Output String Languages of Compositions of
Deterministic Macro Tree Transducers

Joost Engelfriet and Sebastian Maneth

Leiden University, LIACS, PO Box 9512, 2300 RA Leiden, The Netherlands
E-mail: {engelfri, maneth}@liacs.nl

Technical Report 2001-04

Abstract. The composition of total deterministic macro tree transducers
gives rise to a proper hierarchy with respect to their output string languages
(these are the languages obtained by taking the yields of the output trees).
There is a language not in this hierarchy which can be generated by a (quite
restricted) nondeterministic string transducer, namely, a two-way general-
ized sequential machine. Similar results hold for attributed tree transduc-
ers, for controlled EDTOL systems, and for YIELD mappings (which proves
properness of the IO-hierarchy). Witnesses for the properness of the macro
tree transducer hierarchy can already be found in the latter three hierarchies.

1 Introduction

Macro tree transducers [Eng80,CF82,EV85] are a model of syntax-directed seman-
tics (see [FVO8] for a survey) which combine top-down tree transducers and macro
grammars, i.e., they are finite state transducers, the states of which are equipped
with parameters that allow to handle context information.

A macro tree transducer M can be used as a string language generator as follows.
The tree translation of M is applied to a tree language, which typically is the set of
derivation trees of a context-free grammar, or, in general, a regular tree language.
This generates an output tree language of M, and taking the yields of these trees
generates an output string language of M. In this way one can also view M as a
controlled (tree) grammar, where the generation of the output trees is controlled
by the input trees. Then, the iteration of control corresponds to the composition of
the tree translations. The string languages generated by the composition closure of
macro tree transducers form a very large class with nice properties: it is a full AFL,
and membership, emptiness, and finiteness of its languages are decidable [DE9S].
Because of their special relevance to syntax-directed semantics we here investigate
total deterministic macro tree transducers (for short, MTTs) only; they are a com-
bination of total deterministic top-down tree transducers and IO (inside-out) macro
grammars.

The question arises, whether composition of MTTs gives rise to a proper hierar-
chy of output string languages. For the two ingredients of MTTs the situation is as
follows. Since (total deterministic) top-down tree transducers are closed under com-
position [Rou70], they do not form a proper hierarchy of output string languages
(note that composition of nondeterministic top-down tree transducers does yield
such a hierarchy [Eng82]). The iteration of IO macro grammars by the concept of
n-level grammars gives rise to a proper and to an infinite hierarchy [Dam82], for
the generated tree and string languages, respectively: the so-called I0-hierarchies
(see, e.g., [EST8]). With respect to the translations it is well known that composi-
tion of MTTs (which corresponds to the n-level tree transducers of [EV88]) yields
a proper hierarchy, that is, the class of translations realized by the composition of
n MTTs is properly included in the one realized by the composition of n+1 MTTs

(cf. [EV85]). The proof relies on the fact that the height of the output tree of an
MTT is exponentially bounded by the height of the input tree. In [Dam82] it is
proved that also the output tree languages form a proper hierarchy. With respect
to the output string languages, composition of MTTs yields an infinite hierarchy;
the proof in [Dam82] combines the above exponential bound with the concept of
rational index [BCN81]. To prove properness of this hierarchy (at each level) we use
instead a so-called “bridge-theorem” (cf. [Eng82], and the section on translational
techniques in [Gre81]).

Let us discuss the bridge theorem in more detail. Consider two languages L' and
L such that L' is of some special form, depending on L; in applications of the bridge
theorem, L' will typically be obtained from L by some kind of string insertion. Now
if L' is the output string language of an MTT, then the special form of L’ forces
the language L to be an output string language of an MTT M which has certain
restricted properties. To be precise, these properties require that in the rules of M
(i) no parameter is copied and (ii) no parameter is deleted. An MTT satisfying (i)
and (ii) is called simple in the parameters (for short sp). The proof of this bridge
theorem is a generalization of the proof of Theorem 3.4.3 in [Fis68], where Fischer
proves for a specific IO macro language L' that L can be produced by an I0 macro
grammar that is sp. For an MTT M that is sp we show that, with respect to the
output string language, parameters are not needed at all; that is, we can construct
a top-down tree transducer which has the same output string language as M. Since
MTTs are closed under composition with top-down tree transducers, this result
will allow us to use the bridge theorem to step down from the composition of n + 1
MTTs to that of n MTTs.

We apply the bridge theorem to three different types of string insertions to
obtain the following results:

(1) There is a language L' which is not the output string language of any com-

position of MTTs, but which can be generated by a nondeterministic two-way
generalized sequential machine. Here, L' is obtained from L by the nondeter-
ministic insertion of two new symbols, where L is a language that cannot be
generated by a top-down tree transducer. Intuitively, the result shows that non-
determinism (present in a very simple type of insertion) is more powerful than
determinism (present in an MTT).
As another example of this phenomenon we prove that there is a context-free
language which cannot be generated as output by the composition closure of
MTTs, taking monadic tree languages as initial input. The latter class of lan-
guages is of interest because it contains the EDTOL-hierarchy, generated by the
iteration of controlled EDTOL systems. The EDTOL system is the deterministic
version of the ETOL system [Roz73] (see [ERS80] for the relationship of these
systems to top-down tree transducers and two-way machines). In particular
we show that languages generated by the iteration of n + 1 controlled EDTOL
systems can be generated by the composition of n MTTs.

(2) Composition of MTTs yields a proper hierarchy with respect to their output

string languages, i.e., there is a language L’ which is output string language
of the composition of n + 1 MTTs, but which cannot be generated as output
by the composition of n MTTs. Here L' is obtained from a language L at the
previous level, by inserting a sequence of b’s before each symbol of a string in
L (for a new symbol b), viz., b’ before the i-th symbol from the right.
In fact, we use the relationship with EDTOL systems mentioned in point (1)
and show that L' can be generated by the iteration of n + 2 controlled EDTOL
systems. This implies properness of the EDTOL-hierarchy. In [Eng82] proper-
ness of the ETOL-hierarchy is proved, but it is mentioned as open whether the
EDTOL-hierarchy is proper.

(3) There is an (n + 1)-level I0 macro language L' which cannot be generated as

output by the composition of n MTTs. Here, L' is obtained from L (at the
previous level) by inserting, before each symbol of a string w in L, a string
in {1,2}* that represents (in Dewey notation) the corresponding leaf of some
binary tree with yield w. Since every n-level IO macro language can be generated
as output by the composition of n MTTs, this proves the properness of the
IO-hierarchy of string languages, which was left open in [Dam82].
Since every n-level I0 macro language can also be generated as output by the
composition of n attributed tree transducers [Fiil81,FV98] (ATTs), and ATTs
can be simulated by MTTs, we also obtain that composition of ATTs yields a
proper hierarchy of output string languages.

This paper is structured as follows. Section 2 contains basic notions concerning
trees, tree substitution, tree translations, and finite state relabelings. In Section 3,
the definition of macro tree transducers is given and some basic lemmas are recalled.
Furthermore, the sp (simple in the parameters) property is defined. In Section 4 it is
proved that MTTs are closed under composition with finite state relabelings. This
also implies the closure of MTTs under composition with top-down tree transducers
with regular look-ahead, which is mentioned as an open problem in the Conclusions
of [EV85]. Finally, it is proved that MTT's that are simple in the parameters generate
the same class of output string languages as top-down tree transducers. Section 5
contains the detailed proof of the bridge theorem, together with two particular
versions of it. Using these theorems it is proved in Section 6 that composition of
MTTs yields a proper hierarchy of output string languages (the yMTT-hierarchy)
and that the EDTOL-hierarchy is proper. Moreover, it is shown that there are “non-
deterministic” languages not in the yMTT- and the EDTOL-hierarchies, which can
be generated by a nondeterministic two-way generalized sequential machine and a
context-free grammar, respectively. The properness of the 10-hierarchy is proved in
Section 7, and it is shown that the EDTOL-hierarchy is included in the IO-hierarchy.
Finally, Section 8 contains the hierarchy result for ATTs and a summary of relations
between the various hierarchies discussed in this paper; it also mentions some open
problems.

Some of the results of this paper were presented in [Man99].

2 Preliminaries

The set {0,1,...} of natural numbers is denoted by N. The empty set is denoted
by @. For k € N, [k] denotes the set {1,...,k}; thus [0] = @. For a set A, |A] is its
cardinality, and A* is the set of all strings over A. An alphabet is a finite set A. The
empty string is denoted by e. The length of a string w is denoted by |w|, and the
i-th symbol in w is denoted by w(Z). For a string w = ay - - - ay,, its reverse a,, - - - a; is
denoted by w". For strings v, w1, ...,w, € A* and distinct a4, ...,a, € A, we denote
by v[a; < wi,...,a, + wy,] the result of (simultaneously) substituting w; for every
occurrence of a; in v. Note that [a; « wi,...,a, < wy] is a homomorphism on
strings. For a condition P on a and w we use, similar to set notation, [a < w | P] to
denote the substitution [L], where L is the list of all a + w for which condition P
holds. By REG and CF we denote the classes of regular and context-free languages,
respectively.

For functions f: A — B and g: B — C their composition is (f o g)(x) = g(f(z));
note that the order of f and g is nonstandard. For sets of functions F' and G their
composition is FoG ={fog|f€ F,g € G},and F* = Fo---0oF (n times). For
a binary relation =, its transitive reflexive closure is denoted by =*.

Let A and B be disjoint alphabets. For w € (AU B)* we denote by ress(w) the
restriction of w to letters in A, i.e., resy is the homomorphism from (AU B)* to A*
defined by ress(a) = a for a € A and resy(a) =€ for a € B.

2.1 Ranked Sets and Trees

A set X together with a mapping ranks: Y — N is called a ranked set. For k >
0, X is the set {¢ € ¥ | ranks(c) = k}; we also write o(®) to indicate that
ranks(0) = k. If ¥ = ¥ U X then ¥ is monadic. For a set A, (¥, A) is the
ranked set X' x A with rank s 4y((0,a)) = rankx(o) for every (o,a) € (¥, A).

For the rest of this paper we choose the set of input variables to be X =
{z1,22,...} and the set of parameters to be Y = {y1,ya,...}. For k > 0, X, =
{xla"'axk} and Yk = {yla"'ayk}‘

Let X' be a ranked set. The set of trees over X, denoted by T's;, is the smallest
set of strings T C (X U{(,), ,})* such that £ C T and if 0 € ¥*) k& > 1, and
t1,...,tg € T, then o(t1,...,t;) € T. For a € Y0 we denote the tree o also by
a(). If X' is monadic, then ¢t € Ts; is a monadic tree. For a set A, the set of trees
over X indexed by A, denoted by T's;(A), is the set T's;ya, where for every a € A,
rank4(a) = 0.

For every tree t € Ty, the set of nodes of t, denoted by V (¢), is a subset of N*
which is inductively defined as follows: if t = o(t1,...,t;) with ¢ € £*) k > 0,
and for all i € [k],t; € Tx, then V(t) = {e} U {iv | u € V(¢;),7 € [k]}. Thus, ¢
represents the root of a tree and for a node u the i-th child of u is represented by
wi. The label of t at node u is denoted by t[u]; we also say that t[u] occurs in ¢ (at
u). The node u is a leaf if it has no children, i.e., if t{u] € X©. The subtree of
t at node u is denoted by t/u. The substitution of the tree s € Ty at node u in t
is denoted by t[u < s]; it means that the subtree ¢/u is replaced by s. Formally,
these notions can be defined as follows: t[e] is the first symbol of ¢ (in X)), t/e = ¢,
tle < s] = s, and if t = o(t1,...,t), i € [k], and u € V(t;), then t[iu] = t;[u],
t/iu = t;/u, and t[iv « s] = o(t1,...,t;[u < s],...,t). The pre-order of the nodes
of ¢ is the lexicographical order on N*; thus, ¢ < iu, if u < v then iu < iv, and if
1 < j then iu < jv.

For a tree t € T's;, yt denotes the yield of t, i.e., the string in (X(9)* obtained by
reading the leaves of ¢ in pre-order, omitting nodes labeled by the special symbol
e. Thus, yt = t[p1]---t[pm], where p1,...,pm are all leaves p of t with t[p] # e,
in pre-order (e.g., for t = o(a,o(e,b)), yt = t[1]¢[22] = ab). The string yt can be
obtained recursively as follows; if t = e then yt = ¢, if t € X(©) — {e} then yt = t,
and if t = o(t1,...,t3), k>1,0 € X% and t1,...,t; € Tx, then yt = yt1 - - yt.

Let A be an alphabet and let w € A*. For a binary symbol o ¢ A, the tree
comb, (w) € Ty,1(A) is recursively defined as follows; if w = ¢ then comb, (w) = e,
and if w = aw’ with @ € A and w' € A*, then comb, (w) = o(a, comb, (w')). Clearly,
ycomb, (w) = w. The monadic tree sm(w) € Tr with I' = {a") | a € A} U {e®}
is recursively defined as e if w = € and as a(sm(w')) if w = aw’ with a € A and
w' € A*. As an example, comb, (acc) = o(a, o(c,0(c,e))) and sm(acc) = a(c(c(e))).

2.2 Second-Order Tree Substitution

Note that trees are particular strings and that string substitution as defined in the
beginning of this section is applicable to a tree to replace symbols of rank zero; we
refer to this type of substitution as “first-order tree substitution”.

Let X be a ranked alphabet, let o1, ..., 0, be distinct elements of X, n > 1, and
for each i € [n] let s; be a tree in T'x;_y (Y}), where k = ranky (0;). For ¢t € Ty, the
second-order tree substitution of o; by s; in t, denoted by

tfo1 < S1,...,0n < 8]

is inductively defined as follows (abbreviating [o1 + s1,...,0, < su] by [...])-
For t = o(ty,...,ty) with o € X m > 0, and t,,...,t, € Tx, (i) if 0 =
o; for an i € [n], then t[...] = s;ly; < t;[...] | 7 € [k]] and (ii) otherwise
tl...] = ota--],---,tm[.-])- Note that [o1 < s1,...,0n < sp] is a tree ho-
momorphism [GS84] and that (just as ordinary substitution) second-order tree sub-
stitution is associative (by the closure of tree homomorphisms under composition,
cf. Theorem IV.3.7 of [GS84)), i.e., t[o < s][o < s'] = t[o < s[o < s']] and if
o' # o then tfo + s][o’ + §'] = t[o’' « s',0 « s[o’ + §']], and similarly for the
general case (cf. Sections 3.4 and 3.7 of [Cou83]). For a condition P on ¢ and s we
use [o < s | P] to denote the substitution [L], where L is the list of all o « s for
which condition P holds.

The following small lemma says that if we are considering the yield of a tree to
which a (first- or second-order) tree substitution is applied, then inside the substi-
tution merely the yields of the trees that are substituted are relevant.

Lemma 1. Let ¥ be a ranked alphabet, a,...,a, € ¥ —{e},and 04,...,0, €
Y. Let t,t',s1,81,...,8n,5), € Tx(Y) such that ys; = ys} for every i € [n].

(a) If yt = yt', then y(tjan + s1,...,an < su]) =y(t'[on < $4,...,an < s]).
(b) y(tfor < s1,...,0n < sp]) = y(tor < si,...,0n < sh])-
Proof. (a) Clearly, y(tlag < s1,..., 0, < $p]) equals (yt)[o; < ys; | i € [n]] (note
that here the substitution is on strings). Since yt = yt' and ys; = ys}, this equals
(yt[ow < ysi i € n]] = y(t'[on < si, ..., an < sh])-

(b) This part is proved by induction on the structure of ¢. Let t = o(t1, ..., tx)

with k > 0,0 € X% and t,...,tx € Tx. Let [01 < s1,...,0, < 5,] be denoted
by [...] and let [o1 < si,...,0n ¢ s,,] be denoted by [-].

(i) If 0 = o for an i € [n], then y(¢[...]) = y(sily; « t;[...]1 | 7 € [K]]). By
induction, y(¢;[...]) = y(t;[]) for j € [k]. Hence, by (a) (for t = s;, ¢’ = s}, aj = y;,
sj = tj[...], and s = t;[]), this equals y(si[y; < t;[-] | j € [K]]) = y(t[-])-

(ii) Otherwise, y(t[...]) = yo(ta[..], - te[.-]) = y([.-.]) - -y([--.])- By
the induction hypothesis we get y(¢1[]) - - - y(t[-]) = y(¢[-])- O

2.3 Tree Translations and Relabelings

Let ¥ and A be ranked alphabets. A subset L of Tx is called a tree language. A
(total) function 7:Ts; — T is called a tree translation or simply translation. For
a tree language L C Tz, 7(L) denotes the set {t € Ta | t = 7(s) for some s € L}
and yL = {yt | t € L}. For a class T of tree translations and a class £ of tree
languages, T (L) denotes the class of tree languages {r(L) | 7 € T,L € L} and
yL={yL|LeL}.

A tree language is regular (or recognizable) if there is a finite state tree automa-
ton recognizing it, or, equivalently, there is a regular tree grammar generating it. The
class of regular tree languages is denoted by REGT. Note that sm(REG) C REGT.
The reader is assumed to be familiar with the basic properties of the regular tree
languages (see, e.g., [GS84,GS97]).

A (total deterministic) finite state relabeling M is a tuple (@, X, A, R), where @
is a finite set of states, X' and A are ranked alphabets of input and output symbols,
respectively, and R is a finite set of rules such that for every o € X(*) k> 0, and
qi,---,q; € Q, R contains exactly one rule of the form o({g1,z1), ..., {(qx, zr)) —
(q,0(x1,...,x1)), where ¢ € Q and 6 € A®) . The rules of M are used as term
rewriting rules, and the derivation relation induced by M is denoted by =>5s; more
formally, for £,£" € Tyo,rayus, § = &' if and only if

— there is a subtree o({q1,t1),- .., (qr,tx)) (rooted at node u) of & with o € X(*),
E>0,q1,...,qx € Q,and t1,...,tp € Ta, and

- fl = f[u « <Qa 5(t17 tee 7tk)>]7 where U(<qlaxl>a teey (qkaxk» - <Qa (5(1’1, tey .’Ek)>
is a rule in R.

