Team Automata for Spatial Access Control

Maurice H. ter Beek
LIACS, Universiteit Leiden, The Netherlands

Clarence A. Ellis
Department of Computer Science, University of Colorad&.H.

Jetty Kleijn
LIACS, Universiteit Leiden, The Netherlands

Grzegorz Rozenberg

LIACS, Universiteit Leiden, The Netherlands

and

Department of Computer Science, University of Colorad&.4.

Abstract. Team automata provide a framework for capturing notions like coordination, col-
laboration, and cooperation in distributed systems. They consist of an abstract specification
of components of a system and allow one to describe different interconnection mechanisms
based upon the concept of “shared actions”. This document considers access control mech-
anisms in the context of the team automata model. It demonstrates the model usage and
utility for capturing information security and protection structures, and critical coordinations
between these structures. On the basis of a spatial access metaphor, various known access
control strategies are given a rigorous formal description in terms of synchronizations in team
automata.

Introduction

As the complexity of technical systems continues to inaeabstractions tend to be
especially useful. For this reason, computer science afteoduces and studies var-
ious models of computation that allow enhanced understgraind analysis. Com-
puter science has also created a number of interesting hwetafe.g., the desktop
metaphor) that aid in end user understanding of computireg@mena. This docu-

ment is concerned with a model and a metaphor. The modelrns aeégomata, which
were created explicitly for the specification and analy$i€8CW phenomena and
collaborative systems (Ellis, 1997). The metaphor is spatcess control, which is
based upon current notions of virtual reality, and helpsydsity concepts of access
control matrices and capability structures for the end (Belock et al., 1999).

Many of the concepts and techniques of computer sciencé, aiconcurrency
control, user interfaces, and distributed databases, todael rethought in the group-
ware domain. Team automata are helpful for this rethinkirige framework provided
by the team automata model allows one to separately spéeifyamponents of a col-
laborative system and to describe their interactions. ieisher a message passing
model nor a shared memory model, but a shared action modesIbeen proposed
as a formal framework for modeling both the conceptual aedatichitectural level of
groupware systems (Ellis, 1997). Components can be comlimna loose or more
tight fashion depending on which actions are to be sharetiwaen. Such aggregates
of components can then in turn be used as components in arleyledteam. Thus
team automata fit nicely with the needs and the philosophymfigvare (Ellis, 1997)
and thanks to the formal setup, theorems and methodologies dutomata theory
can be applied. Team automata are an extension of Input/@atpomata (Lynch,
1996) and are related to, but different from Vector Cong@lConcurrent Systems
(Keesmaat, 1996), Petri nets (Reisig et al., 1998), and atbeels of concurrent and
collaborative systems (Nutt, 1997).

Our spatial access control metaphor piggy-backs upon theaVreality metaphors
of places and spaces (Bullock, 1998). Different places arelacive to different
activities, and different rooms and different buildingséalifferent affordances. The
metaphor of virtual rooms and virtual buildings can help tidg the user through a
complex computer system to find the resources needed fottiaydar task. In need
of a certain document, e.g., the user would naturally thirdnbering a virtual library,
where he or she would have read access.

In the following sections we first discuss the spatial acoesdgrol metaphor by
means of an example and subsequently gently present theaig@mata model by
applying it to this example. In the core of the document wentbleow how certain
spatial access control mechanisms can be made precisevamdgormal description
using team automata. First we introduce information acossgeling by granting
and revoking access rights, and show how immediate verdagatkrevocation can
be formulated. In the subsequent section we extend our $tuthe more complex
issue of meta access control, and consequently we show laowaetomata can deal
with deep versus shallow revocation.

The style of this document is relatively informal. Full foahdefinitions, obser-
vations, and results relating to team automata can be fou(idri Beek et al., 1999).
Our aim here is to connect the metaphor of spatial accessotdotthe framework
of team automata, and to show through examples how this canbn facilitates
the identification and unambiguous description of some &syeas of access control.
The rigorous setup of the framework of team automata allavesto formulate, ver-
ify, and analyze general and specific logical propertiesaoious control mechanisms

in a mathematically precise way. In realistically largeteyss, security is a big is-
sue, and team automata allow formal proofs of correctnegts design. Moreover,
a formal approach as provided by the team automata framefeocks one to un-
ambiguously describe control policies and it may suggest aygoroaches not seen
otherwise. There is a large body of literature concerningcwlike security, pro-
tection, and awareness in CSCW systems. Although team at#ioane potentially
applicable also to these areas, this paper is not conceritle@saues outside of spa-
tial access control. In the final section we discuss somatians and extensions of
our setup.

Access Control

A vital component of any system or environment is security eriormation access
control, but this is sometimes done in a rather ad hoc or maate fashion with no
underlying rigorous, formal model. In typical electronitefsystems, access rights
such as read-access and write-access are allocated toomseosne basis such as
“need to know”, ownership, or ad hoc lists of accessors. Wiglloupware systems,
there are typically needs for more refined access right$y asche right to scroll a
document that is being synchronously edited by a group ihtiea. Furthermore,
the granularity of access must sometimes be more fine-gtaine flexible, as within
a software development team. Moreover, it is important tarod access meta-rights.
For example, it may be useful for an author to grant anotl@mteember the right to
grant document access to other non-team members (i.e atieley Various models
have been proposed to meet such requirements (see, egn,d&id., 1992), (Rodden,
1996), and (Sikkel, 1997)).

