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Abstrat. We determine or improve upper bounds for non-iterated spli-

ing in length-inreasing, length-dereasing, same-length and self spliing

mode.

1 Introdution

The utting and reombination of dna with the help of restrition enzymes has

been abstrated as the spliing operation for formal languages, see for instane

the introdution by Head, P�aun, and Pixton [HPP97℄, or the relevant hapters

in the book of P�aun, Rozenberg, and Salomaa on omputational models inspired

by dna omputing [PRS98℄.

The spliing operation takes two strings, and uts them in a position spei�ed

by a spliing rule. Then these strings are reombined after exhanging their post-

�xes (the parts of the strings following the ut). This operation an then be

studied within the framework of formal language theory, in order to estimate

its omputational power. One may study its e�et as a losure operation on

language families, or one may study its power when applied iteratively as if it

were a single step of a omputing devie. Most famous in this latter area is the

result that the family of regular languages is losed under spliing (using a �nite

set of rules) [CH91℄. In fat, for the Chomsky hierarhy the power of spliing has

been extensively investigated, and optimal upper bounds within the hierarhy

have been established (f. [HPP97℄, or [PRS98℄).

Here we onentrate on the non-iterative, single, appliation of the spliing

operation applied to families of the Chomsky hierahy. What is open here is

the power of some modes of restrited spliing, i.e., spliing where there are

additional onstraints on the two strings involved, as inspired by [PRS96,KPS96℄.

For instane, in same-length spliing both strings are required to be of the same

length, and in self spliing both strings are assumed to be idential.

In partiular, it is left open whether non-iterated spliing in one of the

modes length-dereasing, same-length, and self spliing, stays within the ontext-

sensitive languages when applied to regular languages, using ontext-free sets of

rules. We will show that this is indeed the ase for same-length and length-

dereasing mode (Corollaries 8(1) and 12(1)), whereas self spliing generates

every reursively enumarable language (up to a single marker, Corollary 16).
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Moreover, we show that applying either of these spliing modes to ontext-

free languages with �nite or regular sets of rules, results in a ontext-sensitive

language. This was open for same-length spliing (Corollary 8(2)) and self spli-

ing (Corollary 14).

After de�ning the operation of spliing in Setion 2, we explain our basi

tools in Setion 3. In the next three setions we disuss same-length spliing,

length-inreasing (and length-dereasing) spliing, and self spliing, respetively.

2 Spliing

A spliing rule over an alphabet V is an element of (V

�

)

4

. For suh a rule

r = (u

1

; v

1

; u

2

; v

2

) and strings x; y; z 2 V

�

we write

(x; y) `

r

z i� x = x

1

u

1

v

1

y

1

; y = x

2

u

2

v

2

y

2

and

z = x

1

u

1

v

2

y

2

; for some x

1

; y

1

; x

2

; y

2

2 V

�

:

We say that the string z is obtained by spliing the strings x and y using the

rule r.

x

1

u

1

v

1

y

1

x

2

u

2

v

2

y

2

A spliing system (or H system) is a triple h = (V; L;R) where V is an

alphabet, L � V

�

is the initial language and R � (V

�

)

4

is a set of spliing rules,

the spliing relation.

To estimate the omplexity of sets of rules using the familiar Chomsky

hierarhy as a yard stik, spliing rules are ommonly represented as strings

rather than 4-tuples: a spliing rule r = (u

1

; v

1

; u

2

; v

2

) is given as the string

Z(r) = u

1

#v

1

$u

2

#v

2

(# and $ are speial symbols not in V ), i.e., Z is a map-

ping from (V

�

)

4

to V

�

#V

�

$V

�

#V

�

, that gives a string representation of eah

spliing rule. We extend Z in the natural way to a mapping from sets of spliing

rules to languages. In agreement with this poliy, we usually write, for instane,

\regular set of spliing rules" when we mean a set of spliing rules of whih

the Z-representation is a regular language. It was argued in [HvV98℄ that this

representation is quite robust: most of the other, related, representations do not

hange the position in the Chomsky hierarhy of the families resulting from

(uniterated) spliing F

1

-languages using F

2

-rules.

In this paper we onsider the setting where the general spliing operation

(x; y) `

r

z may only be applied in a ertain ontext. We reall the de�nitions of

ertain types of restrited spliing from [PRS96,KPS96℄. We splie in (length-)

inreasing mode (in for short) if the length of the resulting string is stritly

greater than the lengths of the two input strings, in (length-) dereasing mode

(de) if the length of the resulting string is stritly smaller than the lengths of
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the two input strings, in same-length mode (sl) if the two input strings have the

same length, and in self spliing mode (sf ) if the two input strings are equal.

