
Pre- and Post Selection of Compiler Optimizations by
Program Execution

T. Kisuki� P.M.W. Knijnenburg� K. Gallivanz M.F.P. O’Boyley

� LIACS, Leiden University, the Netherlands
fkisuki,peterkg@liacs.nl

z Department of Computer Science, Florida State University, USA
gallivan@cs.fsu.edu

y Institute for Computing Systems Architecture, Edinburgh University, UK
mob@dcs.ed.ac.uk

ABSTRACT
In this paper, we investigate the combined use of static tech-

niques and dynamic feedback information to achieve a high

level of optimization of both compiler e�ciency and code

performance. In previous work, we have introduced a new

compiler approach, iterative compilation, to select the best

tile sizes and unrolling factors. In this approach, many ver-

sions of programs are generated and their worth is deter-

mined by the actual execution time. We found that this

approach can obtain a much higher level of optimization

than conventional static techniques. To further achieve both

compiler e�ciency and high code performance, we have in-

corporated cache models in the iterative compilation system.

We utilize feedback information in two ways: Post-Selection

and Pre-Selection. Experimental results show that even a

very simple cache model can achieve a high level of optimiza-

tion with Post-Selection verifying the worth of transformed

programs, especially when the number of program execu-

tions is limited. Pre-Selection is superior if more program

executions are allowed.

1. INTRODUCTION
One of the most important tasks for optimizing compil-

ers is to transform program structures written by a pro-

grammer into more e�cient ones for a speci�c target plat-

form. Such program transformations include loop tiling and

loop unrolling. These transformations have a signi�cant

impact on program performance by increasing locality and

exposing instruction-level parallelism, respectively. There

are many static algorithms [8, 17, 6] to select the best tile

sizes based on a simpli�ed cache model that have obtained

good speedups. However, if these transformations are ap-

plied together, �nding the optimal combination becomes

a very complex issue since these two transformations are

highly inter-dependent and preferred transformations vary

widely across di�erent platforms [3, 15]. If simpli�ed ma-

chine models or limited levels of information (such as L1

cache con�guration) are used, they fail to model such com-

plex transformation spaces. Overcoming this failure is cru-

cial in situations, such as embedded systems, where code

performance is critical and hardware speci�c optimizations

are required. Currently, such optimization is obtained by

hand coding in assembly or special-purpose digital signal

processing (DSP) compilers. Unfortunately, due the rate of

architectural change and code growth of embedded appli-

cations, it is becoming very di�cult to implement a hard-

ware speci�c DSP compiler for every change and to optimize

large applications on the assembly level. We therefore need

to consider adaptive compilers, i.e., those that are able to

cope with a changing hardware platform and produce highly

optimized code for a speci�c architecture.

Clearly, no compiler technology based on static analysis only

and a hardwired cost model of the target processor is capa-

ble of changing to a new architecture while achieving a high

level of optimization. What is required is a method where

the compiler can receive dynamic feedback regarding its per-

formance and modify its behavior accordingly.

To achieve this goal we have introduced a new compilation

approach, iterative compilation [13]. In this paper, we in-

corporate cache models into the iterative compilation sys-

tem to achieve a high level of optimization of both compiler

e�ciency and code performance. In this approach, many

versions of program with di�erent tile sizes and unrolling

factors are generated and their value is determined by actual

execution time. Cache models are used to guide the search

by selecting good candidates or rejecting bad candidates.

Such an approach does not su�er from compile-time unde-

cidability or inaccuracy of static models and with su�cient

time it produces highly optimized code for a speci�c machine

taking into account the behavior of the entire machine. This

technique is especially suitable for embedded systems where

long compilation time can be amortized across the number

of products and the lifetime of the applications.

The paper is organized as follows. In Section 2 related and

previous work is discussed. In Section 3 we brie
y describe

the implementation of iterative compilation. Section 4 de-

scribes the experimental setup and provides detail of the

search strategies used in iterative compilation. Section 5

presents the experimental results that demonstrate the im-

proved e�ectiveness of the search due to the inclusion of

cache models. In Section 6 we discuss the results and future

directions of research.

2. RELATED AND PREVIOUS WORK

There are many papers that deal with tile size selection us-

ing a simple cache model [8, 17, 6]. Using these techniques

good speedups have been obtained for architectures where

the L1 cache is a dominant factor in program performance.