We use a spatial access metaphor based upon recent work lotiBaind col-
leagues in (Bullock et al., 1997) and (Bullock et al., 199%here, access control
is governed by the rooms, or spaces, in which subjects aretishbjeside, and the
ability of a subject to traverse space in order to get closantobject. Bullock also
implemented a system call&PACE to test out some of these ideas (Bullock, 1998).
A basic tenet of th6&SPACE access model is that a fundamental component of any
collaborative environment is the environment itself (tlee space). It is the shared
territory within which information is accessed and intéi@at takes place. Often this
shared space is divided into numerous regions that seghreespaice. This allows de-
composition of a very large space into smaller ones for maaaigity. It also allows
cognitive differentiation (i.e. different concerns, meams, and thoughts associated
with different regions), and distributed implementatiae.(different servers for dif-
ferent regions).

By adopting a spatial approach to access controlSI¥eCE metaphor exploits a
natural part of the environment, making it possible to hidglieit technical security
mechanisms from end users through the natural spatial makfetne environment.
These users can then make use of their knowledge of the envénat to understand

the implicit security policies. Users can thus avoid untierding technical concepts
such as so-called access matrices, which helps to avoichoesstandings.

We consider here a virtual reality, in which a user can trseé&om room to room
by using keyboard keys, the mouse, or fancier devices. Itnataral and simple
extension to assume that access control checking happ#ms lbundaries (doors)
between spaces (rooms) when a user attempts to move fronoometo another. If
the access is OK, then the user can enter and use the resagsmesated with the
newly entered room.

To illustrate the various concepts throughout this documea present a simple
running example which is concerned with read and write actea fileF' by a user
Kwaku. This file might be any data or document that is storedtsbnically within
a typical file system. The file system keeps track of whichsibave which access
rights to the fileF'. Three types of access rights are possible for aHil@ull access
(implying the user can neither read nor write the file), reeckas (implying the user
cannot write the file), and full access (implying the useread and write — i.e. edit
— the file).

In security literature, authentication deals with verifica that the user is truly
the person represented, whereas authorization deals alittation that the user has
access to the given resource. Assume that when Kwaku logshatsystem, there
is an authentication check. Then whenever he tries to readitg F', authorization
checking occurs, and Kwaku is either allowed the accessprusing theSPACE
metaphor, the above three types of access rights can baasslowith three rooms
as shown in Figure 1.

Room(": full access room

RoomB: read access room

RoomA: null access room

Figure 1: A rooms metaphor for access control.

Room A is associated with no access to the document, rédimassociated with
read access, and rooi models full access. Suppose Kwaku is in rodm the
reading room. Presence in this room means that any time Kwaekides to read’,
he can do so. However, if he attempts to make changgs tieen he will fail because
he does not have write access in ro@nThere are doors between rooms, implying
that user access rights can be dynamically changed by aigangoms. We discuss
this dynamic change in more detail in a later section of tbisuthent.

This access mechanism satisfies a number of end user fripnalberties: it is
simple, understandable by non-computer people, relgtivelural and unobtrusive,
and elegant. In the next sections we show how modeling this ¢f access metaphor
via team automata adds precision, mathematical rigor, aaly@c capabilities.

Team Automata

In this section we introduce component automata and teaomeié as formally de-
fined in (ter Beek et al., 1999) by using the example of theiptess/section.

A team automaton consists of component automata, combmeadcoordinated
way such that they can perform shared actions. Componeninaité within a team
automaton can during each clock tick simultaneously paete in one instantaneous
action (i.e. synchronize on this action), or remain idle.e Team automata model
forms a mathematical automata theoretic specificatiohgrahan a high-level lan-
guage specification such as Hoar€SP (Brookes et al., 1984), Forman®addle
(Evangelist et al., 1988), or the-party interaction mechanism (Attie et al., 1990).
Team automata, like 1/0 automata, are adequate for spegihared memory sys-
tems and message passing systems, although they are éithetwo. While inap-
propriate for capturing aspects of group activity such asas@spects and informal
unstructured activity, the model has proved useful in va&i€@SCW modeling areas
(Ellis, 1997). A spectrum from hardware components to axteéng groups of people
can be modeled by team automata.

The component automata are rather ordinary, but theirdaterection strategy is
intriguing because, as we mentioned, it is neither sharadhla nor message pass-
ing. We classify the actions which take an automaton fromstate to another into
two main categories, one of which is subdivided into two mmategories.Internal
actions have strictly local visibility and can thus not beetved by other components,
whereasexternalactions are observable by other components. These extetiahs
are used for communication between components and corisigpuat actions and
outputactions. Composing component automata into team autosdé@sed on an
interconnection strategy of shared actions, in which omaane automata participate
in the execution of the same external action (which may betitgpgsome components
and output to other components). The choice for a specicdnohnection strategy is
based on what one wants to model, and this possibility to eh@the main feature
of the team automata framework.

We now return to our access control example by showing howddahit in the
team automata framework. The component automaténdepicted in Figure 2(a)
corresponds to roor@' of Figure 1, as it models full access to file The states of
M€ areC, modeling an empty roont,,, modelingF is not accessed;, modeling
F is being read, and’,, modeling F' is being written (edited). The wavy arc in
Figure 2(a) denotes the initial stafe. The actions of\/¢ areegc (enter room)ece
(exit room),r¢ (begin reading)r® (end reading)w® (begin writing), andw® (end
writing).

A component automaton thus consistst#tes actions and (labeledjransitions
which describe state changes caused by actions. We disingset oinitial states
and the set of actions is further partitioned im@ut, output andinternal actions.
Hence a component automaton is a labeled transition diagrdmthree distinguished
types of labels (actions).