We add free spliing (f ) as a synonym for unrestrited spliing. Formally, for a

spliing rule r we use the following relations.

free (x; y) `

f

r

z i� (x; y) `

r

z unrestrited

inreasing (x; y) `

in

r

z i� (x; y) `

r

z and jzj > maxfjxj; jyjg

dereasing (x; y) `

de

r

z i� (x; y) `

r

z and jzj < minfjxj; jyjg

same-length (x; y) `

sl

r

z i� (x; y) `

r

z and jxj = jyj

self (x; y) `

sf

r

z i� (x; y) `

r

z and x = y:

Note that the requirement for length-inreasing spliing an be reformulated in

terms of the two input strings x and y, without expliitly mentioning the result

z of the spliing. If we splie x = x

1

u

1

v

1

y

1

and y = x

2

u

2

v

2

y

2

using the rule

r = (u

1

; v

1

; u

2

; v

2

), it is in inreasing mode i� jx

1

u

1

j > jx

2

u

2

j and jv

1

y

1

j < jv

2

y

2

j.

There is a similar formulation for length-dereasing spliing.

Let h = (V; L;R) be a spliing system. With the spliing modes given above

we de�ne the (non-iterated spliing) languages

�

�

(h) = f z 2 V

�

j (x; y) `

�

r

z for some x; y 2 L and r 2 R g

for � 2 ff; in; de; sl; sf g. Similarly we de�ne the families

S

�

(F

1

;F

2

) = f �

�

(h) j h = (V; L;R) with L 2 F

1

and Z(R) 2 F

2

g:

A spliing system with L 2 F

1

and Z(R) 2 F

2

is said to be of (F

1

;F

2

) type.

Example 1. Let h = (fa; b; g; L;R) be the spliing system de�ned by

L =  b

�

a

�

b

�



R = f (b

m

a

n

; b

n

; ; b

m

) j m;n � 0g

It is of (REG,LIN) type as the initial language L is regular, and the set of rules

is linear: Z(R) = fb

m

a

n

#b

n

$#b

m

 j m;n � 0g.

The only spliings possible are of the form (b

m

a

n

j b

n

;  j b

m

) ` b

m

a

n

b

m

.

If the spliing has to be done in length-inreasing mode, then we must have

m+ n+ 1 > 1 and m+ 1 > n+ 1, hene

�

in

(h) = fb

m

a

n

b

m

 j m;n � 0 and m > ng

whih is not a ontext-free language. ut

We only onsider F

1

= REG; LIN;CF and F

2

= FIN;REG; LIN;CF, and in

partiular we are interested in upper bounds for the families S

�

(F

1

;F

2

) for the

modes � that we onsider. Known results are from the papers [PRS98℄, whih

deals with �nite sets of rules (F

2

= FIN) only, and [KPS96℄, whih deals with sets

of rules of arbitrary Chomsky omplexity (ontraditing its title). We repeat in

Table 1 the parts of Tables 1, 2 and 3 from [KPS96℄ that summarize the lowest
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FIN REG LIN CF FIN REG LIN CF FIN REG LIN CF

f REG REG LIN CF CF CF RE RE CF CF RE RE

in REG REG CF

+

CS CS CS CS CS CS CS CS

de REG REG CF

+

CS CS RE RE CS CS RE RE

sl LIN LIN CF

+

CF

+

RE RE CF

+

RE RE

sf CS CS CF

+

RE RE CF

+

RE RE

F

1

= REG F

1

= LIN F

1

= CF

Table 1. Upper bounds of S

�

(F

1

;F

2

) within the Chomsky hierarhy [KPS96℄.

upper bounds within the Chomsky hierarhy for the families S

�

(F

1

;F

2

). The

families of initial languages F

1

are listed in the bottom row, the families of

spliing rules F

2

are in the top row, repeated for eah of the three possible

initial families F

1

.

For the entries marked with CF

+

it is only known that the family ontains a

non-ontext-free language; it is not yet determined whether the smallest upper

bound within the Chomsky hierarhy is CS or RE.

Note that although, for instane, the table ontains the same bounds for the

families S

sl

(REG;FIN) and S

sl

(REG;REG), this does not neessarily mean that

they are equal: they only have the same upper bound in the Chomsky hierarhy.

The same remark holds for the equality of the tables for F

1

= LIN and F

1

= CF.

3 Basi tools

We present our basi tools. First we de�ne a language that aptures both the

initial language and the rules of a spliing system. Seond, we reall the notion

of valene grammar, a grammatial devie modestly extending the ontext-free

grammars.

3.1 Representing the system by a language

The open problems indiated in Table 1 involve either a ontext-free (or even

linear) initial language, and regular (or even �nite) spliing rules, or vie versa.

For unrestrited (free) non-iterated spliing the upper bounds for these two ases

are determined in Lemma 3.3 and Lemma 3.6 of [HPP97℄. We use the ideas from

the proofs of these two lemma's to de�ne, for eah spliing system h = (V; L;R),

the language C(L;R) whih ombines the initial language with the rules.

C(L;R) = f x

1

u

1

#v

1

y

1

$x

2

u

2

#v

2

y

2

j x

1

u

1

v

1

y

1

; x

2

u

2

v

2

y

2

2 L

and (u

1

; v

1

; u

2

; v

2

) 2 Rg

This language turns out to be very helpful in determining upper bounds for

(restrited) spliing families. Note that �

f

(h) = join(C(L;R)), where join is the

�nite state transdution that erases the two #'s, and everything in between,

from a string in C(L;R).
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To onstrut C(L;R) from L and R, we proeed as follows. It is straight-

forward to design a (non-deterministi) �nite state transdution suh that the

language Z(R), representing the rules, is transformed into the language R

0

=

fx

1

u

1

#v

1

y

1

$x

2

u

2

#v

2

y

2

j u

1

#v

1

$u

2

#v

2

2 Z(R) and x

1

; y

1

; x

2

; y

2

2 V

�

g. Also

using a �nite state transdution, the language L

0

= fx#y$w#z j xy ; wz 2 Lg

an be onstruted from L � $ � L, the (marked) onatenation of the initial lan-

guage L with itself. Clearly, C(L;R) = L

0

\ R

0

.

