
Output String Languages of Compositions of

Deterministi Maro Tree Transduers

Joost Engelfriet and Sebastian Maneth

Leiden University, LIACS, PO Box 9512, 2300 RA Leiden, The Netherlands

E-mail: fengelfri, manethg�lias.nl

Tehnial Report 2001-04

Abstrat. The omposition of total deterministi maro tree transduers

gives rise to a proper hierarhy with respet to their output string languages

(these are the languages obtained by taking the yields of the output trees).

There is a language not in this hierarhy whih an be generated by a (quite

restrited) nondeterministi string transduer, namely, a two-way general-

ized sequential mahine. Similar results hold for attributed tree transdu-

ers, for ontrolled EDT0L systems, and for YIELD mappings (whih proves

properness of the IO-hierarhy). Witnesses for the properness of the maro

tree transduer hierarhy an already be found in the latter three hierarhies.

1 Introdution

Maro tree transduers [Eng80,CF82,EV85℄ are a model of syntax-direted seman-

tis (see [FV98℄ for a survey) whih ombine top-down tree transduers and maro

grammars, i.e., they are �nite state transduers, the states of whih are equipped

with parameters that allow to handle ontext information.

A maro tree transduerM an be used as a string language generator as follows.

The tree translation of M is applied to a tree language, whih typially is the set of

derivation trees of a ontext-free grammar, or, in general, a regular tree language.

This generates an output tree language of M , and taking the yields of these trees

generates an output string language of M . In this way one an also view M as a

ontrolled (tree) grammar, where the generation of the output trees is ontrolled

by the input trees. Then, the iteration of ontrol orresponds to the omposition of

the tree translations. The string languages generated by the omposition losure of

maro tree transduers form a very large lass with nie properties: it is a full AFL,

and membership, emptiness, and �niteness of its languages are deidable [DE98℄.

Beause of their speial relevane to syntax-direted semantis we here investigate

total deterministi maro tree transduers (for short, MTTs) only; they are a om-

bination of total deterministi top-down tree transduers and IO (inside-out) maro

grammars.

The question arises, whether omposition of MTTs gives rise to a proper hierar-

hy of output string languages. For the two ingredients of MTTs the situation is as

follows. Sine (total deterministi) top-down tree transduers are losed under om-

position [Rou70℄, they do not form a proper hierarhy of output string languages

(note that omposition of nondeterministi top-down tree transduers does yield

suh a hierarhy [Eng82℄). The iteration of IO maro grammars by the onept of

n-level grammars gives rise to a proper and to an in�nite hierarhy [Dam82℄, for

the generated tree and string languages, respetively: the so-alled IO-hierarhies

(see, e.g., [ES78℄). With respet to the translations it is well known that omposi-

tion of MTTs (whih orresponds to the n-level tree transduers of [EV88℄) yields

a proper hierarhy, that is, the lass of translations realized by the omposition of

n MTTs is properly inluded in the one realized by the omposition of n+1 MTTs

(f. [EV85℄). The proof relies on the fat that the height of the output tree of an

MTT is exponentially bounded by the height of the input tree. In [Dam82℄ it is

proved that also the output tree languages form a proper hierarhy. With respet

to the output string languages, omposition of MTTs yields an in�nite hierarhy;

the proof in [Dam82℄ ombines the above exponential bound with the onept of

rational index [BCN81℄. To prove properness of this hierarhy (at eah level) we use

instead a so-alled \bridge-theorem" (f. [Eng82℄, and the setion on translational

tehniques in [Gre81℄).

Let us disuss the bridge theorem in more detail. Consider two languages L

0

and

L suh that L

0

is of some speial form, depending on L; in appliations of the bridge

theorem, L

0

will typially be obtained from L by some kind of string insertion. Now

if L

0

is the output string language of an MTT, then the speial form of L

0

fores

the language L to be an output string language of an MTT M whih has ertain

restrited properties. To be preise, these properties require that in the rules of M

(i) no parameter is opied and (ii) no parameter is deleted. An MTT satisfying (i)

and (ii) is alled simple in the parameters (for short sp). The proof of this bridge

theorem is a generalization of the proof of Theorem 3.4.3 in [Fis68℄, where Fisher

proves for a spei� IO maro language L

0

that L an be produed by an IO maro

grammar that is sp. For an MTT M that is sp we show that, with respet to the

output string language, parameters are not needed at all; that is, we an onstrut

a top-down tree transduer whih has the same output string language as M . Sine

MTTs are losed under omposition with top-down tree transduers, this result

will allow us to use the bridge theorem to step down from the omposition of n+1

MTTs to that of n MTTs.

We apply the bridge theorem to three di�erent types of string insertions to

obtain the following results:

(1) There is a language L

0

whih is not the output string language of any om-

position of MTTs, but whih an be generated by a nondeterministi two-way

generalized sequential mahine. Here, L

0

is obtained from L by the nondeter-

ministi insertion of two new symbols, where L is a language that annot be

generated by a top-down tree transduer. Intuitively, the result shows that non-

determinism (present in a very simple type of insertion) is more powerful than

determinism (present in an MTT).

As another example of this phenomenon we prove that there is a ontext-free

language whih annot be generated as output by the omposition losure of

MTTs, taking monadi tree languages as initial input. The latter lass of lan-

guages is of interest beause it ontains the EDT0L-hierarhy, generated by the

iteration of ontrolled EDT0L systems. The EDT0L system is the deterministi

version of the ET0L system [Roz73℄ (see [ERS80℄ for the relationship of these

systems to top-down tree transduers and two-way mahines). In partiular

we show that languages generated by the iteration of n + 1 ontrolled EDT0L

systems an be generated by the omposition of n MTTs.

(2) Composition of MTTs yields a proper hierarhy with respet to their output

string languages, i.e., there is a language L

0

whih is output string language

of the omposition of n + 1 MTTs, but whih annot be generated as output

by the omposition of n MTTs. Here L

0

is obtained from a language L at the

previous level, by inserting a sequene of b's before eah symbol of a string in

L (for a new symbol b), viz., b

i

before the i-th symbol from the right.

In fat, we use the relationship with EDT0L systems mentioned in point (1)

and show that L

0

an be generated by the iteration of n+ 2 ontrolled EDT0L

systems. This implies properness of the EDT0L-hierarhy. In [Eng82℄ proper-

ness of the ET0L-hierarhy is proved, but it is mentioned as open whether the

EDT0L-hierarhy is proper.

2

(3) There is an (n + 1)-level IO maro language L

0

whih annot be generated as

output by the omposition of n MTTs. Here, L

0

is obtained from L (at the

previous level) by inserting, before eah symbol of a string w in L, a string

in f1; 2g

�

that represents (in Dewey notation) the orresponding leaf of some

binary tree with yield w. Sine every n-level IO maro language an be generated

as output by the omposition of n MTTs, this proves the properness of the

IO-hierarhy of string languages, whih was left open in [Dam82℄.

Sine every n-level IO maro language an also be generated as output by the

omposition of n attributed tree transduers [F�ul81,FV98℄ (ATTs), and ATTs

an be simulated by MTTs, we also obtain that omposition of ATTs yields a

proper hierarhy of output string languages.

This paper is strutured as follows. Setion 2 ontains basi notions onerning

trees, tree substitution, tree translations, and �nite state relabelings. In Setion 3,

the de�nition of maro tree transduers is given and some basi lemmas are realled.

Furthermore, the sp (simple in the parameters) property is de�ned. In Setion 4 it is

proved that MTTs are losed under omposition with �nite state relabelings. This

also implies the losure of MTTs under omposition with top-down tree transduers

with regular look-ahead, whih is mentioned as an open problem in the Conlusions

of [EV85℄. Finally, it is proved that MTTs that are simple in the parameters generate

the same lass of output string languages as top-down tree transduers. Setion 5

ontains the detailed proof of the bridge theorem, together with two partiular

versions of it. Using these theorems it is proved in Setion 6 that omposition of

MTTs yields a proper hierarhy of output string languages (the yMTT-hierarhy)

and that the EDT0L-hierarhy is proper. Moreover, it is shown that there are \non-

deterministi" languages not in the yMTT- and the EDT0L-hierarhies, whih an

be generated by a nondeterministi two-way generalized sequential mahine and a

ontext-free grammar, respetively. The properness of the IO-hierarhy is proved in

Setion 7, and it is shown that the EDT0L-hierarhy is inluded in the IO-hierarhy.

Finally, Setion 8 ontains the hierarhy result for ATTs and a summary of relations

between the various hierarhies disussed in this paper; it also mentions some open

problems.

Some of the results of this paper were presented in [Man99℄.

2 Preliminaries

The set f0; 1; : : :g of natural numbers is denoted by N. The empty set is denoted

by ?. For k 2 N, [k℄ denotes the set f1; : : : ; kg; thus [0℄ = ?. For a set A, jAj is its

ardinality, and A

�

is the set of all strings over A. An alphabet is a �nite set A. The

empty string is denoted by ". The length of a string w is denoted by jwj, and the

i-th symbol in w is denoted by w(i). For a string w = a

1

� � � a

n

, its reverse a

n

� � � a

1

is

denoted by w

r

. For strings v; w

1

; : : : ; w

n

2 A

�

and distint a

1

; : : : ; a

n

2 A, we denote

by v[a

1

 w

1

; : : : ; a

n

 w

n

℄ the result of (simultaneously) substituting w

i

for every

ourrene of a

i

in v. Note that [a

1

 w

1

; : : : ; a

n

 w

n

℄ is a homomorphism on

strings. For a ondition P on a and w we use, similar to set notation, [a w j P ℄ to

denote the substitution [L℄, where L is the list of all a w for whih ondition P

holds. By REG and CF we denote the lasses of regular and ontext-free languages,

respetively.

For funtions f :A! B and g:B ! C their omposition is (f Æ g)(x) = g(f(x));

note that the order of f and g is nonstandard. For sets of funtions F and G their

omposition is F ÆG = ff Æ g j f 2 F; g 2 Gg, and F

n

= F Æ � � � Æ F (n times). For

a binary relation), its transitive reexive losure is denoted by)

�

.

3

Let A and B be disjoint alphabets. For w 2 (A [B)

�

we denote by res

A

(w) the

restrition of w to letters in A, i.e., res

A

is the homomorphism from (A[B)

�

to A

�

de�ned by res

A

(a) = a for a 2 A and res

A

(a) = " for a 2 B.

2.1 Ranked Sets and Trees

A set � together with a mapping rank

�

:� ! N is alled a ranked set. For k �

0, �

(k)

is the set f� 2 � j rank

�

(�) = kg; we also write �

(k)

to indiate that

rank

�

(�) = k. If � = �

(1)

[�

(0)

, then � is monadi. For a set A, h�;Ai is the

ranked set � �A with rank

h�;Ai

(h�; ai) = rank

�

(�) for every h�; ai 2 h�;Ai.

For the rest of this paper we hoose the set of input variables to be X =

fx

1

; x

2

; : : : g and the set of parameters to be Y = fy

1

; y

2

; : : : g. For k � 0, X

k

=

fx

1

; : : : ; x

k

g and Y

k

= fy

1

; : : : ; y

k

g.

Let � be a ranked set. The set of trees over �, denoted by T

�

, is the smallest

set of strings T � (� [f(;); ; g)

�

suh that �

(0)

� T and if � 2 �

(k)

, k � 1, and

t

1

; : : : ; t

k

2 T , then �(t

1

; : : : ; t

k

) 2 T . For � 2 �

(0)

we denote the tree � also by

�(). If � is monadi, then t 2 T

�

is a monadi tree. For a set A, the set of trees

over � indexed by A, denoted by T

�

(A), is the set T

�[A

, where for every a 2 A,

rank

A

(a) = 0.

For every tree t 2 T

�

, the set of nodes of t, denoted by V (t), is a subset of N

�

whih is indutively de�ned as follows: if t = �(t

1

; : : : ; t

k

) with � 2 �

(k)

, k � 0,

and for all i 2 [k℄; t

i

2 T

�

, then V (t) = f"g [fiu j u 2 V (t

i

); i 2 [k℄g. Thus, "

represents the root of a tree and for a node u the i-th hild of u is represented by

ui. The label of t at node u is denoted by t[u℄; we also say that t[u℄ ours in t (at

u). The node u is a leaf if it has no hildren, i.e., if t[u℄ 2 �

(0)

. The subtree of

t at node u is denoted by t=u. The substitution of the tree s 2 T

�

at node u in t

is denoted by t[u s℄; it means that the subtree t=u is replaed by s. Formally,

these notions an be de�ned as follows: t["℄ is the �rst symbol of t (in �), t=" = t,

t[" s℄ = s, and if t = �(t

1

; : : : ; t

k

), i 2 [k℄, and u 2 V (t

i

), then t[iu℄ = t

i

[u℄,

t=iu = t

i

=u, and t[iu s℄ = �(t

1

; : : : ; t

i

[u s℄; : : : ; t

k

). The pre-order of the nodes

of t is the lexiographial order on N

�

; thus, " < iu, if u < v then iu < iv, and if

i < j then iu < jv.

For a tree t 2 T

�

, yt denotes the yield of t, i.e., the string in (�

(0)

)

�

obtained by

reading the leaves of t in pre-order, omitting nodes labeled by the speial symbol

e. Thus, yt = t[�

1

℄ � � � t[�

m

℄, where �

1

; : : : ; �

m

are all leaves � of t with t[�℄ 6= e,

in pre-order (e.g., for t = �(a; �(e; b)), yt = t[1℄t[22℄ = ab). The string yt an be

obtained reursively as follows; if t = e then yt = ", if t 2 �

(0)

� feg then yt = t,

and if t = �(t

1

; : : : ; t

k

), k � 1, � 2 �

(k)

, and t

1

; : : : ; t

k

2 T

�

, then yt = yt

1

� � � yt

k

.

Let A be an alphabet and let w 2 A

�

. For a binary symbol � 62 A, the tree

omb

�

(w) 2 T

f�g

(A) is reursively de�ned as follows; if w = " then omb

�

(w) = e,

and if w = aw

0

with a 2 A and w

0

2 A

�

, then omb

�

(w) = �(a; omb

�

(w

0

)). Clearly,

yomb

�

(w) = w. The monadi tree sm(w) 2 T

�

with � = fa

(1)

j a 2 Ag [fe

(0)

g

is reursively de�ned as e if w = " and as a(sm(w

0

)) if w = aw

0

with a 2 A and

w

0

2 A

�

. As an example, omb

�

(a) = �(a; �(; �(; e))) and sm(a) = a(((e))).

2.2 Seond-Order Tree Substitution

Note that trees are partiular strings and that string substitution as de�ned in the

beginning of this setion is appliable to a tree to replae symbols of rank zero; we

refer to this type of substitution as \�rst-order tree substitution".

Let � be a ranked alphabet, let �

1

; : : : ; �

n

be distint elements of �, n � 1, and

for eah i 2 [n℄ let s

i

be a tree in T

��Y

(Y

k

), where k = rank

�

(�

i

). For t 2 T

�

, the

seond-order tree substitution of �

i

by s

i

in t, denoted by

t[[�

1

 s

1

; : : : ; �

n

 s

n

℄℄

4

is indutively de�ned as follows (abbreviating [[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ by [[: : :℄℄).

For t = �(t

1

; : : : ; t

m

) with � 2 �

(m)

, m � 0, and t

1

; : : : ; t

m

2 T

�

, (i) if � =

�

i

for an i 2 [n℄, then t[[: : :℄℄ = s

i

[y

j

 t

j

[[: : :℄℄ j j 2 [k℄℄ and (ii) otherwise

t[[: : :℄℄ = �(t

1

[[: : :℄℄; : : : ; t

m

[[: : :℄℄). Note that [[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ is a tree ho-

momorphism [GS84℄ and that (just as ordinary substitution) seond-order tree sub-

stitution is assoiative (by the losure of tree homomorphisms under omposition,

f. Theorem IV.3.7 of [GS84℄), i.e., t[[� s℄℄[[� s

0

℄℄ = t[[� s[[� s

0

℄℄℄℄ and if

�

0

6= � then t[[� s℄℄[[�

0

 s

0

℄℄ = t[[�

0

 s

0

; � s[[�

0

 s

0

℄℄℄℄, and similarly for the

general ase (f. Setions 3.4 and 3.7 of [Cou83℄). For a ondition P on � and s we

use [[� s j P ℄℄ to denote the substitution [[L℄℄, where L is the list of all � s for

whih ondition P holds.

The following small lemma says that if we are onsidering the yield of a tree to

whih a (�rst- or seond-order) tree substitution is applied, then inside the substi-

tution merely the yields of the trees that are substituted are relevant.

Lemma 1. Let � be a ranked alphabet, �

1

; : : : ; �

n

2 �

(0)

�feg, and �

1

; : : : ; �

n

2

�. Let t; t

0

; s

1

; s

0

1

; : : : ; s

n

; s

0

n

2 T

�

(Y) suh that ys

i

= ys

0

i

for every i 2 [n℄.

(a) If yt = yt

0

, then y(t[�

1

 s

1

; : : : ; �

n

 s

n

℄) = y(t

0

[�

1

 s

0

1

; : : : ; �

n

 s

0

n

℄).

(b) y(t[[�

1

 s

1

; : : : ; �

n

 s

n

℄℄) = y(t[[�

1

 s

0

1

; : : : ; �

n

 s

0

n

℄℄).

Proof. (a) Clearly, y(t[�

1

 s

1

; : : : ; �

n

 s

n

℄) equals (yt)[�

i

 ys

i

j i 2 [n℄℄ (note

that here the substitution is on strings). Sine yt = yt

0

and ys

i

= ys

0

i

, this equals

(yt

0

)[�

i

 ys

0

i

j i 2 [n℄℄ = y(t

0

[�

1

 s

0

i

; : : : ; �

n

 s

0

n

℄).

(b) This part is proved by indution on the struture of t. Let t = �(t

1

; : : : ; t

k

)

with k � 0, � 2 �

(k)

, and t

1

; : : : ; t

k

2 T

�

. Let [[�

1

 s

1

; : : : ; �

n

 s

n

℄℄ be denoted

by [[: : :℄℄ and let [[�

1

 s

0

1

; : : : ; �

n

 s

0

n

℄℄ be denoted by [[℄℄.

(i) If � = �

i

for an i 2 [n℄, then y(t[[: : :℄℄) = y(s

i

[y

j

 t

j

[[: : :℄℄ j j 2 [k℄℄). By

indution, y(t

j

[[: : :℄℄) = y(t

j

[[℄℄) for j 2 [k℄. Hene, by (a) (for t = s

i

, t

0

= s

0

i

, �

j

= y

j

,

s

j

= t

j

[[: : :℄℄, and s

0

j

= t

j

[[℄℄), this equals y(s

0

i

[y

j

 t

j

[[℄℄ j j 2 [k℄℄) = y(t[[℄℄).

(ii) Otherwise, y(t[[: : :℄℄) = y�(t

1

[[: : :℄℄; : : : ; t

k

[[: : :℄℄) = y(t

1

[[: : :℄℄) � � � y(t

k

[[: : :℄℄). By

the indution hypothesis we get y(t

1

[[℄℄) � � � y(t

k

[[℄℄) = y(t[[℄℄). �

2.3 Tree Translations and Relabelings

Let � and � be ranked alphabets. A subset L of T

�

is alled a tree language. A

(total) funtion � :T

�

! T

�

is alled a tree translation or simply translation. For

a tree language L � T

�

, �(L) denotes the set ft 2 T

�

j t = �(s) for some s 2 Lg

and yL = fyt j t 2 Lg. For a lass T of tree translations and a lass L of tree

languages, T (L) denotes the lass of tree languages f�(L) j � 2 T ; L 2 Lg and

yL = fyL j L 2 Lg.

A tree language is regular (or reognizable) if there is a �nite state tree automa-

ton reognizing it, or, equivalently, there is a regular tree grammar generating it. The

lass of regular tree languages is denoted by REGT. Note that sm(REG) � REGT .

The reader is assumed to be familiar with the basi properties of the regular tree

languages (see, e.g., [GS84,GS97℄).

A (total deterministi) �nite state relabeling M is a tuple (Q;�;�;R), where Q

is a �nite set of states, � and � are ranked alphabets of input and output symbols,

respetively, and R is a �nite set of rules suh that for every � 2 �

(k)

, k � 0, and

q

1

; : : : ; q

k

2 Q, R ontains exatly one rule of the form �(hq

1

; x

1

i; : : : ; hq

k

; x

k

i) !

hq; Æ(x

1

; : : : ; x

k

)i, where q 2 Q and Æ 2 �

(k)

. The rules of M are used as term

rewriting rules, and the derivation relation indued by M is denoted by)

M

; more

formally, for �; �

0

2 T

hQ;T

�

i[�

, �)

M

�

0

if and only if

{ there is a subtree �(hq

1

; t

1

i; : : : ; hq

k

; t

k

i) (rooted at node u) of � with � 2 �

(k)

,

k � 0, q

1

; : : : ; q

k

2 Q, and t

1

; : : : ; t

k

2 T

�

, and

5

{ �

0

= �[u hq; Æ(t

1

; : : : ; t

k

)i℄, where �(hq

1

; x

1

i; : : : ; hq

k

; x

k

i)! hq; Æ(x

1

; : : : ; x

k

)i

is a rule in R.

If we are only interested in the state q in whih M arrives for input s, then

we write s)

�

M

hq; i (to mean that s)

�

M

hq; ti for some tree t). Note that for

eah q 2 Q, fs 2 T

�

j s)

�

M

hq; ig is a regular tree language. The translation �

M

realized byM is f(s; t) 2 T

�

�T

�

j s)

�

M

hq; ti; q 2 Qg. The lass of all translations

that an be realized by �nite state relabelings is denoted by D

t

QRELAB .

3 Maro Tree Transduers

In this setion maro tree transduers are de�ned and some results whih will often

be used throughout the paper are realled. Furthermore, the nondeleting and sp

(simple in the parameters) properties are de�ned.

