
Implementation and Evaluation of the

Complex Streamed Instrution Set

Ben Juurlink

1

Dmitri Theressiz

2

Stamatis Vassiliadis

1

Harry Wijsho�

2

1

Computer Engineering Laboratory

Eletrial Engineering Department

Delft University of Tehnology

Delft, The Netherlands

2

Department of Computer Siene

Leiden University

Leiden, The Netherlands

Abstrat

An arhitetural paradigm designed to aelerate streaming operations on mixed-width

data is presented and evaluated. The desribed Complex Streamed Instrution (CSI) set

ontains instrutions that proess data streams of arbitrary length. The number of bits or

elements that will be proessed in parallel is, therefore, not visible to the programmer. This

ensures that no reompilation is needed in order to bene�t from a wider datapath. CSI

instrutions also eliminate many overhead instrutions often needed in appliations utilizing

SIMD-like media ISA extensions suh as MMX and VIS. These overhead instrutions (suh

as instrutions needed for data alignment and reorganization) are replaed by a hardware

mehanism. Simulation results using several important multimedia kernels demonstrate that

CSI provides a fator of up to 22.4 (7.9 on average) performane improvement when ompared

to Sun's VIS media ISA extension. For omplete appliations, the performane gain is 9%

to 36% with an average of 20%.

1 Introdution

It is antiipated that multimedia appliations suh as JPEG and MPEG oders/deoders will

beome one of the dominant workloads in the near future [8, 13℄. Multimedia odes typially

proess small data types (for example, 8-bit pixels or 16-bit audio samples) and thus are not

well-suited for ommon general-purpose systems whih are optimized for proessing word-size

data (32 or 64 bits). Many vendors of general-purpose proessors have therefore extended

their instrution set arhiteture (ISA) with instrutions spei�ally targeted to multimedia

appliations. These instrutions exploit SIMD parallelism at the subword level, i.e., they operate

onurrently on, e.g., eight bytes or four halfwords paked in one 64-bit register. Examples of

suh multimedia ISA extension are MMX [19, 20℄, VIS [25℄, MDMX [16℄, MAX [14, 15℄, and

AltiVe [9℄.

Although it has been shown that these ISA extensions improve the performane of many

multimedia kernels and appliations (see, e.g., [3, 17, 23℄), they have a number of limitations.

One is that the number of bits or elements that will be proessed in parallel, whih is equal to the

multimedia register size, (the setion width in vetor terminology) is visible to the programmer.

This implies that when the width of the SIMD datapath is inreased so that more elements

an be proessed in parallel, either the ISA has to be hanged and existing odes have to

be reompiled or rewritten, or the issue width has to be inreasedin order to fully utilize the

proessing power of the upgraded implementation. Another limitation is overhead for data

reorganization. This inludes instrutions needed to onvert between di�erent paked data

types (pak/unpak instrutions) and data alignment instrutions. In [23℄ it is reported that, on

average, 41% of the VIS instrutions onstitute overhead. Furthermore, SIMD-style instrutions

are most e�etive if the data is stored onseutively. Multimedia appliations, however, often

1

operate on sub-bloks of a large matrix, whih implies that there is a gap between the last

element of a row and the �rst element of the next row.

In this paper we present an ISA extension that addresses these problems as well as several

others. The approah is alled CSI, whih is short for Complex Streamed Instrutions. CSI

instrutions proess one or two large data input streams and produe either a large data output

stream or a salar result. There is no arhitetural (i.e., programmer-visible) onstraint on the

length of the data streams. Instead, the hardware is responsible for dividing streams of any

length into setions whih are proessed in parallel. Furthermore, the stream data may follow

a sub-matrix pattern. This stream format is desribed by a set of parameters whih do not

�t in a 32-bit instrution format. To solve this problem, every CSI instrution is ontrolled

by one or more sets of stream ontrol registers that ompletely speify the data streams. CSI

instrutions also eliminate the need for pak/unpak instrutions, beause onversion between

di�erent paked data types (if required) is performed internally in hardware. Loop overhead

instrutions assoiated with updating of pointers and branhing are also avoided.

We have onduted experiments with the SimpleSalar toolset [5℄ using several multimedia

kernels as well as omplete appliations, and ompared the performane of the CSI-enhaned

arhiteture with the performane attained by an arhiteture extended with Sun's Visual In-

strution Set (VIS). The simulation results show the following:

� On kernel-level, the CSI-enhaned arhiteture improves performane by a fator of 5.2 to

42.3 (21.2 on average) ompared to the baseline 2-way out-of-order proessor. Compared

to the VIS-enhaned arhiteture, the performane improvements are 2.2x to 22.4x (7.9 on

average). If the issue width is 4, the speedups are 4.1 to 24.0 (14.8 on average) w.r.t. the

baseline supersalar proessor, and 1.7 to 16.3 (6.2 on average) w.r.t. the VIS-enhaned

arhiteture.

� For omplete appliations, the performane gain of the CSI-enhaned arhiteture over

the baseline 2-way out-of-order proessor ranges from 1.3 to 2.3 (1.8 on average), and

the gain over VIS-enhaned arhiteture ranges from 8% to 36% with an average of 20%.

When the issue width is 4, the speedups are 1.2 to 1.8 (1.6 on average) w.r.t. the baseline

supersalar proessor without multimedia extension, and 8% to 32% (18% on average)

w.r.t. the VIS-enhaned arhiteture.

