

a

n

j b

n

;
 j b

m

) `
b

m

a

n

b

m

.

If the spli
ing has to be done in length-in
reasing mode, then we must have

m+ n+ 1 > 1 and m+ 1 > n+ 1, hen
e

�

in

(h) = f
b

m

a

n

b

m

 j m;n � 0 and m > ng

whi
h is not a
ontext-free language. ut

We only
onsider F

1

= REG; LIN;CF and F

2

= FIN;REG; LIN;CF, and in

parti
ular we are interested in upper bounds for the families S

�

(F

1

;F

2

) for the

modes � that we
onsider. Known results are from the papers [PRS98℄, whi
h

deals with �nite sets of rules (F

2

= FIN) only, and [KPS96℄, whi
h deals with sets

of rules of arbitrary Chomsky
omplexity (
ontradi
ting its title). We repeat in

Table 1 the parts of Tables 1, 2 and 3 from [KPS96℄ that summarize the lowest

3

FIN REG LIN CF FIN REG LIN CF FIN REG LIN CF

f REG REG LIN CF CF CF RE RE CF CF RE RE

in REG REG CF

+

CS CS CS CS CS CS CS CS

de REG REG CF

+

CS CS RE RE CS CS RE RE

sl LIN LIN CF

+

CF

+

RE RE CF

+

RE RE

sf CS CS CF

+

RE RE CF

+

RE RE

F

1

= REG F

1

= LIN F

1

= CF

Table 1. Upper bounds of S

�

(F

1

;F

2

) within the Chomsky hierar
hy [KPS96℄.

upper bounds within the Chomsky hierar
hy for the families S

�

(F

1

;F

2

). The

families of initial languages F

1

are listed in the bottom row, the families of

spli
ing rules F

2

are in the top row, repeated for ea
h of the three possible

initial families F

1

.

For the entries marked with CF

+

it is only known that the family
ontains a

non-
ontext-free language; it is not yet determined whether the smallest upper

bound within the Chomsky hierar
hy is CS or RE.

Note that although, for instan
e, the table
ontains the same bounds for the

families S

sl

(REG;FIN) and S

sl

(REG;REG), this does not ne
essarily mean that

they are equal: they only have the same upper bound in the Chomsky hierar
hy.

The same remark holds for the equality of the tables for F

1

= LIN and F

1

= CF.

3 Basi
 tools

We present our basi
 tools. First we de�ne a language that
aptures both the

initial language and the rules of a spli
ing system. Se
ond, we re
all the notion

of valen
e grammar, a grammati
al devi
e modestly extending the
ontext-free

grammars.

3.1 Representing the system by a language

The open problems indi
ated in Table 1 involve either a
ontext-free (or even

linear) initial language, and regular (or even �nite) spli
ing rules, or vi
e versa.

For unrestri
ted (free) non-iterated spli
ing the upper bounds for these two
ases

are determined in Lemma 3.3 and Lemma 3.6 of [HPP97℄. We use the ideas from

the proofs of these two lemma's to de�ne, for ea
h spli
ing system h = (V; L;R),

the language C(L;R) whi
h
ombines the initial language with the rules.

C(L;R) = f x

1

u

1

#v

1

y

1

$x

2

u

2

#v

2

y

2

j x

1

u

1

v

1

y

1

; x

2

u

2

v

2

y

2

2 L

and (u

1

; v

1

; u

2

; v

2

) 2 Rg

This language turns out to be very helpful in determining upper bounds for

(restri
ted) spli
ing families. Note that �

f

(h) = join(C(L;R)), where join is the

�nite state transdu
tion that erases the two #'s, and everything in between,

from a string in C(L;R).

4

To
onstru
t C(L;R) from L and R, we pro
eed as follows. It is straight-

forward to design a (non-deterministi
) �nite state transdu
tion su
h that the

language Z(R), representing the rules, is transformed into the language R

0

=

fx

1

u

1

#v

1

y

1

$x

2

u

2

#v

2

y

2

j u

1

#v

1

$u

2

#v

2

2 Z(R) and x

1

; y

1

; x

2

; y

2

2 V

�

g. Also

using a �nite state transdu
tion, the language L

0

= fx#y$w#z j xy ; wz 2 Lg

an be
onstru
ted from L � $ � L, the (marked)
on
atenation of the initial lan-

guage L with itself. Clearly, C(L;R) = L

0

\ R

0

.

Sin
e both REG and CF are
losed under �nite state transdu
tions and

under
on
atenation, we either have L

0

2 REG and R

0

2 CF for spli
ing of

(REG,CF) type, or L

0

2 CF and R

0

2 REG, for spli
ing of (CF,REG) type.

Clearly in both
ases C(L;R) = L

0

\ R

0

is a
ontext-free language, and so is

�

f

(h) = join(C(L;R)), proving the (known) upper bounds for (REG,CF) type

and (CF,REG) type spli
ing.

Lemma 2. Let h = (V; L;R) be a spli
ing system of (REG;CF) type or (CF;REG)

type. Then the language C(L;R) is
ontext-free.

