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Abstra
t. The 
omposition of total deterministi
 ma
ro tree transdu
ers

gives rise to a proper hierar
hy with respe
t to their output string languages

(these are the languages obtained by taking the yields of the output trees).

There is a language not in this hierar
hy whi
h 
an be generated by a (quite

restri
ted) nondeterministi
 string transdu
er, namely, a two-way general-

ized sequential ma
hine. Similar results hold for attributed tree transdu
-

ers, for 
ontrolled EDT0L systems, and for YIELD mappings (whi
h proves

properness of the IO-hierar
hy). Witnesses for the properness of the ma
ro

tree transdu
er hierar
hy 
an already be found in the latter three hierar
hies.

1 Introdu
tion

Ma
ro tree transdu
ers [Eng80,CF82,EV85℄ are a model of syntax-dire
ted seman-

ti
s (see [FV98℄ for a survey) whi
h 
ombine top-down tree transdu
ers and ma
ro

grammars, i.e., they are �nite state transdu
ers, the states of whi
h are equipped

with parameters that allow to handle 
ontext information.

A ma
ro tree transdu
erM 
an be used as a string language generator as follows.

The tree translation of M is applied to a tree language, whi
h typi
ally is the set of

derivation trees of a 
ontext-free grammar, or, in general, a regular tree language.

This generates an output tree language of M , and taking the yields of these trees

generates an output string language of M . In this way one 
an also view M as a


ontrolled (tree) grammar, where the generation of the output trees is 
ontrolled

by the input trees. Then, the iteration of 
ontrol 
orresponds to the 
omposition of

the tree translations. The string languages generated by the 
omposition 
losure of

ma
ro tree transdu
ers form a very large 
lass with ni
e properties: it is a full AFL,

and membership, emptiness, and �niteness of its languages are de
idable [DE98℄.

Be
ause of their spe
ial relevan
e to syntax-dire
ted semanti
s we here investigate

total deterministi
 ma
ro tree transdu
ers (for short, MTTs) only; they are a 
om-

bination of total deterministi
 top-down tree transdu
ers and IO (inside-out) ma
ro

grammars.

The question arises, whether 
omposition of MTTs gives rise to a proper hierar-


hy of output string languages. For the two ingredients of MTTs the situation is as

follows. Sin
e (total deterministi
) top-down tree transdu
ers are 
losed under 
om-

position [Rou70℄, they do not form a proper hierar
hy of output string languages

(note that 
omposition of nondeterministi
 top-down tree transdu
ers does yield

su
h a hierar
hy [Eng82℄). The iteration of IO ma
ro grammars by the 
on
ept of

n-level grammars gives rise to a proper and to an in�nite hierar
hy [Dam82℄, for

the generated tree and string languages, respe
tively: the so-
alled IO-hierar
hies

(see, e.g., [ES78℄). With respe
t to the translations it is well known that 
omposi-

tion of MTTs (whi
h 
orresponds to the n-level tree transdu
ers of [EV88℄) yields

a proper hierar
hy, that is, the 
lass of translations realized by the 
omposition of

n MTTs is properly in
luded in the one realized by the 
omposition of n+1 MTTs



(
f. [EV85℄). The proof relies on the fa
t that the height of the output tree of an

MTT is exponentially bounded by the height of the input tree. In [Dam82℄ it is

proved that also the output tree languages form a proper hierar
hy. With respe
t

to the output string languages, 
omposition of MTTs yields an in�nite hierar
hy;

the proof in [Dam82℄ 
ombines the above exponential bound with the 
on
ept of

rational index [BCN81℄. To prove properness of this hierar
hy (at ea
h level) we use

instead a so-
alled \bridge-theorem" (
f. [Eng82℄, and the se
tion on translational

te
hniques in [Gre81℄).

Let us dis
uss the bridge theorem in more detail. Consider two languages L

0

and

L su
h that L

0

is of some spe
ial form, depending on L; in appli
ations of the bridge

theorem, L

0

will typi
ally be obtained from L by some kind of string insertion. Now

if L

0

is the output string language of an MTT, then the spe
ial form of L

0

for
es

the language L to be an output string language of an MTT M whi
h has 
ertain

restri
ted properties. To be pre
ise, these properties require that in the rules of M

(i) no parameter is 
opied and (ii) no parameter is deleted. An MTT satisfying (i)

and (ii) is 
alled simple in the parameters (for short sp). The proof of this bridge

theorem is a generalization of the proof of Theorem 3.4.3 in [Fis68℄, where Fis
her

proves for a spe
i�
 IO ma
ro language L

0

that L 
an be produ
ed by an IO ma
ro

grammar that is sp. For an MTT M that is sp we show that, with respe
t to the

output string language, parameters are not needed at all; that is, we 
an 
onstru
t

a top-down tree transdu
er whi
h has the same output string language as M . Sin
e

MTTs are 
losed under 
omposition with top-down tree transdu
ers, this result

will allow us to use the bridge theorem to step down from the 
omposition of n+1

MTTs to that of n MTTs.

We apply the bridge theorem to three di�erent types of string insertions to

obtain the following results:

(1) There is a language L

0

whi
h is not the output string language of any 
om-

position of MTTs, but whi
h 
an be generated by a nondeterministi
 two-way

generalized sequential ma
hine. Here, L

0

is obtained from L by the nondeter-

ministi
 insertion of two new symbols, where L is a language that 
annot be

generated by a top-down tree transdu
er. Intuitively, the result shows that non-

determinism (present in a very simple type of insertion) is more powerful than

determinism (present in an MTT).

As another example of this phenomenon we prove that there is a 
ontext-free

language whi
h 
annot be generated as output by the 
omposition 
losure of

MTTs, taking monadi
 tree languages as initial input. The latter 
lass of lan-

guages is of interest be
ause it 
ontains the EDT0L-hierar
hy, generated by the

iteration of 
ontrolled EDT0L systems. The EDT0L system is the deterministi


version of the ET0L system [Roz73℄ (see [ERS80℄ for the relationship of these

systems to top-down tree transdu
ers and two-way ma
hines). In parti
ular

we show that languages generated by the iteration of n + 1 
ontrolled EDT0L

systems 
an be generated by the 
omposition of n MTTs.

(2) Composition of MTTs yields a proper hierar
hy with respe
t to their output

string languages, i.e., there is a language L

0

whi
h is output string language

of the 
omposition of n + 1 MTTs, but whi
h 
annot be generated as output

by the 
omposition of n MTTs. Here L

0

is obtained from a language L at the

previous level, by inserting a sequen
e of b's before ea
h symbol of a string in

L (for a new symbol b), viz., b

i

before the i-th symbol from the right.

In fa
t, we use the relationship with EDT0L systems mentioned in point (1)

and show that L

0


an be generated by the iteration of n+ 2 
ontrolled EDT0L

systems. This implies properness of the EDT0L-hierar
hy. In [Eng82℄ proper-

ness of the ET0L-hierar
hy is proved, but it is mentioned as open whether the

EDT0L-hierar
hy is proper.
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(3) There is an (n + 1)-level IO ma
ro language L

0

whi
h 
annot be generated as

output by the 
omposition of n MTTs. Here, L

0

is obtained from L (at the

previous level) by inserting, before ea
h symbol of a string w in L, a string

in f1; 2g

�

that represents (in Dewey notation) the 
orresponding leaf of some

binary tree with yield w. Sin
e every n-level IO ma
ro language 
an be generated

as output by the 
omposition of n MTTs, this proves the properness of the

IO-hierar
hy of string languages, whi
h was left open in [Dam82℄.

Sin
e every n-level IO ma
ro language 
an also be generated as output by the


omposition of n attributed tree transdu
ers [F�ul81,FV98℄ (ATTs), and ATTs


an be simulated by MTTs, we also obtain that 
omposition of ATTs yields a

proper hierar
hy of output string languages.

This paper is stru
tured as follows. Se
tion 2 
ontains basi
 notions 
on
erning

trees, tree substitution, tree translations, and �nite state relabelings. In Se
tion 3,

the de�nition of ma
ro tree transdu
ers is given and some basi
 lemmas are re
alled.

Furthermore, the sp (simple in the parameters) property is de�ned. In Se
tion 4 it is

proved that MTTs are 
losed under 
omposition with �nite state relabelings. This

also implies the 
losure of MTTs under 
omposition with top-down tree transdu
ers

with regular look-ahead, whi
h is mentioned as an open problem in the Con
lusions

of [EV85℄. Finally, it is proved that MTTs that are simple in the parameters generate

the same 
lass of output string languages as top-down tree transdu
ers. Se
tion 5


ontains the detailed proof of the bridge theorem, together with two parti
ular

versions of it. Using these theorems it is proved in Se
tion 6 that 
omposition of

MTTs yields a proper hierar
hy of output string languages (the yMTT-hierar
hy)

and that the EDT0L-hierar
hy is proper. Moreover, it is shown that there are \non-

deterministi
" languages not in the yMTT- and the EDT0L-hierar
hies, whi
h 
an

be generated by a nondeterministi
 two-way generalized sequential ma
hine and a


ontext-free grammar, respe
tively. The properness of the IO-hierar
hy is proved in

Se
tion 7, and it is shown that the EDT0L-hierar
hy is in
luded in the IO-hierar
hy.

Finally, Se
tion 8 
ontains the hierar
hy result for ATTs and a summary of relations

between the various hierar
hies dis
ussed in this paper; it also mentions some open

problems.

Some of the results of this paper were presented in [Man99℄.

2 Preliminaries

The set f0; 1; : : :g of natural numbers is denoted by N. The empty set is denoted

by ?. For k 2 N, [k℄ denotes the set f1; : : : ; kg; thus [0℄ = ?. For a set A, jAj is its


ardinality, and A

�

is the set of all strings over A. An alphabet is a �nite set A. The

empty string is denoted by ". The length of a string w is denoted by jwj, and the

i-th symbol in w is denoted by w(i). For a string w = a

1

� � � a

n

, its reverse a

n

� � � a

1

is

denoted by w

r

. For strings v; w

1

; : : : ; w

n

2 A

�

and distin
t a

1

; : : : ; a

n

2 A, we denote

by v[a

1

 w

1

; : : : ; a

n

 w

n

℄ the result of (simultaneously) substituting w

i

for every

o

urren
e of a

i

in v. Note that [a

1

 w

1

; : : : ; a

n

 w

n

℄ is a homomorphism on

strings. For a 
ondition P on a and w we use, similar to set notation, [a w j P ℄ to

denote the substitution [L℄, where L is the list of all a  w for whi
h 
ondition P

holds. By REG and CF we denote the 
lasses of regular and 
ontext-free languages,

respe
tively.

For fun
tions f :A! B and g:B ! C their 
omposition is (f Æ g)(x) = g(f(x));

note that the order of f and g is nonstandard. For sets of fun
tions F and G their


omposition is F ÆG = ff Æ g j f 2 F; g 2 Gg, and F

n

= F Æ � � � Æ F (n times). For

a binary relation ), its transitive re
exive 
losure is denoted by )

�

.
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Let A and B be disjoint alphabets. For w 2 (A [B)

�

we denote by res

A

(w) the

restri
tion of w to letters in A, i.e., res

A

is the homomorphism from (A[B)

�

to A

�

de�ned by res

A

(a) = a for a 2 A and res

A

(a) = " for a 2 B.

2.1 Ranked Sets and Trees

A set � together with a mapping rank

�

:� ! N is 
alled a ranked set. For k �

0, �

(k)

is the set f� 2 � j rank

�

(�) = kg; we also write �

(k)

to indi
ate that

rank

�

(�) = k. If � = �

(1)

[ �

(0)

, then � is monadi
. For a set A, h�;Ai is the

ranked set � �A with rank

h�;Ai

(h�; ai) = rank

�

(�) for every h�; ai 2 h�;Ai.

For the rest of this paper we 
hoose the set of input variables to be X =

fx

1

; x

2

; : : : g and the set of parameters to be Y = fy

1

; y

2

; : : : g. For k � 0, X

k

=

fx

1

; : : : ; x

k

g and Y

k

= fy

1

; : : : ; y

k

g.

Let � be a ranked set. The set of trees over �, denoted by T

�

, is the smallest

set of strings T � (� [ f(; ); ; g)

�

su
h that �

(0)

� T and if � 2 �

(k)

, k � 1, and

t

1

; : : : ; t

k

2 T , then �(t

1

; : : : ; t

k

) 2 T . For � 2 �

(0)

we denote the tree � also by

�(). If � is monadi
, then t 2 T

�

is a monadi
 tree. For a set A, the set of trees

over � indexed by A, denoted by T

�

(A), is the set T

�[A

, where for every a 2 A,

rank

A

(a) = 0.

For every tree t 2 T

�

, the set of nodes of t, denoted by V (t), is a subset of N

�

whi
h is indu
tively de�ned as follows: if t = �(t

1

; : : : ; t

k

) with � 2 �

(k)

, k � 0,

and for all i 2 [k℄; t

i

2 T

�

, then V (t) = f"g [ fiu j u 2 V (t

i

); i 2 [k℄g. Thus, "

represents the root of a tree and for a node u the i-th 
hild of u is represented by

ui. The label of t at node u is denoted by t[u℄; we also say that t[u℄ o

urs in t (at

u). The node u is a leaf if it has no 
hildren, i.e., if t[u℄ 2 �

(0)

. The subtree of

t at node u is denoted by t=u. The substitution of the tree s 2 T

�

at node u in t

is denoted by t[u  s℄; it means that the subtree t=u is repla
ed by s. Formally,

these notions 
an be de�ned as follows: t["℄ is the �rst symbol of t (in �), t=" = t,

t["  s℄ = s, and if t = �(t

1

; : : : ; t

k

), i 2 [k℄, and u 2 V (t

i

), then t[iu℄ = t

i

[u℄,

t=iu = t

i

=u, and t[iu s℄ = �(t

1

; : : : ; t

i

[u s℄; : : : ; t

k

). The pre-order of the nodes

of t is the lexi
ographi
al order on N

�

; thus, " < iu, if u < v then iu < iv, and if

i < j then iu < jv.

For a tree t 2 T

�

, yt denotes the yield of t, i.e., the string in (�

(0)

)

�

obtained by

reading the leaves of t in pre-order, omitting nodes labeled by the spe
ial symbol

e. Thus, yt = t[�

1

℄ � � � t[�

m

℄, where �

1

; : : : ; �

m

are all leaves � of t with t[�℄ 6= e,

in pre-order (e.g., for t = �(a; �(e; b)), yt = t[1℄t[22℄ = ab). The string yt 
an be

obtained re
ursively as follows; if t = e then yt = ", if t 2 �

(0)

� feg then yt = t,

and if t = �(t

1

; : : : ; t

k

), k � 1, � 2 �

(k)

, and t

1

; : : : ; t

k

2 T

�

, then yt = yt

1

� � � yt

k

.

Let A be an alphabet and let w 2 A

�

. For a binary symbol � 62 A, the tree


omb

�

(w) 2 T

f�g

(A) is re
ursively de�ned as follows; if w = " then 
omb

�

(w) = e,

and if w = aw

0

with a 2 A and w

0

2 A

�

, then 
omb

�

(w) = �(a; 
omb

�

(w

0

)). Clearly,

y
omb

�

(w) = w. The monadi
 tree sm(w) 2 T

�

with � = fa

(1)

j a 2 Ag [ fe

(0)

g

is re
ursively de�ned as e if w = " and as a(sm(w

0

)) if w = aw

0

with a 2 A and

w

0

2 A

�

. As an example, 
omb

�

(a

) = �(a; �(
; �(
; e))) and sm(a

) = a(
(
(e))).

2.2 Se
ond-Order Tree Substitution

Note that trees are parti
ular strings and that string substitution as de�ned in the

beginning of this se
tion is appli
able to a tree to repla
e symbols of rank zero; we

refer to this type of substitution as \�rst-order tree substitution".

Let � be a ranked alphabet, let �

1

; : : : ; �

n

be distin
t elements of �, n � 1, and

for ea
h i 2 [n℄ let s

i

be a tree in T

��Y

(Y

k

), where k = rank

�

(�

i

). For t 2 T

�

, the

se
ond-order tree substitution of �

i

by s

i

in t, denoted by

t[[�

1

 s

1

; : : : ; �

n

 s

n

℄℄
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is indu
tively de�ned as follows (abbreviating [[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ by [[: : :℄℄).

For t = �(t

1

; : : : ; t

m

) with � 2 �

(m)

, m � 0, and t

1

; : : : ; t

m

2 T

�

, (i) if � =

�

i

for an i 2 [n℄, then t[[: : :℄℄ = s

i

[y

j

 t

j

[[: : :℄℄ j j 2 [k℄℄ and (ii) otherwise

t[[: : :℄℄ = �(t

1

[[: : :℄℄; : : : ; t

m

[[: : :℄℄). Note that [[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ is a tree ho-

momorphism [GS84℄ and that (just as ordinary substitution) se
ond-order tree sub-

stitution is asso
iative (by the 
losure of tree homomorphisms under 
omposition,


f. Theorem IV.3.7 of [GS84℄), i.e., t[[�  s℄℄[[�  s

0

℄℄ = t[[�  s[[�  s

0

℄℄℄℄ and if

�

0

6= � then t[[�  s℄℄[[�

0

 s

0

℄℄ = t[[�

0

 s

0

; �  s[[�

0

 s

0

℄℄℄℄, and similarly for the

general 
ase (
f. Se
tions 3.4 and 3.7 of [Cou83℄). For a 
ondition P on � and s we

use [[�  s j P ℄℄ to denote the substitution [[L℄℄, where L is the list of all �  s for

whi
h 
ondition P holds.

The following small lemma says that if we are 
onsidering the yield of a tree to

whi
h a (�rst- or se
ond-order) tree substitution is applied, then inside the substi-

tution merely the yields of the trees that are substituted are relevant.

Lemma 1. Let � be a ranked alphabet, �

1

; : : : ; �

n

2 �

(0)

�feg, and �

1

; : : : ; �

n

2

�. Let t; t

0

; s

1

; s

0

1

; : : : ; s

n

; s

0

n

2 T

�

(Y ) su
h that ys

i

= ys

0

i

for every i 2 [n℄.

(a) If yt = yt

0

, then y(t[�

1

 s

1

; : : : ; �

n

 s

n

℄) = y(t

0

[�

1

 s

0

1

; : : : ; �

n

 s

0

n

℄).

(b) y(t[[�

1

 s

1

; : : : ; �

n

 s

n

℄℄) = y(t[[�

1

 s

0

1

; : : : ; �

n

 s

0

n

℄℄).

Proof. (a) Clearly, y(t[�

1

 s

1

; : : : ; �

n

 s

n

℄) equals (yt)[�

i

 ys

i

j i 2 [n℄℄ (note

that here the substitution is on strings). Sin
e yt = yt

0

and ys

i

= ys

0

i

, this equals

(yt

0

)[�

i

 ys

0

i

j i 2 [n℄℄ = y(t

0

[�

1

 s

0

i

; : : : ; �

n

 s

0

n

℄).

(b) This part is proved by indu
tion on the stru
ture of t. Let t = �(t

1

; : : : ; t

k

)

with k � 0, � 2 �

(k)

, and t

1

; : : : ; t

k

2 T

�

. Let [[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ be denoted

by [[: : :℄℄ and let [[�

1

 s

0

1

; : : : ; �

n

 s

0

n

℄℄ be denoted by [[ ℄℄.

(i) If � = �

i

for an i 2 [n℄, then y(t[[: : :℄℄) = y(s

i

[y

j

 t

j

[[: : :℄℄ j j 2 [k℄℄). By

indu
tion, y(t

j

[[: : :℄℄) = y(t

j

[[ ℄℄) for j 2 [k℄. Hen
e, by (a) (for t = s

i

, t

0

= s

0

i

, �

j

= y

j

,

s

j

= t

j

[[: : :℄℄, and s

0

j

= t

j

[[ ℄℄), this equals y(s

0

i

[y

j

 t

j

[[ ℄℄ j j 2 [k℄℄) = y(t[[ ℄℄).

(ii) Otherwise, y(t[[: : :℄℄) = y�(t

1

[[: : :℄℄; : : : ; t

k

[[: : :℄℄) = y(t

1

[[: : :℄℄) � � � y(t

k

[[: : :℄℄). By

the indu
tion hypothesis we get y(t

1

[[ ℄℄) � � � y(t

k

[[ ℄℄) = y(t[[ ℄℄). �

2.3 Tree Translations and Relabelings

Let � and � be ranked alphabets. A subset L of T

�

is 
alled a tree language. A

(total) fun
tion � :T

�

! T

�

is 
alled a tree translation or simply translation. For

a tree language L � T

�

, �(L) denotes the set ft 2 T

�

j t = �(s) for some s 2 Lg

and yL = fyt j t 2 Lg. For a 
lass T of tree translations and a 
lass L of tree

languages, T (L) denotes the 
lass of tree languages f�(L) j � 2 T ; L 2 Lg and

yL = fyL j L 2 Lg.

A tree language is regular (or re
ognizable) if there is a �nite state tree automa-

ton re
ognizing it, or, equivalently, there is a regular tree grammar generating it. The


lass of regular tree languages is denoted by REGT. Note that sm(REG) � REGT .

The reader is assumed to be familiar with the basi
 properties of the regular tree

languages (see, e.g., [GS84,GS97℄).

A (total deterministi
) �nite state relabeling M is a tuple (Q;�;�;R), where Q

is a �nite set of states, � and � are ranked alphabets of input and output symbols,

respe
tively, and R is a �nite set of rules su
h that for every � 2 �

(k)

, k � 0, and

q

1

; : : : ; q

k

2 Q, R 
ontains exa
tly one rule of the form �(hq

1

; x

1

i; : : : ; hq

k

; x

k

i) !

hq; Æ(x

1

; : : : ; x

k

)i, where q 2 Q and Æ 2 �

(k)

. The rules of M are used as term

rewriting rules, and the derivation relation indu
ed by M is denoted by )

M

; more

formally, for �; �

0

2 T

hQ;T

�

i[�

, � )

M

�

0

if and only if

{ there is a subtree �(hq

1

; t

1

i; : : : ; hq

k

; t

k

i) (rooted at node u) of � with � 2 �

(k)

,

k � 0, q

1

; : : : ; q

k

2 Q, and t

1

; : : : ; t

k

2 T

�

, and
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{ �

0

= �[u hq; Æ(t

1

; : : : ; t

k

)i℄, where �(hq

1

; x

1

i; : : : ; hq

k

; x

k

i)! hq; Æ(x

1

; : : : ; x

k

)i

is a rule in R.

If we are only interested in the state q in whi
h M arrives for input s, then

we write s )

�

M

hq; i (to mean that s )

�

M

hq; ti for some tree t). Note that for

ea
h q 2 Q, fs 2 T

�

j s)

�

M

hq; ig is a regular tree language. The translation �

M

realized byM is f(s; t) 2 T

�

�T

�

j s)

�

M

hq; ti; q 2 Qg. The 
lass of all translations

that 
an be realized by �nite state relabelings is denoted by D

t

QRELAB .

3 Ma
ro Tree Transdu
ers

In this se
tion ma
ro tree transdu
ers are de�ned and some results whi
h will often

be used throughout the paper are re
alled. Furthermore, the nondeleting and sp

(simple in the parameters) properties are de�ned.

