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Abstract

An architectural paradigm designed to accelerate streaming operations on mixed-width
data is presented and evaluated. The described Complex Streamed Instruction (CSI) set
contains instructions that process data streams of arbitrary length. The number of bits or
elements that will be processed in parallel is, therefore, not visible to the programmer. This
ensures that no recompilation is needed in order to benefit from a wider datapath. CSI
instructions also eliminate many overhead instructions often needed in applications utilizing
SIMD-like media ISA extensions such as MMX and VIS. These overhead instructions (such
as instructions needed for data alignment and reorganization) are replaced by a hardware
mechanism. Simulation results using several important multimedia kernels demonstrate that
CSI provides a factor of up to 22.4 (7.9 on average) performance improvement when compared
to Sun’s VIS media ISA extension. For complete applications, the performance gain is 9%
to 36% with an average of 20%.

1 Introduction

It is anticipated that multimedia applications such as JPEG and MPEG coders/decoders will
become one of the dominant workloads in the near future [8, 13]. Multimedia codes typically
process small data types (for example, 8-bit pixels or 16-bit audio samples) and thus are not
well-suited for common general-purpose systems which are optimized for processing word-size
data (32 or 64 bits). Many vendors of general-purpose processors have therefore extended
their instruction set architecture (ISA) with instructions specifically targeted to multimedia
applications. These instructions exploit SIMD parallelism at the subword level, i.e., they operate
concurrently on, e.g., eight bytes or four halfwords packed in one 64-bit register. Examples of
such multimedia ISA extension are MMX [19, 20], VIS [25], MDMX [16], MAX [14, 15], and
AltiVec [9].

Although it has been shown that these ISA extensions improve the performance of many
multimedia kernels and applications (see, e.g., [3, 17, 23]), they have a number of limitations.
One is that the number of bits or elements that will be processed in parallel, which is equal to the
multimedia register size, (the section width in vector terminology) is visible to the programmer.
This implies that when the width of the SIMD datapath is increased so that more elements
can be processed in parallel, either the ISA has to be changed and existing codes have to
be recompiled or rewritten, or the issue width has to be increasedin order to fully utilize the
processing power of the upgraded implementation. Another limitation is overhead for data
reorganization. This includes instructions needed to convert between different packed data
types (pack/unpack instructions) and data alignment instructions. In [23] it is reported that, on
average, 41% of the VIS instructions constitute overhead. Furthermore, SIMD-style instructions
are most effective if the data is stored consecutively. Multimedia applications, however, often



operate on sub-blocks of a large matrix, which implies that there is a gap between the last
element of a row and the first element of the next row.

In this paper we present an ISA extension that addresses these problems as well as several
others. The approach is called CSI, which is short for Complex Streamed Instructions. CSI
instructions process one or two large data input streams and produce either a large data output
stream or a scalar result. There is no architectural (i.e., programmer-visible) constraint on the
length of the data streams. Instead, the hardware is responsible for dividing streams of any
length into sections which are processed in parallel. Furthermore, the stream data may follow
a sub-matrix pattern. This stream format is described by a set of parameters which do not
fit in a 32-bit instruction format. To solve this problem, every CSI instruction is controlled
by one or more sets of stream control registers that completely specify the data streams. CSI
instructions also eliminate the need for pack/unpack instructions, because conversion between
different packed data types (if required) is performed internally in hardware. Loop overhead
instructions associated with updating of pointers and branching are also avoided.

We have conducted experiments with the SimpleScalar toolset [5] using several multimedia
kernels as well as complete applications, and compared the performance of the CSI-enhanced
architecture with the performance attained by an architecture extended with Sun’s Visual In-
struction Set (VIS). The simulation results show the following:

e On kernel-level, the CSI-enhanced architecture improves performance by a factor of 5.2 to
42.3 (21.2 on average) compared to the baseline 2-way out-of-order processor. Compared
to the VIS-enhanced architecture, the performance improvements are 2.2x to 22.4x (7.9 on
average). If the issue width is 4, the speedups are 4.1 to 24.0 (14.8 on average) w.r.t. the
baseline superscalar processor, and 1.7 to 16.3 (6.2 on average) w.r.t. the VIS-enhanced
architecture.

e For complete applications, the performance gain of the CSI-enhanced architecture over
the baseline 2-way out-of-order processor ranges from 1.3 to 2.3 (1.8 on average), and
the gain over VIS-enhanced architecture ranges from 8% to 36% with an average of 20%.
When the issue width is 4, the speedups are 1.2 to 1.8 (1.6 on average) w.r.t. the baseline
superscalar processor without multimedia extension, and 8% to 32% (18% on average)
w.r.t. the VIS-enhanced architecture.