If we are only interested in the state ¢ in which M arrives for input s, then
we write s =%, (¢,_) (to mean that s =%, (g,t) for some tree t). Note that for
each g € Q, {s € Ts | s =%, (¢,_)} is a regular tree language. The translation 7y
realized by M is {(s,t) € T xTa | s =%, (¢,t),q € Q}. The class of all translations
that can be realized by finite state relabelings is denoted by D; QRELAB.

3 Macro Tree Transducers

In this section macro tree transducers are defined and some results which will often
be used throughout the paper are recalled. Furthermore, the nondeleting and sp
(simple in the parameters) properties are defined.

Definition 2. A (total deterministic) macro tree transducer (for short, MTT) is a
tuple M = (Q, X, A, qo, R), where @ is a ranked alphabet of states, X' and A are
ranked alphabets of input and output symbols, respectively, ANY = @, ¢ € Q¥
is the initial state, and R is a finite set of rules of the following form. For every
g€ QM and o € ¥ with m,k > 0 there is exactly one rule of the form

(qaa(xla'"vrk))(yla"'aym)_>C (*)
in R, where (€ T(Q,Xk)UA(Ym)- O

A rule r of the form (x) is called the (g, 0)-rule of M and its right-hand side ¢
is denoted by rhsps(q, 0); it is also called a g-rule. The rules of M can be viewed
as term rewriting rules in the obvious way, with the input variables z; ranging over
Tx and the parameters y; ranging over T4. Then M induces a derivation relation
=um on Tig rsyua and an input tree s € T'x: is translated by M into the unique tree
t € Ta with {(qo, s) =%, t. Instead of using the derivation relation = s to define the
translation realized by M, we use the following recursive definition of ¢-translations,
which is based on second-order tree substitution as defined in Section 2.2.

Definition 3. Let M = (Q, X, A, qo, R) be an MTT and let ¢ € QU™ be a state
of M. The g-translation of M is the total function M, : T — Ta(Y,,) defined as
follows. For every 0 € X¥) k>0, and s1,...,5; € Tx,

Mq(o-(817 ey Sk)) = I"hSM((], U)[[<qlawi> — Mq’ (Sl) | (qlami> € (Q:Xk>]]
The translation realized by M, denoted by 7y, is the go-translation M,, of M. O

Note that the g-translation of M can also be obtained using the derivation
relation = s discussed above, i.e., for every input tree s of M, (g, s)(y1,---,Ym) =
M, (s) (cf. Lemma 4.8 of [EV94]). In proofs we will always use the g-translations of
M, but our intuition is often based on the derivation relation = ;. For an example
of an MTT M, and the way it works, see Example 10 at the end of this section.

The class of all translations which can be realized by MTTs is denoted by MTT.
A top-down tree transducer is an MTT all states of which are of rank zero. The class
of all translations which can be realized by top-down tree transducers is denoted by
T. If a top-down tree transducer has only one state, then it is a tree homomorphism.
Note that every tree homomorphism is a second-order tree substitution, and vice
versa.

The following two results are often used in this paper.

Lemma 4. (Corollary 4.10 of [EV85]) T'o MTT C MTT.

Lemma 5. (Theorem 4.12 of [EV85]) MTT oT C MTT.

Since regular look-ahead can be simulated by finite state relabelings (see Corol-
lary IV.6.7 in [GS84]), the fact that MTT is closed under regular look-ahead (The-
orem 4.21 of [EV85]) can be stated as follows.

Lemma 6. D;QRELABo MTT C MTT.

Recall from Section 2.1 that for a string w = ay ---ap, sm(w) is the monadic
tree aj (as(---an(€)---)). The next lemma shows that an MTT can turn the yield
ys of its input tree s into the monadic tree sm(ys).

Lemma 7. Let X be a ranked alphabet. There is an MTT M with input alphabet
X such that for every s € T's, Tar,, (s) = sm(ys).

Proof. Define My = ({qSO),q(l)},E,F,qo,R) with I' = {a® | a € X, a # e} U
{e(9}. For every 0 € £*) k> 1, let the rules

(qu 0'(1‘1, s 7xk)> - <q7x1>(<qax2>(' e ((qaxk>(e)) s))
(0@, me))(yn) = (G2 ((g22) (- (@ k) (1) - -)

be in R, for every a € £(©) — {e} let (g, a) — a(e) and (g,a)(y1) = a(y;) be in R,
and let (go,e) — e and (q,e)(y1) = y1 be in R.

We now show that 7a7, = yosm. Let s = o(s1,...,s;) with ¢ € 2k,
k>0, and s1,...,sx € Tx. Then 7ar, (s) = My, (s) which, by Definition 3, equals
rhsar(qo,o)[-..] with [...] = [{¢', ;) + My (si) | ¢ € {qo,q},7 € [k]]. By the defi-
nition of the rules of M this equals rhsys (g, 0)[y1 < €][...] = rhsy (g, o). Jly1 <
e] = M,(s)[y1 < e], which, by the following claim, is equal to sm(ys).

Claim: For every s € Tx;, My(s) = sm(ys)[e « y1].

The proof is by induction on the structure of s. If s = e then My(s) = y1 =
sm(e)[e < y1] = sm(ys)[e < y1], and if s = a € T(© — {e} then M,(s) = a(y) =
sm(ys)le < y1]. Let s = o(s1,...,s;) with o € X%k > 1, and s1,...,s, €
Tx. It follows from Definition 3 that M,(s) = (g, z1)(- - - (¢, zk)(y1) - - -) [{d', z:)
My (si) | ¢ € {q,q},i € [k]]. Applying the induction hypothesis (and combining
the substitution of y;) we get

sm(ysi)[e < sm(ysa)[-- - [e + sm(ysg)[e < v1]]---]]-

Clearly, [e « y1] can be moved out of the substitutions. By the fact that sm(w)|e +
sm(w')] = sm(ww'), we get sm(ys; ---ysg)[e < y1] = sm(ys)[e + y1]- O

A macro tree transducer M is nondeleting, if in the right-hand side of every
g-rule, for every state ¢ of rank m > 1, each parameter y;, j € [m], occurs at
least once. This property makes sure that the output generated in a parameter
position cannot be deleted. First, let us prove a small lemma which says that also
in the translations M, (s), every parameter of ¢ occurs. This is similar to Lemma 6.7
of [EM99], which says that if every parameter y; occurs exactly once in a right-hand
side (for all rules of M), then y; also occurs exactly once in M,(s).

Lemma 8. Let M = (Q, X, A, qo, R) be a nondeleting MTT, ¢ € Q™ , m > 1,
and s € Ts. Then for every j € [m], y; occurs in Mg(s).

Proof. Let j € [m]. The proof is by induction on the structure of s. The induction
hypothesis is denoted by THI. Let s = o(s1,...,5;) with ¢ € Z*) & > 0, and
$1,-..,5k € Tx. By Definition 3, M,(s) = rhsy(g,0)[...] with [...] = [{¢,z:) «
My (s;) | {¢',z:) € (Q,X)]- Since M is nondeleting, y; occurs in ¢ = rhsy(g, o)
and, by the following claim, y; occurs in ¢[. . .].

Claim: Let t € Tyg,x,yua(Ym). If y; occurs in #, then it occurs in £[...].

The claim is proved by induction on the structure of ¢. The induction hypoth-
esis is denoted by IH2. If ¢ = y;, then t[...] = y;. Let I > 1 and t1,...,% €
Ta.x0ua(Ym) It =6(tr,....t) withd € AD thent[...] =8t[..],....t[..]
Since y; occurs in ¢, it occurs in ¢, for some v € [I]. By IH2, y; occurs in ¢,[...]
and thus in t[...]. If t = (¢',z;)(t1,...,t;) with (¢',2z;) € (Q, Xx)?, then t[...] =
My (si)lyy < t,[...] | v € [1]]. By the fact that y; occurs in ¢, and by IH2, y; occurs
in ¢,[...] for some v € [I]. By IH1, y, occurs in My (s;) and thus ¢,[. . .] is a subtree
of t[...]. O

It was proved in Lemma 6.6 of [EM99] that every MTT M with regular look-
ahead can be turned into a nondeleting one which realizes the same translation as
M. This can be stated in the following way (cf. Lemma 6), where MTTyq denotes
the class of all translations realized by nondeleting MTTs.

Lemma 9. MTT C D;QRELABo MTT,q4.

A macro tree transducer M is simple in the parameters (for short sp), if in the
right-hand side of every g-rule, for every state ¢ of rank m > 1, each parameter y;,
J € [m], occurs exactly once (i.e., the rules of M are linear and nondeleting in Y;;,);
we say that M is an MTTs,. The class of all translations that can be realized by
MTTgps is denoted by MTTs,. Note that in [EM99], sp macro tree transducers are
said to be ‘nondeleting surp’.

Let us finally consider an example of an MTT,.

Ezample 10. Let M = (Q, ¥, ¥, qo, R) be the MTT with Q = {¢*,¢®}, ¥ =
{0®,a(® b} and R consisting of the following rules.

(q0,0(x1,22)) = (g, 72)((q0, 1), (20, 71))

(¢, 0(z1,22)) (Y1,92) = (¢, 72)((y1, (g0, 71)), 0 ((q0, 1), Y2))
(qo,a) —a

(¢, a)(y1,9y2) = o(y1,y2)

(qo, D) —b

(q,0)(y1,92) = o(y2,y1)

Note that M is sp because both y; and y» appear exactly once in the right-hand
side of each g-rule of M. Consider the input tree t = o(a,o(b,o(b,b))). Then a
derivation by M looks as follows.

(q0,t) =M

Thus, () = o(o(b,0(b,a)),o(o(a,b),b)). This tree can be computed in terms
of g-translations and go-translations as follows. First, M, (b) = b and M,(b) =
o(y2,y1). Hence

My(o(b,b))
:rhSM(o){d',xi) < My (b) | ¢' € {q0,q},1<i < 2]
= (g, z2) (o (y1, (qoal”l)) o({qo, 71),y2))[(q, 72) + (y2,y1),(q0, 1) < b]
= (va 1)[y1 — U(ylvb)ayQ — U(bayQ)]

a(a(b,y2),0(y1,b)).

Next,

A4§(U(b,0(b,b))) ::rhsA[(q,U)ﬂ(q,m2> «— A4§(U(b,b)),<q0,$1> A A4§0(b)ﬂ
= Mq(O'(b, b))[yl « U(y1, b)ayQ « U(bayQ)]
=0(0(b,y2),0(y1,0))[y1 < o(y1,0),y2 < (b, y2)]
=o(a(b,0(b,y2)),0(c(y1,b),b)).

Finally, M,,(a) = a and

Tm(t) = My, (t)

rhsa (g0, 0)[(q, z2) < My(a(b,0(b,0))), (g0, 71) ¢ My, (a)]
My(o(b,o(b,b))[y1 < a,y2 < a]
=o(o(b,o(b,a)),o(c(a,b),b)).

o
/N
o o
/N /N
v (s[z < a]) = o apa, O
/N /N
: an—1 an—1
o o
/N /N
ajq (15)] (15)] aq

Fig. 1. Translations of M for the input trees s[z « a]

o
/ \
o o
/N /N
(st < b)= a, o o ay
/N /N
Ap—1 ’ Ap—1
o o
/N /N

Fig. 2. Translations of M for the input trees s[z < b]

In Figures 1 and 2 it is shown how the translations for input trees of the form
s=o(ay,o(as,...0(an,x)...))

with ay,...,a, € ¥© n > 1, and 2 = a and = = b, respectively, look like. If z = a
then y7p(s) = ww” and if = b then y7p(s) = w"w, where w = a; ---a, (and
recall from the Preliminaries that w” denotes the reverse of w). O

4 Closure Properties

In this section we prove two closure properties of MTTs. First, that the class MTT
of macro tree translations is closed under composition with finite state relabelings,
and second, that, with respect to output string languages, the class MTT (L), for an
arbitrary class £ of tree languages, is closed under translations realized by MTTps.
To prove the second closure property, it will be shown in Theorem 15 that, when
applied to a class of tree languages closed under finite state relabelings, MTTg,s
generate the same class of string languages as top-down tree transducers.

Let us move to the first closure property. We want to show that for an MTT M
and a finite state relabeling N there is an MTT M’ with 7y = Tpr07n (cf. Lemma 6,
which proves this for the opposite order of the composition, i.e., that 7n o 73 can
be realized by an MTT). In fact, the result MTT o D;QRELAB C MTT can also
be obtained from known results as follows. By Theorem 4.8 of [EV85], MTT =
To YIELD (for YIELD, see Section 7). Thus, MTToD; QRELAB equals To YIELDo
D;QRELAB. By Lemma 3.11 of [DE98] this is included in T'o QRELAB o YIELD,
where QRELAB denotes the class of nondeterministic finite state relabelings. More
precisely, we only need to consider total functions in T'oc QRELAB o YIELD, because
MTToD; QRELAB consists of total functions only. Thus, MTToD; QRELAB C (To
QRELABo YIELD)NF, where F is the class of all total functions. From the theorem
of [Eng78] it follows that, for every function f in T o QRELAB o YIELD, there is
a top-down tree transducer M with regular look-ahead such that f € 1), o YIELD.
Since the look-ahead can be simulated by a relabeling in D; QRELAB we obtain
f € DiQRELABoT o YIELD = D;QRELABo MTT, which is in MTT by Lemma 6.
Hence, MTT o D,QRELAB C MTT. We now give an elementary proof of this fact.

Lemma 11. MTT o D;QRELAB C MTT.

Proof. Let M = (Q,X, A, qo,R) be an MTT and let N = (Qn, A, 2,Rx) be a
finite state relabeling. We will construct a finite state relabeling N’ and an MTT
M’ such that 7y o Ty = Tpr 0 Tv. By Lemma 6, 7py o 7y € MTT.

The (standard) idea is to construct the MTT M’ from M by running the finite
state relabeling N on the right-hand sides ¢ of the rules of M. To do this we
need to know, for y; occurring in ¢, in which state the relabeling N arrives after
processing the tree that will be substituted for y;. This (top-down) information can
be represented by a mapping ¢ : [m] = Qn (if ¢ is the right-hand side of a g-rule
and ¢ is of rank m) and can be coded into the states of M'. More precisely, we
choose the set Q' of states of M’ as

Q' ={(g,0)™ | g€ Q™ ,m>0,0:[m] - Qn}.

Similarly, for a subtree (¢', z;)(t1,...,%) of (we need to know, given that N arrives
in state p, after processing t, for v € [l], in which state N arrives after processing the
tree My (s;) that will be substituted for (¢, z;). This information can be represented
by a function ¢; for i € [k] which associates with every ¢’ € Q) a mapping of type
Q' — Qn. We use the (bottom-up) finite state relabeling N’ to replace every
symbol o by the new symbol (o, ¢1, ..., dr), where ¢; is the corresponding function
determining the state change of N on the trees My (s;).

In order to translate the right-hand side of a (g, o)-rule of M, with ¢ € QU™ ¢ €
X&) and m, k > 0, the finite state relabeling N is extended as follows. Let 1, .. .,
be functions which associate with every ¢' € Q") a mapping ¢(¢') : Q% — Qx and
let ¢ : [m] — @n- Then N<P7(¢1,---7¢k) = (Qn,(Q, Xx)UAUP,(Q', Xi;)URUP, RyUS)

is the extension of N to input trees in Tyg x,)ua(Ym), where P = {y](-o) | j € [m]}
and the set S of additional rules is defined as follows. For every j € [m], y; —
(@(])7y]> is in 57 and for every (qlami> € (Q:Xk>(l)a l Z 0: and P1s.-.,D1 € QN the
rule

(qlawi>(<p17$1>7 R (pl7$l>) - <¢i(ql)(p17 s 7pl)7 ((qla(pl)axi>(m1’ s 7:Ul)>

isin S, with ¢’ : [I[] = QN and ¢'(v) = p, for all v € [I].
Define N' = (Qn+, X, I, Rn'), where

— Qnv is the set of all functions ¢ which assign to every ¢ € Q) with I > 0 a
mapping ¢(q) : Qy — Qn-

10

-I'= {(oa¢17"'7¢k)(k) |U € Z(k)a k Z 07 ¢1a"'7¢k € QN’} and
— for every 0 € XF) k>0, and é1,...,ér € Qnv, the rule

U(<¢laxl>7"'7<¢kaxk>) - <¢a (oa¢1a"'7¢k)(1‘17"'7xk)>

is in Ry+, where ¢ is defined as follows. For every ¢ € Q™) m > 0, and
P1y-.-sPm € QN: ¢(q)(p17 s 7pm) =D with pE QN such that

I‘hSM (Qa U) :>)]k\f%(¢1 _____ b1) <pa _>

and ¢ : [m] = Qn with ¢(j) = p; for every j € [m]. Recall from Section 2.3 that
t=>%
@, (D15-ns o) VO T e e e e e e T N (b,

We now define the MTT M' = (Q', I, 2,4}, R') with Q" as above, ¢} = (g0, D),
and R’ as follows. For every (¢,) € Q’(m), (o,P1,---,0r) € E’(k), and m,k > 0,

<(Q7(p)7(07¢15"'7¢k)(1‘17'"axk»(yla"'aym) _)C

is a rule in R', where rhsy(¢,0) =%

TN%(¢1 ----- bK) (rhSM(q’ U))

Let us now prove the correctness of this construction. For m > 0 and ¢ : [m] —
QN let Ny = N, (4,,...6,) With k = 0, i.e., N, is the extension of N to trees
in Ta(Y,,) obtained by adding the rules y; — (¢(j),y;) for every j € [m]. The
correctness, i.e., that 7pp (77 (s)) = 7n(Ta(s)) for every s € Ty, follows from
Claim 1(a) for (q,¢) = (go, @), because Ng = N.

or o) (p,¢) for some p € Qn, ie., (=

Claim 1: For every s € Ty, (q,¢) € Q’(m) with m > 0, and ¢ € Qnv,

(a) M(I,Mo)(TN' (s)) = 7n,(My(s)) and
(b) if s = (¢,_), then My(s) =% (d(@)(p(1),...,0(m)),_).