De�nition 2. A (total deterministi
) ma
ro tree transdu
er (for short, MTT) is a

tuple M = (Q;�; �; q

0

; R), where Q is a ranked alphabet of states, � and � are

ranked alphabets of input and output symbols, respe
tively, � \ Y = ?, q

0

2 Q

(0)

is the initial state, and R is a �nite set of rules of the following form. For every

q 2 Q

(m)

and � 2 �

(k)

with m; k � 0 there is exa
tly one rule of the form

hq; �(x

1

; : : : ; x

k

)i(y

1

; : : : ; y

m

)! � (�)

in R, where � 2 T

hQ;X

k

i[�

(Y

m

). �

A rule r of the form (�) is 
alled the (q; �)-rule of M and its right-hand side �

is denoted by rhs

M

(q; �); it is also 
alled a q-rule. The rules of M 
an be viewed

as term rewriting rules in the obvious way, with the input variables x

i

ranging over

T

�

and the parameters y

j

ranging over T

�

. Then M indu
es a derivation relation

)

M

on T

hQ;T

�

i[�

and an input tree s 2 T

�

is translated byM into the unique tree

t 2 T

�

with hq

0

; si )

�

M

t. Instead of using the derivation relation)

M

to de�ne the

translation realized byM , we use the following re
ursive de�nition of q-translations,

whi
h is based on se
ond-order tree substitution as de�ned in Se
tion 2.2.

De�nition 3. Let M = (Q;�;�; q

0

; R) be an MTT and let q 2 Q

(m)

be a state

of M . The q-translation of M is the total fun
tion M

q

: T

�

! T

�

(Y

m

) de�ned as

follows. For every � 2 �

(k)

, k � 0, and s

1

; : : : ; s

k

2 T

�

,

M

q

(�(s

1

; : : : ; s

k

)) = rhs

M

(q; �)[[hq

0

; x

i

i  M

q

0

(s

i

) j hq

0

; x

i

i 2 hQ;X

k

i℄℄:

The translation realized by M, denoted by �

M

, is the q

0

-translation M

q

0

of M . �

Note that the q-translation of M 
an also be obtained using the derivation

relation)

M

dis
ussed above, i.e., for every input tree s ofM , hq; si(y

1

; : : : ; y

m

))

�

M

M

q

(s) (
f. Lemma 4.8 of [EV94℄). In proofs we will always use the q-translations of

M , but our intuition is often based on the derivation relation)

M

. For an example

of an MTT M , and the way it works, see Example 10 at the end of this se
tion.

The 
lass of all translations whi
h 
an be realized by MTTs is denoted by MTT.

A top-down tree transdu
er is an MTT all states of whi
h are of rank zero. The 
lass

of all translations whi
h 
an be realized by top-down tree transdu
ers is denoted by

T . If a top-down tree transdu
er has only one state, then it is a tree homomorphism.

Note that every tree homomorphism is a se
ond-order tree substitution, and vi
e

versa.

The following two results are often used in this paper.

Lemma 4. (Corollary 4.10 of [EV85℄) T ÆMTT � MTT.

6



Lemma 5. (Theorem 4.12 of [EV85℄) MTT Æ T � MTT.

Sin
e regular look-ahead 
an be simulated by �nite state relabelings (see Corol-

lary IV.6.7 in [GS84℄), the fa
t that MTT is 
losed under regular look-ahead (The-

orem 4.21 of [EV85℄) 
an be stated as follows.

Lemma 6. D

t

QRELAB ÆMTT �MTT.

Re
all from Se
tion 2.1 that for a string w = a

1

� � �a

n

, sm(w) is the monadi


tree a

1

(a

2

(� � � a

n

(e) � � � )). The next lemma shows that an MTT 
an turn the yield

ys of its input tree s into the monadi
 tree sm(ys).

Lemma 7. Let � be a ranked alphabet. There is an MTTM

�

with input alphabet

� su
h that for every s 2 T

�

, �

M

�

(s) = sm(ys).

Proof. De�ne M

�

= (fq

(0)

0

; q

(1)

g; �; �; q

0

; R) with � = fa

(1)

j a 2 �

(0)

; a 6= eg [

fe

(0)

g. For every � 2 �

(k)

; k � 1, let the rules

hq

0

; �(x

1

; : : : ; x

k

)i ! hq; x

1

i(hq; x

2

i(: : : (hq; x

k

i(e)) : : : ))

hq; �(x

1

; : : : ; x

k

)i(y

1

)! hq; x

1

i(hq; x

2

i(: : : (hq; x

k

i(y

1

)) : : : ))

be in R, for every a 2 �

(0)

� feg let hq

0

; ai ! a(e) and hq; ai(y

1

)! a(y

1

) be in R,

and let hq

0

; ei ! e and hq; ei(y

1

)! y

1

be in R.

We now show that �

M

�

= y Æ sm. Let s = �(s

1

; : : : ; s

k

) with � 2 �

(k)

,

k � 0, and s

1

; : : : ; s

k

2 T

�

. Then �

M

�

(s) = M

q

0

(s) whi
h, by De�nition 3, equals

rhs

M

(q

0

; �)[[: : :℄℄ with [[: : :℄℄ = [[hq

0

; x

i

i  M

q

0

(s

i

) j q

0

2 fq

0

; qg; i 2 [k℄℄℄. By the de�-

nition of the rules of M this equals rhs

M

(q; �)[y

1

 e℄[[: : :℄℄ = rhs

M

(q; �)[[: : :℄℄[y

1

 

e℄ =M

q

(s)[y

1

 e℄, whi
h, by the following 
laim, is equal to sm(ys).

Claim: For every s 2 T

�

, M

q

(s) = sm(ys)[e y

1

℄.

The proof is by indu
tion on the stru
ture of s. If s = e then M

q

(s) = y

1

=

sm(")[e  y

1

℄ = sm(ys)[e  y

1

℄, and if s = a 2 �

(0)

� feg then M

q

(s) = a(y

1

) =

sm(ys)[e  y

1

℄. Let s = �(s

1

; : : : ; s

k

) with � 2 �

(k)

, k � 1, and s

1

; : : : ; s

k

2

T

�

. It follows from De�nition 3 that M

q

(s) = hq; x

1

i(� � � hq; x

k

i(y

1

) � � � ) [[hq

0

; x

i

i  

M

q

0

(s

i

) j q

0

2 fq

0

; qg; i 2 [k℄℄℄. Applying the indu
tion hypothesis (and 
ombining

the substitution of y

1

) we get

sm(ys

1

)[e sm(ys

2

)[� � � [e sm(ys

k

)[e y

1

℄℄ � � � ℄℄:

Clearly, [e y

1

℄ 
an be moved out of the substitutions. By the fa
t that sm(w)[e 

sm(w

0

)℄ = sm(ww

0

), we get sm(ys

1

� � � ys

k

)[e y

1

℄ = sm(ys)[e y

1

℄. �

A ma
ro tree transdu
er M is nondeleting, if in the right-hand side of every

q-rule, for every state q of rank m � 1, ea
h parameter y

j

, j 2 [m℄, o

urs at

least on
e. This property makes sure that the output generated in a parameter

position 
annot be deleted. First, let us prove a small lemma whi
h says that also

in the translationsM

q

(s), every parameter of q o

urs. This is similar to Lemma 6.7

of [EM99℄, whi
h says that if every parameter y

j

o

urs exa
tly on
e in a right-hand

side (for all rules of M), then y

j

also o

urs exa
tly on
e in M

q

(s).

Lemma 8. Let M = (Q;�;�; q

0

; R) be a nondeleting MTT, q 2 Q

(m)

, m � 1,

and s 2 T

�

. Then for every j 2 [m℄, y

j

o

urs in M

q

(s).

Proof. Let j 2 [m℄. The proof is by indu
tion on the stru
ture of s. The indu
tion

hypothesis is denoted by IH1. Let s = �(s

1

; : : : ; s

k

) with � 2 �

(k)

, k � 0, and

s

1

; : : : ; s

k

2 T

�

. By De�nition 3, M

q

(s) = rhs

M

(q; �)[[: : :℄℄ with [[: : :℄℄ = [[hq

0

; x

i

i  

M

q

0

(s

i

) j hq

0

; x

i

i 2 hQ;X

k

i℄℄. Sin
e M is nondeleting, y

j

o

urs in t = rhs

M

(q; �)

and, by the following 
laim, y

j

o

urs in t[[: : :℄℄.
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Claim: Let t 2 T

hQ;X

k

i[�

(Y

m

). If y

j

o

urs in t, then it o

urs in t[[: : :℄℄.

The 
laim is proved by indu
tion on the stru
ture of t. The indu
tion hypoth-

esis is denoted by IH2. If t = y

j

, then t[[: : :℄℄ = y

j

. Let l � 1 and t

1

; : : : ; t

l

2

T

hQ;X

k

i[�

(Y

m

). If t = Æ(t

1

; : : : ; t

l

) with Æ 2 �

(l)

, then t[[: : :℄℄ = Æ(t

1

[[: : :℄℄; : : : ; t

l

[[: : :℄℄).

Sin
e y

j

o

urs in t, it o

urs in t

�

for some � 2 [l℄. By IH2, y

j

o

urs in t

�

[[: : :℄℄

and thus in t[[: : :℄℄. If t = hq

0

; x

i

i(t

1

; : : : ; t

l

) with hq

0

; x

i

i 2 hQ;X

k

i

(l)

, then t[[: : :℄℄ =

M

q

0

(s

i

)[y

�

 t

�

[[: : :℄℄ j � 2 [l℄℄. By the fa
t that y

j

o

urs in t, and by IH2, y

j

o

urs

in t

�

[[: : :℄℄ for some � 2 [l℄. By IH1, y

�

o

urs in M

q

0

(s

i

) and thus t

�

[[: : :℄℄ is a subtree

of t[[: : :℄℄. �

It was proved in Lemma 6.6 of [EM99℄ that every MTT M with regular look-

ahead 
an be turned into a nondeleting one whi
h realizes the same translation as

M . This 
an be stated in the following way (
f. Lemma 6), where MTT

nd

denotes

the 
lass of all translations realized by nondeleting MTTs.

Lemma 9. MTT � D

t

QRELAB ÆMTT

nd

.

A ma
ro tree transdu
er M is simple in the parameters (for short sp), if in the

right-hand side of every q-rule, for every state q of rank m � 1, ea
h parameter y

j

,

j 2 [m℄, o

urs exa
tly on
e (i.e., the rules of M are linear and nondeleting in Y

m

);

we say that M is an MTT

sp

. The 
lass of all translations that 
an be realized by

MTT

sp

s is denoted by MTT

sp

. Note that in [EM99℄, sp ma
ro tree transdu
ers are

said to be `nondeleting surp'.

Let us �nally 
onsider an example of an MTT

sp

.

Example 10. Let M = (Q;�;�; q

0

; R) be the MTT with Q = fq

(0)

0

; q

(2)

g, � =

f�

(2)

; a

(0)

; b

(0)

g, and R 
onsisting of the following rules.

hq

0

; �(x

1

; x

2

)i ! hq; x

2

i(hq

0

; x

1

i; hq

0

; x

1

i)

hq; �(x

1

; x

2

)i(y

1

; y

2

)! hq; x

2

i(�(y

1

; hq

0

; x

1

i); �(hq

0

; x

1

i; y

2

))

hq

0

; ai ! a

hq; ai(y

1

; y

2

) ! �(y

1

; y

2

)

hq

0

; bi ! b

hq; bi(y

1

; y

2

) ! �(y

2

; y

1

)

Note that M is sp be
ause both y

1

and y

2

appear exa
tly on
e in the right-hand

side of ea
h q-rule of M . Consider the input tree t = �(a; �(b; �(b; b))). Then a

derivation by M looks as follows.

hq

0

; ti )

M

hq; �(b; �(b; b))i(hq

0

; ai; hq

0

; ai)

)

�

M

hq; �(b; �(b; b))i(a; a)

)

M

hq; �(b; b)i(�(a; hq

0

; bi); �(hq

0

; bi; a))

)

�

M

hq; �(b; b)i(�(a; b); �(b; a))

)

�

M

hq; bi(�(�(a; b); b); �(b; �(b; a)))

)

M

�(�(b; �(b; a)); �(�(a; b); b))

Thus, �

M

(t) = �(�(b; �(b; a)); �(�(a; b); b)). This tree 
an be 
omputed in terms

of q-translations and q

0

-translations as follows. First, M

q

0

(b) = b and M

q

(b) =

�(y

2

; y

1

). Hen
e

M

q

(�(b; b))

= rhs

M

(q; �)[[hq

0

; x

i

i  M

q

0

(b) j q

0

2 fq

0

; qg; 1 � i � 2℄℄

= hq; x

2

i(�(y

1

; hq

0

; x

1

i); �(hq

0

; x

1

i; y

2

))[[hq; x

2

i  �(y

2

; y

1

); hq

0

; x

1

i  b℄℄

= �(y

2

; y

1

)[y

1

 �(y

1

; b); y

2

 �(b; y

2

)℄

= �(�(b; y

2

); �(y

1

; b)):

8



Next,

M

q

(�(b; �(b; b))) = rhs

M

(q; �)[[hq; x

2

i  M

q

(�(b; b)); hq

0

; x

1

i  M

q

0

(b)℄℄

=M

q

(�(b; b))[y

1

 �(y

1

; b); y

2

 �(b; y

2

)℄

= �(�(b; y

2

); �(y

1

; b))[y

1

 �(y

1

; b); y

2

 �(b; y

2

)℄

= �(�(b; �(b; y

2

)); �(�(y

1

; b); b)):

Finally, M

q

0

(a) = a and

�

M

(t) =M

q

0

(t)

= rhs

M

(q

0

; �)[[hq; x

2

i  M

q

(�(b; �(b; b))); hq

0

; x

1

i  M

q

0

(a)℄℄

=M

q

(�(b; �(b; b))[y

1

 a; y

2

 a℄

= �(�(b; �(b; a)); �(�(a; b); b)):

�

M

(s[x a℄) =

a

n�1

a

n

�

�

a

2

a

1

�

a

n�1

�

�

�

a

2

a

1

a

n

�

Fig. 1. Translations of M for the input trees s[x a℄

�

M

(s[x b℄) =

a

n�1

�

�

�

a

2

a

1

a

n�1

a

n

�

�

a

2

a

1

�

�

a

n

Fig. 2. Translations of M for the input trees s[x b℄

In Figures 1 and 2 it is shown how the translations for input trees of the form

s = �(a

1

; �(a

2

; : : : �(a

n

; x) : : : ))

with a

1

; : : : ; a

n

2 �

(0)

, n � 1, and x = a and x = b, respe
tively, look like. If x = a

then y�

M

(s) = ww

r

and if x = b then y�

M

(s) = w

r

w, where w = a

1

� � �a

n

(and

re
all from the Preliminaries that w

r

denotes the reverse of w). �

4 Closure Properties

In this se
tion we prove two 
losure properties of MTTs. First, that the 
lass MTT

of ma
ro tree translations is 
losed under 
omposition with �nite state relabelings,

and se
ond, that, with respe
t to output string languages, the 
lassMTT (L), for an

arbitrary 
lass L of tree languages, is 
losed under translations realized by MTT

sp

s.

To prove the se
ond 
losure property, it will be shown in Theorem 15 that, when

applied to a 
lass of tree languages 
losed under �nite state relabelings, MTT

sp

s

generate the same 
lass of string languages as top-down tree transdu
ers.
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Let us move to the �rst 
losure property. We want to show that for an MTT M

and a �nite state relabelingN there is an MTTM

0

with �

M

0

= �

M

Æ�

N

(
f. Lemma 6,

whi
h proves this for the opposite order of the 
omposition, i.e., that �

N

Æ �

M


an

be realized by an MTT). In fa
t, the result MTT Æ D

t

QRELAB � MTT 
an also

be obtained from known results as follows. By Theorem 4.8 of [EV85℄, MTT =

T ÆYIELD (for YIELD, see Se
tion 7). Thus,MTT ÆD

t

QRELAB equals T ÆYIELDÆ

D

t

QRELAB . By Lemma 3.11 of [DE98℄ this is in
luded in T ÆQRELAB ÆYIELD,

where QRELAB denotes the 
lass of nondeterministi
 �nite state relabelings. More

pre
isely, we only need to 
onsider total fun
tions in T ÆQRELAB ÆYIELD, be
ause

MTTÆD

t

QRELAB 
onsists of total fun
tions only. Thus,MTT ÆD

t

QRELAB � (T Æ

QRELABÆYIELD)\F , where F is the 
lass of all total fun
tions. From the theorem

of [Eng78℄ it follows that, for every fun
tion f in T Æ QRELAB Æ YIELD, there is

a top-down tree transdu
er M with regular look-ahead su
h that f 2 �

M

ÆYIELD.

Sin
e the look-ahead 
an be simulated by a relabeling in D

t

QRELAB we obtain

f 2 D

t

QRELABÆT ÆYIELD = D

t

QRELABÆMTT, whi
h is in MTT by Lemma 6.

Hen
e, MTT ÆD

t

QRELAB �MTT. We now give an elementary proof of this fa
t.

Lemma 11. MTT ÆD

t

QRELAB � MTT.

Proof. Let M = (Q;�;�; q

0

; R) be an MTT and let N = (Q

N

; �;
;R

N

) be a

�nite state relabeling. We will 
onstru
t a �nite state relabeling N

0

and an MTT

M

0

su
h that �

N

0

Æ �

M

0

= �

M

Æ �

N

. By Lemma 6, �

M

Æ �

N

2 MTT.

The (standard) idea is to 
onstru
t the MTT M

0

from M by running the �nite

state relabeling N on the right-hand sides � of the rules of M . To do this we

need to know, for y

j

o

urring in �, in whi
h state the relabeling N arrives after

pro
essing the tree that will be substituted for y

j

. This (top-down) information 
an

be represented by a mapping ' : [m℄ ! Q

N

(if � is the right-hand side of a q-rule

and q is of rank m) and 
an be 
oded into the states of M

0

. More pre
isely, we


hoose the set Q

0

of states of M

0

as

Q

0

= f(q; ')

(m)

j q 2 Q

(m)

;m � 0; ' : [m℄! Q

N

g:

Similarly, for a subtree hq

0

; x

i

i(t

1

; : : : ; t

l

) of � we need to know, given that N arrives

in state p

�

after pro
essing t

�

for � 2 [l℄, in whi
h stateN arrives after pro
essing the

treeM

q

0

(s

i

) that will be substituted for hq

0

; x

i

i. This information 
an be represented

by a fun
tion �

i

for i 2 [k℄ whi
h asso
iates with every q

0

2 Q

(l)

a mapping of type

Q

l

N

! Q

N

. We use the (bottom-up) �nite state relabeling N

0

to repla
e every

symbol � by the new symbol (�; �

1

; : : : ; �

k

), where �

i

is the 
orresponding fun
tion

determining the state 
hange of N on the trees M

q

0

(s

i

).

In order to translate the right-hand side of a (q; �)-rule ofM , with q 2 Q

(m)

, � 2

�

(k)

, andm; k � 0, the �nite state relabelingN is extended as follows. Let �

1

; : : : ; �

k

be fun
tions whi
h asso
iate with every q

0

2 Q

(l)

a mapping �(q

0

) : Q

l

N

! Q

N

and

let ' : [m℄! Q

N

. ThenN

';(�

1

;:::;�

k

)

= (Q

N

; hQ;X

k

i[�[P; hQ

0

; X

k

i[
[P;R

N

[S)

is the extension of N to input trees in T

hQ;X

k

i[�

(Y

m

), where P = fy

(0)

j

j j 2 [m℄g

and the set S of additional rules is de�ned as follows. For every j 2 [m℄, y

j

!

h'(j); y

j

i is in S, and for every hq

0

; x

i

i 2 hQ;X

k

i

(l)

, l � 0, and p

1

; : : : ; p

l

2 Q

N

the

rule

hq

0

; x

i

i(hp

1

; x

1

i; : : : ; hp

l

; x

l

i)! h�

i

(q

0

)(p

1

; : : : ; p

l

); h(q

0

; '

0

); x

i

i(x

1

; : : : ; x

l

)i

is in S, with '

0

: [l℄! Q

N

and '

0

(�) = p

�

for all � 2 [l℄.

De�ne N

0

= (Q

N

0

; �; �;R

N

0

), where

{ Q

N

0

is the set of all fun
tions � whi
h assign to every q 2 Q

(l)

with l � 0 a

mapping �(q) : Q

l

N

! Q

N

.
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{ � = f(�; �

1

; : : : ; �

k

)

(k)

j � 2 �

(k)

, k � 0, �

1

; : : : ; �

k

2 Q

N

0

g and

{ for every � 2 �

(k)

, k � 0, and �

1

; : : : ; �

k

2 Q

N

0

, the rule

�(h�

1

; x

1

i; : : : ; h�

k

; x

k

i)! h�; (�; �

1

; : : : ; �

k

)(x

1

; : : : ; x

k

)i

is in R

N

0

, where � is de�ned as follows. For every q 2 Q

(m)

, m � 0, and

p

1

; : : : ; p

m

2 Q

N

, �(q)(p

1

; : : : ; p

m

) = p, with p 2 Q

N

su
h that

rhs

M

(q; �))

�

N

';(�

1

;:::;�

k

)

hp; i

and ' : [m℄! Q

N

with '(j) = p

j

for every j 2 [m℄. Re
all from Se
tion 2.3 that

t)

�

N

';(�

1

;:::;�

k

)

hp; i means that there is a t

0

su
h that t)

�

N

';(�

1

;:::;�

k

)

hp; t

0

i.

We now de�ne the MTT M

0

= (Q

0

; �;
; q

0

0

; R

0

) with Q

0

as above, q

0

0

= (q

0

;?),

and R

0

as follows. For every (q; ') 2 Q

0

(m)

, (�; �

1

; : : : ; �

k

) 2 �

0

(k)

, and m; k � 0,

h(q; '); (�; �

1

; : : : ; �

k

)(x

1

; : : : ; x

k

)i(y

1

; : : : ; y

m

)! �

is a rule in R

0

, where rhs

M

(q; �) )

�

N

';(�

1

;:::;�

k

)

hp; �i for some p 2 Q

N

, i.e., � =

�

N

';(�

1

;:::;�

k

)

(rhs

M

(q; �)).

Let us now prove the 
orre
tness of this 
onstru
tion. For m � 0 and ' : [m℄!

Q

N

let N

'

= N

';(�

1

;:::;�

k

)

with k = 0, i.e., N

'

is the extension of N to trees

in T

�

(Y

m

) obtained by adding the rules y

j

! h'(j); y

j

i for every j 2 [m℄. The


orre
tness, i.e., that �

M

0

(�

N

0

(s)) = �

N

(�

M

(s)) for every s 2 T

�

, follows from

Claim 1(a) for (q; ') = (q

0

;?), be
ause N

?

= N .

Claim 1: For every s 2 T

�

, (q; ') 2 Q

0

(m)

with m � 0, and � 2 Q

N

0

,

(a) M

0

(q;')

(�

N

0

(s)) = �

N

'

(M

q

(s)) and

(b) if s)

�

N

0

h�; i, then M

q

(s))

�

N

'

h�(q)('(1); : : : ; '(m)); i.

