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Abstract. Team automata provide a framework for capturing notions like coordination, col-
laboration, and cooperation in distributed systems. They consist of an abstract specification
of components of a system and allow one to describe different interconnection mechanisms
based upon the concept of “shared actions”. This document considers access control mech-
anisms in the context of the team automata model. It demonstrates the model usage and
utility for capturing information security and protection structures, and critical coordinations
between these structures. On the basis of a spatial access metaphor, various known access
control strategies are given a rigorous formal description in terms of synchronizations in team
automata.

Introduction

As the complexity of technical systems continues to increase, abstractions tend to be
especially useful. For this reason, computer science oftenintroduces and studies var-
ious models of computation that allow enhanced understanding and analysis. Com-
puter science has also created a number of interesting metaphors (e.g., the desktop
metaphor) that aid in end user understanding of computing phenomena. This docu-



ment is concerned with a model and a metaphor. The model is team automata, which
were created explicitly for the specification and analysis of CSCW phenomena and
collaborative systems (Ellis, 1997). The metaphor is spatial access control, which is
based upon current notions of virtual reality, and helps demystify concepts of access
control matrices and capability structures for the end user(Bullock et al., 1999).

Many of the concepts and techniques of computer science, such as concurrency
control, user interfaces, and distributed databases, needto be rethought in the group-
ware domain. Team automata are helpful for this rethinking.The framework provided
by the team automata model allows one to separately specify the components of a col-
laborative system and to describe their interactions. It isneither a message passing
model nor a shared memory model, but a shared action model. Ithas been proposed
as a formal framework for modeling both the conceptual and the architectural level of
groupware systems (Ellis, 1997). Components can be combined in a loose or more
tight fashion depending on which actions are to be shared, and when. Such aggregates
of components can then in turn be used as components in a higher-level team. Thus
team automata fit nicely with the needs and the philosophy of groupware (Ellis, 1997)
and thanks to the formal setup, theorems and methodologies from automata theory
can be applied. Team automata are an extension of Input/Output automata (Lynch,
1996) and are related to, but different from Vector Controlled Concurrent Systems
(Keesmaat, 1996), Petri nets (Reisig et al., 1998), and other models of concurrent and
collaborative systems (Nutt, 1997).

Our spatial access control metaphor piggy-backs upon the virtual reality metaphors
of places and spaces (Bullock, 1998). Different places are conducive to different
activities, and different rooms and different buildings have different affordances. The
metaphor of virtual rooms and virtual buildings can help to guide the user through a
complex computer system to find the resources needed for a particular task. In need
of a certain document, e.g., the user would naturally think of entering a virtual library,
where he or she would have read access.

In the following sections we first discuss the spatial accesscontrol metaphor by
means of an example and subsequently gently present the teamautomata model by
applying it to this example. In the core of the document we then show how certain
spatial access control mechanisms can be made precise and given a formal description
using team automata. First we introduce information accessmodeling by granting
and revoking access rights, and show how immediate versus delayed revocation can
be formulated. In the subsequent section we extend our studyto the more complex
issue of meta access control, and consequently we show how team automata can deal
with deep versus shallow revocation.

The style of this document is relatively informal. Full formal definitions, obser-
vations, and results relating to team automata can be found in (ter Beek et al., 1999).
Our aim here is to connect the metaphor of spatial access control to the framework
of team automata, and to show through examples how this combination facilitates
the identification and unambiguous description of some key issues of access control.
The rigorous setup of the framework of team automata allows one to formulate, ver-
ify, and analyze general and specific logical properties of various control mechanisms



in a mathematically precise way. In realistically large systems, security is a big is-
sue, and team automata allow formal proofs of correctness ofits design. Moreover,
a formal approach as provided by the team automata frameworkforces one to un-
ambiguously describe control policies and it may suggest new approaches not seen
otherwise. There is a large body of literature concerning topics like security, pro-
tection, and awareness in CSCW systems. Although team automata are potentially
applicable also to these areas, this paper is not concerned with issues outside of spa-
tial access control. In the final section we discuss some variations and extensions of
our setup.

Access Control

A vital component of any system or environment is security and information access
control, but this is sometimes done in a rather ad hoc or inadequate fashion with no
underlying rigorous, formal model. In typical electronic file systems, access rights
such as read-access and write-access are allocated to userson some basis such as
“need to know”, ownership, or ad hoc lists of accessors. Within groupware systems,
there are typically needs for more refined access rights, such as the right to scroll a
document that is being synchronously edited by a group in real time. Furthermore,
the granularity of access must sometimes be more fine-grained and flexible, as within
a software development team. Moreover, it is important to control access meta-rights.
For example, it may be useful for an author to grant another team member the right to
grant document access to other non-team members (i.e. delegation). Various models
have been proposed to meet such requirements (see, e.g., (Shen et al., 1992), (Rodden,
1996), and (Sikkel, 1997)).

