Upper Bounds for Restricted Splicing*

Hendrik Jan Hoogeboom and Nike van Vugt

Universiteit Leiden, Institute of Advanced Computer Science
P.O. Box 9512, 2300 RA Leiden, The Netherlands

Abstract. We determine or improve upper bounds for non-iterated splic-
ing in length-increasing, length-decreasing, same-length and self splicing
mode.

1 Introduction

The cutting and recombination of DNA with the help of restriction enzymes has
been abstracted as the splicing operation for formal languages, see for instance
the introduction by Head, Paun, and Pixton [HPP97], or the relevant chapters
in the book of Paun, Rozenberg, and Salomaa on computational models inspired
by DNA computing [PRS98].

The splicing operation takes two strings, and cuts them in a position specified
by a splicing rule. Then these strings are recombined after exchanging their post-
fixes (the parts of the strings following the cut). This operation can then be
studied within the framework of formal language theory, in order to estimate
its computational power. One may study its effect as a closure operation on
language families, or one may study its power when applied iteratively as if it
were a single step of a computing device. Most famous in this latter area is the
result that the family of regular languages is closed under splicing (using a finite
set of rules) [CH91]. In fact, for the Chomsky hierarchy the power of splicing has
been extensively investigated, and optimal upper bounds within the hierarchy
have been established (cf. [HPP97], or [PRS98]).

Here we concentrate on the non-iterative, single, application of the splicing
operation applied to families of the Chomsky hierachy. What is open here is
the power of some modes of restricted splicing, i.e., splicing where there are
additional constraints on the two strings involved, as inspired by [PRS96,KPS96].
For instance, in same-length splicing both strings are required to be of the same
length, and in self splicing both strings are assumed to be identical.

In particular, it is left open whether non-iterated splicing in one of the
modes length-decreasing, same-length, and self splicing, stays within the context-
sensitive languages when applied to regular languages, using context-free sets of
rules. We will show that this is indeed the case for same-length and length-
decreasing mode (Corollaries 8(1) and 12(1)), whereas self splicing generates
every recursively enumarable language (up to a single marker, Corollary 16).

* July 2001, LTACS Technical Report 01-05, www.liacs.nl, submitted.

Moreover, we show that applying either of these splicing modes to context-
free languages with finite or regular sets of rules, results in a context-sensitive
language. This was open for same-length splicing (Corollary 8(2)) and self splic-
ing (Corollary 14).

After defining the operation of splicing in Section 2, we explain our basic
tools in Section 3. In the next three sections we discuss same-length splicing,
length-increasing (and length-decreasing) splicing, and self splicing, respectively.

2 Splicing

A splicing rule over an alphabet V is an element of (V*)*. For such a rule
r = (u1,v1,us,vs) and strings z,y,z € V* we write
(z,y) bFr 2z iff . = 21u1v1y1, Y = T2usvays and
2z = U VY2, for some x1,y1,z2,y2 € V™.

We say that the string z is obtained by splicing the strings x and y using the
rule 7.

I :Ij'l 1 ul 1 Ul 1 yl]

—_

I T 1
T2 U2 U2 Y2

A splicing system (or H system) is a triple h = (V,L,R) where V is an
alphabet, I C V* is the initial language and R C (V*)* is a set of splicing rules,
the splicing relation.

To estimate the complexity of sets of rules using the familiar Chomsky
hierarchy as a yard stick, splicing rules are commonly represented as strings
rather than 4-tuples: a splicing rule r = (u1,v1,us,v2) is given as the string
Z(r) = uiF#vi1Sus#vs (# and $ are special symbols not in V), i.e., Z is a map-
ping from (V*)* to V*#V*$V*#V*, that gives a string representation of each
splicing rule. We extend Z in the natural way to a mapping from sets of splicing
rules to languages. In agreement with this policy, we usually write, for instance,
“regular set of splicing rules” when we mean a set of splicing rules of which
the Z-representation is a regular language. It was argued in [HvV98] that this
representation is quite robust: most of the other, related, representations do not
change the position in the Chomsky hierarchy of the families resulting from
(uniterated) splicing F;-languages using Fa-rules.

In this paper we consider the setting where the general splicing operation
(z,y) F, z may only be applied in a certain context. We recall the definitions of
certain types of restricted splicing from [PRS96,KPS96]. We splice in (length-)
increasing mode (in for short) if the length of the resulting string is strictly
greater than the lengths of the two input strings, in (length-) decreasing mode
(de) if the length of the resulting string is strictly smaller than the lengths of

the two input strings, in same-length mode (sl) if the two input strings have the
same length, and in self splicing mode (sf) if the two input strings are equal.
We add free splicing (f) as a synonym for unrestricted splicing. Formally, for a
splicing rule r we use the following relations.

unrestricted
I— 2 and |z| > max{|z|, |y|}

free) (z,y) F
) (z,9)
) I—de z 1ff (x,y) Fr z and |z| < min{|z|, |y|}
) (,y)
(z,y)

(z,y
increasing (z,y
decreasing (z,y
same-length (z,y F, z and |z| = |y

(z,y

self F.zand z =y.