In the sequel we adapt this strategy to restri
ted spli
ing. In that
ase we

have to put further restri
tions on the pair of strings that is spli
ed. This leads

us to
onsider parti
ular subsets of the language C(L;R).

In the
ase of same-length spli
ing for instan
e, we have to restri
t ourselves

to strings in C(L;R) for whi
h additionally jx

1

u

1

v

1

y

1

j = jx

2

u

2

v

2

y

2

j. The result-

ing language whi
h we
all C

sl

(L;R) again represents the system in the sense

that �

sl

(h) = join(C

sl

(L;R)). In the
ase of (REG;CF) type spli
ing, C

sl

(L;R)

is in general no longer
ontext-free, but
ontext-sensitive. This means that the

upper bound we obtain in this way for S

sl

(REG;CF), i.e., by applying a �nite

state transdu
tion to C

sl

(L;R), is RE rather than CS, as CS is not
losed under

�nite state transdu
tions (in parti
ular it is not
losed under erasing mappings).

However, it turns out that S

sl

(REG;CF) � RE is not the optimal upper

bound that is valid within the Chomsky hierar
hy. Hen
e the appli
ability of

our method fails be
ause of the poor
losure properties of CS, and we have been

looking for a natural family stri
tly in between CF and CS,
losed under �nite

state transdu
tions, and whi
h
ontains the languages C

�

(L;R) for the spli
ing

types � we will
onsider. Su
h a family exists, and we dis
uss its
hara
teristi
s

in the next subse
tion.

3.2 Valen
e grammars

Let k � 1. We use Z

k

to denote the set of k-dimensional ve
tors over the integers,

and the ve
tor with all
omponents zero is written as 0.

A
ontext-free valen
e grammar over Z

k

is a
ontext-free grammar in whi
h

every produ
tion is assigned a ve
tor from Z

k

, the valen
e of the produ
tion.

A string belongs to the language of the grammar if it is derived in the usual,

ontext-free, fashion, while additionally the valen
es of the produ
tions used add

up to zero.

Formally, su
h a grammar is a
onstru
t G = (�;�;R; S), where � is the

alphabet, � � � is the terminal alphabet, S 2 � is the axiom, and R is a �nite

5

set of rules, ea
h of whi
h is of the form [�; r ℄, where � 2 (� � �) � �

�

is a

ontext-free produ
tion, and r 2 Z

k

is its asso
iated valen
e.

For x; y 2 �

�

and v 2 Z

k

we write (x;v))

G

(y;v + r) if there exist a rule

[A! z; r ℄ and x

1

; x

2

2 �

�

, su
h that x = x

1

Ax

2

and y = x

1

zx

2

. The language

generated by G equals L(G) = f w 2 �

�

j (S;0))

�

(w;0) g.

The resulting family of valen
e languages over Z

k

is denoted by CF(Z

k

).

Valen
e grammars were introdu
ed in [P�au80℄. A good starting point for learning

of their properties and for pointers to re
ent literature is the paper [FS00℄,

presented as extended abstra
t in [FS97℄.

Example 3. (1) Consider the valen
e grammar G

1

over Z

2

, whi
h has rules

[S ! aS; (+1;+1) ℄, [S ! bS; (�1; 0) ℄, [S !
S; (0;�1) ℄, and [S ! �; (0; 0) ℄,

where S is the axiom, and a; b;
 are terminal symbols. Then L(G

1

) = f w 2

fa; b;
g

�

j #

a

(w) = #

b

(w) = #

(w) g, as the �rst
omponent of the valen
e

for
es #

a

(w) = #

b

(w), while #

a

(w) = #

(w) be
ause of the se
ond
omponent.

This is in fa
t a right-linear valen
e grammar.

(2) The same language
an be obtained by a valen
e grammar over Z

1

hoos-

ing rules [S ! SS; (0) ℄, [S ! aSb; (+1) ℄, [S ! bSa; (+1) ℄, [S !
S; (�1) ℄, and

[S ! �; (0) ℄.

Note that this is essentially a
ontext-free grammar for the language f w 2

fa; b;
g

�

j #

a

(w) = #

b

(w) g, augmented with an additional
ounter to
ompare

the number of
's to the numbers of a's and b's. ut

The right-linear valen
e grammars are a formalism equivalent to the blind

ounter automata of Greiba
h [Gre78℄; these are �nite state automata equipped

with additional
ounters, ea
h of whi
h
an be in
remented and de
remented

independently. This storage is \blind" as the
ounters
annot be tested for zero

during the
omputation, ex
ept impli
itly at the end, as one only
onsiders

omputations that lead from the initial state with empty
ounters to an a

epting

state with empty
ounters.

The
ontext-free valen
e languages form a hierar
hy within CS. Ea
h CF(Z

k

)

has very
onvenient
losure properties; it is in fa
t a full semi-AFL.

Proposition 4. Let k � 1. CF(Z

k

) is
losed under union, homomorphisms,

inverse homomorphisms, and interse
tion with regular languages. Consequently

CF(Z

k

) is
losed under �nite state transdu
tions.