We use a spatial access metaphor based upon recent work of Bullock and col-
leagues in (Bullock et al., 1997) and (Bullock et al., 1999).There, access control
is governed by the rooms, or spaces, in which subjects and objects reside, and the
ability of a subject to traverse space in order to get close toan object. Bullock also
implemented a system calledSPACE to test out some of these ideas (Bullock, 1998).
A basic tenet of theSPACE access model is that a fundamental component of any
collaborative environment is the environment itself (i.e.the space). It is the shared
territory within which information is accessed and interaction takes place. Often this
shared space is divided into numerous regions that segment the space. This allows de-
composition of a very large space into smaller ones for manageability. It also allows
cognitive differentiation (i.e. different concerns, memories, and thoughts associated
with different regions), and distributed implementation (i.e. different servers for dif-
ferent regions).

By adopting a spatial approach to access control, theSPACE metaphor exploits a
natural part of the environment, making it possible to hide explicit technical security
mechanisms from end users through the natural spatial makeup of the environment.
These users can then make use of their knowledge of the environment to understand



the implicit security policies. Users can thus avoid understanding technical concepts
such as so-called access matrices, which helps to avoid misunderstandings.

We consider here a virtual reality, in which a user can traverse from room to room
by using keyboard keys, the mouse, or fancier devices. It is anatural and simple
extension to assume that access control checking happens atthe boundaries (doors)
between spaces (rooms) when a user attempts to move from one room to another. If
the access is OK, then the user can enter and use the resourcesassociated with the
newly entered room.

To illustrate the various concepts throughout this document, we present a simple
running example which is concerned with read and write access to a fileF by a user
Kwaku. This file might be any data or document that is stored electronically within
a typical file system. The file system keeps track of which users have which access
rights to the fileF . Three types of access rights are possible for a fileF : null access
(implying the user can neither read nor write the file), read access (implying the user
cannot write the file), and full access (implying the user canread and write — i.e. edit
— the file).

In security literature, authentication deals with verification that the user is truly
the person represented, whereas authorization deals with validation that the user has
access to the given resource. Assume that when Kwaku logs into the system, there
is an authentication check. Then whenever he tries to read orwrite F , authorization
checking occurs, and Kwaku is either allowed the access, or not. Using theSPACE
metaphor, the above three types of access rights can be associated with three rooms
as shown in Figure 1.

RoomC: full access room

RoomB: read access room

RoomA: null access room

Figure 1: A rooms metaphor for access control.

RoomA is associated with no access to the document, roomB is associated with
read access, and roomC models full access. Suppose Kwaku is in roomB, the
reading room. Presence in this room means that any time Kwakudecides to readF ,
he can do so. However, if he attempts to make changes toF , then he will fail because
he does not have write access in roomB. There are doors between rooms, implying
that user access rights can be dynamically changed by changing rooms. We discuss
this dynamic change in more detail in a later section of this document.

This access mechanism satisfies a number of end user friendlyproperties: it is
simple, understandable by non-computer people, relatively natural and unobtrusive,
and elegant. In the next sections we show how modeling this type of access metaphor
via team automata adds precision, mathematical rigor, and analytic capabilities.



Team Automata

In this section we introduce component automata and team automata as formally de-
fined in (ter Beek et al., 1999) by using the example of the previous section.

A team automaton consists of component automata, combined in a coordinated
way such that they can perform shared actions. Component automata within a team
automaton can during each clock tick simultaneously participate in one instantaneous
action (i.e. synchronize on this action), or remain idle. The team automata model
forms a mathematical automata theoretic specification, rather than a high-level lan-
guage specification such as Hoare’sCSP (Brookes et al., 1984), Forman’sRaddle
(Evangelist et al., 1988), or then-party interaction mechanism (Attie et al., 1990).
Team automata, like I/O automata, are adequate for specifying shared memory sys-
tems and message passing systems, although they are neitherof the two. While inap-
propriate for capturing aspects of group activity such as social aspects and informal
unstructured activity, the model has proved useful in various CSCW modeling areas
(Ellis, 1997). A spectrum from hardware components to interacting groups of people
can be modeled by team automata.

The component automata are rather ordinary, but their interconnection strategy is
intriguing because, as we mentioned, it is neither shared variable nor message pass-
ing. We classify the actions which take an automaton from onestate to another into
two main categories, one of which is subdivided into two morecategories.Internal
actions have strictly local visibility and can thus not be observed by other components,
whereasexternalactions are observable by other components. These externalactions
are used for communication between components and consist of input actions and
outputactions. Composing component automata into team automata is based on an
interconnection strategy of shared actions, in which one ormore automata participate
in the execution of the same external action (which may be input to some components
and output to other components). The choice for a specific interconnection strategy is
based on what one wants to model, and this possibility to choose is the main feature
of the team automata framework.

We now return to our access control example by showing how to model it in the
team automata framework. The component automatonM

C depicted in Figure 2(a)
corresponds to roomC of Figure 1, as it models full access to fileF . The states of
M

C areC
e

modeling an empty room,C
n

modelingF is not accessed,C
r

modeling
F is being read, andC

w

modelingF is being written (edited). The wavy arc in
Figure 2(a) denotes the initial stateC

e

. The actions ofMC areeBC (enter room),eCB

(exit room),rC (begin reading),rC (end reading),wC (begin writing), andwC (end
writing).