In [19] the impact of interactions among multiple levels of

memory or parallelism are investigated. Their results sug-

gest that simple cost functions guide only simple situations

and with architectural growth single-level cost functions may

not optimally guide tile size selection. Recently, program

optimizations based on searching have received attention

from other authors. Whaley and Dongarra [22], and Bilmes

et al. [2] describe systems for generating highly optimized

BLAS routines. These systems probe the underlying hard-

ware to �nd optimal values for blocking factors, unrolling

factors etc. Experimentation has shown that these systems

are capable of producing more e�cient codes than the ven-

dor supplied, hand optimized library BLAS routines. Wolf,

Maydan and Chen [23] have described a compiler that also

searches for the optimal optimization by considering the en-

tire optimization space. Unlike our approach, their compiler

uses static cost models to evaluate various optimizations.

Chow and Wu [7] apply `fractional factorial design' to de-

cide on a number of experiments to run in order to select

a collection of compiler switches. They, however, focus on

on/o� switches and do not consider the choice of parameter

values that might have a large range of values. Michael and

Rudolf [21] propose a dynamic program optimization sys-

tem, called ADAPT. As our approach does, many versions

of the program are tested and the fastest version is selected.

Unlike our approach, code generation and program execu-

tion are overlapped and long execution time is required to

reach the optimal optimizations. This approach is therefore

suitable only for programs with very long execution times.

There are several other approaches that adaptively change

program behavior during its execution [9, 12]. These ap-

proaches cannot be used for embedded systems since pro-

grams are stored in Read-Only Memory and the original

codes cannot be replaced by the optimized codes. More-

over, in these adaptive approaches, code duplication is ap-

plied, resulting in a code explosion that should be avoided

in embedded systems where code size has a signi�cant im-

pact on program performance (small code size reduces the

frequency of overlays and therefore can vastly improve exe-

cution time [18]).

Carr and Kennedy [5] and Carr and Guan [4] compute unroll-

and-jam factors in order to minimize the di�erence in ma-

chine and loop balance. However, in [5] it is assumed that

all memory references are cache hits, an assumption that

is clearly not valid and will degrade the e�ect of the trans-

formation. Carr and Guan [4] also use a search strategy

to decide the best unroll factor, like the present paper. In

contrast, our approach uses actual execution times as well

as model information to decide upon the optimal unrolling

Driver

List of Transformations

MT1 Compiler TDL−Files

F77

Transformed ProgramExecution
 Time

SSL−File

Target Platform

Cache Model

Figure 1: The Compilation Process

factor and loop tiling sizes.

In previous work [13] we have shown that iterative compila-

tion is powerful approach capable of outperforming existing

tile size selection algorithms and reaching a high level of

optimization with reasonable compilation time. We have

compared the obtained speedups relative to static tile size

selection algorithms: the TSS algorithm [8] and LRW pro-

posed in [17]. In more than 99% of the cases we have con-

sidered, iterative compilation outperforms these static tech-

niques. This level of optimization is obtained within reason-

able compilation time. On average 100 iterations take less

than 12.5 minutes [13] for the benchmarks considered.

3. COMPILATION SYSTEM

Figure 1 shows an overview of the compiler system. The

compilation system is centered around a global driver. This

driver keeps track of the transformations evaluated and de-

cides which transformations to apply next. The driver reads

a list of transformations that need the range of parameters.

The global driver invokes a source-to-source compiler MT1 [1].

MT1 has two mechanisms to control the transformation that

is applied to the input program: a Transformation De�nition

Language (TDL) [1] and a Strategy Speci�cation Language

(SSL) [1]. For each transformation included in the list of

transformations, the transformation is speci�ed based on a

pattern matching in the TDL-�les. Next, in order to in-

struct MT1 to apply a speci�c sequence of transformations,

the global driver constructs an SSL-�le that speci�es the or-

der of transformations. After a predetermined number of

iterations, the global driver stops searching and outputs the

transformed program with the shortest execution time.

We have implemented several search algorithms, including

a genetic algorithm, simulated annealing, pyramid search,

window search and random search. However in the current

case, the search space is rather small, 2000 variations of

transformations (see Section 4), and all search algorithms

�nd the same level of optimization within a very small mar-

gin. Thus we use only the random search in this paper.

