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Abstra
t

An ar
hite
tural paradigm designed to a

elerate streaming operations on mixed-width

data is presented and evaluated. The des
ribed Complex Streamed Instru
tion (CSI) set


ontains instru
tions that pro
ess data streams of arbitrary length. The number of bits or

elements that will be pro
essed in parallel is, therefore, not visible to the programmer. This

ensures that no re
ompilation is needed in order to bene�t from a wider datapath. CSI

instru
tions also eliminate many overhead instru
tions often needed in appli
ations utilizing

SIMD-like media ISA extensions su
h as MMX and VIS. These overhead instru
tions (su
h

as instru
tions needed for data alignment and reorganization) are repla
ed by a hardware

me
hanism. Simulation results using several important multimedia kernels demonstrate that

CSI provides a fa
tor of up to 22.4 (7.9 on average) performan
e improvement when 
ompared

to Sun's VIS media ISA extension. For 
omplete appli
ations, the performan
e gain is 9%

to 36% with an average of 20%.

1 Introdu
tion

It is anti
ipated that multimedia appli
ations su
h as JPEG and MPEG 
oders/de
oders will

be
ome one of the dominant workloads in the near future [8, 13℄. Multimedia 
odes typi
ally

pro
ess small data types (for example, 8-bit pixels or 16-bit audio samples) and thus are not

well-suited for 
ommon general-purpose systems whi
h are optimized for pro
essing word-size

data (32 or 64 bits). Many vendors of general-purpose pro
essors have therefore extended

their instru
tion set ar
hite
ture (ISA) with instru
tions spe
i�
ally targeted to multimedia

appli
ations. These instru
tions exploit SIMD parallelism at the subword level, i.e., they operate


on
urrently on, e.g., eight bytes or four halfwords pa
ked in one 64-bit register. Examples of

su
h multimedia ISA extension are MMX [19, 20℄, VIS [25℄, MDMX [16℄, MAX [14, 15℄, and

AltiVe
 [9℄.

Although it has been shown that these ISA extensions improve the performan
e of many

multimedia kernels and appli
ations (see, e.g., [3, 17, 23℄), they have a number of limitations.

One is that the number of bits or elements that will be pro
essed in parallel, whi
h is equal to the

multimedia register size, (the se
tion width in ve
tor terminology) is visible to the programmer.

This implies that when the width of the SIMD datapath is in
reased so that more elements


an be pro
essed in parallel, either the ISA has to be 
hanged and existing 
odes have to

be re
ompiled or rewritten, or the issue width has to be in
reasedin order to fully utilize the

pro
essing power of the upgraded implementation. Another limitation is overhead for data

reorganization. This in
ludes instru
tions needed to 
onvert between di�erent pa
ked data

types (pa
k/unpa
k instru
tions) and data alignment instru
tions. In [23℄ it is reported that, on

average, 41% of the VIS instru
tions 
onstitute overhead. Furthermore, SIMD-style instru
tions

are most e�e
tive if the data is stored 
onse
utively. Multimedia appli
ations, however, often
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operate on sub-blo
ks of a large matrix, whi
h implies that there is a gap between the last

element of a row and the �rst element of the next row.

In this paper we present an ISA extension that addresses these problems as well as several

others. The approa
h is 
alled CSI, whi
h is short for Complex Streamed Instru
tions. CSI

instru
tions pro
ess one or two large data input streams and produ
e either a large data output

stream or a s
alar result. There is no ar
hite
tural (i.e., programmer-visible) 
onstraint on the

length of the data streams. Instead, the hardware is responsible for dividing streams of any

length into se
tions whi
h are pro
essed in parallel. Furthermore, the stream data may follow

a sub-matrix pattern. This stream format is des
ribed by a set of parameters whi
h do not

�t in a 32-bit instru
tion format. To solve this problem, every CSI instru
tion is 
ontrolled

by one or more sets of stream 
ontrol registers that 
ompletely spe
ify the data streams. CSI

instru
tions also eliminate the need for pa
k/unpa
k instru
tions, be
ause 
onversion between

di�erent pa
ked data types (if required) is performed internally in hardware. Loop overhead

instru
tions asso
iated with updating of pointers and bran
hing are also avoided.

We have 
ondu
ted experiments with the SimpleS
alar toolset [5℄ using several multimedia

kernels as well as 
omplete appli
ations, and 
ompared the performan
e of the CSI-enhan
ed

ar
hite
ture with the performan
e attained by an ar
hite
ture extended with Sun's Visual In-

stru
tion Set (VIS). The simulation results show the following:

� On kernel-level, the CSI-enhan
ed ar
hite
ture improves performan
e by a fa
tor of 5.2 to

42.3 (21.2 on average) 
ompared to the baseline 2-way out-of-order pro
essor. Compared

to the VIS-enhan
ed ar
hite
ture, the performan
e improvements are 2.2x to 22.4x (7.9 on

average). If the issue width is 4, the speedups are 4.1 to 24.0 (14.8 on average) w.r.t. the

baseline supers
alar pro
essor, and 1.7 to 16.3 (6.2 on average) w.r.t. the VIS-enhan
ed

ar
hite
ture.

� For 
omplete appli
ations, the performan
e gain of the CSI-enhan
ed ar
hite
ture over

the baseline 2-way out-of-order pro
essor ranges from 1.3 to 2.3 (1.8 on average), and

the gain over VIS-enhan
ed ar
hite
ture ranges from 8% to 36% with an average of 20%.

When the issue width is 4, the speedups are 1.2 to 1.8 (1.6 on average) w.r.t. the baseline

supers
alar pro
essor without multimedia extension, and 8% to 32% (18% on average)

w.r.t. the VIS-enhan
ed ar
hite
ture.