A component automaton thus consists ofstates, actions, and (labeled)transitions
which describe state changes caused by actions. We distinguish a set ofinitial states
and the set of actions is further partitioned intoinput, output, and internal actions.
Hence a component automaton is a labeled transition diagramwith three distinguished
types of labels (actions).
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Figure 2: AutomataMC ,MB , andMA: roomsC, B, andA.

Returning toMC we have the transitions(C
e

; eBC; Cn), (Cn; eCB; Ce), (Cn; rC ; Cr),
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), and(C
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). Now the transition(C
e

; eBC; Cn), e.g.,
shows that inMC we can go from stateC

e

toC
n

by executing actioneBC. We also see
that transitioning directly fromC

n

to C
w

is not possible. Furthermore, entering and
exiting roomC may only occur via stateC

n

. We choose to specify actionsrC , rC ,
w

C , andwC as internal actions ofMC , andeBC andeCB as external actions ofMC .
BotheBC andeCB clearly should be externally visible and therefore cannot be internal.
For the moment we choose them to be output actions. These two external actions are
candidates for being synchronized with actions of the same name in other component
automata when we form a team automaton overM

C and the two component automata
as described next.

Component automataMB andMA corresponding to roomsB andA, respectively,
are somewhat similar toMC . However, write access is denied in roomsB andA and
read access is denied in roomA. AutomataMB andMA are depicted in Figure 2(b,c).
Note thatMA has initial stateA

n

(hence initially roomA is not empty) and that both
M

B andMA have states unreachable from the initial state. Actionsr

B andrB are
internal, while the rest of the actions ofMB andMA are external (output) actions.

Now suppose that we want to combineMC , MB, andMA into one (team) au-
tomaton reflecting a given access policy. Then, first of all, the internal actions of each
of these components should be private, i.e. uniquely associated to one component au-
tomaton. This is formally expressed by stating that when composing a team from a
collectionS of component automata, no internal action of any component automaton
from S may appear as an action in any of the other component automatain S. If this
is the case, thenS is called acomposable system.

The three automata in our example clearly form a composable system and we
combine them into a team automatonTCBA as follows. Each state ofTCBA is a com-
bination of a state fromMC , a state fromMB, and a state fromMA (henceTCBA has
upto43 = 64 states). InitiallyTCBA is in state(A

n

; B

e

; C

e

), a combination of initial



states from the three component automata. This means one starts in roomA, while
roomB andC are empty.

Assuming that one can have only one kind of access rights at a time, two of the
rooms should be empty at any moment in time. This means thatT

CBA should be
defined in such a way that in each of its reachable states two ofthe three automata
are always in state “empty”. We let the automata synchronizeon the external ac-
tions eAB, eBA, eBC, andeCB. Each such synchronized external action ofT

CBA cor-
responds to exiting a room while entering another. Synchronization of actioneAB,
e.g., models a move from roomA to roomB. This move is represented by the
transition((A

n

; B

e

; C

e

); eAB; (Ae

; B

n

; C

e

)) showing that in automatonMA we exit
roomA, in automatonMB we enter roomB, and in automatonMC we do noth-
ing (i.e. remain idle). This represents a change in access rights from null access
(in room A) to read access (in roomB). We do not include, e.g., the transition
((A

n

; B

e

; C

e

); eAB; (Ae

; B

e

; C

e

)) which would let the user exit roomA but never enter
roomB. Furthermore, the user could be in more than one room at a timeif we would
allow transitions like((A

n

; B

e

; C

e

); eAB; (An

; B

n

; C

e

)). In T

CBA we include only the
four transitions representing the synchronized changing of rooms. In each of these
transitions, one automaton is idle. All internal (read and write related) actions are
maintained. In each of these only that component is involvedto which such an action
belongs.

The reachable part of the thus definedT

CBA is depicted in Figure 3.
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Figure 3: Team automatonTCBA overMC ,MB , andMA.

At this moment it is important to stress thatTCBA is not the only team automa-
ton overMC , MB, andMA. In general, there is nouniqueteam automaton over a
composable systemS, but a framework is provided within which one can construct
a variety of team automata overS. The flexibility lies in the choice of the transition



relation for a team automaton overS, which is based on but not fixed by the transition
relations of the component automata inS. The requirements the transition relation of
a team automaton has to satisfy are as follows.

Thecomplete transition spaceof actiona in S consists of all transitions ona from
a stateq to a stateq0 of the team such that at least one component automaton is active,
i.e. performsa. Moreover, each of the component automata either also executesa
(i.e. joins in executinga) or remains idle (thus does not change state). Consequently,
the transformation of the state of the team automaton is defined by the local state
changes of the components involved in the action that is executed. The transitions
in the complete transition space (ofa) are referred to assynchronizations(ona). For
each actiona a specific subset of its complete transition space is chosen.In the case of
an internal action however, each component retains all its possibilities to execute that
action and change state. Note that sinceS is a composable system, synchronizations
on internal actions never involve more than one component.