De�nition 2. A (total deterministi) maro tree transduer (for short, MTT) is a

tuple M = (Q;�; �; q

0

; R), where Q is a ranked alphabet of states, � and � are

ranked alphabets of input and output symbols, respetively, � \ Y = ?, q

0

2 Q

(0)

is the initial state, and R is a �nite set of rules of the following form. For every

q 2 Q

(m)

and � 2 �

(k)

with m; k � 0 there is exatly one rule of the form

hq; �(x

1

; : : : ; x

k

)i(y

1

; : : : ; y

m

)! � (�)

in R, where � 2 T

hQ;X

k

i[�

(Y

m

). �

A rule r of the form (�) is alled the (q; �)-rule of M and its right-hand side �

is denoted by rhs

M

(q; �); it is also alled a q-rule. The rules of M an be viewed

as term rewriting rules in the obvious way, with the input variables x

i

ranging over

T

�

and the parameters y

j

ranging over T

�

. Then M indues a derivation relation

)

M

on T

hQ;T

�

i[�

and an input tree s 2 T

�

is translated byM into the unique tree

t 2 T

�

with hq

0

; si)

�

M

t. Instead of using the derivation relation)

M

to de�ne the

translation realized byM , we use the following reursive de�nition of q-translations,

whih is based on seond-order tree substitution as de�ned in Setion 2.2.

De�nition 3. Let M = (Q;�;�; q

0

; R) be an MTT and let q 2 Q

(m)

be a state

of M . The q-translation of M is the total funtion M

q

: T

�

! T

�

(Y

m

) de�ned as

follows. For every � 2 �

(k)

, k � 0, and s

1

; : : : ; s

k

2 T

�

,

M

q

(�(s

1

; : : : ; s

k

)) = rhs

M

(q; �)[[hq

0

; x

i

i M

q

0

(s

i

) j hq

0

; x

i

i 2 hQ;X

k

i℄℄:

The translation realized by M, denoted by �

M

, is the q

0

-translation M

q

0

of M . �

Note that the q-translation of M an also be obtained using the derivation

relation)

M

disussed above, i.e., for every input tree s ofM , hq; si(y

1

; : : : ; y

m

))

�

M

M

q

(s) (f. Lemma 4.8 of [EV94℄). In proofs we will always use the q-translations of

M , but our intuition is often based on the derivation relation)

M

. For an example

of an MTT M , and the way it works, see Example 10 at the end of this setion.

The lass of all translations whih an be realized by MTTs is denoted by MTT.

A top-down tree transduer is an MTT all states of whih are of rank zero. The lass

of all translations whih an be realized by top-down tree transduers is denoted by

T . If a top-down tree transduer has only one state, then it is a tree homomorphism.

Note that every tree homomorphism is a seond-order tree substitution, and vie

versa.

The following two results are often used in this paper.

Lemma 4. (Corollary 4.10 of [EV85℄) T ÆMTT � MTT.

6

Lemma 5. (Theorem 4.12 of [EV85℄) MTT Æ T � MTT.

Sine regular look-ahead an be simulated by �nite state relabelings (see Corol-

lary IV.6.7 in [GS84℄), the fat that MTT is losed under regular look-ahead (The-

orem 4.21 of [EV85℄) an be stated as follows.

Lemma 6. D

t

QRELAB ÆMTT �MTT.

Reall from Setion 2.1 that for a string w = a

1

� � �a

n

, sm(w) is the monadi

tree a

1

(a

2

(� � � a

n

(e) � � �)). The next lemma shows that an MTT an turn the yield

ys of its input tree s into the monadi tree sm(ys).

Lemma 7. Let � be a ranked alphabet. There is an MTTM

�

with input alphabet

� suh that for every s 2 T

�

, �

M

�

(s) = sm(ys).

Proof. De�ne M

�

= (fq

(0)

0

; q

(1)

g; �; �; q

0

; R) with � = fa

(1)

j a 2 �

(0)

; a 6= eg [

fe

(0)

g. For every � 2 �

(k)

; k � 1, let the rules

hq

0

; �(x

1

; : : : ; x

k

)i ! hq; x

1

i(hq; x

2

i(: : : (hq; x

k

i(e)) : : :))

hq; �(x

1

; : : : ; x

k

)i(y

1

)! hq; x

1

i(hq; x

2

i(: : : (hq; x

k

i(y

1

)) : : :))

be in R, for every a 2 �

(0)

� feg let hq

0

; ai ! a(e) and hq; ai(y

1

)! a(y

1

) be in R,

and let hq

0

; ei ! e and hq; ei(y

1

)! y

1

be in R.

We now show that �

M

�

= y Æ sm. Let s = �(s

1

; : : : ; s

k

) with � 2 �

(k)

,

k � 0, and s

1

; : : : ; s

k

2 T

�

. Then �

M

�

(s) = M

q

0

(s) whih, by De�nition 3, equals

rhs

M

(q

0

; �)[[: : :℄℄ with [[: : :℄℄ = [[hq

0

; x

i

i M

q

0

(s

i

) j q

0

2 fq

0

; qg; i 2 [k℄℄℄. By the de�-

nition of the rules of M this equals rhs

M

(q; �)[y

1

 e℄[[: : :℄℄ = rhs

M

(q; �)[[: : :℄℄[y

1

e℄ =M

q

(s)[y

1

 e℄, whih, by the following laim, is equal to sm(ys).

Claim: For every s 2 T

�

, M

q

(s) = sm(ys)[e y

1

℄.

The proof is by indution on the struture of s. If s = e then M

q

(s) = y

1

=

sm(")[e y

1

℄ = sm(ys)[e y

1

℄, and if s = a 2 �

(0)

� feg then M

q

(s) = a(y

1

) =

sm(ys)[e y

1

℄. Let s = �(s

1

; : : : ; s

k

) with � 2 �

(k)

, k � 1, and s

1

; : : : ; s

k

2

T

�

. It follows from De�nition 3 that M

q

(s) = hq; x

1

i(� � � hq; x

k

i(y

1

) � � �) [[hq

0

; x

i

i

M

q

0

(s

i

) j q

0

2 fq

0

; qg; i 2 [k℄℄℄. Applying the indution hypothesis (and ombining

the substitution of y

1

) we get

sm(ys

1

)[e sm(ys

2

)[� � � [e sm(ys

k

)[e y

1

℄℄ � � � ℄℄:

Clearly, [e y

1

℄ an be moved out of the substitutions. By the fat that sm(w)[e

sm(w

0

)℄ = sm(ww

0

), we get sm(ys

1

� � � ys

k

)[e y

1

℄ = sm(ys)[e y

1

℄. �

A maro tree transduer M is nondeleting, if in the right-hand side of every

q-rule, for every state q of rank m � 1, eah parameter y

j

, j 2 [m℄, ours at

least one. This property makes sure that the output generated in a parameter

position annot be deleted. First, let us prove a small lemma whih says that also

in the translationsM

q

(s), every parameter of q ours. This is similar to Lemma 6.7

of [EM99℄, whih says that if every parameter y

j

ours exatly one in a right-hand

side (for all rules of M), then y

j

also ours exatly one in M

q

(s).

Lemma 8. Let M = (Q;�;�; q

0

; R) be a nondeleting MTT, q 2 Q

(m)

, m � 1,

and s 2 T

�

. Then for every j 2 [m℄, y

j

ours in M

q

(s).

Proof. Let j 2 [m℄. The proof is by indution on the struture of s. The indution

hypothesis is denoted by IH1. Let s = �(s

1

; : : : ; s

k

) with � 2 �

(k)

, k � 0, and

s

1

; : : : ; s

k

2 T

�

. By De�nition 3, M

q

(s) = rhs

M

(q; �)[[: : :℄℄ with [[: : :℄℄ = [[hq

0

; x

i

i

M

q

0

(s

i

) j hq

0

; x

i

i 2 hQ;X

k

i℄℄. Sine M is nondeleting, y

j

ours in t = rhs

M

(q; �)

and, by the following laim, y

j

ours in t[[: : :℄℄.

7

Claim: Let t 2 T

hQ;X

k

i[�

(Y

m

). If y

j

ours in t, then it ours in t[[: : :℄℄.

The laim is proved by indution on the struture of t. The indution hypoth-

esis is denoted by IH2. If t = y

j

, then t[[: : :℄℄ = y

j

. Let l � 1 and t

1

; : : : ; t

l

2

T

hQ;X

k

i[�

(Y

m

). If t = Æ(t

1

; : : : ; t

l

) with Æ 2 �

(l)

, then t[[: : :℄℄ = Æ(t

1

[[: : :℄℄; : : : ; t

l

[[: : :℄℄).

Sine y

j

ours in t, it ours in t

�

for some � 2 [l℄. By IH2, y

j

ours in t

�

[[: : :℄℄

and thus in t[[: : :℄℄. If t = hq

0

; x

i

i(t

1

; : : : ; t

l

) with hq

0

; x

i

i 2 hQ;X

k

i

(l)

, then t[[: : :℄℄ =

M

q

0

(s

i

)[y

�

 t

�

[[: : :℄℄ j � 2 [l℄℄. By the fat that y

j

ours in t, and by IH2, y

j

ours

in t

�

[[: : :℄℄ for some � 2 [l℄. By IH1, y

�

ours in M

q

0

(s

i

) and thus t

�

[[: : :℄℄ is a subtree

of t[[: : :℄℄. �

It was proved in Lemma 6.6 of [EM99℄ that every MTT M with regular look-

ahead an be turned into a nondeleting one whih realizes the same translation as

M . This an be stated in the following way (f. Lemma 6), where MTT

nd

denotes

the lass of all translations realized by nondeleting MTTs.

Lemma 9. MTT � D

t

QRELAB ÆMTT

nd

.

A maro tree transduer M is simple in the parameters (for short sp), if in the

right-hand side of every q-rule, for every state q of rank m � 1, eah parameter y

j

,

j 2 [m℄, ours exatly one (i.e., the rules of M are linear and nondeleting in Y

m

);

we say that M is an MTT

sp

. The lass of all translations that an be realized by

MTT

sp

s is denoted by MTT

sp

. Note that in [EM99℄, sp maro tree transduers are

said to be `nondeleting surp'.

Let us �nally onsider an example of an MTT

sp

.

Example 10. Let M = (Q;�;�; q

0

; R) be the MTT with Q = fq

(0)

0

; q

(2)

g, � =

f�

(2)

; a

(0)

; b

(0)

g, and R onsisting of the following rules.

hq

0

; �(x

1

; x

2

)i ! hq; x

2

i(hq

0

; x

1

i; hq

0

; x

1

i)

hq; �(x

1

; x

2

)i(y

1

; y

2

)! hq; x

2

i(�(y

1

; hq

0

; x

1

i); �(hq

0

; x

1

i; y

2

))

hq

0

; ai ! a

hq; ai(y

1

; y

2

) ! �(y

1

; y

2

)

hq

0

; bi ! b

hq; bi(y

1

; y

2

) ! �(y

2

; y

1

)

Note that M is sp beause both y

1

and y

2

appear exatly one in the right-hand

side of eah q-rule of M . Consider the input tree t = �(a; �(b; �(b; b))). Then a

derivation by M looks as follows.

hq

0

; ti)

M

hq; �(b; �(b; b))i(hq

0

; ai; hq

0

; ai)

)

�

M

hq; �(b; �(b; b))i(a; a)

)

M

hq; �(b; b)i(�(a; hq

0

; bi); �(hq

0

; bi; a))

)

�

M

hq; �(b; b)i(�(a; b); �(b; a))

)

�

M

hq; bi(�(�(a; b); b); �(b; �(b; a)))

)

M

�(�(b; �(b; a)); �(�(a; b); b))

Thus, �

M

(t) = �(�(b; �(b; a)); �(�(a; b); b)). This tree an be omputed in terms

of q-translations and q

0

-translations as follows. First, M

q

0

(b) = b and M

q

(b) =

�(y

2

; y

1

). Hene

M

q

(�(b; b))

= rhs

M

(q; �)[[hq

0

; x

i

i M

q

0

(b) j q

0

2 fq

0

; qg; 1 � i � 2℄℄

= hq; x

2

i(�(y

1

; hq

0

; x

1

i); �(hq

0

; x

1

i; y

2

))[[hq; x

2

i �(y

2

; y

1

); hq

0

; x

1

i b℄℄

= �(y

2

; y

1

)[y

1

 �(y

1

; b); y

2

 �(b; y

2

)℄

= �(�(b; y

2

); �(y

1

; b)):

8

Next,

M

q

(�(b; �(b; b))) = rhs

M

(q; �)[[hq; x

2

i M

q

(�(b; b)); hq

0

; x

1

i M

q

0

(b)℄℄

=M

q

(�(b; b))[y

1

 �(y

1

; b); y

2

 �(b; y

2

)℄

= �(�(b; y

2

); �(y

1

; b))[y

1

 �(y

1

; b); y

2

 �(b; y

2

)℄

= �(�(b; �(b; y

2

)); �(�(y

1

; b); b)):

Finally, M

q

0

(a) = a and

�

M

(t) =M

q

0

(t)

= rhs

M

(q

0

; �)[[hq; x

2

i M

q

(�(b; �(b; b))); hq

0

; x

1

i M

q

0

(a)℄℄

=M

q

(�(b; �(b; b))[y

1

 a; y

2

 a℄

= �(�(b; �(b; a)); �(�(a; b); b)):

�

M

(s[x a℄) =

a

n�1

a

n

�

�

a

2

a

1

�

a

n�1

�

�

�

a

2

a

1

a

n

�

Fig. 1. Translations of M for the input trees s[x a℄

�

M

(s[x b℄) =

a

n�1

�

�

�

a

2

a

1

a

n�1

a

n

�

�

a

2

a

1

�

�

a

n

Fig. 2. Translations of M for the input trees s[x b℄

In Figures 1 and 2 it is shown how the translations for input trees of the form

s = �(a

1

; �(a

2

; : : : �(a

n

; x) : : :))

with a

1

; : : : ; a

n

2 �

(0)

, n � 1, and x = a and x = b, respetively, look like. If x = a

then y�

M

(s) = ww

r

and if x = b then y�

M

(s) = w

r

w, where w = a

1

� � �a

n

(and

reall from the Preliminaries that w

r

denotes the reverse of w). �

4 Closure Properties

In this setion we prove two losure properties of MTTs. First, that the lass MTT

of maro tree translations is losed under omposition with �nite state relabelings,

and seond, that, with respet to output string languages, the lassMTT (L), for an

arbitrary lass L of tree languages, is losed under translations realized by MTT

sp

s.

To prove the seond losure property, it will be shown in Theorem 15 that, when

applied to a lass of tree languages losed under �nite state relabelings, MTT

sp

s

generate the same lass of string languages as top-down tree transduers.

9

Let us move to the �rst losure property. We want to show that for an MTT M

and a �nite state relabelingN there is an MTTM

0

with �

M

0

= �

M

Æ�

N

(f. Lemma 6,

whih proves this for the opposite order of the omposition, i.e., that �

N

Æ �

M

an

be realized by an MTT). In fat, the result MTT Æ D

t

QRELAB � MTT an also

be obtained from known results as follows. By Theorem 4.8 of [EV85℄, MTT =

T ÆYIELD (for YIELD, see Setion 7). Thus,MTT ÆD

t

QRELAB equals T ÆYIELDÆ

D

t

QRELAB . By Lemma 3.11 of [DE98℄ this is inluded in T ÆQRELAB ÆYIELD,

where QRELAB denotes the lass of nondeterministi �nite state relabelings. More

preisely, we only need to onsider total funtions in T ÆQRELAB ÆYIELD, beause

MTTÆD

t

QRELAB onsists of total funtions only. Thus,MTT ÆD

t

QRELAB � (T Æ

QRELABÆYIELD)\F , where F is the lass of all total funtions. From the theorem

of [Eng78℄ it follows that, for every funtion f in T Æ QRELAB Æ YIELD, there is

a top-down tree transduer M with regular look-ahead suh that f 2 �

M

ÆYIELD.

Sine the look-ahead an be simulated by a relabeling in D

t

QRELAB we obtain

f 2 D

t

QRELABÆT ÆYIELD = D

t

QRELABÆMTT, whih is in MTT by Lemma 6.

Hene, MTT ÆD

t

QRELAB �MTT. We now give an elementary proof of this fat.

Lemma 11. MTT ÆD

t

QRELAB � MTT.

Proof. Let M = (Q;�;�; q

0

; R) be an MTT and let N = (Q

N

; �;
;R

N

) be a

�nite state relabeling. We will onstrut a �nite state relabeling N

0

and an MTT

M

0

suh that �

N

0

Æ �

M

0

= �

M

Æ �

N

. By Lemma 6, �

M

Æ �

N

2 MTT.

The (standard) idea is to onstrut the MTT M

0

from M by running the �nite

state relabeling N on the right-hand sides � of the rules of M . To do this we

need to know, for y

j

ourring in �, in whih state the relabeling N arrives after

proessing the tree that will be substituted for y

j

. This (top-down) information an

be represented by a mapping ' : [m℄ ! Q

N

(if � is the right-hand side of a q-rule

and q is of rank m) and an be oded into the states of M

0

. More preisely, we

hoose the set Q

0

of states of M

0

as

Q

0

= f(q; ')

(m)

j q 2 Q

(m)

;m � 0; ' : [m℄! Q

N

g:

Similarly, for a subtree hq

0

; x

i

i(t

1

; : : : ; t

l

) of � we need to know, given that N arrives

in state p

�

after proessing t

�

for � 2 [l℄, in whih stateN arrives after proessing the

treeM

q

0

(s

i

) that will be substituted for hq

0

; x

i

i. This information an be represented

by a funtion �

i

for i 2 [k℄ whih assoiates with every q

0

2 Q

(l)

a mapping of type

Q

l

N

! Q

N

. We use the (bottom-up) �nite state relabeling N

0

to replae every

symbol � by the new symbol (�; �

1

; : : : ; �

k

), where �

i

is the orresponding funtion

determining the state hange of N on the trees M

q

0

(s

i

).

In order to translate the right-hand side of a (q; �)-rule ofM , with q 2 Q

(m)

, � 2

�

(k)

, andm; k � 0, the �nite state relabelingN is extended as follows. Let �

1

; : : : ; �

k

be funtions whih assoiate with every q

0

2 Q

(l)

a mapping �(q

0

) : Q

l

N

! Q

N

and

let ' : [m℄! Q

N

. ThenN

';(�

1

;:::;�

k

)

= (Q

N

; hQ;X

k

i[�[P; hQ

0

; X

k

i[
[P;R

N

[S)

is the extension of N to input trees in T

hQ;X

k

i[�

(Y

m

), where P = fy

(0)

j

j j 2 [m℄g

and the set S of additional rules is de�ned as follows. For every j 2 [m℄, y

j

!

h'(j); y

j

i is in S, and for every hq

0

; x

i

i 2 hQ;X

k

i

(l)

, l � 0, and p

1

; : : : ; p

l

2 Q

N

the

rule

hq

0

; x

i

i(hp

1

; x

1

i; : : : ; hp

l

; x

l

i)! h�

i

(q

0

)(p

1

; : : : ; p

l

); h(q

0

; '

0

); x

i

i(x

1

; : : : ; x

l

)i

is in S, with '

0

: [l℄! Q

N

and '

0

(�) = p

�

for all � 2 [l℄.

De�ne N

0

= (Q

N

0

; �; �;R

N

0

), where

{ Q

N

0

is the set of all funtions � whih assign to every q 2 Q

(l)

with l � 0 a

mapping �(q) : Q

l

N

! Q

N

.

10

{ � = f(�; �

1

; : : : ; �

k

)

(k)

j � 2 �

(k)

, k � 0, �

1

; : : : ; �

k

2 Q

N

0

g and

{ for every � 2 �

(k)

, k � 0, and �

1

; : : : ; �

k

2 Q

N

0

, the rule

�(h�

1

; x

1

i; : : : ; h�

k

; x

k

i)! h�; (�; �

1

; : : : ; �

k

)(x

1

; : : : ; x

k

)i

is in R

N

0

, where � is de�ned as follows. For every q 2 Q

(m)

, m � 0, and

p

1

; : : : ; p

m

2 Q

N

, �(q)(p

1

; : : : ; p

m

) = p, with p 2 Q

N

suh that

rhs

M

(q; �))

�

N

';(�

1

;:::;�

k

)

hp; i

and ' : [m℄! Q

N

with '(j) = p

j

for every j 2 [m℄. Reall from Setion 2.3 that

t)

�

N

';(�

1

;:::;�

k

)

hp; i means that there is a t

0

suh that t)

�

N

';(�

1

;:::;�

k

)

hp; t

0

i.

We now de�ne the MTT M

0

= (Q

0

; �;
; q

0

0

; R

0

) with Q

0

as above, q

0

0

= (q

0

;?),

and R

0

as follows. For every (q; ') 2 Q

0

(m)

, (�; �

1

; : : : ; �

k

) 2 �

0

(k)

, and m; k � 0,

h(q; '); (�; �

1

; : : : ; �

k

)(x

1

; : : : ; x

k

)i(y

1

; : : : ; y

m

)! �

is a rule in R

0

, where rhs

M

(q; �))

�

N

';(�

1

;:::;�

k

)

hp; �i for some p 2 Q

N

, i.e., � =

�

N

';(�

1

;:::;�

k

)

(rhs

M

(q; �)).

Let us now prove the orretness of this onstrution. For m � 0 and ' : [m℄!

Q

N

let N

'

= N

';(�

1

;:::;�

k

)

with k = 0, i.e., N

'

is the extension of N to trees

in T

�

(Y

m

) obtained by adding the rules y

j

! h'(j); y

j

i for every j 2 [m℄. The

orretness, i.e., that �

M

0

(�

N

0

(s)) = �

N

(�

M

(s)) for every s 2 T

�

, follows from

Claim 1(a) for (q; ') = (q

0

;?), beause N

?

= N .

Claim 1: For every s 2 T

�

, (q; ') 2 Q

0

(m)

with m � 0, and � 2 Q

N

0

,

(a) M

0

(q;')

(�

N

0

(s)) = �

N

'

(M

q

(s)) and

(b) if s)

�

N

0

h�; i, then M

q

(s))

�

N

'

h�(q)('(1); : : : ; '(m)); i.

The laim is proved by indution on the struture of s. Let s = �(s

1

; : : : ; s

k

)

with � 2 �

(k)

, k � 0, and s

1

; : : : ; s

k

2 T

�

. The indution hypothesis is denoted by

IH1. Let �

1

; : : : ; �

k

2 Q

N

0

suh that s

i

)

�

N

0

h�

i

; i for every i 2 [k℄.