1.1 Related Work

The CSI ar
hite
tural paradigm was introdu
ed in [2℄. Sin
e then we modi�ed the ar
hite
ture in

order to a

ommodate more instru
tions using fewer op
odes. This is a

omplished using stream


ontrol register sets that 
ompletely spe
ify the input and output data streams as well as 
ertain

aspe
ts of the operation to be performed (for example, whether the stream elements are signed

or unsigned values and whether saturation arithmeti
 should be performed). Furthermore,

we signi�
antly extend upon the work des
ribed in [2℄ by providing results for several other

ben
hmarks, by in
luding a detailed simulation of the memory hierar
hy and by providing a


omparison with VIS. In [2℄, just one ben
hmark appli
ation was 
onsidered (an MPEG en
oder)

and the e�e
t of 
a
he misses was \imitated" by varying the laten
ies of the CSI instru
tions.

CSI instru
tions eliminate the need for ve
tor se
tioning, i.e., bookkeeping instru
tions

needed for pro
essing ve
tors of arbitrary length in se
tions. An early proposal aimed at hiding

the a
tual se
tion size (whi
h is implementation dependent) is the load ve
tor 
ount and update

(VLVCU) instru
tion of the IBM 370 ve
tor ar
hite
ture [4℄.

There are many SIMD-style multimedia ISA extensions, for example, MMX [19, 20℄, VIS [25℄,

MDMX [16℄, MAX [14, 15℄, AltiVe
 [9℄ and SSE [24℄. They mainly di�er in the number and

types of the newly added instru
tions. All of these ISA extensions operate on 64-bit registers,

ex
ept AltiVe
 and SSE, whi
h operate on 128-bit registers. It is, however, questionable if
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in
reasing the register size further provides any bene�t, be
ause often, the number of stream

elements stored 
onse
utively in memory is rather small. We return to this issue later.

Another proposal aimed at exploiting a higher degree of parallelism than 
urrent media

extensions 
an, is the Matrix Oriented Multimedia (MOM) extension des
ribed in [7℄. MOM

instru
tions 
an be viewed as ve
tor versions of subword parallel instru
tions, i.e., they operate

on matri
es where ea
h row 
orresponds to a pa
ked data type.

CSI is a memory-to-memory ar
hite
ture, i.e., there are no programmer visible registers.

This design 
hoi
e was made to avoid se
tioning, ba
ause it may result in underutilization of

the pipeline (it has to be �lled and 
ushed for ea
h se
tion), and to make the ISA independent

of the a
tual implementation. Furthermore, in many multimedia kernels data is read only on
e,

whi
h implies that there is not a lot of temporal lo
ality whi
h 
an be exploited by storing data

in registers. There have been memory-to-memory ve
tor ar
hite
tures in the past (for example,

the Texas Instruments' TI ASC and CDC's Star-100 [11℄), but they su�ered from high startup


ost whi
h was mainly due to the large memory laten
y. Our experiments show, however, that

all the ben
hmarks 
onsidered exhibit very high L1 hit rates (98-99%), and therefore, the startup


ost is less of a problem.

This paper is organized as follows. In Se
tion 2 we des
ribe the limitations of 
urrent multimedia

ISA extensions and illustrate how the CSI paradigm solves these problems. The CSI ISA exten-

sion and its implementation are des
ribed in Se
tion 3. Se
tion 4 des
ribes the ben
hmarks, the

modeled ar
hite
tures, and presents the experimental results. Con
luding remarks and topi
s

for future resear
h are given in Se
tion 5.

2 Motivation

In this se
tion we list some of the limitations of 
urrent media ISA extensions and des
ribe how

they are solved in the CSI ar
hite
ture.

Ar
hite
tural Constraint on Se
tion Size. All 
urrent media ISA extensions as well as

most ve
tor ar
hite
tures have an ar
hite
tural (i.e., programmer-visible) �xed se
tion size. For

example, MMX and VIS instru
tions operate on 64-bit registers whi
h 
an be treated either as

eight bytes, four halfwords, or two words. Be
ause of this, the se
tion size appears expli
itly in

the 
ode. This, however, means that if the width of the SIMD datapath is in
reased in order

to exploit more parallelism, the ISA may have to be 
hanged to re
e
t this. In other words,

(parts of) the appli
ation may have to be re
ompiled or even rewritten in order to bene�t from

the wider datapath. For example, if MMX would operate on 128-bit instead of 64-bit registers,

existing MMX 
odes must be re
ompiled or rewritten.

Another way to in
rease parallelism is by in
reaing the issue width so that more SIMD

instru
tions 
an be pro
essed in parallel. However, it is generally a

epted that in
reasing

the issue width requires a substantial amount of hardware and may negatively a�e
t the 
y
le

time [10, 18℄.

In CSI these problems are avoided be
ause CSI instru
tions pro
ess data streams of arbitrary

length. The implementation is responsible for dividing the data streams into se
tions whi
h are

pro
essed in parallel. Therefore, the number of elements that is pro
essed in parallel does not

appear expli
itly in the 
ode.

In
reasing the Degree of Parallelism. A problem related to the previous is the following.