1.1 Related Work

The CSI architectural paradigm was introduced in [2]. Since then we modified the architecture in
order to accommodate more instructions using fewer opcodes. This is accomplished using stream
control register sets that completely specify the input and output data streams as well as certain
aspects of the operation to be performed (for example, whether the stream elements are signed
or unsigned values and whether saturation arithmetic should be performed). Furthermore,
we significantly extend upon the work described in [2] by providing results for several other
benchmarks, by including a detailed simulation of the memory hierarchy and by providing a
comparison with VIS. In [2], just one benchmark application was considered (an MPEG encoder)
and the effect of cache misses was “imitated” by varying the latencies of the CSI instructions.

CSI instructions eliminate the need for vector sectioning, i.e., bookkeeping instructions
needed for processing vectors of arbitrary length in sections. An early proposal aimed at hiding
the actual section size (which is implementation dependent) is the load vector count and update
(VLVCU) instruction of the IBM 370 vector architecture [4].

There are many SIMD-style multimedia ISA extensions, for example, MMX [19, 20], VIS [25],
MDMX [16], MAX [14, 15], AltiVec [9] and SSE [24]. They mainly differ in the number and
types of the newly added instructions. All of these ISA extensions operate on 64-bit registers,
except AltiVec and SSE, which operate on 128-bit registers. It is, however, questionable if



increasing the register size further provides any benefit, because often, the number of stream
elements stored consecutively in memory is rather small. We return to this issue later.

Another proposal aimed at exploiting a higher degree of parallelism than current media
extensions can, is the Matriz Oriented Multimedia (MOM) extension described in [7]. MOM
instructions can be viewed as vector versions of subword parallel instructions, i.e., they operate
on matrices where each row corresponds to a packed data type.

CSI is a memory-to-memory architecture, i.e., there are no programmer visible registers.
This design choice was made to avoid sectioning, bacause it may result in underutilization of
the pipeline (it has to be filled and flushed for each section), and to make the ISA independent
of the actual implementation. Furthermore, in many multimedia kernels data is read only once,
which implies that there is not a lot of temporal locality which can be exploited by storing data
in registers. There have been memory-to-memory vector architectures in the past (for example,
the Texas Instruments’ TT ASC and CDC’s Star-100 [11]), but they suffered from high startup
cost which was mainly due to the large memory latency. Our experiments show, however, that
all the benchmarks considered exhibit very high L1 hit rates (98-99%), and therefore, the startup
cost is less of a problem.

This paper is organized as follows. In Section 2 we describe the limitations of current multimedia
ISA extensions and illustrate how the CSI paradigm solves these problems. The CSI ISA exten-
sion and its implementation are described in Section 3. Section 4 describes the benchmarks, the
modeled architectures, and presents the experimental results. Concluding remarks and topics
for future research are given in Section 5.

2 DMotivation

In this section we list some of the limitations of current media ISA extensions and describe how
they are solved in the CSI architecture.

Architectural Constraint on Section Size. All current media ISA extensions as well as
most vector architectures have an architectural (i.e., programmer-visible) fixed section size. For
example, MMX and VIS instructions operate on 64-bit registers which can be treated either as
eight bytes, four halfwords, or two words. Because of this, the section size appears explicitly in
the code. This, however, means that if the width of the SIMD datapath is increased in order
to exploit more parallelism, the ISA may have to be changed to reflect this. In other words,
(parts of) the application may have to be recompiled or even rewritten in order to benefit from
the wider datapath. For example, if MMX would operate on 128-bit instead of 64-bit registers,
existing MMX codes must be recompiled or rewritten.

Another way to increase parallelism is by increaing the issue width so that more SIMD
instructions can be processed in parallel. However, it is generally accepted that increasing
the issue width requires a substantial amount of hardware and may negatively affect the cycle
time [10, 18].

In CSI these problems are avoided because CSI instructions process data streams of arbitrary
length. The implementation is responsible for dividing the data streams into sections which are
processed in parallel. Therefore, the number of elements that is processed in parallel does not
appear explicitly in the code.

Increasing the Degree of Parallelism. A problem related to the previous is the following.
Although it may be possible to increase the width of the datapath and the register size, it may
not always be beneficial because many multimedia applications operate on sub-blocks of a large
matrix (representing, e.g., an image), and the vector length in both the x- and the y-direction is
rather short (typically 8 or 16 bytes). Consider, for example, Figure 1 which shows a C-function



static void add_pred(pred,cur,lx,blk)
unsigned char *pred, *cur;

int 1x;
short *blk;
{

int i, j;

for (j=0; j<8; j++){
for (i=0; i<8; i++)
cur[i] = clp[blk[i] + pred[il];

blk+= 8;

cur+= 1x;

pred+= 1x;
}

Figure 1: C code for saturating add.

taken from an MPEG encoder. The rows of the pred and cur blocks are not stored consecutively
in memory. The amount of parallelism that can be exploited by a SIMD extension is therefore
restricted to a single row. The same observation has been made in [7].

