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Abstract

The family S(LIN,REG) of languages obtained by (non-iterated)
splicing linear languages using regular rules does not coincide with one
of the Chomsky families. We give a characterization of this family, and
show that we can replace the regular rule set by a finite one.

1 Introduction

The molecular operation of cutting two DNA molecules with the help of re-
striction enzymes, and recombining (ligating) the halves into new molecules
can be modelled within formal language theory as the splicing operation,
as follows : two strings = xjujviyr and ¥y = zausvsys can be spliced
according to a splicing rule r = (uq,v1,ug,v2) to produce another string
Z = T1U102Y9 :
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Here, the strings ;v and usvy represent the specific sites where restric-
tion enzymes cut the DNA molecules. This operation was proposed by Head
[Hea87], long before the study of such operations became fashionable follow-
ing Adleman’s DNA implementation of an algorithm to solve the Hamiltonian
Path Problem [Ad194, DNA].

The power of the splicing operation, with sets of rules classified within
the Chomsky hierarchy, is investigated in [HPP97, PRS96]. We reconsider
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the non-iterated case of this operation, i.e., we consider the splicing oper-
ation as an operation on languages rather than as a language generating
mechanism. In particular, we study the family of languages S(F,REG) that
is obtained by splicing languages from a given family F using regular sets of
rules. For families within the Chomsky hierarchy a precize characterization
of S(F,REG) is known, except for the linear languages : S(LIN,REG) lies
strictly in between the linear and context-free languages.

Here we obtain an elementary characterization of S(F,REG) in terms of
F, and moreover, we show that the regular set of rules may be replaced by
a finite set. For the linear languages this then yields a new characterization
of S(LIN,REG), Corollary 7.

In our final Section 5 we again try to reduce regular rule sets to finite
ones, for a restricted form of splicing, where the rules may only be applied
in a certain context [PRS96, KPS96]. We do not fully succeed. For the case
of ‘increasing mode’ which we consider, the reduction is implemented at the
cost of losing words of length one from the generated language.

2 Preliminaries

The empty word is denoted by A.

A generalized sequential machine (gsm) is a finite state machine with
additional output. It has a finite set of transitions of the form (p,a,q, w) €
Q x X x Q x A*, where (Q is the finite set of states, X and A are the input
alphabet and output alphabet. Using such a transition, the machine may
change from state p into state ¢, while reading the letter a on its input and
writing the string w to its output. The gsm defines a relation in 3* x A*,
called a gsm mapping.

The Chomsky hierarchy is formed by the families FIN, REG, LIN, CF, CS,
and RE, of finite, regular, linear, context-free, context-sensitive, and recur-
sively enumerable languages. For a language family F we use F@®F to denote
finite unions of elements of F?, i.e., languages of the form K-L U...UK,-L,,
n > 0, with K;, L; € F. Assuming {\} and & are elements of F, then F ®F
equals F iff F is closed under union and concatenation. Hence F & F = F
for each Chomsky family, except LIN.

In the sequel, we need closure under gsm mappings and under union to be
able to apply our constructions. Any family having these closure properties
and contains all finite languages is called friendly. All Chomsky families,
with the exception of CS, are friendly. We need a simple technicality.

Lemma 1 A friendly family is closed under concatenation with symbols.

Proof. Let K be an element of the friendly family 7. We show that
K{a} € F. When X\ ¢ K, mapping K onto K {a} can be performed by a gsm.
If K contains A, then observe that K —{\} € F as intersection with a regular



language can be computed by a gsm. Hence, K{a} = (K—{\}){a}U{a} € F,
by closure under union.
A symmetric argumentation holds for {a}K. O

3 The splicing operation

We give basic notions and results concerning splicing and H systems, slightly
adapted from [HPP97].

Definition 2 A splicing rule (over an alphabet V) is an element of (V*)%.
For such a rule r = (uy,v1,u9,v2) and strings z,y,z € V* we write

(z,y) Fr 2z iff 2 =x1u1v191, Y = T2usvoys, and

z = T1u VY9, for some z1,y1,To,ys € V.
We say that z is obtained by splicing strings x and y using rule r. O

Definition 3 An H system (or splicing system) is a triple h = (V, L, R)
where V is an alphabet, L C V* is the initial language and R C (V*)*
is a set of splicing rules, the splicing relation. The (non-iterated) splicing
language generated by h is defined as

oh)={zeV"|(z,y) b, z for some z,y € Land r € R }.