Although it may be possible to in
rease the width of the datapath and the register size, it may

not always be bene�
ial be
ause many multimedia appli
ations operate on sub-blo
ks of a large

matrix (representing, e.g., an image), and the ve
tor length in both the x- and the y-dire
tion is

rather short (typi
ally 8 or 16 bytes). Consider, for example, Figure 1 whi
h shows a C-fun
tion

3



stati
 void add_pred(pred,
ur,lx,blk)

unsigned 
har *pred, *
ur;

int lx;

short *blk;

{

int i, j;

for (j=0; j<8; j++){

for (i=0; i<8; i++)


ur[i℄ = 
lp[blk[i℄ + pred[i℄℄;

blk+= 8;


ur+= lx;

pred+= lx;

}

}

Figure 1: C 
ode for saturating add.

taken from an MPEG en
oder. The rows of the pred and 
ur blo
ks are not stored 
onse
utively

in memory. The amount of parallelism that 
an be exploited by a SIMD extension is therefore

restri
ted to a single row. The same observation has been made in [7℄.

CSI instru
tions do not operate on unit-stride ve
tors nor on ve
tors with a non-unit but

�xed stride, but on sub-matri
es. The row length as well as the distan
e between two 
onse
utive

rows are set via spe
ial 
ontrol registers. This allows CSI to exploit a higher degree of parallelism

than SIMD ISA extensions 
an.

Non-unit Strides. SIMD extensions are most e�e
tive if the ve
tor elements are stored 
on-

se
utively. Otherwise, the data needs to be reordered to exploit parallelism. In some multimedia

appli
ations, however, 
onse
utive stream elements are stored at a �xed but non-unit stride. This

happens, for example, in JPEG's 
olor 
onversion routine where the Red, Green and Blue 
om-

ponents are stored at a stride of 3. In the upsampling/downsampling phases in JPEG, data is

also a

essed with a non-unit stride.

In CSI, 
onse
utive stream elements pertaining to the same row do not have to be stored in


onse
utive memory lo
ation. Thus, we allow any stride between two 
onse
utive row elements,

as well as between 
onse
utive rows. The hardware implementation is responsible for aligning

them properly. This is one of the di�eren
es with MOM [7℄, whi
h allows an arbitrary stride

between two 
onse
utive rows but requires a unit-stride between 
onse
utive row elements.

Computing with Di�erent Formats and Saturation. When we 
onsider Figure 1 again,

we observe that one of the blo
ks 
onsists of 16-bit (short) elements, whereas the other 
onsists

of 8-bit elements. When these two blo
ks are added using SIMD instru
tions, the pred blo
k

must be unpa
ked (or promoted) to a 16-bit format. Data promotion may also be required

when the input elements have the same size, be
ause the result may not be representable by

this format. This in
urs a performan
e penalty of at least a fa
tor of 2, due to the redu
ed

parallelism and the overhead 
aused by pa
k/unpa
k operations. Be
ause of this, many media

ISA extensions have instru
tions that automati
ally saturate to the smallest or largest value the

data type 
an represent. (VIS does not support saturation arithmeti
, but performs saturation

while pa
king.)

In the CSI ar
hite
tural paradigm, these problems are resolved as follows. When pa
k-

ing/unpa
king is ne
essary be
ause the input streams have di�erent formats (as in the 
ode

shown in Figure 1), it is performed internally in hardware. No spe
ial op
odes are needed to

spe
ify that, for example, one of the data input streams 
onsists of 16-bit elements and the
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other of 8-bit elements, be
ause with ea
h operand stream a 
ontrol register is asso
iated that

spe
i�es the element width. If pa
king/unpa
king is not required, the programmer 
an spe
ify

that saturation arithmeti
 should be performed instead of \wrap-around arithmeti
" by setting

a bit in another 
ontrol register. The CSI ar
hite
ture also has a wide a

umulator, similar

to MDMX [16℄, whi
h avoids the need for data promotion in redu
tion operations. This is

another di�eren
e with MOM [7℄, whi
h 
an also perform saturation arithmeti
 and also uses

an a

umulator, but whi
h still requires pa
king/unpa
king if the input streams have di�erent

sizes.

Data Alignment and Loop Control. There are other instru
tions besides pa
king and

unpa
king that 
ontribute to the overhead. This in
ludes alignment-related instru
tions and

instru
tions needed for loop 
ontrol. For example, in VIS alignment instru
tions are needed

when an 8-byte ve
tor is not stored at an 8 byte aligned address. Loop 
ontrol instru
tions

are the instru
tions required for breaking the data stream into �xed-size se
tions whi
h are

pro
essed in parallel. This in
ludes instru
tions needed to advan
e the pointers to the next

se
tions, instru
tions that 
ompute the loop termination 
ondition, and bran
h instru
tions.

In the CSI ar
hite
ture, these fun
tions are also repla
ed by a hardware me
hanism. The

hardware generates aligned addresses and is responsible for extra
ting the bytes that belong to

the data stream. Furthermore, sin
e CSI instru
tions pro
ess streams of arbitrary length, no

loop 
ontrol instru
tions are needed.

3 Ar
hite
ture and Implementation

In this se
tion we present the CSI multimedia ISA extension. A possible implementation is also

des
ribed.

3.1 Overview of the Complex Streamed Instru
tion Set

CSI is a memory-to-memory ar
hite
ture. Most CSI instru
tions load two large data input

streams from memory, operate on them element-wise, and write the resulting stream ba
k to

memory. There is no ar
hite
tural 
onstraint on the stream length.

The stream elements do not have to be stored 
onse
utively, nor at a 
onstant stride. The

format of a stream is that of a sub-matrix, as illustrated in Figure 2. Ea
h stream 
onsists of an

arbitrary number of rows, and the row elements are stored at a �xed stride whi
h will be referred

to asHStride (short for horizontal stride). There is also a �xed stride between 
onse
utive rows,

whi
h will be referred to as VStride. The reason for this is that many streaming operations in

multimedia as well as many other appli
ations operate on sub-blo
ks of a large matrix.

