
A Charaterization of

Non-Iterated Spliing with Regular Rules

�

Ray Dassen Hendrik Jan Hoogeboom

Nik�e van Vugt

LIACS, Universiteit Leiden, The Netherlands

http://www.lias.nl/CS/

Abstrat

The family S(LIN;REG) of languages obtained by (non-iterated)

spliing linear languages using regular rules does not oinide with one

of the Chomsky families. We give a haraterization of this family, and

show that we an replae the regular rule set by a �nite one.

1 Introdution

The moleular operation of utting two dna moleules with the help of re-

strition enzymes, and reombining (ligating) the halves into new moleules

an be modelled within formal language theory as the spliing operation,

as follows : two strings x = x

1

u

1

v

1

y

1

and y = x

2

u

2

v

2

y

2

an be splied

aording to a spliing rule r = (u

1

; v

1

; u

2

; v

2

) to produe another string

z = x

1

u

1

v

2

y

2

:

x

1

u

1

v

1

y

1

x

2

u

2

v

2

y

2

Here, the strings u

1

v

1

and u

2

v

2

represent the spei� sites where restri-

tion enzymes ut the dna moleules. This operation was proposed by Head

[Hea87℄, long before the study of suh operations beame fashionable follow-

ing Adleman's dna implementation of an algorithm to solve the Hamiltonian

Path Problem [Adl94, DNA℄.

The power of the spliing operation, with sets of rules lassi�ed within

the Chomsky hierarhy, is investigated in [HPP97, PRS96℄. We reonsider

�

Published in: Where Mathematis, Computer Siene and Biology Meet (C. Martin-

Vide, V. Mitrana, eds.), Kluwer Aademi Publishers, November 2000, pp. 319-327.

1

the non-iterated ase of this operation, i.e., we onsider the spliing oper-

ation as an operation on languages rather than as a language generating

mehanism. In partiular, we study the family of languages S(F ;REG) that

is obtained by spliing languages from a given family F using regular sets of

rules. For families within the Chomsky hierarhy a preize haraterization

of S(F ;REG) is known, exept for the linear languages : S(LIN;REG) lies

stritly in between the linear and ontext-free languages.

Here we obtain an elementary haraterization of S(F ;REG) in terms of

F , and moreover, we show that the regular set of rules may be replaed by

a �nite set. For the linear languages this then yields a new haraterization

of S(LIN;REG), Corollary 7.

In our �nal Setion 5 we again try to redue regular rule sets to �nite

ones, for a restrited form of spliing, where the rules may only be applied

in a ertain ontext [PRS96, KPS96℄. We do not fully sueed. For the ase

of `inreasing mode' whih we onsider, the redution is implemented at the

ost of losing words of length one from the generated language.

2 Preliminaries

The empty word is denoted by �.

A generalized sequential mahine (gsm) is a �nite state mahine with

additional output. It has a �nite set of transitions of the form (p; a; q; w) 2

Q� ��Q��

�

, where Q is the �nite set of states, � and � are the input

alphabet and output alphabet. Using suh a transition, the mahine may

hange from state p into state q, while reading the letter a on its input and

writing the string w to its output. The gsm de�nes a relation in �

�

��

�

,

alled a gsm mapping.

The Chomsky hierarhy is formed by the families FIN;REG; LIN;CF;CS;

and RE, of �nite, regular, linear, ontext-free, ontext-sensitive, and reur-

sively enumerable languages. For a language familyF we use F�F to denote

�nite unions of elements of F

2

, i.e., languages of the formK

1

�L

1

[: : :[K

n

�L

n

,

n � 0, with K

i

; L

i

2 F . Assuming f�g and ? are elements of F , then F�F

equals F i� F is losed under union and onatenation. Hene F � F = F

for eah Chomsky family, exept LIN.