0

Usually a splicing rule r = (uq,v1,ug,v2) is given as the string Z(r) =
u1F#v1Sus#ve (# and $ are special symbols not in V'), i.e., Z is a mapping
from (V*)* to V*#V*$V*#V*, that gives a string representation of each
splicing rule. Now that the splicing relation R is represented by the language
Z (R), we can consider the effect of splicing with rules from a certain family
of languages : for instance, what is the result of splicing linear languages
with finite sets of splicing rules?

Example 4 Let L = {a"b" | n > 1} U{c"d" | n > 1}, thus L € LIN.
Let h = ({a,b,c,d}, L, R) be a splicing system with splicing relation R =
{ (b, A\, \,c) } consisting of a single rule. The language generated by h is
o(h) = { a™b™c™d | n; >m; > 1 (i =1,2) }, which is not in LIN. O

For any two families of languages F; and F, the family S(Fy, F2) of
non-iterated splicing languages (obtained by splicing F; languages using F
rules) is defined in the obvious way :

S(Fi1,F2) ={o(h)| h=(V,L,R) with L € F; and Z(R) € F» }.



| F,: FIN | REG | LIN | CF | C | RE |
Fi:FIN] FIN FIN FIN FIN FIN FIN
REG || REG | REG | REG,LIN | REG,CF | REG,RE | REG, RE
LIN || LIN, CF | LIN,CF
CF| CF CF
CS RE
RE

Table 1: The position of S(Fy,Fs) in the Chomsky hierarchy

The families S(F;, Fa) are investigated in [Pau96] and [PRS96], for F; and
F5 in the Chomsky hierarchy. An overview of these results is presented
in [HPP97], from which we copy Table 1. As an example, the optimal
classification within the Chomsky families of splicing LIN languages with FIN
rules is LIN € S(LIN,FIN) C CF. It was shown in [HvV98] that this table
does not change when using the equally natural representation wu #us$v| #vo
instead of uy#v;Sus#ve for rule (uy, v, us, ve).

Additionally we will consider the family S(F,[1]) of languages obtained
by splicing F languages using rules of radius 1, i.e., for (uy,us,us,us) we
have |u;| <1 for i =1,2,3,4.

4 Unrestricted splicing

We start by considering finite sets of rules.
Lemma 5 Let F be a friendly family. Then S(F,[1]) = S(F,FIN) = FoF.

Proof. The inclusion S(F,[1]) € S(F,FIN) is immediate. We prove two
other inclusions to obtain the result.

First we show S(F,FIN) C F @ F. Let h = (V,L,R) be an H system
with a finite number of rules, and with L € F.

Consider the rule r = (uy,v1,u2,v2). When r is applied to strings
r1uivryr and zousvays, then only the substrings z1u; and veys are visi-
ble in the resulting string z1uiv2ys. We define two languages derived from
the initial language following that observation: let L, = {zu; | zujv1y €
L, for some y € V*}, and let Ly = {vay | zugvey € L, for some z € V*}.

Observe that both L, and L,y can be obtained from L by a gsm mapping,
and consequently these languages are in F. Clearly, o(h) = U,cr Ly Ly,
thus, o(h) € F o F.

Second, we show F & F C S(F,[1]). Consider Ky - L1 U... UK, - L,
with K;,L; C V* in F, for some alphabet V. This union is obtained by
splicing the initial language J;' ; Kj¢; U Ui, ¢;L; with rules (X, ¢;, ¢}, M),
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i =1,...,n, where the ¢;, ¢, are new symbols. Note that the languages K;¢;
and ¢,L; belong to F by Lemma 1. O

The equality S(F,[1]) = S(F,FIN) appears as [HPP97, Lemma 3.10].

We can directly apply Lemma 5 to obtain the (known) characterizations
of S(F, FIN) for the friendly families 7 = FIN, REG, CF and RE. The equality
S(LIN, FIN) = LIN @ LIN appears to be new, although the family LIN & LIN
is hinted at in the proof of Theorem 3 of [Pau96], when it is demonstrated
that S(LIN, REG) is strictly included in CF.

Refining the above proof, we can extend it to regular rule sets.
Theorem 6 Let F be a friendly family. Then S(F,FIN) = S(F,REG).