The exe
ution of every CSI instru
tion that pro
esses two input streams and produ
es an

output stream result is 
ontrolled by three sets of stream 
ontrol registers (SCR-sets). Ea
h

SCR-set 
onsists of the following 32-bit registers, numbered 0 to 5:

0. Base. This register 
ontains the starting or base address of the stream. For example, if

the matrix in Figure 2 is stored in row-major order and its base address is 8000, the base

address of the stream is 8018.

1. RLength. This register holds the number of stream elements in a row (the number of

elements belonging to the stream, not the row length of the enveloping matrix). In the

example, RLength=4.

2. SLength. This register 
ontains the stream length. In the example illustrated in Figure 2,

SLength=12.
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Base

HStride = 4

VStride = 32

S4.Size

Figure 2: Format of a stream. Ea
h box represents a byte. Filled boxes are stream

elements. In this example, the horizontal stride HStride=4 and VStride=32. Fur-

thermore, RLength=4, SLength=12, and the element size is S4.Size=2.

31 34 2 1 09

unused

Scale factor
Saturate

Size
Sign

Figure 3: Format of the S4 register

3. HStride. The stride in bytes between 
onse
utive stream elements in a row.

4. VStride. The distan
e in bytes between 
onse
utive rows.

5. S4. This register 
onsists of four �elds: Size , S
ale fa
tor , Sign and Saturate . The

�rst �eld 
onsists of two bits and spe
i�es the size of the stream elements, where 00


orresponds to bytes, 01 half-words, 10 words, and 11 double-words. The Sign �eld is

a 
ag that spe
i�es if the stream elements are signed or unsigned values. The Saturate

�eld is also a 
ag that spe
i�es if saturation or modular arithmeti
 should be performed.

If this bit is set and the result 
annot be represented by the number of bytes indi
ated by

the Size �eld, the result is 
lipped to the minimum or maximum value. If this bit is not

set, the result simply \wraps-around". The fun
tion of the S
ale fa
tor �eld is identi
al

to the S
ale fa
tor �eld of the Graphi
s Status Register of the VIS ar
hite
ture [26℄. It

determines the amount by whi
h the result is shifted to the left before it is trun
ated and

the least signi�
ant bits are dis
arded. This me
hanism allows to spe
ify the number of

fra
tional bits. The format of the S4 register is depi
ted in Figure 3.

The CSI instru
tion set is divided in two 
ategories:

1. CSI arithmeti
 and logi
al instru
tions. These instru
tions have the following for-

mats:

� op SCRSi, SCRSj, SCRSk

Su
h instru
tions pro
ess two data input streams and produ
e a data output stream.

The streams are spe
i�ed by the 
orresponding SCR-sets. Examples are pairwise

addition, subtra
tion and multipli
ation of two data streams. Be
ause no guarantees

are given about the order in whi
h the stream elements are pro
essed, the output

stream spe
i�ed by SCRSi may not overlap with the input streams SCRSj and SCRSk.

� op SCRSi, SCRSj, GPRk

These instru
tions are similar to the previous ones but the se
ond operand is not a

data stream but a s
alar value. An example of su
h an instru
tion is the multipli
ation

of a data stream by a s
alar.
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� op SCRSi, SCRSj, imm

These instru
tions are identi
al to the previous ones ex
ept that the se
ond operand

is a 16-bit immediate value instead of a general-purpose register.

� op GPRi, SCRSj, SCRSk

These instru
tions pro
ess two input streams and produ
e a s
alar result. Two exam-

ples are 
si_sad and 
si_dotprod, whi
h 
ompute the sum of absolute di�eren
es

and dot produ
t of two data streams, respe
tively.

2. CSI auxiliary instru
tions. These instru
tions manage the individual stream 
ontrol

registers. There are just two of them.

� 
si_mts
r SCRSi, j, GPRk

mts
r stands for move to stream 
ontrol register. This instru
tion loads SCR j of

SCR-set SCRSi with the 
ontents of the general purpose register GPRk. The stream


ontrol registers are numbered as above. For example, the base address of SCR-set

SCRS2 
an be loaded from GPR4 using 
si_mts
r SCRS2, 0, GPR4.

� 
si_mts
ri SCRSi, j, imm

This instru
tions also loads a stream 
ontrol register but with an immediate value.

Note that sin
e the element size and the Sign and Saturate bits are set using 
ontrol

registers, the CSI ISA extension is quite 
ompa
t and a
tually smaller than SIMD extensions su
h

as VIS and MMX. For example, seven MMX instru
tions padd[b,w,d℄ (add with wrap-around

on [byte, word, double-word℄), padds[b,w℄ (add signed with saturation) and paddus[b,w℄ (add

unsigned with saturation) 
orrespond to just one CSI instru
tion 
si_add whi
h 
an add streams

of signed as well as unsigned bytes, halfwords (words in Intel terminology) and words, and whi
h

also performs saturation if the Saturate bit is set.

As an example, Figure 4 shows the CSI 
ode for the add_pred routine depi
ted in Figure 1.

In this example 18 instru
tions are needed to set the 
ontrol registers. This might seem sig-

ni�
ant but very often this overhead is negligible due to the following reasons. First, these

instru
tions are exe
uted only on
e and their number is still very small 
ompared to the number

of instru
tions that must be exe
uted by a supers
alar pro
essor. In this example, 64 iterations

are repla
ed by 18 instru
tions that manipulate the SCRs and a single 
si_add instru
tion.

Se
ond, in many 
ases, not all SCRs have to be reset to initiate a new CSI instru
tion. For

example, the add_pred routine is exe
uted on many di�erent blo
ks. This means that after all

SCRs are set the �rst time add_pred is 
alled, only the base addresses of the input and output

streams have to be reset. The overhead is therefore amortized over many instru
tions.