4. EXPERIMENTAL SETUP

In this section, we explain how cache models are used to

reduce the number of program executions without degrad-

ing a level of optimization. We consider two cache models,

an accurate but expensive cache simulator and a less accu-

rate but cheap simple cache model. The cache simulator

considers the L1 cache of platforms we have selected. All

memory accesses are assumed to be issued to the cache al-

though some memory accesses can be held in registers. The

simulator is used to estimate the cache hit rate of the trans-

formed program and the simple cache model estimates the

working set size to allow prediction of whether or not a trans-

formed program �ts in the cache. These models are com-

bined with feedback information (i.e., execution time in the

current case) in two ways: Post-Selection and Pre-Selection.

4.1 Post-Selection
The �rst step of Post-Selection, is to estimate the cache hit

rates and working set sizes of all combinations of tile sizes

and unrolling factors in the parameter space. These com-

binations are then ordered based on a particular ranking

strategy and the highest ranked are compared by actually

executing those combinations. In this way feedback infor-

mation is used to verify and support the cache models in

order to achieve high level of optimization. Equivalently,

the process can be viewed as using the cache models to �l-

ter candidates from the entire parameter space relatively

cheaply and thereby reducing the number of expensive exe-

cution time evaluations required.

We consider following 3 strategies using Post-Selection.

� Post-SIM1

calculate all cache hit rates

current = initial transformation

REPEAT

next = H

next highest

execute(next)

IF exec time(next) < exec time(current)

THEN current = next

First calculate the cache hit rate of all combinations

of tile sizes and unrolling factors using the cache sim-

ulator. The selection of combinations is solely based

on the cache hit rate and combinations with highest

cache hit rate (H

next highest

: I-th best at iteration I)

are selected and executed. The N combinations with

the highest cache hit rates are executed and compared.

The one with fastest execution time is selected.

� Post-SIM2

calculate all cache hit rates

current = initial transformation

FOREACH Unroll Factor

next = H(unroll)

next highest

execute(next)

IF exec time(next) < exec time(current)

THEN current = next

In this strategy, we consider the impact of loop un-

rolling more explicitly. Currently we do not have a

static model to determine the best unrolling factor,

therefore, we take the tile size that yields the highest

cache hit rate for each unrolling factor. First calculate

the cache hit rate of all combinations of tile sizes and

unrolling factors using the cache simulator. Then for

each unroll factor, the combination with the highest

cache hit rate is selected and executed. This foreach

loop is repeated until N combinations are totally ex-

ecuted. For example, if the unrolling factors are from

1 to 20, the combinations with N=20 highest cache hit

rates are selected for each unrolling factor and their

execution times evaluated. The fastest combination is

selected.

� Post-MOD

current = initial transformation

FOREACH Unroll Factor

next = WS(unroll)

next largest

� CS� �

execute(next)

IF exec time(next) < exec time(current)

THEN current = next

In this strategy, we select the largest tile size such that

the working set, WS, is within � % of the cache size

CS for each unrolling factor. In total, N combinations

are executed. For each unroll factor (from 1 to 20),

N=20 combinations with largest tile size are selected.

Then the fastest combination is selected. The value of

� can be seen as e�ective cache size.

4.2 Pre-Selection
In Pre-Selection, the random search is used to select the

combinations from the parameter space. However, a combi-

nation is only executed if the cache models predict a spec-

i�ed level of performance. Combinations of tile sizes and

unrolling factors are selected randomly and combinations

with poor cache hit rates or improper working set sizes are

�ltered out reducing the number of program executions. In

contrast to Post-Selection, the selection of combinations is

done by the search algorithm and the value of transformed

program is veri�ed during the search checking whether re-

duction in execution time is made. We consider the following

2 strategies.

� Pre-SIM

current = initial transformation

REPEAT

next = next transformation

IF H

next

� ��H

current

THEN execute(next)

IF exec time(next) < exec time(current)

THEN current = next

In this strategy, a cache simulator is used to guide the

search. One combination is selected randomly, and

its execution time is evaluated if the cache hit rate

(H

next

) is within a �% of the current best cache hit

rate (H

current

). The search algorithm will stop afterN

combinations are actually executed or cache hit rates

of all combinations are examined. The combination

with the smallest execution time is selected.