First, part (a) of the laim is proved. It follows from the de�nition of N

0

that M

0

(q;')

(�

N

0

(s)) =M

0

(q;')

((�; �

1

; : : : ; �

k

)(�

N

0

(s

1

); : : : ; �

N

0

(s

k

))). By De�nition 3

this equals rhs

M

0

((q; '); (�; �

1

; : : : ; �

k

))[[

M

0

℄℄, where [[

M

0

℄℄ denotes the substitution

[[h(q

0

; '

0

); x

i

i M

0

(q

0

;'

0

)

(�

N

0

(s

i

)) j h(q

0

; '

0

); x

i

i 2 hQ

0

; X

k

i℄℄. By the de�nition of M

0

and IH1(a) this equals �

N

';(�

1

;:::;�

k

)

(rhs

M

(q; �))[[

NM

℄℄, where [[

NM

℄℄ = [[h(q

0

; '

0

); x

i

i

�

N

'

0

(M

q

0

(s

i

)) j h(q

0

; '

0

); x

i

i 2 hQ

0

; X

k

i℄℄. It follows from Claim 2(a) below, for

t = rhs

M

(q; �), that �

N

';(�

1

;:::;�

k

)

(rhs

M

(q; �))[[

NM

℄℄ equals �

N

'

(rhs

M

(q; �)[[

M

℄℄) with

[[

M

℄℄ = [[hq

0

; x

i

i M

q

0

(s

i

) j hq

0

; x

i

i 2 hQ;X

k

i℄℄. This equals �

N

'

(M

q

(s)).

For the (b) part, if s)

�

N

0

h�; i, then there are �

1

; : : : ; �

k

; � 2 T

�

0

with

s

i

)

�

N

0

h�

i

; �

i

i for all i 2 [k℄ and �(h�

1

; �

1

i; : : : ; h�

k

; �

k

i))

N

0

h�; �i. By the de�ni-

tion of N

0

, if �(h�

1

; �

1

i; : : : ; h�

k

; �

k

i))

N

0

h�; �i, then, for every (q; ') 2 Q

0

(m)

and m � 0, rhs

M

(q; �))

�

N

';(�

1

;:::;�

k

)

h�(q)('(1); : : : ; '(m)); i. By Claim 2(b)

for t = rhs

M

(q; �) and p = �(q)('(1); : : : ; '(m)): M

q

(s) = rhs

M

(q; �)[[

M

℄℄)

�

N

'

h�(q)('(1); : : : ; '(m)); i. This onludes the proof of Claim 1.

Claim 2: For every m � 0, ' : [m℄! Q

N

, p 2 Q

N

, and t 2 T

hQ;X

k

i[�

(Y

m

),

(a) �

N

';(�

1

;:::;�

k

)

(t)[[

NM

℄℄ = �

N

'

(t[[

M

℄℄) and

(b) if t)

�

N

';(�

1

;:::;�

k

)

hp; i, then t[[

M

℄℄)

�

N

'

hp; i.

11

Claim 2 is proved by indution on the struture of t. We denote the indution

hypothesis by IH2.

If t = y

j

2 Y

m

, then t)

N

';(�

1

;:::;�

k

)

h'(j); ti and t[[

NM

℄℄ = t, and t[[

M

℄℄ = t)

N

'

h'(j); ti, by the de�nition of N

';(�

1

;:::;�

k

)

and N

'

, respetively. This proves both

(a) and (b). Let l � 0 and t

1

; : : : ; t

l

2 T

hQ;X

k

i[�

(Y

m

).

If t = Æ(t

1

; : : : ; t

l

) with Æ 2 �

(l)

, then �

N

';(�

1

;:::;�

k

)

(t)[[

NM

℄℄ = (�

N

';(�

1

;:::;�

k

)

(t

1

);

: : : ; �

N

';(�

1

;:::;�

k

)

(t

l

))[[

NM

℄℄, with 2 � suh that Æ(hp

1

; x

1

i; : : : ; hp

k

; x

k

i)! hp; (x

1

;

: : : ; x

k

)i is a rule of N (and thus of N

';(�

1

;:::;�

k

)

) and t

�

)

�

N

';(�

1

;:::;�

k

)

hp

�

; i for � 2

[k℄. By IH2(a), �

N

';(�

1

;:::;�

k

)

(t

�

)[[

NM

℄℄ equals �

N

'

(t

�

[[

M

℄℄) and by IH2(b) t

�

[[

M

℄℄)

�

N

'

hp

�

; i. Sine N

'

has the same rule Æ(hp

1

; x

1

i; : : : ; hp

k

; x

k

i) ! hp; (x

1

; : : : ; x

k

)i

of N it follows that the derivations by)

N

';(�

1

;:::;�

k

)

and)

N

'

both end with

hp; i whih shows the (b) part, and (�

N

';(�

1

;:::;�

k

)

(t

1

); : : : ; �

N

';(�

1

;:::;�

k

)

(t

l

))[[

NM

℄℄ =

(�

N

'

(t

1

[[

M

℄℄); : : : ; �

N

'

(t

l

[[

M

℄℄)) = �

N

'

(Æ(t

1

[[

M

℄℄; : : : ; t

l

[[

M

℄℄)) = �

N

'

(t[[

M

℄℄), whih

shows the (a) part.

Finally, let t = hq

0

; x

i

i(t

1

; : : : ; t

l

) with hq

0

; x

i

i 2 hQ;X

k

i

(l)

. If t)

�

N

';(�

1

;:::;�

k

)

hp; i, then there are p

1

; : : : ; p

l

2 Q

N

and �

1

; : : : ; �

l

; � 2 T

hQ;X

k

i[�

(Y

m

) suh that

t

�

)

�

N

';(�

1

;:::;�

k

)

hp

�

; �

�

i for � 2 [l℄ and hq

0

; x

i

i(hp

1

; �

1

i; : : : ; hp

l

; �

l

i))

N

';(�

1

;:::;�

k

)

hp; �i, whih, by de�nition of N

';(�

1

;:::;�

k

)

, implies that p = �

i

(q

0

)(p

1

; : : : ; p

l

). Now

t

�

)

�

N

';(�

1

;:::;�

k

)

hp

�

; i implies t

�

[[

M

℄℄)

�

N

'

hp

�

; i by IH2(b), i.e., t

�

[[

M

℄℄)

�

N

'

hp

�

; �

N

'

(t

�

[[

M

℄℄)i, and so

t[[

M

℄℄)

�

N

'

M

q

0

(s

i

)[y

�

 hp

�

; �

N

'

(t

�

[[

M

℄℄)i j � 2 [l℄℄ = �;

by the de�nition of [[

M

℄℄. Now let '

0

: [l℄ ! Q

N

with '

0

(�) = p

�

for every

� 2 [l℄. Sine s

i

)

�

N

0

h�

i

; i, it follows from IH1(b) and the de�nition of '

0

that

M

q

0

(s

i

))

�

N

'

0

�

0

= M

q

0

(s

i

)[y

�

 hp

�

; y

�

i j � 2 [l℄℄ and �

0

)

�

N

'

0

hp; �

N

'

0

(M

q

0

(s

i

))i.

Clearly, the latter derivation also holds for N

'

, and so �)

�

N

'

hp; �i, where � =

�

N

'

0

(M

q

0

(s

i

))[y

�

 �

N

'

(t

�

[[

M

℄℄) j � 2 [l℄℄. Hene t[[

M

℄℄)

�

N

'

�)

�

N

'

hp; �i. This

proves part (b).

By IH2(a), �

N

'

(t

�

[[

M

℄℄) = �

N

';(�

1

;:::;�

k

)

(t

�

)[[

NM

℄℄ for every � 2 [l℄. Thus, � =

�

N

'

0

(M

q

0

(s

i

))[y

�

 �

N

';(�

1

;:::;�

k

)

(t

�

)[[

NM

℄℄ j � 2 [l℄℄. By the de�nition of [[

NM

℄℄ this

equals h(q

0

; '

0

); x

i

i(�

N

';(�

1

;:::;�

k

)

(t

1

); : : : ; �

N

';(�

1

;:::;�

k

)

(t

l

))[[

NM

℄℄ whih, by the de�ni-

tion of N

';(�

1

;:::;�

k

)

, equals �

N

';(�

1

;:::;�

k

)

(t)[[

NM

℄℄. This ends the proof of Claim 2.

�

It was mentioned in the Conlusions of [EV85℄ as an open problem whether the

lass of maro tree translations is losed under omposition with T

R

, the lass of

top-down tree translations with regular look-ahead. Sine T

R

equals D

t

QRELABÆT

(see Theorem 2.6 of [Eng77℄) it follows from Lemma 11 that MTT Æ T

R

� MTT Æ

D

t

QRELAB Æ T �MTT Æ T , and by Lemma 5, MTT Æ T � MTT .

Corollary 12. MTT Æ T

R

�MTT.

We now move to the seond losure property. The main part of the proof of

this losure property onsists of proving Theorem 15 whih says that, for a lass

L of tree languages losed under �nite state relabelings, yMTT

sp

(L) = yT (L). In

essene this is proved in the following lemma, whih shows how to generate by a

top-down tree transduer the string language generated by an MTT

sp

.

Lemma 13. MTT

sp

Æ y � D

t

QRELAB Æ T Æ y.

Proof. Let M = (Q;�;�; q

0

; R) be an MTT

sp

. We will onstrut a �nite state

relabeling N and a top-down tree transduer M

0

suh that for every s 2 T

�

,

12

y(�

M

0

(�

N

(s))) = y�

M

(s). The idea is as follows. Let q 2 Q

(m)

and s 2 T

�

. Then,

sine M is sp, yM

q

(s) is of the form

w = w

0

y

j

1

w

1

y

j

2

w

2

� � � y

j

m

w

m

;

where j

1

; : : : ; j

m

2 [m℄ are pairwise di�erent and w

0

; : : : ; w

m

2 (�

(0)

)

�

. For a string

of the form w and for 0 � � � m we denote by part

�

(w) the string w

�

. For

every � the top-down tree transduer M

0

has a state (q; �) whih omputes w

�

.

The information on the order of the parameters, i.e., the string res

Y

(yM

q

(s)) 2

Y

�

m

, will be determined by the �nite state relabeling N in suh a way that � 2

�

(k)

is relabeled by (�; per

1

; : : : ; per

k

), where for eah i 2 [k℄, per

i

is a mapping

assoiating with every q 2 Q

(m)

a permutation of the string y

1

� � � y

m

. For instane,

if s

i

equals the tree s from above, then the � in �(s

1

; : : : ; s

i

; : : : ; s

k

) is relabeled by

(�; per

1

; : : : ; per

k

) and per

i

(q) = res

Y

(w) = y

j

1

� � � y

j

m

.

Formally, N = (Q

N

; �; �;R

N

), where

{ Q

N

is the set of all mappings per whih assoiate with every q 2 Q

(m)

a string

in Y

�

m

whih is a permutation of y

1

� � � y

m

.

{ � = f(�; per

1

; : : : ; per

k

)

(k)

j � 2 �

(k)

; k � 0; per

1

; : : : ; per

k

2 Q

N

g.

{ For every � 2 �

(k)

, k � 0, and per

1

; : : : ; per

k

2 Q

N

let

�(hper

1

; x

1

i; : : : ; hper

k

; x

k

i)! hper; (�; per

1

; : : : ; per

k

)(x

1

; : : : ; x

k

)i

be in R

N

, where for every q 2 Q

(m)

, per(q) = res

Y

(y(rhs

M

(q; �)�)) and �

denotes the seond-order substitution

[[hq

0

; x

i

i omb

b

(per

i

(q

0

)) j hq

0

; x

i

i 2 hQ;X

k

i℄℄;

where b is an arbitrary binary symbol (see Setion 2.1 for omb

b

).

It follows from Claim 1 that N realizes the relabeling as desribed.

Claim 1: Let q 2 Q

(m)

, m � 0, and s 2 T

�

. If s)

�

N

hper; i, then per(q) =

res

Y

(yM

q

(s)).

The proof of this laim is by indution on the struture of s. The indution

hypothesis is denoted by IH1. Let s = �(s

1

; : : : ; s

k

) with � 2 �

(k)

, k � 0, and

s

1

; : : : ; s

k

2 T

�

. Then s)

�

N

hper; i if there are per

1

; : : : ; per

k

2 Q

N

suh that

s

i

)

�

N

hper

i

; �

N

(s

i

)i for i 2 [k℄ and �(hper

1

; �

N

(s

1

)i; : : : ; hper

k

; �

N

(s

k

)i))

N

hper; i, where per(q) = res

Y

(y(t�)), t = rhs

M

(q; �), and � as in the de�ni-

tion of N . Let [[: : :℄℄ = [[hq

0

; x

i

i M

q

0

(s

i

) j hq

0

; x

i

i 2 hQ;X

k

i℄℄. By Claim 2,

res

Y

(y(t�)) = res

Y

(y(t[[: : :℄℄)) = res

Y

(yM

q

(s)).

Claim 2: For every t 2 T

hQ;X

k

i[�

(Y

m

), res

Y

(y(t�)) = res

Y

(y(t[[: : :℄℄)).

This laim is proved by indution on the struture of t. The indution hypothesis

is denoted by IH2. If t = y

j

2 Y

m

, then res

Y

(y(t�)) = res

Y

(yt) = res

Y

(y(t[[: : :℄℄)).

Let l � 0 and t

1

; : : : ; t

l

2 T

hQ;X

k

i[�

(Y

m

).

If t = Æ(t

1

; : : : ; t

l

), then res

Y

(y(t�)) = res

Y

(y(Æ(t

1

�; : : : ; t

l

�))) = res

Y

(y(t

1

�)

� � � y(t

l

�)) = res

Y

(y(t

1

�)) � � � res

Y

(y(t

l

�)). By IH2 this equals res

Y

(y(t

1

[[: : :℄℄)) � � �

res

Y

(y(t

l

[[: : :℄℄)) = res

Y

(y(t

1

[[: : :℄℄) � � � y(t

l

[[: : :℄℄)) = res

Y

(t[[: : :℄℄).

If t = hq

0

; x

i

i(t

1

; : : : ; t

l

), then res

Y

(y(t�)) = res

Y

(y(omb

b

(per

i

(q

0

))[y

j

 t

j

� j

j 2 [l℄℄)). By applying yield we get res

Y

(per

i

(q

0

)[y

j

 y(t

j

�) j j 2 [l℄℄) and applia-

tion of res

Y

gives per

i

(q

0

)[y

j

 res

Y

(y(t

j

�)) j j 2 [l℄℄. By IH1 and IH2 this equals

res

Y

(yM

q

0

(s

i

))[y

j

 res

Y

(y(t

j

[[: : :℄℄)) j j 2 [l℄℄ = res

Y

(y(M

q

0

(s

i

)[y

j

 t

j

[[: : :℄℄ j j 2

[l℄℄)) = res

Y

(y(t[[: : :℄℄)).

We now de�ne the top-down tree transduer M

0

= (Q

0

; �;�

0

; (q

0

; 0); R

0

), where

{ Q

0

= f(q; �)

(0)

j q 2 Q

(m)

; 0 � � � mg,

13

{ �

0

= �

(0)

[fb

(2)

; e

(0)

g, and

{ for every (q; �) 2 Q

0

, (�; per

1

; : : : ; per

k

) 2 �

(k)

, and k � 0, the rule

h(q; �); (�; per

1

; : : : ; per

k

)(x

1

; : : : ; x

k

)i ! �

is in R

0

, where � = omb

b

(part

�

(y(��))), � = rhs

M

(q; �), and � is the substi-

tution

[[hq

0

; x

i

i omb

b

(h(q

0

; 0); x

i

iper

i

(q

0

)(1)h(q

0

; 1); x

i

iper

i

(q

0

)(2) � � �

per

i

(q

0

)(m)h(q

0

;m); x

i

i) j hq

0

; x

i

i 2 hQ;X

k

i

(m)

;m � 0℄℄:

Reall from the Preliminaries that per

i

(q)(j) denotes the j-th symbol of per

i

(q).

We now prove the orretness ofM

0

, i.e., that for every s 2 T

�

, y(�

M

0

(�

N

(s))) =

y�

M

(s). It follows from Claim 3 for (q; �) = (q

0

; 0).

Claim 3: For every (q; �) 2 Q

0

and s 2 T

�

, yM

0

(q;�)

(�

N

(s)) = part

�

(yM

q

(s)).

The proof of this laim is by indution on the struture of s. Let s =�(s

1

; : : : ; s

k

),

� 2 �

(k)

, k � 0, and s

1

; : : : ; s

k

2 T

�

. Then yM

0

(q;�)

(�

N

(s)) = yM

0

(q;�)

((�; per

1

;

: : : ; per

k

)(�

N

(s

1

); : : : ; �

N

(s

k

))). By De�nition 3 and the fat that M

0

is a top-

down tree transduer, i.e., all elements of hQ;X

k

i are of rank zero, this equals

y(�[: : : ℄), where � = rhs

M

0

((q; �); (�; per

1

; : : : ; per

k

)) and [: : : ℄ = [h(q

0

; �

0

); x

i

i

M

0

(q

0

;�

0

)

(�

N

(s

i

)) j h(q

0

; �

0

); x

i

i 2 hQ

0

; X

k

i℄. By the de�nition of the rules of M

0

,

� = omb

b

(part

�

(y(��))), where � = rhs

M

(q; �) and � as in the de�nition ofM

0

. By

indution, yM

0

(q

0

;�

0

)

(�

N

(s

i

)) = part

�

0

(yM

q

0

(s

i

)) for every h(q

0

; �

0

); x

i

i 2 hQ

0

; X

k

i.

Thus, we an apply Lemma 1(a) and replaeM

0

(q

0

;�

0

)

(�

N

(s

i

)) by omb

b

(part

�

0

(yM

q

0

(

s

i

))) in [: : : ℄, to get y(omb

b

(part

�

(y(��)))[℄) with [℄ = [h(q

0

; �

0

); x

i

i omb

b

(

part

�

0

(yM

q

0

(s

i

))) j h(q

0

; �

0

); x

i

i 2 hQ

0

; X

k

i℄). We an now apply yield and then move

the (string) substitution that orresponds to [℄ inside the appliation of part

�

and

yield, beause part

�

0

(yM

q

0

(s

i

)) 2 (�

(0)

)

�

. We get part

�

(y(��[℄)). By appliation

of [℄ we obtain that ��[℄ = �[[hq

0

; x

i

i t

hq

0

;x

i

i

j hq

0

; x

i

i 2 hQ;X

k

i

(m)

;m � 0℄℄,

where, by the de�nition of �, eah tree t

hq

0

;x

i

i

has yield w

0

y

j

1

w

1

� � � y

j

m

w

m

with

w

�

0

= part

�

0

(yM

q

0

(s

i

)) for 0 � �

0

� m, and, y

j

�

0

= per

i

(q

0

)(�

0

) for �

0

2 [m℄. By

Claim 1, per

i

(q

0

)(�

0

) equals res

Y

(yM

q

0

(s

i

))(�

0

). Hene, yt

hq

0

;x

i

i

equals

part

0

(yM

q

0

(s

i

))res

Y

(yM

q

0

(s

i

))(1)part

1

(yM

q

0

(s

i

)) � � �

res

Y

(yM

q

0

(s

i

))(m)part

m

(yM

q

0

(s

i

));

whih equals yM

q

0

(s

i

). By Lemma 1(b) we an replae t

hq

0

;x

i

i

by M

q

0

(s

i

) to get

part

�

(y(�[[hq

0

; x

i

i M

q

0

(s

i

) j hq

0

; x

i

i 2 hQ;X

k

i℄℄)) = part

�

(yM

q

(s)). �

Let us take a look at an example of an appliation of the onstrution in the

proof of Lemma 13.

Example 14. Let M be the MTT

sp

of Example 10. We onstrut the �nite state

relabeling N and the top-down tree transduer M

0

following the onstrution in

the proof of Lemma 13. Let N = (Q

N

; �; �;R

N

) be the �nite state relabeling

with Q

N

= fq

12

; q

21

g, q

12

= f(q

0

; "); (q; y

1

y

2

)g, q

21

= f(q

0

; "); (q; y

2

y

1

)g, and � =

f(�; q

12

; q

12

)

(2)

; (�; q

12

; q

21

)

(2)

, (�; q

21

; q

12

)

(2)

, (�; q

21

; q

21

)

(2)

, a

(0)

; b

(0)

g, where a and

b stand for (a) and (b), respetively. The set R

N

onsists of the rules

a! hq

12

; ai

b! hq

21

; bi

�(hr; x

1

i; hr

0

; x

2

i)! hr

0

; (�; r; r

0

)(x

1

; x

2

)i for all r; r

0

2 Q

N

:

14

Consider again the input tree t = �(a; �(b; �(b; b))). Then �

N

(t) equals

(�; q

12

; q

21

)(a; (�; q

21

; q

21

)(b; (�; q

21

; q

21

)(b; b))):

We now onstrut the top-down tree transduerM

0

. LetM

0

= (Q

0

; �;�

0

; (q

0

; 0);

R

0

) with Q

0

= f(q

0

; 0)

(0)

; (q; 0)

(0)

; (q; 1)

(0)

; (q; 2)

(0)

g and �

0

= �

(0)

[f

(2)

; e

(0)

g

(where is the symbol b from the proof of Lemma 13, used to make ombs). For

simpliity we write down the rules of M

0

as tree-to-string rules, i.e., we merely

show the yield of the orresponding right-hand side. Let us onsider in detail how

to obtain the right-hand sides of the ((q; �); (�; r; q

21

))-rules for 0 � � � 2 and

r 2 Q

N

. Sine we are only interested in the yields, we have to onsider the string

v = y(rhs

M

(q; �)�), where � is de�ned as in the proof of Lemma 13. This string

equals

h(q; 0); x

2

ih(q

0

; 0); x

1

i

| {z }

part

0

(v)

y

2

h(q; 1); x

2

i

| {z }

part

1

(v)

y

1

h(q

0

; 0); x

1

ih(q; 2); x

2

i

| {z }

part

2

(v)

:

Hene, for every r 2 Q

N

and 0 � � � 2, yrhs

M

0

((q; �); (�; r; q

21

)) = part

�

(v);

similarly we get yrhs

M

0

((q; 0); (�; r; q

12

)) = h(q; 0); x

2

i,

yrhs

M

0

((q; 1); (�; r; q

12

)) = h(q

0

; 0); x

1

ih(q; 1); x

2

ih(q

0

; 0); x

1

i,

yrhs

M

0

((q; 2); (�; r; q

12

)) = h(q; 2); x

2

i.