We remark that the stru
ture of the CSI ar
hite
ture allows some very powerful instru
tions

to be 
onstru
ted. For example, an n�n matrix of bytes 
an be transposed using the instru
tion


si_addi SCRS3,SCRS1,0 by setting the HStride of SCRS3 to n and the VStride to 1. As

another example, the arithmeti
 average of two pixel streams spe
i�ed by SCRS1 and SCRS2 
an

be 
al
ulated using the 
si_addi SCRS3,SCRS1,SCRS2 instru
tion by setting the S
ale fa
tor

�eld so that the result has one fra
tional bit.

All CSI instrutions 
an be interrupted during exe
ution. However, we �rst observe that

arithmeti
 over
ow does not generate an ex
eption, sin
e either wrap-around or saturation

arithmeti
 is performed. Other exe
eptions, su
h as page faults, 
an be handled as in the IBM

System/370 ve
tor ar
hite
ture [4℄. A stream interruption index is maintained that indi
ates

whi
h stream elements are 
urrently being pro
essed. If the CSI instru
tion is interrupted, this

internal register marks the point that has been rea
hed. If the instru
tion is later reissued,

exe
ution resumes from that point.
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# Here GPRi is denoted as $i

# We assume pred=$4, 
urr=$5, lx=$6, blk=$7

# Set SCRs for blk stream


si_mts
r SCRS1,0,$7 # Base


si_mts
ri SCRS1,1,8 # RLength


si_mts
ri SCRS1,2,64 # SLength


si_mts
ri SCRS1,3,2 # HStride


si_mts
ri SCRS1,4,16 # VStride

# s
ale=0, saturate=0, sign=1, size is 01 (halfwords)

# So, 
onstant to load in S4 is 0101 (base 2) = 5 (base 10)


si_mts
ri SCR1,5,5 # S4

# Set SCRs for pred stream


si_mts
r SCRS2,0,$4 # Base


si_mts
ri SCRS2,1,8 # RLength


si_mts
ri SCRS2,2,64 # SLength


si_mts
ri SCRS2,3,1 # HStride


si_mts
r SCRS2,4,$6 # VStride

# s
ale=0, saturate=0, sign=0, size is 00 (bytes)

# So, 
onstant to load in S4 is 0000 (base 2) = 0 (base 10)


si_mts
ri SCRS2,5,0 # S4

# Set SCRs for 
urr stream


si_mts
r SCRS3,0,$5 # Base


si_mts
ri SCRS3,1,8 # RLength


si_mts
ri SCRS3,2,64 # SLength


si_mts
ri SCRS3,3,1 # HStride


si_mts
r SCRS3,4,$6 # VStride

# s
ale=0, saturate=1, sign=0, size is 00 (bytes)

# So, 
onstant to load in S4 is 1000 (base 2) = 8 (base 10)


si_mts
ri SCRS3,5,8 # S4

# Trigger streamed operation 
si_add 
urr,blk,pred


si_add SCRS3,SCRS2,SCRS1

Figure 4: CSI 
ode for the add pred routine.

3.2 Implementation

In this se
tion we des
ribe the hardware implementation of the CSI ar
hite
ture, whi
h will

be referred to as the stream unit. The datapath of the experimental stream unit is depi
ted in

Figure 5. Its main hardware entities are the stream 
ontrol register sets (SCR-sets), the memory

interfa
e unit, the pa
k and unpa
k units, one or more CSI fun
tional units whi
h perform SIMD

parallel operations, and the a

umulator ACC. For 
larity, some of the paths have been omitted.

For example, one of the inputs of the CSI fun
tional units 
an be a general-purpose register or

an immediate value, and there is also a path from the general-purpose registers to the stream


ontrol registers.

The memory interfa
e unit is responsible for transferring data between the memory hierar
hy

and the stream bu�ers. In addition, if the data is not stored 
onse
utively, it must also extra
t

non-
onse
utive data from the 
a
he and align them in the proper order. Its operation will be

des
ribed in more detail below.

The unpa
k units 
onvert stream data from storage format to 
omputational format (if

required). For this, they use the values of the Size and Sign �elds of the SCR S4. For

example, if one data input stream 
onsists of unsigned bytes and the other 
onsists of signed

halfwords, the �rst is 
onverted to 16-bit halfwords by padding with zeroes.

8
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Figure 5: Datapath of the Stream Unit

The CSI fun
tional units perform subword parallel operations on the data 
ontained in the

input registers. Currently two CSI units are used: one CSI MULT unit that performs parallel

multipli
ation and division, and one SIMD ALU that performs parallel addition and subtra
tion

as well as the sum of absolute di�eren
es (SAD) operation. The setup logi
 is also used in the


omputation of the SAD operation. Following the s
heme presented in [1℄, it determines the

smallest of ea
h pair of 
orresponding pixels 
ontained in the input registers, and 
ontrols the

CSI ALU so that it negates the smallest pixel of ea
h pair. The size of the input registers is

n, where n is implementation dependent, and the size of the output register is 2n so that no

over
ow o

urs during 
omputation.

>From the output register, data 
ows either to the stream output bu�er via the pa
k unit

or to the a

umulator. The pa
k unit 
onverts the data from 
omputational format to storage

format. It also performs trun
ation and saturation, similar to the VIS pa
k instru
tions. For

this, it uses S
ale fa
tor , Sign , Saturate and Size �elds of the S4 register 
orresponding to

the output stream.