CSI instructions do not operate on unit-stride vectors nor on vectors with a non-unit but
fixed stride, but on sub-matrices. The row length as well as the distance between two consecutive
rows are set via special control registers. This allows CSI to exploit a higher degree of parallelism
than SIMD ISA extensions can.

Non-unit Strides. SIMD extensions are most effective if the vector elements are stored con-
secutively. Otherwise, the data needs to be reordered to exploit parallelism. In some multimedia
applications, however, consecutive stream elements are stored at a fixed but non-unit stride. This
happens, for example, in JPEG’s color conversion routine where the Red, Green and Blue com-
ponents are stored at a stride of 3. In the upsampling/downsampling phases in JPEG, data is
also accessed with a non-unit stride.

In CSI, consecutive stream elements pertaining to the same row do not have to be stored in
consecutive memory location. Thus, we allow any stride between two consecutive row elements,
as well as between consecutive rows. The hardware implementation is responsible for aligning
them properly. This is one of the differences with MOM [7], which allows an arbitrary stride
between two consecutive rows but requires a unit-stride between consecutive row elements.

Computing with Different Formats and Saturation. When we consider Figure 1 again,
we observe that one of the blocks consists of 16-bit (short) elements, whereas the other consists
of 8-bit elements. When these two blocks are added using SIMD instructions, the pred block
must be unpacked (or promoted) to a 16-bit format. Data promotion may also be required
when the input elements have the same size, because the result may not be representable by
this format. This incurs a performance penalty of at least a factor of 2, due to the reduced
parallelism and the overhead caused by pack/unpack operations. Because of this, many media
ISA extensions have instructions that automatically saturate to the smallest or largest value the
data type can represent. (VIS does not support saturation arithmetic, but performs saturation
while packing.)

In the CSI architectural paradigm, these problems are resolved as follows. When pack-
ing/unpacking is necessary because the input streams have different formats (as in the code
shown in Figure 1), it is performed internally in hardware. No special opcodes are needed to
specify that, for example, one of the data input streams consists of 16-bit elements and the



other of 8-bit elements, because with each operand stream a control register is associated that
specifies the element width. If packing/unpacking is not required, the programmer can specify
that saturation arithmetic should be performed instead of “wrap-around arithmetic” by setting
a bit in another control register. The CSI architecture also has a wide accumulator, similar
to MDMX [16], which avoids the need for data promotion in reduction operations. This is
another difference with MOM [7], which can also perform saturation arithmetic and also uses
an accumulator, but which still requires packing/unpacking if the input streams have different
sizes.

Data Alignment and Loop Control. There are other instructions besides packing and
unpacking that contribute to the overhead. This includes alignment-related instructions and
instructions needed for loop control. For example, in VIS alignment instructions are needed
when an 8-byte vector is not stored at an 8 byte aligned address. Loop control instructions
are the instructions required for breaking the data stream into fixed-size sections which are
processed in parallel. This includes instructions needed to advance the pointers to the next
sections, instructions that compute the loop termination condition, and branch instructions.

In the CSI architecture, these functions are also replaced by a hardware mechanism. The
hardware generates aligned addresses and is responsible for extracting the bytes that belong to
the data stream. Furthermore, since CSI instructions process streams of arbitrary length, no
loop control instructions are needed.

3 Architecture and Implementation

In this section we present the CSI multimedia ISA extension. A possible implementation is also
described.

3.1 Overview of the Complex Streamed Instruction Set

CSI is a memory-to-memory architecture. Most CSI instructions load two large data input
streams from memory, operate on them element-wise, and write the resulting stream back to
memory. There is no architectural constraint on the stream length.

The stream elements do not have to be stored consecutively, nor at a constant stride. The
format of a stream is that of a sub-matrix, as illustrated in Figure 2. Each stream consists of an
arbitrary number of rows, and the row elements are stored at a fixed stride which will be referred
to as HStride (short for horizontal stride). There is also a fixed stride between consecutive rows,
which will be referred to as VStride. The reason for this is that many streaming operations in
multimedia as well as many other applications operate on sub-blocks of a large matrix.