� Pre-MOD

current = initial transformation

REPEAT

next = next transformation

IF WS

next

� CS �
 && WS

next

� CS � �

THEN execute(next)

IF exec time(next) < exec time(current)

THEN current = next

In this case, the search space is restricted so that the

search algorithm can �nd good combinations with high

probability. Each value of
 and � determines the lower

and upper bound of the working set size. A combi-

nation is selected randomly, and its execution time

evaluated if its predicted working set size (WS

next

)

is between these boundaries. After executing N com-

binations or examining all combinations in the para-

meter space, the search algorithm stops and reports

the fastest version.

With these strategies bad combinations with poor cache hit

rates or inadequate working set sizes are excluded. We con-

sider N = 20; 40; 60; 80 and 100 for each strategy.

4.3 Benchmarks and platforms
We have selected the following benchmarks in our experi-

ments. In order to see the e�ect of the transformations on

di�erent memory access patterns, we use di�erent loop or-

derings in the same benchmark. The benchmarks considered

are the most important and compute intensive kernels from

multimedia applications. We use all 6 possible loop permu-

tations of matrix-matrix multiplication on 3 data input sizes

of 256, 300 and 301. We use the 2 loop orderings in matrix-

vector multiplication on data input sizes 2048, 2300 and

2301. We use Forward Discrete Cosine Transform (FDCT),

one of the most important routines from the low level bit

stream video encoder H263. This routine consists of an ini-

tialization loop, two 3D computation loops and one �naliza-

tion loop. We also use the 6 variations of the second main

computation loop from FDCT that involves multiplication

with a transposed matrix. We use data input sizes of 256,

300 and 301. Finally, we use a Finite Impulse Response �lter

(FIR) with data sizes of 8192, 8300 and 8301.

We have conducted our experiments on four di�erent plat-

forms: Pentium III, Pentium II, Hewlett-Packard Precision

Architecture (HP-PA 7100) and UltraSparc. Note that the

platforms we currently use are not representative for DSP,

however, we believe that the techniques discussed will prove

applicable on DSP platforms. The L1 data cache con�gura-

tions are shown in Table 1. In total we have collected 162

measurements to produce statistically relevant results.

Cache Size Associativity Line Size

Pentium II & III 16KB 4-Way 32 Byte

HP-PA 128KB Direct Mapped 32 Byte

UltraSparc 16KB Direct Mapped 32 Byte

Table 1: L1 Data Cache Con�gurations

84.00

86.00

88.00

90.00

92.00

94.00

96.00

98.00

100.00

102.00

20.00 40.00 60.00 80.00 100.00
P

er
fo

rm
an

ce
 O

ve
r

E
xe

cu
tio

n−
O

nl
y

(%
)

Beta (%)

Figure 2: Performance of Post-MOD for 20 Execu-

tions

A Fortran compiler with full optimization is used to com-

pile both the original and transformed programs. Unrolling

factors from 1 to 20 and loop tiling with tile sizes from 1 to

100 were used in these experiments.

In the following, we compare with the result from itera-

tive compilation executing 400 combinations without a cache

model, and not with the best speedups that can be achieved

using the present transformations. The search algorithm

described in [13] that only uses execution time is called the

Execution-Only Algorithm. We do this because in real situ-

ations, Execution-Only Algorithm represents the best possi-

ble estimate of execution time for each combination. More-

over, for a restricted set of benchmarks, we have generated

the entire search space and we found that on average the

result from Execution-Only Algorithm is within 2% of the

best possible speedup using the present transformations.

5. RESULTS

First we show the experimental results from which we can

determine the best parameters for each cache model,�, �,

and �. The level of optimization that can be obtained with

cache models is then discussed.

5.1 Determining Parameters
Figure 2 shows how close Post-MOD approaches the speedup

obtained by Execution-Only Algorithm as a function of �

Strategy 20 40 60 80 100

Pre-SIM 145 326 436 523 604

Pre-MOD 650 1183 1420 1800 2000

Table 2: Total Numbers of Steps Considered at Each

Execution

on average with standard deviations. In this experiment

only 20 combinations are executed in Post-MOD (N = 20)

while 400 combinations are executed in Execution-Only Al-

gorithm.