The a

umulator is 3n bits wide. It is used in redu
tion operations su
h as the SAD and

DOTPROD. It enables the a

umulation of up to 2

n

n � n produ
ts without having to promote

the operands to a larger format [16℄. As mentioned, data promotion in
urs a performan
e

penalty due to the redu
ed parallelism and due to the 
y
les needed for exe
uting pa
k/unpa
k

instru
tions. Note that the stream unit performs data promotion only if the input streams have

di�erent formats, not when the result may be
ome too large.

Finally, the adder between the a

umulator and the register �le sums up the 
omponents


ontained in the a

umulator. The a

umulator 
an 
ontain either k = n=8, n=16, n=32, or n=64


omponents.
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e Unit

Memory Interfa
e Unit. We now des
ribe the memory interfa
e unit (MIU). One important

issue is the following: should the MIU be 
onne
ted to the level-1 (L1) 
a
he, or should it bypass

the L1 
a
he and go dire
tly to the L2 
a
he or even main memory? In this study we de
ided

to 
onne
t the MIU to the L1 
a
he for the following reasons. First, Ranganathan et al. [23℄

observed that with realisti
 L1 
a
he sizes, multimedia appli
ations a
hieve high hit rates. Our

simulations support this observation. For example, with a 32K dire
t-mapped L1 data 
a
he,

all the ben
hmarks exhibited hit rates over 99%. Another motivation is that sin
e the L1 
a
he

is on-
hip, it will not be expensive to widen the path between the 
a
he and the stream unit,

so that a whole 
a
he blo
k 
an be brought to the stream unit in a single 
y
le. In the future,

however, we intend to look at other 
a
he organizations, su
h as those proposed in [22℄. It is

also assumed that the L1 
a
he has two read ports and one write port.

The memory interfa
e unit is depi
ted in Figure 6. It 
onsists of the following hardware

entities: three address generators (AGs), a load queue (LQ) and a store queue (SQ), and extra
t

and insert hardware.

The AGs generate the addresses of the 
a
he blo
ks that must be fet
hed. After a CSI

instru
tion has been issued, ea
h AG aligns the Base address of its asso
iated data stream to


a
he blo
k boundaries, and inserts the aligned address into the load queue. Furthermore, with

ea
h LQ entry, a mask of CBS bits is asso
iated, where CBS is the 
a
he blo
k size in bytes.

This mask marks whi
h bytes in the 
a
he blo
k belong to the stream. It is 
omputed based

on the values of the 
ontrol registers HStride, VStride and RLength, and the Size �eld of

the S4 register. Ea
h AG also updates some internal 
ontrol registers in order to 
ompute the

address of the next blo
k to fet
h.

The load queue submits the load address to the 
a
he read port. When the data arrives, it

sets the ready 
ag of the 
orresponding entry. The store queue operates similarly.

The extra
t unit monitors the entry at the head of the LQ. When the ready 
ag of this entry

is set, it extra
ts the useful bytes from it (based on the 
orresponding mask), and pla
es them


onse
utively in an input stream bu�er. It operates similar to a 
ollapsing bu�er [6℄. The insert

unit performs the inverse operation, i.e., it \s
atters" the stream elements so that they are in

their 
orre
t position, and pla
es the 
a
he blo
k in the store queue. The SQ then performs a

partial store, similarly to the VIS partial store instru
tion.

4 Evaluation

In order to evaluate the performan
e of the proposed ISA, we simulated a supers
alar pro
essor

without a multimedia ISA extension, a supers
alar pro
essor with the VIS extension, and a pro-


essor extended with CSI instru
tions. We studied four ben
hmarks from the MediaBen
h [12℄

test suite: mpeg2en
 (MPEG-2 en
oder), mpeg2de
 (MPEG-2 de
oder), 
jpeg (JPEG en
oder),

and djpeg (JPEG de
oder). These programs are representative of video and image pro
essing

appli
ations. For the MPEG ben
hmarks, we used the test bitstream, whi
h 
onsists of three

128 � 128 frames. For the JPEG ben
hmarks, the rose input was used, whi
h is a 227 � 149
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pixel image.

4.1 Simulation Methodology and Tools

We used the sim-outorder simulator of the SimpleS
alar toolset (release 2.0) [5℄ to simulate a

supers
alar pro
essor without and with VIS or CSI extensions. sim-outorder is an exe
ution-

driven simulator that support out-of-order issue and exe
ution.

The SimpleS
alar ar
hite
ture is derived from MIPS-IV ISA [21℄. Ea
h instru
tion has a

16-bit annote �eld that 
an be modi�ed post-
ompile with annotations to instru
tions in the

assembly �les. This interfa
e 
an be used to synthesize new instru
tions without having to


hange the assembler. We used this me
hanism to synthesize CSI and VIS instru
tions.

To our knowledge, there is no 
ompiler that generates VIS 
ode. We therefore had to

write VIS (as well as CSI) 
ode ourselves, but used 
ode from the VIS Software Developer's Kit

(VSDK) wherever possible. First, the most time-
onsuming routines were identi�ed by pro�ling.

After that, the fun
tions that 
ontained a substantial amount of data-level parallelism and

whose key 
omputation 
ould be repla
ed by VIS and CSI instru
tions were rewritten manually.

The loops were unrolled so that the loop bodies 
ould be repla
ed by a set of equivalent VIS

instru
tions.