Sine both REG and CF are losed under �nite state transdutions and

under onatenation, we either have L

0

2 REG and R

0

2 CF for spliing of

(REG,CF) type, or L

0

2 CF and R

0

2 REG, for spliing of (CF,REG) type.

Clearly in both ases C(L;R) = L

0

\ R

0

is a ontext-free language, and so is

�

f

(h) = join(C(L;R)), proving the (known) upper bounds for (REG,CF) type

and (CF,REG) type spliing.

Lemma 2. Let h = (V; L;R) be a spliing system of (REG;CF) type or (CF;REG)

type. Then the language C(L;R) is ontext-free.

In the sequel we adapt this strategy to restrited spliing. In that ase we

have to put further restritions on the pair of strings that is splied. This leads

us to onsider partiular subsets of the language C(L;R).

In the ase of same-length spliing for instane, we have to restrit ourselves

to strings in C(L;R) for whih additionally jx

1

u

1

v

1

y

1

j = jx

2

u

2

v

2

y

2

j. The result-

ing language whih we all C

sl

(L;R) again represents the system in the sense

that �

sl

(h) = join(C

sl

(L;R)). In the ase of (REG;CF) type spliing, C

sl

(L;R)

is in general no longer ontext-free, but ontext-sensitive. This means that the

upper bound we obtain in this way for S

sl

(REG;CF), i.e., by applying a �nite

state transdution to C

sl

(L;R), is RE rather than CS, as CS is not losed under

�nite state transdutions (in partiular it is not losed under erasing mappings).

However, it turns out that S

sl

(REG;CF) � RE is not the optimal upper

bound that is valid within the Chomsky hierarhy. Hene the appliability of

our method fails beause of the poor losure properties of CS, and we have been

looking for a natural family stritly in between CF and CS, losed under �nite

state transdutions, and whih ontains the languages C

�

(L;R) for the spliing

types � we will onsider. Suh a family exists, and we disuss its harateristis

in the next subsetion.

3.2 Valene grammars

Let k � 1. We use Z

k

to denote the set of k-dimensional vetors over the integers,

and the vetor with all omponents zero is written as 0.

A ontext-free valene grammar over Z

k

is a ontext-free grammar in whih

every prodution is assigned a vetor from Z

k

, the valene of the prodution.

A string belongs to the language of the grammar if it is derived in the usual,

ontext-free, fashion, while additionally the valenes of the produtions used add

up to zero.

Formally, suh a grammar is a onstrut G = (�;�;R; S), where � is the

alphabet, � � � is the terminal alphabet, S 2 � is the axiom, and R is a �nite
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set of rules, eah of whih is of the form [�; r ℄, where � 2 (� � �) � �

�

is a

ontext-free prodution, and r 2 Z

k

is its assoiated valene.

For x; y 2 �

�

and v 2 Z

k

we write (x;v) )

G

(y;v + r) if there exist a rule

[A! z; r ℄ and x

1

; x

2

2 �

�

, suh that x = x

1

Ax

2

and y = x

1

zx

2

. The language

generated by G equals L(G) = f w 2 �

�

j (S;0 ))

�

(w;0 ) g.

The resulting family of valene languages over Z

k

is denoted by CF(Z

k

).

Valene grammars were introdued in [P�au80℄. A good starting point for learning

of their properties and for pointers to reent literature is the paper [FS00℄,

presented as extended abstrat in [FS97℄.

Example 3. (1) Consider the valene grammar G

1

over Z

2

, whih has rules

[S ! aS; (+1;+1) ℄, [S ! bS; (�1; 0) ℄, [S ! S; (0;�1) ℄, and [S ! �; (0; 0) ℄,

where S is the axiom, and a; b;  are terminal symbols. Then L(G

1

) = f w 2

fa; b; g

�

j #

a

(w) = #

b

(w) = #



(w) g, as the �rst omponent of the valene

fores #

a

(w) = #

b

(w), while #

a

(w) = #



(w) beause of the seond omponent.

This is in fat a right-linear valene grammar.

(2) The same language an be obtained by a valene grammar over Z

1

hoos-

ing rules [S ! SS; (0) ℄, [S ! aSb; (+1) ℄, [S ! bSa; (+1) ℄, [S ! S; (�1) ℄, and

[S ! �; (0) ℄.

Note that this is essentially a ontext-free grammar for the language f w 2

fa; b; g

�

j #

a

(w) = #

b

(w) g, augmented with an additional ounter to ompare

the number of 's to the numbers of a's and b's. ut

The right-linear valene grammars are a formalism equivalent to the blind

ounter automata of Greibah [Gre78℄; these are �nite state automata equipped

with additional ounters, eah of whih an be inremented and deremented

independently. This storage is \blind" as the ounters annot be tested for zero

during the omputation, exept impliitly at the end, as one only onsiders

omputations that lead from the initial state with empty ounters to an aepting

state with empty ounters.