To determine the value of � we have done detailed experi-

ments in [14]. We found that the average speedup is slightly

increasing with � until � reaches 99.9%. For � > 100%,

however, it drops very sharply. If � is set more than 100%,

Pre-SIM is too selective excluding most of the search space,

actually executing very few combinations. We �ne tuned

the value of � and found that � = 99:9% performs best.

Second, we �nd that e�ective cache size is very small ranging

from 40% to 50% as shown in Figure 2. We select � = 50%

instead of � = 40% since it �nds more benchmarks that

reach to 100% of the maximum speedup of Execution-Only

Algorithm. Experiments also reveal that the combination of

 = 40% and � = 50% is optimal.

5.2 Analysis: Levels of Optimization

Figure 3 shows how close each strategy approaches the speedup

obtained by Execution-Only Algorithm for which 400 com-

binations are actually executed. Average performance of all

benchmarks is plotted with standard deviation. Figure 4

shows detailed performance for each strategy. The x-axis

shows the number of program executions while the y-axis

shows percentages of benchmarks that reaches to certain

levels of optimization (from 80% to 100% of Execution-Only

Algorithm). From these graphs we can deduce how many

program executions we need for each strategy if we require

that at least n% of the benchmarks reach at least m% of the

maximal improvement. For instance in Figure 4 (d) we can

see that with 100 program executions Pre-SIM yields 65% of

total benchmarks (162�0:65 = 105:3 benchmarks) reaching

100% of speedup obtained by Execution-Only Algorithm.

Firstly, considering the di�erence between Pre-Selection and

Post-Selection, Post-Selection is better when cost models

capture the dominant factor of performance. However, if

the cost models fail to do so, Pre-Selection is the better ap-

proach. Since Pre-Selection models visit the search space

according to the search algorithm, they visit a wider range

of the search space and �nd better combinations that cannot

be predicted by static models. Considering Pre-SIM, we �nd

that Pre-SIM is the most e�ective strategy except at 20 exe-

cutions where Post-MOD is best (see Figure 4 (d)). Pre-SIM

is more
exible than Post-SIM1 and Post-SIM2, visiting a

large area of the search space based on the Execution-Only

Algorithm while e�ectively rejecting bad combinations that

exhibit poor cache hit rates. Also, in the simple cache mod-

els, Pre-MOD yields better performance than Post-MOD

does when more than 40 combinations are executed (see

Figure 3). Considering that Pre-Selection yields better per-

formance than Post-Selection, it is worthwhile to have some

randomness for guiding the search when the information to

decide the best sequence of transformations is limited or

inaccurate. In Post-Selection other search algorithms such

as GA and SA that decide next combination based on the

execution time can be also used.

Secondly, comparing Post-SIM1 and Post-SIM2, we �nd that

Post-SIM2 yields better performance than Post-SIM1, espe-

cially if the number of executions is limited. As shown in

Figure 3 Post-SIM2 achieves 94.9% of Execution-Only Algo-

rithm with 20 executions, while Post-SIM1 needs more than

40 executions (93.8% with 40 executions) to �nd a high level

of optimization. As widely regarded, the hit rate of the L1

cache is one of the most important factors for the e�ciency

of the resulting code. However, in the current case, it is ap-

parently not a good approach to estimate the resulting code

performance only from L1 cache hit rate. One important

factor that Post-SIM2 takes into account and Post-SIM1

does not is the presence of loop unrolling. Post-SIM2 knows

that loop unrolling is also applied and that the range of un-

roll factor is from 1 to 20. It selects combinations that have

the highest cache hit rate for each unroll factor, i.e., the se-

lection strategy has the
avor of a directed search based on

the knowledge that unrolling is used. The costs of simulation

are the same for both cases, however, this extra information

provided to Post-SIM2 signi�cantly improves the ability to

�nd good combinations.