The
losure under interse
tion with regular languages
an be generalized as

follows: the interse
tion of a
ontext-free valen
e language over Z

k

with a right-

linear valen
e language over Z

`

is a
ontext-free valen
e language over Z

k+`

. We

will use this fa
t in the sequel, in parti
ular for k = 0, i.e., the interse
tion of

a
ontext-free language and a right-linear valen
e language over Z

`

belongs to

CF(Z

`

).

We end by giving two more examples of right-linear valen
e languages whi
h

are essential for our
onsiderations.

Example 5. Let � be an alphabet, and let #; $ be two symbols not in �.

6

(1) Consider D

sl

= f x

1

#y

1

$x

2

#y

2

j x

1

; y

1

; x

2

; y

2

2 �

�

; jx

1

y

1

j = jx

2

y

2

j g. It is

generated by a right-linear valen
e grammar over Z

1

, with axiom S

0

, and the

following rules. Here a ranges over �.

[S

0

! aS

0

; (+1) ℄, [S

0

! #S

1

; (0) ℄,

[S

1

! aS

1

; (+1) ℄, [S

1

! $S

2

; (0) ℄,

[S

2

! aS

2

; (�1) ℄, [S

2

! #S

3

; (0) ℄, and

[S

3

! aS

3

; (�1) ℄, [S

3

! �; (0) ℄

(2) D

in

= f x

1

#y

1

$x

2

#y

2

j x

1

; y

1

; x

2

; y

2

2 �

�

; jx

1

j > jx

2

j and jy

2

j > jy

1

j g is

generated by the right-linear valen
e grammar over Z

2

, with axiom S

0

, and the

following rules; again, a ranges over �.

[S

0

! aS

0

; (+1; 0) ℄, [S

0

! aS

0

; (0; 0) ℄, [S

0

! #S

1

; (0; 0) ℄,

[S

1

! aS

1

; (0;�1) ℄, [S

1

! $S

2

; (0; 0) ℄,

[S

2

! aS

2

; (�1; 0) ℄, [S

2

! #S

3

; (0; 0) ℄, and

[S

3

! aS

3

; (0;+1) ℄, [S

3

! aS

3

; (0; 0) ℄, [S

3

! �; (�1;�1) ℄.

Observe that we have inequality jx

1

j � jx

2

j rather than equality be
ause symbols

in the �rst segment do not have to be
ounted on the (�rst)
ounter as there is

an alternative rule. The stri
tness of the inequality is for
ed by de
reasing both

ounters in the �nal rule. ut

4 Same-length spli
ing

We restri
t spli
ing to
ases where both inputs have the same length, i.e., mode

� = sl. Pre
ise upper bounds within the Chomsky hierar
hy are missing for

S

sl

(F

1

;F

2

) when (1) F

1

= REG and F

2

= LIN;CF (two
ases), and when (2)

F

1

= LIN;CF and F

2

= FIN;REG (four
ases).

All these families
ontain a non-
ontext-free language. For S

sl

(REG; LIN) this

was shown in [KPS96, Lemma 8℄; for S

sl

(LIN;FIN) this follows from the fa
t that

one may
losely simulate the operation of doubling using spli
ing with �nite rules,

f. Lemma 3 in [PRS98℄, obtaining from L the language double(L) = fxx j x 2

Lg.

We give an expli
it example for the latter family S

sl

(LIN;FIN).

Example 6. Let h = (fa; b; dg; L;R) be the spli
ing system of (LIN,FIN) type

de�ned by

L = fa

n

b

n

d j n � 1g [fd a

n

b

n

j n � 1g

R = f (b; d; d; a) g

The form of the rule
auses the �rst argument of ea
h spli
ing to be of the

form a

k

b

k

d, and the se
ond argument of the form d a

j

b

j

, for some k; j � 1.

Moreover, if we
onsider same-length spli
ing, we should have k = j. Then

(a

k

b

k

j d ; d j a

k

b

k

) `

sl

a

k

b

k

a

k

b

k

, using the only spli
ing rule in R. Consequently

�

sl

(h) = fa

n

b

n

a

n

b

n

j n � 1g

whi
h is not
ontext-free. ut

7

We prove that in all six open
ases the same-length spli
ing languages are

ontext-free valen
e languages over Z

1

and thus
ontext-sensitive.

Theorem 7. S

sl

(REG;CF) � CF(Z

1

) and S

sl

(CF;REG) � CF(Z

1

).

Proof. Let h = (V; L;R) be a spli
ing system. As des
ribed before, the language

C(L;R)
odes the spli
ing ingredients in the free
ase, and
an be used to obtain

upper bounds. For the (REG,CF) and (CF,REG) types of spli
ing we have argued

that C(L;R) is a
ontext-free language, see Lemma 2.

To extend the equality �

f

(h) = join(C(L;R)) to same-length spli
ing we

restri
t C(L;R) to pairs of initial strings having the same length: �

sl

(h) =

join(C(L;R) \D

sl

), where D

sl

= f x

1

#y

1

$x

2

#y

2

j x

1

; y

1

; x

2

; y

2

2 �

�

; jx

1

y

1

j =

jx

2

y

2

j g.