The execution of every CSI instruction that processes two input streams and produces an
output stream result is controlled by three sets of stream control registers (SCR-sets). Each
SCR-set consists of the following 32-bit registers, numbered 0 to 5:

0. Base. This register contains the starting or base address of the stream. For example, if
the matrix in Figure 2 is stored in row-major order and its base address is 8000, the base
address of the stream is 8018.

1. RLength. This register holds the number of stream elements in a row (the number of
elements belonging to the stream, not the row length of the enveloping matrix). In the
example, RLength=4.

2. SLength. This register contains the stream length. In the example illustrated in Figure 2,
SLength=12.
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Figure 2: Format of a stream. Each box represents a byte. Filled boxes are stream
elements. In this example, the horizontal stride HStride=4 and VStride=32. Fur-
thermore, RLength—=4, SLength—=12, and the element size is S4.Size=2.
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Figure 3: Format of the S4 register

3. HStride. The stride in bytes between consecutive stream elements in a row.
4. VStride. The distance in bytes between consecutive rows.

5. S4. This register consists of four fields: Size, Scale factor, Sign and Saturate. The
first field consists of two bits and specifies the size of the stream elements, where 00
corresponds to bytes, 01 half-words, 10 words, and 11 double-words. The Sign field is
a flag that specifies if the stream elements are signed or unsigned values. The Saturate
field is also a flag that specifies if saturation or modular arithmetic should be performed.
If this bit is set and the result cannot be represented by the number of bytes indicated by
the Size field, the result is clipped to the minimum or maximum value. If this bit is not
set, the result simply “wraps-around”. The function of the Scale factor field is identical
to the Scale factor field of the Graphics Status Register of the VIS architecture [26]. It
determines the amount by which the result is shifted to the left before it is truncated and
the least significant bits are discarded. This mechanism allows to specify the number of
fractional bits. The format of the S4 register is depicted in Figure 3.

The CSI instruction set is divided in two categories:

1. CSI arithmetic and logical instructions. These instructions have the following for-
mats:

e op SCRSi, SCRSj, SCRSk
Such instructions process two data input streams and produce a data output stream.
The streams are specified by the corresponding SCR-sets. Examples are pairwise
addition, subtraction and multiplication of two data streams. Because no guarantees
are given about the order in which the stream elements are processed, the output
stream specified by SCRSi may not overlap with the input streams SCRSj and SCRSk.
e op SCRSi, SCRSj, GPRk
These instructions are similar to the previous ones but the second operand is not a
data stream but a scalar value. An example of such an instruction is the multiplication
of a data stream by a scalar.



e op SCRSi, SCRSj, imm
These instructions are identical to the previous ones except that the second operand
is a 16-bit immediate value instead of a general-purpose register.

e op GPRi, SCRSj, SCRSk
These instructions process two input streams and produce a scalar result. Two exam-
ples are csi_sad and csi_dotprod, which compute the sum of absolute differences
and dot product of two data streams, respectively.

2. CSI auxiliary instructions. These instructions manage the individual stream control
registers. There are just two of them.

e csi_mtscr SCRSi, j, GPRk
mtscr stands for move to stream control register. This instruction loads SCR j of
SCR-set SCRSi with the contents of the general purpose register GPRk. The stream
control registers are numbered as above. For example, the base address of SCR-set
SCRS2 can be loaded from GPR4 using csi_mtscr SCRS2, 0, GPRA4.

e csi_mtscri SCRSi, j, imm
This instructions also loads a stream control register but with an immediate value.

Note that since the element size and the Sign and Saturate bits are set using control
registers, the CSI ISA extension is quite compact and actually smaller than SIMD extensions such
as VIS and MMX. For example, seven MMX instructions padd[b,w,d] (add with wrap-around
on [byte, word, double-word]), padds [b,w] (add signed with saturation) and paddus[b,w] (add
unsigned with saturation) correspond to just one CSI instruction csi_add which can add streams
of signed as well as unsigned bytes, halfwords (words in Intel terminology) and words, and which
also performs saturation if the Saturate bit is set.

As an example, Figure 4 shows the CSI code for the add_pred routine depicted in Figure 1.
In this example 18 instructions are needed to set the control registers. This might seem sig-
nificant but very often this overhead is negligible due to the following reasons. First, these
instructions are executed only once and their number is still very small compared to the number
of instructions that must be executed by a superscalar processor. In this example, 64 iterations
are replaced by 18 instructions that manipulate the SCRs and a single csi_add instruction.
Second, in many cases, not all SCRs have to be reset to initiate a new CSI instruction. For
example, the add_pred routine is executed on many different blocks. This means that after all
SCRs are set the first time add_pred is called, only the base addresses of the input and output
streams have to be reset. The overhead is therefore amortized over many instructions.