The claim is proved by induction on the structure of s. Let s = o(s1,..., Sk)
with o € Z®) | k>0, and s1,...,5; € Ts. The induction hypothesis is denoted by
IH1. Let ¢1,...,¢r € Q- such that s; =%, (¢;,_) for every i € [k].

First, part (a) of the claim is proved. It follows from the definition of N’
that M, (n/(s)) = M, (0,61, k) (TN (51), .., 7N (s1)))- By Definition 3
this equals rhsy ((q, @), (0,01, ..., 6k))[m], where [ar] denotes the substitution
[{(q, "), zi) + M(q,7¢,)(TN/ (si)) | {(d', "), x:) € (Q', Xi)]. By the definition of M’
and IH1(a) this equals 7w, ,, ., (thsa(q, 0))[vm], where [nn] = [{(¢', ¢'), zi) <
™, (Mg (si)) | ((d's¢"),2i) € (Q', Xi)]. It follows from Claim 2(a) below, for
t =rhsy(q,0), that 7w, ,, ., (thsa(q,0))[num] equals Tn, (thsar(g, 0)[ar]) with
[a] = (¢, z:) < My (i) | (¢, i) € (Q, Xy)]. This equals 7, (M,(s))-

For the (b) part, if s =%, (¢,_), then there are (i,...,(x, ¢ € Tx with
si =5 (¢i,) for all 4 € [k] and o((¢1, (1), - -, {(Pk, (k) =N~ (@, (). By the defini-
tion of N', if o((¢1,C1), .-+, {(Pk,Ck)) =n' (@, (), then, for every (q,p) € Q’(m)
and m > 0, rhsy(q,0) =>Noor . ((q)(p(1),...,(m)),_). By Claim 2(b)
for t = rhsa(g,0) and p = d(q)(p(1),...,0(m)): My(s) = rhsny(q,0)[m] =%,
(¢p(q)(p(1),...,(m)),_). This concludes the proof of Claim 1.

Claim 2: For every m >0, ¢ : [m] = Qn, p € Qn, and t € T x,yua(Ym),

@) ™, (4,0, Ovm] = 7, (t[m]) and
(b) if ¢ =N, . (p,_), then t[p] =%, (p,_)-

.....

11

Claim 2 is proved by induction on the structure of ¢. We denote the induction
hypothesis by TH2.

If t =y; € Yy, then ¢ =Ny orr00) (0(j),t) and t[nm] = t, and t[ar] =t =N,
(p(5),t), by the definition of N, (4,, .. ¢,) and N, respectively. This proves both
(a) and (b). Let I > 0 and t1,...,t € T, x,yua(Ym)-

..........

I ,TN‘P‘ _____
e ,xk))(?; arule of N (and thus of N, (4, .. 4,)) and t, :>}*VM¢1 ,,,,, .

[k]. By TH2(a), TN or.... ¢k)(t”)[[NM]] equals 7, (t,[v]) and by TH2(b) ¢, [ar] #}‘%
(pv,_). Since N, has the same rule 6((p1,z1),..., (P, zk)) = (p,v(T1,.- ., 2k))
of N it follows that the derivations by =n~_ . ., and =, both end with
(p,_) which shows the (b) part, and ’)/(TN%(M ,,,,, o) (t1),.-. TN (o ¢k)(tl))[[NM]] =
Y, (tlad]), v, () = 7, (6Ca[a]s -5 0i])) = 7, (#[ar]), which
shows the (a) part.

Finally, let t = (¢',z;)(t1,...,t;) with (¢',z;) € (Q, X3)D. If ¢ ij\’w,(m
(p,_), then there are py,...,p; € Qn and (i,...,(, ¢ € Tyg,x,)ua(¥Ym) such that
ty ij\f%(d,l _____ o1) (pu;Cu> for v € [l] and (qlami>(<p17<1>7"-7<placl>) = No (o0, b5)
(p, ¢), which, by definition of No (¢1,....6)> implies that p = oi(¢")(p1,--.,p)- Now
b, (Puns) implies £ 0a] =, (prr_) by TH2(b), L.] =%,
(puaTN¢ (tu[[M]])>7 and so

thal =N, My (si)lyy < (pv, v, (B [m]) | v € [l = €,

by the definition of [a]. Now let ¢’ : [[] — Qn with ¢'(v) = p, for every
v € [l]. Since s; =% (¢i,_), it follows from IH1(b) and the definition of ¢’ that
My (si) =x_, & = My (si)lyy < (Pv,yo) | v € [l]l and & =% (0, 7N, (Mg (s4)))-
Clearly, the latter derivation also holds for N,, and so & #}‘VW (p,), where ¢ =
v, (Mg (s)lyw 7, (blar]) | v € [I]. Hence tu] =4, & =%, (p,C). This
proves part (b).

By IH2(a), v, (tv[M]) = 7™, 4, s, (tv)[wm] for every v € [I]. Thus, ¢ =
N, (Mg (si)[yv < TN, 4y oy (t0)Ivnd | v € [l]]. By the definition of [na] this
equals ((¢', "), @) (TN, 5, oy (E1)s -5 TN 4y oy (8)) [var] which, Dy the defini-
tion of Ny (4,,...,61), €quals 7w, ., (t)[~m]. This ends the proof of Claim 2.

]

It was mentioned in the Conclusions of [EV85] as an open problem whether the
class of macro tree translations is closed under composition with TF, the class of
top-down tree translations with regular look-ahead. Since TF equals D; QRELABoT
(see Theorem 2.6 of [Eng77]) it follows from Lemma 11 that MTT o TR C MTT o
D:QRELABoT C MTT o T, and by Lemma 5, MTT oT C MTT.

Corollary 12. MTT o TR C MTT.

We now move to the second closure property. The main part of the proof of
this closure property consists of proving Theorem 15 which says that, for a class
L of tree languages closed under finite state relabelings, yMTT, (L) = yT'(L). In
essence this is proved in the following lemma, which shows how to generate by a
top-down tree transducer the string language generated by an MTT,.

Lemma 13. MTTs, oy C DiQRELABoT oy.

Proof. Let M = (Q,X,A,qo,R) be an MTT,,. We will construct a finite state
relabeling N and a top-down tree transducer M' such that for every s € Ty,

12

y(tar (T (8))) = y7ar(s). The idea is as follows. Let ¢ € Q™) and s € Tx. Then,
since M is sp, yM,(s) is of the form

W = WoYj; W1Yjo W2 " * * Yjum Wm,

where j1,...,jm € [m] are pairwise different and wy, . .., w,, € (A®)*. For a string
of the form w and for 0 < v < m we denote by part,(w) the string w,. For
every v the top-down tree transducer M' has a state (¢,v) which computes w,,.
The information on the order of the parameters, i.e., the string resy (yM,(s)) €
Y will be determined by the finite state relabeling N in such a way that o €
Y®) is relabeled by (o,pery, ..., pery), where for each i € [k], per; is a mapping
associating with every ¢ € Q™) a permutation of the string v - - - y,. For instance,
if s; equals the tree s from above, then the o in o(s1,...,s;,...,sk) is relabeled by
(Ua pery,... 7perk) and perl(q) = resy (UJ) =Yjr " " Yjm-
Formally, N = (Qn, X, I', Ry), where

— Qu is the set of all mappings per which associate with every ¢ € QU a string
in Y} which is a permutation of y; - - - ym.

— I' ={(o,pery,...,perp)® | 0 € ZH*) k>0, pery,...,pery € Qn}.

— For every 0 € X®) k>0, and pery,...,pery € Qn let

o'(<per17x1>7 teey (perk,xk>) - (per, (07 perg,... ,perk)(acl, .. -,l'k)>

be in Ry, where for every ¢ € Q"™), per(q) = resy (y(rhsy(g,0)@)) and @
denotes the second-order substitution

[(qlawi> — combb(peri(ql)) | (qlami> € (Qan>]]a
where b is an arbitrary binary symbol (see Section 2.1 for comby).

It follows from Claim 1 that NV realizes the relabeling as described.

Claim 1: Let ¢ € QU™ , m > 0, and s € Tx. If s =% (per,_), then per(q) =
resy (yMy(s)).

The proof of this claim is by induction on the structure of s. The induction
hypothesis is denoted by IH1. Let s = o(sq,...,s;) with 0 € X*) | k& > 0, and
$1,-..,8% € Tx. Then s =% (per,_) if there are pery,...,per;, € Qn such that
si =% (per;,7n(s;)) for i € [k] and o({per1,7n(s1)), ..., (pery,7n(sk))) =n
(per,_), where per(q) = resy(y(t@)), t = rhsy(g,0), and @ as in the defini-
tion of N. Let [...] = [(¢/,z:) < My (si) | (¢',z:i) € (Q,Xy)]. By Claim 2,
resy (y(t0)) = resy (y(t[. . .])) = resy (yM,y(s)).

Claim 2: For every t € T(g x,yua(Ym), resy (y(t0)) = resy (y(t[...])).

This claim is proved by induction on the structure of ¢. The induction hypothesis
is denoted by IH2. If t = y; € Y}, then resy (y(t@)) = resy (yt) = resy (y(t[...])).
Let [Z 0 and tl, . .,tl € T(Q,Xk>UA(Ym)-

If t = 6(t1,...,t), then resy (y(t@)) = resy (y(6(410,...,t0))) = resy (y(t,0)
e y(60)) = resy (y(t19)) - - - resy (y(4,0)). By TH2 this equals resy (y(¢t1]...])) -
resy (y(t[...])) = resy (y(t[-..]) - - -y (@] . .])) = resy (¢]...])-

If t = {¢',z;)(t1, ...,), then resy (y(t@)) = resy (y(comby(per;(¢'))y; < t;0 |
J € [1]])). By applying yield we get resy (per;(¢')[y; < y(t;0) | j € [I]]) and applica-
tion of resy gives per;(¢')[y; + resy(y(¢;0)) | j € [I]]. By IH1 and IH2 this equals
resy (yMgy (s:))ly; < resy (y(t;[- 1)) | J € [1]] = resy (y(My (si)ly; < t;[-1 17 €
[1])) = resy (y(¢[- - .]))-

We now define the top-down tree transducer M’ = (Q', I', A’, (g0, 0), R'), where
- Q' ={(¢,)® |ge QM 0<v<m},

13

— A= APy {p?) e} and
— for every (q,v) € Q', (o,pery,...,pery) € I'®) and k > 0, the rule

((q,v), (o,pery, ...,perg)(x1,...,xk)) = C

is in R', where { = comby(part, (y(£P))), £ = rhsy(g,0), and @ is the substi-
tution

[{¢', zi) = comby({(q",0), zi)peri(¢') (1)((¢', 1), zi)peri(q)(2) - - -
peri(ql)(m)«qlam)vwi» | <qlami> € (Q:Xk>(m)7m Z 0]]

Recall from the Preliminaries that per;(q)(j) denotes the j-th symbol of per;(q).
We now prove the correctness of M’, i.e., that for every s € T's;, y(mapr (7w (8))) =
y7am(s). It follows from Claim 3 for (¢,v) = (qo,0).

Claim 3: For every (q,v) € Q" and s € Ty, yM(, , (Tn(s)) = part, (yM,(s)).

The proof of this claim is by induction on the structure of s. Let s =0 (s1, ..., sk),
o XH® k>0, and sq,...,5. € Ts. Then yM(’q’V)(TN(s)) = yM('q’V)((J,perl,
.,perg)(ta(s1),...,7n(sk))). By Definition 3 and the fact that M’ is a top-
down tree transducer, i.e., all elements of (@, X)) are of rank zero, this equals
y(C[.])7 where C = rhSM’((qa V)a (Ua pery,... aperk)) and [.] = [((qla Vl)axi> «
M, n(Tn(si) | (¢, V'), 2i) € (Q, Xy)]. By the definition of the rules of M,
¢ = comby(part, (y(®))), where £ = rhsys(¢q,0) and & as in the definition of M'. By
induction, yM/,, ,(n (1)) = part, (yMy (s:)) for every ((q',v"),2;) € (@', Xi).
Thus, we can apply Lemma 1(a) and replace M(’q,’y,) (T (s;)) by comby (part, (y M (
si))) in [...], to get y(comby (part, (y(£P)))[-]) with [] = [((¢',"),2;) <= comby(
part, (yMy (s:))) | ((¢', V'), z;) € (Q', Xk)]). We can now apply yield and then move
the (string) substitution that corresponds to [-] inside the application of part, and
yield, because part,:(yMy (s;)) € (A®)*. We get part, (y(¢®]])). By application
of [—] we obtain that €¢[—] = f[[(q',xﬁ « t(q’,xi) | <qlaxi> € <Q5Xk>(m)7m Z 0]])
where, by the definition of &, each tree t., .,y has yield woy;, w1 - - -yj, wm with
wyr = part, (yMgy (s;)) for 0 < v' < m, and, y; , = per;(¢')(v') for v' € [m]. By
Claim 1, per;(¢')(v') equals resy (y My (s;))(v'). Hence, yt (g ;) equals

parto(y My (si))resy (y My (s:))(Dparts (y My (si)) - - -
resy (y My (i) (m)partm (y My (s:)),

which equals y M, (s;). By Lemma 1(b) we can replace t(y .,y by My (s;) to get
part, (y(§[(q', zi) = My (si) | (¢, 2:) € (Q, Xi)])) = part, (yMq(s)). -

Let us take a look at an example of an application of the construction in the
proof of Lemma 13.

Fzample 14. Let M be the MTT, of Example 10. We construct the finite state
relabeling N and the top-down tree transducer M’ following the construction in
the proof of Lemma 13. Let N = (Qn,X,I,Rn) be the finite state relabeling
with Qn = {q12,¢21}, @12 = {(q0,€), (¢, ¥192) }, @21 = {(q0,€), (¢, 9291)}, and ' =

{(07 qi2, Q12)(2)7 (Ua q12, q21)(2)7 (07 q21, ql?)(2)a (Ua q21, q21)(2)7 a(O), b(o)}a where a and
b stand for (a) and (b), respectively. The set Ry consists of the rules

a — (qi2,a)

b= (g21,b)
U((T‘,x1>, (Tlax2>) - <T‘,, (Ua r, r,)(x17x2)> for all T, r' e QN-

14

Consider again the input tree t = o(a,o(b,o(b,b))). Then 7n(t) equals

(0, q12, g21)(a, (0,21, q21) (D, (0, @21, q21) (b, b))).

We now construct the top-down tree transducer M'. Let M' = (Q', I, A’ (qo, 0),
R') with Q" = {(90,0)?,(,0)?,(¢,1)®,(¢,2)@} and A" = £© y {0}
(where ¢ is the symbol b from the proof of Lemma 13, used to make combs). For
simplicity we write down the rules of M’ as tree-to-string rules, i.e., we merely
show the yield of the corresponding right-hand side. Let us consider in detail how
to obtain the right-hand sides of the ((¢,v), (o,r,q21))-rules for 0 < v < 2 and
r € @n. Since we are only interested in the yields, we have to consider the string
v = y(rhsy(q,0)®), where @ is defined as in the proof of Lemma 13. This string
equals

\<(q7 0),$2><(q0, 0),$1> Y2 <(qv 1)7372) Y1 ((q07 0)7$1><(qa 2),3172) .

~ —— —~
parto(v) partq (v) parta(v)

Hence, for every 7 € Qn and 0 < v < 2, yrhsyr ((q,v), (0,7, g21)) = part, (v);
similarly we get yrhsy ((gq,0), (0,7, q12)) = ((¢,0), z2),
yrhsar ((¢, 1), (0,7, q12)) = ((90,0), 21){(q, 1), 22)((90, 0), 1),

yrhsar ((6,2), (0,7, 12)) = ((4,2),).
The remaining rules are, for 0 < v <2 and r,r’ € Q,

((q07 0)7 (07 r,r)(m1,$2) ((qa 0)7 w2><(q07 0)7 iE1><(q, 1)7 a:2>((q0, 0)7 ZL”1><((], 2)7 :E?)
((90,0),a) = a
((q07)7 —b
((g,v),a) = ¢
((q,v),b) = ¢
Consider the derivation by M’ with input tree ¢’ = 75 (¢) (shown above), where
t'/2 = 7n(o(b,o(b,b))) and t'/22 = 7n5(0(b,b)); again we merely show the corre-
sponding yields.

((90,0), 1)

\/vvv

=>wm ((2,0),%'/2)((q0,0), a)((q, 1), %' /2){(q0,0), a)((q,2),'/2)
= ((4,0),1'/22)((0,0),b) a((q, 1),1'/22) a {(9,0), b){(q, 2),1'/22)
:>?\/I’ ((q,)7)bba«qal)a)a ((72)7b>

=7 bbaabbd.

Thus, indeed, yrar (7w (t)) = y7ar(t); see Example 10 for 7ar(t).

