
A Chara
terization of

Non-Iterated Spli
ing with Regular Rules

�

Ray Dassen Hendrik Jan Hoogeboom

Nik�e van Vugt

LIACS, Universiteit Leiden, The Netherlands

http://www.lia
s.nl/CS/

Abstra
t

The family S(LIN;REG) of languages obtained by (non-iterated)

spli
ing linear languages using regular rules does not
oin
ide with one

of the Chomsky families. We give a
hara
terization of this family, and

show that we
an repla
e the regular rule set by a �nite one.

1 Introdu
tion

The mole
ular operation of
utting two dna mole
ules with the help of re-

stri
tion enzymes, and re
ombining (ligating) the halves into new mole
ules

an be modelled within formal language theory as the spli
ing operation,

as follows : two strings x = x

1

u

1

v

1

y

1

and y = x

2

u

2

v

2

y

2

an be spli
ed

a

ording to a spli
ing rule r = (u

1

; v

1

; u

2

; v

2

) to produ
e another string

z = x

1

u

1

v

2

y

2

:

x

1

u

1

v

1

y

1

x

2

u

2

v

2

y

2

Here, the strings u

1

v

1

and u

2

v

2

represent the spe
i�
 sites where restri
-

tion enzymes
ut the dna mole
ules. This operation was proposed by Head

[Hea87℄, long before the study of su
h operations be
ame fashionable follow-

ing Adleman's dna implementation of an algorithm to solve the Hamiltonian

Path Problem [Adl94, DNA℄.

The power of the spli
ing operation, with sets of rules
lassi�ed within

the Chomsky hierar
hy, is investigated in [HPP97, PRS96℄. We re
onsider

�

Published in: Where Mathemati
s, Computer S
ien
e and Biology Meet (C. Martin-

Vide, V. Mitrana, eds.), Kluwer A
ademi
 Publishers, November 2000, pp. 319-327.

1

the non-iterated
ase of this operation, i.e., we
onsider the spli
ing oper-

ation as an operation on languages rather than as a language generating

me
hanism. In parti
ular, we study the family of languages S(F ;REG) that

is obtained by spli
ing languages from a given family F using regular sets of

rules. For families within the Chomsky hierar
hy a pre
ize
hara
terization

of S(F ;REG) is known, ex
ept for the linear languages : S(LIN;REG) lies

stri
tly in between the linear and
ontext-free languages.

Here we obtain an elementary
hara
terization of S(F ;REG) in terms of

F , and moreover, we show that the regular set of rules may be repla
ed by

a �nite set. For the linear languages this then yields a new
hara
terization

of S(LIN;REG), Corollary 7.

In our �nal Se
tion 5 we again try to redu
e regular rule sets to �nite

ones, for a restri
ted form of spli
ing, where the rules may only be applied

in a
ertain
ontext [PRS96, KPS96℄. We do not fully su

eed. For the
ase

of `in
reasing mode' whi
h we
onsider, the redu
tion is implemented at the

ost of losing words of length one from the generated language.

2 Preliminaries

The empty word is denoted by �.

A generalized sequential ma
hine (gsm) is a �nite state ma
hine with

additional output. It has a �nite set of transitions of the form (p; a; q; w) 2

Q� ��Q��

�

, where Q is the �nite set of states, � and � are the input

alphabet and output alphabet. Using su
h a transition, the ma
hine may

hange from state p into state q, while reading the letter a on its input and

writing the string w to its output. The gsm de�nes a relation in �

�

��

�

,

alled a gsm mapping.

The Chomsky hierar
hy is formed by the families FIN;REG; LIN;CF;CS;

and RE, of �nite, regular, linear,
ontext-free,
ontext-sensitive, and re
ur-

sively enumerable languages. For a language familyF we use F�F to denote

�nite unions of elements of F

2

, i.e., languages of the formK

1

�L

1

[: : :[K

n

�L

n

,

n � 0, with K

i

; L

i

2 F . Assuming f�g and ? are elements of F , then F�F

equals F i� F is
losed under union and
on
atenation. Hen
e F � F = F

for ea
h Chomsky family, ex
ept LIN.