In the sequel, we need losure under gsm mappings and under union to be

able to apply our onstrutions. Any family having these losure properties

and ontains all �nite languages is alled friendly. All Chomsky families,

with the exeption of CS, are friendly. We need a simple tehniality.

Lemma 1 A friendly family is losed under onatenation with symbols.

Proof. Let K be an element of the friendly family F . We show that

Kfag 2 F . When � =2 K, mappingK ontoKfag an be performed by a gsm.

IfK ontains �, then observe thatK�f�g 2 F as intersetion with a regular

2

language an be omputed by a gsm. Hene, Kfag = (K�f�g)fag[fag 2 F ,

by losure under union.

A symmetri argumentation holds for fagK. �

3 The spliing operation

We give basi notions and results onerning spliing and H systems, slightly

adapted from [HPP97℄.

De�nition 2 A spliing rule (over an alphabet V) is an element of (V

�

)

4

.

For suh a rule r = (u

1

; v

1

; u

2

; v

2

) and strings x; y; z 2 V

�

we write

(x; y) `

r

z i� x = x

1

u

1

v

1

y

1

; y = x

2

u

2

v

2

y

2

; and

z = x

1

u

1

v

2

y

2

; for some x

1

; y

1

; x

2

; y

2

2 V

�

:

We say that z is obtained by spliing strings x and y using rule r. �

De�nition 3 An H system (or spliing system) is a triple h = (V;L;R)

where V is an alphabet, L � V

�

is the initial language and R � (V

�

)

4

is a set of spliing rules, the spliing relation. The (non-iterated) spliing

language generated by h is de�ned as

�(h) = f z 2 V

�

j (x; y) `

r

z for some x; y 2 L and r 2 R g:

�

Usually a spliing rule r = (u

1

; v

1

; u

2

; v

2

) is given as the string (r) =

u

1

#v

1

$u

2

#v

2

(# and $ are speial symbols not in V), i.e., is a mapping

from (V

�

)

4

to V

�

#V

�

$V

�

#V

�

, that gives a string representation of eah

spliing rule. Now that the spliing relation R is represented by the language

(R), we an onsider the e�et of spliing with rules from a ertain family

of languages : for instane, what is the result of spliing linear languages

with �nite sets of spliing rules?

Example 4 Let L = fa

n

b

n

j n � 1g [f

n

d

n

j n � 1g, thus L 2 LIN.

Let h = (fa; b; ; dg; L;R) be a spliing system with spliing relation R =

f (b; �; �;) g onsisting of a single rule. The language generated by h is

�(h) = f a

n

1

b

m

1

m

2

d

n

2

j n

i

� m

i

� 1 (i = 1; 2) g; whih is not in LIN. �

For any two families of languages F

1

and F

2

, the family S(F

1

;F

2

) of

non-iterated spliing languages (obtained by spliing F

1

languages using F

2

rules) is de�ned in the obvious way :

S(F

1

;F

2

) = f �(h) j h = (V;L;R) with L 2 F

1

and (R) 2 F

2

g:

3

F

2

: FIN REG LIN CF CS RE

F

1

: FIN FIN FIN FIN FIN FIN FIN

REG REG REG REG; LIN REG;CF REG;RE REG;RE

LIN LIN;CF LIN;CF

CF CF CF

CS RE

RE

Table 1: The position of S(F

1

;F

2

) in the Chomsky hierarhy

The families S(F

1

;F

2

) are investigated in [P�au96℄ and [PRS96℄, for F

1

and

F

2

in the Chomsky hierarhy. An overview of these results is presented

in [HPP97℄, from whih we opy Table 1. As an example, the optimal

lassi�ation within the Chomsky families of spliing LIN languages with FIN

rules is LIN � S(LIN;FIN) � CF. It was shown in [HvV98℄ that this table

does not hange when using the equally natural representation u

1

#u

2

$v

1

#v

2

instead of u

1

#v

1

$u

2

#v

2

for rule (u

1

; v

1

; u

2

; v

2

).