Note that the requirement for length-increasing splicing can be reformulated in
terms of the two input strings = and y, without explicitly mentioning the result
z of the splicing. If we splice x = ziuiv1y1 and y = xousvsy2 using the rule
r = (u1,v1, uz2,v2), it is in increasing mode iff |z1u1| > |T2usz| and |v1y1| < |v2y2l.
There is a similar formulation for length-decreasing splicing.

Let h = (V, L, R) be a splicing system. With the splicing modes given above
we define the (non-iterated splicing) languages

ou(h) ={zeV*|(z,y) F! z for some z,y € Land r € R }
for p € {f,in,de,sl, sf}. Similarly we define the families
Sy (Fi,F) ={ou(h) | h=(V,L,R) with L € F; and Z(R) € F> }.
A splicing system with L € F; and Z(R) € F> is said to be of (Fy,F2) type.
Example 1. Let h = ({a,b,c}, L, R) be the splicing system defined by

L=cb*a"b*c
R={(cb™a",b"c,c,b™c) | m,n >0}

It is of (REG,LIN) type as the initial language L is regular, and the set of rules
is linear: Z(R) = {cb™a"#b"cSc#b™c | m,n > 0}.

The only splicings possible are of the form (¢b™a” | b™c, ¢ | b™c) F cb™a™b™c.
If the splicing has to be done in length-increasing mode, then we must have
m+n+1>1and m+1>n+1, hence

oin(h) = {cb™a"b™c | m,n > 0 and m > n}
which is not a context-free language. O

We only consider F; = REG,LIN,CF and 7> = FIN,REG,LIN,CF, and in
particular we are interested in upper bounds for the families S, (F1,F>) for the
modes p that we consider. Known results are from the papers [PRS98], which
deals with finite sets of rules (72 = FIN) only, and [KPS96], which deals with sets
of rules of arbitrary Chomsky complexity (contradicting its title). We repeat in
Table 1 the parts of Tables 1, 2 and 3 from [KPS96] that summarize the lowest

[[[FINJREG[LIN] CF [[FINJREG]LIN[CF][FIN[REG]|LIN]CF]
7 REG[REG]LIN] CF]| CF | CF [RE|RE]| CF | CF |RE|RE
in|[REG|REG| _ |CF+[[CS | CS [CS|CS[[CS[CS[CS[CS
de||REG|REG| _ |CF+|[CS | CS [RE|RE[[CS | CS [RE|RE
S{[UNJLIN|CF+[[[CF+ RE |RE||CF+ RE [RE
sf[cs|¢s CF+ RE |RE|[|CF+ RE |RE

[7A=REG [A=UN [F=CF]
Table 1. Upper bounds of S, (F1,F2) within the Chomsky hierarchy [KPS96].

upper bounds within the Chomsky hierarchy for the families S, (F1, F2). The
families of initial languages F; are listed in the bottom row, the families of
splicing rules F» are in the top row, repeated for each of the three possible
initial families F;.

For the entries marked with CF+ it is only known that the family contains a
non-context-free language; it is not yet determined whether the smallest upper
bound within the Chomsky hierarchy is CS or RE.

Note that although, for instance, the table contains the same bounds for the
families S5 (REG,FIN) and Sg(REG, REG), this does not necessarily mean that
they are equal: they only have the same upper bound in the Chomsky hierarchy.
The same remark holds for the equality of the tables for 7, = LIN and F; = CF.

3 Basic tools

We present our basic tools. First we define a language that captures both the
initial language and the rules of a splicing system. Second, we recall the notion
of valence grammar, a grammatical device modestly extending the context-free
grammars.

3.1 Representing the system by a language

The open problems indicated in Table 1 involve either a context-free (or even
linear) initial language, and regular (or even finite) splicing rules, or vice versa.
For unrestricted (free) non-iterated splicing the upper bounds for these two cases
are determined in Lemma 3.3 and Lemma 3.6 of [HPP97]. We use the ideas from
the proofs of these two lemma’s to define, for each splicing system h = (V, L, R),
the language C'(L, R) which combines the initial language with the rules.

C(L,R) = { z1ui#viy1$zous#voys | T1uiviys , Tousvays € L
and (u1,v1,us,v2) € R}

This language turns out to be very helpful in determining upper bounds for
(restricted) splicing families. Note that o (h) = join(C(L, R)), where join is the
finite state transduction that erases the two #’s, and everything in between,
from a string in C'(L, R).

To construct C(L,R) from L and R, we proceed as follows. It is straight-
forward to design a (non-deterministic) finite state transduction such that the
language Z(R), representing the rules, is transformed into the language R’ =
{z1u1 Fv1y1 82U H U2y | uiFv1Sus#us € Z(R) and x1,y1,x2,y2 € V*}. Also
using a finite state transduction, the language L' = {z#ySw#z | zy , wz € L}
can be constructed from L - $ - L, the (marked) concatenation of the initial lan-
guage L with itself. Clearly, C(L,R) = L' R'.