In the sequel, we need
losure under gsm mappings and under union to be

able to apply our
onstru
tions. Any family having these
losure properties

and
ontains all �nite languages is
alled friendly. All Chomsky families,

with the ex
eption of CS, are friendly. We need a simple te
hni
ality.

Lemma 1 A friendly family is
losed under
on
atenation with symbols.

Proof. Let K be an element of the friendly family F . We show that

Kfag 2 F . When � =2 K, mappingK ontoKfag
an be performed by a gsm.

IfK
ontains �, then observe thatK�f�g 2 F as interse
tion with a regular

2

language
an be
omputed by a gsm. Hen
e, Kfag = (K�f�g)fag[fag 2 F ,

by
losure under union.

A symmetri
 argumentation holds for fagK. �

3 The spli
ing operation

We give basi
 notions and results
on
erning spli
ing and H systems, slightly

adapted from [HPP97℄.

De�nition 2 A spli
ing rule (over an alphabet V) is an element of (V

�

)

4

.

For su
h a rule r = (u

1

; v

1

; u

2

; v

2

) and strings x; y; z 2 V

�

we write

(x; y) `

r

z i� x = x

1

u

1

v

1

y

1

; y = x

2

u

2

v

2

y

2

; and

z = x

1

u

1

v

2

y

2

; for some x

1

; y

1

; x

2

; y

2

2 V

�

:

We say that z is obtained by spli
ing strings x and y using rule r. �

De�nition 3 An H system (or spli
ing system) is a triple h = (V;L;R)

where V is an alphabet, L � V

�

is the initial language and R � (V

�

)

4

is a set of spli
ing rules, the spli
ing relation. The (non-iterated) spli
ing

language generated by h is de�ned as

�(h) = f z 2 V

�

j (x; y) `

r

z for some x; y 2 L and r 2 R g:

�

Usually a spli
ing rule r = (u

1

; v

1

; u

2

; v

2

) is given as the string (r) =

u

1

#v

1

$u

2

#v

2

(# and $ are spe
ial symbols not in V), i.e., is a mapping

from (V

�

)

4

to V

�

#V

�

$V

�

#V

�

, that gives a string representation of ea
h

spli
ing rule. Now that the spli
ing relation R is represented by the language

(R), we
an
onsider the e�e
t of spli
ing with rules from a
ertain family

of languages : for instan
e, what is the result of spli
ing linear languages

with �nite sets of spli
ing rules?

Example 4 Let L = fa

n

b

n

j n � 1g [f

n

d

n

j n � 1g, thus L 2 LIN.

Let h = (fa; b;
; dg; L;R) be a spli
ing system with spli
ing relation R =

f (b; �; �;
) g
onsisting of a single rule. The language generated by h is

�(h) = f a

n

1

b

m

1

m

2

d

n

2

j n

i

� m

i

� 1 (i = 1; 2) g; whi
h is not in LIN. �

For any two families of languages F

1

and F

2

, the family S(F

1

;F

2

) of

non-iterated spli
ing languages (obtained by spli
ing F

1

languages using F

2

rules) is de�ned in the obvious way :

S(F

1

;F

2

) = f �(h) j h = (V;L;R) with L 2 F

1

and (R) 2 F

2

g:

3

F

2

: FIN REG LIN CF CS RE

F

1

: FIN FIN FIN FIN FIN FIN FIN

REG REG REG REG; LIN REG;CF REG;RE REG;RE

LIN LIN;CF LIN;CF

CF CF CF

CS RE

RE

Table 1: The position of S(F

1

;F

2

) in the Chomsky hierar
hy

The families S(F

1

;F

2

) are investigated in [P�au96℄ and [PRS96℄, for F

1

and

F

2

in the Chomsky hierar
hy. An overview of these results is presented

in [HPP97℄, from whi
h we
opy Table 1. As an example, the optimal

lassi�
ation within the Chomsky families of spli
ing LIN languages with FIN

rules is LIN � S(LIN;FIN) � CF. It was shown in [HvV98℄ that this table

does not
hange when using the equally natural representation u

1

#u

2

$v

1

#v

2

instead of u

1

#v

1

$u

2

#v

2

for rule (u

1

; v

1

; u

2

; v

2

).