The ontext-free valene languages form a hierarhy within CS. Eah CF(Z

k

)

has very onvenient losure properties; it is in fat a full semi-AFL.

Proposition 4. Let k � 1. CF(Z

k

) is losed under union, homomorphisms,

inverse homomorphisms, and intersetion with regular languages. Consequently

CF(Z

k

) is losed under �nite state transdutions.

The losure under intersetion with regular languages an be generalized as

follows: the intersetion of a ontext-free valene language over Z

k

with a right-

linear valene language over Z

`

is a ontext-free valene language over Z

k+`

. We

will use this fat in the sequel, in partiular for k = 0, i.e., the intersetion of

a ontext-free language and a right-linear valene language over Z

`

belongs to

CF(Z

`

).

We end by giving two more examples of right-linear valene languages whih

are essential for our onsiderations.

Example 5. Let � be an alphabet, and let #; $ be two symbols not in �.
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(1) Consider D

sl

= f x

1

#y

1

$x

2

#y

2

j x

1

; y

1

; x

2

; y

2

2 �

�

; jx

1

y

1

j = jx

2

y

2

j g. It is

generated by a right-linear valene grammar over Z

1

, with axiom S

0

, and the

following rules. Here a ranges over �.

[S

0

! aS

0

; (+1) ℄, [S

0

! #S

1

; (0) ℄,

[S

1

! aS

1

; (+1) ℄, [S

1

! $S

2

; (0) ℄,

[S

2

! aS

2

; (�1) ℄, [S

2

! #S

3

; (0) ℄, and

[S

3

! aS

3

; (�1) ℄, [S

3

! �; (0) ℄

(2) D

in

= f x

1

#y

1

$x

2

#y

2

j x

1

; y

1

; x

2

; y

2

2 �

�

; jx

1

j > jx

2

j and jy

2

j > jy

1

j g is

generated by the right-linear valene grammar over Z

2

, with axiom S

0

, and the

following rules; again, a ranges over �.

[S

0

! aS

0

; (+1; 0) ℄, [S

0

! aS

0

; (0; 0) ℄, [S

0

! #S

1

; (0; 0) ℄,

[S

1

! aS

1

; (0;�1) ℄, [S

1

! $S

2

; (0; 0) ℄,

[S

2

! aS

2

; (�1; 0) ℄, [S

2

! #S

3

; (0; 0) ℄, and

[S

3

! aS

3

; (0;+1) ℄, [S

3

! aS

3

; (0; 0) ℄, [S

3

! �; (�1;�1) ℄.

Observe that we have inequality jx

1

j � jx

2

j rather than equality beause symbols

in the �rst segment do not have to be ounted on the (�rst) ounter as there is

an alternative rule. The stritness of the inequality is fored by dereasing both

ounters in the �nal rule. ut

4 Same-length spliing

We restrit spliing to ases where both inputs have the same length, i.e., mode

� = sl. Preise upper bounds within the Chomsky hierarhy are missing for

S

sl

(F

1

;F

2

) when (1) F

1

= REG and F

2

= LIN;CF (two ases), and when (2)

F

1

= LIN;CF and F

2

= FIN;REG (four ases).

All these families ontain a non-ontext-free language. For S

sl

(REG; LIN) this

was shown in [KPS96, Lemma 8℄; for S

sl

(LIN;FIN) this follows from the fat that

one may losely simulate the operation of doubling using spliing with �nite rules,

f. Lemma 3 in [PRS98℄, obtaining from L the language double(L) = fxx j x 2

Lg.

We give an expliit example for the latter family S

sl

(LIN;FIN).

Example 6. Let h = (fa; b; dg; L;R) be the spliing system of (LIN,FIN) type

de�ned by

L = fa

n

b

n

d j n � 1g [ fd a

n

b

n

j n � 1g

R = f (b; d; d; a) g

The form of the rule auses the �rst argument of eah spliing to be of the

form a

k

b

k

d, and the seond argument of the form d a

j

b

j

, for some k; j � 1.

Moreover, if we onsider same-length spliing, we should have k = j. Then

(a

k

b

k

j d ; d j a

k

b

k

) `

sl

a

k

b

k

a

k

b

k

, using the only spliing rule in R. Consequently

�

sl

(h) = fa

n

b

n

a

n

b

n

j n � 1g

whih is not ontext-free. ut
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We prove that in all six open ases the same-length spliing languages are

ontext-free valene languages over Z

1

and thus ontext-sensitive.

Theorem 7. S

sl

(REG;CF) � CF(Z

1

) and S

sl

(CF;REG) � CF(Z

1

).

Proof. Let h = (V; L;R) be a spliing system. As desribed before, the language

C(L;R) odes the spliing ingredients in the free ase, and an be used to obtain

upper bounds. For the (REG,CF) and (CF,REG) types of spliing we have argued

that C(L;R) is a ontext-free language, see Lemma 2.