1.1 Related Work

The CSI arhitetural paradigm was introdued in [2℄. Sine then we modi�ed the arhiteture in

order to aommodate more instrutions using fewer opodes. This is aomplished using stream

ontrol register sets that ompletely speify the input and output data streams as well as ertain

aspets of the operation to be performed (for example, whether the stream elements are signed

or unsigned values and whether saturation arithmeti should be performed). Furthermore,

we signi�antly extend upon the work desribed in [2℄ by providing results for several other

benhmarks, by inluding a detailed simulation of the memory hierarhy and by providing a

omparison with VIS. In [2℄, just one benhmark appliation was onsidered (an MPEG enoder)

and the e�et of ahe misses was \imitated" by varying the latenies of the CSI instrutions.

CSI instrutions eliminate the need for vetor setioning, i.e., bookkeeping instrutions

needed for proessing vetors of arbitrary length in setions. An early proposal aimed at hiding

the atual setion size (whih is implementation dependent) is the load vetor ount and update

(VLVCU) instrution of the IBM 370 vetor arhiteture [4℄.

There are many SIMD-style multimedia ISA extensions, for example, MMX [19, 20℄, VIS [25℄,

MDMX [16℄, MAX [14, 15℄, AltiVe [9℄ and SSE [24℄. They mainly di�er in the number and

types of the newly added instrutions. All of these ISA extensions operate on 64-bit registers,

exept AltiVe and SSE, whih operate on 128-bit registers. It is, however, questionable if

2

inreasing the register size further provides any bene�t, beause often, the number of stream

elements stored onseutively in memory is rather small. We return to this issue later.

Another proposal aimed at exploiting a higher degree of parallelism than urrent media

extensions an, is the Matrix Oriented Multimedia (MOM) extension desribed in [7℄. MOM

instrutions an be viewed as vetor versions of subword parallel instrutions, i.e., they operate

on matries where eah row orresponds to a paked data type.

CSI is a memory-to-memory arhiteture, i.e., there are no programmer visible registers.

This design hoie was made to avoid setioning, baause it may result in underutilization of

the pipeline (it has to be �lled and ushed for eah setion), and to make the ISA independent

of the atual implementation. Furthermore, in many multimedia kernels data is read only one,

whih implies that there is not a lot of temporal loality whih an be exploited by storing data

in registers. There have been memory-to-memory vetor arhitetures in the past (for example,

the Texas Instruments' TI ASC and CDC's Star-100 [11℄), but they su�ered from high startup

ost whih was mainly due to the large memory lateny. Our experiments show, however, that

all the benhmarks onsidered exhibit very high L1 hit rates (98-99%), and therefore, the startup

ost is less of a problem.

This paper is organized as follows. In Setion 2 we desribe the limitations of urrent multimedia

ISA extensions and illustrate how the CSI paradigm solves these problems. The CSI ISA exten-

sion and its implementation are desribed in Setion 3. Setion 4 desribes the benhmarks, the

modeled arhitetures, and presents the experimental results. Conluding remarks and topis

for future researh are given in Setion 5.

2 Motivation

In this setion we list some of the limitations of urrent media ISA extensions and desribe how

they are solved in the CSI arhiteture.

Arhitetural Constraint on Setion Size. All urrent media ISA extensions as well as

most vetor arhitetures have an arhitetural (i.e., programmer-visible) �xed setion size. For

example, MMX and VIS instrutions operate on 64-bit registers whih an be treated either as

eight bytes, four halfwords, or two words. Beause of this, the setion size appears expliitly in

the ode. This, however, means that if the width of the SIMD datapath is inreased in order

to exploit more parallelism, the ISA may have to be hanged to reet this. In other words,

(parts of) the appliation may have to be reompiled or even rewritten in order to bene�t from

the wider datapath. For example, if MMX would operate on 128-bit instead of 64-bit registers,

existing MMX odes must be reompiled or rewritten.

Another way to inrease parallelism is by inreaing the issue width so that more SIMD

instrutions an be proessed in parallel. However, it is generally aepted that inreasing

the issue width requires a substantial amount of hardware and may negatively a�et the yle

time [10, 18℄.

In CSI these problems are avoided beause CSI instrutions proess data streams of arbitrary

length. The implementation is responsible for dividing the data streams into setions whih are

proessed in parallel. Therefore, the number of elements that is proessed in parallel does not

appear expliitly in the ode.

Inreasing the Degree of Parallelism. A problem related to the previous is the following.

Although it may be possible to inrease the width of the datapath and the register size, it may

not always be bene�ial beause many multimedia appliations operate on sub-bloks of a large

matrix (representing, e.g., an image), and the vetor length in both the x- and the y-diretion is

rather short (typially 8 or 16 bytes). Consider, for example, Figure 1 whih shows a C-funtion

3

stati void add_pred(pred,ur,lx,blk)

unsigned har *pred, *ur;

int lx;

short *blk;

{

int i, j;

for (j=0; j<8; j++){

for (i=0; i<8; i++)

ur[i℄ = lp[blk[i℄ + pred[i℄℄;

blk+= 8;

ur+= lx;

pred+= lx;

}

}

Figure 1: C ode for saturating add.

taken from an MPEG enoder. The rows of the pred and ur bloks are not stored onseutively

in memory. The amount of parallelism that an be exploited by a SIMD extension is therefore

restrited to a single row. The same observation has been made in [7℄.

CSI instrutions do not operate on unit-stride vetors nor on vetors with a non-unit but

�xed stride, but on sub-matries. The row length as well as the distane between two onseutive

rows are set via speial ontrol registers. This allows CSI to exploit a higher degree of parallelism

than SIMD ISA extensions an.

Non-unit Strides. SIMD extensions are most e�etive if the vetor elements are stored on-

seutively. Otherwise, the data needs to be reordered to exploit parallelism. In some multimedia

appliations, however, onseutive stream elements are stored at a �xed but non-unit stride. This

happens, for example, in JPEG's olor onversion routine where the Red, Green and Blue om-

ponents are stored at a stride of 3. In the upsampling/downsampling phases in JPEG, data is

also aessed with a non-unit stride.