We pro�led the ben
hmarks using the sim-profile tool provided with the SimpleS
alar

toolset and sele
ted the most 
ompute-intensive kernels: Add Blo
k (MPEG2 frame re
onstru
-

tion), Saturate (saturation of 16-bit elements to 12-bit range in MPEG de
oder), dist1 (sum

of absolute di�eren
es for motion estimation), y

 rgb 
onvert and rgb y

 
onvert (
olor


onversion between YCC and RGB 
olor spa
es in JPEG), and h2v2 downsample (2:1 horizon-

tal and verti
al downsampling of a 
olor 
omponent in JPEG), and id
t (inverse dis
rete 
osine

transform). We remark that DCT routines are not available in the VSDK. It is available in the

SUN mediaLib, but this library 
onsists of binary routines, whi
h 
ould not be used be
ause the

baseline ar
hite
ture is SimpleS
alar, not UltraSPARC.

4.2 Modeled Ar
hite
ture

It is important to note that the baseline ar
hite
ture is SimpleS
alar (i.e., MIPS-IV ISA), not

UltraSPARC. We have 
hosen VIS instead of the MIPS multimedia ISA extension MDMX

be
ause, �rst, VIS is representative of many 
urrent media extensions [23℄, and, se
ond, MDMX

has no instru
tion that 
omputes the sum of absolute di�eren
es (SAD). The SAD is used in

motion estimation, whi
h is the most time-
onsuming part of the MPEG en
oder. With MDMX

one should use the sum of squared di�eren
es [16℄ instead, but we did not want to modify the

ben
hmarks.

The base system is a 4-way supers
alar pro
essor with out-of-order issue and exe
ution. The

main pro
essor parameters are listed in Table 1.

VIS instru
tions operate on the 
oating-point register �le. All VIS instru
tions have a laten
y

of 1 
y
le ex
ept the pdist (whi
h 
omputes the SAD) and the pa
ked multiply instru
tions,

both of whi
h have a laten
y of 3 
y
les. There are two VIS adders that perform partitioned

add and subtra
t, merge, expand and logi
al operations, and two VIS multipliers that perform

the partitioned multipli
ation, 
ompare, pa
k and pixel distan
e operations. This is modeled

after the UltraSPARC [25℄ with the following ex
eptions. In the UltraSPARC, the alignaddr

instru
tion 
annot be exe
uted in parallel with other instru
tions [26℄ but this limitation is not

present in the ar
hite
ture we modeled. Furthermore, the UltraSPARC has only one 64-bit VIS

multiplier. We assumed two be
ause the width of the datapath of the stream unit is assumed to

be 128 bits. The degree of parallelism of the VIS-enhan
ed and the CSI-enhan
ed ar
hite
tures

are, therefore, 
omparable.

The parameters of the memory subsystem are listed in Table 2. Be
ause the ben
hmarks

used in this study have small instru
tion working sets, a perfe
t instru
tion 
a
he is assumed.
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Issue width 4-way FU laten
y/re
overy (
y
les)

Reorder bu�er size 16 Integer ALU 1/1

Load-store queue size 8 Integer MUL

Bran
h Predi
tion multiply 3/1

Bimodal predi
tor size 2K divide 20/19

Bran
h target bu�er size 2K Ca
he port 1/1

Return-address sta
k size 8 FP ALU 2/2

Fun
tional unit type and number FP MUL

Integer ALU 4 FP multiply 4/1

Integer MULT 1 FP divide 12/12

Ca
he ports 2 sqrt 24/24

Floating-point ALU 4 VIS adder 1/1

Floating-point MULT 1 VIS multiplier

VIS adder 2 multiply and pdist 3/1

VIS multiplier 2 other 1/1

Table 1: Pro
essor 
on�guration.

Instru
tion 
a
he ideal

Data 
a
hes

L1 line size 32 bytes

L1 asso
iativity dire
t-mapped

L1 size 32 KB

L1 hit time 1 
y
le

L2 line size 128 bytes

L2 asso
iativity 2-way

L2 size 1 MB

L2 repla
ement LRU

L2 hit time 6 
y
les

Main memory

type page-mode

page size 4 KB

�rst page a

ess 30 
y
les

next page a

ess 10 
y
le

bus width 16 bytes

Table 2: Memory 
on�guration.

All sub-units (i.e., pa
k/unpa
k, extra
t/insert, CSI adder et
.) of the stream unit require 1


y
le, ex
ept for the CSI multiplier, whi
h requires 3 
y
les but is fully pipelined. The datapath

of the stream unit is 128 bits wide. So, the CSI fun
tional units pro
ess either 16 bytes, 8

halfwords, 4 words, or 2 double-words in parallel. The input registers are therefore 128 bits

wide, the output register 256 bits, and the a

umulator 384 bits (
f. Figure 5).

Be
ause one CSI instru
tion 
an repla
e two embedded loops, the requirements for the

ma
hine's fet
h, de
ode and issue bandwidth will be greatly redu
ed. In order to evaluate this

e�e
t, we also simulated a 2-way supers
alar pro
essor in addition to a 4-way system.

4.3 Experimental Results

In this se
tion we present the speedups attained by the two multimedia ISA extensions (VIS

and CSI) 
onsidered. Speedups will be given with respe
t to the 2-way base system. We �rst

present results for several kernels from our ben
hmarks. After that, we analyze how kernel-level
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Figure 7: Speedups on kernel level

speedup translates to appli
ation speedup.

Figure 7 depi
ts the speedups attained for the seven kernels sele
ted from the ben
hmarks.

When the issue width is 2, the VIS-enhan
ed ar
hite
ture a
hieves a speedup of 1.4 to 5.9 with

an average of 3.1, whereas the CSI-enhan
ed ar
hite
ture attains speedups ranging from 5.2 to

42.3 (21.2 on average). When the issue width is 4, the average speedup (w.r.t. to the 2-way

system) of the VIS-enhan
ed ar
hite
ture is 4.2 (1.9 to 7.2) and the average speedup of the

CSI-enhan
ed ar
hite
ture is 22.5 (5.6 to 42.2) So, CSI 
learly outperforms VIS.