To extend the equality �

f

(h) = join(C(L;R)) to same-length spliing we

restrit C(L;R) to pairs of initial strings having the same length: �

sl

(h) =

join(C(L;R) \D

sl

), where D

sl

= f x

1

#y

1

$x

2

#y

2

j x

1

; y

1

; x

2

; y

2

2 �

�

; jx

1

y

1

j =

jx

2

y

2

j g.

Note that D

sl

an be generated by a right-linear valene grammar over Z

1

,

f. Example 5(1), and onsequently C(L;R)\D

sl

is an element of CF(Z

1

). This

implies �

sl

(h) 2 CF(Z

1

), as CF(Z

1

) is losed under �nite state transdutions,

Proposition 4. ut

We immediately have a minimal upper bound within the Chomsky hierarhy

for the six open ases.

Corollary 8. (1) S

sl

(F

1

;F

2

) � CS for F

1

= REG and F

2

= LIN;CF.

(2) S

sl

(F

1

;F

2

) � CS for F

1

= LIN;CF and F

2

= FIN;REG.

5 Length-inreasing (dereasing) spliing

We onsider length-inreasing spliing (mode � = in) and length-dereasing

spliing (� = de). Although the spei�ations of these modes are rather sim-

ilar, it must be observed that their power is not always equal, for instane,

S

in

(CF;CF) � CS, while S

de

(CF;CF)� CS 6= ?.

In [KPS96, p.238℄ the question is raised whether S

�

(REG; LIN), � = in; de,

ontains a non-ontext-free language. Our Example 1 shows there is indeed suh

a language for inreasing mode, for dereasing mode there is a simple variant

(adapting an example given in the proof of Lemma 10 in [KPS96℄).

Example 9. Replae the initial language of Example 1 by

L

0

= b

�

a

�

b

�

 [ 

�

b

�



and let h

0

= (fa; b; g; L

0

; R) with R as in Example 1. Now the only possible

length-dereasing spliings are (b

m

a

n

j b

n

 ; 

`

 j b

m

) `

de

b

m

a

n

b

m

, where

1 +m+ n < `+ 1 and m+ 1 < n+ 1, thus

�

de

(h

0

) = fb

m

a

n

b

m

 j m;n � 0 and m < ng

whih is not in CF. ut

8



Consequently we have the following result.

Lemma 10. S

�

(REG; LIN)� CF 6= ? for � = in; de.

In fat, this already solves the minimal upper bounds for S

in

(REG; LIN) and

S

in

(REG;CF) within the Chomsky hierarhy, as the inlusion S

in

(CS;CS) � CS

is known (Lemma 3 of [KPS96℄).

For length-dereasing spliing we do not have suh a onvenient result. To

remedy this, we prove that both S

de

(REG;CF) and S

de

(CF;REG) are subfamilies

of CF(Z

2

), similar to the ase of same-length spliing. For S

de

(REG;CF) this an-

swers the question whether the smallest upper bound in the Chomsky hierarhy

is CS or RE, whereas for S

de

(CF;REG) this improves the known upper bound

CS. The argumentation works for inreasing mode as well, so also in that ase

we obtain improved upper bounds within CS.

Theorem 11. S

�

(REG;CF) � CF(Z

2

) and S

�

(CF;REG) � CF(Z

2

), for � =

in; de.

Proof. Let h = (V; L;R) be a spliing system. Consider the language C(L;R)

onstruted from L and R as before. It is ontext-free for spliing of (REG;CF)

type or of (CF;REG) type, see Lemma 2. We now onsider in spliing, argumen-

tation for de spliing is ompletely symmetri.

It is easily seen that �

in

(h) = join(C(L;R) \ D

in

), where D

in

is the lan-

guage f x

1

#y

1

$x

2

#y

2

j x

1

; y

1

; x

2

; y

2

2 �

�

; jx

1

j > jx

2

j and jy

2

j > jy

1

j g from

Example 5(2).

As C(L;R) is ontext-free, and D

in

is a right-linear valene language over Z

2

,

we onlude that �

in

(h) is in CF(Z

2

) using losure properties of these families.

ut

Summarizing, we have found minimal upper bounds for both length-inreasing

and length-dereasing spliing within the Chomsky hierarhy.

Corollary 12. For � = in; de one has

(1) S

�

(REG;F

2

) � CS for F

2

= LIN;CF.

(2) S

�

(F

1

;F

2

) � CS for F

1

= LIN;CF and F

2

= FIN;REG.

6 Self spliing

As self spliing takes a single string as both arguments for the spliing operation,

the two spliing sites as desribed by the rules have to be loated on that same

string. As there are two possible orderings for the spliing sites for the �rst and

seond argument of the operation, the spliing may be in one of the following

fashions.

First, we may splie aording to the fashion (x j yz; xy j z) ` xz, i.e., the �rst

site ours before the seond site. This means that a substring is removed from

the input. In partiular, when the seond site ours at the end of the string it is

9



possible to model the quotient operation on languages, f. Lemma 6 in [KPS96℄,

as follows. Consider languages L

1

; L

2

, and let L = L

1

d, where d is a new symbol.