The 
laim is proved by indu
tion on the stru
ture of s. Let s = �(s

1

; : : : ; s

k

)

with � 2 �

(k)

, k � 0, and s

1

; : : : ; s

k

2 T

�

. The indu
tion hypothesis is denoted by

IH1. Let �

1

; : : : ; �

k

2 Q

N

0

su
h that s

i

)

�

N

0

h�

i

; i for every i 2 [k℄.

First, part (a) of the 
laim is proved. It follows from the de�nition of N

0

that M

0

(q;')

(�

N

0

(s)) =M

0

(q;')

((�; �

1

; : : : ; �

k

)(�

N

0

(s

1

); : : : ; �

N

0

(s

k

))). By De�nition 3

this equals rhs

M

0

((q; '); (�; �

1

; : : : ; �

k

))[[

M

0

℄℄, where [[

M

0

℄℄ denotes the substitution

[[h(q

0

; '

0

); x

i

i  M

0

(q

0

;'

0

)

(�

N

0

(s

i

)) j h(q

0

; '

0

); x

i

i 2 hQ

0

; X

k

i℄℄. By the de�nition of M

0

and IH1(a) this equals �

N

';(�

1

;:::;�

k

)

(rhs

M

(q; �))[[

NM

℄℄, where [[

NM

℄℄ = [[h(q

0

; '

0

); x

i

i  

�

N

'

0

(M

q

0

(s

i

)) j h(q

0

; '

0

); x

i

i 2 hQ

0

; X

k

i℄℄. It follows from Claim 2(a) below, for

t = rhs

M

(q; �), that �

N

';(�

1

;:::;�

k

)

(rhs

M

(q; �))[[

NM

℄℄ equals �

N

'

(rhs

M

(q; �)[[

M

℄℄) with

[[

M

℄℄ = [[hq

0

; x

i

i  M

q

0

(s

i

) j hq

0

; x

i

i 2 hQ;X

k

i℄℄. This equals �

N

'

(M

q

(s)).

For the (b) part, if s )

�

N

0

h�; i, then there are �

1

; : : : ; �

k

; � 2 T

�

0

with

s

i

)

�

N

0

h�

i

; �

i

i for all i 2 [k℄ and �(h�

1

; �

1

i; : : : ; h�

k

; �

k

i))

N

0

h�; �i. By the de�ni-

tion of N

0

, if �(h�

1

; �

1

i; : : : ; h�

k

; �

k

i) )

N

0

h�; �i, then, for every (q; ') 2 Q

0

(m)

and m � 0, rhs

M

(q; �) )

�

N

';(�

1

;:::;�

k

)

h�(q)('(1); : : : ; '(m)); i. By Claim 2(b)

for t = rhs

M

(q; �) and p = �(q)('(1); : : : ; '(m)): M

q

(s) = rhs

M

(q; �)[[

M

℄℄ )

�

N

'

h�(q)('(1); : : : ; '(m)); i. This 
on
ludes the proof of Claim 1.

Claim 2: For every m � 0, ' : [m℄! Q

N

, p 2 Q

N

, and t 2 T

hQ;X

k

i[�

(Y

m

),

(a) �

N

';(�

1

;:::;�

k

)

(t)[[

NM

℄℄ = �

N

'

(t[[

M

℄℄) and

(b) if t)

�

N

';(�

1

;:::;�

k

)

hp; i, then t[[

M

℄℄)

�

N

'

hp; i.
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Claim 2 is proved by indu
tion on the stru
ture of t. We denote the indu
tion

hypothesis by IH2.

If t = y

j

2 Y

m

, then t)

N

';(�

1

;:::;�

k

)

h'(j); ti and t[[

NM

℄℄ = t, and t[[

M

℄℄ = t)

N

'

h'(j); ti, by the de�nition of N

';(�

1

;:::;�

k

)

and N

'

, respe
tively. This proves both

(a) and (b). Let l � 0 and t

1

; : : : ; t

l

2 T

hQ;X

k

i[�

(Y

m

).

If t = Æ(t

1

; : : : ; t

l

) with Æ 2 �

(l)

, then �

N

';(�

1

;:::;�

k

)

(t)[[

NM

℄℄ = 
(�

N

';(�

1

;:::;�

k

)

(t

1

);

: : : ; �

N

';(�

1

;:::;�

k

)

(t

l

))[[

NM

℄℄, with 
 2 � su
h that Æ(hp

1

; x

1

i; : : : ; hp

k

; x

k

i)! hp; 
(x

1

;

: : : ; x

k

)i is a rule of N (and thus of N

';(�

1

;:::;�

k

)

) and t

�

)

�

N

';(�

1

;:::;�

k

)

hp

�

; i for � 2

[k℄. By IH2(a), �

N

';(�

1

;:::;�

k

)

(t

�

)[[

NM

℄℄ equals �

N

'

(t

�

[[

M

℄℄) and by IH2(b) t

�

[[

M

℄℄ )

�

N

'

hp

�

; i. Sin
e N

'

has the same rule Æ(hp

1

; x

1

i; : : : ; hp

k

; x

k

i) ! hp; 
(x

1

; : : : ; x

k

)i

of N it follows that the derivations by )

N

';(�

1

;:::;�

k

)

and )

N

'

both end with

hp; i whi
h shows the (b) part, and 
(�

N

';(�

1

;:::;�

k

)

(t

1

); : : : ; �

N

';(�

1

;:::;�

k

)

(t

l

))[[

NM

℄℄ =


(�

N

'

(t

1

[[

M

℄℄); : : : ; �

N

'

(t

l

[[

M

℄℄)) = �

N

'

(Æ(t

1

[[

M

℄℄; : : : ; t

l

[[

M

℄℄)) = �

N

'

(t[[

M

℄℄), whi
h

shows the (a) part.

Finally, let t = hq

0

; x

i

i(t

1

; : : : ; t

l

) with hq

0

; x

i

i 2 hQ;X

k

i

(l)

. If t )

�

N

';(�

1

;:::;�

k

)

hp; i, then there are p

1

; : : : ; p

l

2 Q

N

and �

1

; : : : ; �

l

; � 2 T

hQ;X

k

i[�

(Y

m

) su
h that

t

�

)

�

N

';(�

1

;:::;�

k

)

hp

�

; �

�

i for � 2 [l℄ and hq

0

; x

i

i(hp

1

; �

1

i; : : : ; hp

l

; �

l

i) )

N

';(�

1

;:::;�

k

)

hp; �i, whi
h, by de�nition of N

';(�

1

;:::;�

k

)

, implies that p = �

i

(q

0

)(p

1

; : : : ; p

l

). Now

t

�

)

�

N

';(�

1

;:::;�

k

)

hp

�

; i implies t

�

[[

M

℄℄ )

�

N

'

hp

�

; i by IH2(b), i.e., t

�

[[

M

℄℄ )

�

N

'

hp

�

; �

N

'

(t

�

[[

M

℄℄)i, and so

t[[

M

℄℄)

�

N

'

M

q

0

(s

i

)[y

�

 hp

�

; �

N

'

(t

�

[[

M

℄℄)i j � 2 [l℄℄ = �;

by the de�nition of [[

M

℄℄. Now let '

0

: [l℄ ! Q

N

with '

0

(�) = p

�

for every

� 2 [l℄. Sin
e s

i

)

�

N

0

h�

i

; i, it follows from IH1(b) and the de�nition of '

0

that

M

q

0

(s

i

) )

�

N

'

0

�

0

= M

q

0

(s

i

)[y

�

 hp

�

; y

�

i j � 2 [l℄℄ and �

0

)

�

N

'

0

hp; �

N

'

0

(M

q

0

(s

i

))i.

Clearly, the latter derivation also holds for N

'

, and so � )

�

N

'

hp; �i, where � =

�

N

'

0

(M

q

0

(s

i

))[y

�

 �

N

'

(t

�

[[

M

℄℄) j � 2 [l℄℄. Hen
e t[[

M

℄℄ )

�

N

'

� )

�

N

'

hp; �i. This

proves part (b).

By IH2(a), �

N

'

(t

�

[[

M

℄℄) = �

N

';(�

1

;:::;�

k

)

(t

�

)[[

NM

℄℄ for every � 2 [l℄. Thus, � =

�

N

'

0

(M

q

0

(s

i

))[y

�

 �

N

';(�

1

;:::;�

k

)

(t

�

)[[

NM

℄℄ j � 2 [l℄℄. By the de�nition of [[

NM

℄℄ this

equals h(q

0

; '

0

); x

i

i(�

N

';(�

1

;:::;�

k

)

(t

1

); : : : ; �

N

';(�

1

;:::;�

k

)

(t

l

))[[

NM

℄℄ whi
h, by the de�ni-

tion of N

';(�

1

;:::;�

k

)

, equals �

N

';(�

1

;:::;�

k

)

(t)[[

NM

℄℄. This ends the proof of Claim 2.

�

It was mentioned in the Con
lusions of [EV85℄ as an open problem whether the


lass of ma
ro tree translations is 
losed under 
omposition with T

R

, the 
lass of

top-down tree translations with regular look-ahead. Sin
e T

R

equals D

t

QRELABÆT

(see Theorem 2.6 of [Eng77℄) it follows from Lemma 11 that MTT Æ T

R

� MTT Æ

D

t

QRELAB Æ T �MTT Æ T , and by Lemma 5, MTT Æ T � MTT .

Corollary 12. MTT Æ T

R

�MTT.

We now move to the se
ond 
losure property. The main part of the proof of

this 
losure property 
onsists of proving Theorem 15 whi
h says that, for a 
lass

L of tree languages 
losed under �nite state relabelings, yMTT

sp

(L) = yT (L). In

essen
e this is proved in the following lemma, whi
h shows how to generate by a

top-down tree transdu
er the string language generated by an MTT

sp

.

Lemma 13. MTT

sp

Æ y � D

t

QRELAB Æ T Æ y.

Proof. Let M = (Q;�;�; q

0

; R) be an MTT

sp

. We will 
onstru
t a �nite state

relabeling N and a top-down tree transdu
er M

0

su
h that for every s 2 T

�

,

12



y(�

M

0

(�

N

(s))) = y�

M

(s). The idea is as follows. Let q 2 Q

(m)

and s 2 T

�

. Then,

sin
e M is sp, yM

q

(s) is of the form

w = w

0

y

j

1

w

1

y

j

2

w

2

� � � y

j

m

w

m

;

where j

1

; : : : ; j

m

2 [m℄ are pairwise di�erent and w

0

; : : : ; w

m

2 (�

(0)

)

�

. For a string

of the form w and for 0 � � � m we denote by part

�

(w) the string w

�

. For

every � the top-down tree transdu
er M

0

has a state (q; �) whi
h 
omputes w

�

.

The information on the order of the parameters, i.e., the string res

Y

(yM

q

(s)) 2

Y

�

m

, will be determined by the �nite state relabeling N in su
h a way that � 2

�

(k)

is relabeled by (�; per

1

; : : : ; per

k

), where for ea
h i 2 [k℄, per

i

is a mapping

asso
iating with every q 2 Q

(m)

a permutation of the string y

1

� � � y

m

. For instan
e,

if s

i

equals the tree s from above, then the � in �(s

1

; : : : ; s

i

; : : : ; s

k

) is relabeled by

(�; per

1

; : : : ; per

k

) and per

i

(q) = res

Y

(w) = y

j

1

� � � y

j

m

.

Formally, N = (Q

N

; �; �;R

N

), where

{ Q

N

is the set of all mappings per whi
h asso
iate with every q 2 Q

(m)

a string

in Y

�

m

whi
h is a permutation of y

1

� � � y

m

.

{ � = f(�; per

1

; : : : ; per

k

)

(k)

j � 2 �

(k)

; k � 0; per

1

; : : : ; per

k

2 Q

N

g.

{ For every � 2 �

(k)

, k � 0, and per

1

; : : : ; per

k

2 Q

N

let

�(hper

1

; x

1

i; : : : ; hper

k

; x

k

i)! hper; (�; per

1

; : : : ; per

k

)(x

1

; : : : ; x

k

)i

be in R

N

, where for every q 2 Q

(m)

, per(q) = res

Y

(y(rhs

M

(q; �)�)) and �

denotes the se
ond-order substitution

[[hq

0

; x

i

i  
omb

b

(per

i

(q

0

)) j hq

0

; x

i

i 2 hQ;X

k

i℄℄;

where b is an arbitrary binary symbol (see Se
tion 2.1 for 
omb

b

).

It follows from Claim 1 that N realizes the relabeling as des
ribed.

Claim 1: Let q 2 Q

(m)

, m � 0, and s 2 T

�

. If s )

�

N

hper; i, then per(q) =

res

Y

(yM

q

(s)).

The proof of this 
laim is by indu
tion on the stru
ture of s. The indu
tion

hypothesis is denoted by IH1. Let s = �(s

1

; : : : ; s

k

) with � 2 �

(k)

, k � 0, and

s

1

; : : : ; s

k

2 T

�

. Then s )

�

N

hper; i if there are per

1

; : : : ; per

k

2 Q

N

su
h that

s

i

)

�

N

hper

i

; �

N

(s

i

)i for i 2 [k℄ and �(hper

1

; �

N

(s

1

)i; : : : ; hper

k

; �

N

(s

k

)i) )

N

hper; i, where per(q) = res

Y

(y(t�)), t = rhs

M

(q; �), and � as in the de�ni-

tion of N . Let [[: : :℄℄ = [[hq

0

; x

i

i  M

q

0

(s

i

) j hq

0

; x

i

i 2 hQ;X

k

i℄℄. By Claim 2,

res

Y

(y(t�)) = res

Y

(y(t[[: : :℄℄)) = res

Y

(yM

q

(s)).

Claim 2: For every t 2 T

hQ;X

k

i[�

(Y

m

), res

Y

(y(t�)) = res

Y

(y(t[[: : :℄℄)).

This 
laim is proved by indu
tion on the stru
ture of t. The indu
tion hypothesis

is denoted by IH2. If t = y

j

2 Y

m

, then res

Y

(y(t�)) = res

Y

(yt) = res

Y

(y(t[[: : :℄℄)).

Let l � 0 and t

1

; : : : ; t

l

2 T

hQ;X

k

i[�

(Y

m

).

If t = Æ(t

1

; : : : ; t

l

), then res

Y

(y(t�)) = res

Y

(y(Æ(t

1

�; : : : ; t

l

�))) = res

Y

(y(t

1

�)

� � � y(t

l

�)) = res

Y

(y(t

1

�)) � � � res

Y

(y(t

l

�)). By IH2 this equals res

Y

(y(t

1

[[: : :℄℄)) � � �

res

Y

(y(t

l

[[: : :℄℄)) = res

Y

(y(t

1

[[: : :℄℄) � � � y(t

l

[[: : :℄℄)) = res

Y

(t[[: : :℄℄).

If t = hq

0

; x

i

i(t

1

; : : : ; t

l

), then res

Y

(y(t�)) = res

Y

(y(
omb

b

(per

i

(q

0

))[y

j

 t

j

� j

j 2 [l℄℄)). By applying yield we get res

Y

(per

i

(q

0

)[y

j

 y(t

j

�) j j 2 [l℄℄) and appli
a-

tion of res

Y

gives per

i

(q

0

)[y

j

 res

Y

(y(t

j

�)) j j 2 [l℄℄. By IH1 and IH2 this equals

res

Y

(yM

q

0

(s

i

))[y

j

 res

Y

(y(t

j

[[: : :℄℄)) j j 2 [l℄℄ = res

Y

(y(M

q

0

(s

i

)[y

j

 t

j

[[: : :℄℄ j j 2

[l℄℄)) = res

Y

(y(t[[: : :℄℄)).

We now de�ne the top-down tree transdu
er M

0

= (Q

0

; �;�

0

; (q

0

; 0); R

0

), where

{ Q

0

= f(q; �)

(0)

j q 2 Q

(m)

; 0 � � � mg,

13



{ �

0

= �

(0)

[ fb

(2)

; e

(0)

g, and

{ for every (q; �) 2 Q

0

, (�; per

1

; : : : ; per

k

) 2 �

(k)

, and k � 0, the rule

h(q; �); (�; per

1

; : : : ; per

k

)(x

1

; : : : ; x

k

)i ! �

is in R

0

, where � = 
omb

b

(part

�

(y(��))), � = rhs

M

(q; �), and � is the substi-

tution

[[hq

0

; x

i

i  
omb

b

(h(q

0

; 0); x

i

iper

i

(q

0

)(1)h(q

0

; 1); x

i

iper

i

(q

0

)(2) � � �

per

i

(q

0

)(m)h(q

0

;m); x

i

i) j hq

0

; x

i

i 2 hQ;X

k

i

(m)

;m � 0℄℄:

Re
all from the Preliminaries that per

i

(q)(j) denotes the j-th symbol of per

i

(q).

We now prove the 
orre
tness ofM

0

, i.e., that for every s 2 T

�

, y(�

M

0

(�

N

(s))) =

y�

M

(s). It follows from Claim 3 for (q; �) = (q

0

; 0).

Claim 3: For every (q; �) 2 Q

0

and s 2 T

�

, yM

0

(q;�)

(�

N

(s)) = part

�

(yM

q

(s)).

The proof of this 
laim is by indu
tion on the stru
ture of s. Let s =�(s

1

; : : : ; s

k

),

� 2 �

(k)

, k � 0, and s

1

; : : : ; s

k

2 T

�

. Then yM

0

(q;�)

(�

N

(s)) = yM

0

(q;�)

((�; per

1

;

: : : ; per

k

)(�

N

(s

1

); : : : ; �

N

(s

k

))). By De�nition 3 and the fa
t that M

0

is a top-

down tree transdu
er, i.e., all elements of hQ;X

k

i are of rank zero, this equals

y(�[: : : ℄), where � = rhs

M

0

((q; �); (�; per

1

; : : : ; per

k

)) and [: : : ℄ = [h(q

0

; �

0

); x

i

i  

M

0

(q

0

;�

0

)

(�

N

(s

i

)) j h(q

0

; �

0

); x

i

i 2 hQ

0

; X

k

i℄. By the de�nition of the rules of M

0

,

� = 
omb

b

(part

�

(y(��))), where � = rhs

M

(q; �) and � as in the de�nition ofM

0

. By

indu
tion, yM

0

(q

0

;�

0

)

(�

N

(s

i

)) = part

�

0

(yM

q

0

(s

i

)) for every h(q

0

; �

0

); x

i

i 2 hQ

0

; X

k

i.

Thus, we 
an apply Lemma 1(a) and repla
eM

0

(q

0

;�

0

)

(�

N

(s

i

)) by 
omb

b

(part

�

0

(yM

q

0

(

s

i

))) in [: : : ℄, to get y(
omb

b

(part

�

(y(��)))[ ℄) with [ ℄ = [h(q

0

; �

0

); x

i

i  
omb

b

(

part

�

0

(yM

q

0

(s

i

))) j h(q

0

; �

0

); x

i

i 2 hQ

0

; X

k

i℄). We 
an now apply yield and then move

the (string) substitution that 
orresponds to [ ℄ inside the appli
ation of part

�

and

yield, be
ause part

�

0

(yM

q

0

(s

i

)) 2 (�

(0)

)

�

. We get part

�

(y(��[ ℄)). By appli
ation

of [ ℄ we obtain that ��[ ℄ = �[[hq

0

; x

i

i  t

hq

0

;x

i

i

j hq

0

; x

i

i 2 hQ;X

k

i

(m)

;m � 0℄℄,

where, by the de�nition of �, ea
h tree t

hq

0

;x

i

i

has yield w

0

y

j

1

w

1

� � � y

j

m

w

m

with

w

�

0

= part

�

0

(yM

q

0

(s

i

)) for 0 � �

0

� m, and, y

j

�

0

= per

i

(q

0

)(�

0

) for �

0

2 [m℄. By

Claim 1, per

i

(q

0

)(�

0

) equals res

Y

(yM

q

0

(s

i

))(�

0

). Hen
e, yt

hq

0

;x

i

i

equals

part

0

(yM

q

0

(s

i

))res

Y

(yM

q

0

(s

i

))(1)part

1

(yM

q

0

(s

i

)) � � �

res

Y

(yM

q

0

(s

i

))(m)part

m

(yM

q

0

(s

i

));

whi
h equals yM

q

0

(s

i

). By Lemma 1(b) we 
an repla
e t

hq

0

;x

i

i

by M

q

0

(s

i

) to get

part

�

(y(�[[hq

0

; x

i

i  M

q

0

(s

i

) j hq

0

; x

i

i 2 hQ;X

k

i℄℄)) = part

�

(yM

q

(s)). �

Let us take a look at an example of an appli
ation of the 
onstru
tion in the

proof of Lemma 13.

Example 14. Let M be the MTT

sp

of Example 10. We 
onstru
t the �nite state

relabeling N and the top-down tree transdu
er M

0

following the 
onstru
tion in

the proof of Lemma 13. Let N = (Q

N

; �; �;R

N

) be the �nite state relabeling

with Q

N

= fq

12

; q

21

g, q

12

= f(q

0

; "); (q; y

1

y

2

)g, q

21

= f(q

0

; "); (q; y

2

y

1

)g, and � =

f(�; q

12

; q

12

)

(2)

; (�; q

12

; q

21

)

(2)

, (�; q

21

; q

12

)

(2)

, (�; q

21

; q

21

)

(2)

, a

(0)

; b

(0)

g, where a and

b stand for (a) and (b), respe
tively. The set R

N


onsists of the rules

a! hq

12

; ai

b! hq

21

; bi

�(hr; x

1

i; hr

0

; x

2

i)! hr

0

; (�; r; r

0

)(x

1

; x

2

)i for all r; r

0

2 Q

N

:

14



Consider again the input tree t = �(a; �(b; �(b; b))). Then �

N

(t) equals

(�; q

12

; q

21

)(a; (�; q

21

; q

21

)(b; (�; q

21

; q

21

)(b; b))):

We now 
onstru
t the top-down tree transdu
erM

0

. LetM

0

= (Q

0

; �;�

0

; (q

0

; 0);

R

0

) with Q

0

= f(q

0

; 0)

(0)

; (q; 0)

(0)

; (q; 1)

(0)

; (q; 2)

(0)

g and �

0

= �

(0)

[ f


(2)

; e

(0)

g

(where 
 is the symbol b from the proof of Lemma 13, used to make 
ombs). For

simpli
ity we write down the rules of M

0

as tree-to-string rules, i.e., we merely

show the yield of the 
orresponding right-hand side. Let us 
onsider in detail how

to obtain the right-hand sides of the ((q; �); (�; r; q

21

))-rules for 0 � � � 2 and

r 2 Q

N

. Sin
e we are only interested in the yields, we have to 
onsider the string

v = y(rhs

M

(q; �)�), where � is de�ned as in the proof of Lemma 13. This string

equals

h(q; 0); x

2

ih(q

0

; 0); x

1

i

| {z }

part

0

(v)

y

2

h(q; 1); x

2

i

| {z }

part

1

(v)

y

1

h(q

0

; 0); x

1

ih(q; 2); x

2

i

| {z }

part

2

(v)

:

Hen
e, for every r 2 Q

N

and 0 � � � 2, yrhs

M

0

((q; �); (�; r; q

21

)) = part

�

(v);

similarly we get yrhs

M

0

((q; 0); (�; r; q

12

)) = h(q; 0); x

2

i,

yrhs

M

0

((q; 1); (�; r; q

12

)) = h(q

0

; 0); x

1

ih(q; 1); x

2

ih(q

0

; 0); x

1

i,

yrhs

M

0

((q; 2); (�; r; q

12

)) = h(q; 2); x

2

i.