In CSI, onseutive stream elements pertaining to the same row do not have to be stored in

onseutive memory loation. Thus, we allow any stride between two onseutive row elements,

as well as between onseutive rows. The hardware implementation is responsible for aligning

them properly. This is one of the di�erenes with MOM [7℄, whih allows an arbitrary stride

between two onseutive rows but requires a unit-stride between onseutive row elements.

Computing with Di�erent Formats and Saturation. When we onsider Figure 1 again,

we observe that one of the bloks onsists of 16-bit (short) elements, whereas the other onsists

of 8-bit elements. When these two bloks are added using SIMD instrutions, the pred blok

must be unpaked (or promoted) to a 16-bit format. Data promotion may also be required

when the input elements have the same size, beause the result may not be representable by

this format. This inurs a performane penalty of at least a fator of 2, due to the redued

parallelism and the overhead aused by pak/unpak operations. Beause of this, many media

ISA extensions have instrutions that automatially saturate to the smallest or largest value the

data type an represent. (VIS does not support saturation arithmeti, but performs saturation

while paking.)

In the CSI arhitetural paradigm, these problems are resolved as follows. When pak-

ing/unpaking is neessary beause the input streams have di�erent formats (as in the ode

shown in Figure 1), it is performed internally in hardware. No speial opodes are needed to

speify that, for example, one of the data input streams onsists of 16-bit elements and the

4

other of 8-bit elements, beause with eah operand stream a ontrol register is assoiated that

spei�es the element width. If paking/unpaking is not required, the programmer an speify

that saturation arithmeti should be performed instead of \wrap-around arithmeti" by setting

a bit in another ontrol register. The CSI arhiteture also has a wide aumulator, similar

to MDMX [16℄, whih avoids the need for data promotion in redution operations. This is

another di�erene with MOM [7℄, whih an also perform saturation arithmeti and also uses

an aumulator, but whih still requires paking/unpaking if the input streams have di�erent

sizes.

Data Alignment and Loop Control. There are other instrutions besides paking and

unpaking that ontribute to the overhead. This inludes alignment-related instrutions and

instrutions needed for loop ontrol. For example, in VIS alignment instrutions are needed

when an 8-byte vetor is not stored at an 8 byte aligned address. Loop ontrol instrutions

are the instrutions required for breaking the data stream into �xed-size setions whih are

proessed in parallel. This inludes instrutions needed to advane the pointers to the next

setions, instrutions that ompute the loop termination ondition, and branh instrutions.

In the CSI arhiteture, these funtions are also replaed by a hardware mehanism. The

hardware generates aligned addresses and is responsible for extrating the bytes that belong to

the data stream. Furthermore, sine CSI instrutions proess streams of arbitrary length, no

loop ontrol instrutions are needed.

3 Arhiteture and Implementation

In this setion we present the CSI multimedia ISA extension. A possible implementation is also

desribed.

3.1 Overview of the Complex Streamed Instrution Set

CSI is a memory-to-memory arhiteture. Most CSI instrutions load two large data input

streams from memory, operate on them element-wise, and write the resulting stream bak to

memory. There is no arhitetural onstraint on the stream length.

The stream elements do not have to be stored onseutively, nor at a onstant stride. The

format of a stream is that of a sub-matrix, as illustrated in Figure 2. Eah stream onsists of an

arbitrary number of rows, and the row elements are stored at a �xed stride whih will be referred

to asHStride (short for horizontal stride). There is also a �xed stride between onseutive rows,

whih will be referred to as VStride. The reason for this is that many streaming operations in

multimedia as well as many other appliations operate on sub-bloks of a large matrix.

The exeution of every CSI instrution that proesses two input streams and produes an

output stream result is ontrolled by three sets of stream ontrol registers (SCR-sets). Eah

SCR-set onsists of the following 32-bit registers, numbered 0 to 5:

0. Base. This register ontains the starting or base address of the stream. For example, if

the matrix in Figure 2 is stored in row-major order and its base address is 8000, the base

address of the stream is 8018.

1. RLength. This register holds the number of stream elements in a row (the number of

elements belonging to the stream, not the row length of the enveloping matrix). In the

example, RLength=4.

2. SLength. This register ontains the stream length. In the example illustrated in Figure 2,

SLength=12.

5

Base

HStride = 4

VStride = 32

S4.Size

Figure 2: Format of a stream. Eah box represents a byte. Filled boxes are stream

elements. In this example, the horizontal stride HStride=4 and VStride=32. Fur-

thermore, RLength=4, SLength=12, and the element size is S4.Size=2.

31 34 2 1 09

unused

Scale factor
Saturate

Size
Sign

Figure 3: Format of the S4 register

3. HStride. The stride in bytes between onseutive stream elements in a row.

4. VStride. The distane in bytes between onseutive rows.

5. S4. This register onsists of four �elds: Size , Sale fator , Sign and Saturate . The

�rst �eld onsists of two bits and spei�es the size of the stream elements, where 00

orresponds to bytes, 01 half-words, 10 words, and 11 double-words. The Sign �eld is

a ag that spei�es if the stream elements are signed or unsigned values. The Saturate

�eld is also a ag that spei�es if saturation or modular arithmeti should be performed.

If this bit is set and the result annot be represented by the number of bytes indiated by

the Size �eld, the result is lipped to the minimum or maximum value. If this bit is not

set, the result simply \wraps-around". The funtion of the Sale fator �eld is idential

to the Sale fator �eld of the Graphis Status Register of the VIS arhiteture [26℄. It

determines the amount by whih the result is shifted to the left before it is trunated and

the least signi�ant bits are disarded. This mehanism allows to speify the number of

frational bits. The format of the S4 register is depited in Figure 3.