€AB

€BA
MA . €BA
O
Figure 2: Automata/“, M5, andM4: roomsC, B, andA.

Returning toM/ © we have the transition’,, egc, C,,), (Cy,, ecs, C.), (Cy, 7€, C,.),
(C, 1%, Ch), (Cr,w", Cy), and(C,,, w®, C,). Now the transitior(C,, egc, Cy,), €.9.,
shows that in\/¢ we can go from stat€, to C,, by executing actiomgc. We also see
that transitioning directly front”,, to C,, is not possible. Furthermore, entering and
exiting roomC may only occur via stat€,. We choose to specify action§, r¢,
w?, andw® as internal actions of/“, andegc andecg as external actions af/“.
Both egc andecg clearly should be externally visible and therefore canmaniernal.
For the moment we choose them to be output actions. Thesextermnal actions are
candidates for being synchronized with actions of the saan@enin other component
automata when we form a team automaton dvérand the two component automata
as described next.

Component automats/ ? andM# corresponding to roomB and A, respectively,
are somewhat similar td/¢. However, write access is denied in roosnd A and
read access is denied in rootn Automata)/ ? andM 4 are depicted in Figure 2(b,c).
Note that)M/# has initial stated,, (hence initially roomA is not empty) and that both
M?® and M# have states unreachable from the initial state. Actidhandr? are
internal, while the rest of the actions &f ® andA/# are external (output) actions.

Now suppose that we want to combiné®, MZ, and M4 into one (team) au-
tomaton reflecting a given access policy. Then, first of bé,ibternal actions of each
of these components should be private, i.e. uniquely aatutto one component au-
tomaton. This is formally expressed by stating that whenmmsing a team from a
collectionS of component automata, no internal action of any compongiohaaton
from S may appear as an action in any of the other component autom&taf this
is the case, theS is called acomposable system

The three automata in our example clearly form a composaise®m and we
combine them into a team automatfh®” as follows. Each state af°®*is a com-
bination of a state fromi/“, a state from\/?, and a state from/* (hencel'“®* has
upto4® = 64 states). Initially7“®A is in state(A4,,, B., C.), a combination of initial

states from the three component automata. This means ateistaoom A, while
room B andC' are empty.

Assuming that one can have only one kind of access rightsiateg two of the
rooms should be empty at any moment in time. This meansTth&t should be
defined in such a way that in each of its reachable states twleatree automata
are always in state “empty”. We let the automata synchroarze¢he external ac-
tions eag, €ga, €sc, andecg. Each such synchronized external action/&f* cor-
responds to exiting a room while entering another. Syndbation of actioneag,
e.g., models a move from room to room B. This move is represented by the
transition ((A,,, Be, C.), eas, (Ae, Bn, C.)) showing that in automatoi/* we exit
room A, in automatonV/? we enter roomB, and in automatod/“ we do noth-
ing (i.e. remain idle). This represents a change in acceggsgsrifrom null access
(in room A) to read access (in room®). We do not include, e.g., the transition
((An, Be, Ce), eng, (Ae, Be, C.)) which would let the user exit room but never enter
room B. Furthermore, the user could be in more than one room at aftiweewould
allow transitions like((A,,, B., C.), eas, (A, Bn, C.)). In T®Awe include only the
four transitions representing the synchronized changfmpams. In each of these
transitions, one automaton is idle. All internal (read anitewelated) actions are
maintained. In each of these only that component is involeedhich such an action
belongs.

The reachable part of the thus defifEeP” is depicted in Figure 3.

TABC .

Figure 3: Team automatdfi®®” over M, M B, andM 4.

At this moment it is important to stress thAt®A is not the only team automa-
ton overM ¢, MB, andM*. In general, there is noniqueteam automaton over a
composable systeidi, but a framework is provided within which one can construct
a variety of team automata ovér The flexibility lies in the choice of the transition

relation for a team automaton ou®r which is based on but not fixed by the transition
relations of the component automatadnThe requirements the transition relation of
a team automaton has to satisfy are as follows.

Thecomplete transition spaa# actiona in S consists of all transitions anfrom
a statey to a state;’ of the team such that at least one component automatonve Aacti
i.e. performsa. Moreover, each of the component automata either also te®cu
(i.e. joins in executing) or remains idle (thus does not change state). Consequently
the transformation of the state of the team automaton is eléfoy the local state
changes of the components involved in the action that isuggdc The transitions
in the complete transition space (©fare referred to asynchronizationgon a). For
each actiom a specific subset of its complete transition space is chdséhe case of
an internal action however, each component retains albgsipilities to execute that
action and change state. Note that sifds a composable system, synchronizations
on internal actions never involve more than one component.

Any choice of a transition relation satisfying these regoients defines a team
automaton oves. Its states, initial states, as well as a partition of itsosnst are fixed
(and the same for all team automata o$@r The state space of any team automaton
T overS is the product of the state spaces of the component autorh&tanth the
products of their initial states forming the initial state#fs7. The internal actions of
the components are the internal actions of the team autom&tach action which
is output for one or more of the component automata is an o¢aigion of the team
automaton. Hence an action that is an output action of ongooent and also an
input action of another component, is considered an outgiudraof the team. The
input actions of the component automata that do not occut as an output action
of any of the component automata, are the input actions ofaghm. The reason
for constructing the alphabet sets of a team automaton fhrenaliphabet sets of the
component automata in the way described above, is basedeanttlitive idea of
(Ellis, 1997) that when relating an input actienof a component automaton to an
output actionz of another component, the input may be thought of as beingethu
by the output. On the other hand, the output action remaissrghble as output to
other automata. As shown in (ter Beek et al., 1999), every atomaton is again a
component automaton and hence can be used in a higherdawel t

In TCBA as mentioned before, the decision to consig@r ega, esc, andecg as
output actions in all component automata was made more®alégrarily. In fact, it
depends on how one views the action of entering and exitimgan within the team
automatori’“BA, By choosing all of those actions to be output (and thus oftrae
type), exiting one room and entering another is seercafi@orationbetween peers.