Additionally we will
onsider the family S(F ; [1℄) of languages obtained

by spli
ing F languages using rules of radius 1, i.e., for (u

1

; u

2

; u

3

; u

4

) we

have ju

i

j � 1 for i = 1; 2; 3; 4.

4 Unrestri
ted spli
ing

We start by
onsidering �nite sets of rules.

Lemma 5 Let F be a friendly family. Then S(F ; [1℄) = S(F ;FIN) = F�F .

Proof. The in
lusion S(F ; [1℄) � S(F ;FIN) is immediate. We prove two

other in
lusions to obtain the result.

First we show S(F ;FIN) � F � F . Let h = (V;L;R) be an H system

with a �nite number of rules, and with L 2 F .

Consider the rule r = (u

1

; v

1

; u

2

; v

2

). When r is applied to strings

x

1

u

1

v

1

y

1

and x

2

u

2

v

2

y

2

, then only the substrings x

1

u

1

and v

2

y

2

are visi-

ble in the resulting string x

1

u

1

v

2

y

2

. We de�ne two languages derived from

the initial language following that observation: let L

hr

= fxu

1

j xu

1

v

1

y 2

L; for some y 2 V

�

g, and let L

ri

= fv

2

y j xu

2

v

2

y 2 L; for some x 2 V

�

g.

Observe that both L

hr

and L

ri

an be obtained from L by a gsm mapping,

and
onsequently these languages are in F . Clearly, �(h) =

S

r2R

L

hr

L

ri

,

thus, �(h) 2 F � F .

Se
ond, we show F � F � S(F ; [1℄). Consider K

1

� L

1

[: : : [K

n

� L

n

with K

i

; L

i

� V

�

in F , for some alphabet V . This union is obtained by

spli
ing the initial language

S

n

i=1

K

i

i

[

S

n

i=1

0

i

L

i

with rules (�;

i

;

0

i

; �),

4

i = 1; : : : ; n, where the

i

;

0

i

are new symbols. Note that the languages K

i

i

and

0

i

L

i

belong to F by Lemma 1. �

The equality S(F ; [1℄) = S(F ;FIN) appears as [HPP97, Lemma 3.10℄.

We
an dire
tly apply Lemma 5 to obtain the (known)
hara
terizations

of S(F ;FIN) for the friendly families F = FIN;REG;CF and RE. The equality

S(LIN;FIN) = LIN � LIN appears to be new, although the family LIN� LIN

is hinted at in the proof of Theorem 3 of [P�au96℄, when it is demonstrated

that S(LIN;REG) is stri
tly in
luded in CF.

Re�ning the above proof, we
an extend it to regular rule sets.

Theorem 6 Let F be a friendly family. Then S(F ;FIN) = S(F ;REG).

Proof. By Lemma 5, it suÆ
es to prove the in
lusion S(F ;REG) � F �F .

Let h = (V;L;R) be an H system with regular rule set, and initial

language in F . Assume (R) � V

�

#V

�

$V

�

#V

�

is a

epted by the �nite

state automaton A = (Q;�; Æ; q

in

; F), with � = V [f#; $g.

Now, for p 2 Q, let

L

hp

= f xu j xuvy 2 L; for some x; u; v; y 2 V

�

;

su
h that p 2 Æ(q

in

; u#v) g;

L

pi

= f vy j xuvy 2 L; for some x; u; v; y 2 V

�

;

su
h that Æ(p; u#v) \ F 6= ? g

Observe that both L

hp

and L

pi

an be obtained from L by a gsm mapping.

For example, the gsm
omputing L

hp

guesses the start of the segment u on

its input, and simulates A on this segment (all the time
opying its input to

the output). At the end of u (nondeterministi
ally guessed), it simulates the

step of A on # and
ontinues to simulate A on the input, without writing

output, while
he
king whether state p is rea
hed.