Note that D

sl

an be generated by a right-linear valen
e grammar over Z

1

,

f. Example 5(1), and
onsequently C(L;R)\D

sl

is an element of CF(Z

1

). This

implies �

sl

(h) 2 CF(Z

1

), as CF(Z

1

) is
losed under �nite state transdu
tions,

Proposition 4. ut

We immediately have a minimal upper bound within the Chomsky hierar
hy

for the six open
ases.

Corollary 8. (1) S

sl

(F

1

;F

2

) � CS for F

1

= REG and F

2

= LIN;CF.

(2) S

sl

(F

1

;F

2

) � CS for F

1

= LIN;CF and F

2

= FIN;REG.

5 Length-in
reasing (de
reasing) spli
ing

We
onsider length-in
reasing spli
ing (mode � = in) and length-de
reasing

spli
ing (� = de). Although the spe
i�
ations of these modes are rather sim-

ilar, it must be observed that their power is not always equal, for instan
e,

S

in

(CF;CF) � CS, while S

de

(CF;CF)� CS 6= ?.

In [KPS96, p.238℄ the question is raised whether S

�

(REG; LIN), � = in; de,

ontains a non-
ontext-free language. Our Example 1 shows there is indeed su
h

a language for in
reasing mode, for de
reasing mode there is a simple variant

(adapting an example given in the proof of Lemma 10 in [KPS96℄).

Example 9. Repla
e the initial language of Example 1 by

L

0

=
b

�

a

�

b

�

 [

�

b

�

and let h

0

= (fa; b;
g; L

0

; R) with R as in Example 1. Now the only possible

length-de
reasing spli
ings are (
b

m

a

n

j b

n

 ;

`

 j b

m

) `

de

b

m

a

n

b

m

, where

1 +m+ n < `+ 1 and m+ 1 < n+ 1, thus

�

de

(h

0

) = f
b

m

a

n

b

m

 j m;n � 0 and m < ng

whi
h is not in CF. ut

8

Consequently we have the following result.

Lemma 10. S

�

(REG; LIN)� CF 6= ? for � = in; de.

In fa
t, this already solves the minimal upper bounds for S

in

(REG; LIN) and

S

in

(REG;CF) within the Chomsky hierar
hy, as the in
lusion S

in

(CS;CS) � CS

is known (Lemma 3 of [KPS96℄).

For length-de
reasing spli
ing we do not have su
h a
onvenient result. To

remedy this, we prove that both S

de

(REG;CF) and S

de

(CF;REG) are subfamilies

of CF(Z

2

), similar to the
ase of same-length spli
ing. For S

de

(REG;CF) this an-

swers the question whether the smallest upper bound in the Chomsky hierar
hy

is CS or RE, whereas for S

de

(CF;REG) this improves the known upper bound

CS. The argumentation works for in
reasing mode as well, so also in that
ase

we obtain improved upper bounds within CS.

Theorem 11. S

�

(REG;CF) � CF(Z

2

) and S

�

(CF;REG) � CF(Z

2

), for � =

in; de.

Proof. Let h = (V; L;R) be a spli
ing system. Consider the language C(L;R)

onstru
ted from L and R as before. It is
ontext-free for spli
ing of (REG;CF)

type or of (CF;REG) type, see Lemma 2. We now
onsider in spli
ing, argumen-

tation for de spli
ing is
ompletely symmetri
.

It is easily seen that �

in

(h) = join(C(L;R) \ D

in

), where D

in

is the lan-

guage f x

1

#y

1

$x

2

#y

2

j x

1

; y

1

; x

2

; y

2

2 �

�

; jx

1

j > jx

2

j and jy

2

j > jy

1

j g from

Example 5(2).

As C(L;R) is
ontext-free, and D

in

is a right-linear valen
e language over Z

2

,

we
on
lude that �

in

(h) is in CF(Z

2

) using
losure properties of these families.

ut

Summarizing, we have found minimal upper bounds for both length-in
reasing

and length-de
reasing spli
ing within the Chomsky hierar
hy.

Corollary 12. For � = in; de one has

(1) S

�

(REG;F

2

) � CS for F

2

= LIN;CF.

(2) S

�

(F

1

;F

2

) � CS for F

1

= LIN;CF and F

2

= FIN;REG.

6 Self spli
ing

As self spli
ing takes a single string as both arguments for the spli
ing operation,

the two spli
ing sites as des
ribed by the rules have to be lo
ated on that same

string. As there are two possible orderings for the spli
ing sites for the �rst and

se
ond argument of the operation, the spli
ing may be in one of the following

fashions.

First, we may spli
e a

ording to the fashion (x j yz; xy j z) ` xz, i.e., the �rst

site o

urs before the se
ond site. This means that a substring is removed from

the input. In parti
ular, when the se
ond site o

urs at the end of the string it is

9

possible to model the quotient operation on languages,
f. Lemma 6 in [KPS96℄,

as follows. Consider languages L

1

; L

2

, and let L = L

1

d, where d is a new symbol.