We remark that the structure of the CSI architecture allows some very powerful instructions
to be constructed. For example, an n X n matrix of bytes can be transposed using the instruction
csi_addi SCRS3,SCRS1,0 by setting the HStride of SCRS3 to n and the VStride to 1. As
another example, the arithmetic average of two pixel streams specified by SCRS1 and SCRS2 can
be calculated using the csi_addi SCRS3,SCRS1,SCRS2 instruction by setting the Scale factor
field so that the result has one fractional bit.

All CSI instrutions can be interrupted during execution. However, we first observe that
arithmetic overflow does not generate an exception, since either wrap-around or saturation
arithmetic is performed. Other execeptions, such as page faults, can be handled as in the IBM
System/370 vector architecture [4]. A stream interruption indexr is maintained that indicates
which stream elements are currently being processed. If the CSI instruction is interrupted, this
internal register marks the point that has been reached. If the instruction is later reissued,
execution resumes from that point.



# Here GPRi is denoted as $i

# We assume pred=$4, curr=$5, 1x=$6, blk=$7
# Set SCRs for blk stream

csi_mtscr SCRS1,0,$7 # Base
csi_mtscri SCRS1,1,8 # RLength
csi_mtscri SCRS1,2,64 # SLength
csi_mtscri SCRS1,3,2 # HStride
csi_mtscri SCRS1,4,16 # VStride
# scale=0, saturate=0, sign=1, size is 01 (halfwords)

# So, constant to load in S4 is 0101 (base 2) = 5 (base 10)
csi_mtscri SCR1,5,5 # S4

# Set SCRs for pred stream

csi_mtscr SCRS2,0,%$4 # Base

csi_mtscri SCRS2,1,8 # RLength
csi_mtscri SCRS2,2,64 # SLength
csi_mtscri SCRS2,3,1 # HStride
csi_mtscr SCRS2,4,$6 # VStride

# scale=0, saturate=0, sign=0, size is 00 (bytes)
# So, constant to load in S4 is 0000 (base 2) = 0 (base 10)
csi_mtscri SCRS2,5,0 # S4

# Set SCRs for curr stream

csi_mtscr SCRS3,0,$5 # Base

csi_mtscri SCRS3,1,8 # RLength
csi_mtscri SCRS3,2,64 # SLength
csi_mtscri SCRS3,3,1 # HStride
csi_mtscr SCRS3,4,$6 # VStride

# scale=0, saturate=1, sign=0, size is 00 (bytes)
# So, constant to load in S4 is 1000 (base 2) = 8 (base 10)

csi_mtscri SCRS3,5,8 # S4
# Trigger streamed operation csi_add curr,blk,pred
csi_add SCRS3,SCRS2,SCRS1

Figure 4: CSI code for the add_pred routine.

3.2 Implementation

In this section we describe the hardware implementation of the CSI architecture, which will
be referred to as the stream unit. The datapath of the experimental stream unit is depicted in
Figure 5. Its main hardware entities are the stream control register sets (SCR-sets), the memory
interface unit, the pack and unpack units, one or more CSI functional units which perform SIMD
parallel operations, and the accumulator ACC. For clarity, some of the paths have been omitted.
For example, one of the inputs of the CSI functional units can be a general-purpose register or
an immediate value, and there is also a path from the general-purpose registers to the stream
control registers.

The memory interface unit is responsible for transferring data between the memory hierarchy
and the stream buffers. In addition, if the data is not stored consecutively, it must also extract
non-consecutive data from the cache and align them in the proper order. Its operation will be
described in more detail below.

The unpack units convert stream data from storage format to computational format (if
required). For this, they use the values of the Size and Sign fields of the SCR S4. For
example, if one data input stream consists of unsigned bytes and the other consists of signed
halfwords, the first is converted to 16-bit halfwords by padding with zeroes.
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Figure 5: Datapath of the Stream Unit

The CSI functional units perform subword parallel operations on the data contained in the
input registers. Currently two CSI units are used: one CSI MULT unit that performs parallel
multiplication and division, and one SIMD ALU that performs parallel addition and subtraction
as well as the sum of absolute differences (SAD) operation. The setup logic is also used in the
computation of the SAD operation. Following the scheme presented in [1], it determines the
smallest of each pair of corresponding pixels contained in the input registers, and controls the
CSI ALU so that it negates the smallest pixel of each pair. The size of the input registers is
n, where n is implementation dependent, and the size of the output register is 2n so that no
overflow occurs during computation.

i,From the output register, data flows either to the stream output buffer via the pack unit
or to the accumulator. The pack unit converts the data from computational format to storage
format. It also performs truncation and saturation, similar to the VIS pack instructions. For
this, it uses Scale factor, Sign, Saturate and Size fields of the S4 register corresponding to
the output stream.