In (ter Beek et al., 1999), where different types of syncimations on actions
shared between components of a team are classified, thisreynzation of exter-
nal actions of the same type is callegheer-to-peer synchronizatiorOn the other
hand,master-slave synchronizati@tcurs when input actioroperatewith output
actions. In that case, input can only occur as a responsejstaoutput.

In our example, assume that one views the changing of rooars astion initiated
by leaving a room and forcing the room that is entered to adtepentrance. Then

one would name, e.geag an output action of/4 and an input action af/?, andega
an output action ofi/® and an input action o#/“. This causesag to be a master-
slave synchronization between mastéf and slavel/? andega to be a master-slave
synchronization between maste® and slavel/4. Likewise for the other actions.

In addition, (ter Beek et al., 1999) defines strategies #aat specifically to unique-
ly defined peer-to-peer and master-slave combinationsmidam automata. The
team automata framework allows one to model many other fesiuseful in virtual
reality environments. A door, e.g., can be extended to janenthan two rooms since
any number of automata can participate in an output actiarrthBrmore, as said
before, a user could be in more than one room at a time.

Authorization and Revocation

We continue our example of the previous section by addingkwa user whose
access rights to filé&" will be checked by the access control systBh¥* of Figure 3.
Kwaku is represented by automatdf’, depicted in Figure 4. This extension com-
plicates our example in the sense that Kwaku’s read and wacitess rights can be
changed independently of his whereabouts. Only to enteora e has to be autho-
rized. Thus access rights are no longer equivalent withgogira room, but rather
with the possibility to enter a room. To add this to the teatoeaton formalization,
we will use the feature of iteratively constructing team#hvieams as components.

m(w)

MU - m(r)
SO

m(r)

Figure 4: Automator/V: user Kwaku.

Kwaku starts in staté’,, with no access rights. The actions(r), m(r), m(w),
andm(w) model the (meta) operations of “being granted read accélsing re-
voked read access”, “being granted write access”, and oemoked write access”,
respectively. Since these clearly are passive actions Kwaku'’s point of view, we
choose all of them to be input actions. Note that Kwaku canugnia state/,, if and
only if he was granted access rights to read and to writea¢gonsm(r) andm(w)
have taken place. When Kwaku’s write access is consequevbked by transition
(Uy, m(w), U,), he ends up in state,.

Now suppose that we want to model Kwaku’s options for edifiteg £', which
is protected by the access control systeR¥. Then we would like to compose a
team automaton oveér“®* and MV. To do so, first note thaf“®* and MV form a
composable system. Next we choose a transition relaterfpr. each action a subset
from its complete transition spacedi¥®AandM ¥ is selected, thereby formally fixing
an access control policy for Kwaku under the constraintsoiseg by7 “BA,

The initial state of any team ov@i°®* and MV is (A, B., C,,U,,), i.e. Kwaku

is not yet editingF’ and is in the virtual roomd without access rights. Now imagine
the access rights to be keys. Hence Kwaku needs the rightlaytér reading room
B, i.e. actionm(r) must take place before actieps becomes enabled. This action
m(r) leads us from the initial state {04,,, B., C., U,). Now Kwaku has the key to
enter roomB by ((A,,, Be, Ce, U,), eag, (Ae, B, Ce, U,)). This transition models the
acceptance of Kwaku’s entrance of rodsn i.e. this action is the authorization ac-
tivity mentioned earlier. Hence our choice of the transitielation fixes the way we
deal with authorization. Including, e.9.(A,, Be, Ce, Uy), €ag, (Ae, By, Ce, Uy)) in
the transition relation would mean that Kwaku can enter r@wmithout having read
access rights foF’. Note however that since transitions involving internalats of
eitherT“®*or MV by definition cannot be pre-empted in any team Vet and MY,
our transition relation necessarily contaif{st,, B,, C., U,), 72, (A, B, C,,U,)).
Hence Kwaku, once in roon, can always begin reading file. By not includ-
ing ((Ay, Be, Ce, Up), eas, (Ae, Bn, Ce, Uy)) in our transition relation we avoid that
Kwaku can readt” without ever having been granted read access. This leatieto t
guestion of the revocation of access rights.

As argued(A., B, C., U,) meaning that Kwaku is in roor® with reading rights,
will be a reachable state. Now imagine that while in thiseskavaku’s reading rights
are revoked byn(r). To which state should this action lead, i.e. in what way do we
handle revocation of access rights? We could opt for mod@immediate revocation
or delayed revocation The latter is what we have chosen to model first. Thus our
answer to the question above is to includd., B, C., U,), m(r), (Ae, Bn, Ce, Uy))
in 7. The result is that Kwaku can pursue his activities in roBmbut cannot re-
enter the room once he has left it (unless his read accesseleasrbéstored). He is
thus still able to read (browsd), but the moment he decides to re-open the file this
fails. Likewise, if Kwaku is writingF’ when his writing right is revoked, then he can
continue editing (typing in}’, but he cannot re-enter roof as long as his write
access right has not been restored. On this side of the temocgpectrum, the user
can thus continue his current activity even when his rightelbeen revoked. He can
do so until he wants to restart this activity, at which momemtauthorization check
is done to decide if he has the right to restart this activitysome applications, this
may be an intolerable delay.