Since both REG and CF are closed under finite state transductions and
under concatenation, we either have L' € REG and R’ € CF for splicing of
(REG,CF) type, or L' € CF and R' € REG, for splicing of (CF,REG) type.
Clearly in both cases C(L,R) = L' N R' is a context-free language, and so is
or(h) = join(C(L, R)), proving the (known) upper bounds for (REG,CF) type
and (CF,REG) type splicing.

Lemma 2. Let h = (V, L, R) be a splicing system of (REG, CF) type or (CF, REG)
type. Then the language C(L, R) is context-free.

In the sequel we adapt this strategy to restricted splicing. In that case we
have to put further restrictions on the pair of strings that is spliced. This leads
us to consider particular subsets of the language C(L, R).

In the case of same-length splicing for instance, we have to restrict ourselves
to strings in C'(L, R) for which additionally |ziuiv1y1| = |Z2u202y2|. The result-
ing language which we call Cy (L, R) again represents the system in the sense
that o4 (h) = join(Cs (L, R)). In the case of (REG, CF) type splicing, Cs (L, R)
is in general no longer context-free, but context-sensitive. This means that the
upper bound we obtain in this way for Sg(REG, CF), i.e., by applying a finite
state transduction to Cs(L, R), is RE rather than CS, as CS is not closed under
finite state transductions (in particular it is not closed under erasing mappings).

However, it turns out that Sy (REG,CF) C RE is not the optimal upper
bound that is valid within the Chomsky hierarchy. Hence the applicability of
our method fails because of the poor closure properties of CS, and we have been
looking for a natural family strictly in between CF and CS, closed under finite
state transductions, and which contains the languages C,,(L, R) for the splicing
types p we will consider. Such a family exists, and we discuss its characteristics
in the next subsection.

3.2 Valence grammars

Let k > 1. We use ZF to denote the set of k-dimensional vectors over the integers,
and the vector with all components zero is written as 0.

A context-free valence grammar over Z* is a context-free grammar in which
every production is assigned a vector from ZF*, the valence of the production.
A string belongs to the language of the grammar if it is derived in the usual,
context-free, fashion, while additionally the valences of the productions used add
up to zero.

Formally, such a grammar is a construct G = (X, A, R, S), where X' is the
alphabet, A C X' is the terminal alphabet, S € X is the axiom, and R is a finite

set of rules, each of which is of the form [r,r], where 7 € (¥ — A) x ¥* is a
context-free production, and r € Z* is its associated valence.

For z,y € ¥* and v € Z* we write (z,v) =¢ (y,v + r) if there exist a rule
[A = z,7] and 21,22 € X*, such that © = 21 Axs and y = x1222. The language
generated by G equals L(G) = {w € A* | (S,0) =* (w,0) }.

The resulting family of valence languages over ZF is denoted by CF(Z*).
Valence grammars were introduced in [Pau80]. A good starting point for learning
of their properties and for pointers to recent literature is the paper [FS00],
presented as extended abstract in [FS97].

Example 3. (1) Consider the valence grammar G over Z2, which has rules
[S = aS,(+1,+41)], [S = bS,(-1,0)], [S = ¢S,(0,=1)], and [S — A, (0,0)],
where S is the axiom, and a,b, ¢ are terminal symbols. Then L(G;) = { w €
{a,b,c}* | #a(w) = #s(w) = #.(w) }, as the first component of the valence
forces #,(w) = #s(w), while #,(w) = #.(w) because of the second component.
This is in fact a right-linear valence grammar.

(2) The same language can be obtained by a valence grammar over Z' choos-
ing rules [S — SS,(0)], [S — aSb, (+1)], [S = bSa, (+1)], [S — ¢S, (-1)], and
[S— X (0)].

Note that this is essentially a context-free grammar for the language { w €
{a,b,c}* | #4(w) = #,(w) }, augmented with an additional counter to compare
the number of ¢’s to the numbers of a’s and b’s. O

The right-linear valence grammars are a formalism equivalent to the blind
counter automata of Greibach [Gre78]; these are finite state automata equipped
with additional counters, each of which can be incremented and decremented
independently. This storage is “blind” as the counters cannot be tested for zero
during the computation, except implicitly at the end, as one only considers
computations that lead from the initial state with empty counters to an accepting
state with empty counters.

The context-free valence languages form a hierarchy within CS. Each CF(Z*)
has very convenient closure properties; it is in fact a full semi-AFL.

Proposition 4. Let k > 1. CF(Z*) is closed under union, homomorphisms,
inverse homomorphisms, and intersection with regular languages. Consequently
CF(Z*) is closed under finite state transductions.