Some
are has to be taken here. By de�nition, a gsm
annot use a �-

transition to simulate A on the additional symbol # that is not part of the

input. As a solution, the gsm may keep in its �nite state the values of both

Æ(q

in

; u

0

) and Æ(q

in

; u

0

#) for the pre�x u

0

of u that has been read.

Hen
e the languages L

hp

and L

pi

are in F .

We
laim that �(h) =

S

(p;$;q)2Æ

L

hp

L

qi

, and
onsequently, �(h) 2 F �F .

We prove the
laim here in one dire
tion : Assume z 2 L

hp

L

qi

for some

(p; $; q) 2 Æ. Then there exist x

1

; y

1

; x

2

; y

2

; u

1

; v

1

; u

2

; v

2

2 V

�

su
h that z =

x

1

u

1

�v

2

y

2

, x

1

u

1

v

1

y

1

2 L, p 2 Æ(q

in

; u

1

#v

1

), x

2

u

2

v

2

y

2

2 L, and Æ(q; u

2

#v

2

)\

F 6= ?.

As q 2 Æ(p; $), we
on
lude that Æ(q

in

; u

1

#v

1

$u

2

#v

2

) \ F 6= ?, and

so r = (u

1

; v

1

; u

2

; v

2

) 2 R. Hen
e, z 2 �(h), as it is obtained by spli
ing

x = x

1

u

1

v

1

y

1

and y = x

2

u

2

v

2

y

2

in L using r from R. �

5

Again, for most of the Chomsky families (in
luding CS whi
h is not

friendly) the last result is impli
it in Table 1. Here it is obtained through

dire
t
onstru
tion. We summarize the new results obtained for LIN.

Corollary 7 S(LIN;FIN) = S(LIN;REG) = LIN� LIN.

5 Restri
ted spli
ing

In this se
tion we try to extend the result that a regular set of rules
an be

redu
ed to a �nite set of rules (Theorem 6). We
onsider the setting where

the general spli
ing operation (x; y) `

r

z may only be applied in a
ertain

ontext, as inspired by [PRS96, KPS96℄.

We spli
e in in
reasing mode if the result z is as least as long as both

inputs x and y. Formally,

(x; y) `

in

r

z i� (x; y) `

r

z and jzj � jxj; jzj � jyj:

Example 8 [KPS96℄ Let h = (fa; bg; L;R), where L =
a

�

b

�

 [
b

�

a

�

 and

(R) = f
a

n

#b

n

$
#b

m

a

m

 j n;m � 1g 2 CF. Then �

in

(h) = f
a

n

b

m

a

m

 j

n;m � 1 and n � 2mg, whi
h is not
ontext-free. �

With this restri
ted operation we de�ne in the obvious way the language

�

in

(h) for a spli
ing system h. Thus, we
onsider the families S

in

(F

1

;F

2

),

and we study the relation between S

in

(F ;FIN) and S

in

(F ;REG). We sum-

marize the results
on
erning S

in

(F

1

;F

2

) obtained in [KPS96℄.

Proposition 9 S

in

(REG;CF)� CF 6= ?, S

in

(REG;REG) � REG, and

S

in

(CS;CF) � CS.

Observe that S

in

(F ;FIN) � S

in

(F ;REG) by de�nition. We
ould not

show the
onverse in
lusion S

in

(F ;REG) � S

in

(F ;FIN). However, the fami-

lies are almost equal, in the sense that for every language K

r

in S

in

(F ;REG)

there is a language K

f

in S

in

(F ;FIN) su
h that K

r

and K

f

di�er only by

words of length at most one.

Theorem 10 Let F be a friendly family. Then S

in

(F ;FIN) = S

in

(F ;REG),

almost (in the sense explained above).

Proof. We develop some ideas from the proof of Theorem 6.

Let h = (V;L;R) be an H system with regular rule set, and initial

language in F . We
onstru
t an H system with �nite rule set that de�nes

a language `almost' equal to �(h). Assume (R) � V

�

#V

�

$V

�

#V

�

is

a

epted by the �nite state automaton A = (Q;�; Æ; q

in

; F), with � = V [

f#; $g, and Q \ � = ?. Assuming that the automaton is redu
ed (ea
h

state lies on a path from the initial to a �nal state) we
an split the set of

6

states into two disjoint subsets, Q = Q

1

[Q

2

, su
h that Q

1

(Q

2

)
ontains

the states on a path before (after) the symbol $ is read. Let � be a new

symbol.