The remaining rules are, for 0 � � � 2 and r; r

0

2 Q

N

,

h(q

0

; 0); (�; r; r

0

)(x

1

; x

2

)i ! h(q; 0); x

2

ih(q

0

; 0); x

1

ih(q; 1); x

2

ih(q

0

; 0); x

1

ih(q; 2); x

2

i

h(q

0

; 0); ai ! a

h(q

0

; 0); bi ! b

h(q; �); ai ! "

h(q; �); bi ! "

Consider the derivation by M

0

with input tree t

0

= �

N

(t) (shown above), where

t

0

=2 = �

N

(�(b; �(b; b))) and t

0

=22 = �

N

(�(b; b)); again we merely show the 
orre-

sponding yields.

h(q

0

; 0); t

0

i

)

M

0

h(q; 0); t

0

=2ih(q

0

; 0); aih(q; 1); t

0

=2ih(q

0

; 0); aih(q; 2); t

0

=2i

)

�

M

0

h(q; 0); t

0

=22ih(q

0

; 0); bi a h(q; 1); t

0

=22i a h(q

0

; 0); bih(q; 2); t

0

=22i

)

�

M

0

h(q; 0); bi bba h(q; 1); bi abb h(q; 2); bi

)

�

M

0

bbaabb:

Thus, indeed, y�

M

0

(�

N

(t)) = y�

M

(t); see Example 10 for �

M

(t).

Let us also show how yM

0

(q

0

;0)

(t

0

) 
an be obtained in terms of q

0

-translations

for the states q

0

of M

0

. Sin
e we only 
onsider the 
orresponding yields, all of the

following substitutions are on strings. First, yM

0

(q

0

;0)

(b) = b and yM

0

(q;�)

(b) = " for

0 � � � 2. Thus,

yM

0

(q;0)

(t

0

=22)

= yrhs

M

0

((q; 0); (�; q

21

; q

21

))[h(q; 0); x

2

i  yM

0

(q;0)

(b); h(q

0

; 0); x

1

i  yM

0

(q

0

;0)

(b)℄

= h(q; 0); x

2

ih(q

0

; 0); x

1

i[h(q; 0); x

2

i  "; h(q

0

; 0); x

1

i  b℄ = b,

yM

0

(q;1)

(t

0

=22) = yrhs

M

0

((q; 1); (�; q

21

; q

21

))[h(q; 1); x

2

i  yM

0

(q;1)

(b)℄

= yM

0

(q;1)

(b) = ", and

yM

0

(q;2)

(t

0

=22)

= yrhs

M

0

((q; 2); (�; q

21

; q

21

))[h(q

0

; 0); x

1

i  yM

0

(q

0

;0)

(b); h(q; 2); x

2

i  yM

0

(q;2)

(b)℄

= yM

0

(q

0

;0)

(b)yM

0

(q;2)

(b) = b.

Sin
e, as shown in Example 10, yM

q

(�(b; b)) = by

2

y

1

b and part

�

(by

2

y

1

b) equals

b,",b for � = 0; 1; 2, respe
tively, these results are in a

ordan
e with Claim 3 in the

proof of Lemma 13. Next,
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yM

0

(q;0)

(t

0

=2)

= yrhs

M

0

((q; 0); (�; q

21

; q

21

))[h(q; 0); x

2

i  yM

0

(q;0)

(t

0

=22); h(q

0

; 0); x

1

i  yM

0

(q

0

;0)

(b)℄

= yM

0

(q;0)

(t

0

=22)yM

0

(q

0

;0)

(b) = bb,

yM

0

(q;1)

(t

0

=2) = yrhs

M

0

((q; 1); (�; q

21

; q

21

)[h(q; 1); x

2

i  yM

0

(q;1)

(t

0

=22)℄

= yM

0

(q;1)

(t

0

=22) = ", and

yM

0

(q;2)

(t

0

=2)

= yrhs

M

0

((q; 2); (�; q

21

; q

21

))[h(q

0

; 0); x

1

i  yM

0

(q

0

;0)

(b); h(q; 2); x

2

i  yM

0

(q;2)

(t

0

=22)℄

= yM

0

(q

0

;0)

(b)yM

0

(q;2)

(t

0

=22) = bb.

Again, these results are in a

ordan
e with the fa
t that yM

q

(�(b; �(b; b))) =

bby

2

y

1

bb. Finally, yM

0

(q

0

;0)

(t

0

=1) = yrhs

M

0

((q

0

; 0); a) = a and yM

0

(q

0

;0)

(t

0

) equals

yM

0

(q;0)

(t

0

=2)yM

0

(q

0

;0)

(t

0

=1)yM

0

(q;1)

(t

0

=2)yM

0

(q

0

;0)

(t

0

=1)yM

0

(q;2)

(t

0

=2) = bbaabb:

�

We are now ready to prove that MTT

sp

s and top-down tree transdu
ers generate

the same 
lass of string languages if they take as input a 
lass of tree languages

that is 
losed under �nite state relabelings. Note that this result 
an be seen as

a generalization of Corollary 7.9 of [EM99℄, whi
h says that �nite 
opying MTTs

generate the same 
lass of string languages as �nite 
opying top-down tree transdu
-

ers, i.e., for a 
lass L of tree languages that is 
losed under �nite state relabelings,

yMTT

f


(L) = yT

f


(L), where f
 denotes that the 
orresponding transdu
ers are

�nite 
opying.

Theorem 15. Let L be a 
lass of tree languages that is 
losed under �nite state

relabelings. Then yMTT

sp

(L) = yT (L).

Proof. By Lemma 13, yMTT

sp

(L) � yT (L) and sin
e every top-down tree trans-

du
er is an MTT

sp

, yT (L) � yMTT

sp

(L). �

By Lemma 11, we 
an apply Theorem 15 to L

0

= MTT (L), for an arbitrary


lass of tree languages L. We get yMTT

sp

(MTT (L)) = yT (MTT (L)) whi
h, by

Lemma 5, equals MTT (L). Thus we obtain the following 
orollary whi
h says that

the 
lass MTT (L) is 
losed under translations in MTT

sp

, with respe
t to yield

languages.

Corollary 16. For a 
lass L of tree languages, yMTT

sp

(MTT (L)) = yMTT (L).

Sin
e the 
lass REGT of regular tree languages is 
losed under �nite state rela-

belings (
f. Lemma IV.6.5 of [GS84℄), we get yMTT

sp

(REGT ) = yT (REGT ) from

Theorem 15. We want to make two more remarks about the 
lass MTT

sp

(REGT ).

First, about its yield languages: For top-down tree transdu
ers it is known (The-

orem 3.2.1 of [ERS80℄ and Theorem 4.3 of [Man98℄) that T (REGT ) is equal to

the 
lass OUT (T ) of output tree languages of top-down tree transdu
ers (i.e.,

taking the parti
ular regular tree languages T

�

as input). In fa
t, it is shown in

[Man98℄ that for any 
lass 	 of tree translations whi
h is 
losed under left 
omposi-

tion with \semi-relabelings", whi
h are parti
ular linear top-down tree translations,

	(REGT ) = OUT (	). Sin
e it 
an be shown, as a spe
ial 
ase of Lemma 4, that

MTT

sp

is 
losed under left 
omposition with top-down tree translations we get that

yOUT (MTT

sp

) = yOUT (T ), i.e., MTT

sp

s and top-down tree transdu
ers gener-

ate the same 
lass of output string languages. Se
ond, about its path languages:

If we 
onsider MTT

sp

s with monadi
 output alphabet, then the 
lass of path lan-

guages generated by them taking regular tree languages as input is also equal to

yT (REGT ) (
f. the proof of Lemma 7.6 of [EM99℄). Thus, the 
lasses of path and

yield languages of the 
lass MTT

sp

(REGT ) are equal; this is a rare property of a


lass of tree languages.
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5 Bridge Theorems

This se
tion establishes the bridge theorems whi
h are used in Se
tions 6 and 7

to prove that 
ertain languages 
annot be generated as output by 
ompositions

of MTTs. The basi
 idea is presented in Lemma 17 whi
h gives a \bridge" from

yMTT

sp

(L) to yMTT (L), that is, a statement of the form: if L 62 yMTT

sp

(L)

then L

0

62 yMTT (L). Using the 
losure properties of the previous se
tion this will

allow us to prove in Theorem 18 a bridge from yMTT

n

(L) to yMTT

n+1

(L), and in

Theorem 20 a bridge from yT (REGT ) to

S

n�0

yMTT

n

(REGT ).

Let A and B be disjoint alphabets. Consider a string of the form

w

1

a

1

w

2

a

2

� � �a

l�1

w

l

a

l

w

l+1

with l � 0, a

1

; : : : ; a

l

2 A, w

1

; : : : ; w

l+1

2 B

�

, and all w

2

; : : : ; w

l

pairwise di�erent.

We 
all su
h a string a Æ-string for a

1

� � � a

l

. Now let L � A

�

and L

0

� (A [B)

�

. If

L

0


ontains, for every w 2 L, a Æ-string for w, then L

0

is 
alled Æ-
omplete for L. The

following theorem shows that if an MTTM generates L

0

, then, due to the stru
ture

of Æ-strings, M 
annot make use of its 
opying fa
ility as far as L is 
on
erned.

Re
all from the Preliminaries that res

A

(w

1

a

1

� � �w

l

a

l

w

l+1

) = a

1

� � � a

l

.

Lemma 17. Let L be a 
lass of tree languages whi
h is 
losed under �nite state

relabelings and under interse
tion with regular tree languages. Let A;B be disjoint

alphabets and let L � A

�

and L

0

� (A [ B)

�

be languages su
h that

(1) L

0

is Æ-
omplete for L and

(2) res

A

(L

0

) = L.

If L

0

2 yMTT(L) then L 2 yMTT

sp

(L).

Proof. Let M = (Q;�;�; q

0

; R) be an MTT and K 2 L su
h that y�

M

(K) = L

0

.

Obviously, we may assume that �

(0)

= A[B [feg. Furthermore, by Lemma 9 and

the 
losure of L under �nite state relabelings, we may assume thatM is nondeleting.

Clearly, it is suÆ
ient to 
onsider only Æ-strings in order to generate the language

L, be
ause, by Æ-
ompleteness of L

0

for L, L

0

has a Æ-string for every w 2 L, and

so res

A

(fv 2 L

0

j v is a Æ-stringg) = L. We will 
onstru
t a �nite state relabeling N

and an MTT

sp

M

0

su
h that for every s 2 T

�

(a) either y�

M

0

(�

N

(s)) = res

A

(y�

M

(s)) or �

M

0

(�

N

(s)) 
ontains a (new) dummy

symbol, and

(b) if y�

M

(s) is a Æ-string, then �

M

0

(�

N

(s)) 
ontains no dummy symbol.

We now show that this proves the lemma. Due to the 
losure properties of L,

the restri
tion of �

N

(K) to trees t su
h that �

M

0

(t) 
ontains no dummy symbol is

in L. This 
an be seen as follows. Sin
e inverse ma
ro tree translations preserve

the regular tree languages (Theorem 7.4(1) of [EV85℄), R = �

�1

M

0

(T

�

0

�fdummyg

)

is a regular tree language, where �

0

is the output alphabet of M

0

. Hen
e K

0

=

�

N

(K) \ R is in L. Now, from (a) and (2) we get y�

M

0

(K

0

) � res

A

(L

0

) = L.

By (b), f�

N

(s) j s 2 K; y�

M

(s) is a Æ-stringg � K

0

and thus, by (1) and (a),

L = res

A

(fv 2 L

0

j v is a Æ-stringg) = fres

A

(y�

M

(s)) j s 2 K; y�

M

(s) is a Æ-

stringg � y�

M

0

(K

0

). Thus, L = y�

M

0

(K

0

) 2 yMTT

sp

(L).

Consider the right-hand side of a rule of M in whi
h some parameter y

j

o

urs

more than on
e. If, during the derivation of a tree whi
h has as yield a Æ-string, this

rule was applied, then the tree whi
h is substituted for y

j

in this derivation 
ontains

at most one symbol in A. Be
ause otherwise, due to 
opying, the resulting string

would not be a Æ-string. Hen
e, when deriving a Æ-string, a rule whi
h 
ontains mul-

tiple o

urren
es of a parameter y

j

is only appli
able if the yield of the tree being
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substituted for y

j


ontains at most one symbol in A. Based on this fa
t we 
onstru
t

the MTT

sp

M

0

. The information whether the yield of the tree whi
h will be substi-

tuted for a 
ertain parameter 
ontains none, one, or more than one o

urren
es of a

symbol in A is determined by �rst relabeling the input tree. Then this information

is kept in the states of M

0

. More pre
isely, we will de�ne a �nite state relabeling N

whi
h relabels � 2 �

(k)

in the tree �(s

1

; : : : ; s

k

) by (�; (�

1

; f

1

); : : : ; (�

k

; f

k

)), where

for every i 2 [k℄, q 2 Q

(m)

, and m � 0,

�

i

(q) =

8

<

:

" if yM

q

(s

i

) 
ontains no symbol in A

a if yM

q

(s

i

) = w

1

aw

2

with a 2 A and w

1

; w

2

2 (Y [ B)

�

dd otherwise

with d an arbitrary symbol in A, and for every j 2 [m℄,

(f

i

(q))(j) =

8

<

:

" if yM

q

(s

i

) 
ontains no o

urren
e of y

j

y

j

if yM

q

(s

i

) 
ontains exa
tly one o

urren
e of y

j

y

j

y

j

otherwise.

The 
ase (f

i

(q))(j) = " a
tually never o

urs, be
ause M is nondeleting and hen
e,

by Lemma 8, y

j

o

urs in yM

q

(s

i

); we only in
lude it be
ause it simpli�es the


orre
tness proof. Before de�ning N , let us de�ne two auxiliary notions that de�ne

the above information for an arbitrary string (instead of yM

q

(s

i

)). For w 2 (A[B[

Y )

�

, o


A

(w) is de�ned as follows. If w 2 (Y [B)

�

, then o


A

(w) = "; if w = w

1

aw

2

with a 2 A and w

1

; w

2

2 (Y [ B)

�

, then o


A

(w) = a; and otherwise o


A

(w) = dd.

Furthermore, for j � 1, o


j

(w) is de�ned as follows. If w 
ontains no o

urren
e of

y

j

, then o


j

(w) = "; if w 
ontains exa
tly one o

urren
e of y

j

, then o


j

(w) = y

j

;

and otherwise o


j

(w) = y

j

y

j

.

Note that the existen
e of the relabeling N follows from the fa
ts that for given

(�; f) and q 2 Q

(m)

the set ft 2 T

�

(Y

m

) j o


A

(yt) = �(q); o


j

(yt) = (f(q))(j) for

every j 2 [m℄g is regular and that inverse ma
ro tree translations preserve the reg-

ular tree languages (Theorem 7.4(1) of [EV85℄). Sin
e part of the 
orre
tness proof

of N is also needed in the 
orre
tness proof of the MTT M

0

, we give the detailed


onstru
tion of N together with a 
orre
tness proof. Note that the 
onstru
tion

of N is similar to the 
onstru
tions of the look-ahead automata A

1

and A

2

of the

proofs of Lemmas 6.3 and 6.6 in [EM99℄, respe
tively; the automaton A

1

determines

the pre
ise number of o

urren
es of y

j

in M

q

(s), where M is an MTT for whi
h

this number is bounded by some B 2 N, and the automaton A

2

determines whether

or not y

j

o

urs in M

q

(s).

It should be 
lear from De�nition 3 that, to de�ne N , we have to know how o


A

and o


j

behave with respe
t to se
ond-order substitution, i.e., how the o


A

and o


j

of the yield of a tree t[[!

i

 �

i

j i 2 [n℄℄℄ 
an be determined from the o


A

and o


j

's

of the yields of the trees �

1

; : : : ; �

n

. This is expressed in Claim 1.

Claim 1: Let 
 be a ranked alphabet su
h that 


(0)

= �

(0)

. Let n;m � 1,

!

1

; : : : ; !

n

2 
, and t; �

1

; : : : ; �

n

2 T




(Y

m

). Then for o
 2 fo


A

; o


1

; : : : ; o


m

g,

o
(y(t[[!

i

 �

i

j i 2 [n℄℄℄)) = o
(y(t[[!

i

 �

0

i

j i 2 [n℄℄℄));

where �

0

i

= 
omb

b

(o


A

(y�

i

)o


1

(y�

i

) � � � o


m

(y�

i

)) for i 2 [n℄, and b is an arbitrary

binary symbol.

This 
laim is proved by indu
tion on the stru
ture of t. Let [[: : :℄℄ denote the

substitution [[!

i

 �

i

j i 2 [n℄℄℄ and let [[ ℄℄ = [[!

i

 �

0

i

j i 2 [n℄℄℄. If t 2 Y

m

, then

o
(y(t[[: : :℄℄)) = o
(yt) = o
(y(t[[ ℄℄)). Let t

1

; : : : ; t

l

2 T




(Y

m

) and l � 0.

If t = Æ(t

1

; : : : ; t

l

) with Æ 2 


(l)

�f!

1

; : : : ; !

n

g, then o
(y(t[[: : :℄℄)) = o
(y(t

1

[[: : :℄℄)

y(t

2

[[: : :℄℄) � � � y(t

l

[[: : :℄℄)). Sin
e o
(uw) = o
(o
(u)o
(w)) for u;w 2 (A[B [ Y )

�

, we
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an apply o
 to ea
h y(t

�

[[: : :℄℄) and get o
(o
(y(t

1

[[: : :℄℄)) � � � o
(y(t

l

[[: : :℄℄))). By indu
-

tion this equals o
(o
(y(t

1

[[ ℄℄)) � � � o
(y(t

l

[[ ℄℄))) = o
(y(t

1

[[ ℄℄)y(t

2

[[ ℄℄) � � � y(t

l

[[ ℄℄)) =

o
(y(Æ(t

1

; : : : ; t

l

)[[ ℄℄)).

If t = !

i

(t

1

; : : : ; t

l

) with i 2 [n℄ and !

i

of rank l, then o
(y(t[[: : :℄℄)) = o
(y(�

i

[y

�

 

t

�

[[: : :℄℄ j � 2 [l℄℄)) = o
(y(�

i

)[y

�

 y(t

�

[[: : :℄℄) j � 2 [l℄℄). Sin
e o
(w) = o
(w

0

) if w

0

is a permutation of w, this equals o
((res

A[B

(y�

i

)res

fy

1

g

(y�

i

) � � � res

fy

l

g

(y�

i

))[y

�

 

y(t

�

[[: : :℄℄) j � 2 [l℄℄). Applying o
 we get

o
((o


A

(y�

i

)res

fy

1

g

(y�

i

) � � � res

fy

l

g

(y�

i

))[: : : ℄)

with [: : : ℄ = [y

�

 o
(y(t

�

[[: : :℄℄)) j � 2 [l℄℄. This is true be
ause for o
 = o


A

,

o
(o


A

(y�

i

)) = o
(y�

i

) = o
(res

A[B

(y�

i

)) and for o
 = o


j

, o
(o


A

(y�

i

)) = " =

o
(res

A[B

(y�

i

)). Sin
e, for � � 0, o
(y

�

�

[: : : ℄) = o
(o


�

(y

�

�

)[: : : ℄), it follows that

o
(res

fy

�

g

(y�

i

)[: : : ℄) = o
(o


�

(y�

i

)[: : : ℄). Hen
e we get

o
((o


A

(y�

i

)o


1

(y�

i

) � � � o


l

(y�

i

))[: : : ℄) = o
(y(�

0

i

)[: : : ℄):

By indu
tion we 
an repla
e o
(y(t

�

[[: : :℄℄)) in [: : : ℄ by o
(y(t

�

[[ ℄℄)), and hen
e by

y(t

�

[[: : :℄℄). Thus we get o
(y(�

0

i

)[y

�

 y(t

�

[[ ℄℄) j � 2 [l℄℄), whi
h equals o
(y(t[[ ℄℄)).

This 
on
ludes the proof of Claim 1.

We now 
onstru
t the �nite state relabeling N whi
h adds the �

i

's and f

i

's to

the labels of the input tree. Let N = (Q

N

; �; �;R

N

) su
h that

{ Q

N


onsists of all pairs (�; f), where � : Q! (f"; ddg [ A) and f is a fun
tion

whi
h asso
iates with every q 2 Q

(m)

, m � 0, a mapping f(q) : [m℄! Y

�

m

su
h

that for every j 2 [m℄, (f(q))(j) 2 f"; y

j

; y

j

y

j

g,

{ � = f(�; (�

1

; f

1

); : : : ; (�

k

; f

k

))

(k)

j � 2 �

(k)

; k � 0; (�

1

; f

1

); : : : ; (�

k

; f

k

) 2 Q

N

g,

and

{ R

N


ontains for every (�

1

; f

1

); : : : ; (�

k

; f

k

) 2 Q

N

and � 2 �

(k)

with k � 0 the

rule

�(h(�

1

; f

1

); x

1

i; : : : ; h(�

k

; f

k

); x

k

i)!

h(�; f); (�; (�

1

; f

1

); : : : ; (�

k

; f

k

))(x

1

; : : : ; x

k

)i;

where for every q 2 Q

(m)

with m � 0, �(q) = o


A

(y�), for every j 2 [m℄,

(f(q))(j) = o


j

(y�), and � = rhs

M

(q; �)�. The se
ond order substitution �

equals (where b is an arbitrary binary symbol)

[[hq

0

; x

i

i  
omb

b

(�

i

(q

0

)(f

i

(q

0

))(1) � � � (f

i

(q

0

))(l)) j hq

0

; x

i

i 2 hQ;X

k

i

(l)

; l � 0℄℄:

It should be 
lear from Claim 1 thatN realizes the relabeling as des
ribed above.

Formally this follows from Claim 2.

Claim 2: Let s 2 T

�

and (�; f) 2 Q

N

. If s )

�

N

h(�; f); �

N

(s)i then, for every

q 2 Q

(m)

and m � 0,

(i) �(q) = o


A

(yM

q

(s)) and

(ii) for every j 2 [m℄, (f(q))(j) = o


j

(yM

q

(s)).

This 
laim is proved by indu
tion on the stru
ture of s. Let s = �(s

1

; : : : ; s

k

), k �

0, � 2 �

(k)

, and s

1

; : : : ; s

k

2 T

�

. For every i 2 [k℄ let (�

i

; f

i

) 2 Q

N

su
h that s

i

)

�

N

h(�

i

; f

i

); �

N

(s

i

)i. Then s )

�

N

�(h(�

1

; f

1

); �

N

(s

1

)i; : : : ; h(�

k

; f

k

); �

N

(s

k

)i) )

N

h(�; f); (�; (�

1

; f

1

); : : : ; (�

k

; f

k

))(�

N

(s

1

); : : : ; �

N

(s

k

))i, where, for every q 2 Q

(m)

and m � 0, �(q) = o


A

(y�), for every j 2 [m℄, (f(q))(j) = o


j

(y�), and �

equals rhs

M

(q; �)�. To be able to apply Claim 1, we now take t = rhs

M

(q; �),

f!

1

; : : : ; !

n

g = hQ;X

k

i, and for !