Let us also show how yM(’qo,O) (t') can be obtained in terms of ¢'-translations
for the states ¢’ of M'. Since we only consider the corresponding yields, all of the
following substitutions are on strings. First, yM(’qu)(b) = b and yM(’qW) (b) =€ for
0 <v <2. Thus,

yM{, 0)(t'/22)
= yrhsur (0, 0), (0, @21, 21)((a 0), w2 — yM],) (b), {(d0, 0), 21} yM[,, o (B)]
= ((4,0),22)((40,0), 21)[((¢, 0), 22) ¢ &,{(g0,0), 21} = b] = b,

MY, (#/22) = yrhsa (@, 1), (0, @21, a20)) {0, 1), 22) M, 1 ()]
= yM(o1)(b) =€, and

yM;,) (1'/22)
— yrhsar: ((9:2), (0 ¢, @20)[((0, 0), 1) = yM!, o)), ((:2),22) < yM[, ()]
= YMyy 0 B}y M, 5 (D) = b.

Since, as shown in Example 10, yM,(o(b, b)) = by2y1b and part, (by2y1b) equals
b,e,bfor v = 0,1, 2, respectively, these results are in accordance with Claim 3 in the
proof of Lemma 13. Next,

15

M}, 0 (1'/2)
N S W YM],) (¥ /22), ((q0,0),21) yM],,) (B)]
= yM],) (¥ [22)y M}, o (b) = bb,

)y
UM, (/2) = yehsar (@, 1), (0,1 o) (0, 1), 22) <y, | (#/22)]
=yM(, ,(t'/22) = ¢, and
)

(q 2)(t /2
s (0,20, (o a2 V(0) e MY, o (B (0.2} < M, o (/22)]
= UM, 0 (DM}, (1/22) = b
Again, these results are in accordance with the fact that yM,(o(b,o(b,b))) =
bbyoy1 bb. Finally, yM(’qu) (t'/1) = yrhsp ((qo,0),a) = a and yM(q 0)(") equals

?/M(Iq,o) (t'/2)yM('q070) (t'/l)yM('q71)(t'/2)yM('q070) (t'/l)yM('q72)(t /2) = bbaabb.
[

We are now ready to prove that MTTg,s and top-down tree transducers generate
the same class of string languages if they take as input a class of tree languages
that is closed under finite state relabelings. Note that this result can be seen as
a generalization of Corollary 7.9 of [EM99], which says that finite copying MTTs
generate the same class of string languages as finite copying top-down tree transduc-
ers, i.e., for a class £ of tree languages that is closed under finite state relabelings,
yMTT (L) = yTe(L), where fc denotes that the corresponding transducers are
finite copying.

Theorem 15. Let £ be a class of tree languages that is closed under finite state
relabelings. Then yMTTs, (L) = yT'(L).

Proof. By Lemma 13, yMTT, (L) C yT'(£) and since every top-down tree trans-
ducer is an MT Ty, yT' (L) CyMTT(L). O

By Lemma 11, we can apply Theorem 15 to £' = MTT(L), for an arbitrary
class of tree languages £. We get yMT T, (MTT (L)) = yT'(MTT(L)) which, by
Lemma 5, equals MTT(L). Thus we obtain the following corollary which says that
the class MTT (L) is closed under translations in MTT,, with respect to yield
languages.

Corollary 16. For a class £ of tree languages, yMTTs,(MTT (L)) = yMTT(L).

Since the class REGT of regular tree languages is closed under finite state rela-
belings (cf. Lemma IV.6.5 of [GS84]), we get yMTT,(REGT) = yT'(REGT) from
Theorem 15. We want to make two more remarks about the class MTTs,(REGT).
First, about its yield languages: For top-down tree transducers it is known (The-
orem 3.2.1 of [ERS80] and Theorem 4.3 of [Man98]) that T(REGT) is equal to
the class OUT(T) of output tree languages of top-down tree transducers (i.e.,
taking the particular regular tree languages T's; as input). In fact, it is shown in
[Man98] that for any class ¥ of tree translations which is closed under left composi-
tion with “semi-relabelings”, which are particular linear top-down tree translations,
U(REGT) = OUT(¥). Since it can be shown, as a special case of Lemma 4, that
MTTyy is closed under left composition with top-down tree translations we get that
yOUT(MTTs,) = yOUT(T), ie., MTTgps and top-down tree transducers gener-
ate the same class of output string languages. Second, about its path languages:
If we consider MTT,s with monadic output alphabet, then the class of path lan-
guages generated by them taking regular tree languages as input is also equal to
yT'(REGT) (cf. the proof of Lemma 7.6 of [EM99]). Thus, the classes of path and
yield languages of the class MTT,,(REGT) are equal; this is a rare property of a
class of tree languages.

16

5 Bridge Theorems

This section establishes the bridge theorems which are used in Sections 6 and 7
to prove that certain languages cannot be generated as output by compositions
of MTTs. The basic idea is presented in Lemma 17 which gives a “bridge” from
yMTTs, (L) to yMTT (L), that is, a statement of the form: if L ¢ yMTTs,(L)
then L' ¢ yMTT(L). Using the closure properties of the previous section this will
allow us to prove in Theorem 18 a bridge from yMTT™(L) to yMTT" (L), and in
Theorem 20 a bridge from yT(REGT) to ,,~qyMTT"(REGT).
Let A and B be disjoint alphabets. Consider a string of the form

w1a1w2a - A1 WaIWi4-1

with [>0, a1,...,a; € A, wy,..., w11 € B*, and all ws, ..., w; pairwise different.
We call such a string a §-string for a; ---a;. Now let L C A* and L' C (AU B)*. If
L' contains, for every w € L, a d-string for w, then L' is called §-complete for L. The
following theorem shows that if an MTT M generates L', then, due to the structure
of §-strings, M cannot make use of its copying facility as far as L is concerned.
Recall from the Preliminaries that resa(wiaq - - - wiqqwir1) = aq -+ qq.

Lemma 17. Let £ be a class of tree languages which is closed under finite state
relabelings and under intersection with regular tree languages. Let A, B be disjoint
alphabets and let L C A* and L' C (AU B)* be languages such that

(1) L'is d-complete for L and
(2) resa(L') = L.

If L' e yMTT(L) then L € yMTT,(L).

Proof. Let M = (Q, X, A, qo,R) be an MTT and K € £ such that yra (K) = L'.
Obviously, we may assume that A(®) = AUBU {e}. Furthermore, by Lemma 9 and
the closure of £ under finite state relabelings, we may assume that M is nondeleting.

Clearly, it is sufficient to consider only d-strings in order to generate the language
L, because, by d-completeness of L' for L, L' has a d-string for every w € L, and
soresa({v € L' | v is a d-string}) = L. We will construct a finite state relabeling N
and an MTTs, M’ such that for every s € Ty,

(a) either yrar (rn(s)) = resa(yra(s)) or Ty (7a(s)) contains a (new) dummy
symbol, and
(b) if yrar(s) is a d-string, then 7as (7w (s)) contains no dummy symbol.

We now show that this proves the lemma. Due to the closure properties of L,
the restriction of 75 (K) to trees t such that 7as (#) contains no dummy symbol is
in £. This can be seen as follows. Since inverse macro tree translations preserve
the regular tree languages (Theorem 7.4(1) of [EV85]), R = 7,1 (Ta/—{dummy})
is a regular tree language, where A’ is the output alphabet of M’. Hence K’ =
~v(K)N R is in £. Now, from (a) and (2) we get yrar (K') C resa(L') = L.
By (b), {rn(s) | s € K,yrm(s) is a 0-string} € K’ and thus, by (1) and (a),
L =resp({v € L' | vis ad-string}) = {resa(yrm(s)) | s € K,ymm(s) is a §-
string} C y7ar (K'). Thus, L = yrp (K') € yMT T, (L).

Consider the right-hand side of a rule of M in which some parameter y; occurs
more than once. If, during the derivation of a tree which has as yield a d-string, this
rule was applied, then the tree which is substituted for y; in this derivation contains
at most one symbol in A. Because otherwise, due to copying, the resulting string
would not be a d-string. Hence, when deriving a §-string, a rule which contains mul-
tiple occurrences of a parameter y; is only applicable if the yield of the tree being

17

substituted for y; contains at most one symbol in A. Based on this fact we construct
the MTTs, M'. The information whether the yield of the tree which will be substi-
tuted for a certain parameter contains none, one, or more than one occurrences of a
symbol in A is determined by first relabeling the input tree. Then this information
is kept in the states of M'. More precisely, we will define a finite state relabeling N
which relabels o € X*) in the tree o (s, ..., s) by (o, (é1, f1), .- ., (¢k, fr)), where
for every i € [k], ¢ € QU™ and m > 0,

e if yM,(s;) contains no symbol in A
di(q) = ¢ a if yMy(s;) = wiaws with a € A and wy,w» € (Y U B)*
dd otherwise

with d an arbitrary symbol in A, and for every j € [m],

€ if yM,(s;) contains no occurrence of y;
(fil@)(4) =< y; if yM,(s;) contains exactly one occurrence of y;
y;y; otherwise.

The case (fi(¢))(j) = € actually never occurs, because M is nondeleting and hence,
by Lemma 8, y; occurs in yM,(s;); we only include it because it simplifies the
correctness proof. Before defining IV, let us define two auxiliary notions that define
the above information for an arbitrary string (instead of yM(s;)). For w € (AUBU
Y)*, oca(w) is defined as follows. If w € (Y U B)*, then oca(w) = ¢; if w = wiaws
with @ € A and wy, w2 € (Y U B)*, then oca(w) = a; and otherwise ocs(w) = dd.
Furthermore, for j > 1, oc;(w) is defined as follows. If w contains no occurrence of
y;j, then oc;j(w) = ¢; if w contains exactly one occurrence of y;, then oc;(w) = y;;
and otherwise oc;(w) = y;y;.

Note that the existence of the relabeling N follows from the facts that for given
(6,f) and g € QU™ the set {¢ € Ta(Ym) | 0ca(yt) = 6(a),0c;(yt) = (f())(5) for
every j € [m]} is regular and that inverse macro tree translations preserve the reg-
ular tree languages (Theorem 7.4(1) of [EV85]). Since part of the correctness proof
of N is also needed in the correctness proof of the MTT M’, we give the detailed
construction of N together with a correctness proof. Note that the construction
of N is similar to the constructions of the look-ahead automata A; and A, of the
proofs of Lemmas 6.3 and 6.6 in [EM99], respectively; the automaton A; determines
the precise number of occurrences of y; in M,(s), where M is an MTT for which
this number is bounded by some B € N, and the automaton A, determines whether
or not y; occurs in My(s).

It should be clear from Definition 3 that, to define IV, we have to know how oc4
and oc; behave with respect to second-order substitution, i.e., how the oc4 and oc;
of the yield of a tree tJw; < & | ¢ € [n]] can be determined from the oc4 and oc;’s
of the yields of the trees &, ...,&,. This is expressed in Claim 1.

Claim 1: Let 2 be a ranked alphabet such that 2 = A©) . Let n,m > 1,
Wiy ywpn € 2,and £,&,...,&, € To(Y,,). Then for oc € {oca,o0cq,...,0Cm},

oc(y(tlwi < & | i € [n]])) = oc(y(tlwi « & | i € [n]])),

where £ = comby(oca(y&;)oci(y&;) - - - ocm (y&:)) for i € [n], and b is an arbitrary
binary symbol.

This claim is proved by induction on the structure of ¢. Let [...] denote the
substitution Jw; < & | ¢ € [n]] and let [] = [w; « & | i € [n]]- If ¢t € V), then
oc(y(t[...])) = oc(yt) = oc(y(t[])). Let t1,...,t € Ta(Ymn) and I > 0.

Ift=06(ty,...,t;) withd € 20 —{w,... ,wy}, then oc(y(t]...])) = oc(y(t:[...])
y(t2...]) - y(@[. - .]))- Since oc(uw) = oc(oc(u)oc(w)) for u,w € (AU BUY)*, we

18

can apply oc to each y(¢,[. . .]) and get oc(oc(y(¢1[...])) - - - oc(y(&]. - .]))). By induc-
tion this equals oc(oc(y(ti[1)) - -oc(y(tL)) = oc(y(t [Dy(t=L1) - y(uL1) =
OC(y((S(tl, v 7tl)[[—]]))'

Ift = w;(ty1,...,t) withi € [n] and w; of rank I, then oc(y(¢[. . .])) = oc(y(&ily,
tul-..] | v €l]) = ocy(&)y, < y(t[...]) | v € [[]])- Since oc(w) = oc(w') if w'
is a permutation of w, this equals oc((resaup (y&i)resy, 1 (Y&:) - - -resgy 1 (¥&))[yw <
y(tu[--.]) | v € [1]]). Applying oc we get

oc((oca(y&i)resgy, 3 (&) - - - resgy, 3 (Y&))[- - -)

with [...] = [y, < oc(y(t.[...])) | v € [I]]. This is true because for oc = ocy,
oc(oca(y&i)) = oc(y&;) = oc(resaur(yé;)) and for oc = ocj, ocloca(yé)) =€ =
oc(resaup(y&:))- Since, for p > 0, oc(yX[...]) = oc(oc,(y#)[...]), it follows that
oc(resgy,y (y&i)[- - -]) = oc(oc, (y&)[. - .]). Hence we get

oc((oca(y&ioer (y&i) - - - ocr(y&))[- - 1) = oc(y(&)[- -]-

By induction we can replace oc(y(t,[...])) in [...] by oc(y(t,[-])), and hence by
y(tu[-..]).- Thus we get oc(y(&)[yy < y(t,[]) | v € [1]]), which equals oc(y(¢[-]))-
This concludes the proof of Claim 1.

We now construct the finite state relabeling N which adds the ¢;’s and f;’s to
the labels of the input tree. Let N = (Qn, Y, I', Ry) such that

— @n consists of all pairs (¢, f), where ¢ : Q@ — ({¢,dd} U A) and f is a function
which associates with every ¢ € Q™) m > 0, a mapping f(q) : [m] = Y} such
that for every j € [m], (f(2))(j) € {&,y;,y;u5},

-I'= {(07 (¢1:f1)7"'7(¢k7fk))(k) | (S Z(k)ak Z 07(¢17f1)7"'7(¢k7fk) € QN}:

and
— Ry contains for every (¢1, f1),..., (¢k, fr) € Qn and o € Z®) with k& > 0 the
rule

0'(((¢1,f1),1‘1>, teey <(¢k7fk)axk>) —
<(¢7f)7 (Uv (¢17f1)7 R (¢k7fk))(m17 i 7mk)>7

where for every ¢ € Q™ with m > 0, é(¢q) = oca(y(), for every j € [m],
(f(@)(j) = oc;(y(), and ¢ = rhspr(¢g,0)0. The second order substitution ©
equals (where b is an arbitrary binary symbol)

[(g",) + comby(¢i(q') (fi(a))(1) -~ (fild D)D) | (¢,) € (@, Xr)V, 1> 0].

It should be clear from Claim 1 that NV realizes the relabeling as described above.
Formally this follows from Claim 2.

Claim 2: Let s € Tx and (¢, f) € Qn. If s =% ((¢, f), 7~ (s)) then, for every
g€ Q™ and m >0,

(i) ¢(q) =oca(yM,y(s)) and
(ii) for every j € [m], (f(q))(j) = oc;(yM,(s)).

This claim is proved by induction on the structure of s. Let s = o(s1, ..., s), k >
0,0 €) and si,...,s; € Tx. Foreveryi € [k] let (¢4, fi) € Qn such that s; =%
((Pi, fi), ™~ (s:)). Then s =% o(((d1, f1), 75 (51))s - ((Bk, fr), TN (Sk))) =N
<(¢a f)7 (07 (¢17f1)7 ceey (¢k7 fk))(TN(Sl)a v ,TN(Sk)», Where, for every q € Q(m)

and m > 0, ¢(q) = oca(y(), for every j € [m], (f(¢))(j) = oc;(y¢), and ¢
equals rhsyr(g,0)0. To be able to apply Claim 1, we now take ¢ = rhsy/(q, o),

{w1,...,wn} ={Q, Xy), and for w, = (¢', x;), {, = My (s;). By induction, ¢;(¢") =

19

oca(yMy (s;)) and (fi(q"))(4) = ocj(yMy (s;)) for j € [m]. Thus, © equals the sub-
stitution Jw; < comby(oca(y&i)oct (&) - - ocm(y&:)) | i € [n]] = [wi < & | € [n]]
of Claim 1. By application of Claim 1 we obtain that oc(y() = oca(y(t[{q', z;) <
My (s;) | (¢, %) € (Q,Xk)])) which equals oca(yM,(s)). This proves Claim 2(i)
and by replacing oc4 by oc; it proves Claim 2(ii).

We now define the MTT M'. The idea is to keep a parameter of a state only
if the yield of the tree that is substituted for it contains more than one occurrence
of a symbol in A. This information is kept in the states of M’ and is determined
using the information provided by the relabeling N (and by the actual state of
M"). If such a parameter is copied in a rule of M, then the right-hand side of the
corresponding rule of M’ contains a dummy symbol, because then yMy, (s) is not a
0-string.

Let M' = (Q', I, A', g, R") be the MTT with

Q" ={(g,9) | ¢ € QU m > 0,0 : [m] = ({e,dd} U A)}, where the rank of
(a,) with g € QU™ is |{j € [m] | ¢(j) = dd}],

- A'=(A-B)U {b(2), dummy@)}, where b and dummy are symbols not in A,

- q(l) = (q07®)7 and

— R’ consisting of the following rules. For every (q,) € Q'™ and (o,(d1,f1),---,
(6k, fr)) € I'® with n,m,k >0 and ¢ € Q"™ let

((g:9), (0, (1, f1)s -5 (D fr)) (@1, - 2e)) (Y15 Yn) = €

be in R', where (= combqummy(y1 - Yn) if there is a j € [m] such that

¢(j) = dd and y; occurs more than once in rhsys(g,0), and otherwise (=

trans(rhsas(q,0)), where for every t € T x,)ua(Ym) the tree trans(t) is recur-

sively defined as follows (depending on o, (¢1, f1),-- -, (dk, fi))-

For t = y; and j € [m], trans(y;) = comby(p(4)) if ¢(j) # dd, and otherwise

trans(y;) =y, with v = [{p | p < j and ¢(p) = dd}| + 1.