The CSI instrution set is divided in two ategories:

1. CSI arithmeti and logial instrutions. These instrutions have the following for-

mats:

� op SCRSi, SCRSj, SCRSk

Suh instrutions proess two data input streams and produe a data output stream.

The streams are spei�ed by the orresponding SCR-sets. Examples are pairwise

addition, subtration and multipliation of two data streams. Beause no guarantees

are given about the order in whih the stream elements are proessed, the output

stream spei�ed by SCRSi may not overlap with the input streams SCRSj and SCRSk.

� op SCRSi, SCRSj, GPRk

These instrutions are similar to the previous ones but the seond operand is not a

data stream but a salar value. An example of suh an instrution is the multipliation

of a data stream by a salar.

6

� op SCRSi, SCRSj, imm

These instrutions are idential to the previous ones exept that the seond operand

is a 16-bit immediate value instead of a general-purpose register.

� op GPRi, SCRSj, SCRSk

These instrutions proess two input streams and produe a salar result. Two exam-

ples are si_sad and si_dotprod, whih ompute the sum of absolute di�erenes

and dot produt of two data streams, respetively.

2. CSI auxiliary instrutions. These instrutions manage the individual stream ontrol

registers. There are just two of them.

� si_mtsr SCRSi, j, GPRk

mtsr stands for move to stream ontrol register. This instrution loads SCR j of

SCR-set SCRSi with the ontents of the general purpose register GPRk. The stream

ontrol registers are numbered as above. For example, the base address of SCR-set

SCRS2 an be loaded from GPR4 using si_mtsr SCRS2, 0, GPR4.

� si_mtsri SCRSi, j, imm

This instrutions also loads a stream ontrol register but with an immediate value.

Note that sine the element size and the Sign and Saturate bits are set using ontrol

registers, the CSI ISA extension is quite ompat and atually smaller than SIMD extensions suh

as VIS and MMX. For example, seven MMX instrutions padd[b,w,d℄ (add with wrap-around

on [byte, word, double-word℄), padds[b,w℄ (add signed with saturation) and paddus[b,w℄ (add

unsigned with saturation) orrespond to just one CSI instrution si_add whih an add streams

of signed as well as unsigned bytes, halfwords (words in Intel terminology) and words, and whih

also performs saturation if the Saturate bit is set.

As an example, Figure 4 shows the CSI ode for the add_pred routine depited in Figure 1.

In this example 18 instrutions are needed to set the ontrol registers. This might seem sig-

ni�ant but very often this overhead is negligible due to the following reasons. First, these

instrutions are exeuted only one and their number is still very small ompared to the number

of instrutions that must be exeuted by a supersalar proessor. In this example, 64 iterations

are replaed by 18 instrutions that manipulate the SCRs and a single si_add instrution.

Seond, in many ases, not all SCRs have to be reset to initiate a new CSI instrution. For

example, the add_pred routine is exeuted on many di�erent bloks. This means that after all

SCRs are set the �rst time add_pred is alled, only the base addresses of the input and output

streams have to be reset. The overhead is therefore amortized over many instrutions.

We remark that the struture of the CSI arhiteture allows some very powerful instrutions

to be onstruted. For example, an n�n matrix of bytes an be transposed using the instrution

si_addi SCRS3,SCRS1,0 by setting the HStride of SCRS3 to n and the VStride to 1. As

another example, the arithmeti average of two pixel streams spei�ed by SCRS1 and SCRS2 an

be alulated using the si_addi SCRS3,SCRS1,SCRS2 instrution by setting the Sale fator

�eld so that the result has one frational bit.

All CSI instrutions an be interrupted during exeution. However, we �rst observe that

arithmeti overow does not generate an exeption, sine either wrap-around or saturation

arithmeti is performed. Other exeeptions, suh as page faults, an be handled as in the IBM

System/370 vetor arhiteture [4℄. A stream interruption index is maintained that indiates

whih stream elements are urrently being proessed. If the CSI instrution is interrupted, this

internal register marks the point that has been reahed. If the instrution is later reissued,

exeution resumes from that point.

7

Here GPRi is denoted as $i

We assume pred=$4, urr=$5, lx=$6, blk=$7

Set SCRs for blk stream

si_mtsr SCRS1,0,$7 # Base

si_mtsri SCRS1,1,8 # RLength

si_mtsri SCRS1,2,64 # SLength

si_mtsri SCRS1,3,2 # HStride

si_mtsri SCRS1,4,16 # VStride

sale=0, saturate=0, sign=1, size is 01 (halfwords)

So, onstant to load in S4 is 0101 (base 2) = 5 (base 10)

si_mtsri SCR1,5,5 # S4

Set SCRs for pred stream

si_mtsr SCRS2,0,$4 # Base

si_mtsri SCRS2,1,8 # RLength

si_mtsri SCRS2,2,64 # SLength

si_mtsri SCRS2,3,1 # HStride

si_mtsr SCRS2,4,$6 # VStride

sale=0, saturate=0, sign=0, size is 00 (bytes)

So, onstant to load in S4 is 0000 (base 2) = 0 (base 10)

si_mtsri SCRS2,5,0 # S4

Set SCRs for urr stream

si_mtsr SCRS3,0,$5 # Base

si_mtsri SCRS3,1,8 # RLength

si_mtsri SCRS3,2,64 # SLength

si_mtsri SCRS3,3,1 # HStride

si_mtsr SCRS3,4,$6 # VStride

sale=0, saturate=1, sign=0, size is 00 (bytes)

So, onstant to load in S4 is 1000 (base 2) = 8 (base 10)

si_mtsri SCRS3,5,8 # S4

Trigger streamed operation si_add urr,blk,pred

si_add SCRS3,SCRS2,SCRS1

Figure 4: CSI ode for the add pred routine.