Furthermore, let R = f (�; yd; d; �) j y 2 L

2

g. Then �

sf

(V; L;R) = f x j xy 2

L

1

for some y 2 L

2

g = L

1

=L

2

. As a
onsequen
e S

sf

(LIN; LIN) � CS 6= ?. In

fa
t, this
onstru
tion also works for the modes free spli
ing, length-de
reasing

spli
ing, and same-length spli
ing.

Se
ond, we may spli
e a

ording to the fashion (xy j z; x j yz) ` xyyz, i.e.,

the �rst site o

urs after the se
ond site. This means that a substring in the

input is doubled. In parti
ular, it is possible to model the doubling operation

on languages,
f. Lemma 3 in [PRS98℄, as follows. Consider a language L

1

, and

let L =
L

1

d, where
; d are new symbols. Furthermore, let R = f (�; d;
; �) g.

Then �

sf

(V; L;R) =
 � double(L

1

) � d =
 � f xx j x 2 L

1

g � d. As a
onsequen
e

S

sf

(REG;FIN) � CF 6= ?. In fa
t, this
onstru
tion is a variant of Example 6,

where doubling was obtained for same-length spli
ing.

We meet these operations of quotient and doubling later in this se
tion, in

Lemma 15 and Theorem 13.

The present state of knowledge
on
erning self spli
ing seems to be summa-

rized by the two earlier
on
lusions S

sf

(LIN; LIN) 6� CS and S

sf

(REG;FIN) 6� CF,

and the in
lusion S

sf

(REG;REG) � CS ([KPS96℄, remark following Lemma 7).

We extend this latter in
lusion to a larger family of initial languages. To this

end we will need deterministi
 two-way �nite state transdu
tions, i.e., relations

realized by deterministi
 �nite state automata with a two-way input tape and a

one-way output tape. These ma
hines are
apable of writing a doubled
opy of

their input, whi
h makes them suitable to simulate self spli
ing. We use 2DGSM

to denote the family of deterministi
 two-way �nite state transdu
tions, and, in

parti
ular, 2DGSM(CF) denotes the family of languages obtained from CF by

applying these transdu
tions

1

.

Theorem 13. S

sf

(CF;REG) � 2DGSM(CF)

Proof. Let h = (V; L;R) be a spli
ing system with L 2 CF and Z(R) 2 REG.

As explained in the introdu
tion to this se
tion, �

sf

(h)
an be des
ribed as

L

xz

[L

xyyz

, where

L

xz

=f xz j xyz 2 L with u

1

2 Suf (x); v

1

2 Pref (yz);

u

2

2 Suf (xy); v

2

2 Pref (z) for a (u

1

; v

1

; u

2

; v

2

) 2 R g and

L

xyyx

=f xyyz j xyz 2 L with u

1

2 Suf (xy); v

1

2 Pref (z);

u

2

2 Suf (x); v

2

2 Pref (yz) for a (u

1

; v

1

; u

2

; v

2

) 2 R g

Let 1 and 2 be symbols not in V ; we will use these symbols to mark the two

spli
ing sites in a string, similarly to the symbol # in the strings of C(L;R). So,

let

L

12

=f x1y2z j xyz 2 L with u

1

2 Suf (x); v

1

2 Pref (yz);

1

A generalized sequential ma
hine, gsm, di�ers from a �nite state transdu
er in that

it is not allowed to read �. For two-way ma
hines the two notions are equivalent.

10

u

2

2 Suf (xy); v

2

2 Pref (z) for a (u

1

; v

1

; u

2

; v

2

) 2 R g and

L

21

=f x2y1z j xyz 2 L with u

1

2 Suf (xy); v

1

2 Pref (z);

u

2

2 Suf (x); v

2

2 Pref (yz) for a (u

1

; v

1

; u

2

; v

2

) 2 R g

Note that L

12

[L

21

an be obtained from L (and R) by a (nondeterministi
,

one-way) �nite state transdu
tion based on Z(R). The transdu
er has to sear
h

for the two
utting points simultaneously, be
ause the spli
ing sites u

1

v

1

and

u

2

v

2

an overlap and the transdu
er is not allowed to go ba
k on its input.

As CF is
losed under �nite state transdu
tions, L

12

[L

21

belongs to CF.

It is now straightforward to design a (deterministi
) two-way �nite state

transdu
tion that maps L

12

[L

21

onto L

xz

[L

xyyz

, as follows. It
opies its input

from left to right until it arrives at the symbol 1. At that moment the ma
hine

moves to the symbol 2 without
opying (forward or ba
kward depending on

whether the 2 was en
ountered before �nding the 1). At the symbol 2 it resumes

a left to right s
an
opying the input, stopping at the right end of the tape. ut

As stated in [EY71, Theorem 3.4℄, 2DGSM(CF) is stri
tly
ontained in the

family of
ontext-sensitive languages. Hen
e we obtain an upper bound as re-

quired.