Furthermore, let R = f (�; yd; d; �) j y 2 L

2

g. Then �

sf

(V; L;R) = f x j xy 2

L

1

for some y 2 L

2

g = L

1

=L

2

. As a onsequene S

sf

(LIN; LIN) � CS 6= ?. In

fat, this onstrution also works for the modes free spliing, length-dereasing

spliing, and same-length spliing.

Seond, we may splie aording to the fashion (xy j z; x j yz) ` xyyz, i.e.,

the �rst site ours after the seond site. This means that a substring in the

input is doubled. In partiular, it is possible to model the doubling operation

on languages, f. Lemma 3 in [PRS98℄, as follows. Consider a language L

1

, and

let L = L

1

d, where ; d are new symbols. Furthermore, let R = f (�; d; ; �) g.

Then �

sf

(V; L;R) =  � double(L

1

) � d =  � f xx j x 2 L

1

g � d. As a onsequene

S

sf

(REG;FIN) � CF 6= ?. In fat, this onstrution is a variant of Example 6,

where doubling was obtained for same-length spliing.

We meet these operations of quotient and doubling later in this setion, in

Lemma 15 and Theorem 13.

The present state of knowledge onerning self spliing seems to be summa-

rized by the two earlier onlusions S

sf

(LIN; LIN) 6� CS and S

sf

(REG;FIN) 6� CF,

and the inlusion S

sf

(REG;REG) � CS ([KPS96℄, remark following Lemma 7).

We extend this latter inlusion to a larger family of initial languages. To this

end we will need deterministi two-way �nite state transdutions, i.e., relations

realized by deterministi �nite state automata with a two-way input tape and a

one-way output tape. These mahines are apable of writing a doubled opy of

their input, whih makes them suitable to simulate self spliing. We use 2DGSM

to denote the family of deterministi two-way �nite state transdutions, and, in

partiular, 2DGSM(CF) denotes the family of languages obtained from CF by

applying these transdutions

1

.

Theorem 13. S

sf

(CF;REG) � 2DGSM(CF)

Proof. Let h = (V; L;R) be a spliing system with L 2 CF and Z(R) 2 REG.

As explained in the introdution to this setion, �

sf

(h) an be desribed as

L

xz

[ L

xyyz

, where

L

xz

=f xz j xyz 2 L with u

1

2 Suf (x); v

1

2 Pref (yz);

u

2

2 Suf (xy); v

2

2 Pref (z) for a (u

1

; v

1

; u

2

; v

2

) 2 R g and

L

xyyx

=f xyyz j xyz 2 L with u

1

2 Suf (xy); v

1

2 Pref (z);

u

2

2 Suf (x); v

2

2 Pref (yz) for a (u

1

; v

1

; u

2

; v

2

) 2 R g

Let 1 and 2 be symbols not in V ; we will use these symbols to mark the two

spliing sites in a string, similarly to the symbol # in the strings of C(L;R). So,

let

L

12

=f x1y2z j xyz 2 L with u

1

2 Suf (x); v

1

2 Pref (yz);

1

A generalized sequential mahine, gsm, di�ers from a �nite state transduer in that

it is not allowed to read �. For two-way mahines the two notions are equivalent.

10



u

2

2 Suf (xy); v

2

2 Pref (z) for a (u

1

; v

1

; u

2

; v

2

) 2 R g and

L

21

=f x2y1z j xyz 2 L with u

1

2 Suf (xy); v

1

2 Pref (z);

u

2

2 Suf (x); v

2

2 Pref (yz) for a (u

1

; v

1

; u

2

; v

2

) 2 R g

Note that L

12

[L

21

an be obtained from L (and R) by a (nondeterministi,

one-way) �nite state transdution based on Z(R). The transduer has to searh

for the two utting points simultaneously, beause the spliing sites u

1

v

1

and

u

2

v

2

an overlap and the transduer is not allowed to go bak on its input.

As CF is losed under �nite state transdutions, L

12

[ L

21

belongs to CF.

It is now straightforward to design a (deterministi) two-way �nite state

transdution that maps L

12

[L

21

onto L

xz

[L

xyyz

, as follows. It opies its input

from left to right until it arrives at the symbol 1. At that moment the mahine

moves to the symbol 2 without opying (forward or bakward depending on

whether the 2 was enountered before �nding the 1). At the symbol 2 it resumes

a left to right san opying the input, stopping at the right end of the tape. ut

As stated in [EY71, Theorem 3.4℄, 2DGSM(CF) is stritly ontained in the

family of ontext-sensitive languages. Hene we obtain an upper bound as re-

quired.

Corollary 14. S

sf

(F

1

;F

2

) � CS for F

1

= LIN;CF and F

2

= FIN;REG.

The onstrution for doubling disussed in the introdution of this setion

implies that also self spliings of (REG; LIN) type an yield languages outside

CF. We show that they an even de�ne non-ontext-sensitive languages, i.e., we

prove that the smallest upper bound in the Chomsky hierarhy of S

sf

(REG;CF)

and S

sf

(REG; LIN) is RE.

For ontext-free rules this is relatively easy, as we an diretly simulate the

quotient operation on linear languages using ontext-free spliing of regular lan-

guages. The result then follows, as every RE language an be written as the

quotient of two linear languages ([LLR85℄).