For t = B(tla tee 7tl)7 B € ((Qan> UA)(I)a l Z 07 and tla v atl € T(Q,Xk>UA(Ym)

we have:

o If = (¢, x;), then trans(t) = ((¢',¢'), z;) (trans(t;,), ..., trans(t;,)), where

{1, jr} = ©'~'(dd) with j; < --- < ji and for every j € [, ¢'(4) =
ocA(y(t;0)P) with O as in the definition of N, viz.,

0 = [(q',) < comby(¢i(q")(fi(¢"))(1) -+~ (fi(d))(D)) |
(d' i) € (Q, X))V ,1 > 0],

and

@ =[yj < () | j € [ml].

e If3c AW and 1 > 1, or § € A, then trans(t) = S(trans(t,), . .., trans(#)).
o If 5 € BU {e}, then trans(t) =e.

Let us first show that M’ is sp, i.e., that each y,, v € [n], occurs exactly once
in ¢. Let v € [n]. If ¢ is a dummy right-hand side then y, occurs exactly once in (.
Otherwise, ¢ = trans(rhsas(g, o)) and every y; with ¢(j) = dd occurs at most once
in rhsas(g, o). Since y, = trans(y;) for some j € [m] with ¢(j) = dd, this obviously
implies that y, occurs at most once in (. It remains to show that y, occurs in (.
This follows from the following claim for ¢ = rhsas(¢, o) and the fact that y; occurs
in rhsys (g, o) because M is nondeleting.

Claim 3: Let t € Tau(,x,)(Ym). If y; occurs in ¢, then y, occurs in trans(t).

The proof of this claim is by induction on the structure of ¢t. The induction
hypothesis is denoted by IH3. If ¢ = y; then trans(t) = y,. Let n > 1 and

20

tiyeooyty € TAU<Q 30 (Ym). If £ = 8(t1,...,t,) with 6 € A then trans(t) =
d(trans(tq),. .., trans(t,)). Since y; occurs in ¢, it occurs in ¢; for some j' € [n]. By
IH3, y, occurs in trans(¢;;) and therefore it occurs in trans(t).

Ift = (r,z,)(tr,...,t,;) with (r,z,) € (Q, X)), then trans(t) = ((r,¢'),z,)(
trans(t;,), ..., trans(t; ,), where {ji,....,jy} = ©'~'(dd) with j, < -+ < Jn and
for every j' € [n], <p(") = oca(y(t;@)P). Let j' € [n] such that y] occurs in ¢;r.
Then y, occurs in trans(t;) by IH3. Hence, we have to show that ¢'(j') = dd, i.e.,
that oca(y(t;©)®) = dd. Each (fi(¢'))(j) in the substitution © equals either y;
or y;y; because, by Claim 2(ii), (fi(¢'))(j) = ocj(My(s)) for some s € Tx, and,
by Lemma 8 and the fact that M is nondeleting, My (s) contains y;. Thus, the
substitution @ is ‘nondeleting’, i.e., it replaces each (¢, z;), ¢ € Q)| by a tree that
contains yi, ...,y and thus it behaves as the substitution [...] in the claim of the
proof of Lemma 8. Since y; occurs in t;, this means that y; also occurs in ¢; 6.
Now & replaces y; by ¢(j) = dd and thus oca(y(t;y©)®) = dd. This concludes the
proof of Claim 3.

We now formally prove properties (a) and (b) from the beginning of this proof.
Let (¢,¢) = (go,?). Then Claim 4 proves (b), i.e., if yras(s) is a d-string, then
T (T (8)) contains no dummy symbol. Furthermore, Claim 5 proves (a), i.e., either
yra (Tn (8)) = resa(yma(s)) or Tar (Ta(s)) contains a dummy symbol.

Claim 4: Let (q,¢) € Q’(n), geQ, mn>0,and s € Tx. If M('q7w)(TN(3))
contains a dummy, then for all uq,...,um € Ta with oca(yu;) = ¢(j) for every
j € [m], y(My(s)ly; < u; | j € [m]]) is not a J-string.

The proof of this claim is by induction on the structure of s. The induction hy-
pothesis is denoted by TH4. Let s = o(s1,...,8%), k> 0,0 € E(’“), and s{,...,S; €
Ts. Let (61, f1),-- -, (¢, fr) € Qn such that 7n(s) = (0, (¢1, f1),- - -, (dr, fu)) (Tn (
$1),.,7x(51)). Then M{, (v (5)) = rhsa((g,), (o, (@1, f1)s s (0 FODILL,
where [.] denotes the substitution [((¢',¢"), i) < M, (T (si)) | ((q',¢), ;) €
(Q', Xi)]. Since M' is sp, it is nondeleting and hence (similar to the claim in the
proof of Lemma 8), M(Iq,w) (twv(s)) contains a dummy if and only if

(i) rhsar ((q,), (o, (1, f1),- -+, (Pk, fr))) contains a dummy, or
(ii) there is an occurrence of (('), xi) € (@', Xk) in the tree trans(rhsas(q, o))
such that M('q,’@,)(TN(Si)) contains a dummy.

By the definition of the right-hand sides of M’, (i) means that there is a j € [m)]
with ¢(j) = dd and y; occurs more than once in rhsys(g,0). Then, since M is
nondeleting (cf. the claim in the proof of Lemma 8), M,(s) = rhsps(g,0)[...] has
more than one occurrence of y;, where [...] = [(¢',z;) « My(s;) | (¢',z;) €
(Q, Xi)]- Thus, y(My(s)[y; < u; | j € [m]]) has more than one occurrence of the
string yu;. This means that it has more than one occurrence of some awa’, with
a,a’ € Aand w € (BUY)*, because oca(yu;) = ¢(j) = dd. Hence, y(M,(s)[y; <
uj | j € [m]]) is not a 6—str1ng

(ii) By the definition of trans, rhsys (g, o) must have a subtree (¢', z;}(t1,. ..,)
such that trans((q', z;)(t1,..., %)) equals ((¢', ¢'), z;)(trans(t;,), ..., trans(t;, ,)) for
some t1,...,14 € T x,yua(Ym), I,I' > 0 with ¢' € Q®Y, and jy,...,jr > 1. Since
M is nondeleting, the tree M, (s)[y; < u; | j € [m]] = rhsp (g, 0)[. - Jly; <+ u;j | j €
[m]] has a subtree £ = My (s;)[yy < u,, | v € [[]] with ul, = t,[...Jly; < u; | § € [m]]
for v € [I]. By the definition of trans, for v € [I], ¢'(v) = oc(y(t,©)®) which equals
oc4(yuy,). This can be seen as follows: oc4(y(t,0)P) = oca(y(t,O)[y; < oca(yu;) |
j € [ml) = ocaly(tO)ly; < yus | j €) = ocaly(tuly; < uy | j € M]O)).
We can apply Claim 1 to this, because, by Claim 2, @ equals the substitution
[wi < & | i € [n]] in Claim 1 (with ¢ = ¢,[y; < u; | j € [m]] and the w’s and
&’s chosen appropriately, as in the proof of Claim 1). We get oca(y(tu[y; u; |

21

€ [m]][...])) = oca(yu,,). Now we can apply IH4 to (¢', '), s;, and uf,...,u; to
obtain that y¢ is not a d-string. Then also y(My(s)ly; < u; | j € [m]]) is not a
0-string, because it has y¢ as substring. This proves Claim 4.

For technical convenience we define a mapping dg on Ta(Y) which realizes res4
on trees in Ta; for a tree t € TaA(Y), dp(t) = t[b < e | b € B] and hence, for t € Ta,
ydp(t) = resa(yt).

Claim 5: Let (q,p) € Q'(n), g € Q. mmn >0, and s € Tx such that
M, ,(Tn(s)) contains no dummy symbol. Then

y M/,) (7n(s)) = yd (M, () # dd]lp = dd)),

where [¢ # dd] denotes the substitution [y; < comby(p(j)) | 7 € [m],¢(j) # dd]
and [¢ = dd] denotes the substitution [y; < v, | j € [m],¢(j) =dd,v = |{n | n <
j and p(u) = dd}| + 1.

This claim is proved by induction on the structure of s. The induction hy-
pothesis is denoted by TH5. As in the proof of Claim 4, let s = o(s1,...,5sk)
with 0 € Xk > 0, and sy,...,5; € Tx. Let (¢1, f1),...,(¢k, fr) € Qn such
that 7 (s) = (o, (¢1, f1), -+, (D, fr)) (v (51), -, v (5k)). Then yM(, (v (s)) =

y(aharr (6), (3, (D15 F1)s - (10 S) U@ @) 2) M, (o) | ('),

x;) € (Q', Xi)]). Since M(q7w)(rN(s)) contains no dummy symbol, neither (i) nor
(ii) of the proof of Claim 4 holds, i.e., rhsar ((¢,¥), (o, (¢1, f1)s- -, (Sk, fr))) con-
tains no dummy and hence equals trans(rhsM(q, o)), and, for every ((¢',¢'), z;)
occurring in rhsar ((q,), (o, (61, f1),---, (Pk, fx))), the tree M(’)(TN(Si)) con-
tains no dummy symbol. Therefore we can apply TH5 to yM(@)(~(si)) and
so, by Lemma 1(b), we can replace M(q,’@,)(TN(s;)) in the second order substi-
tution above by dg(My (s;)[¢’ # dd][¢’ = dd]). We obtain that yM(’tW) (tn(s)) =
y(trans(rhsas(q, 0))[]), where [-] denotes the substitution

[{(d', ¢, z:) = dp(My (si)l¢" # dd)p" = dd]) | {(d', ¢"),z:) € (Q, X)].

By Claim 6 for t = rhsps(q,0) we get ydp(rhsar(g,0)[...J[¢ # dd][¢ = dd]), where
[.-.]1=[dzi) < My (si) | (¢, x:) € (@, Xk)]. This equals ydp(M,(s)[e # dd][¢ =
dd]) which ends the proof of Claim 5.

Claim 6: Let m > 0. For t € Tayg,x,) (Ym),

y(trans(t)[]) = ydp (.. Jle # dd|[p = dd)).

Claim 6 is proved by induction on the structure of ¢. The induction hypothesis is
denoted by IH6. If t = y; € Y,,,, then y(trans(y;)[-]) = ytrans(y;). By the definition
of trans this is equal to y(y;[¢ # dd][¢ = dd]) and thus equals ydg(t]...Jl¢ #
dd][¢ = dd]). If t € B U {e}, then y(trans(t)[.]) = ¢ = ydp(t) = ydp(t[.. Jle #
dd][(p = dd]) Let I >0 and ty,...,t € TAU(Q,Xk)(Ym

Ift = §(ty,...,t;) with § € AD | then y(trans(t)[.]) = y(d(trans(t;)[], .
trans(t;)[-])) = y(trans(ti)[]) - - (trans(tl)[[D). By IH6 we get ydp(t1]..]][
iy = dd)---yp(l iy # dd][ip = d]) which cquals ydg(iL.. Jig # ddg

If t = (¢/,2:)(t1,...,t;) with (¢, z;) € (Q, X)), then y(trans(t)[]) equals
y(((¢', "), x;)(trans(ty,), . . ., trans(t;,) [-]]) where ¢'(v) = oca(y(t,0)P) for v €
[1], and <p’71(dd) = {j1,...,Jr} with j; <--- < ji. By application of [.] we get

y(de(My (si)l¢" # dd[¢’ = dd])[y, « trans(t;,)[] | v € [I']).

By IH6, y(trans(¢;,)[-]) equals ydg(t;,[.-.]Jl¢ # dd]l¢ = dd]), which means, by
Lemma 1(a), that dg(t;,[..]l¢ # dd][¢ = dd]) can be put in the substitution for

|| ‘H\“

22

yv». Now this substitution can be combined with [¢' = dd]. We get

ydp(My (si)le" # ddly; < t;].. Yl # ddllp = dd] | j € {jr, ..., 5 }]).

In the substitution [¢' # dd], ¢'(j) = oca(y(t;0)®) which by Claims 2 and 1
equals oca(y(¢;[...])®@) as in the proof of Claim 4, where for v € [m] we let u,
be an arbitrary tree in T'a such that oca(yu,) = ¢(v) and hence oca(y(¢;0)P) =
oca(y(t;Olyy — uy | v € [m]])) = oca(yltsl.. N — w | v € [m]])) = ocaly(t;
[...])®). Now, since & = (y[p # dd])[dd] with [dd] = [y, + dd | v € [m], p(v) = dd],
we get ©'(j) = oca(y(t;[. - Jle # dd])[dd]). This is in {¢} U A and hence no y, with
©(v) = dd appears in y(t;[...J[¢ # dd]). Therefore the substitution [dd] can be
replaced by [p = dd]. For the same reason, oc4 can be replaced by the application
of dp and y to get ydg(t;[.. J[¢ # dd][¢ = dd]). This means that the substitution
[# dd] can be replaced by [y; « t;[....llp # ddllp = dd] | j € (1)~ {j - - ju D).
Altogether we get

ydp(My (si)ly; + t;[. -]
ly; + t[..]

= ydp(My (si))ly; < t;[--]
=ydp(t[..]lp # dd][e = dd]).

[p # dd]lp = dd] | j € ([I] = {j1,-.,r})]
[p # ddllp = dd) | j € {jr,---,ji}])
[p # ddllp = dd] | j € [I]])

O

Based on Lemma 17 and the closure properties of Section 4 we can now state
two bridge theorems for yield languages of compositions of MTTs. Note that in the
applications of Theorem 18, the language L' will often be of the form ¢(L), where
(is an operation on languages.

Theorem 18. Let A, B be disjoint alphabets and let L C A* and L' C (AU B)*
be languages such that L' is d-complete for L and ress(L') = L.

(a) For everyn > 1,if L' € yMTT" " (REGT), then L € yMTT"(REGT).
(b) f L' €e yMTT(REGT), then L € yT(REGT).

Proof. (a) We want to apply Lemma 17 to L, L', and £L = MTT"(REGT). In
order to do so, £ must be closed (i) under intersection with REGT and (ii) under
finite state relabelings. To show (i), let 7 € MTT™ and Ry,Rs € REGT. Then
7(R1) N Ry = 7(Ry N7 Y(Ry)). Since REGT is preserved by the inverse of MTT",
by Theorem 7.4(1) of [EV85], 77}(R2) € REGT. Hence Ry N7 *(Ry) € REGT
and 7(Ry N 77 1(Ry)) € MTT"(REGT) = L. Closure property (ii) follows from
Lemma 11. The application of Lemma, 17 to L, L', and L = MTT"(REGT) gives:
if L' € yMTT "+ (REGT), then L is in yMTT,,(MTT"(REGT)), which equals
yMTT"(REGT) by Corollary 16 and the fact that n > 1.

(b) Since REGT is closed under intersection and under finite state relabelings
(cf., e.g., [GS84]), we can apply Lemma 17 to L, L', and £L = REGT. We obtain
that L is in yMTTs,(REGT) which equals yT'(REGT) by Theorem 15. O

In the second bridge theorem, L' = (L) for a particular operation ¢ on lan-
guages. Let A, B be disjoint alphabets with B nonempty, and let L. C A* be a
language. The function rubpg (“rubbish”) inserts any number of symbols in B any-
where in the strings of the language to which it is applied. Hence,

rubp(L) = {wiaiweasz . .. aj_jwia;w;41 |

ay,...,a € Ajay---a; € Lywy,...,wi41 € B*}.

Note that rubg(L) = res,'(L). Obviously rubg(L) is -complete for L and res 4(
rubp(L)) = L. This means that Theorem 18 can be applied. For B = {b,...,by},

23

rubg(L) = rubg, y(rubg,, 3 (... rubg,y(L)...)). Thus, by the n-fold applica-
tion of Theorem 18 we get that if rubg, . 4.1(L) € yMTT"(REGT) then L €
yT(REGT).

We now show that actually two symbols 0, 1 suffice in order to get through the
whole hierarchy yMTT™(REGT) (for any n). The reason for this is that every
symbol in an arbitrary set B can be represented by a string in {0, 1}* in such a way
that {0,1}* represents B*. The translation of strings in {0,1}* to strings in B can
be realized by an MTT M in such a way that for a tree s with ys € {0,1}*, ymar(s)
is the string in B* that corresponds to ys.

Lemma 19. Let £ be a class of tree languages and let B be a nonempty alphabet.
For a language L, if rubgo 11 (L) € y£, then rubg(L) € yMTT(L).

Proof. Let K € L with yK = rubgo13(L) and let ¥ be a ranked alphabet such
that K C Tx. By Lemma 7 there is an MTT My with output alphabet I' =
{0 1M e U {a™ | a € ¥ a # e} which translates every tree s in T into
the monadic tree sm(ys) € Tr.

We use a Huffman code to represent each b € B by a string over {0, 1}. More
precisely, if B = {b1,...,b,}, then for i € [n], the string 0~'1 represents b;. Addi-
tionally, 0F1 also represents by, for k > n. A string in {0,1}* can now be uniquely
decoded into symbols of B, disregarding the zeros at the end. Hence, every string
in {0, 1}* represents a string in B* and vice versa.