The remaining rules are, for 0 � � � 2 and r; r

0

2 Q

N

,

h(q

0

; 0); (�; r; r

0

)(x

1

; x

2

)i ! h(q; 0); x

2

ih(q

0

; 0); x

1

ih(q; 1); x

2

ih(q

0

; 0); x

1

ih(q; 2); x

2

i

h(q

0

; 0); ai ! a

h(q

0

; 0); bi ! b

h(q; �); ai ! "

h(q; �); bi ! "

Consider the derivation by M

0

with input tree t

0

= �

N

(t) (shown above), where

t

0

=2 = �

N

(�(b; �(b; b))) and t

0

=22 = �

N

(�(b; b)); again we merely show the orre-

sponding yields.

h(q

0

; 0); t

0

i

)

M

0

h(q; 0); t

0

=2ih(q

0

; 0); aih(q; 1); t

0

=2ih(q

0

; 0); aih(q; 2); t

0

=2i

)

�

M

0

h(q; 0); t

0

=22ih(q

0

; 0); bi a h(q; 1); t

0

=22i a h(q

0

; 0); bih(q; 2); t

0

=22i

)

�

M

0

h(q; 0); bi bba h(q; 1); bi abb h(q; 2); bi

)

�

M

0

bbaabb:

Thus, indeed, y�

M

0

(�

N

(t)) = y�

M

(t); see Example 10 for �

M

(t).

Let us also show how yM

0

(q

0

;0)

(t

0

) an be obtained in terms of q

0

-translations

for the states q

0

of M

0

. Sine we only onsider the orresponding yields, all of the

following substitutions are on strings. First, yM

0

(q

0

;0)

(b) = b and yM

0

(q;�)

(b) = " for

0 � � � 2. Thus,

yM

0

(q;0)

(t

0

=22)

= yrhs

M

0

((q; 0); (�; q

21

; q

21

))[h(q; 0); x

2

i yM

0

(q;0)

(b); h(q

0

; 0); x

1

i yM

0

(q

0

;0)

(b)℄

= h(q; 0); x

2

ih(q

0

; 0); x

1

i[h(q; 0); x

2

i "; h(q

0

; 0); x

1

i b℄ = b,

yM

0

(q;1)

(t

0

=22) = yrhs

M

0

((q; 1); (�; q

21

; q

21

))[h(q; 1); x

2

i yM

0

(q;1)

(b)℄

= yM

0

(q;1)

(b) = ", and

yM

0

(q;2)

(t

0

=22)

= yrhs

M

0

((q; 2); (�; q

21

; q

21

))[h(q

0

; 0); x

1

i yM

0

(q

0

;0)

(b); h(q; 2); x

2

i yM

0

(q;2)

(b)℄

= yM

0

(q

0

;0)

(b)yM

0

(q;2)

(b) = b.

Sine, as shown in Example 10, yM

q

(�(b; b)) = by

2

y

1

b and part

�

(by

2

y

1

b) equals

b,",b for � = 0; 1; 2, respetively, these results are in aordane with Claim 3 in the

proof of Lemma 13. Next,

15

yM

0

(q;0)

(t

0

=2)

= yrhs

M

0

((q; 0); (�; q

21

; q

21

))[h(q; 0); x

2

i yM

0

(q;0)

(t

0

=22); h(q

0

; 0); x

1

i yM

0

(q

0

;0)

(b)℄

= yM

0

(q;0)

(t

0

=22)yM

0

(q

0

;0)

(b) = bb,

yM

0

(q;1)

(t

0

=2) = yrhs

M

0

((q; 1); (�; q

21

; q

21

)[h(q; 1); x

2

i yM

0

(q;1)

(t

0

=22)℄

= yM

0

(q;1)

(t

0

=22) = ", and

yM

0

(q;2)

(t

0

=2)

= yrhs

M

0

((q; 2); (�; q

21

; q

21

))[h(q

0

; 0); x

1

i yM

0

(q

0

;0)

(b); h(q; 2); x

2

i yM

0

(q;2)

(t

0

=22)℄

= yM

0

(q

0

;0)

(b)yM

0

(q;2)

(t

0

=22) = bb.

Again, these results are in aordane with the fat that yM

q

(�(b; �(b; b))) =

bby

2

y

1

bb. Finally, yM

0

(q

0

;0)

(t

0

=1) = yrhs

M

0

((q

0

; 0); a) = a and yM

0

(q

0

;0)

(t

0

) equals

yM

0

(q;0)

(t

0

=2)yM

0

(q

0

;0)

(t

0

=1)yM

0

(q;1)

(t

0

=2)yM

0

(q

0

;0)

(t

0

=1)yM

0

(q;2)

(t

0

=2) = bbaabb:

�

We are now ready to prove that MTT

sp

s and top-down tree transduers generate

the same lass of string languages if they take as input a lass of tree languages

that is losed under �nite state relabelings. Note that this result an be seen as

a generalization of Corollary 7.9 of [EM99℄, whih says that �nite opying MTTs

generate the same lass of string languages as �nite opying top-down tree transdu-

ers, i.e., for a lass L of tree languages that is losed under �nite state relabelings,

yMTT

f

(L) = yT

f

(L), where f denotes that the orresponding transduers are

�nite opying.

Theorem 15. Let L be a lass of tree languages that is losed under �nite state

relabelings. Then yMTT

sp

(L) = yT (L).

Proof. By Lemma 13, yMTT

sp

(L) � yT (L) and sine every top-down tree trans-

duer is an MTT

sp

, yT (L) � yMTT

sp

(L). �

By Lemma 11, we an apply Theorem 15 to L

0

= MTT (L), for an arbitrary

lass of tree languages L. We get yMTT

sp

(MTT (L)) = yT (MTT (L)) whih, by

Lemma 5, equals MTT (L). Thus we obtain the following orollary whih says that

the lass MTT (L) is losed under translations in MTT

sp

, with respet to yield

languages.

Corollary 16. For a lass L of tree languages, yMTT

sp

(MTT (L)) = yMTT (L).

Sine the lass REGT of regular tree languages is losed under �nite state rela-

belings (f. Lemma IV.6.5 of [GS84℄), we get yMTT

sp

(REGT) = yT (REGT) from

Theorem 15. We want to make two more remarks about the lass MTT

sp

(REGT).

First, about its yield languages: For top-down tree transduers it is known (The-

orem 3.2.1 of [ERS80℄ and Theorem 4.3 of [Man98℄) that T (REGT) is equal to

the lass OUT (T) of output tree languages of top-down tree transduers (i.e.,

taking the partiular regular tree languages T

�

as input). In fat, it is shown in

[Man98℄ that for any lass 	 of tree translations whih is losed under left omposi-

tion with \semi-relabelings", whih are partiular linear top-down tree translations,

	(REGT) = OUT (). Sine it an be shown, as a speial ase of Lemma 4, that

MTT

sp

is losed under left omposition with top-down tree translations we get that

yOUT (MTT

sp

) = yOUT (T), i.e., MTT

sp

s and top-down tree transduers gener-

ate the same lass of output string languages. Seond, about its path languages:

If we onsider MTT

sp

s with monadi output alphabet, then the lass of path lan-

guages generated by them taking regular tree languages as input is also equal to

yT (REGT) (f. the proof of Lemma 7.6 of [EM99℄). Thus, the lasses of path and

yield languages of the lass MTT

sp

(REGT) are equal; this is a rare property of a

lass of tree languages.

16

5 Bridge Theorems

This setion establishes the bridge theorems whih are used in Setions 6 and 7

to prove that ertain languages annot be generated as output by ompositions

of MTTs. The basi idea is presented in Lemma 17 whih gives a \bridge" from

yMTT

sp

(L) to yMTT (L), that is, a statement of the form: if L 62 yMTT

sp

(L)

then L

0

62 yMTT (L). Using the losure properties of the previous setion this will

allow us to prove in Theorem 18 a bridge from yMTT

n

(L) to yMTT

n+1

(L), and in

Theorem 20 a bridge from yT (REGT) to

S

n�0

yMTT

n

(REGT).

Let A and B be disjoint alphabets. Consider a string of the form

w

1

a

1

w

2

a

2

� � �a

l�1

w

l

a

l

w

l+1

with l � 0, a

1

; : : : ; a

l

2 A, w

1

; : : : ; w

l+1

2 B

�

, and all w

2

; : : : ; w

l

pairwise di�erent.

We all suh a string a Æ-string for a

1

� � � a

l

. Now let L � A

�

and L

0

� (A [B)

�

. If

L

0

ontains, for every w 2 L, a Æ-string for w, then L

0

is alled Æ-omplete for L. The

following theorem shows that if an MTTM generates L

0

, then, due to the struture

of Æ-strings, M annot make use of its opying faility as far as L is onerned.

Reall from the Preliminaries that res

A

(w

1

a

1

� � �w

l

a

l

w

l+1

) = a

1

� � � a

l

.

Lemma 17. Let L be a lass of tree languages whih is losed under �nite state

relabelings and under intersetion with regular tree languages. Let A;B be disjoint

alphabets and let L � A

�

and L

0

� (A [B)

�

be languages suh that

(1) L

0

is Æ-omplete for L and

(2) res

A

(L

0

) = L.

If L

0

2 yMTT(L) then L 2 yMTT

sp

(L).

Proof. Let M = (Q;�;�; q

0

; R) be an MTT and K 2 L suh that y�

M

(K) = L

0

.

Obviously, we may assume that �

(0)

= A[B [feg. Furthermore, by Lemma 9 and

the losure of L under �nite state relabelings, we may assume thatM is nondeleting.

Clearly, it is suÆient to onsider only Æ-strings in order to generate the language

L, beause, by Æ-ompleteness of L

0

for L, L

0

has a Æ-string for every w 2 L, and

so res

A

(fv 2 L

0

j v is a Æ-stringg) = L. We will onstrut a �nite state relabeling N

and an MTT

sp

M

0

suh that for every s 2 T

�

(a) either y�

M

0

(�

N

(s)) = res

A

(y�

M

(s)) or �

M

0

(�

N

(s)) ontains a (new) dummy

symbol, and

(b) if y�

M

(s) is a Æ-string, then �

M

0

(�

N

(s)) ontains no dummy symbol.

We now show that this proves the lemma. Due to the losure properties of L,

the restrition of �

N

(K) to trees t suh that �

M

0

(t) ontains no dummy symbol is

in L. This an be seen as follows. Sine inverse maro tree translations preserve

the regular tree languages (Theorem 7.4(1) of [EV85℄), R = �

�1

M

0

(T

�

0

�fdummyg

)

is a regular tree language, where �

0

is the output alphabet of M

0

. Hene K

0

=

�

N

(K) \ R is in L. Now, from (a) and (2) we get y�

M

0

(K

0

) � res

A

(L

0

) = L.

By (b), f�

N

(s) j s 2 K; y�

M

(s) is a Æ-stringg � K

0

and thus, by (1) and (a),

L = res

A

(fv 2 L

0

j v is a Æ-stringg) = fres

A

(y�

M

(s)) j s 2 K; y�

M

(s) is a Æ-

stringg � y�

M

0

(K

0

). Thus, L = y�

M

0

(K

0

) 2 yMTT

sp

(L).

Consider the right-hand side of a rule of M in whih some parameter y

j

ours

more than one. If, during the derivation of a tree whih has as yield a Æ-string, this

rule was applied, then the tree whih is substituted for y

j

in this derivation ontains

at most one symbol in A. Beause otherwise, due to opying, the resulting string

would not be a Æ-string. Hene, when deriving a Æ-string, a rule whih ontains mul-

tiple ourrenes of a parameter y

j

is only appliable if the yield of the tree being

17

substituted for y

j

ontains at most one symbol in A. Based on this fat we onstrut

the MTT

sp

M

0

. The information whether the yield of the tree whih will be substi-

tuted for a ertain parameter ontains none, one, or more than one ourrenes of a

symbol in A is determined by �rst relabeling the input tree. Then this information

is kept in the states of M

0

. More preisely, we will de�ne a �nite state relabeling N

whih relabels � 2 �

(k)

in the tree �(s

1

; : : : ; s

k

) by (�; (�

1

; f

1

); : : : ; (�

k

; f

k

)), where

for every i 2 [k℄, q 2 Q

(m)

, and m � 0,

�

i

(q) =

8

<

:

" if yM

q

(s

i

) ontains no symbol in A

a if yM

q

(s

i

) = w

1

aw

2

with a 2 A and w

1

; w

2

2 (Y [B)

�

dd otherwise

with d an arbitrary symbol in A, and for every j 2 [m℄,

(f

i

(q))(j) =

8

<

:

" if yM

q

(s

i

) ontains no ourrene of y

j

y

j

if yM

q

(s

i

) ontains exatly one ourrene of y

j

y

j

y

j

otherwise.

The ase (f

i

(q))(j) = " atually never ours, beause M is nondeleting and hene,

by Lemma 8, y

j

ours in yM

q

(s

i

); we only inlude it beause it simpli�es the

orretness proof. Before de�ning N , let us de�ne two auxiliary notions that de�ne

the above information for an arbitrary string (instead of yM

q

(s

i

)). For w 2 (A[B[

Y)

�

, o

A

(w) is de�ned as follows. If w 2 (Y [B)

�

, then o

A

(w) = "; if w = w

1

aw

2

with a 2 A and w

1

; w

2

2 (Y [B)

�

, then o

A

(w) = a; and otherwise o

A

(w) = dd.

Furthermore, for j � 1, o

j

(w) is de�ned as follows. If w ontains no ourrene of

y

j

, then o

j

(w) = "; if w ontains exatly one ourrene of y

j

, then o

j

(w) = y

j

;

and otherwise o

j

(w) = y

j

y

j

.

Note that the existene of the relabeling N follows from the fats that for given

(�; f) and q 2 Q

(m)

the set ft 2 T

�

(Y

m

) j o

A

(yt) = �(q); o

j

(yt) = (f(q))(j) for

every j 2 [m℄g is regular and that inverse maro tree translations preserve the reg-

ular tree languages (Theorem 7.4(1) of [EV85℄). Sine part of the orretness proof

of N is also needed in the orretness proof of the MTT M

0

, we give the detailed

onstrution of N together with a orretness proof. Note that the onstrution

of N is similar to the onstrutions of the look-ahead automata A

1

and A

2

of the

proofs of Lemmas 6.3 and 6.6 in [EM99℄, respetively; the automaton A

1

determines

the preise number of ourrenes of y

j

in M

q

(s), where M is an MTT for whih

this number is bounded by some B 2 N, and the automaton A

2

determines whether

or not y

j

ours in M

q

(s).

It should be lear from De�nition 3 that, to de�ne N , we have to know how o

A

and o

j

behave with respet to seond-order substitution, i.e., how the o

A

and o

j

of the yield of a tree t[[!

i

 �

i

j i 2 [n℄℄℄ an be determined from the o

A

and o

j

's

of the yields of the trees �

1

; : : : ; �

n

. This is expressed in Claim 1.

Claim 1: Let
 be a ranked alphabet suh that

(0)

= �

(0)

. Let n;m � 1,

!

1

; : : : ; !

n

2
, and t; �

1

; : : : ; �

n

2 T

(Y

m

). Then for o 2 fo

A

; o

1

; : : : ; o

m

g,

o(y(t[[!

i

 �

i

j i 2 [n℄℄℄)) = o(y(t[[!

i

 �

0

i

j i 2 [n℄℄℄));

where �

0

i

= omb

b

(o

A

(y�

i

)o

1

(y�

i

) � � � o

m

(y�

i

)) for i 2 [n℄, and b is an arbitrary

binary symbol.

This laim is proved by indution on the struture of t. Let [[: : :℄℄ denote the

substitution [[!

i

 �

i

j i 2 [n℄℄℄ and let [[℄℄ = [[!

i

 �

0

i

j i 2 [n℄℄℄. If t 2 Y

m

, then

o(y(t[[: : :℄℄)) = o(yt) = o(y(t[[℄℄)). Let t

1

; : : : ; t

l

2 T

(Y

m

) and l � 0.

If t = Æ(t

1

; : : : ; t

l

) with Æ 2

(l)

�f!

1

; : : : ; !

n

g, then o(y(t[[: : :℄℄)) = o(y(t

1

[[: : :℄℄)

y(t

2

[[: : :℄℄) � � � y(t

l

[[: : :℄℄)). Sine o(uw) = o(o(u)o(w)) for u;w 2 (A[B [Y)

�

, we

18

an apply o to eah y(t

�

[[: : :℄℄) and get o(o(y(t

1

[[: : :℄℄)) � � � o(y(t

l

[[: : :℄℄))). By indu-

tion this equals o(o(y(t

1

[[℄℄)) � � � o(y(t

l

[[℄℄))) = o(y(t

1

[[℄℄)y(t

2

[[℄℄) � � � y(t

l

[[℄℄)) =

o(y(Æ(t

1

; : : : ; t

l

)[[℄℄)).

If t = !

i

(t

1

; : : : ; t

l

) with i 2 [n℄ and !

i

of rank l, then o(y(t[[: : :℄℄)) = o(y(�

i

[y

�

t

�

[[: : :℄℄ j � 2 [l℄℄)) = o(y(�

i

)[y

�

 y(t

�

[[: : :℄℄) j � 2 [l℄℄). Sine o(w) = o(w

0

) if w

0

is a permutation of w, this equals o((res

A[B

(y�

i

)res

fy

1

g

(y�

i

) � � � res

fy

l

g

(y�

i

))[y

�

y(t

�

[[: : :℄℄) j � 2 [l℄℄). Applying o we get

o((o

A

(y�

i

)res

fy

1

g

(y�

i

) � � � res

fy

l

g

(y�

i

))[: : : ℄)

with [: : : ℄ = [y

�

 o(y(t

�

[[: : :℄℄)) j � 2 [l℄℄. This is true beause for o = o

A

,

o(o

A

(y�

i

)) = o(y�

i

) = o(res

A[B

(y�

i

)) and for o = o

j

, o(o

A

(y�

i

)) = " =

o(res

A[B

(y�

i

)). Sine, for � � 0, o(y

�

�

[: : : ℄) = o(o

�

(y

�

�

)[: : : ℄), it follows that

o(res

fy

�

g

(y�

i

)[: : : ℄) = o(o

�

(y�

i

)[: : : ℄). Hene we get

o((o

A

(y�

i

)o

1

(y�

i

) � � � o

l

(y�

i

))[: : : ℄) = o(y(�

0

i

)[: : : ℄):

By indution we an replae o(y(t

�

[[: : :℄℄)) in [: : : ℄ by o(y(t

�

[[℄℄)), and hene by

y(t

�

[[: : :℄℄). Thus we get o(y(�

0

i

)[y

�

 y(t

�

[[℄℄) j � 2 [l℄℄), whih equals o(y(t[[℄℄)).

This onludes the proof of Claim 1.

We now onstrut the �nite state relabeling N whih adds the �

i

's and f

i

's to

the labels of the input tree. Let N = (Q

N

; �; �;R

N

) suh that

{ Q

N

onsists of all pairs (�; f), where � : Q! (f"; ddg [A) and f is a funtion

whih assoiates with every q 2 Q

(m)

, m � 0, a mapping f(q) : [m℄! Y

�

m

suh

that for every j 2 [m℄, (f(q))(j) 2 f"; y

j

; y

j

y

j

g,

{ � = f(�; (�

1

; f

1

); : : : ; (�

k

; f

k

))

(k)

j � 2 �

(k)

; k � 0; (�

1

; f

1

); : : : ; (�

k

; f

k

) 2 Q

N

g,

and

{ R

N

ontains for every (�

1

; f

1

); : : : ; (�

k

; f

k

) 2 Q

N

and � 2 �

(k)

with k � 0 the

rule

�(h(�

1

; f

1

); x

1

i; : : : ; h(�

k

; f

k

); x

k

i)!

h(�; f); (�; (�

1

; f

1

); : : : ; (�

k

; f

k

))(x

1

; : : : ; x

k

)i;

where for every q 2 Q

(m)

with m � 0, �(q) = o

A

(y�), for every j 2 [m℄,

(f(q))(j) = o

j

(y�), and � = rhs

M

(q; �)�. The seond order substitution �

equals (where b is an arbitrary binary symbol)

[[hq

0

; x

i

i omb

b

(�

i

(q

0

)(f

i

(q

0

))(1) � � � (f

i

(q

0

))(l)) j hq

0

; x

i

i 2 hQ;X

k

i

(l)

; l � 0℄℄:

It should be lear from Claim 1 thatN realizes the relabeling as desribed above.

Formally this follows from Claim 2.

Claim 2: Let s 2 T

�

and (�; f) 2 Q

N

. If s)

�

N

h(�; f); �

N

(s)i then, for every

q 2 Q

(m)

and m � 0,

(i) �(q) = o

A

(yM

q

(s)) and

(ii) for every j 2 [m℄, (f(q))(j) = o

j

(yM

q

(s)).

This laim is proved by indution on the struture of s. Let s = �(s

1

; : : : ; s

k

), k �

0, � 2 �

(k)

, and s

1

; : : : ; s

k

2 T

�

. For every i 2 [k℄ let (�

i

; f

i

) 2 Q

N

suh that s

i

)

�

N

h(�

i

; f

i

); �

N

(s

i

)i. Then s)

�

N

�(h(�

1

; f

1

); �

N

(s

1

)i; : : : ; h(�

k

; f

k

); �

N

(s

k

)i))

N

h(�; f); (�; (�

1

; f

1

); : : : ; (�

k

; f

k

))(�

N

(s

1

); : : : ; �

N

(s

k

))i, where, for every q 2 Q

(m)

and m � 0, �(q) = o

A

(y�), for every j 2 [m℄, (f(q))(j) = o

j

(y�), and �

equals rhs

M

(q; �)�. To be able to apply Claim 1, we now take t = rhs

M

(q; �),

f!