Corollary 14. S

sf

(F

1

;F

2

) � CS for F

1

= LIN;CF and F

2

= FIN;REG.

The
onstru
tion for doubling dis
ussed in the introdu
tion of this se
tion

implies that also self spli
ings of (REG; LIN) type
an yield languages outside

CF. We show that they
an even de�ne non-
ontext-sensitive languages, i.e., we

prove that the smallest upper bound in the Chomsky hierar
hy of S

sf

(REG;CF)

and S

sf

(REG; LIN) is RE.

For
ontext-free rules this is relatively easy, as we
an dire
tly simulate the

quotient operation on linear languages using
ontext-free spli
ing of regular lan-

guages. The result then follows, as every RE language
an be written as the

quotient of two linear languages ([LLR85℄).

Lemma 15. Let L

1

; L

2

be linear languages over � and let 1 be a symbol not in

�. Then 1L

1

=L

2

2 S

sf

(REG;CF).

Proof. Assume that L

1

and L

2

are linear languages with L

1

; L

2

� �

�

for some

alphabet �. Let 1; 2; 3 62 � be new symbols, and de�ne h = (� [f1; 2; 3g; L;R)

by

L = 1�

�

2�

�

3

R = f (1u; 2 v 3; 2w 3; �) j uv 2 L

1

; w 2 L

2

g

Sin
e LIN is
losed under
on
atenation with symbols and under shu�e with

strings (but not under
on
atenation) we have Z(R) = f1u#2v3$ j uv 2 L

1

g �

f2w3# j w 2 L

2

g 2 LIN � LIN � CF.

We start by proving that �

sf

(h) � 1L

1

=L

2

. Let x 2 L and (x; x) `

r

z for a

rule r = (1u; 2v3; 2w3; �). Then, be
ause of the form of the axioms and the �rst

11

0 x# 1 x

1

: : : x

k

x

k+1

y

R

`

: : : y

R

1

y

R

0

2 $ 1 z

1

z

2

: : : z

`+1

x

R

k

: : : x

R

1

x

R

0

2 #

�

x

0

= aq

0

xb

�

�

R

�

�

R

�

�

y

0

` z

1

�

�

y

1

` z

2

�

Æ

y

`

` z

`+1

Fig. 1. The stru
ture of strings in K

M

.

spli
ing site we must have x = 1u2v3. Moreover we have 2v3 = 2w3, i.e., v = w,

be
ause we are
onsidering self spli
ing. Clearly (1u j 2v3 ; 1u2v3 j �) `

sf

r

z =

1u 2 1L

1

=L

2

, sin
e uv 2 L

1

and v = w 2 L

2

by
onstru
tion.

Now take z 2 L

1

=L

2

, i.e., there is a y 2 L

2

su
h that zy 2 L

1

. A

ording to

the de�nition of h there is a spli
ing rule r = (1z; 2y3; 2y3; �) 2 R and an axiom

1z2y3, and so (1z j 2y3 ; 1z2y3 j �) `

r

1z 2 �

sf

(h). ut

Corollary 16. Let K be a language over � and let 1 be a symbol not in �. If

K 2 RE, then 1K 2 S

sf

(REG;CF).

Sin
e CS is
losed under quotient with symbols, 1K 2 CS would imply K 2

CS. Consequently K 2 RE� CS implies 1K 2 RE� CS, thus the smallest upper

bound in the Chomsky hierar
hy of S

sf

(REG;CF) is RE, as formulated in the

following theorem.

Theorem 17. S

sf

(REG;CF)� CS 6= ?.

The same result holds for S

sf

(REG; LIN), i.e., we may repla
e the set of rules

R for whi
h Z(R) 2 LIN � LIN by a set R with Z(R) 2 LIN,
f. the proof of

Lemma 15. We
annot do this dire
tly, as in that proof. Instead, we obtain

this by re
onsidering the proof in [LLR85℄ that every re
ursively enumerable

language is the quotient of two linear languages. The main idea is that single

steps of a Turing ma
hine
an be
aptured by a linear grammar, provided that

we represent one of the two
on�gurations involved by its mirror image. It is

also possible to represent a series of steps of the Turing ma
hine, steps whi
h are

unrelated however, as we
annot join them into a
omputation without further

tri
ks (like interse
tion, quotient, or . . . self spli
ing).

We des
ribe now our approa
h to
ode series of Turing ma
hine
omputa-

tional steps. Several markers are in
luded in the language in order to use it in

the spli
ing pro
ess.

LetM be a Turing ma
hine with state set Q, initial state q

0

, �nal state f and

tape alphabet � . We denote the
on�gurations of M by strings in
onf(M) =

12

a�

�

Q�

�

b, where a;b are spe
ial symbols used to delimit the strings. The step

relation of M is de�ned over
onf(M), and is denoted by `

M

. We assume M

re
ognizes strings x over � by starting in the initial
on�guration a q

0

xb and

rea
hing a �nal
on�guration in a�

�

f �

�

b.