Any choice of a transition relation satisfying these requirements defines a team
automaton overS. Its states, initial states, as well as a partition of its actions are fixed
(and the same for all team automata overS). The state space of any team automaton
T overS is the product of the state spaces of the component automata of S, with the
products of their initial states forming the initial statesof T . The internal actions of
the components are the internal actions of the team automaton. Each action which
is output for one or more of the component automata is an output action of the team
automaton. Hence an action that is an output action of one component and also an
input action of another component, is considered an output action of the team. The
input actions of the component automata that do not occur at all as an output action
of any of the component automata, are the input actions of theteam. The reason
for constructing the alphabet sets of a team automaton from the alphabet sets of the
component automata in the way described above, is based on the intuitive idea of
(Ellis, 1997) that when relating an input actiona of a component automaton to an
output actiona of another component, the input may be thought of as being caused
by the output. On the other hand, the output action remains observable as output to
other automata. As shown in (ter Beek et al., 1999), every team automaton is again a
component automaton and hence can be used in a higher-level team.

In T

CBA, as mentioned before, the decision to considereAB, eBA, eBC, andeCB as
output actions in all component automata was made more or less arbitrarily. In fact, it
depends on how one views the action of entering and exiting a room within the team
automatonTCBA. By choosing all of those actions to be output (and thus of thesame
type), exiting one room and entering another is seen as acollaborationbetween peers.

In (ter Beek et al., 1999), where different types of synchronizations on actions
shared between components of a team are classified, this synchronization of exter-
nal actions of the same type is called apeer-to-peer synchronization. On the other
hand,master-slave synchronizationoccurs when input actionscooperatewith output
actions. In that case, input can only occur as a response (slave) to output.

In our example, assume that one views the changing of rooms asan action initiated
by leaving a room and forcing the room that is entered to accept the entrance. Then



one would name, e.g.,eAB an output action ofMA and an input action ofMB, andeBA

an output action ofMB and an input action ofMA. This causeseAB to be a master-
slave synchronization between masterM

A and slaveMB andeBA to be a master-slave
synchronization between masterM

B and slaveMA. Likewise for the other actions.
In addition, (ter Beek et al., 1999) defines strategies that lead specifically to unique-

ly defined peer-to-peer and master-slave combinations within team automata. The
team automata framework allows one to model many other features useful in virtual
reality environments. A door, e.g., can be extended to join more than two rooms since
any number of automata can participate in an output action. Furthermore, as said
before, a user could be in more than one room at a time.

Authorization and Revocation

We continue our example of the previous section by adding Kwaku, a user whose
access rights to fileF will be checked by the access control systemTCBA of Figure 3.
Kwaku is represented by automatonMU , depicted in Figure 4. This extension com-
plicates our example in the sense that Kwaku’s read and writeaccess rights can be
changed independently of his whereabouts. Only to enter a room he has to be autho-
rized. Thus access rights are no longer equivalent with being in a room, but rather
with the possibility to enter a room. To add this to the team automaton formalization,
we will use the feature of iteratively constructing teams with teams as components.
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m(r)

m(r)

m(w)

m(w)

U

n

U
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Figure 4: AutomatonMU : user Kwaku.

Kwaku starts in stateU
n

with no access rights. The actionsm(r), m(r), m(w),
andm(w) model the (meta) operations of “being granted read access”,“being re-
voked read access”, “being granted write access”, and “being revoked write access”,
respectively. Since these clearly are passive actions fromKwaku’s point of view, we
choose all of them to be input actions. Note that Kwaku can endup in stateU

w

if and
only if he was granted access rights to read and to write, i.e.actionsm(r) andm(w)

have taken place. When Kwaku’s write access is consequentlyrevoked by transition
(U

w

; m(w); U

r

), he ends up in stateU
r

.
Now suppose that we want to model Kwaku’s options for editingfile F , which

is protected by the access control systemTCBA. Then we would like to compose a
team automaton overTCBA andMU . To do so, first note thatTCBA andMU form a
composable system. Next we choose a transition relation, i.e. for each action a subset
from its complete transition space inTCBA andMU is selected, thereby formally fixing
an access control policy for Kwaku under the constraints imposed byTCBA.

The initial state of any team overTCBA andMU is (A

n

; B

e

; C

e

; U

n

), i.e. Kwaku



is not yet editingF and is in the virtual roomA without access rights. Now imagine
the access rights to be keys. Hence Kwaku needs the right key to enter reading room
B, i.e. actionm(r) must take place before actioneAB becomes enabled. This action
m(r) leads us from the initial state to(A

n

; B

e

; C

e

; U

r

). Now Kwaku has the key to
enter roomB by ((A

n

; B

e

; C

e

; U

r

); eAB; (Ae

; B

n

; C

e

; U

r

)). This transition models the
acceptance of Kwaku’s entrance of roomB, i.e. this action is the authorization ac-
tivity mentioned earlier. Hence our choice of the transition relation fixes the way we
deal with authorization. Including, e.g.,((A

n

; B

e

; C

e

; U

n

); eAB; (Ae

; B

n

; C

e

; U

n

)) in
the transition relation would mean that Kwaku can enter roomB without having read
access rights forF . Note however that since transitions involving internal actions of
eitherTCBA orMU by definition cannot be pre-empted in any team overT

CBA andMU ,
our transition relation necessarily contains((A

e

; B

n

; C

e

; U

n

); r

B

; (A

e

; B

r

; C

e

; U

n

)).
Hence Kwaku, once in roomB, can always begin reading fileF . By not includ-
ing ((A

n

; B

e

; C

e

; U

n

); eAB; (Ae

; B

n

; C

e

; U

n

)) in our transition relation we avoid that
Kwaku can readF without ever having been granted read access. This leads to the
question of the revocation of access rights.