1

; : : : ; !

n

g = hQ;X

k

i, and for !

�

= hq

0

; x

i

i, �

�

=M

q

0

(s

i

). By indution, �

i

(q

0

) =

19

o

A

(yM

q

0

(s

i

)) and (f

i

(q

0

))(j) = o

j

(yM

q

0

(s

i

)) for j 2 [m℄. Thus, � equals the sub-

stitution [[!

i

 omb

b

(o

A

(y�

i

)o

1

(y�

i

) � � � o

m

(y�

i

)) j i 2 [n℄℄℄ = [[!

i

 �

0

i

j i 2 [n℄℄℄

of Claim 1. By appliation of Claim 1 we obtain that o

A

(y�) = o

A

(y(t[[hq

0

; x

i

i

M

q

0

(s

i

) j hq

0

; x

i

i 2 hQ;X

k

i℄℄)) whih equals o

A

(yM

q

(s)). This proves Claim 2(i)

and by replaing o

A

by o

j

it proves Claim 2(ii).

We now de�ne the MTT M

0

. The idea is to keep a parameter of a state only

if the yield of the tree that is substituted for it ontains more than one ourrene

of a symbol in A. This information is kept in the states of M

0

and is determined

using the information provided by the relabeling N (and by the atual state of

M

0

). If suh a parameter is opied in a rule of M , then the right-hand side of the

orresponding rule of M

0

ontains a dummy symbol, beause then yM

q

0

(s) is not a

Æ-string.

Let M

0

= (Q

0

; �;�

0

; q

0

0

; R

0

) be the MTT with

{ Q

0

= f(q; ') j q 2 Q

(m)

;m � 0; ' : [m℄ ! (f"; ddg [A)g, where the rank of

(q; ') with q 2 Q

(m)

is jfj 2 [m℄ j '(j) = ddgj,

{ �

0

= (��B) [fb

(2)

; dummy

(2)

g, where b and dummy are symbols not in �,

{ q

0

0

= (q

0

;?), and

{ R

0

onsisting of the following rules. For every (q; ') 2 Q

0

(n)

and (�; (�

1

; f

1

); : : : ;

(�

k

; f

k

)) 2 �

(k)

with n;m; k � 0 and q 2 Q

(m)

let

h(q; '); (�; (�

1

; f

1

); : : : ; (�

k

; f

k

))(x

1

; : : : ; x

k

)i(y

1

; : : : ; y

n

)! �

be in R

0

, where � = omb

dummy

(y

1

� � � y

n

) if there is a j 2 [m℄ suh that

'(j) = dd and y

j

ours more than one in rhs

M

(q; �), and otherwise � =

trans(rhs

M

(q; �)), where for every t 2 T

hQ;X

k

i[�

(Y

m

) the tree trans(t) is reur-

sively de�ned as follows (depending on '; (�

1

; f

1

); : : : ; (�

k

; f

k

)).

For t = y

j

and j 2 [m℄, trans(y

j

) = omb

b

('(j)) if '(j) 6= dd, and otherwise

trans(y

j

) = y

�

with � = jf� j � < j and '(�) = ddgj+ 1.

For t = �(t

1

; : : : ; t

l

), � 2 (hQ;X

k

i[�)

(l)

, l � 0, and t

1

; : : : ; t

l

2 T

hQ;X

k

i[�

(Y

m

)

we have:

� If � = hq

0

; x

i

i, then trans(t) = h(q

0

; '

0

); x

i

i(trans(t

j

1

); : : : ; trans(t

j

l

0

)), where

fj

1

; : : : ; j

l

0

g = '

0

�1

(dd) with j

1

< � � � < j

l

0

and for every j 2 [l℄, '

0

(j) =

o

A

(y(t

j

�)�) with � as in the de�nition of N , viz.,

� = [[hq

0

; x

i

i omb

b

(�

i

(q

0

)(f

i

(q

0

))(1) � � � (f

i

(q

0

))(l)) j

hq

0

; x

i

i 2 hQ;X

k

i

(l)

; l � 0℄℄;

and

� = [y

j

 '(j) j j 2 [m℄℄:

� If � 2 �

(l)

and l � 1, or � 2 A, then trans(t) = �(trans(t

1

); : : : ; trans(t

l

)).

� If � 2 B [feg, then trans(t) = e.

Let us �rst show that M

0

is sp, i.e., that eah y

�

, � 2 [n℄, ours exatly one

in �. Let � 2 [n℄. If � is a dummy right-hand side then y

�

ours exatly one in �.

Otherwise, � = trans(rhs

M

(q; �)) and every y

j

with '(j) = dd ours at most one

in rhs

M

(q; �). Sine y

�

= trans(y

j

) for some j 2 [m℄ with '(j) = dd, this obviously

implies that y

�

ours at most one in �. It remains to show that y

�

ours in �.

This follows from the following laim for t = rhs

M

(q; �) and the fat that y

j

ours

in rhs

M

(q; �) beause M is nondeleting.

Claim 3: Let t 2 T

�[hQ;X

k

i

(Y

m

). If y

j

ours in t, then y

�

ours in trans(t).

The proof of this laim is by indution on the struture of t. The indution

hypothesis is denoted by IH3. If t = y

j

then trans(t) = y

�

. Let � � 1 and

20

t

1

; : : : ; t

�

2 T

�[hQ;X

k

i

(Y

m

). If t = Æ(t

1

; : : : ; t

�

) with Æ 2 �

(�)

, then trans(t) =

Æ(trans(t

1

); : : : ; trans(t

�

)). Sine y

j

ours in t, it ours in t

j

0

for some j

0

2 [�℄. By

IH3, y

�

ours in trans(t

j

0

) and therefore it ours in trans(t).

If t = hr; x

�

i(t

1

; : : : ; t

�

) with hr; x

�

i 2 hQ;X

k

i

(�)

, then trans(t) = h(r; '

0

); x

�

i(

trans(t

j

1

); : : : ; trans(t

j

�

0

), where fj

1

; : : : ; j

�

0

g = '

0

�1

(dd) with j

1

< � � � < j

�

0

and

for every j

0

2 [�℄, '

0

(j

0

) = o

A

(y(t

j

0

�)�). Let j

0

2 [�℄ suh that y

j

ours in t

j

0

.

Then y

�

ours in trans(t

j

0

) by IH3. Hene, we have to show that '

0

(j

0

) = dd, i.e.,

that o

A

(y(t

j

0

�)�) = dd. Eah (f

i

(q

0

))(

�

j) in the substitution � equals either y

�

j

or y

�

j

y

�

j

beause, by Claim 2(ii), (f

i

(q

0

))(

�

j) = o

�

j

(M

q

0

(s)) for some s 2 T

�

, and,

by Lemma 8 and the fat that M is nondeleting, M

q

0

(s) ontains y

�

j

. Thus, the

substitution � is `nondeleting', i.e., it replaes eah hq

0

; x

i

i, q

0

2 Q

(l)

, by a tree that

ontains y

1

; : : : ; y

l

and thus it behaves as the substitution [[: : :℄℄ in the laim of the

proof of Lemma 8. Sine y

j

ours in t

j

0

, this means that y

j

also ours in t

j

0

�.

Now � replaes y

j

by '(j) = dd and thus o

A

(y(t

j

0

�)�) = dd. This onludes the

proof of Claim 3.

We now formally prove properties (a) and (b) from the beginning of this proof.

Let (q; ') = (q

0

;?). Then Claim 4 proves (b), i.e., if y�

M

(s) is a Æ-string, then

�

M

0

(�

N

(s)) ontains no dummy symbol. Furthermore, Claim 5 proves (a), i.e., either

y�

M

0

(�

N

(s)) = res

A

(y�

M

(s)) or �

M

0

(�

N

(s)) ontains a dummy symbol.

Claim 4: Let (q; ') 2 Q

0

(n)

, q 2 Q

(m)

, m;n � 0, and s 2 T

�

. If M

0

(q;')

(�

N

(s))

ontains a dummy, then for all u

1

; : : : ; u

m

2 T

�

with o

A

(yu

j

) = '(j) for every

j 2 [m℄, y(M

q

(s)[y

j

 u

j

j j 2 [m℄℄) is not a Æ-string.

The proof of this laim is by indution on the struture of s. The indution hy-

pothesis is denoted by IH4. Let s = �(s

1

; : : : ; s

k

), k � 0, � 2 �

(k)

, and s

1

; : : : ; s

k

2

T

�

. Let (�

1

; f

1

); : : : ; (�

k

; f

k

) 2 Q

N

suh that �

N

(s) = (�; (�

1

; f

1

); : : : ; (�

k

; f

k

))(�

N

(

s

1

); : : : ; �

N

(s

k

)). Then M

0

(q;')

(�

N

(s)) = rhs

M

0

((q; '); (�; (�

1

; f

1

); : : : ; (�

k

; f

k

)))[[℄℄,

where [[℄℄ denotes the substitution [[h(q

0

; '

0

); x

i

i M

0

(q

0

;'

0

)

(�

N

(s

i

)) j h(q

0

; '

0

); x

i

i 2

hQ

0

; X

k

i℄℄. Sine M

0

is sp, it is nondeleting and hene (similar to the laim in the

proof of Lemma 8), M

0

(q;')

(�

N

(s)) ontains a dummy if and only if

(i) rhs

M

0

((q; '); (�; (�

1

; f

1

); : : : ; (�

k

; f

k

))) ontains a dummy, or

(ii) there is an ourrene of h(q

0

; '

0

); x

i

i 2 hQ

0

; X

k

i in the tree trans(rhs

M

(q; �))

suh that M

0

(q

0

;'

0

)

(�

N

(s

i

)) ontains a dummy.

By the de�nition of the right-hand sides of M

0

, (i) means that there is a j 2 [m℄

with '(j) = dd and y

j

ours more than one in rhs

M

(q; �). Then, sine M is

nondeleting (f. the laim in the proof of Lemma 8), M

q

(s) = rhs

M

(q; �)[[: : :℄℄ has

more than one ourrene of y

j

, where [[: : :℄℄ = [[hq

0

; x

i

i M

q

0

(s

i

) j hq

0

; x

i

i 2

hQ;X

k

i℄℄. Thus, y(M

q

(s)[y

j

 u

j

j j 2 [m℄℄) has more than one ourrene of the

string yu

j

. This means that it has more than one ourrene of some awa

0

, with

a; a

0

2 A and w 2 (B [Y)

�

, beause o

A

(yu

j

) = '(j) = dd. Hene, y(M

q

(s)[y

j

u

j

j j 2 [m℄℄) is not a Æ-string.

(ii) By the de�nition of trans, rhs

M

(q; �) must have a subtree hq

0

; x

i

i(t

1

; : : : ; t

l

)

suh that trans(hq

0

; x

i

i(t

1

; : : : ; t

l

)) equals h(q

0

; '

0

); x

i

i(trans(t

j

1

); : : : ; trans(t

j

l

0

)) for

some t

1

; : : : ; t

l

2 T

hQ;X

k

i[�

(Y

m

), l; l

0

� 0 with q

0

2 Q

(l)

, and j

1

; : : : ; j

l

0

� 1. Sine

M is nondeleting, the tree M

q

(s)[y

j

 u

j

j j 2 [m℄℄ = rhs

M

(q; �)[[: : :℄℄[y

j

 u

j

j j 2

[m℄℄ has a subtree � =M

q

0

(s

i

)[y

�

 u

0

�

j � 2 [l℄℄ with u

0

�

= t

�

[[: : :℄℄[y

j

 u

j

j j 2 [m℄℄

for � 2 [l℄. By the de�nition of trans, for � 2 [l℄, '

0

(�) = o

A

(y(t

�

�)�) whih equals

o

A

(yu

0

�

). This an be seen as follows: o

A

(y(t

�

�)�) = o

A

(y(t

�

�)[y

j

 o

A

(yu

j

) j

j 2 [m℄℄) = o

A

(y(t

�

�)[y

j

 yu

j

j j 2 [m℄℄) = o

A

(y(t

�

[y

j

 u

j

j j 2 [m℄℄�)).

We an apply Claim 1 to this, beause, by Claim 2, � equals the substitution

[[!

i

 �

0

i

j i 2 [n℄℄℄ in Claim 1 (with t = t

�

[y

j

 u

j

j j 2 [m℄℄ and the !'s and

�'s hosen appropriately, as in the proof of Claim 1). We get o

A

(y(t

�

[y

j

 u

j

j

21

j 2 [m℄℄[[: : :℄℄)) = o

A

(yu

0

�

). Now we an apply IH4 to (q

0

; '

0

), s

i

, and u

0

1

; : : : ; u

0

l

to

obtain that y� is not a Æ-string. Then also y(M

q

(s)[y

j

 u

j

j j 2 [m℄℄) is not a

Æ-string, beause it has y� as substring. This proves Claim 4.

For tehnial onveniene we de�ne a mapping d

B

on T

�

(Y) whih realizes res

A

on trees in T

�

; for a tree t 2 T

�

(Y), d

B

(t) = t[b e j b 2 B℄ and hene, for t 2 T

�

,

yd

B

(t) = res

A

(yt).

Claim 5: Let (q; ') 2 Q

0

(n)

, q 2 Q

(m)

, m;n � 0, and s 2 T

�

suh that

M

0

(q;')

(�

N

(s)) ontains no dummy symbol. Then

yM

0

(q;')

(�

N

(s)) = yd

B

(M

q

(s)[' 6= dd℄[' = dd℄);

where [' 6= dd℄ denotes the substitution [y

j

 omb

b

('(j)) j j 2 [m℄; '(j) 6= dd℄

and [' = dd℄ denotes the substitution [y

j

 y

�

j j 2 [m℄; '(j) = dd; � = jf� j � <

j and '(�) = ddgj+ 1℄.

This laim is proved by indution on the struture of s. The indution hy-

pothesis is denoted by IH5. As in the proof of Claim 4, let s = �(s

1

; : : : ; s

k

)

with � 2 �

(k)

, k � 0, and s

1

; : : : ; s

k

2 T

�

. Let (�

1

; f

1

); : : : ; (�

k

; f

k

) 2 Q

N

suh

that �

N

(s) = (�; (�

1

; f

1

); : : : ; (�

k

; f

k

))(�

N

(s

1

); : : : ; �

N

(s

k

)). Then yM

0

(q;')

(�

N

(s)) =

y(rhs

M

0

((q; '); (�; (�

1

; f

1

); : : : ; (�

k

; f

k

))) [[h(q

0

; '

0

); x

i

i M

0

(q

0

;'

0

)

(�

N

(s

i

)) j h(q

0

; '

0

);

x

i

i 2 hQ

0

; X

k

i℄℄). Sine M

0

(q;')

(�

N

(s)) ontains no dummy symbol, neither (i) nor

(ii) of the proof of Claim 4 holds, i.e., rhs

M

0

((q; '); (�; (�

1

; f

1

); : : : ; (�

k

; f

k

))) on-

tains no dummy and hene equals trans(rhs

M

(q; �)), and, for every h(q

0

; '

0

); x

i

i

ourring in rhs

M

0

((q; '); (�; (�

1

; f

1

); : : : ; (�

k

; f

k

))), the tree M

0

(q

0

;'

0

)

(�

N

(s

i

)) on-

tains no dummy symbol. Therefore we an apply IH5 to yM

0

(q

0

;'

0

)

(�

N

(s

i

)) and

so, by Lemma 1(b), we an replae M

0

(q

0

;'

0

)

(�

N

(s

i

)) in the seond order substi-

tution above by d

B

(M

q

0

(s

i

)['

0

6= dd℄['

0

= dd℄). We obtain that yM

0

(q;')

(�

N

(s)) =

y(trans(rhs

M

(q; �))[[℄℄), where [[℄℄ denotes the substitution

[[h(q

0

; '

0

); x

i

i d

B

(M

q

0

(s

i

)['

0

6= dd℄['

0

= dd℄) j h(q

0

; '

0

); x

i

i 2 hQ

0

; X

k

i℄℄:

By Claim 6 for t = rhs

M

(q; �) we get yd

B

(rhs

M

(q; �)[[: : :℄℄[' 6= dd℄[' = dd℄), where

[[: : :℄℄ = [[hq

0

; x

i

i M

q

0

(s

i

) j hq

0

; x

i

i 2 hQ;X

k

i℄℄. This equals yd

B

(M

q

(s)[' 6= dd℄[' =

dd℄) whih ends the proof of Claim 5.

Claim 6: Let m � 0. For t 2 T

�[hQ;X

k

i

(Y

m

),

y(trans(t)[[℄℄) = yd

B

(t[[: : :℄℄[' 6= dd℄[' = dd℄):

Claim 6 is proved by indution on the struture of t. The indution hypothesis is

denoted by IH6. If t = y

j

2 Y

m

, then y(trans(y

j

)[[℄℄) = ytrans(y

j

). By the de�nition

of trans this is equal to y(y

j

[' 6= dd℄[' = dd℄) and thus equals yd

B

(t[[: : :℄℄[' 6=

dd℄[' = dd℄). If t 2 B [feg, then y(trans(t)[[℄℄) = " = yd

B

(t) = yd

B

(t[[: : :℄℄[' 6=

dd℄[' = dd℄). Let l � 0 and t

1

; : : : ; t

l

2 T

�[hQ;X

k

i

(Y

m

).

If t = Æ(t

1

; : : : ; t

l

) with Æ 2 �

(l)

, then y(trans(t)[[℄℄) = y(Æ(trans(t

1

)[[℄℄; : : : ;

trans(t

l

)[[℄℄)) = y(trans(t

1

)[[℄℄) � � � y(trans(t

l

)[[℄℄). By IH6 we get yd

B

(t

1

[[: : :℄℄[' 6=

dd℄[' = dd℄) � � � yd

B

(t

l

[[: : :℄℄[' 6= dd℄[' = dd℄) whih equals yd

B

(t[[: : :℄℄[' 6= dd℄[' =

dd℄).

If t = hq

0

; x

i

i(t

1

; : : : ; t

l

) with hq

0

; x

i

i 2 hQ;X

k

i

(l)

, then y(trans(t)[[℄℄) equals

y(h(q

0

; '

0

); x

i

i(trans(t

j

1

); : : : ; trans(t

j

l

0

))[[℄℄), where '

0

(�) = o

A

(y(t

�

�)�) for � 2

[l℄, and '

0

�1

(dd) = fj

1

; : : : ; j

l

0

g with j

1

< � � � < j

l

0

. By appliation of [[℄℄ we get

y(d

B

(M

q

0

(s

i

)['

0

6= dd℄['

0

= dd℄)[y

�

 trans(t

j

�

)[[℄℄ j � 2 [l

0

℄℄):

By IH6, y(trans(t

j

�

)[[℄℄) equals yd

B

(t

j

�

[[: : :℄℄[' 6= dd℄[' = dd℄), whih means, by

Lemma 1(a), that d

B

(t

j

�

[[: : :℄℄[' 6= dd℄[' = dd℄) an be put in the substitution for

22

y

�

. Now this substitution an be ombined with ['

0

= dd℄. We get

yd

B

(M

q

0

(s

i

)['

0

6= dd℄[y

j

 t

j

[[: : :℄℄[' 6= dd℄[' = dd℄ j j 2 fj

1

; : : : ; j

l

0

g℄):

In the substitution ['

0

6= dd℄, '

0

(j) = o

A

(y(t

j

�)�) whih by Claims 2 and 1

equals o

A

(y(t

j

[[: : :℄℄)�) as in the proof of Claim 4, where for � 2 [m℄ we let u

�

be an arbitrary tree in T

�

suh that o

A

(yu

�

) = '(�) and hene o

A

(y(t

j

�)�) =

o

A

(y(t

j

�[y

�

 u

�

j � 2 [m℄℄)) = o

A

(y(t

j

[[: : :℄℄[y

�

 u

�

j � 2 [m℄℄)) = o

A

(y(t

j

[[: : :℄℄)�). Now, sine � = (y[' 6= dd℄)[dd℄ with [dd℄ = [y

�

 dd j � 2 [m℄; '(�) = dd℄,

we get '

0

(j) = o

A

(y(t

j

[[: : :℄℄[' 6= dd℄)[dd℄). This is in f"g [A and hene no y

�

with

'(�) = dd appears in y(t

j

[[: : :℄℄[' 6= dd℄). Therefore the substitution [dd℄ an be

replaed by [' = dd℄. For the same reason, o

A

an be replaed by the appliation

of d

B

and y to get yd

B

(t

j

[[: : :℄℄[' 6= dd℄[' = dd℄). This means that the substitution

['

0

6= dd℄ an be replaed by [y

j

 t

j

[[: : :℄℄[' 6= dd℄[' = dd℄ j j 2 ([l℄�fj

1

; : : : ; j

l

0

g)℄.

Altogether we get

yd

B

(M

q

0

(s

i

)[y

j

 t

j

[[: : :℄℄[' 6= dd℄[' = dd℄ j j 2 ([l℄� fj

1

; : : : ; j

l

0

g)℄

[y

j

 t

j

[[: : :℄℄[' 6= dd℄[' = dd℄ j j 2 fj

1

; : : : ; j

l

0

g℄)

= yd

B

(M

q

0

(s

i

)[y

j

 t

j

[[: : :℄℄[' 6= dd℄[' = dd℄ j j 2 [l℄℄)

= yd

B

(t[[: : :℄℄[' 6= dd℄[' = dd℄).

�

Based on Lemma 17 and the losure properties of Setion 4 we an now state

two bridge theorems for yield languages of ompositions of MTTs. Note that in the

appliations of Theorem 18, the language L

0

will often be of the form '(L), where

' is an operation on languages.

Theorem 18. Let A;B be disjoint alphabets and let L � A

�

and L

0

� (A [B)

�

be languages suh that L

0

is Æ-omplete for L and res

A

(L

0

) = L.

(a) For every n � 1, if L

0

2 yMTT

n+1

(REGT), then L 2 yMTT

n

(REGT).

(b) If L

0

2 yMTT (REGT), then L 2 yT (REGT).