The closure under intersection with regular languages can be generalized as
follows: the intersection of a context-free valence language over Z* with a right-
linear valence language over Z* is a context-free valence language over Z*+¢, We
will use this fact in the sequel, in particular for k£ = 0, i.e., the intersection of
a context-free language and a right-linear valence language over Z‘ belongs to
CF(Z").

We end by giving two more examples of right-linear valence languages which
are essential for our considerations.

Example 5. Let X be an alphabet, and let #,$ be two symbols not in X.

(1) Consider Dy = { z1#y1822#ys | 21,91, 22, y2 € X*, |z1y1| = |22y2] }. Tt is
generated by a right-linear valence grammar over Z', with axiom Sy, and the
following rules. Here a ranges over X.

[So = aSo, (+1)], [So = #51,(0)],

[Sl —>a51,(+1)], [Sl — $Sz,(0)],

[SQ — G,SQ, (—1)], [SQ — #53, (0)], and

[S3 = aSs,(—1)], [S3—= A (0)]

(2) Din = { mi#y18z2#y2 | 21,y1,22,y2 € X%, [21] > |22] and |y2| > [y1] } is
generated by the right-linear valence grammar over Z2, with axiom Sy, and the
following rules; again, a ranges over X.

[So —)(IS(),(-F].,O)], [S() —)aSo,(0,0)], [S() — #Sl,(0,0)],

[Sl —>0,51,(0,—1)], [Sl — $SQ,(0,0)],

[SQ —>0,SQ,(—1,0)], [SQ — #53,(0,0)], and

[S3 — aSs,(0,4+1)], [S3 — aS3,(0,0)], [Ss— A, (=1,—-1)].
Observe that we have inequality |z1| > |z2| rather than equality because symbols
in the first segment do not have to be counted on the (first) counter as there is
an alternative rule. The strictness of the inequality is forced by decreasing both
counters in the final rule. O

4 Same-length splicing

We restrict splicing to cases where both inputs have the same length, i.e., mode
i = sl. Precise upper bounds within the Chomsky hierarchy are missing for
Ssi(Fi,F2) when (1) F; = REG and F» = LIN,CF (two cases), and when (2)
F1 = LIN, CF and 7, = FIN, REG (four cases).

All these families contain a non-context-free language. For S (REG, LIN) this
was shown in [KPS96, Lemma 8]; for Sg; (LIN, FIN) this follows from the fact that
one may closely simulate the operation of doubling using splicing with finite rules,
cf. Lemma 3 in [PRS98], obtaining from L the language double(L) = {zz | = €
L}.

We give an explicit example for the latter family Sg(LIN, FIN).

Example 6. Let h = ({a,b,d}, L, R) be the splicing system of (LIN,FIN) type
defined by

L={a"b"d|n>1} U {da™b" |n > 1}

R={(dda)}
The form of the rule causes the first argument of each splicing to be of the
form a*b¥d, and the second argument of the form da/b’, for some k,j > 1.

Moreover, if we consider same-length splicing, we should have & = j. Then
(a*b* | d, d | a*b*) 5! aFb*a*b* | using the only splicing rule in R. Consequently

osi(h) = {a"b"a™d" | n > 1}

which is not context-free. a

We prove that in all six open cases the same-length splicing languages are
context-free valence languages over Z' and thus context-sensitive.

Theorem 7. Sy (REG,CF) C CF(Z') and S (CF,REG) C CF(ZY).

Proof. Let h = (V, L, R) be a splicing system. As described before, the language
C(L, R) codes the splicing ingredients in the free case, and can be used to obtain
upper bounds. For the (REG,CF) and (CF,REG) types of splicing we have argued
that C(L, R) is a context-free language, see Lemma 2.

To extend the equality oy(h) = join(C(L,R)) to same-length splicing we
restrict C'(L, R) to pairs of initial strings having the same length: o4 (h) =
join(C(L,R) N D), where Dy = { z1#y:18z2#y2 | ©1,y1,22,y2 € X*, |z1y1| =
22y)

Note that D, can be generated by a right-linear valence grammar over Z*,
cf. Example 5(1), and consequently C(L, R) N Dy is an element of CF(Z*). This
implies oy (h) € CF(Z'), as CF(Z') is closed under finite state transductions,
Proposition 4. a

We immediately have a minimal upper bound within the Chomsky hierarchy
for the six open cases.

Corollary 8. (1) Sg(F1,F2) CCS for 71 = REG and F» = LIN, CF.
(2) Su(F1,Fs) C CS for Fi = LIN,CF and F> = FIN, REG.

5 Length-increasing (decreasing) splicing

We consider length-increasing splicing (mode p = in) and length-decreasing
splicing (u = de). Although the specifications of these modes are rather sim-
ilar, it must be observed that their power is not always equal, for instance,
Sin(CF,CF) C CS, while S4.(CF,CF) — CS # &.