3.2 Implementation

In this setion we desribe the hardware implementation of the CSI arhiteture, whih will

be referred to as the stream unit. The datapath of the experimental stream unit is depited in

Figure 5. Its main hardware entities are the stream ontrol register sets (SCR-sets), the memory

interfae unit, the pak and unpak units, one or more CSI funtional units whih perform SIMD

parallel operations, and the aumulator ACC. For larity, some of the paths have been omitted.

For example, one of the inputs of the CSI funtional units an be a general-purpose register or

an immediate value, and there is also a path from the general-purpose registers to the stream

ontrol registers.

The memory interfae unit is responsible for transferring data between the memory hierarhy

and the stream bu�ers. In addition, if the data is not stored onseutively, it must also extrat

non-onseutive data from the ahe and align them in the proper order. Its operation will be

desribed in more detail below.

The unpak units onvert stream data from storage format to omputational format (if

required). For this, they use the values of the Size and Sign �elds of the SCR S4. For

example, if one data input stream onsists of unsigned bytes and the other onsists of signed

halfwords, the �rst is onverted to 16-bit halfwords by padding with zeroes.

8

Stream Control Register Sets

HStride
VStride

S4RLength
SLength

CSI
MULT

CSI
ALU

setup
logic

output
register

pack

stream
output
buffer

adder

ACC

k-input
adder

registers
purpose
general

input
register 1

input
register 2

unpack unpack

stream
input

buffer 1

stream
input

buffer 2

Memory
Memory
Interface

Unit

Base

n n

2n 2n

2n x 2:1 MUX

3n

Figure 5: Datapath of the Stream Unit

The CSI funtional units perform subword parallel operations on the data ontained in the

input registers. Currently two CSI units are used: one CSI MULT unit that performs parallel

multipliation and division, and one SIMD ALU that performs parallel addition and subtration

as well as the sum of absolute di�erenes (SAD) operation. The setup logi is also used in the

omputation of the SAD operation. Following the sheme presented in [1℄, it determines the

smallest of eah pair of orresponding pixels ontained in the input registers, and ontrols the

CSI ALU so that it negates the smallest pixel of eah pair. The size of the input registers is

n, where n is implementation dependent, and the size of the output register is 2n so that no

overow ours during omputation.

>From the output register, data ows either to the stream output bu�er via the pak unit

or to the aumulator. The pak unit onverts the data from omputational format to storage

format. It also performs trunation and saturation, similar to the VIS pak instrutions. For

this, it uses Sale fator , Sign , Saturate and Size �elds of the S4 register orresponding to

the output stream.

The aumulator is 3n bits wide. It is used in redution operations suh as the SAD and

DOTPROD. It enables the aumulation of up to 2

n

n � n produts without having to promote

the operands to a larger format [16℄. As mentioned, data promotion inurs a performane

penalty due to the redued parallelism and due to the yles needed for exeuting pak/unpak

instrutions. Note that the stream unit performs data promotion only if the input streams have

di�erent formats, not when the result may beome too large.

Finally, the adder between the aumulator and the register �le sums up the omponents

ontained in the aumulator. The aumulator an ontain either k = n=8, n=16, n=32, or n=64

omponents.

9

Memory
Interface
Unit

AGs EXTRACT INSERT

LQ SQ

Figure 6: Memory Interfae Unit

Memory Interfae Unit. We now desribe the memory interfae unit (MIU). One important

issue is the following: should the MIU be onneted to the level-1 (L1) ahe, or should it bypass

the L1 ahe and go diretly to the L2 ahe or even main memory? In this study we deided

to onnet the MIU to the L1 ahe for the following reasons. First, Ranganathan et al. [23℄

observed that with realisti L1 ahe sizes, multimedia appliations ahieve high hit rates. Our

simulations support this observation. For example, with a 32K diret-mapped L1 data ahe,

all the benhmarks exhibited hit rates over 99%. Another motivation is that sine the L1 ahe

is on-hip, it will not be expensive to widen the path between the ahe and the stream unit,

so that a whole ahe blok an be brought to the stream unit in a single yle. In the future,

however, we intend to look at other ahe organizations, suh as those proposed in [22℄. It is

also assumed that the L1 ahe has two read ports and one write port.

The memory interfae unit is depited in Figure 6. It onsists of the following hardware

entities: three address generators (AGs), a load queue (LQ) and a store queue (SQ), and extrat

and insert hardware.

The AGs generate the addresses of the ahe bloks that must be fethed. After a CSI

instrution has been issued, eah AG aligns the Base address of its assoiated data stream to

ahe blok boundaries, and inserts the aligned address into the load queue. Furthermore, with

eah LQ entry, a mask of CBS bits is assoiated, where CBS is the ahe blok size in bytes.

This mask marks whih bytes in the ahe blok belong to the stream. It is omputed based

on the values of the ontrol registers HStride, VStride and RLength, and the Size �eld of

the S4 register. Eah AG also updates some internal ontrol registers in order to ompute the

address of the next blok to feth.

The load queue submits the load address to the ahe read port. When the data arrives, it

sets the ready ag of the orresponding entry. The store queue operates similarly.

The extrat unit monitors the entry at the head of the LQ. When the ready ag of this entry

is set, it extrats the useful bytes from it (based on the orresponding mask), and plaes them

onseutively in an input stream bu�er. It operates similar to a ollapsing bu�er [6℄. The insert

unit performs the inverse operation, i.e., it \satters" the stream elements so that they are in

their orret position, and plaes the ahe blok in the store queue. The SQ then performs a

partial store, similarly to the VIS partial store instrution.