Proof. (a) We want to apply Lemma 17 to L, L

0

, and L = MTT

n

(REGT). In

order to do so, L must be losed (i) under intersetion with REGT and (ii) under

�nite state relabelings. To show (i), let � 2 MTT

n

and R

1

; R

2

2 REGT. Then

�(R

1

) \R

2

= �(R

1

\ �

�1

(R

2

)). Sine REGT is preserved by the inverse of MTT

n

,

by Theorem 7.4(1) of [EV85℄, �

�1

(R

2

) 2 REGT . Hene R

1

\ �

�1

(R

2

) 2 REGT

and �(R

1

\ �

�1

(R

2

)) 2 MTT

n

(REGT) = L. Closure property (ii) follows from

Lemma 11. The appliation of Lemma 17 to L, L

0

, and L = MTT

n

(REGT) gives:

if L

0

2 yMTT

n+1

(REGT), then L is in yMTT

sp

(MTT

n

(REGT)), whih equals

yMTT

n

(REGT) by Corollary 16 and the fat that n � 1.

(b) Sine REGT is losed under intersetion and under �nite state relabelings

(f., e.g., [GS84℄), we an apply Lemma 17 to L, L

0

, and L = REGT. We obtain

that L is in yMTT

sp

(REGT) whih equals yT (REGT) by Theorem 15. �

In the seond bridge theorem, L

0

= '(L) for a partiular operation ' on lan-

guages. Let A;B be disjoint alphabets with B nonempty, and let L � A

�

be a

language. The funtion rub

B

(\rubbish") inserts any number of symbols in B any-

where in the strings of the language to whih it is applied. Hene,

rub

B

(L) = fw

1

a

1

w

2

a

2

: : : a

l�1

w

l

a

l

w

l+1

j

a

1

; : : : ; a

l

2 A; a

1

� � �a

l

2 L;w

1

; : : : ; w

l+1

2 B

�

g:

Note that rub

B

(L) = res

�1

A

(L). Obviously rub

B

(L) is Æ-omplete for L and res

A

(

rub

B

(L)) = L. This means that Theorem 18 an be applied. For B = fb

1

; : : : ; b

n

g,

23

rub

B

(L) = rub

fb

n

g

(rub

fb

n�1

g

(: : : rub

fb

1

g

(L) : : :)). Thus, by the n-fold applia-

tion of Theorem 18 we get that if rub

fb

1

;:::;b

n

g

(L) 2 yMTT

n

(REGT) then L 2

yT (REGT).

We now show that atually two symbols 0; 1 suÆe in order to get through the

whole hierarhy yMTT

n

(REGT) (for any n). The reason for this is that every

symbol in an arbitrary set B an be represented by a string in f0; 1g

�

in suh a way

that f0; 1g

�

represents B

�

. The translation of strings in f0; 1g

�

to strings in B an

be realized by an MTT M in suh a way that for a tree s with ys 2 f0; 1g

�

, y�

M

(s)

is the string in B

�

that orresponds to ys.

Lemma 19. Let L be a lass of tree languages and let B be a nonempty alphabet.

For a language L, if rub

f0;1g

(L) 2 yL, then rub

B

(L) 2 yMTT (L).

Proof. Let K 2 L with yK = rub

f0;1g

(L) and let � be a ranked alphabet suh

that K � T

�

. By Lemma 7 there is an MTT M

�

with output alphabet � =

f0

(1)

; 1

(1)

; e

(0)

g [fa

(1)

j a 2 �

(0)

; a 6= eg whih translates every tree s in T

�

into

the monadi tree sm(ys) 2 T

�

.

We use a Hu�man ode to represent eah b 2 B by a string over f0; 1g. More

preisely, if B = fb

1

; : : : ; b

n

g, then for i 2 [n℄, the string 0

i�1

1 represents b

i

. Addi-

tionally, 0

k

1 also represents b

n

, for k � n. A string in f0; 1g

�

an now be uniquely

deoded into symbols of B, disregarding the zeros at the end. Hene, every string

in f0; 1g

�

represents a string in B

�

and vie versa.

Let us de�ne the top-down tree transduer M

n

whih translates every monadi

tree sm(w

1

a

1

� � �w

l

a

l

w

l+1

) with w

1

; : : : ; w

l

; w

l+1

2 f0; 1g

�

and a

1

; : : : ; a

l

2 �

(0)

into

a tree with yield w

0

1

a

1

� � �w

0

l

a

l

w

0

l+1

, where eah w

0

i

2 B

�

is the deoded version of

w

i

. Let M

n

= ([n℄; �;�

(0)

[f�

(2)

; b

(0)

1

; : : : ; b

(0)

n

; e

(0)

g; 1; R), where R onsists of the

following rules.

hi; 1(x

1

)i ! �(b

i

; h1; x

1

i) for i 2 [n℄

hi; 0(x

1

)i ! hi+ 1; x

1

i for i 2 [n� 1℄

hn; 0(x

1

)i ! hn; x

1

i

hi; a(x

1

)i ! �(a; h1; x

1

i) for i 2 [n℄ and a 2 (�

(0)

� feg)

hi; ei ! e for i 2 [n℄

It should be lear that M

n

realizes the translation as desribed, and hene

y�

M

n

(�

M

�

(K)) = rub

B

(L). By Lemma 5, �

M

�

Æ�

M

n

2 MTT . Thus y�

M

n

(�

M

�

(K)) 2

yMTT (L). �

Theorem 20. If rub

f0;1g

(L) 2

S

n�0

yMTT

n

(REGT), then L 2 yT (REGT).

Proof. Let n � 1 and let B = fb

1

; : : : ; b

n+1

g be a set of distint symbols whih do

not appear in L. By Lemma 19, if rub

f0;1g

(L) 2 yMTT

n

(REGT), then rub

B

(L) 2

yMTT

n+1

(REGT). Now we apply Theorem 18(a) to L

n

and L

n+1

, where L

0

=

L and for m � 1, L

m

= rub

fb

m

g

(L

m�1

). We obtain that L

n+1

= rub

B

(L) 2

yMTT

n+1

(REGT) implies L

n

2 yMTT

n

(REGT) and thus, by indution, that

L

1

= rub

fb

1

g

(L) 2 yMTT (REGT). By appliation of Theorem 18(b) to L and L

1

we obtain that L 2 yT (REGT). �

6 The yMTT-hierarhy and the EDT0L-hierarhy

In this setion the bridge theorems of Setion 5 are applied to prove that omposition

of MTTs yields a proper hierarhy of output string languages, i.e., the hierarhy

yMTT

n

(REGT) (for short, the yMTT-hierarhy) is proper (at eah level). In fat,

we prove that witnesses for the properness of this hierarhy an already be found in

the EDT0L-hierarhy. This will imply that also the EDT0L-hierarhy is proper. Note

24

that from Theorem 9.10 of [Dam82℄ it follows that the hierarhy MTT

n

(REGT)

of tree languages generated by ompositions of MTTs is proper. Moreover, it easily

follows from the proof of that theorem that the yMTT-hierarhy is in�nite (beause

there are monadi tree languages arbitrarily high in the hierarhyMTT

n

(REGT)).

Then we show that there are nondeterministi languages, generated by quite

simple devies, whih are not in the two hierarhies disussed: There is a language

generated by a two-way generalized sequential mahine whih is not in the yMTT-

hierarhy, and there is a ontext-free language not in the EDT0L-hierarhy.

We now move to the proof of properness of the yMTT-hierarhy. The witnesses

for this properness an be generated by (ontrolled) EDT0L systems, whih are

viewed here as string transduers. Essentially, an EDT0L system is a top-down tree

transduer M with monadi input alphabet (f. [ERS80℄). However, instead of a

tree translation it realizes a string translation as follows: �rst, the input string w is

turned into a monadi tree s (i.e., s = sm(w)); then it is translated into the string

y�

M

(s). The EDT0L translation realized by M , denoted by �

EDT0L

M

, is de�ned as

sm Æ �

M

Æ y. Hene, the lass EDT0L of EDT0L translations is sm Æ T Æ y. The

EDT0L-hierarhy onsists of all EDT0L

n

(REG), obtained by iterating EDT0L on

the lass REG of regular languages. It starts with the lass EDT0L(REG) of EDT0L

languages (beause the regular ontrol an be internalized, f. e.g., Theorem 3.2.1

of [ERS80℄).

Let us �rst show that the EDT0L-hierarhy is ontained in the yMTT-hierarhy.

Theorem 21. For every n � 1, EDT0L

n+1

(REG) � yMTT

n

(REGT).

Proof. By de�nition, EDT0L

n+1

= (sm Æ T Æ y)

n+1

whih equals

sm Æ (T Æ y Æ sm)

n

Æ T Æ y:

By Lemma 7, y Æ sm 2 MTT. Thus, the above is inluded in smÆ (T ÆMTT)

n

ÆT Æy.

By Lemma 4 this is inluded in smÆMTT

n

ÆT Æy whih, by Lemma 5, is inluded in

smÆMTT

n

Æy. Applying this to REG gives yMTT

n

(sm(REG)) � yMTT

n

(REGT).

�

Based on Theorem 18 we will prove that there is a language whih annot be

generated as output by the omposition of n MTTs, but whih an be generated

by the omposition of n + 2 EDT0L translations. This time the language L

0

in

Theorem 18 will be of the form ount

b

(L). When applied to a string w, ount

b

inserts

b

jwj�i

after the i-th symbol of the string w, for 1 � i < jwj. Formally, let A be an

alphabet and let B = fbg with b 62 A. De�ne the operation ount

b

: A

�

! (A[B)

�

as follows:

ount

b

(a

1

a

2

� � � a

l

) =

l

Y

i=1

a

i

b

l�i

= a

1

b

l�1

a

2

b

l�2

� � � a

l�1

ba

l

:

Clearly, ount

b

(w) is a Æ-string for w. So, for a language L, ount

b

(L) = fount

b

(w) j

w 2 Lg is Æ-omplete for L. Sine, moreover, res

A

(ount

b

(L)) = L, we an apply

Theorem 18 to L and ount

b

(L). For distint symbols b

1

; : : : ; b

n

we abbreviate

ount

b

1

Æ ount

b

2

Æ � � � Æ ount

b

n

by ount

b

1

;:::;b

n

.

To start the appliation of Theorem 18 we need a language L that annot be

generated by a top-down tree transduer. As shown in Theorem 3.16 of [Eng82℄

suh a language is

L

e

= f(a

m

)

2

m

j m � 1g;

where e stands for `exponential opying'. In fat, it is shown in that theorem that

L

e

62 yT (REGT) and even that L

e

62

S

n�0

yN-T

n

(REGT).

25

Theorem 22. For every n � 1, EDT0L

n+2

(REG)� yMTT

n

(REGT) 6= ?.

Proof. Let b

1

; : : : ; b

n

be distint symbols not in fa; g. We will show that the lan-

guage ount

b

1

;:::;b

n

(L

e

) is in EDT0L

n+2

(REG)�yMTT

n

(REGT). That is, we will

show that (1) ount

b

1

;:::;b

n

(L

e

) 2 EDT0L

n+2

(REG) and (2) ount

b

1

;:::;b

n

(L

e

) 62

yMTT

n

(REGT).

(1) First, we show that L

e

2 EDT0L

2

(REG) by de�ning two top-down tree

transduers M

1

and M

2

and a regular language L suh that �

EDT0L

M

2

(�

EDT0L

M

1

(L)) =

L

e

. Let M

1

= (fq

(0)

g; fa

(1)

; e

(0)

g; �; q; R

1

) with � = f�

(2)

; a

(0)

;

(0)

; e

(0)

g and R

1

onsisting of the following rules.

hq; a(x

1

)i ! �(; �(hq; x

1

i; a))

hq; ei ! e

Then for i � 0, �

EDT0L

M

1

(a

i

) =

i

a

i

. Let M

2

= (fq

(0)

g; �;�; q; R

2

) with � =

fa

(1)

;

(1)

; e

(0)

g, � as above, and R

2

onsisting of the following rules.

hq; (x

1

)i ! �(hq; x

1

i; hq; x

1

i)

hq; a(x

1

)i ! �(a; hq; x

1

i)

hq; ei !

Then �

EDT0L

M

2

(

i

a

j

) = (a

j

)

2

i

and for the regular language L = fa

m

j m � 1g,

�

EDT0L

M

2

(�

EDT0L

M

1

(L)) = �

EDT0L

M

2

(f

m

a

m

j m � 1g) = f(a

m

)

2

m

j m � 1g = L

e

.

Now that we know that L

e

2 EDT0L

2

(REG), we show that there is an EDT0L

translation �

EDT0L

M

b

whih realizes ount

b

. De�ne M

b

= (fq

(0)

0

; q

(0)

g; �;�; q

0

; R),

� = fa

(1)

j a 2 Ag [fe

(0)

g, � = fa

(0)

j a 2 Ag [f�

(2)

; e

(0)

; b

(0)

g, A is an arbitrary

alphabet not ontaining b, and R onsists of the following rules.

hq

0

; a(x

1

)i ! �(a; �(hq; x

1

i; hq

0

; x

1

i)) for every a 2 A

hq

0

; ei ! e

hq; a(x

1

)i ! �(b; hq; x

1

i) for every a 2 A

hq; ei ! e

Clearly, for every w 2 A

�

, �

EDT0L

M

b

(w) = ount

b

(w). Hene, ount

b

2 EDT0L

and so ount

b

1

;:::;b

n

(L

e

) 2 EDT0L

n+2

(REG).

(2) Appliation of Theorem 18(a) gives: if ount

b

1

;:::;b

n

(L

e

) 2 yMTT

n

(REGT),

then ount

b

1

;:::;b

n�1

(L

e

) 2 yMTT

n�1

(REGT). Hene, by indution, ount

b

1

(L

e

) 2

yMTT (REGT) and, by Theorem 18(b), L

e

2 yT (REGT). But, as mentioned be-

fore this theorem, L

e

62 yT (REGT) and thus ount

b

1

;:::;b

n

(L

e

) 62 yMTT

n

(REGT).

�

From Theorems 21 and 22 we obtain the properness of the yMTT-hierarhy.

Theorem 23. For every n � 1, yMTT

n

(REGT) (yMTT

n+1

(REGT).

As shown in the proof of Theorem 22, L

e

2 EDT0L

2

(REG) � yT (REGT)

and thus L

e

2 EDT0L

2

(REG)�EDT0L(REG), beause EDT0L(REG) = yT (sm(

REG)) � yT (REGT). Hene, by Theorems 21 and 22, the EDT0L-hierarhy is

proper. This was mentioned as an open problem after Theorem 4.3 of [Eng82℄.

Theorem 24. For every n � 1, EDT0L

n

(REG) (EDT0L

n+1

(REG).

26

Nondeterministi Languages not in the yMTT- and EDT0L-hierarhies

Here we show that partiular \nondeterministi" languages are not in the yMTT-

and EDT0L-hierarhies. First, a language generated by a nondeterministi two-

way generalized sequential mahine (2GSM) is onsidered and it is proved that this

language is not in the yMTT-hierarhy. Seond, a ontext-free language is onsidered

and proved not to be in the EDT0L-hierarhy.

A 2GSM is a nondeterministi �nite-state devie that takes as input a string

(surrounded by end markers) on whih it an move bak and forth, possibly hang-

ing its state and generating output. Let 2GSM denote the lass of string-to-string

translations realized by 2GSMs.

Theorem 25. 2GSM (REG)�

S

n�0

yMTT

n

(REGT) 6= ?.

Proof. Let 0; 1; b, and a be distint symbols and let L = rub

f0;1g

(rub

fbg

(L

np

)) with

L

np

= fa

n

j n is not a primeg. Then L 2 2GSM (REG) �

S

n�0

yMTT

n

(REGT),

i.e., (1) L 2 2GSM (REG) and (2) L 62

S

n�0

yMTT

n

(REGT).

(1) It is straightforward to show that there is a 2GSMM and a regular language

R suh that M 's translation applied to R gives L. The language R onsists of all

strings a

p

, p � 2. Now M traverses q times, with q � 2, the input string a

p

,

outputting an a at eah move. Moreover, at every step M an nondeterministially

hoose not to move and to output a symbol in f0; 1; bg. Hene, M generates all

strings in rub

f0;1;bg

(fa

p�q

j p; q � 2g) = rub

f0;1g

(rub

fbg

(L

np

)) = L.

(2) By Theorem 20, rub

f0;1g

(rub

fbg

(L

np

)) 2

S

n�0

yMTT

n

(REGT) implies that

rub

fbg

(L

np

) 2 yT (REGT). By Theorem 3.2.14 of [ERS80℄ (whih is another bridge

theorem, losely related to Lemma 17), rub

fbg

(L

np

) 2 yT (REGT) implies that

L

np

2 yT

f

(REGT), where T

f

denotes the lass of translations realized by top-

down tree transduers that are �nite opying. It is known that the language L

np

is

not in yT

f

(REGT), beause it is not regular and hene its Parikh-set is not semi-

linear (f. Corollary 3.2.7 of [ERS80℄; f. also the proof of Theorem 4.8 of [Eng82℄).

Thus L 62

S

n�0

yMTT

n

(REGT). �

Sine the lass 2GSM (REG) is inluded in the lass of ET0L languages (this fol-

lows, e.g., from the haraterization of ET0L languages by heking-stak pushdown

automata [vL76℄, whih an easily simulate 2GSMs; see also [ERS80℄), Theorem 25

implies that ET0L(REG)�

S

n�0

yMTT

n

(REGT) 6= ?, i.e., there is an ET0L lan-

guage that is not in the yMTT-hierarhy. Denote by N-T the lass of translations

realized by nondeterministi top-down tree transduers. Then, analogous to the de-

terministi ase, ET0L = sm Æ N-T Æ y and thus ET0L(REG) � yN-T (REGT).

Hene, yN-T (REGT)�

S

n�0

yMTT

n

(REGT) 6= ? by Theorem 25.

Finally, we show that there is a ontext-free language (i.e., a language in yREGT)

whih is not in the EDT0L-hierarhy. This strengthens the well-known result that

there are ontext-free languages whih annot be generated by EDT0L systems, i.e.,

whih are not in EDT0L(REG) (f., e.g., Corollary 3.2.18(i) of [ERS80℄).

Let REGT

mon

denote the restrition of REGT to monadi trees. We prove that

there is a language in the lass CF of ontext-free languages, whih is not in the hi-

erarhy yMTT

n

(REGT

mon

). Sine this hierarhy inludes the EDT0L-hierarhy by

the proof of Theorem 21 (beause sm(REGT) � REGT

mon

), the above mentioned

result follows as a orollary.

Theorem 26. CF �

S

n�0

yMTT

n

(REGT

mon

) 6= ?.

Proof. Let L 2 CF � EDT0L(REG). Obviously, L = REGT

mon

satis�es the lo-

sure properties of Lemma 17 (beause REGT does). This implies that Theorems 18

and 20 an also be stated with REGT replaed by REGT

mon

. Then, by Theorem 20,

if rub

f0;1g

(L) 2

S

n�0

yMTT

n

(REGT

mon

), then L 2 yT (REGT

mon

). Clearly, this

27

means that L 2 yT (sm(REG)) = EDT0L(REG), beause a top-down tree trans-

duer with monadi input trees, i.e., trees of the form a

1

(� � � a

n�1

(a

n

) � � �), an easily

be hanged into one with input trees of the form sm(a

1

� � �a

n

) that generates the

same output: the input symbols of rank zero are hanged to have rank one, the

right-hand sides of all rules are taken over, and for the input symbol e an arbitrary

rule is added (whih will not be used). Sine L 62 EDT0L(REG), this means that

rub

f0;1g

(L) is not in

S

n�0

yMTT

n

(REGT

mon

). Clearly, rub

f0;1g

(L) 2 CF, beause

the ontext-free languages are losed under substitution (see, e.g., Theorem 6.2

of [HU79℄). �

Corollary 27. CF �

S

n�0

EDT0L

n

(REG) 6= ?.

7 The IO-hierarhy

In this setion we investigate the relationship between the IO-hierarhy and both

the yMTT-hierarhy and the EDT0L-hierarhy. By Theorem 7.5 of [ES78℄, the

IO-hierarhy an be de�ned in terms of tree translations as follows:

for n � 1; IO(n) = yYIELD

n

(REGT);

where YIELD is the lass of YIELD mappings de�ned below. The hierarhy starts

with the lass IO(1) of languages generated by the IO maro grammars of [Fis68℄.

Sine YIELD � MTT by Theorem 4.6 of [EV85℄, IO(n) � yMTT

n

(REGT), i.e.,

the IO-hierarhy is inside the yMTT-hierarhy. In fat, the yMTT-hierarhy di�ers

from the IO-hierarhy only by a single appliation of a top-down tree transduer,

beause yMTT

n

(REGT) = yYIELD

n

(T (REGT)) by Corollary 4.13 of [EV85℄. It

is shown in [Dam82℄ that the IO-hierarhy is in�nite, and that the IO-hierarhy of

tree languages YIELD

n

(REGT) is proper.

A YIELD mapping Y

f

is a mapping from T

�

to T

�

(Y) de�ned by a mapping

f from �

(0)

to T

�

(Y), for ranked alphabets � and �. It realizes the semantis of

�rst-order tree substitution in the following way.

(i) for � 2 �

(0)

, Y

f

(�) = f(�) and

(ii) for � 2 �

k+1

, s

0

; s

1

; : : : ; s

k

2 T

�

, and k � 0,

Y

f

(�(s

0

; s

1

; : : : ; s

k

)) = Y

f

(s

0

)[y

i

 Y

f

(s

i

) j i 2 [k℄℄.

Example 28. Consider the tree language L

f

onsisting of monadi trees of the form

m

(a

m

(e)), m � 1. We want to show that L

f

is in YIELD(REGT), i.e., that there is

a regular tree languageK and a mapping f suh that Y

f

(K) = L

f

. The regular tree

language K onsists of binary trees with yields of the form

m

�

m

and is generated

by the regular tree grammar with produtions S ! �(A; e), A ! �(; �(A;�)),

and A ! �(; �). Now the YIELD mapping Y

f

simply has to generate yK, as

monadi trees. Let f(�) = a(y

1

), f() = (y

1

), and f(e) = e. Consider, e.g., the

tree s = �(�(; �); e) 2 K. Then Y

f

(s) = Y

f

(�(; �))[y

1

 f(e)℄ = f()[y

1

f(�)℄[y

1

 e℄ = (y

1

)[y

1

 a(y

1

)℄[y

1

 e℄ = (a(e)). It should be lear that

Y

f

(K) = L

f

. �

7.1 Comparison with the yMTT-hierarhy

Now we ompare the IO-hierarhy with the yMTT-hierarhy and prove (in The-

orem 32) that IO(n + 1) � yMTT

n

(REGT) 6= ?. Let us �rst show that YIELD

mappings are losed under omposition with tree homomorphisms (= seond-order

tree substitutions).