The accumulator is 3n bits wide. It is used in reduction operations such as the SAD and
DOTPROD. It enables the accumulation of up to 2" n x n products without having to promote
the operands to a larger format [16]. As mentioned, data promotion incurs a performance
penalty due to the reduced parallelism and due to the cycles needed for executing pack/unpack
instructions. Note that the stream unit performs data promotion only if the input streams have
different formats, not when the result may become too large.

Finally, the adder between the accumulator and the register file sums up the components
contained in the accumulator. The accumulator can contain either £ = n/8, n/16, n/32, or n/64
components.
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Memory Interface Unit. We now describe the memory interface unit (MIU). One important
issue is the following: should the MIU be connected to the level-1 (L.1) cache, or should it bypass
the L1 cache and go directly to the L2 cache or even main memory? In this study we decided
to connect the MIU to the L1 cache for the following reasons. First, Ranganathan et al. [23]
observed that with realistic L.1 cache sizes, multimedia applications achieve high hit rates. Our
simulations support this observation. For example, with a 32K direct-mapped L1 data cache,
all the benchmarks exhibited hit rates over 99%. Another motivation is that since the L1 cache
is on-chip, it will not be expensive to widen the path between the cache and the stream unit,
so that a whole cache block can be brought to the stream unit in a single cycle. In the future,
however, we intend to look at other cache organizations, such as those proposed in [22]. It is
also assumed that the L1 cache has two read ports and one write port.

The memory interface unit is depicted in Figure 6. It consists of the following hardware
entities: three address generators (AGs), a load queue (LQ) and a store queue (SQ), and extract
and insert hardware.

The AGs generate the addresses of the cache blocks that must be fetched. After a CSI
instruction has been issued, each AG aligns the Base address of its associated data stream to
cache block boundaries, and inserts the aligned address into the load queue. Furthermore, with
each LQ entry, a mask of CBS bits is associated, where CBS is the cache block size in bytes.
This mask marks which bytes in the cache block belong to the stream. It is computed based
on the values of the control registers HStride, VStride and RLength, and the Size field of
the S4 register. Each AG also updates some internal control registers in order to compute the
address of the next block to fetch.

The load queue submits the load address to the cache read port. When the data arrives, it
sets the ready flag of the corresponding entry. The store queue operates similarly.

The extract unit monitors the entry at the head of the LQ. When the ready flag of this entry
is set, it extracts the useful bytes from it (based on the corresponding mask), and places them
consecutively in an input stream buffer. It operates similar to a collapsing buffer [6]. The insert
unit performs the inverse operation, i.e., it “scatters” the stream elements so that they are in
their correct position, and places the cache block in the store queue. The SQ then performs a
partial store, similarly to the VIS partial store instruction.

4 FEvaluation

In order to evaluate the performance of the proposed ISA, we simulated a superscalar processor
without a multimedia ISA extension, a superscalar processor with the VIS extension, and a pro-
cessor extended with CSI instructions. We studied four benchmarks from the MediaBench [12]
test suite: mpeg2enc (MPEG-2 encoder), mpeg2dec (MPEG-2 decoder), cjpeg (JPEG encoder),
and djpeg (JPEG decoder). These programs are representative of video and image processing
applications. For the MPEG benchmarks, we used the test bitstream, which consists of three
128 x 128 frames. For the JPEG benchmarks, the rose input was used, which is a 227 x 149
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pixel image.

4.1 Simulation Methodology and Tools

We used the sim-outorder simulator of the SimpleScalar toolset (release 2.0) [5] to simulate a
superscalar processor without and with VIS or CSI extensions. sim-outorder is an execution-
driven simulator that support out-of-order issue and execution.

The SimpleScalar architecture is derived from MIPS-IV ISA [21]. Each instruction has a
16-bit annote field that can be modified post-compile with annotations to instructions in the
assembly files. This interface can be used to synthesize new instructions without having to
change the assembler. We used this mechanism to synthesize CSI and VIS instructions.

To our knowledge, there is no compiler that generates VIS code. We therefore had to
write VIS (as well as CSI) code ourselves, but used code from the VIS Software Developer’s Kit
(VSDK) wherever possible. First, the most time-consuming routines were identified by profiling.
After that, the functions that contained a substantial amount of data-level parallelism and
whose key computation could be replaced by VIS and CSI instructions were rewritten manually.
The loops were unrolled so that the loop bodies could be replaced by a set of equivalent VIS
instructions.