Proof. By Lemma 5, it suffices to prove the inclusion S(F,REG) C F & F.
Let h = (V,L,R) be an H system with regular rule set, and initial
language in F. Assume Z(R) C V*#V*$V*#V™* is accepted by the finite
state automaton A = (@, %, d, ¢in, F'), with ¥ =V U {#, $}.
Now, for p € Q, let

Ly ={zu | zuvy€ L, for some z,u,v,y € V",
such that p € d(gin, u#tv) },

Ly ={wvy | zuvye€ L, for some z,u,v,y € V",
such that é(p,u#v) NF # & }

Observe that both L, and L,y can be obtained from L by a gsm mapping.
For example, the gsm computing L, guesses the start of the segment u on
its input, and simulates A on this segment (all the time copying its input to
the output). At the end of v (nondeterministically guessed), it simulates the
step of A on # and continues to simulate A on the input, without writing
output, while checking whether state p is reached.

Some care has to be taken here. By definition, a gsm cannot use a A-
transition to simulate A on the additional symbol # that is not part of the
input. As a solution, the gsm may keep in its finite state the values of both
3(qin,u') and §(qin, u'#) for the prefix u' of u that has been read.

Hence the languages Ly, and Ly are in F.

We claim that o(h) = U, $.g)es LpLq), and consequently, o(h) € F® F.

We prove the claim here in one direction : Assume z € L, Ly for some
(p,$,q) € 5. Then there exist x1,y1, T2, Yo, u1,v1,u2,v3 € V* such that z =
T1uq-v2Y2, T1u1V1Y1 € L, p € 0(qin, u1F#01), Tougveys € L, and 6(q, ug#v2)N
F +o.

As g € 4(p,$), we conclude that 6(gip, ui#v1Sus#ve) N F # &, and
so r = (uy,v1,us,v2) € R. Hence, z € o(h), as it is obtained by splicing
T = x1uiv1yr and y = Touguoys in L using r from R. Il



Again, for most of the Chomsky families (including CS which is not
friendly) the last result is implicit in Table 1. Here it is obtained through
direct construction. We summarize the new results obtained for LIN.

Corollary 7 S(LIN,FIN) = S(LIN,REG) = LIN & LIN.

5 Restricted splicing

In this section we try to extend the result that a regular set of rules can be
reduced to a finite set of rules (Theorem 6). We consider the setting where
the general splicing operation (z,y) I, z may only be applied in a certain
context, as inspired by [PRS96, KPS96].

We splice in increasing mode if the result z is as least as long as both
inputs z and y. Formally,

(z,y) F* 2 iff (2,y) Fr 2 and [2] > |2], |2] > [y].

Example 8 [KPS96] Let h = ({a,b}, L, R), where L = ca*b*c U cb*a*c and
Z(R) = {ca™#b"c3c#b™a™c | n,m > 1} € CF. Then oy, (h) = {ca"b™a™c |
n,m > 1 and n < 2m}, which is not context-free. O

With this restricted operation we define in the obvious way the language
oin(h) for a splicing system h. Thus, we consider the families S;, (F1, F2),
and we study the relation between S;,(F,FIN) and S,,(F,REG). We sum-
marize the results concerning S;,(Fi, F2) obtained in [KPS96].

Proposition 9 S;,(REG, CF) — CF # @, S;,(REG, REG) C REG, and
Sin(CS, CF) C CS.

Observe that S;,(F,FIN) C S;,(F,REG) by definition. We could not
show the converse inclusion S;, (F,REG) C S;,(F,FIN). However, the fami-
lies are almost equal, in the sense that for every language K, in S;, (F, REG)
there is a language Ky in S;,(F,FIN) such that K, and K differ only by
words of length at most one.

Theorem 10 Let F be a friendly family. Then Si,(F,FIN) = S;, (F, REG),
almost (in the sense explained above).

Proof. We develop some ideas from the proof of Theorem 6.

Let h = (V,L,R) be an H system with regular rule set, and initial
language in F. We construct an H system with finite rule set that defines
a language ‘almost’ equal to o(h). Assume Z(R) C V*#V*$V*#V* is
accepted by the finite state automaton A = (Q, %, 6, gin, F'), with ¥ =V U
{#,8}, and Q N ¥ = @&. Assuming that the automaton is reduced (each
state lies on a path from the initial to a final state) we can split the set of



states into two disjoint subsets, @ = @1 U Q2, such that Q1 (Q2) contains
the states on a path before (after) the symbol $ is read. Let « be a new
symbol.