28

Lemma 29. Let Y

f

be a YIELD mapping from T

�

to T

�

(Y) and M a tree ho-

momorphism with input alphabet �. There is a YIELD mapping Y

g

suh that for

every tree s 2 T

�

, if Y

f

(s) ontains no parameters, then Y

g

(s) = �

M

(Y

f

(s)).

Proof. Let f be a mapping from �

(0)

to T

�

(Y), and M = (fq

(0)

g; �; �; q; R). The

idea is to de�ne g(�) for � 2 �

(0)

by running M on f(�), leaving parameters

unhanged. That is, if

M is the extension of M to input trees in T

�

(Y

m

) (for

some m large enough) by rules hq; y

j

i ! y

j

, then de�ne the new mapping g by

g(�) = �

M

(f(�)). If Y

f

(s) 2 T

�

, then �

M

(Y

f

(s)) = �

M

(Y

f

(s)), whih equals Y

g

(s)

by the following laim.

Claim: For every s 2 T

�

, Y

g

(s) = �

M

(Y

f

(s)).

The proof of this laim is by indution on the struture of s. Let [[

M

℄℄ be the

seond-order substitution [[� �

�

j � 2 �℄℄ with �

�

= rhs

M

(q; �)[hq; x

i

i y

i

j i 2

[k℄℄ for every � 2 �. Then, learly, t[[

M

℄℄ = �

M

(t) for every t 2 T

�

(Y). If s = � 2

�

(0)

, then Y

g

(s) = g(�) = �

M

(f(�)) = �

M

(Y

f

(s)). Let s = �(s

0

; : : : ; s

k

), k � 1, � 2

�

(k+1)

, and s

0

; : : : ; s

k

2 T

�

. Then �

M

(Y

f

(s)) = Y

f

(s)[[

M

℄℄ = Y

f

(s

0

)[y

i

 Y

f

(s

i

) j

i 2 [k℄℄[[

M

℄℄. This equals Y

f

(s

0

)[[

M

℄℄[y

i

 Y

f

(s

i

)[[

M

℄℄ j i 2 [k℄℄ = �

M

(Y

f

(s

0

))[y

i

�

M

(Y

f

(s

i

)) j i 2 [k℄℄. By indution this is equal to Y

g

(s

0

)[y

i

 Y

g

(s

i

) j i 2 [k℄℄ =

Y

g

(s). �

Example 30. Let M be the top-down tree transduer M

2

de�ned in the proof of

Theorem 22 and let f be the mapping of Example 28. Sine M is a tree ho-

momorphism, we an apply the onstrution of the proof of Lemma 29. De�ne

g(�) = �

M

(f(�)) = �

M

(a(y

1

)) = �(a; y

1

), g() = �

M

((y

1

)) = �(y

1

; y

1

), and

g(e) = �

M

(e) = .

Clearly, Y

g

(s) = �

M

(Y

f

(s)) for every s. This means that for the regular tree

language K of Example 28, yY

g

(K) = y�

M

(Y

f

(K)) = y�

M

(L

f

) = f(a

m

)

2

m

j m �

1g whih is the language L

e

de�ned before Theorem 22. Hene, L

e

is in IO(1),

i.e., it is a (well-known) example of an IO maro language. �

Now that we know that L

e

2 IO(1), we want to �nd an operation ' that an be

realized by a YIELD mapping and whih is de�ned in suh a way that Theorem 18

an be applied to L

0

= '(L) for a language L. Unlike the operations rub and ount

of before, the operation we use now is a tree translation, i.e., L

0

= y'(K), where

yK = L.

Let � = f�

(2)

; root

(1)

g [�

(0)

be a ranked alphabet and let l; r be symbols not

in �. Reall from Setion 2.1 that eah node � of a tree s is denoted by a string

in N

�

, and that the label of s at � is denoted by s[�℄. Consider a tree translation �

from T

�

to T

�

with � = � [fl

(0)

; r

(0)

; e

(0)

g. Then � is an (l; r)-leaf insertion for

�, if, for every s

0

= root(s) and s 2 T

��frootg

,

(i) �(s

0

) = root(t) for some t 2 T

��frootg

and

(ii) y�(s

0

) = �

0

1

s[�

1

℄�

0

2

s[�

2

℄ � � � �

0

m

s[�

m

℄, where �

0

i

= �

i

[1 l; 2 r℄ and �

1

; : : : ; �

m

2

f1; 2g

�

are all leaves of s in pre-order that are not labeled by e.

As an example, let �

(0)

= fa; b; eg and onsider the tree s = �(a; �(�(e; b); a)).

Figure 3 shows s

0

= root(s) and the tree �(s

0

) for an (l; r)-leaf insertion � (obviously,

y�(s

0

) = larlrbrra is a Æ-string for ys

0

= aba).

Let � be an (l; r)-leaf insertion for � and let A = �

(0)

� feg and B = fl; rg.

It should be lear that, for a \rooted" tree language K � root(T

��frootg

), the

language L

0

= y�(K) is Æ-omplete for L = yK. Moreover, res

A

(L

0

) = L beause

res

A

(y�(s

0

)) = s[�

1

℄s[�

2

℄ � � � s[�

m

℄ = ys. This means that Theorem 18 an be applied

to L and L

0

. Rather than de�ning an (l; r)-leaf insertion in YIELD, it suÆes, due

to Lemma 29, to show that there is an (l; r)-leaf insertion � in �

M

Æ YIELD for

some tree homomorphism M . This is true beause � will always be applied to a

29

�

e

�a

a�

�

l

|{z}

�

0

1

a rlr

|{z}

�

0

2

b rr

|{z}

�

0

3

a

b

=

s

root

root

root

Fig. 3. The trees s

0

and � (s

0

) for an (l; r)-leaf insertion �

tree language K in YIELD(L) for some lass L of tree languages, i.e., to a K of

the form Y

f

(K

0

) for some YIELD mapping Y

f

and tree language K

0

2 L. Hene,

by Lemma 29, �(K) 2 YIELD(�

M

(Y

f

(K

0

))) � YIELD

2

(L).

Lemma 31. Let � = f�

(2)

; root

(1)

g [�

(0)

be a ranked alphabet and let l; r be

symbols not in �. There is a tree homomorphism M and a YIELD mapping Y

f

suh that �

M

Æ Y

f

is an (l; r)-leaf insertion for �.

Proof. De�ne M = (fq

(0)

g; �; �; q; R) with � = fÆ

(3)

; l

(0)

; r

(0)

;

(0)

; d

(0)

; e

(0)

g [�

and R onsisting of the following rules.

hq; root(x

1

)i ! �(d; �(hq; x

1

i; e))

hq; �(x

1

; x

2

)i ! Æ(; �(hq; x

1

i; l); �(hq; x

2

i; r))

hq; ai ! a for every a 2 �

(0)

The mapping f is de�ned as f(d) = root(y

1

), f() = �(y

1

; y

2

), f(e) = e, and,

for every a 2 �

(0)

[fl; rg with a 6= e, f(a) = �(y

1

; a).

Let us now prove that �

M

Æ Y

f

is an (l; r)-leaf insertion. For s 2 T

��frootg

,

Y

f

(�

M

(root(s))) = Y

f

(�(d; �(�

M

(s); e))) by the de�nition of M . This equals

f(d)[y

1

 Y

f

(�(�

M

(s); e))℄ = root(y

1

)[y

1

 Y

f

(�

M

(s))[y

1

 Y

f

(e)℄℄

= root(Y

f

(�

M

(s))[y

1

 e℄):

By the rules of M , �

M

(s) does not ontain ourrenes of the symbol d, and

thus Y

f

(�

M

(s))[y

1

 e℄ 2 T

��frootg

with � = � [fl

(0)

; r

(0)

; e

(0)

g. This proves part

(i) of the de�nition of (l; r)-leaf insertion.

The yield of root(Y

f

(�

M

(s))[y

1

 e℄) is equal to yY

f

(�

M

(s))[y

1

 "℄ whih

equals �

0

1

s[�

1

℄�

0

2

s[�

2

℄ � � � �

0

m

s[�

m

℄ by the following laim (with the �

0

i

as in the laim).

This proves part (ii) of the de�nition of (l; r)-leaf insertion.

Claim: For every s 2 T

��frootg

, yY

f

(�

M

(s)) = y

1

�

0

1

a

1

y

1

�

0

2

a

2

� � � y

1

�

0

m

a

m

, where

m � 0, ys = a

1

� � � a

m

, a

i

2 �

(0)

� feg, �

0

i

= �

i

[1 l; 2 r℄ for i 2 [m℄, and

�

1

; : : : ; �

m

are all leaves of s in pre-order that are not labeled e.

The laim is proved by indution on the struture of s. If s = a 2 �

(0)

� feg,

then yY

f

(�

M

(s)) = yY

f

(a) = y�(y

1

; a) = y

1

�

0

1

a

1

, where ys = a

1

= a, �

1

= ", and

�

0

1

= �

1

[1 l; 2 r℄ = ". If s = e, then yY

f

(�

M

(s)) = yY

f

(e) = ye = " (whih

proves the statement for m = 0). If s = �(s

1

; s

2

) with s

1

; s

2

2 T

��frootg

, then

Y

f

(�

M

(s)) = Y

f

(Æ(; �(�

M

(s

1

); l); �(�

M

(s

2

); r))

= Y

f

()[y

1

 Y

f

(�(�

M

(s

1

); l)); y

2

 Y

f

(�(�

M

(s

2

); r))℄

= �(y

1

; y

2

)[y

1

 Y

f

(�

M

(s

1

))[y

1

 �(y

1

; l)℄;

y

2

 Y

f

(�

M

(s

2

))[y

1

 �(y

1

; r)℄℄:

The yield of this tree is yY

f

(�

M

(s

1

))[y

1

 y

1

l℄yY

f

(�

M

(s

2

))[y

1

 y

1

r℄. By indution,

yY

f

(�

M

(s

1

)) = y

1

p

0

1

b

1

� � � y

1

p

0

i

b

i

and yY

f

(�

M

(s

2

)) = y

1

q

0

1

1

� � � y

1

q

0

j

j

with ys

1

=

30

b

1

� � � b

i

, i � 0, ys

2

=

1

� � �

i

, j � 0, p

0

�

= p

�

[1 l; 2 r℄ for � 2 [i℄, q

0

�

= q

�

[1

l; 2 r℄ for � 2 [j℄, and p

1

; : : : ; p

i

and q

1

; : : : ; q

j

are all leaves in pre-order not

labeled by e of s

1

and s

2

, respetively. Thus, yY

f

(�

M

(s)) = y

1

lp

0

1

b

1

� � � y

1

lp

0

i

b

i

y

1

rq

0

1

1

� � � y

1

rq

0

j

j

whih equals y

1

�

0

1

a

1

� � � y

1

�

0

m

a

m

, where: m = i + j, for � 2 [i℄, �

0

�

=

(1p

�

)[1 l; 2 r℄ and a

�

= b

�

, and, for � 2 [j℄, �

0

i+�

= (2q

�

)[1 1; 2 r℄ and

a

i+�

=

�

. This proves the laim, beause a

1

� � �a

m

= b

1

� � � b

i

1

� � �

j

= ys

1

ys

2

= ys

and 1p

1

; : : : ; 1p

i

; 2q

1

: : : ; 2q

j

are all leaves of s in pre-order that are not labeled by

e. �

We now prove that witnesses for the properness of the yMTT-hierarhy an

already be found in the IO-hierarhy.

Theorem 32. For every n � 1, IO(n+ 1)� yMTT

n

(REGT) 6= ?.

Proof. Let n � 1. We �rst de�ne the language L

n

in IO(n+1)� yMTT

n

(REGT).

Let � be the ranked alphabet f�

(2)

; root

(1)

g [�

(0)

with �

(0)

= fa; ; eg and let

K be the regular tree language de�ned in Example 28. De�ne the regular tree

language K

e

as �(d;K) = f�(d; s) j s 2 Kg and let g be the mapping as de�ned

in Example 30, extended by g(d) = root(y

1

). Then Y

g

(K

e

) = root(Y

g

(K)) � T

�

,

yY

g

(K

e

) = L

e

, and every tree in Y

g

(K

e

) is \rooted", i.e., of the form root(s),

s 2 T

��frootg

. Let l

1

; : : : ; l

n

; r

1

; : : : ; r

n

be distint symbols of rank zero, not in

�. By Lemma 31 there is, for every i 2 [n℄, a tree homomorphism M

i

and a

YIELD mapping Y

f

i

suh that �

i

= �

M

i

Æ Y

f

i

is an (l

i

; r

i

)-leaf insertion for � [

fl

1

; : : : ; l

i�1

; r

1

; : : : ; r

i�1

g. For n � 0 de�ne

K

n

= (Y

g

Æ �

M

1

Æ Y

f

1

Æ �

M

2

Æ Y

f

2

Æ � � � Æ �

M

n

Æ Y

f

n

)(K

e

):

Then L

n

= yK

n

2 IO(n + 1) � yMTT

n

(REGT), i.e., (1) L

n

2 IO(n + 1) and

(2) L

n

62 yMTT

n

(REGT).

(1) Sine Y

g

(K

e

) � T

�

, Y

g

(K

e

) ontains no parameters. Thus, by Lemma 29,

there is a YIELD mapping Y

g

0

suh that Y

g

0

(K

e

) = �

M

1

(Y

g

(K

e

)). Let i 2 [n� 1℄.

Sine �

M

i

Æ Y

f

i

is a leaf insertion and every tree in Y

g

(K

e

) is rooted, Y

f

i

(s) has no

parameters for s 2 �

M

i

(Y

f

i�1

(�

M

i�1

(: : : �

M

1

(Y

g

(K

e

)) : : :))); by Lemma 29 there is a

YIELD mapping f

0

i

suh that Y

f

0

i

(s) = �

M

i+1

(Y

f

i

(s)). Altogether, there are YIELD

mappings f

0

1

; : : : ; f

0

n�1

suh that

K

n

= (Y

g

0

Æ Y

f

0

1

Æ Y

f

0

2

Æ � � � Æ Y

f

0

n�1

Æ Y

f

n

)(K

e

)

whih is in (YIELDÆYIELD

n�1

ÆYIELD)(REGT) and thus L

n

= yK

n

2 IO(n+1).

(2) As disussed before Lemma 31, Theorem 18 an be applied to L = L

n�1

=

yK

n�1

and L

0

= L

n

= y�

n

(K

n�1

), for the rooted tree language K

n�1

and the

(l

n

; r

n

)-leaf insertion �

n

= �

M

n

Æ Y

f

n

. By Theorem 18(a), if L

n

2 yMTT

n

(REGT)

then L

n�1

2 yMTT

n�1

(REGT), and by indution, L

1

= y�

1

(Y

g

(K

e

)) 2 yMTT (

REGT); by Theorem 18(b) this means that L

0

= yY

g

(K

e

) = L

e

2 yT (REGT)

whih ontradits the fat that L

e

62 yT (REGT) as stated before Theorem 22. �

From Theorem 32 and the fat that IO(n) � yMTT

n

(REGT), as disussed at

the beginning of this setion, we obtain the properness of the IO-hierarhy.

Theorem 33. For every n � 1, IO(n) (IO(n+ 1).

7.2 Comparison with the EDT0L-hierarhy

Let us now turn to the omparison of the IO-hierarhy and the EDT0L-hierarhy.

For ET0L systems, it was proved in [Vog88℄ that the ET0L-hierarhy is inluded

in the OI-hierarhy OI (n), generated by the n-level OI maro grammars (see,

31

e.g., [ES78,Dam82℄). We prove that a similar result holds for EDT0L systems: the

EDT0L-hierarhy is inluded in the IO-hierarhy. Note that the IO-hierarhy and

the OI-hierarhy are both generated by n-level grammars, but in a di�erent mode of

derivation (inside-out and outside-in, respetively). The hierarhies seem, however,

to be inomparable; in one diretion this follows from (the disussion following)

Theorem 25: there is an ET0L language not in the IO-hierarhy.

The proof of the inlusion of the EDT0L-hierarhy in the IO-hierarhy is based

on the following lemma whih shows how to simulate a top-down tree transduer

with monadi input trees by a YIELD mapping (applied to a regular tree language).

This is basially the tehnique used in [Dow74℄ to prove that EDT0L(REG) �

IO(1), f. Theorem 6.3 of [ERS80℄.

A YIELD mapping evaluates a tree in a bottom-up fashion. This means that, in

order to simulate a top-down tree transduer with monadi input sm(u), the string

u has to be reversed �rst.

Lemma 34. T (sm(REG)) � YIELD(REGT).

Proof. Let L � A

�

be a regular language for some alphabet A. Let M = (fq

1

; : : : ;

q

m

g; �;�; q

1

; R) be a top-down tree transduer with m � 1 and let � = fa

(1)

j a 2

Ag[fe

(0)

g. We now onstrut a linear tree homomorphism N (where `linear' means

that, for every input symbol � of rank k � 0 and for every i 2 [k℄, hq; x

i

i ours at

most one in the right-hand side of the (q; �)-rule) and a YIELD mapping Y

f

suh

that Y

f

(�

N

(sm(L

0

))) = �

M

(sm(L)) for the regular language L

0

= f#u

r

j u 2 Lg,

with # 62 A. This proves the lemma, beause sm(L

0

) � REGT and linear tree homo-

morphisms preserve the regular tree languages (f., e.g., Theorem 6.10 of [GS84℄).

The idea of the onstrution is to simulate M by assoiating with every state q

j

of

M a parameter y

j

, ontaining the q

j

-translation of M ; the tree homomorphism N

generates, for input a, onstant symbols (q

j

; a) for every j 2 [m℄ (and for input #,

symbols (q

j

; e)), and f maps (q

j

; a) to the right-hand side of the (q

j

; a)-rule of M

(with states replaed by the orresponding parameters).

De�ne N = (fqg; � [f#

(1)

g; �; q; R

N

) with � = f(q

j

; a)

(0)

j j 2 [m℄; a 2

�g [f

(m+1)

; e

(0)

g and R

N

onsisting of the following rules.

hq;#(x

1

)i ! (hq; x

1

i; (q

1

; e); : : : ; (q

m

; e))

hq; a(x

1

)i ! (hq; x

1

i; (q

1

; a); : : : ; (q

m

; a)) for every a 2 A

hq; ei ! e

The mapping f is de�ned as f(e) = y

1

and, for every j 2 [m℄ and a 2 �, f((q

j

; a)) =

rhs

M

(q

j

; a)[hq

i

; x

1

i y

i

j i 2 [m℄℄.

Let us now prove the orretness of the onstrution, i.e., that Y

f

(�

N

(sm(L

0

))) =

�

M

(sm(L)). By the de�nition of L

0

we have to show that, for every u 2 L, Y

f

(�

N

(sm(

#u

r

))) = �

M

(sm(u)). By the de�nition ofN , Y

f

(�

N

(sm(#u

r

))) = Y

f

((�

N

(sm(u

r

));

(q

1

; e); : : : ; (q

m

; e))) = Y

f

(�

N

(sm(u

r

)))[y

j

 rhs

M

(q

j

; e) j j 2 [m℄℄. Sine rhs

M

(q

j

; e)

=M

q

j

(sm(")) this equals �

M

(sm(u)) by the following laim (for v = ").

Claim: For every u; v 2 A

�

, Y

f

(�

N

(sm(u

r

)))[: : : ℄ = �

M

(sm(uv)), where [: : : ℄ =

[y

i

 M

q

i

(sm(v)) j i 2 [m℄℄.

The proof of this laim is by indution on the struture of u. If u = ", then

Y

f

(�

N

(sm(u

r

)))[: : : ℄ = Y

f

(e)[: : : ℄ = y

1

[: : : ℄ =M

q

1

(sm(v)) = �

M

(sm(uv)).

If u

0

= ua with u 2 A

�

and a 2 A, then we get

Y

f

(�

N

(sm(u

0

r

)))[: : : ℄

= Y

f

(�

N

(a(sm(u

r

))))[: : : ℄

= Y

f

((�

N

(sm(u

r

)); (q

1

; a); : : : ; (q

m

; a)))[: : : ℄

= Y

f

(�

N

(sm(u

r

)))[y

j

 f((q

j

; a)) j j 2 [m℄℄[: : : ℄:

32

The appliation of [: : : ℄ to f((q

j

; a)) gives rhs

M

(q

j

; a)[hq

i

; x

1

i M

q

i

(sm(v)) j i 2

[m℄℄ whih equals M

q

j

(sm(av)) by De�nition 3 and the fat that M is a top-down

tree transduer. Thus we get Y

f

(�

N

(sm(u

r

)))[y

j

 M

q

j

(sm(av)) j j 2 [m℄℄. By

indution this equals �

M

(sm(uav)) = �

M

(sm(u

0

v)). �

Before we prove that the EDT0L-hierarhy is inluded in the IO-hierarhy, let

us onsider an example of the onstrution given in the proof of Lemma 34.

Example 35. Let M

b

be the top-down tree transduer de�ned in the proof of The-

orem 22, whih translates a tree sm(w) into a tree with yield ount

b

(w), where

w 2 A

�

for an alphabet A. For A = f; dg, M

b

has the following rules.

hq

0

; (x

1

)i ! �(; �(hq; x

1

i; hq

0

; x

1

i))

hq

0

; d(x

1

)i ! �(d; �(hq; x

1

i; hq

0

; x

1

i))

hq

0

; ei ! e

hq; (x

1

)i ! �(b; hq; x

1

i)

hq; d(x

1

)i ! �(b; hq; x

1

i)

hq; ei ! e

We now apply the onstrution of the proof of Lemma 34 to de�ne the linear

tree homomorphism N and the YIELD mapping Y

f

suh that Y

f

(�

N

(sm(#u

r

)) =

�

M

b

(sm(u)) for every u 2 A

�

. Then N = (fpg; � [f#

(1)

g; �; p; R

N

) with � =

f

(1)

; d

(1)

; e

(0)

g, � = f(q

0

;)

(0)

; (q

0

; d)

(0)

; (q

0

; e)

(0)

; (q;)

(0)

; (q; d)

(0)

; (q; e)

(0)

g[f

(3)

;

e

(0)

g, and R

N

onsists of the following rules.

hp;#(x

1

)i ! (hp; x

1

i; (q

0

; e); (q; e))

hp; (x

1

)i ! (hp; x

1

i; (q

0

;); (q;))

hp; d(x

1

)i ! (hp; x

1

i; (q

0

; d); (q; d))

hp; ei ! e

The mapping f is de�ned as f((q

0

;)) = �(; �(y

2

; y

1

)), f((q

0

; d)) = �(d; �(y

2

; y

1

)),

f((q

0

; e)) = f((q; e)) = e, f((q;)) = f((q; d)) = �(b; y

2

), and f(e) = y

1

.