As argued,(A
e

; B

n

; C

e

; U

r

) meaning that Kwaku is in roomB with reading rights,
will be a reachable state. Now imagine that while in this state Kwaku’s reading rights
are revoked bym(r). To which state should this action lead, i.e. in what way do we
handle revocation of access rights? We could opt for modeling immediate revocation
or delayed revocation. The latter is what we have chosen to model first. Thus our
answer to the question above is to include((A

e

; B

n

; C

e

; U

r

); m(r); (A

e

; B

n

; C

e

; U

n

))

in T . The result is that Kwaku can pursue his activities in roomB, but cannot re-
enter the room once he has left it (unless his read access has been restored). He is
thus still able to read (browse)F , but the moment he decides to re-open the file this
fails. Likewise, if Kwaku is writingF when his writing right is revoked, then he can
continue editing (typing in)F , but he cannot re-enter roomC as long as his write
access right has not been restored. On this side of the revocation spectrum, the user
can thus continue his current activity even when his rights have been revoked. He can
do so until he wants to restart this activity, at which momentan authorization check
is done to decide if he has the right to restart this activity.In some applications, this
may be an intolerable delay.

Immediate revocation, on the other hand, means the following. If a user is reading
when his or her reading right is revoked, then the file immediately disappears from
view, while if a user is writing when his or her writing right is revoked, then the edit
is interrupted and writing is terminated in the middle of thecurrent activity. In some
applications, this is overly disruptive and unfriendly. Ifwe would want to incorpo-
rate immediate revocation into our example we would have to adapt our distribution
of actions a bit. As said before, sincerB is an internal action we cannot disallow
actionrB to take place after((A

e

; B

n

; C

e

; U

r

); m(r); (A

e

; B

n

; C

e

; U

n

)) has revoked
Kwaku’s reading rights. If we instead chooserB to be an external action, we are
given the freedom not to include((A

e

; B

n

; C

e

; U

n

); r

B

; (A

e

; B

r

; C

e

; U

n

)) in our tran-
sition relation. The result is that as long as Kwaku is not being granted read access
by actionm(r), the only way left to proceed for Kwaku in state(A

e

; B

n

; C

e

; U

n

) is



to exit roomB by ((A
e

; B

n

; C

e

; U

n

); eBA; (An

; B

e

; C

e

; U

n

)). Modeling immediate re-
vocation thus requires that actions such asr

B are visible, since in that way we can
choose them not to be enabled in certain states. Immediate revocation also implies
that we still want Kwaku to be able to stop reading and leave state(A

e

; B

r

; C

e

; U

n

)

by ((A
e

; B

r

; C

e

; U

n

); r

B

; (A

e

; B

n

; C

e

; U

n

)). Action rB can thus remain internal.
This finishes the description of part of a team automatonT overTCBA andMU . In

Figure 5 the full reachable part ofT (for delayed revocation) is depicted.
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Figure 5: Team automatonT overTCBA andMU .

Note that team automata as dicussed here are used to model logical design issues.
An action can take place provided (local) preconditions hold, and affects only states
of those components involved in that action. Hence at this level there is no notion of
time and no means are provided to give one action priority over another. A result of
the lack of a notion of time is, e.g., that nothing can be said about how long it takes
before Kwaku has left reading roomB after his reading access right has been revoked.
However, time and priorities may be added to the basic model as extra features.

Again, T is not the unique team automaton overT

CBA andMU , but it is a team
automaton one obtains by choosing a specific transition relation with a specific pro-



tocol in mind. In (ter Beek et al., 1999) certain fixed strategies for choosing transition
relations in a predetermined way are described, which lead to uniquely defined team
automata. One of these fixed strategies prescribes one to include for all actionsa, all
and only transitions ona in which all component automata participate that havea as
one of their actions. This leaves no choice for the transition relation, and thus leads
to a unique team automaton. Constructing the transition relation according to this
particular strategy is very natural and often presupposed implicitly in the literature.
Note that the freedom of the team automata model to choose transition relations offers
the flexibility to distinguish even the smallest nuances in the meaning of one’s model.
Leaving the set of transitions of a team automaton as a modeling choice is perhaps
the most important feature of team automata.