First step. We construct a new initial language L' C (VU QU {/})* from L
as follows. For each z,u,v,y € V*, with zuvy € L, and each p € Q1, ¢ € Q2
we include in L' the following words, under the given constraints :

zupl®  where p € §(qin, u#v), loy| > 1, k = |vy| — 1.
zup P € 6(qin, u#v), lvy| = 0.
Lauy g, u#v) NF # &, |zu| > 1, £ =|zul — 1.
quy 0(q,u#v) NF # @, |zul = 0.

Observe that L’ can be obtained from L by a gsm mapping, and conse-
quently L' belongs to F.

Let R’ be the (finite) set of rules { (\,p,q,\) | (p,$,q) € 6 }. Note
that every rule (\,p,q,A) in R’ corresponds to a (regular) set of rules
{ (u1,v1,u2,v2) | p € 6(qin, ur#v1),0(q, ueF#ve) NF # & } in R.

Let " =(VUQU{.},L' R".

It is easy to understand that o, (h') C 04, (h), following the construction
of I' and R'. If 2’ = zyu1pt* and y' = 1quays in L' splice in the increasing
mode to give z = ziuivays using rule ' = (\,p,q,A) in R’, then there are
strings z = z1u1v1y1 and y = Tausvays in L that splice to give again z using
rule r = (u1,v1,ug,v2) in R. By construction, |z| = |2/| (or |z| = |z'| — 1
when |vy| = 0) we know that |z| < |2|, thus |z'| < |z| implies |z| < |z].
Mutatis mutandis, this argument is also valid for y,%’, so z and y splice in
increasing mode too.

)

~

The reverse inclusion o;,(h) C o, (h') in general is not true. Assume
however z € o, (h), obtained through (z = z1u1v1y1,y = Tougvays) Fi 2z =
T1u1v9Yys, where r = (uq, vy, ug,v2) in R.

By construction one finds 2’ = z;u1pi* and v = !quays in L' for suitable
k¢ €N, p,q € Q. Consider ' = (\,p, g, \) corresponding to r (as discussed
above). Then (z',y') b, 2. This is increasing mode under the condition
that

|ory1| + |vaye| > 1 and |zyuy| + |zous| > 1.

This is seen as follows. If |v1y1| > 1, then |2'| = |z| and hence |z/| < |z].
Otherwise, if [v1y1| = 0, then 2’ = z1u1p is one symbol longer than z in the
original splicing. However, |z'| < |z| follows from the fact that |voys| > 1 =
|p|. An analogous argument holds for |y/| < |z|.

We conclude that z € oy,(h'), except in case it can only be obtained
using |viy1| = |voya| =0, i.e., z=2=x1u1, y=z2us, and r = (u1, A, uz, A),
or [z1uy| = |raug| = 0, i.e., z=v1y1, y=2=1v2y2, and r = (A, v1, A, v2).
Second step. In order to accommodate almost all these cases we add addi-
tional strings to the initial language L’. Extend the alphabet by two copies



of V' x @, symbols which we will denote as (a—p), (a+p), (¢—a), (¢+a),
where a € V,p € 1, and ¢ € Q.

For each z,u,v,y € V*, with zu,vy € L, each a € V, and each p € ()1,
q € Q2 we add to L' the following words, under the given constraints :

w(a—p)  where p € §(qin,u#), wa = Tu.
Flg+a)a g, u#)NF # @, |zu| > 2, k= |zu| — 2.
a<a+p>/ pE 6(Qin7#v)7 |’Uy| > 27 = |’Uy| -2
(g—a)w o(q, #v) N F #3, aw=vy.
To R' add the set of rules { (X, (a—p),(g+a), ), (X, (a+p), (g—a), ) |
(p,8,q) €4 }.

These new strings and new rules can only splice among themselves, and
simulate most of the remaining splicings of the original system (with regular
rule set). For instance, assuming |ziu1| > 2, and writing z1u; = wa, the
original system splices (z1u1, zous) F* zi1u1 = z, with r = (ug, A\, ug, ),
iff the new system splices (w(a —p),*(g+a)a) F wa = z where r' =
(A, (a—p), (g+a), ) and |F(g+a)a| = |zouz| to ensure increasing mode.
Conclusion. Splicings we can not simulate have v1y; = veys = A to obtain
Z = Tiu1, Or T1u] = Tauz = A to obtain z = voys, in both cases with |z| < 1.
Which proves the result. O

The papers [KPS96, PRS96] contain many other modes of restricted
splicing. Many of these modes still lack a precise characterization. More

specifically in connection with our investigations, it would be interesting to
relate S, (F,FIN) and S,(F,REG) for each mode p.
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