Additionally we will onsider the family S(F ; [1℄) of languages obtained

by spliing F languages using rules of radius 1, i.e., for (u

1

; u

2

; u

3

; u

4

) we

have ju

i

j � 1 for i = 1; 2; 3; 4.

4 Unrestrited spliing

We start by onsidering �nite sets of rules.

Lemma 5 Let F be a friendly family. Then S(F ; [1℄) = S(F ;FIN) = F�F .

Proof. The inlusion S(F ; [1℄) � S(F ;FIN) is immediate. We prove two

other inlusions to obtain the result.

First we show S(F ;FIN) � F � F . Let h = (V;L;R) be an H system

with a �nite number of rules, and with L 2 F .

Consider the rule r = (u

1

; v

1

; u

2

; v

2

). When r is applied to strings

x

1

u

1

v

1

y

1

and x

2

u

2

v

2

y

2

, then only the substrings x

1

u

1

and v

2

y

2

are visi-

ble in the resulting string x

1

u

1

v

2

y

2

. We de�ne two languages derived from

the initial language following that observation: let L

hr

= fxu

1

j xu

1

v

1

y 2

L; for some y 2 V

�

g, and let L

ri

= fv

2

y j xu

2

v

2

y 2 L; for some x 2 V

�

g.

Observe that both L

hr

and L

ri

an be obtained from L by a gsm mapping,

and onsequently these languages are in F . Clearly, �(h) =

S

r2R

L

hr

L

ri

,

thus, �(h) 2 F � F .

Seond, we show F � F � S(F ; [1℄). Consider K

1

� L

1

[: : : [K

n

� L

n

with K

i

; L

i

� V

�

in F , for some alphabet V . This union is obtained by

spliing the initial language

S

n

i=1

K

i

i

[

S

n

i=1

0

i

L

i

with rules (�;

i

;

0

i

; �),

4

i = 1; : : : ; n, where the

i

;

0

i

are new symbols. Note that the languages K

i

i

and

0

i

L

i

belong to F by Lemma 1. �

The equality S(F ; [1℄) = S(F ;FIN) appears as [HPP97, Lemma 3.10℄.

We an diretly apply Lemma 5 to obtain the (known) haraterizations

of S(F ;FIN) for the friendly families F = FIN;REG;CF and RE. The equality

S(LIN;FIN) = LIN � LIN appears to be new, although the family LIN� LIN

is hinted at in the proof of Theorem 3 of [P�au96℄, when it is demonstrated

that S(LIN;REG) is stritly inluded in CF.

Re�ning the above proof, we an extend it to regular rule sets.

Theorem 6 Let F be a friendly family. Then S(F ;FIN) = S(F ;REG).

Proof. By Lemma 5, it suÆes to prove the inlusion S(F ;REG) � F �F .

Let h = (V;L;R) be an H system with regular rule set, and initial

language in F . Assume (R) � V

�

#V

�

$V

�

#V

�

is aepted by the �nite

state automaton A = (Q;�; Æ; q

in

; F), with � = V [f#; $g.

Now, for p 2 Q, let

L

hp

= f xu j xuvy 2 L; for some x; u; v; y 2 V

�

;

suh that p 2 Æ(q

in

; u#v) g;

L

pi

= f vy j xuvy 2 L; for some x; u; v; y 2 V

�

;

suh that Æ(p; u#v) \ F 6= ? g

Observe that both L

hp

and L

pi

an be obtained from L by a gsm mapping.

For example, the gsm omputing L

hp

guesses the start of the segment u on

its input, and simulates A on this segment (all the time opying its input to

the output). At the end of u (nondeterministially guessed), it simulates the

step of A on # and ontinues to simulate A on the input, without writing

output, while heking whether state p is reahed.

Some are has to be taken here. By de�nition, a gsm annot use a �-

transition to simulate A on the additional symbol # that is not part of the

input. As a solution, the gsm may keep in its �nite state the values of both

Æ(q

in

; u

0

) and Æ(q

in

; u

0

#) for the pre�x u

0

of u that has been read.