Thirdly, we �nd that Post-MOD and Pre-MOD are quite

good models to guide the search. Especially when the num-

ber of program executions is limited, Post-MOD performs

best among all strategies at 20 executions. Although Post-

MOD and Pre-MOD are not the best after 20 program exe-

cutions, they always perform better than Post-SIM1 on aver-

age. One reason the accurate cache model does not perform

so well is that it fails to take into account of the impact of

loop unrolling and other levels of memory hierarchy, such

as the L2 cache. Another reason is that the hit rate is an

average over the entire execution of a program and does not

discriminate between a burst of misses and the same num-

ber of misses that is more uniformly distributed. For a real

processor, a burst of misses will stall the machine for a sig-

ni�cant number of cycles whereas occasional misses may be

hidden. From Figure 4 we see that Post-SIM1 is the worst

strategy that requires a large number of executions. It is

shown that the accurate cache simulator even fails to pre-

dict the resulting code that reaches 80% of Execution-Only

Algorithm if the number of execution is limited (in Figure 4

(a)). It requires 100 program executions to be comparable

to other strategies.

Finally, in table 2, the total numbers of steps in Pre-Selection

are shown. In Pre-Selection many combinations are visited

according to the search algorithm for which the execution

time is not evaluated. For example, in Pre-SIM 145 combi-

nations are considered and only 20 combinations with high

cache hit rate are actually executed. On average 85.6% and

95.6% of total steps are �ltered out in Pre-SIM and Pre-

MOD, respectively. This results suggest the cost of total

compilation process. In Pre-Selection, hit rates or working

80.00

85.00

90.00

95.00

100.00

105.00
A

ve
ra

ge
 P

er
fo

rm
an

ce
 O

ve
r

E
xe

cu
tio

n−
O

nl
y

(%
)

20 40 60 80 100

Number of Program Executions

(a) Post-SIM1

86.00

88.00

90.00

92.00

94.00

96.00

98.00

100.00

102.00

104.00

A
ve

ra
ge

 P
er

fo
rm

an
ce

 O
ve

r
E

xe
cu

tio
n−

O
nl

y
(%

)

20 40 60 80 100

Number of Program Executions

(b) Post-SIM2

88.00

90.00

92.00

94.00

96.00

98.00

100.00

102.00

104.00

A
ve

ra
ge

 P
er

fo
rm

an
ce

 O
ve

r
E

xe
cu

tio
n−

O
nl

y
(%

)

20 40 60 80 100

Number of Program Executions

(c) Post-MOD

90.00

92.00

94.00

96.00

98.00

100.00

102.00

A
ve

ra
ge

 P
er

fo
rm

an
ce

 O
ve

r
E

xe
cu

tio
n−

O
nl

y
(%

)

20 40 60 80 100

Number of Program Executions

(d) Pre-SIM

88.00

90.00

92.00

94.00

96.00

98.00

100.00

102.00

104.00

A
ve

ra
ge

 P
er

fo
rm

an
ce

 O
ve

r
E

xe
cu

tio
n−

O
nl

y
(%

)

20 40 60 80 100

Number of Program Executions

(e) Pre-MOD

Figure 3: Average Performance over Execution-Only Algorithm

set sizes of all combinations need to be calculated before-

hand. Thus the cost spent for the cache models is �xed

regardless to the number of program executions and there-

fore Pre-Selection is costlier than Post-Selection.

6. DISCUSSION

In the case of embedded and DSP applications, there are

usually small routines that contain one or more compute in-

tensive loops. Hence aggressively optimizing these routines

can reduce the overall execution time of the application sig-

ni�cantly. These routines are prime candidates for being

tackled by the proposed approach. Furthermore, the com-

piler can keep track of how well it is able to optimize certain

parts of the code and switch to an iterative approach in case

it is unable to �nd good optimizations statically. Currently,

we use only execution time as a metric for performance.

However, other factors such as code size, which is very im-

portant for embedded systems, can be considered also.

In this paper, we use �xed input data sizes. If pro�ling shows

that the kernel is heavily biased towards a certain input data

size, this approach is appropriate. However, in many cases

pro�ling will yield a distribution of input data sizes. In this

case we cannot simply optimize for one single data input

size. In such a case we need to optimize the program so

that the average execution time is minimized [16]. We have

found that there are many combinations of transformations

that yield good speedups and iterative compilation �nds ef-

fective combinations for a range of input data sizes. Other

optimizations, such as array padding, can be used to pro-

duce a code that is less sensitive to data sizes. Certain data

sizes, often powers of two, may cause a signi�cant number

of cache con
ict misses. Array padding that reduces con
ict

misses can be easily included in our search space.