In [KPS96, p.238] the question is raised whether S, (REG,LIN), u = in,de,
contains a non-context-free language. Our Example 1 shows there is indeed such
a language for increasing mode, for decreasing mode there is a simple variant
(adapting an example given in the proof of Lemma 10 in [KPS96]).

Example 9. Replace the initial language of Example 1 by

L' = cb*a*b*c U c*b*c
and let ' = ({a,b,c}, L', R) with R as in Example 1. Now the only possible
length-decreasing splicings are (cb™a™ | b"c, cfc | b™c) 4 cb™a™b™c, where
l1+m+n<f+1and m+1<n+1, thus

age(h') = {cb™a"b™c | m,n > 0 and m < n}

which is not in CF. m]

Consequently we have the following result.
Lemma 10. S,(REG,LIN) — CF # & for 1 = in, de.

In fact, this already solves the minimal upper bounds for S;,(REG, LIN) and
Sin(REG, CF) within the Chomsky hierarchy, as the inclusion S;,(CS,CS) C CS
is known (Lemma 3 of [KPS96]).

For length-decreasing splicing we do not have such a convenient result. To
remedy this, we prove that both Sz (REG, CF) and S4.(CF, REG) are subfamilies
of CF(Z?), similar to the case of same-length splicing. For S (REG, CF) this an-
swers the question whether the smallest upper bound in the Chomsky hierarchy
is CS or RE, whereas for S4.(CF,REG) this improves the known upper bound
CS. The argumentation works for increasing mode as well, so also in that case
we obtain improved upper bounds within CS.

Theorem 11. S, (REG,CF) C CF(Z?) and S,(CF,REG) C CF(Z?), for p =
in,de.

Proof. Let h = (V, L, R) be a splicing system. Consider the language C(L, R)
constructed from L and R as before. It is context-free for splicing of (REG, CF)
type or of (CF, REG) type, see Lemma 2. We now consider in splicing, argumen-
tation for de splicing is completely symmetric.

It is easily seen that o;,(h) = join(C(L, R) N D;y), where D,y is the lan-
guage { z1#y18227#y2 | T1,y1,22,y2 € X* |x1| > |22| and |y2| > |y1| } from
Example 5(2).

As C(L, R) is context-free, and D;, is a right-linear valence language over 72,
we conclude that o, (h) is in CF(Z?) using closure properties of these families.

a

Summarizing, we have found minimal upper bounds for both length-increasing
and length-decreasing splicing within the Chomsky hierarchy.

Corollary 12. For u =in,de one has

(1) S,(REG,F>) C CS for F» = LIN, CF.
(2) S,u(F1,F») C CS for 71 = LIN,CF and T, = FIN, REG.

6 Self splicing

As self splicing takes a single string as both arguments for the splicing operation,
the two splicing sites as described by the rules have to be located on that same
string. As there are two possible orderings for the splicing sites for the first and
second argument of the operation, the splicing may be in one of the following
fashions.

First, we may splice according to the fashion (z | yz,zy | 2) F zz, i.e., the first
site occurs before the second site. This means that a substring is removed from
the input. In particular, when the second site occurs at the end of the string it is

possible to model the quotient operation on languages, cf. Lemma 6 in [KPS96],
as follows. Consider languages L1, Lo, and let L = Lid, where d is a new symbol.
Furthermore, let R = { (A\,yd,d,\) | y € Ly }. Then o4 (V,L,R) = { = | zy €
L, for some y € Ly } = Ly1/L>. As a consequence Sgr(LIN,LIN) — CS # @. In
fact, this construction also works for the modes free splicing, length-decreasing
splicing, and same-length splicing.

Second, we may splice according to the fashion (xy | z,2 | yz) F zyyz, i.e.,
the first site occurs after the second site. This means that a substring in the
input is doubled. In particular, it is possible to model the doubling operation
on languages, cf. Lemma 3 in [PRS98], as follows. Consider a language L;, and
let L = cLyd, where ¢,d are new symbols. Furthermore, let R = { (), d, ¢, \) }.
Then o4 (V,L,R) = c-double(Ly) -d=c-{ zz | x € Ly }-d. As a consequence
Ssf(REG, FIN) — CF # @. In fact, this construction is a variant of Example 6,
where doubling was obtained for same-length splicing.

We meet these operations of quotient and doubling later in this section, in
Lemma 15 and Theorem 13.

The present state of knowledge concerning self splicing seems to be summa-
rized by the two earlier conclusions Sgs(LIN, LIN) € CS and Sy (REG, FIN) Z CF,
and the inclusion S (REG,REG) C CS ([KPS96], remark following Lemma, 7).
We extend this latter inclusion to a larger family of initial languages. To this
end we will need deterministic two-way finite state transductions, i.e., relations
realized by deterministic finite state automata with a two-way input tape and a
one-way output tape. These machines are capable of writing a doubled copy of
their input, which makes them suitable to simulate self splicing. We use 2DGSM
to denote the family of deterministic two-way finite state transductions, and, in
particular, 2DGSM(CF) denotes the family of languages obtained from CF by
applying these transductions!.