Lemma 15. Let L

1

; L

2

be linear languages over � and let 1 be a symbol not in

�. Then 1L

1

=L

2

2 S

sf

(REG;CF).

Proof. Assume that L

1

and L

2

are linear languages with L

1

; L

2

� �

�

for some

alphabet �. Let 1; 2; 3 62 � be new symbols, and de�ne h = (� [ f1; 2; 3g; L;R)

by

L = 1�

�

2�

�

3

R = f (1u; 2 v 3; 2w 3; �) j uv 2 L

1

; w 2 L

2

g

Sine LIN is losed under onatenation with symbols and under shu�e with

strings (but not under onatenation) we have Z(R) = f1u#2v3$ j uv 2 L

1

g �

f2w3# j w 2 L

2

g 2 LIN � LIN � CF.

We start by proving that �

sf

(h) � 1L

1

=L

2

. Let x 2 L and (x; x) `

r

z for a

rule r = (1u; 2v3; 2w3; �). Then, beause of the form of the axioms and the �rst

11



0 x# 1 x

1

: : : x

k

x

k+1

y

R

`

: : : y

R

1

y

R

0

2 $ 1 z

1

z

2

: : : z

`+1

x

R

k

: : : x

R

1

x

R

0

2 #

�

x

0

= aq

0

xb

�

�

R

�

�

R

�

�

y

0

` z

1

�

�

y

1

` z

2

�

Æ

y

`

` z

`+1



Fig. 1. The struture of strings in K

M

.

spliing site we must have x = 1u2v3. Moreover we have 2v3 = 2w3, i.e., v = w,

beause we are onsidering self spliing. Clearly (1u j 2v3 ; 1u2v3 j �) `

sf

r

z =

1u 2 1L

1

=L

2

, sine uv 2 L

1

and v = w 2 L

2

by onstrution.

Now take z 2 L

1

=L

2

, i.e., there is a y 2 L

2

suh that zy 2 L

1

. Aording to

the de�nition of h there is a spliing rule r = (1z; 2y3; 2y3; �) 2 R and an axiom

1z2y3, and so (1z j 2y3 ; 1z2y3 j � ) `

r

1z 2 �

sf

(h). ut

Corollary 16. Let K be a language over � and let 1 be a symbol not in �. If

K 2 RE, then 1K 2 S

sf

(REG;CF).

Sine CS is losed under quotient with symbols, 1K 2 CS would imply K 2

CS. Consequently K 2 RE� CS implies 1K 2 RE� CS, thus the smallest upper

bound in the Chomsky hierarhy of S

sf

(REG;CF) is RE, as formulated in the

following theorem.

Theorem 17. S

sf

(REG;CF)� CS 6= ?.

The same result holds for S

sf

(REG; LIN), i.e., we may replae the set of rules

R for whih Z(R) 2 LIN � LIN by a set R with Z(R) 2 LIN, f. the proof of

Lemma 15. We annot do this diretly, as in that proof. Instead, we obtain

this by reonsidering the proof in [LLR85℄ that every reursively enumerable

language is the quotient of two linear languages. The main idea is that single

steps of a Turing mahine an be aptured by a linear grammar, provided that

we represent one of the two on�gurations involved by its mirror image. It is

also possible to represent a series of steps of the Turing mahine, steps whih are

unrelated however, as we annot join them into a omputation without further

triks (like intersetion, quotient, or . . . self spliing).

We desribe now our approah to ode series of Turing mahine omputa-

tional steps. Several markers are inluded in the language in order to use it in

the spliing proess.

LetM be a Turing mahine with state set Q, initial state q

0

, �nal state f and

tape alphabet � . We denote the on�gurations of M by strings in onf(M) =

12



a�

�

Q�

�

b, where a;b are speial symbols used to delimit the strings. The step

relation of M is de�ned over onf(M), and is denoted by `

M

. We assume M

reognizes strings x over � by starting in the initial on�guration a q

0

xb and

reahing a �nal on�guration in a�

�

f �

�

b.

Let 0; 1; 2;#; $ be symbols not in �. Using w

R

to denote the mirror image

of string w, de�ne the language K

M

to onsist of the words

0 x# 1 x

1

: : : x

k

x

k+1

y

R

`

: : : y

R

1

y

R

0

2 $ 1 z

1

z

2

: : : z

`+1

x

R

k

: : : x

R

1

x

R

0

2 #

where

x 2 �

�

, x

0

= a q

0

xb, x

k+1

2 a�

�

f �

�

b,

x

0

; : : : ; x

k+1

; y

0

; : : : ; y

`

; z

1

; : : : ; z

`+1

2 onf(M), for k; ` � 0, and

y

i

`

M

z

i+1

for 0 � i � `.

The struture of the strings in K

M

is illustrated in Figure 1. A single step of

a Turing mahine indues just a loal hange in a on�guration. It is an easy

exerise to show that K

M

is linear language, a variant of the language used in

[LLR85℄.

Lemma 18. For eah Turing mahine M, K

M

2 LIN.

Theorem 19. Let K be a language over � and let 0 be a symbol not in �. If

K 2 RE, then 0K 2 S

sf

(REG; LIN).