We profiled the benchmarks using the sim-profile tool provided with the SimpleScalar
toolset and selected the most compute-intensive kernels: Add_Block (MPEG2 frame reconstruc-
tion), Saturate (saturation of 16-bit elements to 12-bit range in MPEG decoder), dist1 (sum
of absolute differences for motion estimation), ycc_rgb_convert and rgb_ycc_convert (color
conversion between YCC and RGB color spaces in JPEG), and h2v2_downsample (2:1 horizon-
tal and vertical downsampling of a color component in JPEG), and idct (inverse discrete cosine
transform). We remark that DCT routines are not available in the VSDK. It is available in the
SUN mediaLib, but this library consists of binary routines, which could not be used because the
baseline architecture is SimpleScalar, not UltraSPARC.

4.2 Modeled Architecture

It is important to note that the baseline architecture is SimpleScalar (i.e., MIPS-IV ISA), not
UltraSPARC. We have chosen VIS instead of the MIPS multimedia ISA extension MDMX
because, first, VIS is representative of many current media extensions [23], and, second, MDMX
has no instruction that computes the sum of absolute differences (SAD). The SAD is used in
motion estimation, which is the most time-consuming part of the MPEG encoder. With MDMX
one should use the sum of squared differences [16] instead, but we did not want to modify the
benchmarks.

The base system is a 4-way superscalar processor with out-of-order issue and execution. The
main processor parameters are listed in Table 1.

VIS instructions operate on the floating-point register file. All VIS instructions have a latency
of 1 cycle except the pdist (which computes the SAD) and the packed multiply instructions,
both of which have a latency of 3 cycles. There are two VIS adders that perform partitioned
add and subtract, merge, expand and logical operations, and two VIS multipliers that perform
the partitioned multiplication, compare, pack and pixel distance operations. This is modeled
after the UltraSPARC [25] with the following exceptions. In the UltraSPARC, the alignaddr
instruction cannot be executed in parallel with other instructions [26] but this limitation is not
present in the architecture we modeled. Furthermore, the UltraSPARC has only one 64-bit VIS
multiplier. We assumed two because the width of the datapath of the stream unit is assumed to
be 128 bits. The degree of parallelism of the VIS-enhanced and the CSI-enhanced architectures
are, therefore, comparable.

The parameters of the memory subsystem are listed in Table 2. Because the benchmarks
used in this study have small instruction working sets, a perfect instruction cache is assumed.
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Issue width 4-way FU latency/recovery (cycles)

Reorder buffer size 16 Integer ALU 1/1
Load-store queue size 8 Integer MUL
Branch Prediction multiply 3/1
Bimodal predictor size 2K divide 20/19
Branch target buffer size 2K Cache port 1/1
Return-address stack size 8 FP ALU 2/2
Functional unit type and number FP MUL
Integer ALU 4 FP multiply 4/1
Integer MULT 1 FP divide 12/12
Cache ports 2 sqrt 24/24
Floating-point ALU 4 VIS adder 1/1
Floating-point MULT 1 VIS multiplier
VIS adder 2 multiply and pdist 3/1
VIS multiplier 2 other 1/1

Table 1: Processor configuration.

Instruction cache | ideal
Data caches
L1 line size 32 bytes
L1 associativity | direct-mapped
L1 size 32 KB
L1 hit time 1 cycle
L2 line size 128 bytes
L2 associativity | 2-way
L2 size 1 MB
L2 replacement | LRU
L2 hit time 6 cycles
Main memory
type page-mode
page size 4 KB
first page access | 30 cycles
next page access | 10 cycle
bus width 16 bytes

Table 2: Memory configuration.

All sub-units (i.e., pack/unpack, extract/insert, CSI adder etc.) of the stream unit require 1
cycle, except for the CSI multiplier, which requires 3 cycles but is fully pipelined. The datapath
of the stream unit is 128 bits wide. So, the CSI functional units process either 16 bytes, 8
halfwords, 4 words, or 2 double-words in parallel. The input registers are therefore 128 bits
wide, the output register 256 bits, and the accumulator 384 bits (cf. Figure 5).

Because one CSI instruction can replace two embedded loops, the requirements for the
machine’s fetch, decode and issue bandwidth will be greatly reduced. In order to evaluate this
effect, we also simulated a 2-way superscalar processor in addition to a 4-way system.

4.3 Experimental Results

In this section we present the speedups attained by the two multimedia ISA extensions (VIS
and CSI) considered. Speedups will be given with respect to the 2-way base system. We first
present results for several kernels from our benchmarks. After that, we analyze how kernel-level
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Figure 7: Speedups on kernel level

speedup translates to application speedup.