Let 0; 1; 2;#; $ be symbols not in �. Using w

R

to denote the mirror image

of string w, de�ne the language K

M

to
onsist of the words

0 x# 1 x

1

: : : x

k

x

k+1

y

R

`

: : : y

R

1

y

R

0

2 $ 1 z

1

z

2

: : : z

`+1

x

R

k

: : : x

R

1

x

R

0

2 #

where

x 2 �

�

, x

0

= a q

0

xb, x

k+1

2 a�

�

f �

�

b,

x

0

; : : : ; x

k+1

; y

0

; : : : ; y

`

; z

1

; : : : ; z

`+1

2
onf(M), for k; ` � 0, and

y

i

`

M

z

i+1

for 0 � i � `.

The stru
ture of the strings in K

M

is illustrated in Figure 1. A single step of

a Turing ma
hine indu
es just a lo
al
hange in a
on�guration. It is an easy

exer
ise to show that K

M

is linear language, a variant of the language used in

[LLR85℄.

Lemma 18. For ea
h Turing ma
hine M, K

M

2 LIN.

Theorem 19. Let K be a language over � and let 0 be a symbol not in �. If

K 2 RE, then 0K 2 S

sf

(REG; LIN).

Proof. Let K = L(M) for a deterministi
 Turing ma
hine M, and let K

M

be

as de�ned above. Now �

sf

(h) = 0K for the spli
ing system h = (V; L;R) de�ned

by

V = � [f0; 1; 2g

L = 0�

�

1 (� [fa;bg)

�

2

Z(R) = K

M

Using Lemma 18, we observe that the system h is of (REG; LIN) type. The spli
ing

rules of h are of the form

(0 x ; 1 x

1

: : : x

k+1

y

R

`

: : : y

R

1

y

R

0

2 ; 1 z

1

: : : z

`+1

x

R

k

: : : x

R

1

x

R

0

2 ; �)

with x

1

; : : : ; x

k+1

; y

0

; : : : ; y

`

; z

1

; : : : ; z

`+1

2
onf(M), x

0

= a q

0

xb and y

i

`

M

z

i+1

for 0 � i � `; x

k+1

is a �nal
on�guration of M.

Be
ause of the form of the initial strings and of the rules, the �rst argument

of the spli
ing must be of the form 0 x 1 x

1

: : : x

k+1

y

R

`

: : : y

R

1

y

R

0

2. Sin
e we

onsider self spli
ing, this is also the se
ond argument. The se
ond spli
ing site

now enfor
es the equality

x

1

: : : x

k+1

y

R

`

: : : y

R

1

y

R

0

= z

1

: : : z

`+1

x

R

k

: : : x

R

1

x

R

0

;

and the marking with a and b ensures that k = `, x

i

= z

i

for 1 � i � k + 1

and y

j

= x

j

for 0 � j � k. Hen
e x

0

= a q

0

xb is the initial
on�guration of M

for the input word x, x

i

= y

i

`

M

z

i+1

= x

i+1

for 0 � i � k, and x

k+1

is the

13

FIN REG LIN CF FIN REG LIN CF FIN REG LIN CF

f REG REG LIN CF CF CF RE RE CF CF RE RE

in REG REG CF(Z

2

) CF(Z

2

) CF(Z

2

) CF(Z

2

) CS CS CF(Z

2

) CF(Z

2

) CS CS

de REG REG CF(Z

2

) CF(Z

2

) CF(Z

2

) CF(Z

2

) RE RE CF(Z

2

) CF(Z

2

) RE RE

sl LIN LIN CF(Z

1

) CF(Z

1

) CF(Z

1

) CF(Z

1

) RE RE CF(Z

1

) CF(Z

1

) RE RE

sf 2(CF) 2(CF) RE RE 2(CF) 2(CF) RE RE 2(CF) 2(CF) RE RE

F

1

= REG F

1

= LIN F

1

= CF

Table 2. Updated upper bounds for S

�

(F

1

;F

2

). We use 2(CF) as shorthand for

2DGSM(CF).

�nal
on�guration of M for x. Thus x

0

`

M

x

1

`

M

: : : `

M

x

k+1

is an a

epting

on�guration sequen
e for x. Consequently, if 0x1x

1

: : : x

k+1

y

R

`

: : : y

R

1

y

R

0

2 spli
es

with itself to give 0x, then x 2 L(M).

The reverse in
lusion follows along the same lines (read ba
kwards). ut

Again we obtain a negative result
on
erning the upper bound CS.

Theorem 20. S

sf

(REG; LIN)� CS 6= ?.

7 Con
lusion

We have �lled the open spots in Table 1, and improved some of the known CS

upper bounds given there. In Table 2 we summarize the results on the upper

bounds of the four modes that we
onsidered. Note that not all bounds given

in this summary meet the original goal set in [PRS98,KPS96℄, to give minimal

upper bounds within the Chomsky hierar
hy. To get these, repla
e the items

CF(Z

1

), CF(Z

2

), and 2DGSM(CF) by CS.