�

= hq

0

; x

i

i, �

�

=M

q

0

(s

i

). By indu
tion, �

i

(q

0

) =
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o


A

(yM

q

0

(s

i

)) and (f

i

(q

0

))(j) = o


j

(yM

q

0

(s

i

)) for j 2 [m℄. Thus, � equals the sub-

stitution [[!

i

 
omb

b

(o


A

(y�

i

)o


1

(y�

i

) � � � o


m

(y�

i

)) j i 2 [n℄℄℄ = [[!

i

 �

0

i

j i 2 [n℄℄℄

of Claim 1. By appli
ation of Claim 1 we obtain that o


A

(y�) = o


A

(y(t[[hq

0

; x

i

i  

M

q

0

(s

i

) j hq

0

; x

i

i 2 hQ;X

k

i℄℄)) whi
h equals o


A

(yM

q

(s)). This proves Claim 2(i)

and by repla
ing o


A

by o


j

it proves Claim 2(ii).

We now de�ne the MTT M

0

. The idea is to keep a parameter of a state only

if the yield of the tree that is substituted for it 
ontains more than one o

urren
e

of a symbol in A. This information is kept in the states of M

0

and is determined

using the information provided by the relabeling N (and by the a
tual state of

M

0

). If su
h a parameter is 
opied in a rule of M , then the right-hand side of the


orresponding rule of M

0


ontains a dummy symbol, be
ause then yM

q

0

(s) is not a

Æ-string.

Let M

0

= (Q

0

; �;�

0

; q

0

0

; R

0

) be the MTT with

{ Q

0

= f(q; ') j q 2 Q

(m)

;m � 0; ' : [m℄ ! (f"; ddg [ A)g, where the rank of

(q; ') with q 2 Q

(m)

is jfj 2 [m℄ j '(j) = ddgj,

{ �

0

= (��B) [ fb

(2)

; dummy

(2)

g, where b and dummy are symbols not in �,

{ q

0

0

= (q

0

;?), and

{ R

0


onsisting of the following rules. For every (q; ') 2 Q

0

(n)

and (�; (�

1

; f

1

); : : : ;

(�

k

; f

k

)) 2 �

(k)

with n;m; k � 0 and q 2 Q

(m)

let

h(q; '); (�; (�

1

; f

1

); : : : ; (�

k

; f

k

))(x

1

; : : : ; x

k

)i(y

1

; : : : ; y

n

)! �

be in R

0

, where � = 
omb

dummy

(y

1

� � � y

n

) if there is a j 2 [m℄ su
h that

'(j) = dd and y

j

o

urs more than on
e in rhs

M

(q; �), and otherwise � =

trans(rhs

M

(q; �)), where for every t 2 T

hQ;X

k

i[�

(Y

m

) the tree trans(t) is re
ur-

sively de�ned as follows (depending on '; (�

1

; f

1

); : : : ; (�

k

; f

k

)).

For t = y

j

and j 2 [m℄, trans(y

j

) = 
omb

b

('(j)) if '(j) 6= dd, and otherwise

trans(y

j

) = y

�

with � = jf� j � < j and '(�) = ddgj+ 1.

For t = �(t

1

; : : : ; t

l

), � 2 (hQ;X

k

i[�)

(l)

, l � 0, and t

1

; : : : ; t

l

2 T

hQ;X

k

i[�

(Y

m

)

we have:

� If � = hq

0

; x

i

i, then trans(t) = h(q

0

; '

0

); x

i

i(trans(t

j

1

); : : : ; trans(t

j

l

0

)), where

fj

1

; : : : ; j

l

0

g = '

0

�1

(dd) with j

1

< � � � < j

l

0

and for every j 2 [l℄, '

0

(j) =

o


A

(y(t

j

�)�) with � as in the de�nition of N , viz.,

� = [[hq

0

; x

i

i  
omb

b

(�

i

(q

0

)(f

i

(q

0

))(1) � � � (f

i

(q

0

))(l)) j

hq

0

; x

i

i 2 hQ;X

k

i

(l)

; l � 0℄℄;

and

� = [y

j

 '(j) j j 2 [m℄℄:

� If � 2 �

(l)

and l � 1, or � 2 A, then trans(t) = �(trans(t

1

); : : : ; trans(t

l

)).

� If � 2 B [ feg, then trans(t) = e.

Let us �rst show that M

0

is sp, i.e., that ea
h y

�

, � 2 [n℄, o

urs exa
tly on
e

in �. Let � 2 [n℄. If � is a dummy right-hand side then y

�

o

urs exa
tly on
e in �.

Otherwise, � = trans(rhs

M

(q; �)) and every y

j

with '(j) = dd o

urs at most on
e

in rhs

M

(q; �). Sin
e y

�

= trans(y

j

) for some j 2 [m℄ with '(j) = dd, this obviously

implies that y

�

o

urs at most on
e in �. It remains to show that y

�

o

urs in �.

This follows from the following 
laim for t = rhs

M

(q; �) and the fa
t that y

j

o

urs

in rhs

M

(q; �) be
ause M is nondeleting.

Claim 3: Let t 2 T

�[hQ;X

k

i

(Y

m

). If y

j

o

urs in t, then y

�

o

urs in trans(t).

The proof of this 
laim is by indu
tion on the stru
ture of t. The indu
tion

hypothesis is denoted by IH3. If t = y

j

then trans(t) = y

�

. Let � � 1 and
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t

1

; : : : ; t

�

2 T

�[hQ;X

k

i

(Y

m

). If t = Æ(t

1

; : : : ; t

�

) with Æ 2 �

(�)

, then trans(t) =

Æ(trans(t

1

); : : : ; trans(t

�

)). Sin
e y

j

o

urs in t, it o

urs in t

j

0

for some j

0

2 [�℄. By

IH3, y

�

o

urs in trans(t

j

0

) and therefore it o

urs in trans(t).

If t = hr; x

�

i(t

1

; : : : ; t

�

) with hr; x

�

i 2 hQ;X

k

i

(�)

, then trans(t) = h(r; '

0

); x

�

i(

trans(t

j

1

); : : : ; trans(t

j

�

0

), where fj

1

; : : : ; j

�

0

g = '

0

�1

(dd) with j

1

< � � � < j

�

0

and

for every j

0

2 [�℄, '

0

(j

0

) = o


A

(y(t

j

0

�)�). Let j

0

2 [�℄ su
h that y

j

o

urs in t

j

0

.

Then y

�

o

urs in trans(t

j

0

) by IH3. Hen
e, we have to show that '

0

(j

0

) = dd, i.e.,

that o


A

(y(t

j

0

�)�) = dd. Ea
h (f

i

(q

0

))(

�

j) in the substitution � equals either y

�

j

or y

�

j

y

�

j

be
ause, by Claim 2(ii), (f

i

(q

0

))(

�

j) = o


�

j

(M

q

0

(s)) for some s 2 T

�

, and,

by Lemma 8 and the fa
t that M is nondeleting, M

q

0

(s) 
ontains y

�

j

. Thus, the

substitution � is `nondeleting', i.e., it repla
es ea
h hq

0

; x

i

i, q

0

2 Q

(l)

, by a tree that


ontains y

1

; : : : ; y

l

and thus it behaves as the substitution [[: : :℄℄ in the 
laim of the

proof of Lemma 8. Sin
e y

j

o

urs in t

j

0

, this means that y

j

also o

urs in t

j

0

�.

Now � repla
es y

j

by '(j) = dd and thus o


A

(y(t

j

0

�)�) = dd. This 
on
ludes the

proof of Claim 3.

We now formally prove properties (a) and (b) from the beginning of this proof.

Let (q; ') = (q

0

;?). Then Claim 4 proves (b), i.e., if y�

M

(s) is a Æ-string, then

�

M

0

(�

N

(s)) 
ontains no dummy symbol. Furthermore, Claim 5 proves (a), i.e., either

y�

M

0

(�

N

(s)) = res

A

(y�

M

(s)) or �

M

0

(�

N

(s)) 
ontains a dummy symbol.

Claim 4: Let (q; ') 2 Q

0

(n)

, q 2 Q

(m)

, m;n � 0, and s 2 T

�

. If M

0

(q;')

(�

N

(s))


ontains a dummy, then for all u

1

; : : : ; u

m

2 T

�

with o


A

(yu

j

) = '(j) for every

j 2 [m℄, y(M

q

(s)[y

j

 u

j

j j 2 [m℄℄) is not a Æ-string.

The proof of this 
laim is by indu
tion on the stru
ture of s. The indu
tion hy-

pothesis is denoted by IH4. Let s = �(s

1

; : : : ; s

k

), k � 0, � 2 �

(k)

, and s

1

; : : : ; s

k

2

T

�

. Let (�

1

; f

1

); : : : ; (�

k

; f

k

) 2 Q

N

su
h that �

N

(s) = (�; (�

1

; f

1

); : : : ; (�

k

; f

k

))(�

N

(

s

1

); : : : ; �

N

(s

k

)). Then M

0

(q;')

(�

N

(s)) = rhs

M

0

((q; '); (�; (�

1

; f

1

); : : : ; (�

k

; f

k

)))[[ ℄℄,

where [[ ℄℄ denotes the substitution [[h(q

0

; '

0

); x

i

i  M

0

(q

0

;'

0

)

(�

N

(s

i

)) j h(q

0

; '

0

); x

i

i 2

hQ

0

; X

k

i℄℄. Sin
e M

0

is sp, it is nondeleting and hen
e (similar to the 
laim in the

proof of Lemma 8), M

0

(q;')

(�

N

(s)) 
ontains a dummy if and only if

(i) rhs

M

0

((q; '); (�; (�

1

; f

1

); : : : ; (�

k

; f

k

))) 
ontains a dummy, or

(ii) there is an o

urren
e of h(q

0

; '

0

); x

i

i 2 hQ

0

; X

k

i in the tree trans(rhs

M

(q; �))

su
h that M

0

(q

0

;'

0

)

(�

N

(s

i

)) 
ontains a dummy.

By the de�nition of the right-hand sides of M

0

, (i) means that there is a j 2 [m℄

with '(j) = dd and y

j

o

urs more than on
e in rhs

M

(q; �). Then, sin
e M is

nondeleting (
f. the 
laim in the proof of Lemma 8), M

q

(s) = rhs

M

(q; �)[[: : :℄℄ has

more than one o

urren
e of y

j

, where [[: : :℄℄ = [[hq

0

; x

i

i  M

q

0

(s

i

) j hq

0

; x

i

i 2

hQ;X

k

i℄℄. Thus, y(M

q

(s)[y

j

 u

j

j j 2 [m℄℄) has more than one o

urren
e of the

string yu

j

. This means that it has more than one o

urren
e of some awa

0

, with

a; a

0

2 A and w 2 (B [ Y )

�

, be
ause o


A

(yu

j

) = '(j) = dd. Hen
e, y(M

q

(s)[y

j

 

u

j

j j 2 [m℄℄) is not a Æ-string.

(ii) By the de�nition of trans, rhs

M

(q; �) must have a subtree hq

0

; x

i

i(t

1

; : : : ; t

l

)

su
h that trans(hq

0

; x

i

i(t

1

; : : : ; t

l

)) equals h(q

0

; '

0

); x

i

i(trans(t

j

1

); : : : ; trans(t

j

l

0

)) for

some t

1

; : : : ; t

l

2 T

hQ;X

k

i[�

(Y

m

), l; l

0

� 0 with q

0

2 Q

(l)

, and j

1

; : : : ; j

l

0

� 1. Sin
e

M is nondeleting, the tree M

q

(s)[y

j

 u

j

j j 2 [m℄℄ = rhs

M

(q; �)[[: : :℄℄[y

j

 u

j

j j 2

[m℄℄ has a subtree � =M

q

0

(s

i

)[y

�

 u

0

�

j � 2 [l℄℄ with u

0

�

= t

�

[[: : :℄℄[y

j

 u

j

j j 2 [m℄℄

for � 2 [l℄. By the de�nition of trans, for � 2 [l℄, '

0

(�) = o


A

(y(t

�

�)�) whi
h equals

o


A

(yu

0

�

). This 
an be seen as follows: o


A

(y(t

�

�)�) = o


A

(y(t

�

�)[y

j

 o


A

(yu

j

) j

j 2 [m℄℄) = o


A

(y(t

�

�)[y

j

 yu

j

j j 2 [m℄℄) = o


A

(y(t

�

[y

j

 u

j

j j 2 [m℄℄�)).

We 
an apply Claim 1 to this, be
ause, by Claim 2, � equals the substitution

[[!

i

 �

0

i

j i 2 [n℄℄℄ in Claim 1 (with t = t

�

[y

j

 u

j

j j 2 [m℄℄ and the !'s and

�'s 
hosen appropriately, as in the proof of Claim 1). We get o


A

(y(t

�

[y

j

 u

j

j

21



j 2 [m℄℄[[: : :℄℄)) = o


A

(yu

0

�

). Now we 
an apply IH4 to (q

0

; '

0

), s

i

, and u

0

1

; : : : ; u

0

l

to

obtain that y� is not a Æ-string. Then also y(M

q

(s)[y

j

 u

j

j j 2 [m℄℄) is not a

Æ-string, be
ause it has y� as substring. This proves Claim 4.

For te
hni
al 
onvenien
e we de�ne a mapping d

B

on T

�

(Y ) whi
h realizes res

A

on trees in T

�

; for a tree t 2 T

�

(Y ), d

B

(t) = t[b e j b 2 B℄ and hen
e, for t 2 T

�

,

yd

B

(t) = res

A

(yt).

Claim 5: Let (q; ') 2 Q

0

(n)

, q 2 Q

(m)

, m;n � 0, and s 2 T

�

su
h that

M

0

(q;')

(�

N

(s)) 
ontains no dummy symbol. Then

yM

0

(q;')

(�

N

(s)) = yd

B

(M

q

(s)[' 6= dd℄[' = dd℄);

where [' 6= dd℄ denotes the substitution [y

j

 
omb

b

('(j)) j j 2 [m℄; '(j) 6= dd℄

and [' = dd℄ denotes the substitution [y

j

 y

�

j j 2 [m℄; '(j) = dd; � = jf� j � <

j and '(�) = ddgj+ 1℄.

This 
laim is proved by indu
tion on the stru
ture of s. The indu
tion hy-

pothesis is denoted by IH5. As in the proof of Claim 4, let s = �(s

1

; : : : ; s

k

)

with � 2 �

(k)

, k � 0, and s

1

; : : : ; s

k

2 T

�

. Let (�

1

; f

1

); : : : ; (�

k

; f

k

) 2 Q

N

su
h

that �

N

(s) = (�; (�

1

; f

1

); : : : ; (�

k

; f

k

))(�

N

(s

1

); : : : ; �

N

(s

k

)). Then yM

0

(q;')

(�

N

(s)) =

y(rhs

M

0

((q; '); (�; (�

1

; f

1

); : : : ; (�

k

; f

k

))) [[h(q

0

; '

0

); x

i

i  M

0

(q

0

;'

0

)

(�

N

(s

i

)) j h(q

0

; '

0

);

x

i

i 2 hQ

0

; X

k

i℄℄). Sin
e M

0

(q;')

(�

N

(s)) 
ontains no dummy symbol, neither (i) nor

(ii) of the proof of Claim 4 holds, i.e., rhs

M

0

((q; '); (�; (�

1

; f

1

); : : : ; (�

k

; f

k

))) 
on-

tains no dummy and hen
e equals trans(rhs

M

(q; �)), and, for every h(q

0

; '

0

); x

i

i

o

urring in rhs

M

0

((q; '); (�; (�

1

; f

1

); : : : ; (�

k

; f

k

))), the tree M

0

(q

0

;'

0

)

(�

N

(s

i

)) 
on-

tains no dummy symbol. Therefore we 
an apply IH5 to yM

0

(q

0

;'

0

)

(�

N

(s

i

)) and

so, by Lemma 1(b), we 
an repla
e M

0

(q

0

;'

0

)

(�

N

(s

i

)) in the se
ond order substi-

tution above by d

B

(M

q

0

(s

i

)['

0

6= dd℄['

0

= dd℄). We obtain that yM

0

(q;')

(�

N

(s)) =

y(trans(rhs

M

(q; �))[[ ℄℄), where [[ ℄℄ denotes the substitution

[[h(q

0

; '

0

); x

i

i  d

B

(M

q

0

(s

i

)['

0

6= dd℄['

0

= dd℄) j h(q

0

; '

0

); x

i

i 2 hQ

0

; X

k

i℄℄:

By Claim 6 for t = rhs

M

(q; �) we get yd

B

(rhs

M

(q; �)[[: : :℄℄[' 6= dd℄[' = dd℄), where

[[: : :℄℄ = [[hq

0

; x

i

i  M

q

0

(s

i

) j hq

0

; x

i

i 2 hQ;X

k

i℄℄. This equals yd

B

(M

q

(s)[' 6= dd℄[' =

dd℄) whi
h ends the proof of Claim 5.

Claim 6: Let m � 0. For t 2 T

�[hQ;X

k

i

(Y

m

),

y(trans(t)[[ ℄℄) = yd

B

(t[[: : :℄℄[' 6= dd℄[' = dd℄):

Claim 6 is proved by indu
tion on the stru
ture of t. The indu
tion hypothesis is

denoted by IH6. If t = y

j

2 Y

m

, then y(trans(y

j

)[[ ℄℄) = ytrans(y

j

). By the de�nition

of trans this is equal to y(y

j

[' 6= dd℄[' = dd℄) and thus equals yd

B

(t[[: : :℄℄[' 6=

dd℄[' = dd℄). If t 2 B [ feg, then y(trans(t)[[ ℄℄) = " = yd

B

(t) = yd

B

(t[[: : :℄℄[' 6=

dd℄[' = dd℄). Let l � 0 and t

1

; : : : ; t

l

2 T

�[hQ;X

k

i

(Y

m

).

If t = Æ(t

1

; : : : ; t

l

) with Æ 2 �

(l)

, then y(trans(t)[[ ℄℄) = y(Æ(trans(t

1

)[[ ℄℄; : : : ;

trans(t

l

)[[ ℄℄)) = y(trans(t

1

)[[ ℄℄) � � � y(trans(t

l

)[[ ℄℄). By IH6 we get yd

B

(t

1

[[: : :℄℄[' 6=

dd℄[' = dd℄) � � � yd

B

(t

l

[[: : :℄℄[' 6= dd℄[' = dd℄) whi
h equals yd

B

(t[[: : :℄℄[' 6= dd℄[' =

dd℄).

If t = hq

0

; x

i

i(t

1

; : : : ; t

l

) with hq

0

; x

i

i 2 hQ;X

k

i

(l)

, then y(trans(t)[[ ℄℄) equals

y(h(q

0

; '

0

); x

i

i(trans(t

j

1

); : : : ; trans(t

j

l

0

))[[ ℄℄), where '

0

(�) = o


A

(y(t

�

�)�) for � 2

[l℄, and '

0

�1

(dd) = fj

1

; : : : ; j

l

0

g with j

1

< � � � < j

l

0

. By appli
ation of [[ ℄℄ we get

y(d

B

(M

q

0

(s

i

)['

0

6= dd℄['

0

= dd℄)[y

�

 trans(t

j

�

)[[ ℄℄ j � 2 [l

0

℄℄):

By IH6, y(trans(t

j

�

)[[ ℄℄) equals yd

B

(t

j

�

[[: : :℄℄[' 6= dd℄[' = dd℄), whi
h means, by

Lemma 1(a), that d

B

(t

j

�

[[: : :℄℄[' 6= dd℄[' = dd℄) 
an be put in the substitution for
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y

�

. Now this substitution 
an be 
ombined with ['

0

= dd℄. We get

yd

B

(M

q

0

(s

i

)['

0

6= dd℄[y

j

 t

j

[[: : :℄℄[' 6= dd℄[' = dd℄ j j 2 fj

1

; : : : ; j

l

0

g℄):

In the substitution ['

0

6= dd℄, '

0

(j) = o


A

(y(t

j

�)�) whi
h by Claims 2 and 1

equals o


A

(y(t

j

[[: : :℄℄)�) as in the proof of Claim 4, where for � 2 [m℄ we let u

�

be an arbitrary tree in T

�

su
h that o


A

(yu

�

) = '(�) and hen
e o


A

(y(t

j

�)�) =

o


A

(y(t

j

�[y

�

 u

�

j � 2 [m℄℄)) = o


A

(y(t

j

[[: : :℄℄[y

�

 u

�

j � 2 [m℄℄)) = o


A

(y(t

j

[[: : :℄℄)�). Now, sin
e � = (y[' 6= dd℄)[dd℄ with [dd℄ = [y

�

 dd j � 2 [m℄; '(�) = dd℄,

we get '

0

(j) = o


A

(y(t

j

[[: : :℄℄[' 6= dd℄)[dd℄). This is in f"g [A and hen
e no y

�

with

'(�) = dd appears in y(t

j

[[: : :℄℄[' 6= dd℄). Therefore the substitution [dd℄ 
an be

repla
ed by [' = dd℄. For the same reason, o


A


an be repla
ed by the appli
ation

of d

B

and y to get yd

B

(t

j

[[: : :℄℄[' 6= dd℄[' = dd℄). This means that the substitution

['

0

6= dd℄ 
an be repla
ed by [y

j

 t

j

[[: : :℄℄[' 6= dd℄[' = dd℄ j j 2 ([l℄�fj

1

; : : : ; j

l

0

g)℄.

Altogether we get

yd

B

(M

q

0

(s

i

)[y

j

 t

j

[[: : :℄℄[' 6= dd℄[' = dd℄ j j 2 ([l℄� fj

1

; : : : ; j

l

0

g)℄

[y

j

 t

j

[[: : :℄℄[' 6= dd℄[' = dd℄ j j 2 fj

1

; : : : ; j

l

0

g℄)

= yd

B

(M

q

0

(s

i

)[y

j

 t

j

[[: : :℄℄[' 6= dd℄[' = dd℄ j j 2 [l℄℄)

= yd

B

(t[[: : :℄℄[' 6= dd℄[' = dd℄).

�

Based on Lemma 17 and the 
losure properties of Se
tion 4 we 
an now state

two bridge theorems for yield languages of 
ompositions of MTTs. Note that in the

appli
ations of Theorem 18, the language L

0

will often be of the form '(L), where

' is an operation on languages.

Theorem 18. Let A;B be disjoint alphabets and let L � A

�

and L

0

� (A [ B)

�

be languages su
h that L

0

is Æ-
omplete for L and res

A

(L

0

) = L.

(a) For every n � 1, if L

0

2 yMTT

n+1

(REGT ), then L 2 yMTT

n

(REGT ).

(b) If L

0

2 yMTT (REGT ), then L 2 yT (REGT ).

Proof. (a) We want to apply Lemma 17 to L, L

0

, and L = MTT

n

(REGT ). In

order to do so, L must be 
losed (i) under interse
tion with REGT and (ii) under

�nite state relabelings. To show (i), let � 2 MTT

n

and R

1

; R

2

2 REGT. Then

�(R

1

) \R

2

= �(R

1

\ �

�1

(R

2

)). Sin
e REGT is preserved by the inverse of MTT

n

,

by Theorem 7.4(1) of [EV85℄, �

�1

(R

2

) 2 REGT . Hen
e R

1

\ �

�1

(R

2

) 2 REGT

and �(R

1

\ �

�1

(R

2

)) 2 MTT

n

(REGT ) = L. Closure property (ii) follows from

Lemma 11. The appli
ation of Lemma 17 to L, L

0

, and L = MTT

n

(REGT ) gives:

if L

0

2 yMTT

n+1

(REGT ), then L is in yMTT

sp

(MTT

n

(REGT )), whi
h equals

yMTT

n

(REGT ) by Corollary 16 and the fa
t that n � 1.