Let us define the top-down tree transducer M,, which translates every monadic
tree sm(wiay - - - wiaqwiy1) with wy, ..., wy, w4y € {0,1}* and aq,...,a; € X ©) into
a tree with yield wja, - --wjajw;,, where each w; € B* is the decoded version of
w;. Let M, = ([n], T, ¥ U {0(2),1)50), B e(®},1, R), where R consists of the
following rules.

(i, 1(z1)) — o(b;, (1,21)) fori € [n]

(i,0(21)) = (i+1,2y) fori€[n—1]

(n,O(acl)) - <n7x1>

(i,a(z1)) = o(a,(1,21)) fori€ [n] and a € (2 — {e})
(i,e) —e for i € [n]

It should be clear that M, realizes the translation as described, and hence
y7u, (Tvs (K)) = rubp(L). By Lemma 5, Tar oy, € MTT. Thus yrar, (v (K)) €
yMTT(L). O

Theorem 20. If rubgg 1} (L) € U,,50 yMTT"(REGT), then L € yT'(REGT).

Proof. Let n > 1 and let B = {b1,...,by11} be a set of distinct symbols which do
not appear in L. By Lemma 19, if rubyo 13(L) € yMTT"(REGT), then rubg(L) €
yMTT""(REGT). Now we apply Theorem 18(a) to L, and L1, where Ly =
L and for m > 1, L, = rubg, 1(Lm—1). We obtain that L,,; = rubg(L) €
yMTT" " (REGT) implies L, € yMTT"(REGT) and thus, by induction, that
Ly =rubg, 1 (L) € yMTT(REGT). By application of Theorem 18(b) to L and L,
we obtain that L € yT'(REGT). O

6 The yMTT-hierarchy and the EDTOL-hierarchy

In this section the bridge theorems of Section 5 are applied to prove that composition
of MTTs yields a proper hierarchy of output string languages, i.e., the hierarchy
yMTT"(REGT) (for short, the yMTT-hierarchy) is proper (at each level). In fact,
we prove that witnesses for the properness of this hierarchy can already be found in
the EDTOL-hierarchy. This will imply that also the EDTOL-hierarchy is proper. Note

24

that from Theorem 9.10 of [Dam82] it follows that the hierarchy MTT"(REGT)
of tree languages generated by compositions of MTTs is proper. Moreover, it easily
follows from the proof of that theorem that the yMTT-hierarchy is infinite (because
there are monadic tree languages arbitrarily high in the hierarchy MTT"™(REGT)).

Then we show that there are nondeterministic languages, generated by quite
simple devices, which are not in the two hierarchies discussed: There is a language
generated by a two-way generalized sequential machine which is not in the yMTT-
hierarchy, and there is a context-free language not in the EDTOL-hierarchy.

We now move to the proof of properness of the yMTT-hierarchy. The witnesses
for this properness can be generated by (controlled) EDTOL systems, which are
viewed here as string transducers. Essentially, an EDTOL system is a top-down tree
transducer M with monadic input alphabet (cf. [ERS80]). However, instead of a
tree translation it realizes a string translation as follows: first, the input string w is
turned into a monadic tree s (i.e., s = sm(w)); then it is translated into the string
y7r(s). The EDTOL translation realized by M, denoted by TEPTOV s defined as
sm o Ty o y. Hence, the class EDTOL of EDTOL translations is sm o T' o y. The
EDTOL-hierarchy consists of all EDTOL™(REG), obtained by iterating EDTOL on
the class REG of regular languages. It starts with the class EDTOL(REG) of EDTOL
languages (because the regular control can be internalized, cf. e.g., Theorem 3.2.1
of [ERS80]).

Let us first show that the EDTOL-hierarchy is contained in the yMTT-hierarchy.

Theorem 21. For every n > 1, EDTOL" Y (REG) C yMTT"(REGT).
Proof. By definition, EDTOL™"*! = (sm o T o y)"*! which equals
smo (Toyosm)"oT oy.

By Lemma 7, yosm € MTT. Thus, the above is included in smo (T o MTT)"oT oy.
By Lemma 4 this is included in smo MTT" oT oy which, by Lemma 5, is included in
smoMTT"oy. Applying this to REG gives yMTT" (sm(REG)) CyMTT"(REGT).

O

Based on Theorem 18 we will prove that there is a language which cannot be
generated as output by the composition of n MTTs, but which can be generated
by the composition of n + 2 EDTOL translations. This time the language L’ in
Theorem 18 will be of the form count(L). When applied to a string w, county, inserts
blwl=i after the i-th symbol of the string w, for 1 < i < |w|. Formally, let A be an
alphabet and let B = {b} with b ¢ A. Define the operation count; : A* — (AU B)*
as follows:

!
county(aias - - a;) = H aib = = a b tasbt 2 ai_ b
i=1

Clearly, count,(w) is a d-string for w. So, for a language L, count, (L) = {county(w) |
w € L} is d-complete for L. Since, moreover, res4(count,(L)) = L, we can apply
Theorem 18 to L and county(L). For distinct symbols by,...,b, we abbreviate
countp, o county, o ---ocounty, by county, . s, .

To start the application of Theorem 18 we need a language L that cannot be
generated by a top-down tree transducer. As shown in Theorem 3.16 of [Eng82]
such a language is

Lec = {(amc)zm | m > 1}7

where ec stands for ‘exponential copying’. In fact, it is shown in that theorem that
Lec ¢ yT(REGT) and even that Lec & U,,~o YN-T"(REGT).

25

Theorem 22. For every n > 1, EDTOL""?2(REG) — yMTT"(REGT) # 2.

Proof. Let by,...,by, be distinct symbols not in {a,c}. We will show that the lan-
guage county, _p. (Lec) is in EDTOL"?(REG) — yMTT"(REGT). That is, we will
show that (1) county, . s, (Lec) € EDTOL"™?(REG) and (2) county, .. p, (Lec) &
yMTT"(REGT).

(1) First, we show that Le. € EDTOL?(REG) by defining two top-down tree
transducers M; and M, and a regular language L such that r 2 oV (7FPTO (L)) =
Lec. Let My = ({9}, {a™, e} A, ¢, R)) with A = {c®, a9 ,¢© ¢} and R,
consisting of the following rules.

(¢, a(z1)) = o(c,0((q,21),a))
(q,e) —e

Then for i > 0, 752 %% (a?) = ca’. Let My = ({¢©}, 2, A, q,Ry) with ¥ =
{a, M e} A as above, and Ry consisting of the following rules.

(g,c(x1)) = o({g,21), (g, 21))

Then 30T (clad) = (ajc)Qi and for the regular language L = {a™ | m > 1},
PEDTOL (EDTOL (L)) = 7BDTOL ({omam | m > 1}) = {(a™0)*” |m > 1} = L.

Now that we know that Le. € EDTOL?(REG), we show that there is an EDTOL
translation 73 T°" which realizes count,. Define M, = ({qSO),q(O)},E,A, o, R),
Y ={aM |ac A U{e®}, A={a® |ac A} U{s®, e bO} Aisan arbitrary
alphabet not containing b, and R consists of the following rules.

qo,a(z1)) = o(a,o({q, z1),{(qo,x1))) for every a € A

(

{(qo, €) —e

(q,a(z1)) — a(b,{(q,z1)) for every a € A
(g, €) —e

Clearly, for every w € A*, 7P (w) = county(w). Hence, county, € EDTOL
and so county, . p, (Lec) € EDTOL™*(REG).

(2) Application of Theorem 18(a) gives: if county, .. p, (Lec) € yMTT™(REGT),
then county,, 5., (Lec) € yMTT" ' (REGT). Hence, by induction, county, (Lec) €
yMTT(REGT) and, by Theorem 18(b), Le. € yT'(REGT). But, as mentioned be-
fore this theorem, Le. ¢ yT'(REGT) and thus county, . p, (Lec) € yMTT"(REGT).

O

From Theorems 21 and 22 we obtain the properness of the yMTT-hierarchy.
Theorem 23. For every n > 1, yMTT"(REGT) C yMTT""'(REGT).

As shown in the proof of Theorem 22, Lo. € EDTOL?>(REG) — yT(REGT)
and thus Le. € EDTOL?*(REG) — EDTOL(REG), because EDTOL(REG) = yT (sm(
REG)) C yT(REGT). Hence, by Theorems 21 and 22, the EDTOL-hierarchy is
proper. This was mentioned as an open problem after Theorem 4.3 of [Eng82].

Theorem 24. For every n > 1, EDTOL"(REG) C EDTOL"*'(REG).

26

Nondeterministic Languages not in the yMTT- and EDTOL-hierarchies

Here we show that particular “nondeterministic” languages are not in the yMTT-
and EDTOL-hierarchies. First, a language generated by a nondeterministic two-
way generalized sequential machine (2GSM) is considered and it is proved that this
language is not in the yMTT-hierarchy. Second, a context-free language is considered
and proved not to be in the EDTOL-hierarchy.

A 2GSM is a nondeterministic finite-state device that takes as input a string
(surrounded by end markers) on which it can move back and forth, possibly chang-
ing its state and generating output. Let 2GSM denote the class of string-to-string
translations realized by 2GSMs.

Theorem 25. 2GSM (REG) — 5, yMTT"(REGT) # .

Proof. Let 0,1,b, and a be distinct symbols and let L = rubyg 1} (rubgyy (Lnp)) with
Ly, = {a™ | n is not a prime}. Then L € 2GSM(REG) — ,,~, yMTT"(REGT),
ie., (1) L € 2GSM(REG) and (2) L & J,;»o yMTT"(REGT).

(1) Tt is straightforward to show that there is a 2GSM M and a regular language
R such that M'’s translation applied to R gives L. The language R consists of all
strings aP, p > 2. Now M traverses ¢ times, with ¢ > 2, the input string a?,
outputting an a at each move. Moreover, at every step M can nondeterministically
choose not to move and to output a symbol in {0,1,b}. Hence, M generates all
strings in rubgo 1 53 ({a”? | p,q > 2}) = rubgg 13 (rubgpy (Lnp)) = L.

(2) By Theorem 20, rubgg 13 (rubgyy (Lnp)) € U,>qyMTT™(REGT) implies that
rubgyy(Lap) € yT(REGT). By Theorem 3.2.14 of [ERS80] (which is another bridge
theorem, closely related to Lemma 17), rubgyy(Lnp) € yT(REGT) implies that
Ln, € yTtc(REGT), where Tt denotes the class of translations realized by top-
down tree transducers that are finite copying. It is known that the language Ly, is
not in yTi.(REGT), because it is not regular and hence its Parikh-set is not semi-
linear (cf. Corollary 3.2.7 of [ERS80]; cf. also the proof of Theorem 4.8 of [Eng82]).
Thus L & U,,»oyMTT"(REGT). O

Since the class 2GSM (REG) is included in the class of ETOL languages (this fol-
lows, e.g., from the characterization of ETOL languages by checking-stack pushdown
automata [vLT76], which can easily simulate 2GSMs; see also [ERS80]), Theorem 25
implies that ETOL(REG) —U,,~qyMTT"(REGT) # @, i.e., there is an ETOL lan-
guage that is not in the yMTT-hierarchy. Denote by N-T the class of translations
realized by nondeterministic top-down tree transducers. Then, analogous to the de-
terministic case, ETOL = smo N-T oy and thus ETOL(REG) C yN-T(REGT).
Hence, yN-T(REGT) —J,,o yMTT"(REGT) # & by Theorem 25.

Finally, we show that there is a context-free language (i.e., a language in yREGT)
which is not in the EDTOL-hierarchy. This strengthens the well-known result that
there are context-free languages which cannot be generated by EDTOL systems, i.e.,
which are not in EDTOL(REG) (cf., e.g., Corollary 3.2.18(i) of [ERS80]).

Let REG Thon denote the restriction of REGT to monadic trees. We prove that
there is a language in the class CF of context-free languages, which is not in the hi-
erarchy yMTT"™(REG Tion)- Since this hierarchy includes the EDTOL-hierarchy by
the proof of Theorem 21 (because sm(REGT) C REGTmon), the above mentioned
result follows as a corollary.

Theorem 26. CF —J,~oyMTT"(REGTmon) # 9.

Proof. Let L € CF — EDTOL(REG). Obviously, L = REGTnon satisfies the clo-
sure properties of Lemma 17 (because REGT does). This implies that Theorems 18
and 20 can also be stated with REGT replaced by REG Tion- Then, by Theorem 20,
if rubgo11(L) € U,soyMTT"(REGTion), then L € yT'(REG Tmon). Clearly, this

27

means that L € yT'(sm(REG)) = EDTOL(REG), because a top-down tree trans-
ducer with monadic input trees, i.e., trees of the form a1 (- - - a,,—1(an) - - -), can easily
be changed into one with input trees of the form sm(a; - - - a,) that generates the
same output: the input symbols of rank zero are changed to have rank one, the
right-hand sides of all rules are taken over, and for the input symbol e an arbitrary
rule is added (which will not be used). Since L ¢ EDTOL(REG), this means that
rubgg 131 (L) is not in J,,~q yMTT" (REG Timon)- Clearly, rubgg 11(L) € CF, because
the context-free languages are closed under substitution (see, e.g., Theorem 6.2
of [HU79)). O

Corollary 27. CF —J,~, EDTOL™(REG) # @.

7 The I0-hierarchy

In this section we investigate the relationship between the IO-hierarchy and both
the yMTT-hierarchy and the EDTOL-hierarchy. By Theorem 7.5 of [ES78], the
10-hierarchy can be defined in terms of tree translations as follows:

forn > 1, I0(n) = yYIELD"(REGT),

where YIELD is the class of YIELD mappings defined below. The hierarchy starts
with the class IO(1) of languages generated by the I0 macro grammars of [Fis68].
Since YIELD C MTT by Theorem 4.6 of [EV85], IO(n) C yMTT"(REGT), i.e.,
the I0O-hierarchy is inside the yMTT-hierarchy. In fact, the yMTT-hierarchy differs
from the IO-hierarchy only by a single application of a top-down tree transducer,
because yMTT"(REGT) = y YIELD"(T(REGT)) by Corollary 4.13 of [EV85]. It
is shown in [Dam82] that the IO-hierarchy is infinite, and that the I0-hierarchy of
tree languages YIELD™(REGT) is proper.

A YIELD mapping Y} is a mapping from Ts; to Ta(Y") defined by a mapping
f from X0 to Tx(Y), for ranked alphabets ¥ and A. Tt realizes the semantics of
first-order tree substitution in the following way.

(i) for a € T, V;(a) = f(a) and
(ii) for o € X**1 sq,81,...,5; € T, and k > 0,
Yf(U(So,Sl, .. ,Sk)) = Yf(So)[yi — Yf(sl) | 1€ [k]]

Ezxample 28. Consider the tree language Lc¢ consisting of monadic trees of the form
c™(a™(e)), m > 1. We want to show that Lcsisin YIELD(REGT), i.e., that there is
a regular tree language K and a mapping f such that Yy (K) = L¢r. The regular tree
language K consists of binary trees with yields of the form v™a™ and is generated
by the regular tree grammar with productions S — o(4,¢), A — o(vy,0(4,a)),
and A — o(vy,a). Now the YIELD mapping Y; simply has to generate yK, as
monadic trees. Let f(a) = a(y1), f(y) = ¢(y1), and f(e) = e. Consider, e.g., the
tree 5 = a(a(7,a),¢) € K. Then Yy(s) = Yr(o(v, o)l « f(e)] = f(Dln «
f@)]yr < €] = e(y1)y1 < a(y1)]lyr + €] = c(a(e)). It should be clear that
Y (K) = Le. O

7.1 Comparison with the yMTT-hierarchy
Now we compare the I0-hierarchy with the yMTT-hierarchy and prove (in The-
orem 32) that IO(n + 1) — yMTT"(REGT) # @. Let us first show that YIELD

mappings are closed under composition with tree homomorphisms (= second-order
tree substitutions).

28

Lemma 29. Let Y} be a YIELD mapping from Ts; to Ta(Y) and M a tree ho-
momorphism with input alphabet A. There is a YIELD mapping Y, such that for
every tree s € Ty, if Y} (s) contains no parameters, then Y (s) = mar(Y3(s)).

Proof. Let f be a mapping from X to Tx(Y), and M = ({¢'®}, A, I',q, R). The
idea is to define g(a) for a € ¥(® by running M on f(a), leaving parameters
unchanged. That is, if M is the extension of M to input trees in Ta(Y,,) (for
some m large enough) by rules (¢,y;) — y;, then define the new mapping g by
g(a) = 747 (f(@)). If Yy(s) € Ta, then 77 (Yy(s)) = 777(Y¢(s)), which equals Y (s)
by the following claim.

Claim: For every s € T, Yy (s) = 777 (Y7(s))-

The proof of this claim is by induction on the structure of s. Let [17] be the
second-order substitution [o < (, | 0 € X] with {, = rhsp(q,0)[{g,2:) < yi | i €
[k]] for every o € X. Then, clearly, t[1;] = 74;(t) for every t € Ta(Y). If s = a €
2O then Y, (s) = g(a) = m57(f(@)) = 757 (Y7(s)). Let s = o(so,...,sk), k> 1,0 €
.Z(’“H), and 505+ Sk € Ts. Then 75;(Ys(s)) = Yf(s)[[ﬁ]] = Yr(so)[yi < Yr(s:) |
i € [Kl][z7]- This equals Yy (so)[7llyi = Yy(si)lz7] | @ € [F]] = 77(Y7(s0))[yi
T77(Yy(s:)) | @ € [K]]. By induction this is equal to Yy (so)ly: < Yy(s:) | i € [K]] =
Y, (s). O

Example 30. Let M be the top-down tree transducer M, defined in the proof of
Theorem 22 and let f be the mapping of Example 28. Since M is a tree ho-
momorphism, we can apply the construction of the proof of Lemma 29. Define
g(a) = m5:(f(@) = t5(alyr)) = o(a,y1), 9(v) = T57(c(y1)) = o(y1,41), and
g(e) = r;(e) = c.