Hene the languages L

hp

and L

pi

are in F .

We laim that �(h) =

S

(p;$;q)2Æ

L

hp

L

qi

, and onsequently, �(h) 2 F �F .

We prove the laim here in one diretion : Assume z 2 L

hp

L

qi

for some

(p; $; q) 2 Æ. Then there exist x

1

; y

1

; x

2

; y

2

; u

1

; v

1

; u

2

; v

2

2 V

�

suh that z =

x

1

u

1

�v

2

y

2

, x

1

u

1

v

1

y

1

2 L, p 2 Æ(q

in

; u

1

#v

1

), x

2

u

2

v

2

y

2

2 L, and Æ(q; u

2

#v

2

)\

F 6= ?.

As q 2 Æ(p; $), we onlude that Æ(q

in

; u

1

#v

1

$u

2

#v

2

) \ F 6= ?, and

so r = (u

1

; v

1

; u

2

; v

2

) 2 R. Hene, z 2 �(h), as it is obtained by spliing

x = x

1

u

1

v

1

y

1

and y = x

2

u

2

v

2

y

2

in L using r from R. �

5

Again, for most of the Chomsky families (inluding CS whih is not

friendly) the last result is impliit in Table 1. Here it is obtained through

diret onstrution. We summarize the new results obtained for LIN.

Corollary 7 S(LIN;FIN) = S(LIN;REG) = LIN� LIN.

5 Restrited spliing

In this setion we try to extend the result that a regular set of rules an be

redued to a �nite set of rules (Theorem 6). We onsider the setting where

the general spliing operation (x; y) `

r

z may only be applied in a ertain

ontext, as inspired by [PRS96, KPS96℄.

We splie in inreasing mode if the result z is as least as long as both

inputs x and y. Formally,

(x; y) `

in

r

z i� (x; y) `

r

z and jzj � jxj; jzj � jyj:

Example 8 [KPS96℄ Let h = (fa; bg; L;R), where L = a

�

b

�

 [b

�

a

�

 and

(R) = fa

n

#b

n

$#b

m

a

m

 j n;m � 1g 2 CF. Then �

in

(h) = fa

n

b

m

a

m

 j

n;m � 1 and n � 2mg, whih is not ontext-free. �

With this restrited operation we de�ne in the obvious way the language

�

in

(h) for a spliing system h. Thus, we onsider the families S

in

(F

1

;F

2

),

and we study the relation between S

in

(F ;FIN) and S

in

(F ;REG). We sum-

marize the results onerning S

in

(F

1

;F

2

) obtained in [KPS96℄.

Proposition 9 S

in

(REG;CF)� CF 6= ?, S

in

(REG;REG) � REG, and

S

in

(CS;CF) � CS.

Observe that S

in

(F ;FIN) � S

in

(F ;REG) by de�nition. We ould not

show the onverse inlusion S

in

(F ;REG) � S

in

(F ;FIN). However, the fami-

lies are almost equal, in the sense that for every language K

r

in S

in

(F ;REG)

there is a language K

f

in S

in

(F ;FIN) suh that K

r

and K

f

di�er only by

words of length at most one.

Theorem 10 Let F be a friendly family. Then S

in

(F ;FIN) = S

in

(F ;REG),

almost (in the sense explained above).

Proof. We develop some ideas from the proof of Theorem 6.

Let h = (V;L;R) be an H system with regular rule set, and initial

language in F . We onstrut an H system with �nite rule set that de�nes

a language `almost' equal to �(h). Assume (R) � V

�

#V

�

$V

�

#V

�

is

aepted by the �nite state automaton A = (Q;�; Æ; q

in

; F), with � = V [

f#; $g, and Q \ � = ?. Assuming that the automaton is redued (eah

state lies on a path from the initial to a �nal state) we an split the set of

6

states into two disjoint subsets, Q = Q

1

[Q

2

, suh that Q

1

(Q

2

) ontains

the states on a path before (after) the symbol $ is read. Let � be a new

symbol.