(b) Sin
e REGT is 
losed under interse
tion and under �nite state relabelings

(
f., e.g., [GS84℄), we 
an apply Lemma 17 to L, L

0

, and L = REGT. We obtain

that L is in yMTT

sp

(REGT ) whi
h equals yT (REGT ) by Theorem 15. �

In the se
ond bridge theorem, L

0

= '(L) for a parti
ular operation ' on lan-

guages. Let A;B be disjoint alphabets with B nonempty, and let L � A

�

be a

language. The fun
tion rub

B

(\rubbish") inserts any number of symbols in B any-

where in the strings of the language to whi
h it is applied. Hen
e,

rub

B

(L) = fw

1

a

1

w

2

a

2

: : : a

l�1

w

l

a

l

w

l+1

j

a

1

; : : : ; a

l

2 A; a

1

� � �a

l

2 L;w

1

; : : : ; w

l+1

2 B

�

g:

Note that rub

B

(L) = res

�1

A

(L). Obviously rub

B

(L) is Æ-
omplete for L and res

A

(

rub

B

(L)) = L. This means that Theorem 18 
an be applied. For B = fb

1

; : : : ; b

n

g,
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rub

B

(L) = rub

fb

n

g

(rub

fb

n�1

g

(: : : rub

fb

1

g

(L) : : : )). Thus, by the n-fold appli
a-

tion of Theorem 18 we get that if rub

fb

1

;:::;b

n

g

(L) 2 yMTT

n

(REGT ) then L 2

yT (REGT ).

We now show that a
tually two symbols 0; 1 suÆ
e in order to get through the

whole hierar
hy yMTT

n

(REGT ) (for any n). The reason for this is that every

symbol in an arbitrary set B 
an be represented by a string in f0; 1g

�

in su
h a way

that f0; 1g

�

represents B

�

. The translation of strings in f0; 1g

�

to strings in B 
an

be realized by an MTT M in su
h a way that for a tree s with ys 2 f0; 1g

�

, y�

M

(s)

is the string in B

�

that 
orresponds to ys.

Lemma 19. Let L be a 
lass of tree languages and let B be a nonempty alphabet.

For a language L, if rub

f0;1g

(L) 2 yL, then rub

B

(L) 2 yMTT (L).

Proof. Let K 2 L with yK = rub

f0;1g

(L) and let � be a ranked alphabet su
h

that K � T

�

. By Lemma 7 there is an MTT M

�

with output alphabet � =

f0

(1)

; 1

(1)

; e

(0)

g [ fa

(1)

j a 2 �

(0)

; a 6= eg whi
h translates every tree s in T

�

into

the monadi
 tree sm(ys) 2 T

�

.

We use a Hu�man 
ode to represent ea
h b 2 B by a string over f0; 1g. More

pre
isely, if B = fb

1

; : : : ; b

n

g, then for i 2 [n℄, the string 0

i�1

1 represents b

i

. Addi-

tionally, 0

k

1 also represents b

n

, for k � n. A string in f0; 1g

�


an now be uniquely

de
oded into symbols of B, disregarding the zeros at the end. Hen
e, every string

in f0; 1g

�

represents a string in B

�

and vi
e versa.

Let us de�ne the top-down tree transdu
er M

n

whi
h translates every monadi


tree sm(w

1

a

1

� � �w

l

a

l

w

l+1

) with w

1

; : : : ; w

l

; w

l+1

2 f0; 1g

�

and a

1

; : : : ; a

l

2 �

(0)

into

a tree with yield w

0

1

a

1

� � �w

0

l

a

l

w

0

l+1

, where ea
h w

0

i

2 B

�

is the de
oded version of

w

i

. Let M

n

= ([n℄; �;�

(0)

[ f�

(2)

; b

(0)

1

; : : : ; b

(0)

n

; e

(0)

g; 1; R), where R 
onsists of the

following rules.

hi; 1(x

1

)i ! �(b

i

; h1; x

1

i) for i 2 [n℄

hi; 0(x

1

)i ! hi+ 1; x

1

i for i 2 [n� 1℄

hn; 0(x

1

)i ! hn; x

1

i

hi; a(x

1

)i ! �(a; h1; x

1

i) for i 2 [n℄ and a 2 (�

(0)

� feg)

hi; ei ! e for i 2 [n℄

It should be 
lear that M

n

realizes the translation as des
ribed, and hen
e

y�

M

n

(�

M

�

(K)) = rub

B

(L). By Lemma 5, �

M

�

Æ�

M

n

2 MTT . Thus y�

M

n

(�

M

�

(K)) 2

yMTT (L). �

Theorem 20. If rub

f0;1g

(L) 2

S

n�0

yMTT

n

(REGT ), then L 2 yT (REGT ).

Proof. Let n � 1 and let B = fb

1

; : : : ; b

n+1

g be a set of distin
t symbols whi
h do

not appear in L. By Lemma 19, if rub

f0;1g

(L) 2 yMTT

n

(REGT ), then rub

B

(L) 2

yMTT

n+1

( REGT ). Now we apply Theorem 18(a) to L

n

and L

n+1

, where L

0

=

L and for m � 1, L

m

= rub

fb

m

g

(L

m�1

). We obtain that L

n+1

= rub

B

(L) 2

yMTT

n+1

(REGT ) implies L

n

2 yMTT

n

(REGT ) and thus, by indu
tion, that

L

1

= rub

fb

1

g

(L) 2 yMTT (REGT ). By appli
ation of Theorem 18(b) to L and L

1

we obtain that L 2 yT (REGT ). �

6 The yMTT-hierar
hy and the EDT0L-hierar
hy

In this se
tion the bridge theorems of Se
tion 5 are applied to prove that 
omposition

of MTTs yields a proper hierar
hy of output string languages, i.e., the hierar
hy

yMTT

n

(REGT ) (for short, the yMTT-hierar
hy) is proper (at ea
h level). In fa
t,

we prove that witnesses for the properness of this hierar
hy 
an already be found in

the EDT0L-hierar
hy. This will imply that also the EDT0L-hierar
hy is proper. Note
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that from Theorem 9.10 of [Dam82℄ it follows that the hierar
hy MTT

n

(REGT )

of tree languages generated by 
ompositions of MTTs is proper. Moreover, it easily

follows from the proof of that theorem that the yMTT-hierar
hy is in�nite (be
ause

there are monadi
 tree languages arbitrarily high in the hierar
hyMTT

n

(REGT )).

Then we show that there are nondeterministi
 languages, generated by quite

simple devi
es, whi
h are not in the two hierar
hies dis
ussed: There is a language

generated by a two-way generalized sequential ma
hine whi
h is not in the yMTT-

hierar
hy, and there is a 
ontext-free language not in the EDT0L-hierar
hy.

We now move to the proof of properness of the yMTT-hierar
hy. The witnesses

for this properness 
an be generated by (
ontrolled) EDT0L systems, whi
h are

viewed here as string transdu
ers. Essentially, an EDT0L system is a top-down tree

transdu
er M with monadi
 input alphabet (
f. [ERS80℄). However, instead of a

tree translation it realizes a string translation as follows: �rst, the input string w is

turned into a monadi
 tree s (i.e., s = sm(w)); then it is translated into the string

y�

M

(s). The EDT0L translation realized by M , denoted by �

EDT0L

M

, is de�ned as

sm Æ �

M

Æ y. Hen
e, the 
lass EDT0L of EDT0L translations is sm Æ T Æ y. The

EDT0L-hierar
hy 
onsists of all EDT0L

n

(REG), obtained by iterating EDT0L on

the 
lass REG of regular languages. It starts with the 
lass EDT0L(REG) of EDT0L

languages (be
ause the regular 
ontrol 
an be internalized, 
f. e.g., Theorem 3.2.1

of [ERS80℄).

Let us �rst show that the EDT0L-hierar
hy is 
ontained in the yMTT-hierar
hy.

Theorem 21. For every n � 1, EDT0L

n+1

(REG) � yMTT

n

(REGT ).

Proof. By de�nition, EDT0L

n+1

= (sm Æ T Æ y)

n+1

whi
h equals

sm Æ (T Æ y Æ sm)

n

Æ T Æ y:

By Lemma 7, y Æ sm 2 MTT. Thus, the above is in
luded in smÆ (T ÆMTT )

n

ÆT Æy.

By Lemma 4 this is in
luded in smÆMTT

n

ÆT Æy whi
h, by Lemma 5, is in
luded in

smÆMTT

n

Æy. Applying this to REG gives yMTT

n

(sm(REG)) � yMTT

n

(REGT ).

�

Based on Theorem 18 we will prove that there is a language whi
h 
annot be

generated as output by the 
omposition of n MTTs, but whi
h 
an be generated

by the 
omposition of n + 2 EDT0L translations. This time the language L

0

in

Theorem 18 will be of the form 
ount

b

(L). When applied to a string w, 
ount

b

inserts

b

jwj�i

after the i-th symbol of the string w, for 1 � i < jwj. Formally, let A be an

alphabet and let B = fbg with b 62 A. De�ne the operation 
ount

b

: A

�

! (A[B)

�

as follows:


ount

b

(a

1

a

2

� � � a

l

) =

l

Y

i=1

a

i

b

l�i

= a

1

b

l�1

a

2

b

l�2

� � � a

l�1

ba

l

:

Clearly, 
ount

b

(w) is a Æ-string for w. So, for a language L, 
ount

b

(L) = f
ount

b

(w) j

w 2 Lg is Æ-
omplete for L. Sin
e, moreover, res

A

(
ount

b

(L)) = L, we 
an apply

Theorem 18 to L and 
ount

b

(L). For distin
t symbols b

1

; : : : ; b

n

we abbreviate


ount

b

1

Æ 
ount

b

2

Æ � � � Æ 
ount

b

n

by 
ount

b

1

;:::;b

n

.

To start the appli
ation of Theorem 18 we need a language L that 
annot be

generated by a top-down tree transdu
er. As shown in Theorem 3.16 of [Eng82℄

su
h a language is

L

e


= f(a

m


)

2

m

j m � 1g;

where e
 stands for `exponential 
opying'. In fa
t, it is shown in that theorem that

L

e


62 yT (REGT ) and even that L

e


62

S

n�0

yN-T

n

(REGT ).
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Theorem 22. For every n � 1, EDT0L

n+2

(REG)� yMTT

n

(REGT ) 6= ?.

Proof. Let b

1

; : : : ; b

n

be distin
t symbols not in fa; 
g. We will show that the lan-

guage 
ount

b

1

;:::;b

n

(L

e


) is in EDT0L

n+2

(REG)�yMTT

n

(REGT ). That is, we will

show that (1) 
ount

b

1

;:::;b

n

(L

e


) 2 EDT0L

n+2

(REG) and (2) 
ount

b

1

;:::;b

n

(L

e


) 62

yMTT

n

(REGT ).

(1) First, we show that L

e


2 EDT0L

2

(REG) by de�ning two top-down tree

transdu
ers M

1

and M

2

and a regular language L su
h that �

EDT0L

M

2

(�

EDT0L

M

1

(L)) =

L

e


. Let M

1

= (fq

(0)

g; fa

(1)

; e

(0)

g; �; q; R

1

) with � = f�

(2)

; a

(0)

; 


(0)

; e

(0)

g and R

1


onsisting of the following rules.

hq; a(x

1

)i ! �(
; �(hq; x

1

i; a))

hq; ei ! e

Then for i � 0, �

EDT0L

M

1

(a

i

) = 


i

a

i

. Let M

2

= (fq

(0)

g; �;�; q; R

2

) with � =

fa

(1)

; 


(1)

; e

(0)

g, � as above, and R

2


onsisting of the following rules.

hq; 
(x

1

)i ! �(hq; x

1

i; hq; x

1

i)

hq; a(x

1

)i ! �(a; hq; x

1

i)

hq; ei ! 


Then �

EDT0L

M

2

(


i

a

j

) = (a

j


)

2

i

and for the regular language L = fa

m

j m � 1g,

�

EDT0L

M

2

(�

EDT0L

M

1

(L)) = �

EDT0L

M

2

(f


m

a

m

j m � 1g) = f(a

m


)

2

m

j m � 1g = L

e


.

Now that we know that L

e


2 EDT0L

2

(REG), we show that there is an EDT0L

translation �

EDT0L

M

b

whi
h realizes 
ount

b

. De�ne M

b

= (fq

(0)

0

; q

(0)

g; �;�; q

0

; R),

� = fa

(1)

j a 2 Ag [ fe

(0)

g, � = fa

(0)

j a 2 Ag [ f�

(2)

; e

(0)

; b

(0)

g, A is an arbitrary

alphabet not 
ontaining b, and R 
onsists of the following rules.

hq

0

; a(x

1

)i ! �(a; �(hq; x

1

i; hq

0

; x

1

i)) for every a 2 A

hq

0

; ei ! e

hq; a(x

1

)i ! �(b; hq; x

1

i) for every a 2 A

hq; ei ! e

Clearly, for every w 2 A

�

, �

EDT0L

M

b

(w) = 
ount

b

(w). Hen
e, 
ount

b

2 EDT0L

and so 
ount

b

1

;:::;b

n

(L

e


) 2 EDT0L

n+2

(REG).

(2) Appli
ation of Theorem 18(a) gives: if 
ount

b

1

;:::;b

n

(L

e


) 2 yMTT

n

(REGT ),

then 
ount

b

1

;:::;b

n�1

(L

e


) 2 yMTT

n�1

(REGT ). Hen
e, by indu
tion, 
ount

b

1

(L

e


) 2

yMTT (REGT ) and, by Theorem 18(b), L

e


2 yT (REGT ). But, as mentioned be-

fore this theorem, L

e


62 yT (REGT ) and thus 
ount

b

1

;:::;b

n

( L

e


) 62 yMTT

n

(REGT ).

�

From Theorems 21 and 22 we obtain the properness of the yMTT-hierar
hy.

Theorem 23. For every n � 1, yMTT

n

(REGT ) ( yMTT

n+1

(REGT ).

As shown in the proof of Theorem 22, L

e


2 EDT0L

2

(REG) � yT (REGT )

and thus L

e


2 EDT0L

2

(REG)�EDT0L(REG), be
ause EDT0L(REG) = yT (sm(

REG)) � yT (REGT ). Hen
e, by Theorems 21 and 22, the EDT0L-hierar
hy is

proper. This was mentioned as an open problem after Theorem 4.3 of [Eng82℄.

Theorem 24. For every n � 1, EDT0L

n

(REG) ( EDT0L

n+1

(REG).
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Nondeterministi
 Languages not in the yMTT- and EDT0L-hierar
hies

Here we show that parti
ular \nondeterministi
" languages are not in the yMTT-

and EDT0L-hierar
hies. First, a language generated by a nondeterministi
 two-

way generalized sequential ma
hine (2GSM) is 
onsidered and it is proved that this

language is not in the yMTT-hierar
hy. Se
ond, a 
ontext-free language is 
onsidered

and proved not to be in the EDT0L-hierar
hy.

A 2GSM is a nondeterministi
 �nite-state devi
e that takes as input a string

(surrounded by end markers) on whi
h it 
an move ba
k and forth, possibly 
hang-

ing its state and generating output. Let 2GSM denote the 
lass of string-to-string

translations realized by 2GSMs.

Theorem 25. 2GSM (REG)�

S

n�0

yMTT

n

(REGT ) 6= ?.

Proof. Let 0; 1; b, and a be distin
t symbols and let L = rub

f0;1g

(rub

fbg

(L

np

)) with

L

np

= fa

n

j n is not a primeg. Then L 2 2GSM (REG) �

S

n�0

yMTT

n

(REGT ),

i.e., (1) L 2 2GSM (REG) and (2) L 62

S

n�0

yMTT

n

(REGT ).

(1) It is straightforward to show that there is a 2GSMM and a regular language

R su
h that M 's translation applied to R gives L. The language R 
onsists of all

strings a

p

, p � 2. Now M traverses q times, with q � 2, the input string a

p

,

outputting an a at ea
h move. Moreover, at every step M 
an nondeterministi
ally


hoose not to move and to output a symbol in f0; 1; bg. Hen
e, M generates all

strings in rub

f0;1;bg

(fa

p�q

j p; q � 2g) = rub

f0;1g

(rub

fbg

(L

np

)) = L.

(2) By Theorem 20, rub

f0;1g

(rub

fbg

(L

np

)) 2

S

n�0

yMTT

n

(REGT ) implies that

rub

fbg

(L

np

) 2 yT (REGT ). By Theorem 3.2.14 of [ERS80℄ (whi
h is another bridge

theorem, 
losely related to Lemma 17), rub

fbg

(L

np

) 2 yT (REGT ) implies that

L

np

2 yT

f


(REGT ), where T

f


denotes the 
lass of translations realized by top-

down tree transdu
ers that are �nite 
opying. It is known that the language L

np

is

not in yT

f


(REGT ), be
ause it is not regular and hen
e its Parikh-set is not semi-

linear (
f. Corollary 3.2.7 of [ERS80℄; 
f. also the proof of Theorem 4.8 of [Eng82℄).

Thus L 62

S

n�0

yMTT

n

(REGT ). �

Sin
e the 
lass 2GSM (REG) is in
luded in the 
lass of ET0L languages (this fol-

lows, e.g., from the 
hara
terization of ET0L languages by 
he
king-sta
k pushdown

automata [vL76℄, whi
h 
an easily simulate 2GSMs; see also [ERS80℄), Theorem 25

implies that ET0L(REG)�

S

n�0

yMTT

n

(REGT ) 6= ?, i.e., there is an ET0L lan-

guage that is not in the yMTT-hierar
hy. Denote by N-T the 
lass of translations

realized by nondeterministi
 top-down tree transdu
ers. Then, analogous to the de-

terministi
 
ase, ET0L = sm Æ N-T Æ y and thus ET0L(REG) � yN-T (REGT ).

Hen
e, yN-T (REGT )�

S

n�0

yMTT

n

(REGT ) 6= ? by Theorem 25.

Finally, we show that there is a 
ontext-free language (i.e., a language in yREGT )

whi
h is not in the EDT0L-hierar
hy. This strengthens the well-known result that

there are 
ontext-free languages whi
h 
annot be generated by EDT0L systems, i.e.,

whi
h are not in EDT0L(REG) (
f., e.g., Corollary 3.2.18(i) of [ERS80℄).

Let REGT

mon

denote the restri
tion of REGT to monadi
 trees. We prove that

there is a language in the 
lass CF of 
ontext-free languages, whi
h is not in the hi-

erar
hy yMTT

n

(REGT

mon

). Sin
e this hierar
hy in
ludes the EDT0L-hierar
hy by

the proof of Theorem 21 (be
ause sm(REGT ) � REGT

mon

), the above mentioned

result follows as a 
orollary.

Theorem 26. CF �

S

n�0

yMTT

n

(REGT

mon

) 6= ?.

Proof. Let L 2 CF � EDT0L(REG). Obviously, L = REGT

mon

satis�es the 
lo-

sure properties of Lemma 17 (be
ause REGT does). This implies that Theorems 18

and 20 
an also be stated with REGT repla
ed by REGT

mon

. Then, by Theorem 20,

if rub

f0;1g

(L) 2

S

n�0

yMTT

n

(REGT

mon

), then L 2 yT (REGT

mon

). Clearly, this

27



means that L 2 yT (sm(REG)) = EDT0L(REG), be
ause a top-down tree trans-

du
er with monadi
 input trees, i.e., trees of the form a

1

(� � � a

n�1

(a

n

) � � � ), 
an easily

be 
hanged into one with input trees of the form sm(a

1

� � �a

n

) that generates the

same output: the input symbols of rank zero are 
hanged to have rank one, the

right-hand sides of all rules are taken over, and for the input symbol e an arbitrary

rule is added (whi
h will not be used). Sin
e L 62 EDT0L(REG), this means that

rub

f0;1g

(L) is not in

S

n�0

yMTT

n

(REGT

mon

). Clearly, rub

f0;1g

(L) 2 CF, be
ause

the 
ontext-free languages are 
losed under substitution (see, e.g., Theorem 6.2

of [HU79℄). �

Corollary 27. CF �

S

n�0

EDT0L

n

(REG) 6= ?.

7 The IO-hierar
hy

In this se
tion we investigate the relationship between the IO-hierar
hy and both

the yMTT-hierar
hy and the EDT0L-hierar
hy. By Theorem 7.5 of [ES78℄, the

IO-hierar
hy 
an be de�ned in terms of tree translations as follows:

for n � 1; IO(n) = yYIELD

n

(REGT );

where YIELD is the 
lass of YIELD mappings de�ned below. The hierar
hy starts

with the 
lass IO(1) of languages generated by the IO ma
ro grammars of [Fis68℄.

Sin
e YIELD � MTT by Theorem 4.6 of [EV85℄, IO(n) � yMTT

n

(REGT ), i.e.,

the IO-hierar
hy is inside the yMTT-hierar
hy. In fa
t, the yMTT-hierar
hy di�ers

from the IO-hierar
hy only by a single appli
ation of a top-down tree transdu
er,

be
ause yMTT

n

(REGT ) = yYIELD

n

(T (REGT )) by Corollary 4.13 of [EV85℄. It

is shown in [Dam82℄ that the IO-hierar
hy is in�nite, and that the IO-hierar
hy of

tree languages YIELD

n

(REGT ) is proper.

A YIELD mapping Y

f

is a mapping from T

�

to T

�

(Y ) de�ned by a mapping

f from �

(0)

to T

�

(Y ), for ranked alphabets � and �. It realizes the semanti
s of

�rst-order tree substitution in the following way.

(i) for � 2 �

(0)

, Y

f

(�) = f(�) and

(ii) for � 2 �

k+1

, s

0

; s

1

; : : : ; s

k

2 T

�

, and k � 0,

Y

f

(�(s

0

; s

1

; : : : ; s

k

)) = Y

f

(s

0

)[y

i

 Y

f

(s

i

) j i 2 [k℄℄.

Example 28. Consider the tree language L


f


onsisting of monadi
 trees of the form




m

(a

m

(e)), m � 1. We want to show that L


f

is in YIELD(REGT ), i.e., that there is

a regular tree languageK and a mapping f su
h that Y

f

(K) = L


f

. The regular tree

language K 
onsists of binary trees with yields of the form 


m

�

m

and is generated

by the regular tree grammar with produ
tions S ! �(A; e), A ! �(
; �(A;�)),

and A ! �(
; �). Now the YIELD mapping Y

f

simply has to generate yK, as

monadi
 trees. Let f(�) = a(y

1

), f(
) = 
(y

1

), and f(e) = e. Consider, e.g., the

tree s = �(�(
; �); e) 2 K. Then Y

f

(s) = Y

f

(�(
; �))[y

1

 f(e)℄ = f(
)[y

1

 

f(�)℄[y

1

 e℄ = 
(y

1

)[y

1

 a(y

1

)℄[y

1

 e℄ = 
(a(e)). It should be 
lear that

Y

f

(K) = L


f

. �

7.1 Comparison with the yMTT-hierar
hy

Now we 
ompare the IO-hierar
hy with the yMTT-hierar
hy and prove (in The-

orem 32) that IO(n + 1) � yMTT

n

(REGT ) 6= ?. Let us �rst show that YIELD

mappings are 
losed under 
omposition with tree homomorphisms (= se
ond-order

tree substitutions).
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Lemma 29. Let Y

f

be a YIELD mapping from T

�

to T

�

(Y ) and M a tree ho-

momorphism with input alphabet �. There is a YIELD mapping Y

g

su
h that for

every tree s 2 T

�

, if Y

f

(s) 
ontains no parameters, then Y

g

(s) = �

M

(Y

f

(s)).