Another interesting feature of the framework is shown by thefollowing application
of a result proved in Section 4 of (ter Beek et al., 1999) to ourexample. In whatever
order one chooses to construct a team automaton over the component automataMU ,
M

C , MB, andMA, it will always be possible to construct the teamT discussed
above. This means that instead of first constructingT

CBA overMC , MB , andMA,
and then addingMU , we could just as well have constructed what we call aniterated
team in (ter Beek et al., 1999) by, e.g., starting from the user automatonMU and
adding successively the component automataM

C ,MB , andMA modeling the access
rights that can be exercised. Moreover, independent of the way the team overMU ,
M

C ,MB, andMA was constructed, more components can be added. As an example,
suppose that Kwaku has other interests than the fileF . Hence imagine an automaton
T

NBA in which he can transition into a state in which he plays some basketball. Then
we may construct a team over the team automatonT just described and the automaton
T

NBA modeling when Kwaku is entitled — or perhaps even forced — to have a break
(which is of some importance in these times of RSI). In general, new components
can be added to a given team automaton at any moment of time, without affecting the
possibilities of any new additions. The team automata framework thus scores high on
scalability. In the next section we will come back to this.

Meta Access Control

In the previous sections we have seen how team automata can beused to describe the
control of a user’s access to a file depending on his or her rights. In this section we
further elaborate on the granting and revoking of access rights and we considermeta
access control. This means that privileges such as granting and revoking ofrights
can themselves be granted and revoked. The complicated (recursive) situations that
may arise in this fashion depend on the chosen (meta) access control policy and we
demonstrate how they can unambiguously and concisely be defined in terms of team
automata.

Figure 6 shows an automatonM0 that models a building with three levels —A,
B, andC — corresponding to null access, read access, and full access, respectively.



This automaton shows the same access structure as the three rooms of Figure 2. Now,
however, the status of the user directly determines the level he or she operates on and
the granting and revoking of access rights is identified withchanging levels. This
differs from the previous example where the status of the user only determined his or
her rights to enter a room.
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Figure 6: AutomatonM0: the access building.

Consequently, inM0 the user moves in two dimensions: vertically between levels
A, B, andC — indicating the dynamic change in access rights Kwaku has for F —
and horizontally between the states “null”, “reading”, and“writing” — indicating the
current activities of Kwaku with respect toF . Notice that inM0, e.g., the stateB

w

meaning that Kwaku is writing while having read access but nowrite access, can only
be reached fromC

w

by an actionm(w) or fromA

w

by an actionm(r). Hence this
stateB

w

can be entered only when Kwaku is writing while his status changes. There
is no transition toB

w

at levelB. A similar remark holds for statesA
r

andA
w

, which
can be entered only from levelB by the read access revocation actionm(r). States
such asA

r

, A
w

, andB
w

are calledirregular statesbecause they are not reachable at
their own level.

To model meta access control, we assume the existence of a system administrator,
Abena, who can change Kwaku’s rights. Hence Abena has the right to grant and
revoke access by Kwaku toF . For this reason we have chosen all actions of granting
and revoking access rights inM0 to be input actions, while all actions of reading and
writing are output actions. The right to grant and revoke arelegitimate rights, but
they are not directly applied toF . They are in fact meta operations — hencem(r)

andm(w) — and the rights to apply these meta operations are meta rights. Similarly,
if there is a creator, Kwesi, who can allow (and disallow) Abena to grant and revoke,
then Kwesi has meta meta rights. Kwesi has the meta meta rightto grant and revoke
Abena’s meta rights to grant and revoke Kwaku’s access rights toF . A typical action
of Kwesi ism2

(w), which revokes Abena’s right to grant and revoke write access to
Kwaku.

The notion of meta clearly extends to arbitrary layers. An example of such a
multi-layered structure of meta can be seen in the journal refereeing process. The



creator of a document may delegate publication responsibilities to co-authors who
may select a journal and grantm2

(r) rights to the editor-in-chief. The editor-in-chief
may grantm(r) rights to assistant editors who can then grant and revoke read access
to reviewers. An interesting question now arises as to the effect of revocation: should
revocation of a meta right also revoke the rights that were passed on to others? This
is the issue ofshallow revocationversusdeep revocation. Shallow revocation means
that a revoke action does not revoke any of the rights that were previously passed on
to others, whereas deep revocation means that a revoke action does revoke all rights
previously passed on. Team automata can be used to model shallow, deep, or even
hybrid revocation. Shallow revocation is often the easiestto model, whereas deep
revocation is known as a big challenge to model and implement(Dewan et al., 1998).
We now show how deep revocation can be modeled using team automata.

Figure 7 shows an automaton capturing one layer (layerk) of a multi-layer meta
access specification for our example of read and write access. We have already seen
layer0, viz. automatonM0. For each value ofk � 1 there are corresponding automata
that are directly related to layerk (viz. Mk�1 at layerk � 1 andMk+1 at layerk +
1). For each such automatonMk, the horizontal actionsmk

(r), mk

(r), mk

(w), and
m

k

(w) are output actions, whereas the vertical actionsm

k+1

(r), mk+1

(r), mk+1

(w),
andmk+1

(w) are input actions. Fork = 0 we identifyr with m0

(r), r with m0

(r), w
with m

0

(w), andw with m

0

(w). Similarly,m(r) = m

1

(r), m(r) = m

1

(r), m(w) =

m

1

(w), andm(w) = m

1

(w).
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Figure 7: AutomatonMk: meta access at layerk.