Figure 7 depicts the speedups attained for the seven kernels selected from the benchmarks.
When the issue width is 2, the VIS-enhanced architecture achieves a speedup of 1.4 to 5.9 with
an average of 3.1, whereas the CSI-enhanced architecture attains speedups ranging from 5.2 to
42.3 (21.2 on average). When the issue width is 4, the average speedup (w.r.t. to the 2-way
system) of the VIS-enhanced architecture is 4.2 (1.9 to 7.2) and the average speedup of the
CSI-enhanced architecture is 22.5 (5.6 to 42.2) So, CSI clearly outperforms VIS.

Especially on the Saturate kernel the CSl-enhanced architecture performs much better
than the architecture extended with VIS instructions. Whereas the VIS-enhanced architecture
attains speedups of 1.43 (2-way issue) and 2.03 (4-way issue), the CSl-enhanced architecture
attains speedups of 32.1 and 33.2, respectively. The reason is that in this kernel 16-bit values
have to be clipped to a 12-bit range and, simultaneously, the clipped values have to be accumu-
lated. Because CSI instructions have saturation to any desired range as a feature (by setting
the Saturate bit and adjusting the Scale factor field of the S4 register), and because the
accumulator accumulates all results, the body of the Saturate kernel is essentially replaced
by one instruction. In the VIS-enhanced architecture, saturation and accumulation have to be
performed in software.

It can be observed that the smallest performance improvement of the CSI-enhanced archi-
tecture over the VIS-enhanced architecture occurs for the idct kernel. The reason is that the
VIS version is based on the scalar version, which in turn is based on a highly optimised DSP
algorithm proposed in [27]. However, this DSP algorithm does not operate on long vectors and
can therefore not be efficiently implemented using CSI instructions. The CSI version of the
idct is based on the standard definition of the IDCT as two matrix multiplications. Thus, the
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Figure 8: Speedups on application level

CSI version of idct executes many more operations than the VIS version, but nevertheless a
speedup is obtained.

The results for complete applications are depicted in Figure 8. For a 2-way issue machine, the
VIS-enhanced architecture achieves speedups of 1.42 (on the djpeg benchmark), 1.17 (cjpeg),
1.40 (mpeg2dec) and 1.93 (mpeg2enc), whereas the CSI-enhanced architecture attains speedups
of 1.94, 1.28, 1.70 and 2.28, respectively. For a 4-way issue machine, the respective speedups
are 2.08, 1.59, 2.13 and 2.37 for the VIS-enhanced architecture, and 2.75, 1.74, 2.48 and 2.77
for the CSI-enhanced architecture. Of course, due to Amdahl’s Law, the speedups for complete
programs are less impressive than those for kernels. Nevertheless, when the issue width is two,
the CSI-enhanced architecture yields an average performance gain over VIS of 20% on average
(range of 8% to 36%), and when the issue width is four, the average speedup of CSI over VIS is
18% (range of 8% to 32%).

Finally, we remark that when the issue rate is 2, the CSI-enhanced architecture attains higher
speedups w.r.t. the VIS-enhanced architecture than when the base system is a 4-way processor.
This means that the performance of the stream unit is rather insensitive to the processor issue
width. This makes the CSI architecture highly suitable for embedded systems, where high issue
rates and out-of-order issue and execution are too expensive. The same observation has been
made in [7] for the MOM ISA extension.

5 Conclusions

In this paper we presented an architectural paradigm designed to accelerate streaming operations
on mixed-width data. The described Complex Streamed Instruction (CSI) set was evaluated
using four multimedia benchmarks. On a number of important kernels, we observed speedups
ranging from 2.1 to 22.4 relative to an architecture extended with VIS instructions. These local
improvements resulted in application speedups of up to 36%.

One of the distinct features of the CSI architecture is that the number of bytes which are
processed in parallel (the section size of processing width) is not determined by the architecture
but solely by the implementation. This ensures that no recompilation is needed in order to
benefit from a wider datapath. The CSI architecture also eliminates overhead associated with
data alignment and conversion between storage and computational format.
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There are several important research issues regarding the memory subsystem. As mentioned,
we have not yet fully explored what the most cost-effective cache organization is for streaming
operations, and to which level of the cache hierarchy (L1 or L2 cache) the stream unit should
be connected. It may also be a viable option to connect the stream unit directly to the main
memory, because in the stream unit loads and stores are overlapped with computation. The
initial read latency is incurred only once, implying that the performance of the stream unit
should be rather insensitive to the memory latency. This property may be especially useful
for systems with no or small caches, such as embedded systems. Another option is to include
prefetching. Since the data streams are completely specified by the stream control registers, the
memory interface unit is aware of all memory accesses which are going to be performed. It can
therefore issue prefetches in order to bring the data closer to the stream unit.
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