Proof. Let f be a mapping from �

(0)

to T

�

(Y ), and M = (fq

(0)

g; �; �; q; R). The

idea is to de�ne g(�) for � 2 �

(0)

by running M on f(�), leaving parameters

un
hanged. That is, if




M is the extension of M to input trees in T

�

(Y

m

) (for

some m large enough) by rules hq; y

j

i ! y

j

, then de�ne the new mapping g by

g(�) = �




M

(f(�)). If Y

f

(s) 2 T

�

, then �

M

(Y

f

(s)) = �




M

(Y

f

(s)), whi
h equals Y

g

(s)

by the following 
laim.

Claim: For every s 2 T

�

, Y

g

(s) = �




M

(Y

f

(s)).

The proof of this 
laim is by indu
tion on the stru
ture of s. Let [[




M

℄℄ be the

se
ond-order substitution [[�  �

�

j � 2 �℄℄ with �

�

= rhs

M

(q; �)[hq; x

i

i  y

i

j i 2

[k℄℄ for every � 2 �. Then, 
learly, t[[




M

℄℄ = �




M

(t) for every t 2 T

�

(Y ). If s = � 2

�

(0)

, then Y

g

(s) = g(�) = �




M

(f(�)) = �




M

(Y

f

(s)). Let s = �(s

0

; : : : ; s

k

), k � 1, � 2

�

(k+1)

, and s

0

; : : : ; s

k

2 T

�

. Then �




M

(Y

f

(s)) = Y

f

(s)[[




M

℄℄ = Y

f

(s

0

)[y

i

 Y

f

(s

i

) j

i 2 [k℄℄[[




M

℄℄. This equals Y

f

(s

0

)[[




M

℄℄[y

i

 Y

f

(s

i

)[[




M

℄℄ j i 2 [k℄℄ = �




M

(Y

f

(s

0

))[y

i

 

�




M

(Y

f

(s

i

)) j i 2 [k℄℄. By indu
tion this is equal to Y

g

(s

0

)[y

i

 Y

g

(s

i

) j i 2 [k℄℄ =

Y

g

(s). �

Example 30. Let M be the top-down tree transdu
er M

2

de�ned in the proof of

Theorem 22 and let f be the mapping of Example 28. Sin
e M is a tree ho-

momorphism, we 
an apply the 
onstru
tion of the proof of Lemma 29. De�ne

g(�) = �




M

(f(�)) = �




M

(a(y

1

)) = �(a; y

1

), g(
) = �




M

(
(y

1

)) = �(y

1

; y

1

), and

g(e) = �




M

(e) = 
.

Clearly, Y

g

(s) = �

M

(Y

f

(s)) for every s. This means that for the regular tree

language K of Example 28, yY

g

(K) = y�

M

(Y

f

(K)) = y�

M

(L


f

) = f(a

m


)

2

m

j m �

1g whi
h is the language L

e


de�ned before Theorem 22. Hen
e, L

e


is in IO(1),

i.e., it is a (well-known) example of an IO ma
ro language. �

Now that we know that L

e


2 IO(1), we want to �nd an operation ' that 
an be

realized by a YIELD mapping and whi
h is de�ned in su
h a way that Theorem 18


an be applied to L

0

= '(L) for a language L. Unlike the operations rub and 
ount

of before, the operation we use now is a tree translation, i.e., L

0

= y'(K), where

yK = L.

Let � = f�

(2)

; root

(1)

g [�

(0)

be a ranked alphabet and let l; r be symbols not

in �. Re
all from Se
tion 2.1 that ea
h node � of a tree s is denoted by a string

in N

�

, and that the label of s at � is denoted by s[�℄. Consider a tree translation �

from T

�

to T

�

with � = � [ fl

(0)

; r

(0)

; e

(0)

g. Then � is an (l; r)-leaf insertion for

�, if, for every s

0

= root(s) and s 2 T

��frootg

,

(i) �(s

0

) = root(t) for some t 2 T

��frootg

and

(ii) y�(s

0

) = �

0

1

s[�

1

℄�

0

2

s[�

2

℄ � � � �

0

m

s[�

m

℄, where �

0

i

= �

i

[1 l; 2 r℄ and �

1

; : : : ; �

m

2

f1; 2g

�

are all leaves of s in pre-order that are not labeled by e.

As an example, let �

(0)

= fa; b; eg and 
onsider the tree s = �(a; �(�(e; b); a)).

Figure 3 shows s

0

= root(s) and the tree �(s

0

) for an (l; r)-leaf insertion � (obviously,

y�(s

0

) = larlrbrra is a Æ-string for ys

0

= aba).

Let � be an (l; r)-leaf insertion for � and let A = �

(0)

� feg and B = fl; rg.

It should be 
lear that, for a \rooted" tree language K � root(T

��frootg

), the

language L

0

= y�(K) is Æ-
omplete for L = yK. Moreover, res

A

(L

0

) = L be
ause

res

A

(y�(s

0

)) = s[�

1

℄s[�

2

℄ � � � s[�

m

℄ = ys. This means that Theorem 18 
an be applied

to L and L

0

. Rather than de�ning an (l; r)-leaf insertion in YIELD, it suÆ
es, due

to Lemma 29, to show that there is an (l; r)-leaf insertion � in �

M

Æ YIELD for

some tree homomorphism M . This is true be
ause � will always be applied to a
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�

e

�a

a�

�

l

|{z}

�

0

1

a rlr

|{z}

�

0

2

b rr

|{z}

�

0

3

a

b

=

s

root

root

root

Fig. 3. The trees s

0

and � (s

0

) for an (l; r)-leaf insertion �

tree language K in YIELD(L) for some 
lass L of tree languages, i.e., to a K of

the form Y

f

(K

0

) for some YIELD mapping Y

f

and tree language K

0

2 L. Hen
e,

by Lemma 29, �(K) 2 YIELD(�

M

(Y

f

(K

0

))) � YIELD

2

(L).

Lemma 31. Let � = f�

(2)

; root

(1)

g [ �

(0)

be a ranked alphabet and let l; r be

symbols not in �. There is a tree homomorphism M and a YIELD mapping Y

f

su
h that �

M

Æ Y

f

is an (l; r)-leaf insertion for �.

Proof. De�ne M = (fq

(0)

g; �; �; q; R) with � = fÆ

(3)

; l

(0)

; r

(0)

; 


(0)

; d

(0)

; e

(0)

g [ �

and R 
onsisting of the following rules.

hq; root(x

1

)i ! �(d; �(hq; x

1

i; e))

hq; �(x

1

; x

2

)i ! Æ(
; �(hq; x

1

i; l); �(hq; x

2

i; r))

hq; ai ! a for every a 2 �

(0)

The mapping f is de�ned as f(d) = root(y

1

), f(
) = �(y

1

; y

2

), f(e) = e, and,

for every a 2 �

(0)

[ fl; rg with a 6= e, f(a) = �(y

1

; a).

Let us now prove that �

M

Æ Y

f

is an (l; r)-leaf insertion. For s 2 T

��frootg

,

Y

f

(�

M

(root(s))) = Y

f

(�(d; �(�

M

(s); e))) by the de�nition of M . This equals

f(d)[y

1

 Y

f

(�(�

M

(s); e))℄ = root(y

1

)[y

1

 Y

f

(�

M

(s))[y

1

 Y

f

(e)℄℄

= root(Y

f

(�

M

(s))[y

1

 e℄):

By the rules of M , �

M

(s) does not 
ontain o

urren
es of the symbol d, and

thus Y

f

(�

M

(s))[y

1

 e℄ 2 T

��frootg

with � = � [fl

(0)

; r

(0)

; e

(0)

g. This proves part

(i) of the de�nition of (l; r)-leaf insertion.

The yield of root(Y

f

(�

M

(s))[y

1

 e℄) is equal to yY

f

(�

M

(s))[y

1

 "℄ whi
h

equals �

0

1

s[�

1

℄�

0

2

s[�

2

℄ � � � �

0

m

s[�

m

℄ by the following 
laim (with the �

0

i

as in the 
laim).

This proves part (ii) of the de�nition of (l; r)-leaf insertion.

Claim: For every s 2 T

��frootg

, yY

f

(�

M

(s)) = y

1

�

0

1

a

1

y

1

�

0

2

a

2

� � � y

1

�

0

m

a

m

, where

m � 0, ys = a

1

� � � a

m

, a

i

2 �

(0)

� feg, �

0

i

= �

i

[1  l; 2  r℄ for i 2 [m℄, and

�

1

; : : : ; �

m

are all leaves of s in pre-order that are not labeled e.

The 
laim is proved by indu
tion on the stru
ture of s. If s = a 2 �

(0)

� feg,

then yY

f

(�

M

(s)) = yY

f

(a) = y�(y

1

; a) = y

1

�

0

1

a

1

, where ys = a

1

= a, �

1

= ", and

�

0

1

= �

1

[1  l; 2  r℄ = ". If s = e, then yY

f

(�

M

(s)) = yY

f

(e) = ye = " (whi
h

proves the statement for m = 0). If s = �(s

1

; s

2

) with s

1

; s

2

2 T

��frootg

, then

Y

f

(�

M

(s)) = Y

f

(Æ(
; �(�

M

(s

1

); l); �(�

M

(s

2

); r))

= Y

f

(
)[y

1

 Y

f

(�(�

M

(s

1

); l)); y

2

 Y

f

(�(�

M

(s

2

); r))℄

= �(y

1

; y

2

)[y

1

 Y

f

(�

M

(s

1

))[y

1

 �(y

1

; l)℄;

y

2

 Y

f

(�

M

(s

2

))[y

1

 �(y

1

; r)℄℄:

The yield of this tree is yY

f

(�

M

(s

1

))[y

1

 y

1

l℄yY

f

(�

M

(s

2

))[y

1

 y

1

r℄. By indu
tion,

yY

f

(�

M

(s

1

)) = y

1

p

0

1

b

1

� � � y

1

p

0

i

b

i

and yY

f

(�

M

(s

2

)) = y

1

q

0

1




1

� � � y

1

q

0

j




j

with ys

1

=
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b

1

� � � b

i

, i � 0, ys

2

= 


1

� � � 


i

, j � 0, p

0

�

= p

�

[1  l; 2 r℄ for � 2 [i℄, q

0

�

= q

�

[1 

l; 2  r℄ for � 2 [j℄, and p

1

; : : : ; p

i

and q

1

; : : : ; q

j

are all leaves in pre-order not

labeled by e of s

1

and s

2

, respe
tively. Thus, yY

f

(�

M

(s)) = y

1

lp

0

1

b

1

� � � y

1

lp

0

i

b

i

y

1

rq

0

1




1

� � � y

1

rq

0

j




j

whi
h equals y

1

�

0

1

a

1

� � � y

1

�

0

m

a

m

, where: m = i + j, for � 2 [i℄, �

0

�

=

(1p

�

)[1  l; 2  r℄ and a

�

= b

�

, and, for � 2 [j℄, �

0

i+�

= (2q

�

)[1  1; 2  r℄ and

a

i+�

= 


�

. This proves the 
laim, be
ause a

1

� � �a

m

= b

1

� � � b

i




1

� � � 


j

= ys

1

ys

2

= ys

and 1p

1

; : : : ; 1p

i

; 2q

1

: : : ; 2q

j

are all leaves of s in pre-order that are not labeled by

e. �

We now prove that witnesses for the properness of the yMTT-hierar
hy 
an

already be found in the IO-hierar
hy.

Theorem 32. For every n � 1, IO(n+ 1)� yMTT

n

(REGT ) 6= ?.

Proof. Let n � 1. We �rst de�ne the language L

n

in IO(n+1)� yMTT

n

(REGT ).

Let � be the ranked alphabet f�

(2)

; root

(1)

g [ �

(0)

with �

(0)

= fa; 
; eg and let

K be the regular tree language de�ned in Example 28. De�ne the regular tree

language K

e


as �(d;K) = f�(d; s) j s 2 Kg and let g be the mapping as de�ned

in Example 30, extended by g(d) = root(y

1

). Then Y

g

(K

e


) = root(Y

g

(K)) � T

�

,

yY

g

(K

e


) = L

e


, and every tree in Y

g

(K

e


) is \rooted", i.e., of the form root(s),

s 2 T

��frootg

. Let l

1

; : : : ; l

n

; r

1

; : : : ; r

n

be distin
t symbols of rank zero, not in

�. By Lemma 31 there is, for every i 2 [n℄, a tree homomorphism M

i

and a

YIELD mapping Y

f

i

su
h that �

i

= �

M

i

Æ Y

f

i

is an (l

i

; r

i

)-leaf insertion for � [

fl

1

; : : : ; l

i�1

; r

1

; : : : ; r

i�1

g. For n � 0 de�ne

K

n

= (Y

g

Æ �

M

1

Æ Y

f

1

Æ �

M

2

Æ Y

f

2

Æ � � � Æ �

M

n

Æ Y

f

n

)(K

e


):

Then L

n

= yK

n

2 IO(n + 1) � yMTT

n

(REGT ), i.e., (1) L

n

2 IO(n + 1) and

(2) L

n

62 yMTT

n

(REGT ).

(1) Sin
e Y

g

(K

e


) � T

�

, Y

g

(K

e


) 
ontains no parameters. Thus, by Lemma 29,

there is a YIELD mapping Y

g

0

su
h that Y

g

0

(K

e


) = �

M

1

(Y

g

(K

e


)). Let i 2 [n� 1℄.

Sin
e �

M

i

Æ Y

f

i

is a leaf insertion and every tree in Y

g

(K

e


) is rooted, Y

f

i

(s) has no

parameters for s 2 �

M

i

(Y

f

i�1

(�

M

i�1

(: : : �

M

1

(Y

g

(K

e


)) : : : ))); by Lemma 29 there is a

YIELD mapping f

0

i

su
h that Y

f

0

i

(s) = �

M

i+1

(Y

f

i

(s)). Altogether, there are YIELD

mappings f

0

1

; : : : ; f

0

n�1

su
h that

K

n

= (Y

g

0

Æ Y

f

0

1

Æ Y

f

0

2

Æ � � � Æ Y

f

0

n�1

Æ Y

f

n

)(K

e


)

whi
h is in (YIELDÆYIELD

n�1

ÆYIELD)(REGT ) and thus L

n

= yK

n

2 IO(n+1).

(2) As dis
ussed before Lemma 31, Theorem 18 
an be applied to L = L

n�1

=

yK

n�1

and L

0

= L

n

= y�

n

(K

n�1

), for the rooted tree language K

n�1

and the

(l

n

; r

n

)-leaf insertion �

n

= �

M

n

Æ Y

f

n

. By Theorem 18(a), if L

n

2 yMTT

n

(REGT )

then L

n�1

2 yMTT

n�1

(REGT ), and by indu
tion, L

1

= y�

1

(Y

g

(K

e


)) 2 yMTT (

REGT ); by Theorem 18(b) this means that L

0

= yY

g

(K

e


) = L

e


2 yT (REGT )

whi
h 
ontradi
ts the fa
t that L

e


62 yT (REGT ) as stated before Theorem 22. �

From Theorem 32 and the fa
t that IO(n) � yMTT

n

(REGT ), as dis
ussed at

the beginning of this se
tion, we obtain the properness of the IO-hierar
hy.

Theorem 33. For every n � 1, IO(n) ( IO(n+ 1).

7.2 Comparison with the EDT0L-hierar
hy

Let us now turn to the 
omparison of the IO-hierar
hy and the EDT0L-hierar
hy.

For ET0L systems, it was proved in [Vog88℄ that the ET0L-hierar
hy is in
luded

in the OI-hierar
hy OI (n), generated by the n-level OI ma
ro grammars (see,
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e.g., [ES78,Dam82℄). We prove that a similar result holds for EDT0L systems: the

EDT0L-hierar
hy is in
luded in the IO-hierar
hy. Note that the IO-hierar
hy and

the OI-hierar
hy are both generated by n-level grammars, but in a di�erent mode of

derivation (inside-out and outside-in, respe
tively). The hierar
hies seem, however,

to be in
omparable; in one dire
tion this follows from (the dis
ussion following)

Theorem 25: there is an ET0L language not in the IO-hierar
hy.

The proof of the in
lusion of the EDT0L-hierar
hy in the IO-hierar
hy is based

on the following lemma whi
h shows how to simulate a top-down tree transdu
er

with monadi
 input trees by a YIELD mapping (applied to a regular tree language).

This is basi
ally the te
hnique used in [Dow74℄ to prove that EDT0L(REG) �

IO(1), 
f. Theorem 6.3 of [ERS80℄.

A YIELD mapping evaluates a tree in a bottom-up fashion. This means that, in

order to simulate a top-down tree transdu
er with monadi
 input sm(u), the string

u has to be reversed �rst.

Lemma 34. T (sm(REG)) � YIELD(REGT ).

Proof. Let L � A

�

be a regular language for some alphabet A. Let M = (fq

1

; : : : ;

q

m

g; �;�; q

1

; R) be a top-down tree transdu
er with m � 1 and let � = fa

(1)

j a 2

Ag[fe

(0)

g. We now 
onstru
t a linear tree homomorphism N (where `linear' means

that, for every input symbol � of rank k � 0 and for every i 2 [k℄, hq; x

i

i o

urs at

most on
e in the right-hand side of the (q; �)-rule) and a YIELD mapping Y

f

su
h

that Y

f

(�

N

(sm(L

0

))) = �

M

(sm(L)) for the regular language L

0

= f#u

r

j u 2 Lg,

with # 62 A. This proves the lemma, be
ause sm(L

0

) � REGT and linear tree homo-

morphisms preserve the regular tree languages (
f., e.g., Theorem 6.10 of [GS84℄).

The idea of the 
onstru
tion is to simulate M by asso
iating with every state q

j

of

M a parameter y

j

, 
ontaining the q

j

-translation of M ; the tree homomorphism N

generates, for input a, 
onstant symbols (q

j

; a) for every j 2 [m℄ (and for input #,

symbols (q

j

; e)), and f maps (q

j

; a) to the right-hand side of the (q

j

; a)-rule of M

(with states repla
ed by the 
orresponding parameters).

De�ne N = (fqg; � [ f#

(1)

g; �; q; R

N

) with � = f(q

j

; a)

(0)

j j 2 [m℄; a 2

�g [ f


(m+1)

; e

(0)

g and R

N


onsisting of the following rules.

hq;#(x

1

)i ! 
(hq; x

1

i; (q

1

; e); : : : ; (q

m

; e))

hq; a(x

1

)i ! 
(hq; x

1

i; (q

1

; a); : : : ; (q

m

; a)) for every a 2 A

hq; ei ! e

The mapping f is de�ned as f(e) = y

1

and, for every j 2 [m℄ and a 2 �, f((q

j

; a)) =

rhs

M

(q

j

; a)[hq

i

; x

1

i  y

i

j i 2 [m℄℄.

Let us now prove the 
orre
tness of the 
onstru
tion, i.e., that Y

f

(�

N

(sm(L

0

))) =

�

M

(sm(L)). By the de�nition of L

0

we have to show that, for every u 2 L, Y

f

(�

N

(sm(

#u

r

))) = �

M

(sm(u)). By the de�nition ofN , Y

f

(�

N

(sm(#u

r

))) = Y

f

(
(�

N

(sm(u

r

));

(q

1

; e); : : : ; (q

m

; e))) = Y

f

(�

N

(sm(u

r

)))[y

j

 rhs

M

(q

j

; e) j j 2 [m℄℄. Sin
e rhs

M

(q

j

; e)

=M

q

j

(sm(")) this equals �

M

(sm(u)) by the following 
laim (for v = ").

Claim: For every u; v 2 A

�

, Y

f

(�

N

(sm(u

r

)))[: : : ℄ = �

M

(sm(uv)), where [: : : ℄ =

[y

i

 M

q

i

(sm(v)) j i 2 [m℄℄.

The proof of this 
laim is by indu
tion on the stru
ture of u. If u = ", then

Y

f

(�

N

(sm(u

r

)))[: : : ℄ = Y

f

(e)[: : : ℄ = y

1

[: : : ℄ =M

q

1

(sm(v)) = �

M

(sm(uv)).

If u

0

= ua with u 2 A

�

and a 2 A, then we get

Y

f

(�

N

(sm(u

0

r

)))[: : : ℄

= Y

f

(�

N

(a(sm(u

r

))))[: : : ℄

= Y

f

(
(�

N

(sm(u

r

)); (q

1

; a); : : : ; (q

m

; a)))[: : : ℄

= Y

f

(�

N

(sm(u

r

)))[y

j

 f((q

j

; a)) j j 2 [m℄℄[: : : ℄:
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The appli
ation of [: : : ℄ to f((q

j

; a)) gives rhs

M

(q

j

; a)[hq

i

; x

1

i  M

q

i

(sm(v)) j i 2

[m℄℄ whi
h equals M

q

j

(sm(av)) by De�nition 3 and the fa
t that M is a top-down

tree transdu
er. Thus we get Y

f

(�

N

(sm(u

r

)))[y

j

 M

q

j

(sm(av)) j j 2 [m℄℄. By

indu
tion this equals �

M

(sm(uav)) = �

M

(sm(u

0

v)). �

Before we prove that the EDT0L-hierar
hy is in
luded in the IO-hierar
hy, let

us 
onsider an example of the 
onstru
tion given in the proof of Lemma 34.

Example 35. Let M

b

be the top-down tree transdu
er de�ned in the proof of The-

orem 22, whi
h translates a tree sm(w) into a tree with yield 
ount

b

(w), where

w 2 A

�

for an alphabet A. For A = f
; dg, M

b

has the following rules.

hq

0

; 
(x

1

)i ! �(
; �(hq; x

1

i; hq

0

; x

1

i))

hq

0

; d(x

1

)i ! �(d; �(hq; x

1

i; hq

0

; x

1

i))

hq

0

; ei ! e

hq; 
(x

1

)i ! �(b; hq; x

1

i)

hq; d(x

1

)i ! �(b; hq; x

1

i)

hq; ei ! e

We now apply the 
onstru
tion of the proof of Lemma 34 to de�ne the linear

tree homomorphism N and the YIELD mapping Y

f

su
h that Y

f

(�

N

(sm(#u

r

)) =

�

M

b

(sm(u)) for every u 2 A

�

. Then N = (fpg; � [ f#

(1)

g; �; p; R

N

) with � =

f


(1)

; d

(1)

; e

(0)

g, � = f(q

0

; 
)

(0)

; (q

0

; d)

(0)

; (q

0

; e)

(0)

; (q; 
)

(0)

; (q; d)

(0)

; (q; e)

(0)

g[f


(3)

;

e

(0)

g, and R

N


onsists of the following rules.

hp;#(x

1

)i ! 
(hp; x

1

i; (q

0

; e); (q; e))

hp; 
(x

1

)i ! 
(hp; x

1

i; (q

0

; 
); (q; 
))

hp; d(x

1

)i ! 
(hp; x

1

i; (q

0

; d); (q; d))

hp; ei ! e

The mapping f is de�ned as f((q

0

; 
)) = �(
; �(y

2

; y

1

)), f((q

0

; d)) = �(d; �(y

2

; y

1

)),

f((q

0

; e)) = f((q; e)) = e, f((q; 
)) = f((q; d)) = �(b; y

2

), and f(e) = y

1

.