Clearly, Y,(s) = ma(Y7(s)) for every s. This means that for the regular tree
language K of Example 28, yV, (K) = yrar (Y} (K)) = yrar(Le) = {(a™c)?" | m >
1} which is the language L. defined before Theorem 22. Hence, L. is in TO(1),
i.e., it is a (well-known) example of an IO macro language. O

Now that we know that Le. € IO(1), we want to find an operation ¢ that can be
realized by a YIELD mapping and which is defined in such a way that Theorem 18
can be applied to L' = ¢(L) for a language L. Unlike the operations rub and count
of before, the operation we use now is a tree translation, i.e., L' = yp(K), where
yK = L.

Let ¥ = {0(® root™} U X© be a ranked alphabet and let I, be symbols not
in X, Recall from Section 2.1 that each node p of a tree s is denoted by a string
in N*, and that the label of s at p is denoted by s[p]. Consider a tree translation 7
from T’ to Ta with A = XU {I(©, 70 e}, Then 7 is an (I,r)-leaf insertion for
X, if, for every s’ = root(s) and s € T's_{ro0t},

(i) 7(s") = root(t) for some t € Th_{ro0t3 and
(i) y7(s") = pislp]phsp2] - - - PhnSlpm], where pi = pi[1 1,2 < r]and p1,..., pm €
{1,2}* are all leaves of s in pre-order that are not labeled by e.

As an example, let £(©) = {a,b, e} and consider the tree s = o(a, (o (e, b),a)).
Figure 3 shows s’ = root(s) and the tree 7(s") for an (I, r)-leaf insertion 7 (obviously,
y7(s") = larlrbrra is a é-string for ys' = aba).

Let 7 be an (I,r)-leaf insertion for ¥ and let A = ¥(© — {e} and B = {I,r}.
It should be clear that, for a “rooted” tree language K C root(T's_fro0t}), the
language L' = y7(K) is d-complete for L = yK. Moreover, ress(L') = L because
resa(y7(s")) = s[p1]s[p2] - - - s[pm] = ys. This means that Theorem 18 can be applied
to L and L'. Rather than defining an (I,r)-leaf insertion in YIELD, it suffices, due
to Lemma 29, to show that there is an (I, r)-leaf insertion 7 in 73y o YIELD for
some tree homomorphism M. This is true because 7 will always be applied to a

29

root root

o
root /\
= a a ’
S /\ I
o a
/\ Il arlrb rr a
e M
6 b ’ U ’
P1 P2 P3

Fig. 3. The trees s’ and 7(s’) for an (I, r)-leaf insertion 7

tree language K in YIELD(L) for some class L of tree languages, i.e., to a K of
the form Y} (K') for some YIELD mapping Yy and tree language K’ € L. Hence,
by Lemma 29, 7(K) € YIELD(ry (Y;(K"))) C YIELD?(L).

Lemma 31. Let X = {0 root())} U X(®) be a ranked alphabet and let [,7 be
symbols not in Y. There is a tree homomorphism M and a YIELD mapping Y}
such that 7ar 0 Yy is an (I, r)-leaf insertion for X.

Proof. Define M = ({¢®}, ¥, I',q,R) with I' = {§(3),1) 7(0)) qO0) ¢}y %
and R consisting of the following rules.

(q,root(azl)> - U(da0(<qa$1>a€))
(¢, 0(z1,2)) = 0(c,0((q,21),1),0({q, 22),T))
(q,a) —a for every a € X

The mapping f is defined as f(d) = root(y1), f(c) = o(y1,y2), f(e) = e, and,
for every a € X U {l,r} with a # e, f(a) = o(y1,a)

Let us now prove that 7as o Yy is an (I, 7)-leaf insertion. For s € T's_(ro0t},
Y;(tamr(root(s))) = Yy(o(d, o(Tar(s), e))) by the definition of M. This equals

)y < Yi(o(rar(s), e))] = root(y1)[yr « Yy(mar(s))[yr Yy(e)]]
= root(Yy(7ar(s))[y1 « el)-

By the rules of M, 7)(s) does not contain occurrences of the symbol d, and
thus Yy (7ar(s))[y1 4 €] € Ta—{rooty with A = ZU{10 r(® e} This proves part
(i) of the definition of (I, r)-leaf insertion.

The yield of root(Yy(mar(s))[y1 < €]) is equal to yYy(Tar(s))[yr < €] which
equals pi s[p1]phs[p2] - - - pl,s[pm] by the following claim (with the p} as in the claim).
This proves part (ii) of the definition of (I, r)-leaf insertion.

Claim: For every s € T'o_froot}> YY1 (Tar(8)) = y1p101y105a2 - - Y1y, G, Where
m > 0,ys = ay-am, a; € 2O —{e}, pi = pi[l « 1,2 « r] for i € [m], and
P1,---,pm are all leaves of s in pre-order that are not labeled e.

The claim is proved by induction on the structure of s. If s = a € X(0) — {e},
then yYr(tar(s)) = yYr(a) = yo(y1,a) = y1pjar, where ys = a1 = a, p1 = ¢, and
pi=pm[l < 1,2+ r]=c. If s =e, then yY;(1as(s)) = yYr(e) = ye = ¢ (which
proves the statement for m = 0). If s = 0(s1,s2) with 51,52 € T'o_fro0t}, then

(s

Yi(tm(s)) = Yr(0(c,a(mm(s1),1), 0(Tar (s2),7))
=Yi(e)y1 + Yy(o(ra(s1),1)),y2 < Yi(o(tm(s2),7))]
=0(y1,y2)[y1 < Yy(rar(s1))[y1 < o (y1,0)],
Y2 < Yp(rar(s2))[y1 < o(y1,7)]]-
The yield of this tree is yYr(Tar(s1))[y1 < yillyYr(mar(s2))[y1 < yar]. By induction,
yYr(tar(s1)) = yapibr - y1ipibi and yYp(7ar(s2)) = yigicr -+ yigje; with ysy =

30

bl"'bia i 207 Ys2 :Cl"'ciaj Zoapi/ :pu[]- (_172(_71 for v € [Z]a QL ZQM[]- «
[,2 + r] for p € [j], and p1,...,p; and ¢1,...,¢; are all leaves in pre-order not
labeled by e of s; and s9, respectively. Thus, yY;(7ar(s)) = yilpibr - - - y1lpibiyargic
-+ +yirgje; which equals yipyar -+ y1p,,am, where: m = i+ j, for v € [i], p, =
(1p)[1 < 1,2 < r] and a, = by, and, for p € [j], piy, = (2qu)[1 + 1,2 < r] and
@ity = c,. This proves the claim, because a; -+ - @y, = by - bijci1 -+ -¢j = ys1ys2 = ys
and 1pg,...,1p;, 2¢1 ..., 2q; are all leaves of s in pre-order that are not labeled by
e. (]

We now prove that witnesses for the properness of the yMTT-hierarchy can
already be found in the IO-hierarchy.

Theorem 32. For every n > 1, IO(n+ 1) —yMTT"(REGT) # @.

Proof. Let n > 1. We first define the language L,, in IO(n+1) —yMTT™(REGT).
Let ¥ be the ranked alphabet {o(® root(V} U X with ¥(©) = {a,c,e} and let
K be the regular tree language defined in Example 28. Define the regular tree
language Koc as 0(d,K) = {o(d,s) | s € K} and let g be the mapping as defined
in Example 30, extended by g(d) = root(y:). Then Y, (Ke.) = root(Y,(K)) C T,
yY,(Kec) = Lec, and every tree in Yy (Kec) is “rooted”, i.e., of the form root(s),
5 € Tx_frooty- Let l1,...,ln,71,...,mn be distinct symbols of rank zero, not in
Y. By Lemma 31 there is, for every ¢ € [n], a tree homomorphism M; and a
YIELD mapping Y}, such that 7, = 7ag, o Yy, is an (I;,r;)-leaf insertion for X' U
{ll, .. .,li_l,rl, . ,’I"i_l}. For n Z 0 define

Kn= yo0rm oYy oma, oYy, 00~ 07, 0y,)(Kec).

Then L, = yK, € I0O(n+ 1) —yMTT"(REGT), i.e., (1) L, € IO(n + 1) and
(2) Ly, ¢ yMTT™(REGT).

(1) Since Y, (Kec) C Ty, Y, (Kec) contains no parameters. Thus, by Lemma 29,
there is a YIELD mapping Y, such that Yy (Kec) = Tar, (Yy(Kec)). Let i € [n—1].
Since Tar, 0 Y7, is a leaf insertion and every tree in Y, (Kec) is rooted, Y, (s) has no
parameters for s € 7ar, (Y7, _, (tar,_, (- - - 7ar, (Y5 (Kec)) - - .))); by Lemma 29 there is a
YIELD mapping f; such that Y}/(s) = 7ar,, (Yy,(s)). Altogether, there are YIELD
mappings fi,..., f},_ such that

Kn=(YyoYgoVYpo-oVp oVy)(Ke)

which is in (YIELDo YIELD" 1o YIELD)(REGT) and thus L,, = yK,, € IO(n+1).

(2) As discussed before Lemma 31, Theorem 18 can be applied to L = L,,_; =
yK, 1 and L' = L, = y1,(K,_1), for the rooted tree language K, ; and the
(I,)-leaf insertion 7, = 7ar, o Yy, . By Theorem 18(a), if L,, € yMTT"(REGT)
then L,_; € yMTT" ' (REGT), and by induction, L = y71 (Y, (Kec)) € yMTT(
REGT); by Theorem 18(b) this means that Ly = yY,(Kec) = Lec € yT'(REGT)
which contradicts the fact that Le. € yT(REGT) as stated before Theorem 22. O

From Theorem 32 and the fact that I0(n) C yMTT™(REGT), as discussed at
the beginning of this section, we obtain the properness of the IO-hierarchy.

Theorem 33. For every n > 1, I0O(n) C IO(n + 1).

7.2 Comparison with the EDTOL-hierarchy

Let us now turn to the comparison of the IO-hierarchy and the EDTOL-hierarchy.
For ETOL systems, it was proved in [Vog88] that the ET0L-hierarchy is included
in the OI-hierarchy OI(n), generated by the n-level OI macro grammars (see,

31

e.g., [ES78,Dam82]). We prove that a similar result holds for EDTOL systems: the
EDTOL-hierarchy is included in the IO-hierarchy. Note that the IO-hierarchy and
the OI-hierarchy are both generated by n-level grammars, but in a different mode of
derivation (inside-out and outside-in, respectively). The hierarchies seem, however,
to be incomparable; in one direction this follows from (the discussion following)
Theorem 25: there is an ETOL language not in the IO-hierarchy.

The proof of the inclusion of the EDTOL-hierarchy in the IO-hierarchy is based
on the following lemma which shows how to simulate a top-down tree transducer
with monadic input trees by a YIELD mapping (applied to a regular tree language).
This is basically the technique used in [Dow74] to prove that EDTOL(REG) C
IO(1), cf. Theorem 6.3 of [ERS80].

A YIELD mapping evaluates a tree in a bottom-up fashion. This means that, in
order to simulate a top-down tree transducer with monadic input sm(u), the string
u has to be reversed first.

Lemma 34. T(sm(REG)) C YIELD(REGT).

Proof. Let L C A* be a regular language for some alphabet A. Let M = ({q,...,
gm}, ¥, A, q1, R) be a top-down tree transducer with m > 1 and let ¥ = {a® | a €
A}U{e®}. We now construct a linear tree homomorphism N (where ‘linear’ means
that, for every input symbol o of rank k& > 0 and for every i € [k], (g, z;) occurs at
most once in the right-hand side of the (g, 0)-rule) and a YIELD mapping Y} such
that Yy (rn(sm(L"))) = tar(sm(L)) for the regular language L' = {#u" | u € L},
with # ¢ A. This proves the lemma, because sm(L') C REGT and linear tree homo-
morphisms preserve the regular tree languages (cf., e.g., Theorem 6.10 of [GS84]).
The idea of the construction is to simulate M by associating with every state g; of
M a parameter y;, containing the g;-translation of M; the tree homomorphism N
generates, for input a, constant symbols (g;, a) for every j € [m] (and for input #,
symbols (gj,e)), and f maps (g;,a) to the right-hand side of the (g;,a)-rule of M
(with states replaced by the corresponding parameters).

Define N = ({¢}, X U {#W1}, I q,Ry) with ' = {(¢;,a)® | j € [m],a €
TYU {ym+D) e} and Ry consisting of the following rules.

<q7 #(1‘1)) - 7(<q,$1>, (QIa 6), R (qmae))
(qaa(xl» — 7(<q,$1>, (QIa a)a ey (Qma a)) for every a € A
(g,e) —e

The mapping f is defined as f(e) = y; and, for every j € [m]anda € X, f((g;,a)) =
rhsar(g;, a)[{gi, 1) < yi | i € [m]].

Let us now prove the correctness of the construction, i.e., that Yy (7a(sm(L'))) =
Ty (sm(L)). By the definition of L’ we have to show that, for every v € L, Y} (7 (sm(
#u"))) = Tar(sm(u)). By the definition of N, Yy (rn (sm(#u”))) = Y (y(7n (sm(u")),
(@1,€), -, (gm,€))) = Yy (rn(sm(u")))ly; < rhsar(gj,e) [j € [m]]. Since rhsar(g;, €)
= M,;(sm(e)) this equals Tas(sm(u)) by the following claim (for v = ¢).

Claim: For every u,v € A*, Yy(rn(sm(u")))[...] = 7m(sm(uv)), where [...] =
[yi = My, (sm(v)) | i € [m]].

The proof of this claim is by induction on the structure of u. If v = £, then
Vi(rn(sm(u))[...]=Ye(e)[...] = wml...] = My, (sm(v)) = 7ar (sm(uv)).
If v = ua with u € A* and a € A, then we get

Vi(rn (sm(u')))[. .]
= Yy(rn (a(sm(u"))))]. -]
= Yi(y(rn(sm(u”)), (q1,0), - - (gm, @)))[- - -]
= Yy(rn (sm(u”)))[y; < f((g5,0)) [5 € [m]][..]

The application of [...] to f((g;,a)) gives rhsar(g;, a)[(g:, z1) + My, (sm(v)) | i €
[m]] which equals M,; (sm(av)) by Definition 3 and the fact that M is a top-down
tree transducer. Thus we get Yy(rn(sm(u")))[y; < M, (sm(av)) | j € [m]]. B

induction this equals a7 (sm(uav)) = 7ar(sm(u'v)). O

Before we prove that the EDTOL-hierarchy is included in the I0-hierarchy, let
us consider an example of the construction given in the proof of Lemma 34.

Example 35. Let Mj be the top-down tree transducer defined in the proof of The-
orem 22, which translates a tree sm(w) into a tree with yield count,(w), where
w € A* for an alphabet A. For A = {c,d}, M, has the following rules.

c(z1)) = o(c,0((g, 21), (g0, 71)))
QO7d>(CU1)> — o(d,o({q,21), (q0,21)))
(

We now apply the construction of the proof of Lemma 34 to define the linear
tree homomorphism N and the YIELD mapping Y7 such that Yy (7a(sm(#u”)) =
Tar, (sm(u)) for every u € A*. Then N = ({p}, ¥ U {#M}, Ip, Ry) with ¥ =

{0(1), d(l)) 6(0)}’ Ir= {(qu c)(O), (QOa d)(0)7 (qo, e)(O), ((L C)(O)a (Qa d)(o)a ((L e)(O)}U{,}/(B),
(01, and Ry consists of the following rules.

(p, #(@1)) = 7((p, 1), (90, €), (¢, €))
<p7 ('Tl» ((p,1'1>,(qO,C),(q,C))
<p7 (1‘1» (<p7x1>7(q07d)7(Q7d))
(p.e) —e

The mapping f is defined as f((qo,¢)) = o(¢c,0(y2,y1)), f((qo,d)) = o(d,o(y=2,y1)),
f((qo0,€)) = f((g,e)) = e, f((g,¢)) = f((q,d)) = (b, y2), and f(e) = y1.

Fig. 4. The tree t = 7n (#(d(c(c(e)))))

Now, consider the string u = ced. Then

i, (sm(u)) = o(¢,a(a(b, 0 (b, €)),0(c,0(a(b,e),a(d, o (e, €)))))).

The application of 7 to the tree sm(#u") = #(d(c(c(e)))) gives the tree ¢t shown
in Figure 4. Let us now compute Y;(¢) in a bottom-up fashion:

Yy (t/111) = Yy (e)[y1 + Y ((q0,¢)),y2 < Y ((g,¢))]
vilyr < o(c,0(y2,v1)),y2 < (b, y2)]
a(c,o(y2,91)),

33

Yp(t/11) = Y3(t/111)[y1 < Y¢((q0,¢)), y2 + Y7((g,0))]
o(c,0(y2,y1))[y1 < olc,0(y2,y1)),y2 + (b, y2)]
O'(C,U(U(b, yg),o(c,a(yz,yl)))),
a(c,o(a(b,y2),0(c,0(y2,y1))y « old,o(y2,41)),y2 < o(b,y2)]
G’(C, U(U(bv U(ba y2))a O'(C, U(U(ba y2)7 U(dv U(Z/?a yl))))))7

and finally Yy () = Y¢(t/Dlyr < Yi((q0,€)),y2 < Yi((g,€)] = Yi(t/Dy <
e,y <+ e] which is precisely the tree 7y, (sm(u)) displayed above. O

Yy(t/1)

We now prove the inclusion of the EDTOL-hierarchy in the IO-hierarchy.
Theorem 36. For every n > 1, EDTOL™(REG) C IO(n).