First step. We onstrut a new initial language L

0

� (V [Q[f�g)

�

from L

as follows. For eah x; u; v; y 2 V

�

, with xuvy 2 L, and eah p 2 Q

1

, q 2 Q

2

we inlude in L

0

the following words, under the given onstraints :

xup�

k

where p 2 Æ(q

in

; u#v); jvyj � 1; k = jvyj � 1:

xup p 2 Æ(q

in

; u#v); jvyj = 0:

�

`

qvy Æ(q; u#v) \ F 6= ?; jxuj � 1; ` = jxuj � 1:

qvy Æ(q; u#v) \ F 6= ?; jxuj = 0:

Observe that L

0

an be obtained from L by a gsm mapping, and onse-

quently L

0

belongs to F .

Let R

0

be the (�nite) set of rules f (�; p; q; �) j (p; $; q) 2 Æ g. Note

that every rule (�; p; q; �) in R

0

orresponds to a (regular) set of rules

f (u

1

; v

1

; u

2

; v

2

) j p 2 Æ(q

in

; u

1

#v

1

); Æ(q; u

2

#v

2

) \ F 6= ? g in R.

Let h

0

= (V [Q [f�g; L

0

; R

0

).

It is easy to understand that �

in

(h

0

) � �

in

(h), following the onstrution

of L

0

and R

0

. If x

0

= x

1

u

1

p�

k

and y

0

= �

`

qv

2

y

2

in L

0

splie in the inreasing

mode to give z = x

1

u

1

v

2

y

2

using rule r

0

= (�; p; q; �) in R

0

, then there are

strings x = x

1

u

1

v

1

y

1

and y = x

2

u

2

v

2

y

2

in L that splie to give again z using

rule r = (u

1

; v

1

; u

2

; v

2

) in R. By onstrution, jxj = jx

0

j (or jxj = jx

0

j � 1

when jvyj = 0) we know that jxj � jx

0

j, thus jx

0

j � jzj implies jxj � jzj.

Mutatis mutandis, this argument is also valid for y; y

0

, so x and y splie in

inreasing mode too.

The reverse inlusion �

in

(h) � �

in

(h

0

) in general is not true. Assume

however z 2 �

in

(h), obtained through (x = x

1

u

1

v

1

y

1

; y = x

2

u

2

v

2

y

2

) `

in

r

z =

x

1

u

1

v

2

y

2

, where r = (u

1

; v

1

; u

2

; v

2

) in R.

By onstrution one �nds x

0

= x

1

u

1

p�

k

and y

0

= �

`

qv

2

y

2

in L

0

for suitable

k; ` 2 N, p; q 2 Q. Consider r

0

= (�; p; q; �) orresponding to r (as disussed

above). Then (x

0

; y

0

) `

r

0

z. This is inreasing mode under the ondition

that

jv

1

y

1

j+ jv

2

y

2

j � 1 and jx

1

u

1

j+ jx

2

u

2

j � 1:

This is seen as follows. If jv

1

y

1

j � 1, then jx

0

j = jxj and hene jx

0

j � jzj.

Otherwise, if jv

1

y

1

j = 0, then x

0

= x

1

u

1

p is one symbol longer than x in the

original spliing. However, jx

0

j � jzj follows from the fat that jv

2

y

2

j � 1 =

jpj. An analogous argument holds for jy

0

j � jzj.

We onlude that z 2 �

in

(h

0

), exept in ase it an only be obtained

using jv

1

y

1

j = jv

2

y

2

j = 0, i.e., x=z=x

1

u

1

, y=x

2

u

2

, and r = (u

1

; �; u

2

; �),

or jx

1

u

1

j = jx

2

u

2

j = 0, i.e., x=v

1

y

1

, y=z=v

2

y

2

, and r = (�; v

1

; �; v

2

).