We use � = 99:9% for Pre-SIM. Although there is some

randomness in this strategy, the resulting performance is

still dominated by the behavior of the L1 cache in the case

of general purpose processors that we have considered. If

other architectures, such as DSPs in which other factors also

have a signi�cant impact on resulting code because of their

complicated memory hierarchy, are considered, a di�erent

value of � might be used. In such a case, a lower value

must be used to visit the search space more freely so that

we can �nd the best sequence of transformations that is not

predictable only from the information of the L1 cache.

84.00

86.00

88.00

90.00

92.00

94.00

96.00

98.00

100.00

Number of Program Executions
20 40 60 80 100

Pre−SIM

Post−SIM2

Pre−MOD

Post−MOD

Post−SIM1P
er

ce
nt

ag
es

 o
f B

en
ch

m
ar

ks

(a) 80% of Execution-Only Algorithm

70.00

75.00

80.00

85.00

90.00

95.00

Number of Program Executions
20 40 60 80 100

Pre−SIM

Post−SIM2

Pre−MOD

Post−MOD

Post−SIM1P
er

ce
nt

ag
es

 o
f B

en
ch

m
ar

ks

(b) 90% of Execution-Only Algorithm

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

Number of Program Executions
20 40 60 80 100

Pre−SIM

Post−SIM2

Pre−MOD

Post−MOD

Post−SIM1P
er

ce
nt

ag
es

 o
f B

en
ch

m
ar

ks

(c) 95% of Execution-Only Algorithm

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

Number of Program Executions
20 40 60 80 100

Pre−SIM

Post−SIM2

Pre−MOD

Post−MOD

Post−SIM1P
er

ce
nt

ag
es

 o
f B

en
ch

m
ar

ks

(d) 100% of Execution-Only Algorithm

Figure 4: Percentages of Benchmarks for Each Cache Model

Note also that we use a full cache simulator to measure the

impact of the transformations at compile time. As our re-

sults show, it is very powerful to �nd the best combination of

transformations within a few executions. However, having a

full cache simulator is very expensive and not suitable for our

approach. It is in fact more expensive to simulate many of

these benchmarks than execute them. The cache simulator

was used in this study to identify the limits to �ltering based

on a very accurate cache model versus a simpler and faster

one. We are considering other modeling techniques, such as

Cache Miss Equations [11] or similar techniques proposed

in [20, 10] that yield very accurate cache miss rate with

much lower cost. Using these techniques we believe that the

cost of Post-SIM1, Post-SIM2 and Pre-SIM will be as low

as that of Post-MOD and Pre-MOD. We intend to quan-

tify the amount of time saved relative to Execution-Only

Algorithm using these strategies. We are also currently in-

vestigating an analytical model from which we can obtain

the best unrolling factor.

Finally, the search should be steered by available knowledge,

both application domain and target domain speci�c. We

need to collect pro�ling information that can be exploited

using his knowledge and determine its e�ectiveness in im-

proving the search e�ciency.

7. CONCLUSION

To achieve both compiler e�ciency and code performance,

we have investigated the incorporation of static cache models

into iterative compilation. We found that iterative compila-

tion can be more e�ective with the help of cache models by

reducing the required number of executions while achieving

a high level of optimization. According to our results, mul-

tiple levels of information should be considered to guide the

search more e�ectively. When the number of program exe-

cutions is limited, Post-Selection is more e�ective verifying

the transformed program that is predicted by static mod-

els. If more program executions are allowed, Pre-Selection

is superior, visiting wider range of the search space while

excluding bad candidates. Iterative compilation appears to

be especially promising for embedded systems where highly

machine speci�c optimizations are required to yield a good

code performance.

8. REFERENCES
[1] A.J.C Bik, P.J. Brinkhaus, P.M.W. Knijnenburg, and

H.A.G. Wijsho�. Transformation Mechanisms in

MT1. Technical Report no. 1999-21, LIACS, Leiden

University, 1999.

[2] J. Bilmes, K. Asanovi�c, C.W. Chin, and J. Demmel.

Optimizing matrix multiply using PHiPAC: A

portable, high-performance, ANSI C coding

methodology. Proc. ICS'97, pages 340{347, 1997.

[3] F. Bodin, T. Kisuki, P.M.W. Knijnenburg, M.F.P.

O'Boyle, and E. Rohou. Iterative compilation in a

non-linear optimisation space. Proc. Workshop on

Pro�le and Feedback Directed Compilation, 1998.