Proof. As shown in the proof of Theorem 21, EDTOL™ C sm o MTT™' o y. Since
MTT" =T o YIELD" by Corollary 4.13 of [EV85], this equals smoT o YIELD" ' o
y. Applying this to REG gives y YIELD" (T (sm(REG))). By Lemma 34 this is
included in y YIELD" *(YIELD(REGT)) = y YIELD"(REGT) = IO(n). O

Note that Theorem 22 implies that EDTOL"?(REG) —I0(n) # @. It would be
interesting to know whether this result could be improved to EDTOL"™ (REG) —
I0(n) # @; but this requires stronger methods of proving that a language is not
in the I0-hierarchy, which we do not have (cf. the discussion of open problems at
the end of Section 8). Note further that Theorem 36 gives a somewhat tighter link
between the EDTOL- and the IO-hierarchy, than the one between the ETOL- and the
OI-hierarchy in [Vog88] which states that ETOL"(REG) is included in OI(2n —1).

8 Conclusions and Open Problems

We have proved the properness of the yMTT-, EDTOL-, and IO-hierarchies in Theo-
rems 23, 24, and 33, respectively. In this section we want to discuss the relationships
between the different hierarchies of string languages that were considered in this pa-
per. By “the hierarchy X (n)” we mean that, for every n > 1, X(n) is a class of
languages and X (n) C X (n+1). The hierarchy X (n) is proper if X(n) C X(n+1)
for every n > 1. Denote by X (%) the union (J,,~, X(n). For two hierarchies X (n)
and Y (n) we want to know, whether the following holds.

— Is the hierarchy X (n) included in the hierarchy Y (n), i.e., is X () C Y (x)? And
if so, is the inclusion proper, i.e., is X (x) C Y (%)?

— Is X(n) a subhierarchy of Y (n)? By this we mean that there is an m € N such
that for every n > 1: X(m +n) CY(n) and X(m+n+1) —Y(n) # 2.

— Is X(n) small in Y (n)? This means that Y (1) — X (x) # .

If X (n) is a subhierarchy of Y'(n), then X (m+n) and Y (n) are proper hierarchies,
and X () C Y (%). If X (%) C Y (x) and X (n) is small in Y'(n), then X (%) C Y (x). If
X (n) is a small subhierarchy of Y (n), then the infinite inclusion diagram in Fig. 5
is a Hasse diagram.

We have shown (in Theorems 22 and 32) that the EDTOL- and IO-hierarchies are
subhierarchies of the yMTT-hierarchy. Note that for Y being the yMTT-hierarchy,
m = 1 if X is the EDTOL-hierarchy, and m = 0 if X is the IO-hierarchy.

Let us briefly consider another type of tree transducer and show that the output
string languages of its compositions gives rise to a subhierarchy of the yMTT-
hierarchy: the attributed tree transducer (ATT) [Fiil81,FV98], which is a formal
model for attribute grammars. It is well known that YIELD C ATT C MTT
(cf. Corollary 6.24 and Lemma 6.1 of [FV98]), where ATT denotes the class of all
translations realized by ATTs. Thus, IO(n) C yATT"(REGT) C yMTT"(REGT).
By Theorem 32 we obtain the following corollary.

34

i/l Y (1)
X(m+1)

Fig. 5. The Hasse diagram for: “X(n) is a small subhierarchy of Y (n)”

Theorem 37. Forn > 1,

(a) yATT"*\(REGT) — yMTT"(REGT) # @.
(b) yATT"(REGT) C yATT™ ' (REGT).

Thus, the hierarchy yATT™(REGT) is proper, and it is a subhierarchy of the
yMTT-hierarchy. Note that it is open whether yATT"(REGT) C yMTT"(REGT).
Note further that the yATT-hierarchy is not small in the yMTT-hierarchy, because,
in fact, yMTT"(REGT) C yATT""'(REGT), and so yATT*(REGT) equals
yMTT*(REGT), see, e.g., Section 6 of [FV98].

Now, we prove that the EDTOL-hierarchy is a small subhierarchy of the ETOL-
hierarchy ETOL"(REG), where ETOL denotes the class of all nondeterministic
EDTOL translations (cf. the discussion after Theorem 25).

Theorem 38. The EDT0L-hierarchy is a small subhierarchy of the ET0L-hierarchy.

Proof. By Corollary 27, CF — EDTOL*(REG) # @. Since CF C ETOL(REG),
this shows that the EDTOL-hierarchy is small in the ETOL-hierarchy. Alterna-
tively, this follows from Theorem 25. It remains to show that EDTOL™ (REG) —
ETOL™"(REG) # @. For a language L define the copy operations ¢ and c. as
ca(L) = {wSw | w € L} and ¢ (L) = {(w$)" | w € L,n > 1} for a symbol $ not in
L. Let Ly = Lec and, for n > 2, let L,+1 = co2(county(cy(Ly))) for a symbol b not
in ¢« (Ly,).

(1) L, € EDTOL™(REG). As shown in the proof of Theorem 22, L.. € EDTOL?(
REG) and count, € EDTOL. Hence L, € EDTOL"(REG), because it is easy to
see that EDTOL"(REG) is closed under ¢ and ci: Let L = 7,(-- -1 (R)---) €
EDTOL™(REG) with R € REG and 1, € EDTOL for i € [n]. To obtain cy(L)
and c¢,(L), change R into the regular languages aR and a*R, respectively, where
a is a symbol not in R and not used in any of the ;. Now 71 is changed into
71 in such a way that 7{(aR) equals am (R), and 7{(a*R) equals a*r (R). Simi-
larly, for i € [n — 1], 7; is changed into 7] which translates ar;_1(-- 71 (R) ")
into ar;(ri—1(-- -1 (R)---)) and a*r;—1(-- -7 (R) - -+) into a*7;(1i—1 (- -1 (R) - -+)).
Finally, the translation 7, is changed into 7, which translates ar,,_1(--- 7 (R)---)
into 7, (- - - T (R) - - -)8 (- - - (R) - -) = e2(L), and, similarly, a*7,_1(--- 71 (R) - - -)
into c.(L).

(2) L, ¢ ETOL™ ' (REQG). For n = 2 this follows from Theorem 3.16 of [Eng82]:
Lee € yN-T(REGT). For n > 2 the result is obtained, by induction, as follows. It is
straightforward to show that Theorem 3.1 of [Eng82], which is the bridge theorem
(Theorem 3.2.14) of [ERS80], can also be stated for the operation count, in place
of the operation rub (in fact, it holds in general for languages L and L' that satisfy
the assumptions of Lemma 17). Then the proof of Theorem 4.2 of [Eng82] (with
rub changed into count;) shows that if L ¢ EDTOL(ETOL"~2(REG)) then

35

— county(c«(L)) ¢ EDTOL(ETOL"'(REG)) and
— co(county(c. (L)) € ETOL™(REG).

Since ETOL"'(REG)) D EDTOL(ETOL"%(REG)), this shows that for n > 2, if
L, ¢ ETOL" ' (REG), then L, 1 ¢ ETOL"(REG). 0

The proof of Theorem 38 shows that the properness of the ET0OL-hierarchy is
not caused by the alternation of copying and nondeterminism (as stated in [Eng82]),
but rather by the alternation of copying and insertion.

Let us now summarize the relationships between the different hierarchies of
string languages that have been considered, together with the nondeterministic ver-
sion of the yMTT-hierarchy, and the nondeterministic top-down tree transducer
hierarchy of [Eng82]. Let N-MTT denote the class of translations realized by non-
deterministic macro tree transducers and let, as before, N-T denote the class of
translations realized by nondeterministic top-down tree transducers. Note that the
derivations of nondeterministic MTTs can be restricted to be OI (outside-in), see
Corollary 3.13 of [EV85]. Furthermore, the composition closure N-MTT* can also be
obtained by the restriction to I0-derivations, i.e., this class equals N-MTT{, where
N-MTTio denotes the class of translations realized by nondeterministic MTTs
restricted to IO-derivations, see Theorem 7.3 of [EV85]. By the same theorem,
N-MTT* = (N-T U YIELD)*, and so yN-MTT*(REGT) is the class of languages
considered in [DE9S§], cf. the Introduction.

yN-MTT*(REGT)
yMTT*(REGT) OI(%)
= yATT*(REGT)
sub
ETOL*(REQ) yN-T*(REGT)
EDTOL*(REG) 2GSM*(REG)

Fig. 6. Inclusions of hierarchies of string languages.

Figure 6 shows an inclusion diagram, where an ascending line from X (%) to
Y (x) indicates that X (x) C Y (x), and the label ‘sub’ indicates that X(n) is a
subhierarchy of Y'(n); an arrow from X (x) to Y (x) indicates a proper inclusion (and
even that X (n) is small in Y (n)). Note that the four hierarchies in the left part
of the figure, i.e., EDTOL"(REGT), I0(n), yATT™(REGT), and yMTT"(REGT)
are generated by total deterministic devices and the other five hierarchies involve
partial nondeterministic devices.

Besides the hierarchy yN-MTT"(REGT), all hierarchies in the figure are (now)
known to be proper: For the 2GSM-, ETOL-, and yN-T-hierarchies this is known
from [Eng82] (properness of the 2GSM-hierarchy was obtained independently in
[Gre78]), for the EDTOL-hierarchy by Theorem 24, for the IO-hierarchy by Theo-
rem 33, for the yMTT- and yATT-hierarchy by Theorems 23 and 37(b), respectively,

36

and for the OI-hierarchy from Theorem 7.4 of [Eng91]. Infinity of the IO- and OI-
hierarchies was proved in [Dam82]. Note that deterministic two-way generalized
sequential machines and (deterministic) top-down tree transducers are closed under
composition and therefore do not give rise to proper hierarchies.

Let us now discuss the inclusions in Figure 6. The inclusions of EDTOL*(REG)
in ETOL*(REG), yN-T*(REGT) in yN-MTT*(REGT), and yMTT*(REGT) in
yN-MTT*(REGT) hold by definition. The inclusion of the EDTOL-hierarchy in
the IO-hierarchy follows from Theorem 36. The inclusions of 2GSM*(REG) in
ETOL*(REG) and in yN-T*(REGT) follow from Corollary 4.6 and Theorem 5.5
of [ERS80], see Lemma 4.6 of [Eng82]. The inclusion of IO(x) in the yATT- and
yMTT-hierarchy was discussed at the beginning of this section. The class ETOL*(
REG) is in OI(*) by Theorem 14 of [Vog88] (cf. also [Eng91]) and the inclusion of
OI(x) in yN-MTT*(REGT) follows from Theorem 8.1 of [EV88] (as discussed at
the end of that paper).

Next, consider the subhierarchy and smallness relations in Figure 6. The fact
that the 2GSM-hierarchy is a small subhierarchy of both ETOL™(REG) and yN-T"(
REGT) holds by Theorem 4.8 of [Eng82] (indeed, the smallness follows from the
fact that CF — 2GSM*(REG) # &, which was proved in [Gre78]). By Theo-
rem 38, the EDTOL-hierarchy is a small subhierarchy of the ETOL-hierarchy. From
Theorem 25 and the fact that 2GSM(REG) C ETOL(REG) C yN-T(REGT) C
yN-MTT(REGT), it follows that yMTT"(REGT) is small in yN-MTT™(REGT).
The smallness of yN-T"(REGT) in yN-MTT"(REGT) follows from the fact that
Lee ¢ yN-T*(REGT) (as mentioned before Theorem 22) and the fact (shown
in the proof of Theorem 22) that L. is in EDTOL?>(REG) which is included in
yN-MTT(REGT) by Theorem 21. The EDTOL-hierarchy is small in the IO-hierarchy,
because, by Corollary 27, there is a context-free language not in EDTOL*(REG),
and JO(1) includes the context-free languages (cf. Theorem 7.9 of [ES78]). By Theo-
rem 32, IO(n) is a subhierarchy of the yMTT-hierarchy. Note that it is not indicated
in Figure 6 that the EDTOL-hierarchy and the yATT-hierarchy are subhierarchies
of the yMTT-hierarchy.

We conclude by mentioning some open problems related to the diagram in Fig-
ure 6. First of all, are there more subhierarchy relationships between the hierarchies
shown in the figure? In particular, is the yMTT-hierarchy a subhierarchy of its non-
deterministic version yN-MTT"(REGT)? With respect to inclusion consider the
following open problems.

10(x) C yMTT*(REGT)?
ETOL*(REG) C OI(x)?
— I0(x) € OI(x)?

— yN-T*(REGT) ¢ OI(x)?

Our conjecture is that all these statements hold. Together with the facts that
2GSM*(REG) — yMTT*(REGT) # @ by Theorem 25, and that Le. € EDTOL*(
REG)—yN-T*(REGT) as discussed above, this would prove that Figure 6 is a Hasse
diagram. The problem with proving the conjectures listed above is that we do not
have methods to show that languages are not in the OI- and ET0OL-hierarchies, and
need stronger methods to show that languages are not in the I0-hierarchy.

References

[BCN81] L. Boasson, B. Courcelle, and M. Nivat. The rational index: a complexity mea-
sure for languages. STAM Journal on Computing, 10(2):284-296, 1981.

[CF82] B. Courcelle and P. Franchi-Zannettacci. Attribute grammars and recursive pro-
gram schemes. Theoret. Comput. Sci., 17:163-191 and 235-257, 1982.

37

[Cou83]

[Dam8?]
[DE9S]

[Dow74]
[EM99)]

[Eng77]
[Eng78]

[Eng80]

[Eng82]
[Eng91]
[ERS80]
[EST8]
[EV85]
[EV8S]
[EV94]
[Fis68]
[Fiil81]
[FVg]
[Gre78]
[Gres1]
[GS84]
[GS97]
[HUT9]
[Man98]

[Man99]

[Rou70]
[Roz73]

[vL76]

[Vog88]

B. Courcelle. Fundamental properties of infinite trees. Theoret. Comput. Sci.,
25:95-169, 1983.

W. Damm. The IO- and OI-hierarchies. Theoret. Comput. Sci., 20:95-207, 1982.
F. Drewes and J. Engelfriet. Decidability of finiteness of ranges of tree transduc-
tions. Inform. and Comput., 145:1-50, 1998.

P. J. Downey. Formal languages and recursion schemes. Technical Report TR-
16-74, Harvard University, 1974.

J. Engelfriet and S. Maneth. Macro tree transducers, attribute grammars, and
MSO definable tree translations. Inform. and Comput., 154:34-91, 1999.

J. Engelfriet. Top-down tree transducers with regular look-ahead. Math. Systems
Theory, 10:289-303, 1977.

J. Engelfriet. On tree transducers for partial functions. Informat. Processing
Let., 7:170-172, 1978.

J. Engelfriet. Some open questions and recent results on tree transducers and
tree languages. In R.V. Book, editor, Formal language theory; perspectives and
open problems. New York, Academic Press, 1980.

J. Engelfriet. Three hierarchies of transducers. Math. Systems Theory, 15:95-125,
1982.

J. Engelfriet. Iterated stack automata and complexity classes. Inform. and Com-
put., 95(1):21-75, 1991.

J. Engelfriet, G. Rozenberg, and G. Slutzki. Tree transducers, L systems, and
two-way machines. J. of Comp. Syst. Sci., 20:150-202, 1980.

J. Engelfriet and E.M. Schmidt. IO and OI, Part II. J. of Comp. Syst. Sci.,
16:67-99, 1978.

J. Engelfriet and H. Vogler. Macro tree transducers. J. of Comp. Syst. Sci.,
31:71-146, 1985.

J. Engelfriet and H. Vogler. High level tree transducers and iterated pushdown
tree transducers. Acta Informatica, 26:131-192, 1988.

J. Engelfriet and H. Vogler. The translation power of top-down tree-to-graph
transducers. J. of Comp. Syst. Sci., 49:258-305, 1994.

M.J. Fischer. Grammars with macro-like productions. PhD thesis, Harvard Uni-
versity, Massachusetts, 1968.

Z. Fiilop. On attributed tree transducers. Acta Cybernetica, 5:261-279, 1981.

Z. Filop and H. Vogler. Syntaz-Directed Semantics — Formal Models based on
Tree Transducers. EATCS Monographs on Theoretical Computer Science (W.
Brauer, G. Rozenberg, A. Salomaa, eds.). Springer-Verlag, 1998.

S. A. Greibach. Hierarchy theorems for two-way finite state transducers. Acta
Informatica, 11:89-101, 1978.

S. A. Greibach. Formal languages: origins and directions. Ann. of the Hist. of
Comput., 3(1):14-41, 1981.

F. Gécseg and M. Steinby. Tree Automata. Akadémiai Kiad6, Budapest, 1984.
F. Gécseg and M. Steinby. Tree automata. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, Volume 3, chapter 1. Springer-Verlag,
1997.

J. W. Hopcroft and J. D. Ullman. Introduction to automata theory, languages,
and computation. Addison-Wesley, 1979.

S. Maneth. The generating power of total deterministic tree transducers. Inform.
and Comput., 147:111-144, 1998.

S. Maneth. String languages generated by total deterministic macro tree trans-
ducers. In W. Thomas, editor, Proc. FOSSACS’99, volume 1578 of LNCS, pages
258-272. Springer-Verlag, 1999.

W.C. Rounds. Mappings and grammars on trees. Math. Systems Theory, 4:257—
287, 1970.

G. Rozenberg. Extension of tabled 0L-systems and languages. Internat. J. Comp.
Inform. Sci., 2:311-336, 1973.

J. van Leeuwen. Variations of a new machine model. In Proceedings of the 17th
Annual Symposium on Foundations of Computer Science, Houston, Tezas, pages
228-235. IEEE Computer Society Press, 1976.

H. Vogler. The OI-hierarchy is closed under control. Inform. and Comput.,
78:187-204, 1988.

38