Immediate revocation, on the other hand, means the follgwira user is reading
when his or her reading right is revoked, then the file immedifadisappears from
view, while if a user is writing when his or her writing righg revoked, then the edit
is interrupted and writing is terminated in the middle of therent activity. In some
applications, this is overly disruptive and unfriendly.wé would want to incorpo-
rate immediate revocation into our example we would havedaptour distribution
of actions a bit. As said before, sineé is an internal action we cannot disallow
actionr? to take place afte((A., B,, C., U,), m(r), (A, Bn, C.,U,)) has revoked
Kwaku’s reading rights. If we instead choos® to be an external action, we are
given the freedom not to includéA., B,,, C.,U,), 2, (A., B,, C., U,)) in our tran-
sition relation. The result is that as long as Kwaku is nohfejranted read access
by actionm(r), the only way left to proceed for Kwaku in statd., B, C., U,) is

to exit roomB by ((A, By, Ce, Uy,), ep, (An, Be, Ce, Uy,)). Modeling immediate re-
vocation thus requires that actions suchrésare visible, since in that way we can
choose them not to be enabled in certain states. Immedateaton also implies
that we still want Kwaku to be able to stop reading and leaates$td., B,, C., U,)
by ((Ae, By, Ce, Uy,), 1%, (A, By, C., U,,)). Actionr? can thus remain internal.

This finishes the description of part of a team autom>awver7*andM V. In
Figure 5 the full reachable part @t (for delayed revocation) is depicted.

0 Uy
C,
B.
A,
U
gi m(w)
A,
1 r¢ U,
C,
m(w) (B
|~ A
U,
Ce))
B,
A,
0 /U,
m(r) Cr
B.
A,

)

[}

W0

Figure 5: Team automatch overT“®*and MU,

Note that team automata as dicussed here are used to model lbesign issues.
An action can take place provided (local) preconditiongihahd affects only states
of those components involved in that action. Hence at thvigl lihere is no notion of
time and no means are provided to give one action priority amether. A result of
the lack of a notion of time is, e.g., that nothing can be samu&how long it takes
before Kwaku has left reading roomhafter his reading access right has been revoked.
However, time and priorities may be added to the basic ma&lekaa features.

Again, 7 is not the unique team automaton o&®* and MY, but it is a team
automaton one obtains by choosing a specific transitiotioalavith a specific pro-

tocol in mind. In (ter Beek et al., 1999) certain fixed strasdor choosing transition
relations in a predetermined way are described, which leachiguely defined team
automata. One of these fixed strategies prescribes oneltaéfor all actions:, all
and only transitions on in which all component automata participate that haees
one of their actions. This leaves no choice for the transitedation, and thus leads
to a unique team automaton. Constructing the transiticatiogl according to this
particular strategy is very natural and often presuppossgalicitly in the literature.
Note that the freedom of the team automata model to choas&ticn relations offers
the flexibility to distinguish even the smallest nuance$ignrheaning of one’s model.
Leaving the set of transitions of a team automaton as a nmaglehoice is perhaps
the most important feature of team automata.

Another interesting feature of the framework is shown byftilewing application
of a result proved in Section 4 of (ter Beek et al., 1999) toexample. In whatever
order one chooses to construct a team automaton over theoo@mipautomata/?,
M€, MEB, and M4, it will always be possible to construct the teamdiscussed
above. This means that instead of first constructivg” over M ¢, M?, and M4,
and then adding/Y, we could just as well have constructed what we caitarated
teamin (ter Beek et al., 1999) by, e.g., starting from the usepmuaton)/V and
adding successively the component autonddta M7, and M “ modeling the access
rights that can be exercised. Moreover, independent of thetie team oveiM/ Y,
M€, M?, andM# was constructed, more components can be added. As an example
suppose that Kwaku has other interests than théfilelence imagine an automaton
TNBAn which he can transition into a state in which he plays soaskeétball. Then
we may construct a team over the team automdtgumst described and the automaton
TNBAmodeling when Kwaku is entitled — or perhaps even forced —ateeta break
(which is of some importance in these times of RSI). In gdne@v components
can be added to a given team automaton at any moment of titieywaffecting the
possibilities of any new additions. The team automata fraonke thus scores high on
scalability. In the next section we will come back to this.

Meta Access Control

In the previous sections we have seen how team automata eceetdo describe the
control of a user’s access to a file depending on his or hetsigh this section we
further elaborate on the granting and revoking of accesdgignd we consideneta
access control This means that privileges such as granting and revokimigbts
can themselves be granted and revoked. The complicatagr¢ie®) situations that
may arise in this fashion depend on the chosen (meta) acoas®icpolicy and we
demonstrate how they can unambiguously and concisely beediifn terms of team
automata.
Figure 6 shows an automatdid® that models a building with three levels +4;

B, andC' — corresponding to null access, read access, and full goesgectively.

This automaton shows the same access structure as thedbres of Figure 2. Now,
however, the status of the user directly determines the lhever she operates on and
the granting and revoking of access rights is identified whhanging levels. This
differs from the previous example where the status of the sk determined his or
her rights to enter a room.

N T w N1
m(w)| | m(w) m(w)| | m(w) m(w)| | m(w)
r L —
By B, By,
N T w A
m(r)| |\m(r) m(r)| |m(r) m(r)| |\m(r)
L L N
A,

e () SR) N)

Figure 6: Automatod/°: the access building.