Espe
ially on the Saturate kernel the CSI-enhan
ed ar
hite
ture performs mu
h better

than the ar
hite
ture extended with VIS instru
tions. Whereas the VIS-enhan
ed ar
hite
ture

attains speedups of 1:43 (2-way issue) and 2:03 (4-way issue), the CSI-enhan
ed ar
hite
ture

attains speedups of 32:1 and 33:2, respe
tively. The reason is that in this kernel 16-bit values

have to be 
lipped to a 12-bit range and, simultaneously, the 
lipped values have to be a

umu-

lated. Be
ause CSI instru
tions have saturation to any desired range as a feature (by setting

the Saturate bit and adjusting the S
ale fa
tor �eld of the S4 register), and be
ause the

a

umulator a

umulates all results, the body of the Saturate kernel is essentially repla
ed

by one instru
tion. In the VIS-enhan
ed ar
hite
ture, saturation and a

umulation have to be

performed in software.

It 
an be observed that the smallest performan
e improvement of the CSI-enhan
ed ar
hi-

te
ture over the VIS-enhan
ed ar
hite
ture o

urs for the id
t kernel. The reason is that the

VIS version is based on the s
alar version, whi
h in turn is based on a highly optimised DSP

algorithm proposed in [27℄. However, this DSP algorithm does not operate on long ve
tors and


an therefore not be eÆ
iently implemented using CSI instru
tions. The CSI version of the

id
t is based on the standard de�nition of the IDCT as two matrix multipli
ations. Thus, the

13



djpeg          SPEEDUP   

X

0.00

0.50

1.00

1.50

2.00

2.50

2−WAY                             4−WAY

0.00

0.50

1.00

1.50

cjpeg

2−WAY                         4−WAY

scalar

VIS

CSI

mpeg2decode    SPEEDUP   

0.00

0.50

1.00

1.50

2.00

2.50

2−WAY 4−WAY

0.00

0.50

1.00

1.50

2.00

2.50

mpeg2encode

2−WAY                        4−WAY

Figure 8: Speedups on appli
ation level

CSI version of id
t exe
utes many more operations than the VIS version, but nevertheless a

speedup is obtained.

The results for 
omplete appli
ations are depi
ted in Figure 8. For a 2-way issue ma
hine, the

VIS-enhan
ed ar
hite
ture a
hieves speedups of 1.42 (on the djpeg ben
hmark), 1.17 (
jpeg),

1.40 (mpeg2de
) and 1.93 (mpeg2en
), whereas the CSI-enhan
ed ar
hite
ture attains speedups

of 1.94, 1.28, 1.70 and 2.28, respe
tively. For a 4-way issue ma
hine, the respe
tive speedups

are 2.08, 1.59, 2.13 and 2.37 for the VIS-enhan
ed ar
hite
ture, and 2.75, 1.74, 2.48 and 2.77

for the CSI-enhan
ed ar
hite
ture. Of 
ourse, due to Amdahl's Law, the speedups for 
omplete

programs are less impressive than those for kernels. Nevertheless, when the issue width is two,

the CSI-enhan
ed ar
hite
ture yields an average performan
e gain over VIS of 20% on average

(range of 8% to 36%), and when the issue width is four, the average speedup of CSI over VIS is

18% (range of 8% to 32%).

Finally, we remark that when the issue rate is 2, the CSI-enhan
ed ar
hite
ture attains higher

speedups w.r.t. the VIS-enhan
ed ar
hite
ture than when the base system is a 4-way pro
essor.

This means that the performan
e of the stream unit is rather insensitive to the pro
essor issue

width. This makes the CSI ar
hite
ture highly suitable for embedded systems, where high issue

rates and out-of-order issue and exe
ution are too expensive. The same observation has been

made in [7℄ for the MOM ISA extension.

5 Con
lusions

In this paper we presented an ar
hite
tural paradigm designed to a

elerate streaming operations

on mixed-width data. The des
ribed Complex Streamed Instru
tion (CSI) set was evaluated

using four multimedia ben
hmarks. On a number of important kernels, we observed speedups

ranging from 2.1 to 22.4 relative to an ar
hite
ture extended with VIS instru
tions. These lo
al

improvements resulted in appli
ation speedups of up to 36%.

One of the distin
t features of the CSI ar
hite
ture is that the number of bytes whi
h are

pro
essed in parallel (the se
tion size of pro
essing width) is not determined by the ar
hite
ture

but solely by the implementation. This ensures that no re
ompilation is needed in order to

bene�t from a wider datapath. The CSI ar
hite
ture also eliminates overhead asso
iated with

data alignment and 
onversion between storage and 
omputational format.
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There are several important resear
h issues regarding the memory subsystem. As mentioned,

we have not yet fully explored what the most 
ost-e�e
tive 
a
he organization is for streaming

operations, and to whi
h level of the 
a
he hierar
hy (L1 or L2 
a
he) the stream unit should

be 
onne
ted. It may also be a viable option to 
onne
t the stream unit dire
tly to the main

memory, be
ause in the stream unit loads and stores are overlapped with 
omputation. The

initial read laten
y is in
urred only on
e, implying that the performan
e of the stream unit

should be rather insensitive to the memory laten
y. This property may be espe
ially useful

for systems with no or small 
a
hes, su
h as embedded systems. Another option is to in
lude

prefet
hing. Sin
e the data streams are 
ompletely spe
i�ed by the stream 
ontrol registers, the

memory interfa
e unit is aware of all memory a

esses whi
h are going to be performed. It 
an

therefore issue prefet
hes in order to bring the data 
loser to the stream unit.
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