Seond step. In order to aommodate almost all these ases we add addi-

tional strings to the initial language L

0

. Extend the alphabet by two opies

7

of V � Q, symbols whih we will denote as ha�pi, ha+pi, hq�ai, hq+ai,

where a 2 V; p 2 Q

1

, and q 2 Q

2

.

For eah x; u; v; y 2 V

�

, with xu; vy 2 L, eah a 2 V , and eah p 2 Q

1

,

q 2 Q

2

we add to L

0

the following words, under the given onstraints :

wha�pi where p 2 Æ(q

in

; u#); wa = xu:

�

k

hq+aia Æ(q; u#) \ F 6= ?; jxuj � 2; k = jxuj � 2:

aha+pi�

`

p 2 Æ(q

in

;#v); jvyj � 2; ` = jvyj � 2:

hq�aiw Æ(q;#v) \ F 6= ?; aw = vy:

To R

0

add the set of rules f (�; ha�pi; hq+ai; �); (�; ha+pi; hq�ai; �) j

(p; $; q) 2 Æ g.

These new strings and new rules an only splie among themselves, and

simulate most of the remaining spliings of the original system (with regular

rule set). For instane, assuming jx

1

u

1

j � 2, and writing x

1

u

1

= wa, the

original system splies (x

1

u

1

; x

2

u

2

) `

in

r

x

1

u

1

= z, with r = (u

1

; �; u

2

; �),

i� the new system splies (wha� pi; �

k

hq+aia) `

in

r

0

wa = z where r

0

=

(�; ha�pi; hq+ai; �) and j�

k

hq+aiaj = jx

2

u

2

j to ensure inreasing mode.

Conlusion. Spliings we an not simulate have v

1

y

1

= v

2

y

2

= � to obtain

z = x

1

u

1

, or x

1

u

1

= x

2

u

2

= � to obtain z = v

2

y

2

, in both ases with jzj � 1.

Whih proves the result. �

The papers [KPS96, PRS96℄ ontain many other modes of restrited

spliing. Many of these modes still lak a preise haraterization. More

spei�ally in onnetion with our investigations, it would be interesting to

relate S

�

(F ;FIN) and S

�

(F ;REG) for eah mode �.

Referenes

[Adl94℄ L.M. Adleman. Moleular omputation of solutions to ombinatorial

problems, Siene, 226:1021{1024, November 1994.

[DNA℄ A bibliography of moleular omputation and spliing systems

(J.H.M. Dassen, P. Friso, eds.), at url:

http://www.lias.nl/~pier/dna.html.

[Hea87℄ T. Head. Formal language theory and DNA: an analysis of the gen-

erative apaity of spei� reombinant behaviours. Bulletin of Mathe-

matial Biology, 49:737{759, 1987.

[HPP97℄ T. Head, G. P�aun, and D. Pixton. Language theory and moleular

genetis : Generative mehanisms suggested by DNA reombination. In:

Handbook of Formal Languages (G. Rozenberg and A. Salomaa, eds.),

volume 2. Springer-Verlag, 1997.

8

[HvV98℄ H.J. Hoogeboom, and N. van Vugt. The power of H systems: does

representation matter? In: Computing with Bio-Moleules (G. P�aun,

ed.), Springer-Verlag, Singapore, 255{268, 1998.

[KPS96℄ L. Kari, G. P�aun, and A. Salomaa. The power of restrited spliing

with rules from a regular language. Journal of Universal Computer

Siene, 2(4):224-240, 1996.

[P�au96℄ G. P�aun. On the spliing operation. Disrete Applied Mathematis,

70:57{79, 1996.

[PRS96℄ G. P�aun, G. Rozenberg, and A. Salomaa. Restrited use of the

spliing operation. International Journal of Computer Mathematis,

60:17{32, 1996.

9