Consequently, id/° the user moves in two dimensions: vertically between levels
A, B, andC — indicating the dynamic change in access rights Kwaku ha$'fe-
and horizontally between the states “null”, “reading”, &nditing” — indicating the
current activities of Kwaku with respect 6. Notice that in)M°, e.g., the statéd3,,
meaning that Kwaku is writing while having read access butnte access, can only
be reached frond’,, by an actionmn(w) or from A,, by an actionm(r). Hence this
stateB,, can be entered only when Kwaku is writing while his statuswges. There
IS no transition taB,, at levelB. A similar remark holds for state$, andA,,, which
can be entered only from levél by the read access revocation actinfr). States
such as4,, A, andB,, are calledrregular statesbecause they are not reachable at
their own level.

To model meta access control, we assume the existence aiessgidministrator,
Abena, who can change Kwaku’s rights. Hence Abena has the taggrant and
revoke access by Kwaku 8. For this reason we have chosen all actions of granting
and revoking access rights i° to be input actions, while all actions of reading and
writing are output actions. The right to grant and revokelaggtimate rights, but
they are not directly applied t&6'. They are in fact meta operations — hengér)
andm(w) — and the rights to apply these meta operations are metarigilarly,
if there is a creator, Kwesi, who can allow (and disallow) Aa¢o grant and revoke,
then Kwesi has meta meta rights. Kwesi has the meta metatagjrant and revoke
Abena’s meta rights to grant and revoke Kwaku’s accessgight. A typical action
of Kwesi ism?(w), which revokes Abena’s right to grant and revoke write as¢es
Kwaku.

The notion of meta clearly extends to arbitrary layers. Aamegle of such a
multi-layered structure of meta can be seen in the jourrfaereeing process. The

creator of a document may delegate publication respoit@bito co-authors who
may select a journal and gramf (r) rights to the editor-in-chief. The editor-in-chief
may grantm(r) rights to assistant editors who can then grant and revokkaeeess
to reviewers. An interesting question now arises as to tieetdf revocation: should
revocation of a meta right also revoke the rights that wess@d on to others? This
is the issue oghallow revocatiorversusdeep revocationShallow revocation means
that a revoke action does not revoke any of the rights thag weviously passed on
to others, whereas deep revocation means that a revoka actes revoke all rights
previously passed on. Team automata can be used to modieivghdéep, or even
hybrid revocation. Shallow revocation is often the easiesnodel, whereas deep
revocation is known as a big challenge to model and impleifizawan et al., 1998).
We now show how deep revocation can be modeled using tearmatéo

Figure 7 shows an automaton capturing one layer (layef a multi-layer meta
access specification for our example of read and write actehave already seen
layer0, viz. automaton\/°. For each value of > 1 there are corresponding automata
that are directly related to layér(viz. M*~! at layerk — 1 and M**! at layerk +
1). For each such automatdd*, the horizontal actions:*(r), m*(r), m*(w), and
m*(w) are output actions, whereas the vertical actiofis! (r), m 1 (r), m*+(w),
andm®*1(w) are input actions. For = 0 we identifyr with m°(r), r with m°(r), w
with m®(w), andw with m°(w). Similarly, m(r) = m'(r), m(r) = m'(r), m(w) =
m'(w), andm(w) = m' (w).

Mk - mk (r) mF (w)

@] o] .
m*(r) mF (w) ™~

mk+1(w) mk“(w) k+1(w) m,C+1(11}),~,11c’+1(11;) m’““(w)
mk(r) L
Bn Br Bw
™~ mF (r) m* (w) M~

mbE+1(r) b+ () mbE+1(r) mb+(r) mk+1(r) b+ ()
L L N

Figure 7: Automator/*: meta access at layér

We can now define a multi-layered structure by recursivelpposing a team
automaton over/?, M*, ..., andM™, for somen > k. Note that this is a composable
system. As mentioned before we can also build this team attomin an iterated
way starting from, e.g., a team over any two automataand M**!. In Figure 8,
the reachable part of a team automaidin, over M*~! and M*, representing layer
k — 1 and layerk of this layered structure, is depicted. The transitiontieteof this
teamT}_, is chosen with the modeling of deep revocation in mind. Fnabte that
in Figure 8 we have added superscripts to distinguish thessta)/* from the states

T]f,c,;[. /\ .
Aﬁfl mk (r) Bﬁfl
1 k—1
m (T)/\
c | - ot |
k-1 k—1
A’l‘ Z}c—l mk(v‘) T mk_l(w)
U I SO .
o | m*+ (w) m* (r) [Ck/\] mP 1 (w)
Ak—l Bk—l
A O i
. m* ! (w) — mAt(wy
mFFL (w) Bk m* (r) m* T (w) [Bf
A{cu_l mk(r) m* L (w) Bz’i;_l
mF T wy — m*t (w) k,l(?/“
mk+1 (w) Bk | mk (r) [Bf
k—1 k—1
A'r Z}c—l() mk(T) B'r‘ Zk—l()
Y m w | —Y m w
M1 _k+1 m") M
Bﬁ] m (r) m"(r) [BTI? mk+1(r)
AITCL—I % Bjcl—l
Tzkfl(r) m”(r) T{kfl(r) ﬂIc+1(7,)
~ m*F(r) 1
mk+1('r) Ak karl("') Ak
n
k—1 k—1
Aw mk(T) mk+1('r) Bw
m*t1(r) Rty
m* () Ak m* () Ak
k—1 k-1
Ax Z}c—l mk(r) Br Zlc—l
L~ m”T(w) I~ m"” T (w)
Al A}
A]ffl k Bffl
m* = (r) = Uik‘l(r)

Figure 8: Team automatdff® , overM*~! andM*.

in M*-1, e.qg., stateB, of M* from stateB, of M*~!.