First step. We
onstru
t a new initial language L

0

� (V [Q[f�g)

�

from L

as follows. For ea
h x; u; v; y 2 V

�

, with xuvy 2 L, and ea
h p 2 Q

1

, q 2 Q

2

we in
lude in L

0

the following words, under the given
onstraints :

xup�

k

where p 2 Æ(q

in

; u#v); jvyj � 1; k = jvyj � 1:

xup p 2 Æ(q

in

; u#v); jvyj = 0:

�

`

qvy Æ(q; u#v) \ F 6= ?; jxuj � 1; ` = jxuj � 1:

qvy Æ(q; u#v) \ F 6= ?; jxuj = 0:

Observe that L

0

an be obtained from L by a gsm mapping, and
onse-

quently L

0

belongs to F .

Let R

0

be the (�nite) set of rules f (�; p; q; �) j (p; $; q) 2 Æ g. Note

that every rule (�; p; q; �) in R

0

orresponds to a (regular) set of rules

f (u

1

; v

1

; u

2

; v

2

) j p 2 Æ(q

in

; u

1

#v

1

); Æ(q; u

2

#v

2

) \ F 6= ? g in R.

Let h

0

= (V [Q [f�g; L

0

; R

0

).

It is easy to understand that �

in

(h

0

) � �

in

(h), following the
onstru
tion

of L

0

and R

0

. If x

0

= x

1

u

1

p�

k

and y

0

= �

`

qv

2

y

2

in L

0

spli
e in the in
reasing

mode to give z = x

1

u

1

v

2

y

2

using rule r

0

= (�; p; q; �) in R

0

, then there are

strings x = x

1

u

1

v

1

y

1

and y = x

2

u

2

v

2

y

2

in L that spli
e to give again z using

rule r = (u

1

; v

1

; u

2

; v

2

) in R. By
onstru
tion, jxj = jx

0

j (or jxj = jx

0

j � 1

when jvyj = 0) we know that jxj � jx

0

j, thus jx

0

j � jzj implies jxj � jzj.

Mutatis mutandis, this argument is also valid for y; y

0

, so x and y spli
e in

in
reasing mode too.

The reverse in
lusion �

in

(h) � �

in

(h

0

) in general is not true. Assume

however z 2 �

in

(h), obtained through (x = x

1

u

1

v

1

y

1

; y = x

2

u

2

v

2

y

2

) `

in

r

z =

x

1

u

1

v

2

y

2

, where r = (u

1

; v

1

; u

2

; v

2

) in R.

By
onstru
tion one �nds x

0

= x

1

u

1

p�

k

and y

0

= �

`

qv

2

y

2

in L

0

for suitable

k; ` 2 N, p; q 2 Q. Consider r

0

= (�; p; q; �)
orresponding to r (as dis
ussed

above). Then (x

0

; y

0

) `

r

0

z. This is in
reasing mode under the
ondition

that

jv

1

y

1

j+ jv

2

y

2

j � 1 and jx

1

u

1

j+ jx

2

u

2

j � 1:

This is seen as follows. If jv

1

y

1

j � 1, then jx

0

j = jxj and hen
e jx

0

j � jzj.

Otherwise, if jv

1

y

1

j = 0, then x

0

= x

1

u

1

p is one symbol longer than x in the

original spli
ing. However, jx

0

j � jzj follows from the fa
t that jv

2

y

2

j � 1 =

jpj. An analogous argument holds for jy

0

j � jzj.

We
on
lude that z 2 �

in

(h

0

), ex
ept in
ase it
an only be obtained

using jv

1

y

1

j = jv

2

y

2

j = 0, i.e., x=z=x

1

u

1

, y=x

2

u

2

, and r = (u

1

; �; u

2

; �),

or jx

1

u

1

j = jx

2

u

2

j = 0, i.e., x=v

1

y

1

, y=z=v

2

y

2

, and r = (�; v

1

; �; v

2

).