(q

0

; d)


(q

0

; 
)e

(q

0

; 
)


(q

0

; e)
 (q; e)

(q; d)

(q; 
)

(q; 
)

Fig. 4. The tree t = �

N

(#(d(
(
(e)))))

Now, 
onsider the string u = 

d. Then

�

M

b

(sm(u)) = �(
; �(�(b; �(b; e)); �(
; �(�(b; e); �(d; �(e; e)))))):

The appli
ation of �

N

to the tree sm(#u

r

) = #(d(
(
(e)))) gives the tree t shown

in Figure 4. Let us now 
ompute Y

f

(t) in a bottom-up fashion:

Y

f

(t=111) = Y

f

(e)[y

1

 Y

f

((q

0

; 
)); y

2

 Y

f

((q; 
))℄

= y

1

[y

1

 �(
; �(y

2

; y

1

)); y

2

 �(b; y

2

)℄

= �(
; �(y

2

; y

1

));
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Y

f

(t=11) = Y

f

(t=111)[y

1

 Y

f

((q

0

; 
)); y

2

 Y

f

((q; 
))℄

= �(
; �(y

2

; y

1

))[y

1

 �(
; �(y

2

; y

1

)); y

2

 �(b; y

2

)℄

= �(
; �(�(b; y

2

); �(
; �(y

2

; y

1

))));

Y

f

(t=1) = Y

f

(t=11)[y

1

 Y

f

((q

0

; d)); y

2

 Y

f

((q; d))℄

= �(
; �(�(b; y

2

); �(
; �(y

2

; y

1

))))[y

1

 �(d; �(y

2

; y

1

)); y

2

 �(b; y

2

)℄

= �(
; �(�(b; �(b; y

2

)); �(
; �(�(b; y

2

); �(d; �(y

2

; y

1

))))));

and �nally Y

f

(t) = Y

f

(t=1)[y

1

 Y

f

((q

0

; e)); y

2

 Y

f

((q; e))℄ = Y

f

(t=1)[y

1

 

e; y

2

 e℄ whi
h is pre
isely the tree �

M

b

(sm(u)) displayed above. �

We now prove the in
lusion of the EDT0L-hierar
hy in the IO-hierar
hy.

Theorem 36. For every n � 1, EDT0L

n

(REG) � IO(n).

Proof. As shown in the proof of Theorem 21, EDT0L

n

� sm ÆMTT

n�1

Æ y. Sin
e

MTT

n

= T ÆYIELD

n

by Corollary 4.13 of [EV85℄, this equals smÆT ÆYIELD

n�1

Æ

y. Applying this to REG gives yYIELD

n�1

(T (sm(REG))). By Lemma 34 this is

in
luded in yYIELD

n�1

(YIELD(REGT )) = yYIELD

n

(REGT ) = IO(n). �

Note that Theorem 22 implies that EDT0L

n+2

(REG)� IO(n) 6= ?. It would be

interesting to know whether this result 
ould be improved to EDT0L

n+1

(REG) �

IO(n) 6= ?; but this requires stronger methods of proving that a language is not

in the IO-hierar
hy, whi
h we do not have (
f. the dis
ussion of open problems at

the end of Se
tion 8). Note further that Theorem 36 gives a somewhat tighter link

between the EDT0L- and the IO-hierar
hy, than the one between the ET0L- and the

OI-hierar
hy in [Vog88℄ whi
h states that ET0L

n

(REG) is in
luded in OI (2n� 1).

8 Con
lusions and Open Problems

We have proved the properness of the yMTT-, EDT0L-, and IO-hierar
hies in Theo-

rems 23, 24, and 33, respe
tively. In this se
tion we want to dis
uss the relationships

between the di�erent hierar
hies of string languages that were 
onsidered in this pa-

per. By \the hierar
hy X(n)" we mean that, for every n � 1, X(n) is a 
lass of

languages and X(n) � X(n+1). The hierar
hy X(n) is proper if X(n) ( X(n+1)

for every n � 1. Denote by X(�) the union

S

n�1

X(n). For two hierar
hies X(n)

and Y (n) we want to know, whether the following holds.

{ Is the hierar
hy X(n) in
luded in the hierar
hy Y (n), i.e., is X(�) � Y (�)? And

if so, is the in
lusion proper, i.e., is X(�) ( Y (�)?

{ Is X(n) a subhierar
hy of Y (n)? By this we mean that there is an m 2 N su
h

that for every n � 1: X(m+ n) � Y (n) and X(m+ n+ 1)� Y (n) 6= ?.

{ Is X(n) small in Y (n)? This means that Y (1)�X(�) 6= ?.

IfX(n) is a subhierar
hy of Y (n), thenX(m+n) and Y (n) are proper hierar
hies,

and X(�) � Y (�). If X(�) � Y (�) and X(n) is small in Y (n), then X(�) ( Y (�). If

X(n) is a small subhierar
hy of Y (n), then the in�nite in
lusion diagram in Fig. 5

is a Hasse diagram.

We have shown (in Theorems 22 and 32) that the EDT0L- and IO-hierar
hies are

subhierar
hies of the yMTT-hierar
hy. Note that for Y being the yMTT-hierar
hy,

m = 1 if X is the EDT0L-hierar
hy, and m = 0 if X is the IO-hierar
hy.

Let us brie
y 
onsider another type of tree transdu
er and show that the output

string languages of its 
ompositions gives rise to a subhierar
hy of the yMTT-

hierar
hy: the attributed tree transdu
er (ATT) [F�ul81,FV98℄, whi
h is a formal

model for attribute grammars. It is well known that YIELD � ATT � MTT

(
f. Corollary 6.24 and Lemma 6.1 of [FV98℄), where ATT denotes the 
lass of all

translations realized by ATTs. Thus, IO(n) � yATT

n

(REGT ) � yMTT

n

(REGT ).

By Theorem 32 we obtain the following 
orollary.
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.

.

.

.

.

.

.

.

.

.

.

.

X(�)

X(m+ n)

X(m + n+ 1)

X(m + 1)

Y (n)

Y (�)

Y (1)

Y (n+ 1)

Fig. 5. The Hasse diagram for: \X(n) is a small subhierar
hy of Y (n)"

Theorem 37. For n � 1,

(a) yATT

n+1

(REGT )� yMTT

n

(REGT ) 6= ?.

(b) yATT

n

(REGT ) ( yATT

n+1

(REGT ).

Thus, the hierar
hy yATT

n

(REGT ) is proper, and it is a subhierar
hy of the

yMTT-hierar
hy. Note that it is open whether yATT

n

(REGT ) ( yMTT

n

(REGT ).

Note further that the yATT-hierar
hy is not small in the yMTT-hierar
hy, be
ause,

in fa
t, yMTT

n

(REGT ) � yATT

n+1

(REGT ), and so yATT

�

(REGT ) equals

yMTT

�

(REGT ), see, e.g., Se
tion 6 of [FV98℄.

Now, we prove that the EDT0L-hierar
hy is a small subhierar
hy of the ET0L-

hierar
hy ET0L

n

(REG), where ET0L denotes the 
lass of all nondeterministi


EDT0L translations (
f. the dis
ussion after Theorem 25).

Theorem 38. The EDT0L-hierar
hy is a small subhierar
hy of the ET0L-hierar
hy.

Proof. By Corollary 27, CF � EDT0L

�

(REG) 6= ?. Sin
e CF � ET0L(REG),

this shows that the EDT0L-hierar
hy is small in the ET0L-hierar
hy. Alterna-

tively, this follows from Theorem 25. It remains to show that EDT0L

n+1

(REG)�

ET0L

n

(REG) 6= ?. For a language L de�ne the 
opy operations 


2

and 


�

as




2

(L) = fw$w j w 2 Lg and 


�

(L) = f(w$)

n

j w 2 L; n � 1g for a symbol $ not in

L. Let L

2

= L

e


and, for n � 2, let L

n+1

= 


2

(
ount

b

(


�

(L

n

))) for a symbol b not

in 


�

(L

n

).

(1) L

n

2 EDT0L

n

(REG). As shown in the proof of Theorem 22, L

e


2 EDT0L

2

(

REG) and 
ount

b

2 EDT0L. Hen
e L

n

2 EDT0L

n

(REG), be
ause it is easy to

see that EDT0L

n

(REG) is 
losed under 


2

and 


�

: Let L = �

n

(� � � �

1

(R) � � � ) 2

EDT0L

n

(REG) with R 2 REG and �

i

2 EDT0L for i 2 [n℄. To obtain 


2

(L)

and 


�

(L), 
hange R into the regular languages aR and a

�

R, respe
tively, where

a is a symbol not in R and not used in any of the �

i

. Now �

1

is 
hanged into

�

0

1

in su
h a way that �

0

1

(aR) equals a�

1

(R), and �

0

1

(a

�

R) equals a

�

�

1

(R). Simi-

larly, for i 2 [n � 1℄, �

i

is 
hanged into �

0

i

whi
h translates a�

i�1

(� � � �

1

(R) � � � )

into a�

i

(�

i�1

(� � � �

1

(R) � � � )) and a

�

�

i�1

(� � � �

1

(R) � � � ) into a

�

�

i

(�

i�1

(� � � �

1

(R) � � � )).

Finally, the translation �

n

is 
hanged into �

0

n

whi
h translates a�

n�1

(� � � �

1

(R) � � � )

into �

n

(� � � �

1

(R) � � � )$�

n

(� � � �

1

(R) � � � ) = 


2

(L), and, similarly, a

�

�

n�1

(� � � �

1

(R) � � � )

into 


�

(L).

(2) L

n

62 ET0L

n�1

(REG). For n = 2 this follows from Theorem 3.16 of [Eng82℄:

L

e


62 yN-T (REGT ). For n > 2 the result is obtained, by indu
tion, as follows. It is

straightforward to show that Theorem 3.1 of [Eng82℄, whi
h is the bridge theorem

(Theorem 3.2.14) of [ERS80℄, 
an also be stated for the operation 
ount

b

in pla
e

of the operation rub (in fa
t, it holds in general for languages L and L

0

that satisfy

the assumptions of Lemma 17). Then the proof of Theorem 4.2 of [Eng82℄ (with

rub 
hanged into 
ount

b

) shows that if L 62 EDT0L(ET0L

n�2

(REG)) then
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{ 
ount

b

(


�

(L)) 62 EDT0L(ET0L

n�1

(REG)) and

{ 


2

(
ount

b

(


�

(L))) 62 ET0L

n

(REG).

Sin
e ET0L

n�1

(REG)) � EDT0L(ET0L

n�2

(REG)), this shows that for n � 2, if

L

n

62 ET0L

n�1

(REG), then L

n+1

62 ET0L

n

(REG). �

The proof of Theorem 38 shows that the properness of the ET0L-hierar
hy is

not 
aused by the alternation of 
opying and nondeterminism (as stated in [Eng82℄),

but rather by the alternation of 
opying and insertion.

Let us now summarize the relationships between the di�erent hierar
hies of

string languages that have been 
onsidered, together with the nondeterministi
 ver-

sion of the yMTT-hierar
hy, and the nondeterministi
 top-down tree transdu
er

hierar
hy of [Eng82℄. Let N-MTT denote the 
lass of translations realized by non-

deterministi
 ma
ro tree transdu
ers and let, as before, N-T denote the 
lass of

translations realized by nondeterministi
 top-down tree transdu
ers. Note that the

derivations of nondeterministi
 MTTs 
an be restri
ted to be OI (outside-in), see

Corollary 3.13 of [EV85℄. Furthermore, the 
omposition 
losureN-MTT

�


an also be

obtained by the restri
tion to IO-derivations, i.e., this 
lass equals N-MTT

�

IO

, where

N-MTT

IO

denotes the 
lass of translations realized by nondeterministi
 MTTs

restri
ted to IO-derivations, see Theorem 7.3 of [EV85℄. By the same theorem,

N-MTT

�

= (N-T [ YIELD)

�

, and so yN-MTT

�

(REGT ) is the 
lass of languages


onsidered in [DE98℄, 
f. the Introdu
tion.

yN-MTT

�

(REGT )

ET0L

�

(REG) yN-T

�

(REGT )

2GSM

�

(REG)

IO(�)

EDT0L

�

(REG)

OI (�)

= yATT

�

(REGT )

yMTT

�

(REGT )

sub sub sub

sub

Fig. 6. In
lusions of hierar
hies of string languages.

Figure 6 shows an in
lusion diagram, where an as
ending line from X(�) to

Y (�) indi
ates that X(�) � Y (�), and the label `sub' indi
ates that X(n) is a

subhierar
hy of Y (n); an arrow from X(�) to Y (�) indi
ates a proper in
lusion (and

even that X(n) is small in Y (n)). Note that the four hierar
hies in the left part

of the �gure, i.e., EDT0L

n

(REGT ), IO(n), yATT

n

(REGT ), and yMTT

n

(REGT )

are generated by total deterministi
 devi
es and the other �ve hierar
hies involve

partial nondeterministi
 devi
es.

Besides the hierar
hy yN-MTT

n

(REGT ), all hierar
hies in the �gure are (now)

known to be proper: For the 2GSM-, ET0L-, and yN-T-hierar
hies this is known

from [Eng82℄ (properness of the 2GSM-hierar
hy was obtained independently in

[Gre78℄), for the EDT0L-hierar
hy by Theorem 24, for the IO-hierar
hy by Theo-

rem 33, for the yMTT- and yATT-hierar
hy by Theorems 23 and 37(b), respe
tively,
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and for the OI-hierar
hy from Theorem 7.4 of [Eng91℄. In�nity of the IO- and OI-

hierar
hies was proved in [Dam82℄. Note that deterministi
 two-way generalized

sequential ma
hines and (deterministi
) top-down tree transdu
ers are 
losed under


omposition and therefore do not give rise to proper hierar
hies.

Let us now dis
uss the in
lusions in Figure 6. The in
lusions of EDT0L

�

(REG)

in ET0L

�

(REG), yN-T

�

(REGT ) in yN-MTT

�

(REGT ), and yMTT

�

(REGT ) in

yN-MTT

�

(REGT ) hold by de�nition. The in
lusion of the EDT0L-hierar
hy in

the IO-hierar
hy follows from Theorem 36. The in
lusions of 2GSM

�

(REG) in

ET0L

�

(REG) and in yN-T

�

(REGT ) follow from Corollary 4.6 and Theorem 5.5

of [ERS80℄, see Lemma 4.6 of [Eng82℄. The in
lusion of IO(�) in the yATT- and

yMTT-hierar
hy was dis
ussed at the beginning of this se
tion. The 
lass ET0L

�

(

REG) is in OI (�) by Theorem 14 of [Vog88℄ (
f. also [Eng91℄) and the in
lusion of

OI (�) in yN-MTT

�

(REGT ) follows from Theorem 8.1 of [EV88℄ (as dis
ussed at

the end of that paper).

Next, 
onsider the subhierar
hy and smallness relations in Figure 6. The fa
t

that the 2GSM-hierar
hy is a small subhierar
hy of both ET0L

n

(REG) and yN-T

n

(

REGT ) holds by Theorem 4.8 of [Eng82℄ (indeed, the smallness follows from the

fa
t that CF � 2GSM

�

(REG) 6= ?, whi
h was proved in [Gre78℄). By Theo-

rem 38, the EDT0L-hierar
hy is a small subhierar
hy of the ET0L-hierar
hy. From

Theorem 25 and the fa
t that 2GSM (REG) � ET0L(REG) � yN-T (REGT ) �

yN-MTT (REGT ), it follows that yMTT

n

(REGT ) is small in yN-MTT

n

(REGT ).

The smallness of yN-T

n

(REGT ) in yN-MTT

n

(REGT ) follows from the fa
t that

L

e


62 yN-T

�

(REGT ) (as mentioned before Theorem 22) and the fa
t (shown

in the proof of Theorem 22) that L

e


is in EDT0L

2

(REG) whi
h is in
luded in

yN-MTT (REGT ) by Theorem 21. The EDT0L-hierar
hy is small in the IO-hierar
hy,

be
ause, by Corollary 27, there is a 
ontext-free language not in EDT0L

�

( REG),

and IO(1) in
ludes the 
ontext-free languages (
f. Theorem 7.9 of [ES78℄). By Theo-

rem 32, IO(n) is a subhierar
hy of the yMTT-hierar
hy. Note that it is not indi
ated

in Figure 6 that the EDT0L-hierar
hy and the yATT-hierar
hy are subhierar
hies

of the yMTT-hierar
hy.

We 
on
lude by mentioning some open problems related to the diagram in Fig-

ure 6. First of all, are there more subhierar
hy relationships between the hierar
hies

shown in the �gure? In parti
ular, is the yMTT-hierar
hy a subhierar
hy of its non-

deterministi
 version yN-MTT

n

(REGT )? With respe
t to in
lusion 
onsider the

following open problems.

{ IO(�) ( yMTT

�

(REGT )?

{ ET0L

�

(REG) ( OI (�)?

{ IO(�) * OI (�)?

{ yN-T

�

(REGT ) * OI (�)?

Our 
onje
ture is that all these statements hold. Together with the fa
ts that

2GSM

�

(REG) � yMTT

�

(REGT ) 6= ? by Theorem 25, and that L

e


2 EDT0L

�

(

REG)�yN-T

�

(REGT ) as dis
ussed above, this would prove that Figure 6 is a Hasse

diagram. The problem with proving the 
onje
tures listed above is that we do not

have methods to show that languages are not in the OI- and ET0L-hierar
hies, and

need stronger methods to show that languages are not in the IO-hierar
hy.

Referen
es

[BCN81℄ L. Boasson, B. Cour
elle, and M. Nivat. The rational index: a 
omplexity mea-

sure for languages. SIAM Journal on Computing, 10(2):284{296, 1981.

[CF82℄ B. Cour
elle and P. Fran
hi-Zannetta

i. Attribute grammars and re
ursive pro-

gram s
hemes. Theoret. Comput. S
i., 17:163{191 and 235{257, 1982.

37



[Cou83℄ B. Cour
elle. Fundamental properties of in�nite trees. Theoret. Comput. S
i.,

25:95{169, 1983.

[Dam82℄ W. Damm. The IO- and OI-hierar
hies. Theoret. Comput. S
i., 20:95{207, 1982.

[DE98℄ F. Drewes and J. Engelfriet. De
idability of �niteness of ranges of tree transdu
-

tions. Inform. and Comput., 145:1{50, 1998.

[Dow74℄ P. J. Downey. Formal languages and re
ursion s
hemes. Te
hni
al Report TR-

16-74, Harvard University, 1974.

[EM99℄ J. Engelfriet and S. Maneth. Ma
ro tree transdu
ers, attribute grammars, and

MSO de�nable tree translations. Inform. and Comput., 154:34{91, 1999.

[Eng77℄ J. Engelfriet. Top-down tree transdu
ers with regular look-ahead. Math. Systems

Theory, 10:289{303, 1977.

[Eng78℄ J. Engelfriet. On tree transdu
ers for partial fun
tions. Informat. Pro
essing

Let., 7:170{172, 1978.

[Eng80℄ J. Engelfriet. Some open questions and re
ent results on tree transdu
ers and

tree languages. In R.V. Book, editor, Formal language theory; perspe
tives and

open problems. New York, A
ademi
 Press, 1980.

[Eng82℄ J. Engelfriet. Three hierar
hies of transdu
ers. Math. Systems Theory, 15:95{125,

1982.

[Eng91℄ J. Engelfriet. Iterated sta
k automata and 
omplexity 
lasses. Inform. and Com-

put., 95(1):21{75, 1991.

[ERS80℄ J. Engelfriet, G. Rozenberg, and G. Slutzki. Tree transdu
ers, L systems, and

two-way ma
hines. J. of Comp. Syst. S
i., 20:150{202, 1980.

[ES78℄ J. Engelfriet and E.M. S
hmidt. IO and OI, Part II. J. of Comp. Syst. S
i.,

16:67{99, 1978.

[EV85℄ J. Engelfriet and H. Vogler. Ma
ro tree transdu
ers. J. of Comp. Syst. S
i.,

31:71{146, 1985.

[EV88℄ J. Engelfriet and H. Vogler. High level tree transdu
ers and iterated pushdown

tree transdu
ers. A
ta Informati
a, 26:131{192, 1988.

[EV94℄ J. Engelfriet and H. Vogler. The translation power of top-down tree-to-graph

transdu
ers. J. of Comp. Syst. S
i., 49:258{305, 1994.

[Fis68℄ M.J. Fis
her. Grammars with ma
ro-like produ
tions. PhD thesis, Harvard Uni-

versity, Massa
husetts, 1968.

[F�ul81℄ Z. F�ul�op. On attributed tree transdu
ers. A
ta Cyberneti
a, 5:261{279, 1981.

[FV98℄ Z. F�ul�op and H. Vogler. Syntax-Dire
ted Semanti
s { Formal Models based on

Tree Transdu
ers. EATCS Monographs on Theoreti
al Computer S
ien
e (W.

Brauer, G. Rozenberg, A. Salomaa, eds.). Springer-Verlag, 1998.

[Gre78℄ S. A. Greiba
h. Hierar
hy theorems for two-way �nite state transdu
ers. A
ta

Informati
a, 11:89{101, 1978.

[Gre81℄ S. A. Greiba
h. Formal languages: origins and dire
tions. Ann. of the Hist. of

Comput., 3(1):14{41, 1981.

[GS84℄ F. G�e
seg and M. Steinby. Tree Automata. Akad�emiai Kiad�o, Budapest, 1984.

[GS97℄ F. G�e
seg and M. Steinby. Tree automata. In G. Rozenberg and A. Salomaa,

editors, Handbook of Formal Languages, Volume 3, 
hapter 1. Springer-Verlag,

1997.

[HU79℄ J. W. Hop
roft and J. D. Ullman. Introdu
tion to automata theory, languages,

and 
omputation. Addison-Wesley, 1979.

[Man98℄ S. Maneth. The generating power of total deterministi
 tree transdu
ers. Inform.

and Comput., 147:111{144, 1998.

[Man99℄ S. Maneth. String languages generated by total deterministi
 ma
ro tree trans-

du
ers. In W. Thomas, editor, Pro
. FOSSACS'99, volume 1578 of LNCS, pages

258{272. Springer-Verlag, 1999.

[Rou70℄ W.C. Rounds. Mappings and grammars on trees. Math. Systems Theory, 4:257{

287, 1970.

[Roz73℄ G. Rozenberg. Extension of tabled 0L-systems and languages. Internat. J. Comp.

Inform. S
i., 2:311{336, 1973.

[vL76℄ J. van Leeuwen. Variations of a new ma
hine model. In Pro
eedings of the 17th

Annual Symposium on Foundations of Computer S
ien
e, Houston, Texas, pages

228{235. IEEE Computer So
iety Press, 1976.

[Vog88℄ H. Vogler. The OI-hierar
hy is 
losed under 
ontrol. Inform. and Comput.,

78:187{204, 1988.

38