(q

0

; d)

(q

0

;)e

(q

0

;)

(q

0

; e) (q; e)

(q; d)

(q;)

(q;)

Fig. 4. The tree t = �

N

(#(d(((e)))))

Now, onsider the string u = d. Then

�

M

b

(sm(u)) = �(; �(�(b; �(b; e)); �(; �(�(b; e); �(d; �(e; e)))))):

The appliation of �

N

to the tree sm(#u

r

) = #(d(((e)))) gives the tree t shown

in Figure 4. Let us now ompute Y

f

(t) in a bottom-up fashion:

Y

f

(t=111) = Y

f

(e)[y

1

 Y

f

((q

0

;)); y

2

 Y

f

((q;))℄

= y

1

[y

1

 �(; �(y

2

; y

1

)); y

2

 �(b; y

2

)℄

= �(; �(y

2

; y

1

));

33

Y

f

(t=11) = Y

f

(t=111)[y

1

 Y

f

((q

0

;)); y

2

 Y

f

((q;))℄

= �(; �(y

2

; y

1

))[y

1

 �(; �(y

2

; y

1

)); y

2

 �(b; y

2

)℄

= �(; �(�(b; y

2

); �(; �(y

2

; y

1

))));

Y

f

(t=1) = Y

f

(t=11)[y

1

 Y

f

((q

0

; d)); y

2

 Y

f

((q; d))℄

= �(; �(�(b; y

2

); �(; �(y

2

; y

1

))))[y

1

 �(d; �(y

2

; y

1

)); y

2

 �(b; y

2

)℄

= �(; �(�(b; �(b; y

2

)); �(; �(�(b; y

2

); �(d; �(y

2

; y

1

))))));

and �nally Y

f

(t) = Y

f

(t=1)[y

1

 Y

f

((q

0

; e)); y

2

 Y

f

((q; e))℄ = Y

f

(t=1)[y

1

e; y

2

 e℄ whih is preisely the tree �

M

b

(sm(u)) displayed above. �

We now prove the inlusion of the EDT0L-hierarhy in the IO-hierarhy.

Theorem 36. For every n � 1, EDT0L

n

(REG) � IO(n).

Proof. As shown in the proof of Theorem 21, EDT0L

n

� sm ÆMTT

n�1

Æ y. Sine

MTT

n

= T ÆYIELD

n

by Corollary 4.13 of [EV85℄, this equals smÆT ÆYIELD

n�1

Æ

y. Applying this to REG gives yYIELD

n�1

(T (sm(REG))). By Lemma 34 this is

inluded in yYIELD

n�1

(YIELD(REGT)) = yYIELD

n

(REGT) = IO(n). �

Note that Theorem 22 implies that EDT0L

n+2

(REG)� IO(n) 6= ?. It would be

interesting to know whether this result ould be improved to EDT0L

n+1

(REG) �

IO(n) 6= ?; but this requires stronger methods of proving that a language is not

in the IO-hierarhy, whih we do not have (f. the disussion of open problems at

the end of Setion 8). Note further that Theorem 36 gives a somewhat tighter link

between the EDT0L- and the IO-hierarhy, than the one between the ET0L- and the

OI-hierarhy in [Vog88℄ whih states that ET0L

n

(REG) is inluded in OI (2n� 1).

8 Conlusions and Open Problems

We have proved the properness of the yMTT-, EDT0L-, and IO-hierarhies in Theo-

rems 23, 24, and 33, respetively. In this setion we want to disuss the relationships

between the di�erent hierarhies of string languages that were onsidered in this pa-

per. By \the hierarhy X(n)" we mean that, for every n � 1, X(n) is a lass of

languages and X(n) � X(n+1). The hierarhy X(n) is proper if X(n) (X(n+1)

for every n � 1. Denote by X(�) the union

S

n�1

X(n). For two hierarhies X(n)

and Y (n) we want to know, whether the following holds.

{ Is the hierarhy X(n) inluded in the hierarhy Y (n), i.e., is X(�) � Y (�)? And

if so, is the inlusion proper, i.e., is X(�) (Y (�)?

{ Is X(n) a subhierarhy of Y (n)? By this we mean that there is an m 2 N suh

that for every n � 1: X(m+ n) � Y (n) and X(m+ n+ 1)� Y (n) 6= ?.

{ Is X(n) small in Y (n)? This means that Y (1)�X(�) 6= ?.

IfX(n) is a subhierarhy of Y (n), thenX(m+n) and Y (n) are proper hierarhies,

and X(�) � Y (�). If X(�) � Y (�) and X(n) is small in Y (n), then X(�) (Y (�). If

X(n) is a small subhierarhy of Y (n), then the in�nite inlusion diagram in Fig. 5

is a Hasse diagram.

We have shown (in Theorems 22 and 32) that the EDT0L- and IO-hierarhies are

subhierarhies of the yMTT-hierarhy. Note that for Y being the yMTT-hierarhy,

m = 1 if X is the EDT0L-hierarhy, and m = 0 if X is the IO-hierarhy.

Let us briey onsider another type of tree transduer and show that the output

string languages of its ompositions gives rise to a subhierarhy of the yMTT-

hierarhy: the attributed tree transduer (ATT) [F�ul81,FV98℄, whih is a formal

model for attribute grammars. It is well known that YIELD � ATT � MTT

(f. Corollary 6.24 and Lemma 6.1 of [FV98℄), where ATT denotes the lass of all

translations realized by ATTs. Thus, IO(n) � yATT

n

(REGT) � yMTT

n

(REGT).

By Theorem 32 we obtain the following orollary.

34

.

.

.

.

.

.

.

.

.

.

.

.

X(�)

X(m+ n)

X(m + n+ 1)

X(m + 1)

Y (n)

Y (�)

Y (1)

Y (n+ 1)

Fig. 5. The Hasse diagram for: \X(n) is a small subhierarhy of Y (n)"

Theorem 37. For n � 1,

(a) yATT

n+1

(REGT)� yMTT

n

(REGT) 6= ?.

(b) yATT

n

(REGT) (yATT

n+1

(REGT).

Thus, the hierarhy yATT

n

(REGT) is proper, and it is a subhierarhy of the

yMTT-hierarhy. Note that it is open whether yATT

n

(REGT) (yMTT

n

(REGT).

Note further that the yATT-hierarhy is not small in the yMTT-hierarhy, beause,

in fat, yMTT

n

(REGT) � yATT

n+1

(REGT), and so yATT

�

(REGT) equals

yMTT

�

(REGT), see, e.g., Setion 6 of [FV98℄.

Now, we prove that the EDT0L-hierarhy is a small subhierarhy of the ET0L-

hierarhy ET0L

n

(REG), where ET0L denotes the lass of all nondeterministi

EDT0L translations (f. the disussion after Theorem 25).

Theorem 38. The EDT0L-hierarhy is a small subhierarhy of the ET0L-hierarhy.

Proof. By Corollary 27, CF � EDT0L

�

(REG) 6= ?. Sine CF � ET0L(REG),

this shows that the EDT0L-hierarhy is small in the ET0L-hierarhy. Alterna-

tively, this follows from Theorem 25. It remains to show that EDT0L

n+1

(REG)�

ET0L

n

(REG) 6= ?. For a language L de�ne the opy operations

2

and

�

as

2

(L) = fw$w j w 2 Lg and

�

(L) = f(w$)

n

j w 2 L; n � 1g for a symbol $ not in

L. Let L

2

= L

e

and, for n � 2, let L

n+1

=

2

(ount

b

(

�

(L

n

))) for a symbol b not

in

�

(L

n

).

(1) L

n

2 EDT0L

n

(REG). As shown in the proof of Theorem 22, L

e

2 EDT0L

2

(

REG) and ount

b

2 EDT0L. Hene L

n

2 EDT0L

n

(REG), beause it is easy to

see that EDT0L

n

(REG) is losed under

2

and

�

: Let L = �

n

(� � � �

1

(R) � � �) 2

EDT0L

n

(REG) with R 2 REG and �

i

2 EDT0L for i 2 [n℄. To obtain

2

(L)

and

�

(L), hange R into the regular languages aR and a

�

R, respetively, where

a is a symbol not in R and not used in any of the �

i

. Now �

1

is hanged into

�

0

1

in suh a way that �

0

1

(aR) equals a�

1

(R), and �

0

1

(a

�

R) equals a

�

�

1

(R). Simi-

larly, for i 2 [n � 1℄, �

i

is hanged into �

0

i

whih translates a�

i�1

(� � � �

1

(R) � � �)

into a�

i

(�

i�1

(� � � �

1

(R) � � �)) and a

�

�

i�1

(� � � �

1

(R) � � �) into a

�

�

i

(�

i�1

(� � � �

1

(R) � � �)).

Finally, the translation �

n

is hanged into �

0

n

whih translates a�

n�1

(� � � �

1

(R) � � �)

into �

n

(� � � �

1

(R) � � �)$�

n

(� � � �

1

(R) � � �) =

2

(L), and, similarly, a

�

�

n�1

(� � � �

1

(R) � � �)

into

�

(L).

(2) L

n

62 ET0L

n�1

(REG). For n = 2 this follows from Theorem 3.16 of [Eng82℄:

L

e

62 yN-T (REGT). For n > 2 the result is obtained, by indution, as follows. It is

straightforward to show that Theorem 3.1 of [Eng82℄, whih is the bridge theorem

(Theorem 3.2.14) of [ERS80℄, an also be stated for the operation ount

b

in plae

of the operation rub (in fat, it holds in general for languages L and L

0

that satisfy

the assumptions of Lemma 17). Then the proof of Theorem 4.2 of [Eng82℄ (with

rub hanged into ount

b

) shows that if L 62 EDT0L(ET0L

n�2

(REG)) then

35

{ ount

b

(

�

(L)) 62 EDT0L(ET0L

n�1

(REG)) and

{

2

(ount

b

(

�

(L))) 62 ET0L

n

(REG).

Sine ET0L

n�1

(REG)) � EDT0L(ET0L

n�2

(REG)), this shows that for n � 2, if

L

n

62 ET0L

n�1

(REG), then L

n+1

62 ET0L

n

(REG). �

The proof of Theorem 38 shows that the properness of the ET0L-hierarhy is

not aused by the alternation of opying and nondeterminism (as stated in [Eng82℄),

but rather by the alternation of opying and insertion.

Let us now summarize the relationships between the di�erent hierarhies of

string languages that have been onsidered, together with the nondeterministi ver-

sion of the yMTT-hierarhy, and the nondeterministi top-down tree transduer

hierarhy of [Eng82℄. Let N-MTT denote the lass of translations realized by non-

deterministi maro tree transduers and let, as before, N-T denote the lass of

translations realized by nondeterministi top-down tree transduers. Note that the

derivations of nondeterministi MTTs an be restrited to be OI (outside-in), see

Corollary 3.13 of [EV85℄. Furthermore, the omposition losureN-MTT

�

an also be

obtained by the restrition to IO-derivations, i.e., this lass equals N-MTT

�

IO

, where

N-MTT

IO

denotes the lass of translations realized by nondeterministi MTTs

restrited to IO-derivations, see Theorem 7.3 of [EV85℄. By the same theorem,

N-MTT

�

= (N-T [YIELD)

�

, and so yN-MTT

�

(REGT) is the lass of languages

onsidered in [DE98℄, f. the Introdution.

yN-MTT

�

(REGT)

ET0L

�

(REG) yN-T

�

(REGT)

2GSM

�

(REG)

IO(�)

EDT0L

�

(REG)

OI (�)

= yATT

�

(REGT)

yMTT

�

(REGT)

sub sub sub

sub

Fig. 6. Inlusions of hierarhies of string languages.

Figure 6 shows an inlusion diagram, where an asending line from X(�) to

Y (�) indiates that X(�) � Y (�), and the label `sub' indiates that X(n) is a

subhierarhy of Y (n); an arrow from X(�) to Y (�) indiates a proper inlusion (and

even that X(n) is small in Y (n)). Note that the four hierarhies in the left part

of the �gure, i.e., EDT0L

n

(REGT), IO(n), yATT

n

(REGT), and yMTT

n

(REGT)

are generated by total deterministi devies and the other �ve hierarhies involve

partial nondeterministi devies.

Besides the hierarhy yN-MTT

n

(REGT), all hierarhies in the �gure are (now)

known to be proper: For the 2GSM-, ET0L-, and yN-T-hierarhies this is known

from [Eng82℄ (properness of the 2GSM-hierarhy was obtained independently in

[Gre78℄), for the EDT0L-hierarhy by Theorem 24, for the IO-hierarhy by Theo-

rem 33, for the yMTT- and yATT-hierarhy by Theorems 23 and 37(b), respetively,

36

and for the OI-hierarhy from Theorem 7.4 of [Eng91℄. In�nity of the IO- and OI-

hierarhies was proved in [Dam82℄. Note that deterministi two-way generalized

sequential mahines and (deterministi) top-down tree transduers are losed under

omposition and therefore do not give rise to proper hierarhies.

Let us now disuss the inlusions in Figure 6. The inlusions of EDT0L

�

(REG)

in ET0L

�

(REG), yN-T

�

(REGT) in yN-MTT

�

(REGT), and yMTT

�

(REGT) in

yN-MTT

�

(REGT) hold by de�nition. The inlusion of the EDT0L-hierarhy in

the IO-hierarhy follows from Theorem 36. The inlusions of 2GSM

�

(REG) in

ET0L

�

(REG) and in yN-T

�

(REGT) follow from Corollary 4.6 and Theorem 5.5

of [ERS80℄, see Lemma 4.6 of [Eng82℄. The inlusion of IO(�) in the yATT- and

yMTT-hierarhy was disussed at the beginning of this setion. The lass ET0L

�

(

REG) is in OI (�) by Theorem 14 of [Vog88℄ (f. also [Eng91℄) and the inlusion of

OI (�) in yN-MTT

�

(REGT) follows from Theorem 8.1 of [EV88℄ (as disussed at

the end of that paper).

Next, onsider the subhierarhy and smallness relations in Figure 6. The fat

that the 2GSM-hierarhy is a small subhierarhy of both ET0L

n

(REG) and yN-T

n

(

REGT) holds by Theorem 4.8 of [Eng82℄ (indeed, the smallness follows from the

fat that CF � 2GSM

�

(REG) 6= ?, whih was proved in [Gre78℄). By Theo-

rem 38, the EDT0L-hierarhy is a small subhierarhy of the ET0L-hierarhy. From

Theorem 25 and the fat that 2GSM (REG) � ET0L(REG) � yN-T (REGT) �

yN-MTT (REGT), it follows that yMTT

n

(REGT) is small in yN-MTT

n

(REGT).

The smallness of yN-T

n

(REGT) in yN-MTT

n

(REGT) follows from the fat that

L

e

62 yN-T

�

(REGT) (as mentioned before Theorem 22) and the fat (shown

in the proof of Theorem 22) that L

e

is in EDT0L

2

(REG) whih is inluded in

yN-MTT (REGT) by Theorem 21. The EDT0L-hierarhy is small in the IO-hierarhy,

beause, by Corollary 27, there is a ontext-free language not in EDT0L

�

(REG),

and IO(1) inludes the ontext-free languages (f. Theorem 7.9 of [ES78℄). By Theo-

rem 32, IO(n) is a subhierarhy of the yMTT-hierarhy. Note that it is not indiated

in Figure 6 that the EDT0L-hierarhy and the yATT-hierarhy are subhierarhies

of the yMTT-hierarhy.

We onlude by mentioning some open problems related to the diagram in Fig-

ure 6. First of all, are there more subhierarhy relationships between the hierarhies

shown in the �gure? In partiular, is the yMTT-hierarhy a subhierarhy of its non-

deterministi version yN-MTT

n

(REGT)? With respet to inlusion onsider the

following open problems.

{ IO(�) (yMTT

�

(REGT)?

{ ET0L

�

(REG) (OI (�)?

{ IO(�) * OI (�)?

{ yN-T

�

(REGT) * OI (�)?

Our onjeture is that all these statements hold. Together with the fats that

2GSM

�

(REG) � yMTT

�

(REGT) 6= ? by Theorem 25, and that L

e

2 EDT0L

�

(

REG)�yN-T

�

(REGT) as disussed above, this would prove that Figure 6 is a Hasse

diagram. The problem with proving the onjetures listed above is that we do not

have methods to show that languages are not in the OI- and ET0L-hierarhies, and

need stronger methods to show that languages are not in the IO-hierarhy.

Referenes

[BCN81℄ L. Boasson, B. Courelle, and M. Nivat. The rational index: a omplexity mea-

sure for languages. SIAM Journal on Computing, 10(2):284{296, 1981.

[CF82℄ B. Courelle and P. Franhi-Zannettai. Attribute grammars and reursive pro-

gram shemes. Theoret. Comput. Si., 17:163{191 and 235{257, 1982.

37

[Cou83℄ B. Courelle. Fundamental properties of in�nite trees. Theoret. Comput. Si.,

25:95{169, 1983.

[Dam82℄ W. Damm. The IO- and OI-hierarhies. Theoret. Comput. Si., 20:95{207, 1982.

[DE98℄ F. Drewes and J. Engelfriet. Deidability of �niteness of ranges of tree transdu-

tions. Inform. and Comput., 145:1{50, 1998.

[Dow74℄ P. J. Downey. Formal languages and reursion shemes. Tehnial Report TR-

16-74, Harvard University, 1974.

[EM99℄ J. Engelfriet and S. Maneth. Maro tree transduers, attribute grammars, and

MSO de�nable tree translations. Inform. and Comput., 154:34{91, 1999.

[Eng77℄ J. Engelfriet. Top-down tree transduers with regular look-ahead. Math. Systems

Theory, 10:289{303, 1977.

[Eng78℄ J. Engelfriet. On tree transduers for partial funtions. Informat. Proessing

Let., 7:170{172, 1978.

[Eng80℄ J. Engelfriet. Some open questions and reent results on tree transduers and

tree languages. In R.V. Book, editor, Formal language theory; perspetives and

open problems. New York, Aademi Press, 1980.

[Eng82℄ J. Engelfriet. Three hierarhies of transduers. Math. Systems Theory, 15:95{125,

1982.

[Eng91℄ J. Engelfriet. Iterated stak automata and omplexity lasses. Inform. and Com-

put., 95(1):21{75, 1991.

[ERS80℄ J. Engelfriet, G. Rozenberg, and G. Slutzki. Tree transduers, L systems, and

two-way mahines. J. of Comp. Syst. Si., 20:150{202, 1980.

[ES78℄ J. Engelfriet and E.M. Shmidt. IO and OI, Part II. J. of Comp. Syst. Si.,

16:67{99, 1978.

[EV85℄ J. Engelfriet and H. Vogler. Maro tree transduers. J. of Comp. Syst. Si.,

31:71{146, 1985.

[EV88℄ J. Engelfriet and H. Vogler. High level tree transduers and iterated pushdown

tree transduers. Ata Informatia, 26:131{192, 1988.

[EV94℄ J. Engelfriet and H. Vogler. The translation power of top-down tree-to-graph

transduers. J. of Comp. Syst. Si., 49:258{305, 1994.

[Fis68℄ M.J. Fisher. Grammars with maro-like produtions. PhD thesis, Harvard Uni-

versity, Massahusetts, 1968.

[F�ul81℄ Z. F�ul�op. On attributed tree transduers. Ata Cybernetia, 5:261{279, 1981.

[FV98℄ Z. F�ul�op and H. Vogler. Syntax-Direted Semantis { Formal Models based on

Tree Transduers. EATCS Monographs on Theoretial Computer Siene (W.

Brauer, G. Rozenberg, A. Salomaa, eds.). Springer-Verlag, 1998.

[Gre78℄ S. A. Greibah. Hierarhy theorems for two-way �nite state transduers. Ata

Informatia, 11:89{101, 1978.

[Gre81℄ S. A. Greibah. Formal languages: origins and diretions. Ann. of the Hist. of

Comput., 3(1):14{41, 1981.

[GS84℄ F. G�eseg and M. Steinby. Tree Automata. Akad�emiai Kiad�o, Budapest, 1984.

[GS97℄ F. G�eseg and M. Steinby. Tree automata. In G. Rozenberg and A. Salomaa,

editors, Handbook of Formal Languages, Volume 3, hapter 1. Springer-Verlag,

1997.

[HU79℄ J. W. Hoproft and J. D. Ullman. Introdution to automata theory, languages,

and omputation. Addison-Wesley, 1979.

[Man98℄ S. Maneth. The generating power of total deterministi tree transduers. Inform.

and Comput., 147:111{144, 1998.

[Man99℄ S. Maneth. String languages generated by total deterministi maro tree trans-

duers. In W. Thomas, editor, Pro. FOSSACS'99, volume 1578 of LNCS, pages

258{272. Springer-Verlag, 1999.

[Rou70℄ W.C. Rounds. Mappings and grammars on trees. Math. Systems Theory, 4:257{

287, 1970.

[Roz73℄ G. Rozenberg. Extension of tabled 0L-systems and languages. Internat. J. Comp.

Inform. Si., 2:311{336, 1973.

[vL76℄ J. van Leeuwen. Variations of a new mahine model. In Proeedings of the 17th

Annual Symposium on Foundations of Computer Siene, Houston, Texas, pages

228{235. IEEE Computer Soiety Press, 1976.

[Vog88℄ H. Vogler. The OI-hierarhy is losed under ontrol. Inform. and Comput.,

78:187{204, 1988.

38