Proof. Let K = L(M) for a deterministi Turing mahine M, and let K

M

be

as de�ned above. Now �

sf

(h) = 0K for the spliing system h = (V; L;R) de�ned

by

V = � [ f0; 1; 2g

L = 0�

�

1 (� [ fa;bg)

�

2

Z(R) = K

M

Using Lemma 18, we observe that the system h is of (REG; LIN) type. The spliing

rules of h are of the form

( 0 x ; 1 x

1

: : : x

k+1

y

R

`

: : : y

R

1

y

R

0

2 ; 1 z

1

: : : z

`+1

x

R

k

: : : x

R

1

x

R

0

2 ; � )

with x

1

; : : : ; x

k+1

; y

0

; : : : ; y

`

; z

1

; : : : ; z

`+1

2 onf(M), x

0

= a q

0

xb and y

i

`

M

z

i+1

for 0 � i � `; x

k+1

is a �nal on�guration of M.

Beause of the form of the initial strings and of the rules, the �rst argument

of the spliing must be of the form 0 x 1 x

1

: : : x

k+1

y

R

`

: : : y

R

1

y

R

0

2. Sine we

onsider self spliing, this is also the seond argument. The seond spliing site

now enfores the equality

x

1

: : : x

k+1

y

R

`

: : : y

R

1

y

R

0

= z

1

: : : z

`+1

x

R

k

: : : x

R

1

x

R

0

;

and the marking with a and b ensures that k = `, x

i

= z

i

for 1 � i � k + 1

and y

j

= x

j

for 0 � j � k. Hene x

0

= a q

0

xb is the initial on�guration of M

for the input word x, x

i

= y

i

`

M

z

i+1

= x

i+1

for 0 � i � k, and x

k+1

is the

13



FIN REG LIN CF FIN REG LIN CF FIN REG LIN CF

f REG REG LIN CF CF CF RE RE CF CF RE RE

in REG REG CF(Z

2

) CF(Z

2

) CF(Z

2

) CF(Z

2

) CS CS CF(Z

2

) CF(Z

2

) CS CS

de REG REG CF(Z

2

) CF(Z

2

) CF(Z

2

) CF(Z

2

) RE RE CF(Z

2

) CF(Z

2

) RE RE

sl LIN LIN CF(Z

1

) CF(Z

1

) CF(Z

1

) CF(Z

1

) RE RE CF(Z

1

) CF(Z

1

) RE RE

sf 2(CF) 2(CF) RE RE 2(CF) 2(CF) RE RE 2(CF) 2(CF) RE RE

F

1

= REG F

1

= LIN F

1

= CF

Table 2. Updated upper bounds for S

�

(F

1

;F

2

). We use 2(CF) as shorthand for

2DGSM(CF).

�nal on�guration of M for x. Thus x

0

`

M

x

1

`

M

: : : `

M

x

k+1

is an aepting

on�guration sequene for x. Consequently, if 0x1x

1

: : : x

k+1

y

R

`

: : : y

R

1

y

R

0

2 splies

with itself to give 0x, then x 2 L(M).

The reverse inlusion follows along the same lines (read bakwards). ut

Again we obtain a negative result onerning the upper bound CS.

Theorem 20. S

sf

(REG; LIN)� CS 6= ?.

7 Conlusion

We have �lled the open spots in Table 1, and improved some of the known CS

upper bounds given there. In Table 2 we summarize the results on the upper

bounds of the four modes that we onsidered. Note that not all bounds given

in this summary meet the original goal set in [PRS98,KPS96℄, to give minimal

upper bounds within the Chomsky hierarhy. To get these, replae the items

CF(Z

1

), CF(Z

2

), and 2DGSM(CF) by CS.

We now have a full insight in the omplexity of the restrited spliing modes

we have onsidered. This piture is somewhat surprising. If we order the spliing

modes aording to their upper bounds, we obtain di�erent outomes depending

on the omplexity of the input languages and the rules. We list a few represen-

tative examples by omparing the upper bounds in the Chomsky hierarhy.

(REG;REG) f; in; de � sl � sf

(REG;CF) f � sl; in; de � sf

(CF;REG) f � sl; in; de; sf

(CF;CF) in � f; de; sl; sf

The piture is more omplex in the ase we onsider the families CF(Z

k

) and

2DGSM(CF) instead of CS. We postulate here that CF(Z

k

) and 2DGSM(CF) are

inomparable.

Apart from the fat that self spliing seems to be the most omplex operation

for all types of input language and rules, it seems hard to make general observa-

tions on the relative power of restrited spliing modes. One does note that the

14



tables for linear and ontext-free initial languages oinide. However, we on-

jeture that, although these upper bounds are idential, the family S

�

(LIN;F)

is stritly inluded in S

�

(CF;F). Similarly, we observe that for a �xed family

of initial languages, the upper bounds obtained for FIN and REG rules are the

same, and also the upper bounds obtained for LIN and CF rules are the same

(with the exeption of free spliing). For FIN and REG rules we have obtained

some evidene that the families S

�

(F ;FIN) and S

�

(F ;REG) are equal for sev-

eral modes of spliing, see [DHvV00℄ and the forthoming thesis of the seond

author.
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