4 Evaluation

In order to evaluate the performane of the proposed ISA, we simulated a supersalar proessor

without a multimedia ISA extension, a supersalar proessor with the VIS extension, and a pro-

essor extended with CSI instrutions. We studied four benhmarks from the MediaBenh [12℄

test suite: mpeg2en (MPEG-2 enoder), mpeg2de (MPEG-2 deoder), jpeg (JPEG enoder),

and djpeg (JPEG deoder). These programs are representative of video and image proessing

appliations. For the MPEG benhmarks, we used the test bitstream, whih onsists of three

128 � 128 frames. For the JPEG benhmarks, the rose input was used, whih is a 227 � 149

10

pixel image.

4.1 Simulation Methodology and Tools

We used the sim-outorder simulator of the SimpleSalar toolset (release 2.0) [5℄ to simulate a

supersalar proessor without and with VIS or CSI extensions. sim-outorder is an exeution-

driven simulator that support out-of-order issue and exeution.

The SimpleSalar arhiteture is derived from MIPS-IV ISA [21℄. Eah instrution has a

16-bit annote �eld that an be modi�ed post-ompile with annotations to instrutions in the

assembly �les. This interfae an be used to synthesize new instrutions without having to

hange the assembler. We used this mehanism to synthesize CSI and VIS instrutions.

To our knowledge, there is no ompiler that generates VIS ode. We therefore had to

write VIS (as well as CSI) ode ourselves, but used ode from the VIS Software Developer's Kit

(VSDK) wherever possible. First, the most time-onsuming routines were identi�ed by pro�ling.

After that, the funtions that ontained a substantial amount of data-level parallelism and

whose key omputation ould be replaed by VIS and CSI instrutions were rewritten manually.

The loops were unrolled so that the loop bodies ould be replaed by a set of equivalent VIS

instrutions.

We pro�led the benhmarks using the sim-profile tool provided with the SimpleSalar

toolset and seleted the most ompute-intensive kernels: Add Blok (MPEG2 frame reonstru-

tion), Saturate (saturation of 16-bit elements to 12-bit range in MPEG deoder), dist1 (sum

of absolute di�erenes for motion estimation), y rgb onvert and rgb y onvert (olor

onversion between YCC and RGB olor spaes in JPEG), and h2v2 downsample (2:1 horizon-

tal and vertial downsampling of a olor omponent in JPEG), and idt (inverse disrete osine

transform). We remark that DCT routines are not available in the VSDK. It is available in the

SUN mediaLib, but this library onsists of binary routines, whih ould not be used beause the

baseline arhiteture is SimpleSalar, not UltraSPARC.

4.2 Modeled Arhiteture

It is important to note that the baseline arhiteture is SimpleSalar (i.e., MIPS-IV ISA), not

UltraSPARC. We have hosen VIS instead of the MIPS multimedia ISA extension MDMX

beause, �rst, VIS is representative of many urrent media extensions [23℄, and, seond, MDMX

has no instrution that omputes the sum of absolute di�erenes (SAD). The SAD is used in

motion estimation, whih is the most time-onsuming part of the MPEG enoder. With MDMX

one should use the sum of squared di�erenes [16℄ instead, but we did not want to modify the

benhmarks.

The base system is a 4-way supersalar proessor with out-of-order issue and exeution. The

main proessor parameters are listed in Table 1.

VIS instrutions operate on the oating-point register �le. All VIS instrutions have a lateny

of 1 yle exept the pdist (whih omputes the SAD) and the paked multiply instrutions,

both of whih have a lateny of 3 yles. There are two VIS adders that perform partitioned

add and subtrat, merge, expand and logial operations, and two VIS multipliers that perform

the partitioned multipliation, ompare, pak and pixel distane operations. This is modeled

after the UltraSPARC [25℄ with the following exeptions. In the UltraSPARC, the alignaddr

instrution annot be exeuted in parallel with other instrutions [26℄ but this limitation is not

present in the arhiteture we modeled. Furthermore, the UltraSPARC has only one 64-bit VIS

multiplier. We assumed two beause the width of the datapath of the stream unit is assumed to

be 128 bits. The degree of parallelism of the VIS-enhaned and the CSI-enhaned arhitetures

are, therefore, omparable.

The parameters of the memory subsystem are listed in Table 2. Beause the benhmarks

used in this study have small instrution working sets, a perfet instrution ahe is assumed.

11

Issue width 4-way FU lateny/reovery (yles)

Reorder bu�er size 16 Integer ALU 1/1

Load-store queue size 8 Integer MUL

Branh Predition multiply 3/1

Bimodal preditor size 2K divide 20/19

Branh target bu�er size 2K Cahe port 1/1

Return-address stak size 8 FP ALU 2/2

Funtional unit type and number FP MUL

Integer ALU 4 FP multiply 4/1

Integer MULT 1 FP divide 12/12

Cahe ports 2 sqrt 24/24

Floating-point ALU 4 VIS adder 1/1

Floating-point MULT 1 VIS multiplier

VIS adder 2 multiply and pdist 3/1

VIS multiplier 2 other 1/1

Table 1: Proessor on�guration.

Instrution ahe ideal

Data ahes

L1 line size 32 bytes

L1 assoiativity diret-mapped

L1 size 32 KB

L1 hit time 1 yle

L2 line size 128 bytes

L2 assoiativity 2-way

L2 size 1 MB

L2 replaement LRU

L2 hit time 6 yles

Main memory

type page-mode

page size 4 KB

�rst page aess 30 yles

next page aess 10 yle

bus width 16 bytes

Table 2: Memory on�guration.

All sub-units (i.e., pak/unpak, extrat/insert, CSI adder et.) of the stream unit require 1

yle, exept for the CSI multiplier, whih requires 3 yles but is fully pipelined. The datapath

of the stream unit is 128 bits wide. So, the CSI funtional units proess either 16 bytes, 8

halfwords, 4 words, or 2 double-words in parallel. The input registers are therefore 128 bits

wide, the output register 256 bits, and the aumulator 384 bits (f. Figure 5).