Workshop organised in conjunction with PACT'98.

[4] S. Carr and Y. Guan. Unrolling-and-Jam Using

Uniformly Generated Sets. In Proc. MICRO-30, pages

349{357, 1997.

[5] S. Carr and K. Kennedy. Improving the ratio of

memory operatoins to
oating-point operations in

loops. ACM Trans. on Programming Languages and

Systems, 16(6):1768{1810, November 1994.

[6] J. Chame and S. Moon. A Tile Selection Algorithm

for Data Locality and Cache Interference. In Proc. the

13th ACM International Conference on

Supercomputing, pages 492{499, 1999.

[7] K. Chow and Y. Wu. Feedback-Directed Selection and

Characterization of Compiler Optimizations. In Proc.

2nd Workshop on Feedback-Directed Optimization,

November 1999. In conjunction with MICRO-32.

[8] S. Coleman and K.S. McKinley. Tile size selection

using cache organization and data layout. Proc.

Programming Language Design and Implementation,

pages 279{290, 1995.

[9] P. Diniz and M. Rinard. Dynamic Feedback: An

E�ective Technique for Adaptive Computing. Proc.

Programming Languages Design and Implementation,

pages 71{84, 1997.

[10] B.B. Fraguela, R. Doallo, and E.L. Zapata. Automatic

analytical modeling for the estimation of cache misses.

In Proc. of International Conference on Parallel

Architectures and Compilation Techniques, pages

221{231, October 1999.

[11] S. Ghosh, M. Martonosi, and S. Malik. Cache Miss

Equations: A Compiler Framework for Analyzing and

Tuning Memory Behavior. ACM Trans. on

Programming Languages and Systems, 21(4):703{746,

July 1999.

[12] R. Gupta and R. Bodik. Adaptive Loop

Transformations for Scienti�c Programs. IEEE

Symposium on Parallel and Distributed Processing,

pages 368{375, October 1995.

[13] T. Kisuki, P.M.W. Knijnenburg, and M.F.P. O'Boyle.

Combined Selection of Tile Sizes and Unroll Factors

Using Iterative Compilation. To appeare in Proc.

PACT2000.

[14] T. Kisuki, P.M.W. Knijnenburg, and M.F.P. O'Boyle.

Incorporating cache models in iterative compilation

for combined tiling and unrolling. Technical Report

no. 2000-10, LIACS, Leiden University, 2000.

[15] T. Kisuki, P.M.W. Knijnenburg, M.F.P. O'Boyle,

F. Bodin, and H.A.G. Wijsho�. A Feasibility Study in

Iterative Compilation. In Proc. ISHPC '99, volume

1615 of Lecture Note in Computer Science, pages

121{132, May 1999.

[16] T. Kisuki, P.M.W. Knijnenburg, M.F.P. O'Boyle, and

H.A.G. Wijsho�. Iterative compilation in program

optimization. In Proc. CPC2000, pages 35{44, 2000.

[17] M.S. Lam, E.E. Rothberg, and M.E. Wolf. The Cache

Performance and Optimizations of Blocked

Algorithms. ASPLOS IV, pages 63{74, April 1991.

[18] C. Lefurgy and T. Mudge. Code compression for DSP.

Technical Report CSE-TR-380-98, University of

Michigan, November 1998. Presented at CASES-98

Workshop.

[19] N. Mitchell, K. H�ogstedt, L. Carter, and J. Ferrante.

Qantifying the Multi-Level Nature of Tiling

Interactions. International Journal of Parallel

Programming, 26(6):641{670, 1998.

[20] O. Temam, C. Fricker, and W.Jalby. Cache

interference phenomena. In Proc. SIGMETRICS'94,

pages 261{271, 1994.

[21] M.J. Voss and R. Eigenmann. ADAPT: Automated

De-Coupled Adaptive Program Transformation. In

Proc. of the International Conference on Parallel

Processing, August 2000.

[22] R.C. Whaley and J.J. Dongarra. Automatically Tuned

Linear Algebra Software. Available through

http://www.netlib.org/atlas/, 1998.

[23] M.E. Wolf, D.E. Maydan, and D.-K. Chen. Combining

loop transformations considering caches and

scheduling. Int'l. J. of Parallel Programming,

26(4):479{503, 1998.