In our example? represents the actions of the supervisor Kwesi &fidthose
of Abena. Now consider Kwesi in staf#?. Then Figure 8 tells us that Abena must be
in one of the three statds!, B!, or B.. Assume that Kwesi reached this st@&gby
performing actionn?(r) from B2, while Abena was in statd, having no rights to
grant and revoke reading rights. Actie#?(r) is an output action of/? and an input
action of M*, and our transition relation forcéd! to transition fromA! to B.. The
interpretation is that Kwesi granted Abena the right to dadrgrants and revokes (to
user Kwaku for fileF’).

Similarly, automaton\/* can revoke the right to grant and to revoke read access
from A%~ at any time by performing output actien”(r), and thus forcing//* ! to
perform this action — this time as an input action — as wellntaiing our example,
this means that while in statB?, Kwesi's read granting right may be revoked by
actionm?(r) at any time. If this happens, Kwesi is forced into the irregutate4?,
which has only one possible output action, viZ(r), leading toA2. Whenever that
actionm?(r) occurs it revokes Abena’s right to change Kwaku's read acces

We thus observe two general rules of activity in such a teaionaaton over/?,
M, ..., andM™ with each automaton of the form depicted in Figure 7. Firstew
a master automatol/* wherel < k < n, transitions right (grant) or left (revoke),
then the slave automata*~! must transition upward (gaining some access right)
or downward (losing some access right). Second, the slate' may be forced to
transition downward into an irregular state, in which caseli eventually transition
to the left. M*~! is itself a master and thus this transition to the left agaicds a
downward transition ofi/*~2, and so on untill/° on layer0. Hence, as promised,
we indeed model deep revocation.

Conclusion

In this document we have demonstrated by means of examplesdaon automata
can be used for modeling access control mechanisms prdsanbegh the metaphor
of spatial access. The combination of the formal framewdrteam automata and
the spatial access metaphor leads to a powerful abstrasgtrsuited for a precise
description of (at least some of the) key issues of accedsatoifhe team automata
framework supports the design of distributed systems aatbpols, by making ex-
plicit the role of actions and the choice of transitions gougy the coordination
(e.g., in the form of peer-to-peer or master-slave synahadions, or combinations
thereof). Moreover, the formal setup and the possibilita ehiodular design provide
analytic tools for the verification of desired propertiescoinplex systems. Team
automata are thus a fitting companion to the virtual spaceapher used in virtual
reality systems that supports notions of rooms and buiklidgach space is repre-
sented by a component automaton, dynamic access changep@eented by joint
external actions, while resource accesses within a spacbeceepresented by inter-

nal actions. For reasons of readability, we have chosengoesentation by examples
without definitions and proofs. Obviously there are numserother possible exam-
ples as well as variations of the examples we have considered

For one, the assumption that write access can only be gré&ntead access has
been granted can easily be dropped. Similarly, grant arakestights can be coupled
more loosely. Read and write operations are specified hehe dite level, but could
also have been specified at the page level, object levelcorddevel, to name but a
few. This might mean that delayed revocation is precisedyripht choice. At the file
level, ther andr actions might be seen at the user interface as open and ¢ sEe
w andw actions might be edit and save operations. When dealingantithansaction
system, combinations of these operations might correspmbegin transaction and
end transaction.

The team automata framework handles group decision makétigawd therefore
allows convenient implementations distributed access controDistributed access
control means that the supervisory work of granting and kimgpaccess rights is
administered by multiple agents. Thus Kwaku could have tdmiaistrative super-
visors who must agree on any change of access rights. Thibeamodeled as an
action of two masters and one slave: the actions would beubfgpboth supervisors,
requiring both to participate, and input for the slave. Alaively, by including tran-
sitions with one supervisor being inactive, we can modelctiee of approval being
required by either one of the two supervisors. Hybrids betwgure master-slave and
pure peer-to-peer are easy to define, and useful. All thesatieas are due to the
fact that the choice of a transition relation is the crucialdeling issue of the team
automata framework.

Note that team automata model the logical architecture @s&gga. They abstract
from concrete data, configurations, and actions, and ordgrd®e behavior in terms
of a state-action diagram (structure), the role of actiongug, output, or internal),
and synchronizations. It is not feasible (nor necessarppte a distinct automaton
for each individual, and for each file in an organization. lanysituations, categories
and roles are used rather than individuals. Any implemantatould have the team
automaton as a class entity, and an activation record fdr parson, containing their
current state. Similarly, by keeping a status of the files car@ model the criterion
“only one person can write a file at a time, but many reader¥is ®he model cast
in the spirit of automata depicting roles rather than indlindls becomes much more
useful and general, and avoids some notational problemgoinential growth. Note
that because of the product construction, a state spacestapllurks. However, the
resulting automata are not difficult to process. The iteeatipproach to composition
(forming teams with teams as components) forms an autoraaticmechanizable
abbreviation methodology (van der Aalst et al., 2000). Inggal, however, the state
space explosion problem itself cannot be avoided whenrpalith systems with
many components that can interact or can assume many diffekies. See (Clarke
et al., 1999) for a presentation of techniques and tools déatidg with this problem
when verifying large systems. (Miuller, 1998) demonssdiew to deal with the
computer-assisted verification of embedded systems thesicais I/O automata.