We now have a full insight in the
omplexity of the restri
ted spli
ing modes

we have
onsidered. This pi
ture is somewhat surprising. If we order the spli
ing

modes a

ording to their upper bounds, we obtain di�erent out
omes depending

on the
omplexity of the input languages and the rules. We list a few represen-

tative examples by
omparing the upper bounds in the Chomsky hierar
hy.

(REG;REG) f; in; de � sl � sf

(REG;CF) f � sl; in; de � sf

(CF;REG) f � sl; in; de; sf

(CF;CF) in � f; de; sl; sf

The pi
ture is more
omplex in the
ase we
onsider the families CF(Z

k

) and

2DGSM(CF) instead of CS. We postulate here that CF(Z

k

) and 2DGSM(CF) are

in
omparable.

Apart from the fa
t that self spli
ing seems to be the most
omplex operation

for all types of input language and rules, it seems hard to make general observa-

tions on the relative power of restri
ted spli
ing modes. One does note that the

14

tables for linear and
ontext-free initial languages
oin
ide. However, we
on-

je
ture that, although these upper bounds are identi
al, the family S

�

(LIN;F)

is stri
tly in
luded in S

�

(CF;F). Similarly, we observe that for a �xed family

of initial languages, the upper bounds obtained for FIN and REG rules are the

same, and also the upper bounds obtained for LIN and CF rules are the same

(with the ex
eption of free spli
ing). For FIN and REG rules we have obtained

some eviden
e that the families S

�

(F ;FIN) and S

�

(F ;REG) are equal for sev-

eral modes of spli
ing, see [DHvV00℄ and the forth
oming thesis of the se
ond

author.

Referen
es

[CH91℄ K. Culik II, T. Harju. Spli
ing semigroups of dominoes and DNA, Dis
rete

Applied Mathemati
s, 31:162{177, 1991.

[DHvV00℄ R. Dassen, H.J. Hoogeboom, N. van Vugt. A Chara
terization of non-

iterated spli
ing with regular rules. In: Where Mathemati
s, Computer S
ien
e

and Biology Meet (C. Martin-Vide, V. Mitrana, eds.), Kluwer A
ademi
 Publish-

ers, 2000, pages 319-327.

[EY71℄ R.W. Ehri
h, S.S. Yau. Two-way sequential transdu
tions and sta
k automata.

Information and Control 18:404{446, 1971.

[FS97℄ H. Fernau and R. Stiebe. Regulation by valen
es. In: B. Rovan (ed.) Pro
eed-

ings of MFCS'97, Le
ture Notes in Computer S
ien
e, vol. 1295, pages 239-248.

Springer-Verlag, 1997.

[FS00℄ H. Fernau, R. Stiebe. Sequential grammars and automata with valen
es. Te
h-

ni
al Report WSI-2000-25, Wilhelm- S
hi
kard-Institut f�ur Informatik, Universit�at

T�ubingen, 2000. Submitted. Available via

http://www.informatik.uni-tuebingen.de/bibliothek/wsi-reports.html

[Gre78℄ S.A. Greiba
h. Remarks on blind and partially blind one-way multi
ounter

ma
hines. Theoreti
al Computer S
ien
e 7 (1978) 311- 324.

[HPP97℄ T. Head, Gh. P�aun, D. Pixton. Language theory and mole
ular geneti
s :

generative me
hanisms suggested by DNA re
ombination. In: Handbook of Formal

Languages (G. Rozenberg, A. Salomaa, eds.), volume 2, Springer-Verlag, 1997.

[HU79℄ J.E. Hop
roft, J.D. Ullman. Introdu
tion to automata theory, languages, and

omputation, Addison-Wesley, 1979.

[HvV98℄ H.J. Hoogeboom, N. van Vugt. The power of H systems: does representation

matter? Computing with bio-mole
ules: theory and experiments (G. P�aun, ed.),

Springer-Verlag, Singapore, 255{268, 1998.

[KPS96℄ L. Kari, G. P�aun, A. Salomaa. The power of restri
ted spli
ing with rules from

a regular language, Journal of Universal Computer S
ien
e, 2(4):224-240, 1996.

[LLR85℄ M. Latteux, B. Leguy, B. Ratoandromanana. The family of one-
ounter lan-

guages is
losed under quotient, A
ta Informati
a 22:579{588, 1985.

[P�au80℄ G. P�aun. A new generative devi
e: valen
e grammars. Revue Roumaine de

Math�ematiques Pures et Appliqu�ees 6 (1980) 911-924.

[PRS95℄ Gh. P�aun, G. Rozenberg, A. Salomaa. Computing by spli
ing, Theoreti
al

Computer S
ien
e 168:321{336, 1996.

[PRS96℄ Gh. P�aun, G. Rozenberg, A. Salomaa. Restri
ted use of the spli
ing operation,

International Journal of Computer Mathemati
s 60:17{32, 1996.

[PRS98℄ Gh. P�aun, G. Rozenberg, A. Salomaa. DNA
omputing. New
omputing

paradigms, Springer-Verlag, 1998.

15