Theorem 13. S, (CF,REG) C 2DGSM(CF)

Proof. Let h = (V, L, R) be a splicing system with L € CF and Z(R) € REG.
As explained in the introduction to this section, o4 (h) can be described as
Lyy U Lyyy,, where

Ly, ={ zz | zyz € L with uy € Suf (z),v; € Pref (y2),
uz € Suf (zy),vs € Pref (2) for a (uy,v1,us,v2) € R } and
Lyyyx={ zyyz | zyz € L with uy € Suf (zy),v1 € Pref (2),
uz € Suf (z),vy € Pref (yz) for a (u1,v1,u2,v2) € R}

Let 1 and 2 be symbols not in V; we will use these symbols to mark the two
splicing sites in a string, similarly to the symbol # in the strings of C(L, R). So,
let

Liy={z1y2z | zyz € L with u; € Suf (x),v; € Pref (yz),

LA generalized sequential machine, GsM, differs from a finite state transducer in that
it is not allowed to read A. For two-way machines the two notions are equivalent.

10

uz € Suf (zy),vs € Pref (z) for a (u1,v1,us,v2) € R } and
Loy ={ 22ylz | zyz € L with u; € Suf (zy),v; € Pref (z),
uz € Suf (z),vy € Pref (yz) for a (uy,vy,u2,v2) € R}

Note that Lis U La; can be obtained from L (and R) by a (nondeterministic,
one-way) finite state transduction based on Z(R). The transducer has to search
for the two cutting points simultaneously, because the splicing sites u;v; and
usvs can overlap and the transducer is not allowed to go back on its input.

As CF is closed under finite state transductions, Lis U Loy belongs to CF.

It is now straightforward to design a (deterministic) two-way finite state
transduction that maps Lias U La; onto Ly, U Lyyy, as follows. It copies its input
from left to right until it arrives at the symbol 1. At that moment the machine
moves to the symbol 2 without copying (forward or backward depending on
whether the 2 was encountered before finding the 1). At the symbol 2 it resumes
a left to right scan copying the input, stopping at the right end of the tape. 0O

As stated in [EY71, Theorem 3.4], 2DGSM(CF) is strictly contained in the
family of context-sensitive languages. Hence we obtain an upper bound as re-
quired.

Corollary 14. S, (F,) C CS for Fi = LIN,CF and F, = FIN, REG.

The construction for doubling discussed in the introduction of this section
implies that also self splicings of (REG,LIN) type can yield languages outside
CF. We show that they can even define non-context-sensitive languages, i.e., we
prove that the smallest upper bound in the Chomsky hierarchy of Ss; (REG, CF)
and Sgr (REG, LIN) is RE.

For context-free rules this is relatively easy, as we can directly simulate the
quotient operation on linear languages using context-free splicing of regular lan-
guages. The result then follows, as every RE language can be written as the
quotient of two linear languages ([LLR85]).

Lemma 15. Let Ly, Ly be linear languages over X and let 1 be a symbol not in
Y. Then 1L, /Ly € Ss(REG, CF).

Proof. Assume that L; and Ly are linear languages with Ly, Lo C X* for some
alphabet X. Let 1,2,3 ¢ ¥ be new symbols, and define h = (¥ U {1,2,3}, L, R)
by

L=1X%25"3
R={(1u,2v3,2w3,\) |uv € L1,w € Ly}

Since LIN is closed under concatenation with symbols and under shuffle with
strings (but not under concatenation) we have Z(R) = {lu#2v3$ | uv € L;} -
{2w3# | w € Ly} € LIN-LIN C CF.

We start by proving that o4 (h) C 1L1/Ly. Let 2 € L and (z,z) -, 2z for a
rule r = (1u, 2v3, 2w3, \). Then, because of the form of the axioms and the first

11

Tro = AgoTB

R
(' W
Ox#1ler ... cpapp YR o yR gl 281 2120 ... 2oy 2f . 2F af 2 #
]
y1 b 2o
Yo = 2o

Fig. 1. The structure of strings in K.

splicing site we must have £ = 1u2v3. Moreover we have 2v3 = 2w3, i.e., v = w,
because we are considering self splicing. Clearly (lu | 2v3, 1u2v3 | \) ¥ 2 =
lu € 1L, /Lo, since uv € Ly and v = w € Ly by construction.

Now take z € Ly /Lo, i.e., there is a y € Ly such that zy € Ly. According to
the definition of h there is a splicing rule r = (1z,2y3,2y3,\) € R and an axiom
122y3, and so (1z | 2y3, 122y3 | \) b, 1z € o4 (h). O

Corollary 16. Let K be a language over X and let 1 be a symbol not in X. If
K € RE, then 1K € Sg(REG, CF).

Since CS is closed under quotient with symbols, 1K € CS would imply K €
CS. Consequently K € RE — CS implies 1K € RE — CS, thus the smallest upper
bound in the Chomsky hierarchy of S,r(REG, CF) is RE, as formulated in the
following theorem.