We can now define a multi-layered structure by recursively composing a team
automaton overM0,M1, : : : , andMn, for somen � k. Note that this is a composable
system. As mentioned before we can also build this team automaton in an iterated
way starting from, e.g., a team over any two automataM

k andMk+1. In Figure 8,
the reachable part of a team automatonT

k

k�1

overMk�1 andMk, representing layer
k � 1 and layerk of this layered structure, is depicted. The transition relation of this
teamT

k

k�1

is chosen with the modeling of deep revocation in mind. Finally, note that
in Figure 8 we have added superscripts to distinguish the states inMk from the states



C

k�1

r

C

k

w

C

k�1

n

C

k

w

B

k�1

w

A

k
r

B

k�1

w

B

k

r

B

k�1

w

C

k

r

B

k

r

B

k�1

r

B

k�1

n

A

k
r

B

k�1

n

B

k

r

T

k

k�1

:

A

k�1

w

A

k
n

A

k�1

w

B

k

n

A

k�1

w

C

k

n

B

k

n

A

k�1

r

A

k�1

n

A

k
n

A

k�1

n

B

k

n

C

k�1

w

A

k
w

C

k�1

w

B

k

w

C

k�1

w

C

k

w

B

k

w

C

k�1

r

C

k�1

n

A

k
w

C

k�1

n

B

k

w

A

k�1

n

C

k

n

C

k

n

B

k�1

n

C

k

r

B

k�1

r

C

k

r

A

k
n

B

k�1

r

A

k
r

C

k�1

r

A

k
w

A

k�1

r

A

k�1

r

m

k

(r)

m

k

(r)

m

k+1

(w)

m

k+1

(w)

m

k+1

(w)

m

k+1

(w)

m

k+1

(w)

m

k+1

(w)

m

k

(r)

m

k

(r)

m

k

(r)

m

k

(r)

m

k

(r)

m

k

(r)

m

k

(r)

m

k+1

(r)

m

k+1

(r)

m

k+1

(r)

m

k+1

(r)

m

k+1

(r)

m

k

(r)

m

k

(r)

m

k

(r)

m

k

(r)

m

k

(r)

m

k

(r)

m

k+1

(r)

m

k+1

(r)

m

k+1

(r)

m

k+1

(w)

m

k+1

(r)

m

k+1

(r)

m

k+1

(w)

m

k+1

(w)

m

k+1

(w)

m

k+1

(w)

m

k+1

(r)

m

k+1

(r)

m

k+1

(r)

m

k+1

(r)

m

k+1

(r)

m

k+1

(w)

m

k+1

(w)

m

k+1

(w)

m

k+1

(w)

m

k+1

(w)

m

k+1

(w)

m

k

(w)

m

k

(w)

m

k

(w)

m

k

(w)

m

k

(w)

m

k

(w)

m

k

(w)

m

k

(w)

m

k

(w)

m

k

(w)

m

k

(w)

m

k

(w)

m

k+1

(w)

m

k+1

(r)m

k+1

(r)

m

k+1

(r)

m

k�1

(w)

m

k�1

(r)

m

k�1

(w)

m

k�1

(r)

m

k�1

(w)

m

k�1

(r)

m

k�1

(r)

m

k�1

(r)

m

k�1

(r)

m

k�1

(r)

m

k�1

(r)

m

k�1

(r)

m

k�1

(w)

m

k�1

(w)

m

k�1

(w)

m

k�1

(w)

m

k�1

(w)

m

k�1

(w)

m

k�1

(w)

m

k�1

(w)

m

k�1

(w)

m

k�1

(r)

m

k�1

(r)

m

k�1

(r)

m

k�1

(r)

m

k�1

(r)

m

k�1

(r)

Figure 8: Team automatonT k
k�1

overMk�1 andMk.



in M

k�1, e.g., stateB
r

of Mk from stateB
r

of Mk�1.
In our example,M2 represents the actions of the supervisor Kwesi andM

1 those
of Abena. Now consider Kwesi in stateB2

r

. Then Figure 8 tells us that Abena must be
in one of the three statesB1

n

,B1

r

, orB1

w

. Assume that Kwesi reached this stateB

2

r

by
performing actionm2

(r) from B

2

n

, while Abena was in stateA1

n

having no rights to
grant and revoke reading rights. Actionm2

(r) is an output action ofM2 and an input
action ofM1, and our transition relation forcesM1 to transition fromA1

n

toB1

n

. The
interpretation is that Kwesi granted Abena the right to do read grants and revokes (to
user Kwaku for fileF ).