Se
ond step. In order to a

ommodate almost all these
ases we add addi-

tional strings to the initial language L

0

. Extend the alphabet by two
opies

7

of V � Q, symbols whi
h we will denote as ha�pi, ha+pi, hq�ai, hq+ai,

where a 2 V; p 2 Q

1

, and q 2 Q

2

.

For ea
h x; u; v; y 2 V

�

, with xu; vy 2 L, ea
h a 2 V , and ea
h p 2 Q

1

,

q 2 Q

2

we add to L

0

the following words, under the given
onstraints :

wha�pi where p 2 Æ(q

in

; u#); wa = xu:

�

k

hq+aia Æ(q; u#) \ F 6= ?; jxuj � 2; k = jxuj � 2:

aha+pi�

`

p 2 Æ(q

in

;#v); jvyj � 2; ` = jvyj � 2:

hq�aiw Æ(q;#v) \ F 6= ?; aw = vy:

To R

0

add the set of rules f (�; ha�pi; hq+ai; �); (�; ha+pi; hq�ai; �) j

(p; $; q) 2 Æ g.

These new strings and new rules
an only spli
e among themselves, and

simulate most of the remaining spli
ings of the original system (with regular

rule set). For instan
e, assuming jx

1

u

1

j � 2, and writing x

1

u

1

= wa, the

original system spli
es (x

1

u

1

; x

2

u

2

) `

in

r

x

1

u

1

= z, with r = (u

1

; �; u

2

; �),

i� the new system spli
es (wha� pi; �

k

hq+aia) `

in

r

0

wa = z where r

0

=

(�; ha�pi; hq+ai; �) and j�

k

hq+aiaj = jx

2

u

2

j to ensure in
reasing mode.

Con
lusion. Spli
ings we
an not simulate have v

1

y

1

= v

2

y

2

= � to obtain

z = x

1

u

1

, or x

1

u

1

= x

2

u

2

= � to obtain z = v

2

y

2

, in both
ases with jzj � 1.

Whi
h proves the result. �

The papers [KPS96, PRS96℄
ontain many other modes of restri
ted

spli
ing. Many of these modes still la
k a pre
ise
hara
terization. More

spe
i�
ally in
onne
tion with our investigations, it would be interesting to

relate S

�

(F ;FIN) and S

�

(F ;REG) for ea
h mode �.

Referen
es

[Adl94℄ L.M. Adleman. Mole
ular
omputation of solutions to
ombinatorial

problems, S
ien
e, 226:1021{1024, November 1994.

[DNA℄ A bibliography of mole
ular
omputation and spli
ing systems

(J.H.M. Dassen, P. Fris
o, eds.), at url:

http://www.lia
s.nl/~pier/dna.html.

[Hea87℄ T. Head. Formal language theory and DNA: an analysis of the gen-

erative
apa
ity of spe
i�
 re
ombinant behaviours. Bulletin of Mathe-

mati
al Biology, 49:737{759, 1987.

[HPP97℄ T. Head, G. P�aun, and D. Pixton. Language theory and mole
ular

geneti
s : Generative me
hanisms suggested by DNA re
ombination. In:

Handbook of Formal Languages (G. Rozenberg and A. Salomaa, eds.),

volume 2. Springer-Verlag, 1997.

8

[HvV98℄ H.J. Hoogeboom, and N. van Vugt. The power of H systems: does

representation matter? In: Computing with Bio-Mole
ules (G. P�aun,

ed.), Springer-Verlag, Singapore, 255{268, 1998.

[KPS96℄ L. Kari, G. P�aun, and A. Salomaa. The power of restri
ted spli
ing

with rules from a regular language. Journal of Universal Computer

S
ien
e, 2(4):224-240, 1996.

[P�au96℄ G. P�aun. On the spli
ing operation. Dis
rete Applied Mathemati
s,

70:57{79, 1996.

[PRS96℄ G. P�aun, G. Rozenberg, and A. Salomaa. Restri
ted use of the

spli
ing operation. International Journal of Computer Mathemati
s,

60:17{32, 1996.

9