Theorem 17. S (REG,CF) — CS # @.

The same result holds for Sy (REG, LIN), i.e., we may replace the set of rules
R for which Z(R) € LIN - LIN by a set R with Z(R) € LIN, cf. the proof of
Lemma 15. We cannot do this directly, as in that proof. Instead, we obtain
this by reconsidering the proof in [LLR85] that every recursively enumerable
language is the quotient of two linear languages. The main idea is that single
steps of a Turing machine can be captured by a linear grammar, provided that
we represent one of the two configurations involved by its mirror image. It is
also possible to represent a series of steps of the Turing machine, steps which are
unrelated however, as we cannot join them into a computation without further
tricks (like intersection, quotient, or ... self splicing).

We describe now our approach to code series of Turing machine computa-
tional steps. Several markers are included in the language in order to use it in
the splicing process.

Let M be a Turing machine with state set @, initial state g, final state f and
tape alphabet I'. We denote the configurations of M by strings in conf(M) =

12

AT™ @ I'* B, where A, B are special symbols used to delimit the strings. The step
relation of M is defined over conf(M), and is denoted by (. We assume M
recognizes strings x over X by starting in the initial configuration A gy B and
reaching a final configuration in A I'™ f ' B.

Let 0,1,2,#,$ be symbols not in X. Using w® to denote the mirror image
of string w, define the language K1 to consist of the words

Ox#1xy...25 Tpaa yf...yfy§2$lzlzg...z”1 ka...xfx0R2#

where

r€X* x9g =AqQTB, X1 € A* f B,

Oy ey Tht1>Y0s - - - s Yl 21, - - -, 2041 € conf (M), for k, £ > 0, and

Yi l_./\/l Zit+1 for 0 §z§€
The structure of the strings in K is illustrated in Figure 1. A single step of
a Turing machine induces just a local change in a configuration. It is an easy
exercise to show that K, is linear language, a variant of the language used in
[LLR85].

Lemma 18. For each Turing machine M, K4 € LIN.

Theorem 19. Let K be a language over X and let 0 be a symbol not in X. If
K € RE, then 0K € S (REG,LIN).

Proof. Let K = L(M) for a deterministic Turing machine M, and let K be
as defined above. Now o4 (h) = 0K for the splicing system h = (V, L, R) defined
by

V=ruU {012}
L=0X*1(I'U{a,B})*2
Z(R) = K

Using Lemma 18, we observe that the system h is of (REG, LIN) type. The splicing
rules of h are of the form

0z, 1ay...opm yl yFyl 2, 120 zpp 2l alzlt2 X
+1 Ye 1Y% +1 T}, 1To

with @1,..., Zk41,Y05 -, Y0, 215 -+, 20401 € conf(M), zg = Agox B and y; by
zi+1 for 0 < i < {; 141 is a final configuration of M.

Because of the form of the initial strings and of the rules, the first argument
of the splicing must be of the form 0z 1 21 ...7511 yF ... yfyl 2. Since we
consider self splicing, this is also the second argument. The second splicing site
now enforces the equality

R R, R R R_.R
1o o T+1Yp - Y1 Y — 212041 T .- T Ty

and the marking with A and B ensures that k = ¢, ; = z; for 1 <i < k+1
and y; =z for 0 < j < k. Hence zo = Aqo = B is the initial configuration of M
for the input word z, x; = y; Faq 2541 = zip1 for 0 < ¢ < k, and x4 is the

13

[[FINJREG] LIN [CF [FIN [REG [LINJCF[FIN [REG [LIN]CF]
fT REG [REG | LIN | CF CF CF [RE[RE[] CF CF [REJRE
in | REG | REG |CF(Z?%)|CF(Z?)||CF(Z?)|CF(Z?%)|CS |CS||CF(Z?)|CF(Z?)|CS |CS
de || REG | REG |CF(Z?*)|CF(z?)||CF(z?)|CF(Z?)|RE |RE|CF(Z?)|CF(Z?)|RE |RE
sl || LIN | LIN [CF(Z")|CF(ZY)||CF(Z")|CF(Z")|RE |RE||CF(Z")|CF(Z")| RE |RE
sf [[2(CF) [2(CF)| RE RE || 2(CF) | 2(CF) |RE|RE]| 2(CF) | 2(CF) |RE|RE
L F1 = REG I F =LIN [FL =CF |

~

Table 2. Updated upper bounds for S,(Fi,F2). We use 2(CF) as shorthand for
2DGSM(CF).

final configuration of M for x. Thus z¢ Faq 21 Faq ... Faq 241 IS an accepting
configuration sequence for z. Consequently, if 0x1z; ...z yf . .. yfylt2 splices
with itself to give 0z, then = € L(M).

The reverse inclusion follows along the same lines (read backwards). O

Again we obtain a negative result concerning the upper bound CS.