Beause one CSI instrution an replae two embedded loops, the requirements for the

mahine's feth, deode and issue bandwidth will be greatly redued. In order to evaluate this

e�et, we also simulated a 2-way supersalar proessor in addition to a 4-way system.

4.3 Experimental Results

In this setion we present the speedups attained by the two multimedia ISA extensions (VIS

and CSI) onsidered. Speedups will be given with respet to the 2-way base system. We �rst

present results for several kernels from our benhmarks. After that, we analyze how kernel-level

12

Add_BlockSPEEDUP

0.00

10.00

20.00

30.00

40.00

2−WAY 4−WAY

0.00

5.00

10.00

15.00

20.00

25.00

30.00

2−WAY 4−WAY

Saturate

0.00

5.00

10.00

15.00

20.00

25.00

30.00

2−WAY 4−WAY

dist1

SPEEDUP

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

2−WAY 4−WAY

ycc_rgb_convert rgb_ycc_convert

0.00

5.00

10.00

15.00

2−WAY 4−WAY

0.00

2.00

4.00

6.00

8.00

10.00

12.00

h2v2_downsample

2−WAY 4−WAY

idct SPEEDUP

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

2−WAY 4−WAY

scalar

VIS

CSI

Figure 7: Speedups on kernel level

speedup translates to appliation speedup.

Figure 7 depits the speedups attained for the seven kernels seleted from the benhmarks.

When the issue width is 2, the VIS-enhaned arhiteture ahieves a speedup of 1.4 to 5.9 with

an average of 3.1, whereas the CSI-enhaned arhiteture attains speedups ranging from 5.2 to

42.3 (21.2 on average). When the issue width is 4, the average speedup (w.r.t. to the 2-way

system) of the VIS-enhaned arhiteture is 4.2 (1.9 to 7.2) and the average speedup of the

CSI-enhaned arhiteture is 22.5 (5.6 to 42.2) So, CSI learly outperforms VIS.

Espeially on the Saturate kernel the CSI-enhaned arhiteture performs muh better

than the arhiteture extended with VIS instrutions. Whereas the VIS-enhaned arhiteture

attains speedups of 1:43 (2-way issue) and 2:03 (4-way issue), the CSI-enhaned arhiteture

attains speedups of 32:1 and 33:2, respetively. The reason is that in this kernel 16-bit values

have to be lipped to a 12-bit range and, simultaneously, the lipped values have to be aumu-

lated. Beause CSI instrutions have saturation to any desired range as a feature (by setting

the Saturate bit and adjusting the Sale fator �eld of the S4 register), and beause the

aumulator aumulates all results, the body of the Saturate kernel is essentially replaed

by one instrution. In the VIS-enhaned arhiteture, saturation and aumulation have to be

performed in software.

It an be observed that the smallest performane improvement of the CSI-enhaned arhi-

teture over the VIS-enhaned arhiteture ours for the idt kernel. The reason is that the

VIS version is based on the salar version, whih in turn is based on a highly optimised DSP

algorithm proposed in [27℄. However, this DSP algorithm does not operate on long vetors and

an therefore not be eÆiently implemented using CSI instrutions. The CSI version of the

idt is based on the standard de�nition of the IDCT as two matrix multipliations. Thus, the

13

djpeg SPEEDUP

X

0.00

0.50

1.00

1.50

2.00

2.50

2−WAY 4−WAY

0.00

0.50

1.00

1.50

cjpeg

2−WAY 4−WAY

scalar

VIS

CSI

mpeg2decode SPEEDUP

0.00

0.50

1.00

1.50

2.00

2.50

2−WAY 4−WAY

0.00

0.50

1.00

1.50

2.00

2.50

mpeg2encode

2−WAY 4−WAY

Figure 8: Speedups on appliation level

CSI version of idt exeutes many more operations than the VIS version, but nevertheless a

speedup is obtained.

The results for omplete appliations are depited in Figure 8. For a 2-way issue mahine, the

VIS-enhaned arhiteture ahieves speedups of 1.42 (on the djpeg benhmark), 1.17 (jpeg),

1.40 (mpeg2de) and 1.93 (mpeg2en), whereas the CSI-enhaned arhiteture attains speedups

of 1.94, 1.28, 1.70 and 2.28, respetively. For a 4-way issue mahine, the respetive speedups

are 2.08, 1.59, 2.13 and 2.37 for the VIS-enhaned arhiteture, and 2.75, 1.74, 2.48 and 2.77

for the CSI-enhaned arhiteture. Of ourse, due to Amdahl's Law, the speedups for omplete

programs are less impressive than those for kernels. Nevertheless, when the issue width is two,

the CSI-enhaned arhiteture yields an average performane gain over VIS of 20% on average

(range of 8% to 36%), and when the issue width is four, the average speedup of CSI over VIS is

18% (range of 8% to 32%).

Finally, we remark that when the issue rate is 2, the CSI-enhaned arhiteture attains higher

speedups w.r.t. the VIS-enhaned arhiteture than when the base system is a 4-way proessor.

This means that the performane of the stream unit is rather insensitive to the proessor issue

width. This makes the CSI arhiteture highly suitable for embedded systems, where high issue

rates and out-of-order issue and exeution are too expensive. The same observation has been

made in [7℄ for the MOM ISA extension.

5 Conlusions

In this paper we presented an arhitetural paradigm designed to aelerate streaming operations

on mixed-width data. The desribed Complex Streamed Instrution (CSI) set was evaluated

using four multimedia benhmarks. On a number of important kernels, we observed speedups

ranging from 2.1 to 22.4 relative to an arhiteture extended with VIS instrutions. These loal

improvements resulted in appliation speedups of up to 36%.