As observed earlier, time and priorities are not incorpatan neither the spatial
access metaphor nor the team automata model as discussetibesever, similar to
the Petri net model — which is also based on local state clsargene may consider
to extend team automata with time and priorities (see, éAgmone Marson et al.,
1995), which focuses on performance analysis). When tindéoapriorities are part
of access control this would allow the designer to contrel $bjourn times in the
local states and to control the resolution of conflictingats.

Using team automata for modeling (spatial) access contraes one to make
explicitand unambiguous design choices and at the sameptiovales the possibility
of mathematically precise analysis tools for proving calidesign properties, without
first having to implement one’s design.

To conclude we stress that (spatial) access control is omyal many CSCW
concerns that can be addressed via team automata. The gagief this document is
to demonstrate the applicability of a formal framework tlvas conceived specifically
as a model for the specification and analysis of CSCW systévadelieve that this
may be a significant step toward a better understanding of/#tys in which people
and systems cooperate and collaborate.

Acknowledgments

We are grateful to the anonymous referees for their suggesto improve an earlier
version of this document.

References

van der Aalst, W., Barthelmess, P., and Ellis, C.A. (2000jorkflow Modeling using
Proclets’. Technical Report CU-CS-900-00, Computer Smddepartment, Uni-
versity of Colorado.

Ajmone Marson, M., Balbo, G., Conte, G., Donatelli, S., andri€eschinis, G.
(1995): Modelling with generalized stochastic Petri net®ohn Wiley & Sons,
Chichester.

Attie, P.C., Francez, N., and Grumberg, O. (1990): ‘Faisnasd hyperfairness in
multi-party interactions’, inProceedings of the POPL'90 ACM Symposium on
Principles of Programming Languages, San Francisco, Oatia, ACM Press,
pp. 292-305.

ter Beek, M.H., Ellis, C.A., Kleijn, J., and Rozenberg, G999): ‘Synchronizations
in Team Automata for Groupware Systems’. Technical RepBHIB-12, Leiden
Institute of Advanced Computer Science, Universiteit legid

Brookes, S.D., Hoare, C.A.R., and Roscoe, A.W. (1984): oity of communicating
sequential processesournal of the ACMvol. 31, no. 3, pp. 560-599.

Bullock, A. and Benford, S. (1997): ‘Access Control in VialtEnvironments’, in D.
Thalmann, S. Feiner, and G. Singh (edsProceedings of the VRST'97 ACM
Symposium on Virtual Reality Software and Technology, &ms, Switzerland
ACM Press, pp. 29-35.

Bullock, A. (1998):SPACE: Spatial Access Control in Collaborative Virtual Eom-
ments Ph.D. thesis. Department of Computer Science, Univeasityottingham.

Bullock, A. and Benford, S. (1999): ‘An access control framwek for multi-user
collaborative environments’, iRroceedings of the GROUP’99 International ACM
SIGGROUP Conference on Supporting Group Work, PhoenixzoAg ACM
Press, pp. 140-149.

Clarke Jr., E.M., Grumberg, O., and Peled, D.A. (1999¢del CheckingMIT Press,
Cambridge, Massachusetts.

Dewan, P. and Shen, H. (1998): ‘Flexible Meta Access-CaritnoCollaborative
Applications’, in E. Churchill, D. Snowdon, and G. Golovokky (eds.)Proceed-
ings of the CSCW’98 ACM Conference on Computer Supportegezative Work,
Seattle, WashingtoiA\CM Press, pp. 247-256.

Ellis, C.A. (1997): ‘Team Automata for Groupware Systenrs]J. Clifford, B. Linds-
day and D. Maier (eds.):Proceedings of the GROUP’97 International ACM
SIGGROUP Conference on Supporting Group Work: The Integra€hallenge,
Phoenix, ArizongACM Press, pp. 415-424.

Evangelist, M., Shen, V.Y., Forman, |.R., and Graf, M. (188sing Raddle to de-
sign distributed systems’, iRroceedings of the ICSE’88 International Conference
on Software Engineering, SingapptEEE Computer Society Press, pp. 102-111.

Keesmaat, N.W. (1996)ector Controlled Concurrent Systeni®h.D. thesis, Leiden
University.

Lynch, N.A. (1996):Distributed AlgorithmsMorgan Kaufmann Publishers, San Ma-
teo, California.

Muller, O. (1998):A Verification Environment for I/O Automata Based on Foriedi
Meta-Theory Ph.D. thesis, Technische Universitat Munchen.

Nutt, G.J. (1997)Operating Systems: A Modern Perspectitddison-Wesley Pub-
lishers, Reading, Massachusetts.

Reisig, W., and Rozenberg, G. (eds.) (1998)ctures on Petri Nets I: Basic Models
Lecture Notes in Computer Scienweel. 1491, Springer-Verlag, Berlin.

Rodden, T. (1996): ‘Populating the Application: A Model ok&reness for Coopera-
tive Applications’, in M. Ackerman (ed.)Proceedings of the CSCW'96 ACM
Conference on Computer Supported Cooperative Work, Bpo#assachusetts
ACM Press, pp. 87-96.

Shen, H. and Dewan, P. (1992): ‘Access Control for CollatdeedEnvironments’, in
J. Turner and R. Kraut (eds.Proceedings of the CSCW’92 ACM Conference on
Computer Supported Cooperative Work, Toronto, CanéddzM Press, pp. 51-58.

Sikkel, K. (1997): ‘A Group-based Authorization Model fooQperative Systems’, in
J. Hughes, W. Prinz, T. Rodden, and K. Schmidt (ed®joceedings of the
ECSCW’97 European conference on Computer Supported CatdpeeyWork, Lan-
caster, UK Kluwer Academic Publishers, pp. 345-360.