Theorem 20. S (REG,LIN) — CS # &.

7 Conclusion

We have filled the open spots in Table 1, and improved some of the known CS
upper bounds given there. In Table 2 we summarize the results on the upper
bounds of the four modes that we considered. Note that not all bounds given
in this summary meet the original goal set in [PRS98,KPS96], to give minimal
upper bounds within the Chomsky hierarchy. To get these, replace the items
CF(Z%Y), CF(Z?), and 2DGSM(CF) by CS.

We now have a full insight in the complexity of the restricted splicing modes
we have considered. This picture is somewhat surprising. If we order the splicing
modes according to their upper bounds, we obtain different outcomes depending
on the complexity of the input languages and the rules. We list a few represen-
tative examples by comparing the upper bounds in the Chomsky hierarchy.

(REG,REG) f,in,de < sl < sf
(REG, CF) f<slin,de <sf
(CF,REG) f <slyin,de,sf
(CF,CF) in < f,de,sl,sf
The picture is more complex in the case we consider the families CF(Z¥) and
2DGSM(CF) instead of CS. We postulate here that CF(Z*) and 2DGSM(CF) are
incomparable.

Apart from the fact that self splicing seems to be the most complex operation
for all types of input language and rules, it seems hard to make general observa-
tions on the relative power of restricted splicing modes. One does note that the

14

tables for linear and context-free initial languages coincide. However, we con-
jecture that, although these upper bounds are identical, the family S, (LIN, F)
is strictly included in S,,(CF,F). Similarly, we observe that for a fixed family
of initial languages, the upper bounds obtained for FIN and REG rules are the
same, and also the upper bounds obtained for LIN and CF rules are the same
(with the exception of free splicing). For FIN and REG rules we have obtained
some evidence that the families S, (F,FIN) and S, (F,REG) are equal for sev-
eral modes of splicing, see [DHvV00] and the forthcoming thesis of the second
author.

References

[CH91] K. Culik II, T. Harju. Splicing semigroups of dominoes and DNA, Discrete
Applied Mathematics, 31:162-177, 1991.

[DHvV00] R. Dassen, H.J. Hoogeboom, N. van Vugt. A Characterization of non-
iterated splicing with regular rules. In: Where Mathematics, Computer Science
and Biology Meet (C. Martin-Vide, V. Mitrana, eds.), Kluwer Academic Publish-
ers, 2000, pages 319-327.

[EY71] R.W. Ehrich, S.S. Yau. Two-way sequential transductions and stack automata.
Information and Control 18:404-446, 1971.

[FS97] H. Fernau and R. Stiebe. Regulation by valences. In: B. Rovan (ed.) Proceed-
ings of MFCS’97, Lecture Notes in Computer Science, vol. 1295, pages 239-248.
Springer-Verlag, 1997.

[FS00] H. Fernau, R. Stiebe. Sequential grammars and automata with valences. Tech-
nical Report WSI-2000-25, Wilhelm- Schickard-Institut fiir Informatik, Universitat
Tiibingen, 2000. Submitted. Available via
http://www.informatik.uni-tuebingen.de/bibliothek/wsi-reports.html

[Gre78] S.A. Greibach. Remarks on blind and partially blind one-way multicounter
machines. Theoretical Computer Science 7 (1978) 311- 324.

[HPP97] T. Head, Gh. Paun, D. Pixton. Language theory and molecular genetics :
generative mechanisms suggested by DNA recombination. In: Handbook of Formal
Languages (G. Rozenberg, A. Salomaa, eds.), volume 2, Springer-Verlag, 1997.

[HUT79] J.E. Hopcroft, J.D. Ullman. Introduction to automata theory, languages, and
computation, Addison-Wesley, 1979.

[HvV98] H.J. Hoogeboom, N. van Vugt. The power of H systems: does representation
matter? Computing with bio-molecules: theory and experiments (G. Pdun, ed.),
Springer-Verlag, Singapore, 255-268, 1998.

[KPS96] L. Kari, G. Paun, A. Salomaa. The power of restricted splicing with rules from
a regular language, Journal of Universal Computer Science, 2(4):224-240, 1996.

[LLR85] M. Latteux, B. Leguy, B. Ratoandromanana. The family of one-counter lan-
guages is closed under quotient, Acta Informatica 22:579-588, 1985.

[Pau80] G. Piun. A new generative device: valence grammars. Revue Roumaine de
Mathématiques Pures et Appliquées 6 (1980) 911-924.

[PRS95] Gh. Piun, G. Rozenberg, A. Salomaa. Computing by splicing, Theoretical
Computer Science 168:321-336, 1996.

[PRS96] Gh. Piun, G. Rozenberg, A. Salomaa. Restricted use of the splicing operation,
International Journal of Computer Mathematics 60:17-32, 1996.

[PRS98] Gh. Piun, G. Rozenberg, A. Salomaa. DNA computing. New computing
paradigms, Springer-Verlag, 1998.

15