One of the distint features of the CSI arhiteture is that the number of bytes whih are

proessed in parallel (the setion size of proessing width) is not determined by the arhiteture

but solely by the implementation. This ensures that no reompilation is needed in order to

bene�t from a wider datapath. The CSI arhiteture also eliminates overhead assoiated with

data alignment and onversion between storage and omputational format.

14

There are several important researh issues regarding the memory subsystem. As mentioned,

we have not yet fully explored what the most ost-e�etive ahe organization is for streaming

operations, and to whih level of the ahe hierarhy (L1 or L2 ahe) the stream unit should

be onneted. It may also be a viable option to onnet the stream unit diretly to the main

memory, beause in the stream unit loads and stores are overlapped with omputation. The

initial read lateny is inurred only one, implying that the performane of the stream unit

should be rather insensitive to the memory lateny. This property may be espeially useful

for systems with no or small ahes, suh as embedded systems. Another option is to inlude

prefething. Sine the data streams are ompletely spei�ed by the stream ontrol registers, the

memory interfae unit is aware of all memory aesses whih are going to be performed. It an

therefore issue prefethes in order to bring the data loser to the stream unit.

Referenes

[1℄ The Sum-Absolute-Di�erene Motion Estimation Aelerator. In EUROMICRO 24, pages 559{566,

1998.

[2℄ Complex Streamed Instrutions: Introdution and Initial Evaluation. In EUROMICRO 26, 2000.

To appear.

[3℄ R. Bhargava, L.K. John, B.L. Evans, and R. Radhakrishnan. Evaluating MMX Tehnology Using

DSP and Multimedia Appliations. In MICRO 31, pages 37{46, 1998.

[4℄ W. Buhholz. The IBM System/370 Vetor Arhiteture. IBM Systems Journal, 25(1):51{62, 1986.

[5℄ D. Burger and T.M. Austin. The SimpleSalar Tool Set, Version 2.0. Tehnial Report 1342, Univ.

of Wisonsin-Madison, Comp. Si. Dept., 1997.

[6℄ T.M. Conte, K.N. Menezes, P.M. Mills, and B.A. Patel. Optimization of Instrution Feth Meha-

nisms for High Issue Rates. In ISCA'95, pages 333{344, 1995.

[7℄ Jesus Corbal, Mateo Valero, and Roger Espasa. Exploiting a New Level of DLP in Multimedia

Appliations. In MICRO 32, 1999.

[8℄ K. Diefendor� and P.K. Dubey. How Multimedia Workloads Will Change Proessor Design. IEEE

Miro, pages 43{45, 1997.

[9℄ L. Gwennap. AltiVe Vetorizes PowerPC. Miroproessor Report, 12(6), 1998.

[10℄ J.L. Hennessy and D.A. Patterson. Computer Arhiteture - A Quantitative Approah. Morgan

Kaufmann, seond edition, 1996.

[11℄ Kai Hwang and Faye A. Briggs. Computer Arhiteture and Parallel Proessing. MGraw-Hill,

seond edition, 1984.

[12℄ C. Lee, M. Potkonjak, and W.H. Mangione-Smith. MediaBenh: A Tool for Evaluating and Synthe-

sizing Multimedia and Communiation Systems. In MICRO 30, 1997.

[13℄ R.B. Lee and M.D. Smith. Media Proessing: A New Design Target. IEEE Miro, pages 6{9, 1996.

[14℄ Ruby B. Lee. Aelerating Multimedia with Enhaned Miroproessors. IEEE Miro, 15(2):22{32,

April 1995.

[15℄ Ruby B. Lee. Subword Parallelism with MAX-2. IEEE Miro, 16(4):51{59, August 1996.

[16℄ MIPS Extension for Digital Media with 3D. Doument available via

http://www.mips.om/Doumentation/isa5 teh brf.pdf, 1996.

[17℄ H. Nguyen and L.K. John. Exploiting SIMD Parallelism in DSP and Multimedia Algorithms Using

the AltiVe Tehnology. In ICS'99, pages 11{20, 1999.

[18℄ S. Palaharla, N.P. Jouppi, and J.E. Smith. Complexity-E�etive Supersalar Proessors. In

ISCA'97, 1997.

[19℄ Alex Peleg and Uri Weiser. MMX Tehnology Extension to the Intel Arhiteture. IEEE Miro,

16(4):42{50, August 1996.

15

[20℄ Alex Peleg, Sam Wilkie, and Uri Weiser. Intel MMX for Multimedia PCs. Communiations of the

ACM, 40(1):24{38, January 1997.

[21℄ C. Prie. MIPS IV Instrution Set, revision 3.1. MIPS Tehnologies, In., Mountain View, CA,

1995.

[22℄ Franisa Quintana, Jesus Corbal, Roger Espasa, and Mateo Valero. Adding a Vetor Unit on a

Supersalar Proessor. In ICS'99, 1999.

[23℄ P. Ranganathan, S. Adve, and N.P. Jouppi. Performane of Image and Video Proessing with

General-Purpose Proessors and Media ISA Extensions. In ISCA 26, pages 124{135, 1999.

[24℄ Shreekant Thakkar and Tom Hu�. The Internet Streaming SIMD Extensions. Intel Tehnology

Journal, May 1999.

[25℄ Mar Tremblay, J. Mihael O'Conner, Venkatesh Narayanan, and Lian He. VIS Speeds New Media

Proessing. IEEE Miro, 16(4):10{20, August 1996.

[26℄ VIS Instrution Set User's Manual. Doument available via

http://www.sun.om/miroeletronis/vis/, Marh 2000.

[27℄ C.H.Smith W.C.Chen and S.C.Fralik. A Fast Computational Algorithm for the Disrete Cosine

Transformation. IEEE Transations on Communiations, Sept 1977.

16