Similarly, automatonMk can revoke the right to grant and to revoke read access
fromM

k�1 at any time by performing output actionmk

(r), and thus forcingMk�1 to
perform this action — this time as an input action — as well. Continuing our example,
this means that while in stateB2

r

, Kwesi’s read granting right may be revoked by
actionm3

(r) at any time. If this happens, Kwesi is forced into the irregular stateA2

r

,
which has only one possible output action, viz.m

2

(r), leading toA2

n

. Whenever that
actionm2

(r) occurs it revokes Abena’s right to change Kwaku’s read access.
We thus observe two general rules of activity in such a team automaton overM0,

M

1, : : : , andMn with each automaton of the form depicted in Figure 7. First, when
a master automatonMk where1 � k � n, transitions right (grant) or left (revoke),
then the slave automatonMk�1 must transition upward (gaining some access right)
or downward (losing some access right). Second, the slaveM

k�1 may be forced to
transition downward into an irregular state, in which case it will eventually transition
to the left. Mk�1 is itself a master and thus this transition to the left again forces a
downward transition ofMk�2, and so on untilM0 on layer0. Hence, as promised,
we indeed model deep revocation.

Conclusion

In this document we have demonstrated by means of examples how team automata
can be used for modeling access control mechanisms presented through the metaphor
of spatial access. The combination of the formal framework of team automata and
the spatial access metaphor leads to a powerful abstractionwell suited for a precise
description of (at least some of the) key issues of access control. The team automata
framework supports the design of distributed systems and protocols, by making ex-
plicit the role of actions and the choice of transitions governing the coordination
(e.g., in the form of peer-to-peer or master-slave synchronizations, or combinations
thereof). Moreover, the formal setup and the possibility ofa modular design provide
analytic tools for the verification of desired properties ofcomplex systems. Team
automata are thus a fitting companion to the virtual spaces metaphor used in virtual
reality systems that supports notions of rooms and buildings. Each space is repre-
sented by a component automaton, dynamic access changes arerepresented by joint
external actions, while resource accesses within a space can be represented by inter-



nal actions. For reasons of readability, we have chosen for apresentation by examples
without definitions and proofs. Obviously there are numerous other possible exam-
ples as well as variations of the examples we have considered.

For one, the assumption that write access can only be grantedif read access has
been granted can easily be dropped. Similarly, grant and revoke rights can be coupled
more loosely. Read and write operations are specified here atthe file level, but could
also have been specified at the page level, object level, or record level, to name but a
few. This might mean that delayed revocation is precisely the right choice. At the file
level, ther andr actions might be seen at the user interface as open and close file. The
w andw actions might be edit and save operations. When dealing witha transaction
system, combinations of these operations might correspondto begin transaction and
end transaction.

The team automata framework handles group decision making well and therefore
allows convenient implementations ofdistributed access control. Distributed access
control means that the supervisory work of granting and revoking access rights is
administered by multiple agents. Thus Kwaku could have two administrative super-
visors who must agree on any change of access rights. This canbe modeled as an
action of two masters and one slave: the actions would be output for both supervisors,
requiring both to participate, and input for the slave. Alternatively, by including tran-
sitions with one supervisor being inactive, we can model thecase of approval being
required by either one of the two supervisors. Hybrids between pure master-slave and
pure peer-to-peer are easy to define, and useful. All these variations are due to the
fact that the choice of a transition relation is the crucial modeling issue of the team
automata framework.

Note that team automata model the logical architecture of a design. They abstract
from concrete data, configurations, and actions, and only describe behavior in terms
of a state-action diagram (structure), the role of actions (input, output, or internal),
and synchronizations. It is not feasible (nor necessary) tohave a distinct automaton
for each individual, and for each file in an organization. In many situations, categories
and roles are used rather than individuals. Any implementation would have the team
automaton as a class entity, and an activation record for each person, containing their
current state. Similarly, by keeping a status of the files onecan model the criterion
“only one person can write a file at a time, but many readers is OK”. The model cast
in the spirit of automata depicting roles rather than individuals becomes much more
useful and general, and avoids some notational problems of exponential growth. Note
that because of the product construction, a state space explosion lurks. However, the
resulting automata are not difficult to process. The iterative approach to composition
(forming teams with teams as components) forms an automaticand mechanizable
abbreviation methodology (van der Aalst et al., 2000). In general, however, the state
space explosion problem itself cannot be avoided when dealing with systems with
many components that can interact or can assume many different values. See (Clarke
et al., 1999) for a presentation of techniques and tools for dealing with this problem
when verifying large systems. (Müller, 1998) demonstrates how to deal with the
computer-assisted verification of embedded systems described as I/O automata.



As observed earlier, time and priorities are not incorporated in neither the spatial
access metaphor nor the team automata model as discussed here. However, similar to
the Petri net model — which is also based on local state changes — one may consider
to extend team automata with time and priorities (see, e.g.,(Ajmone Marson et al.,
1995), which focuses on performance analysis). When time and/or priorities are part
of access control this would allow the designer to control the sojourn times in the
local states and to control the resolution of conflicting actions.

Using team automata for modeling (spatial) access control forces one to make
explicit and unambiguous design choices and at the same timeprovides the possibility
of mathematically precise analysis tools for proving crucial design properties, without
first having to implement one’s design.

To conclude we stress that (spatial) access control is only one of many CSCW
concerns that can be addressed via team automata. The highergoal of this document is
to demonstrate the applicability of a formal framework thatwas conceived specifically
as a model for the specification and analysis of CSCW systems.We believe that this
may be a significant step toward a better understanding of theways in which people
and systems cooperate and collaborate.
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