
In
orporating Ca
he Models in Iterative Compilation

for Combined Tiling and Unrolling

T. Kisuki

�

P.M.W. Knijnenburg

�

M.F.P. O'Boyle

y

�

LIACS, Leiden University, the Netherlands

fkisuki,peterkg�lia
s.nl

y

Institute for Computing Systems Ar
hite
ture,

Edinburgh University, UK, mob�d
s.ed.a
.uk

Abstra
t

In this paper we further investigate the notion of iterative
ompilation, in whi
h the

problem of determining the optimal program transformation is approa
hed by gener-

ating many versions of the sour
e program and by sear
hing for the best by a
tually

exe
uting these versions on the target hardware to measure their exe
ution time. In

previous work we have shown that this approa
h
an obtain high levels of optimization,

outperforming existing stati
 te
hniques signi�
antly. In this paper we address how

to in
orporate stati
 models in the sear
h pro
edure in order to redu
e the number of

program exe
utions. We fo
us on
a
he models sin
e exploitation of the memory hi-

erar
hy is very important in obtaining exe
ution speed. First, we show that by using

1

these models alone and no pro�ling, far lower levels of optimization are obtained than

by using pro�ling information. Se
ond, we show that in
luding a

urate
a
he models

an redu
e the number of program exe
utions by 50% and still obtain the same levels

of optimization. We also show that less a

urate models are
apable of improving iter-

ative
ompilation as mu
h as a simulator, in
ase we have a limited number of pro�les.

Otherwise, these models may a
tually degrade the performan
e of iterative
ompilation.

1 Introdu
tion

By the year 2010 it is predi
ted that there will be approximately 1 billion transistors available

on a
hip

1

. This represents an opportunity and
hallenge to
omputer ar
hite
ts to design

and build pro
essors
apable of exploiting su
h a resour
e. In
reasingly, pro
essors rely on

ompiler te
hnology to exploit the potential resour
es by
arefully mapping appli
ations to

hardware [8℄. However, the rate of ar
hite
tural
hange is su
h that in the near future it

will not be possible to produ
e high performan
e optimizing
ompilers in the time available

and we therefore need to
onsider adaptive
ompilers, i.e., those that are able to
ope with a

hanging hardware platform throughout their lifetime.

One of the main reasons that it will be
ome in
reasingly diÆ
ult to develop
ompilers of

a suÆ
ient quality at a
ertain rate, is that the inherent problem of optimization is highly

omplex and varies
onsiderably from one ar
hite
ture to the next. Consider the frequently

o

urring problem of trying to exploit the memory hierar
hy and internal parallelism of a

pro
essor by applying tiling and unrolling transformations, respe
tively, to the most visited

1

The Semi
ondu
tor Industry Asso
iation's 1997 proje
tion states that by 2010 a pro
essor
hip will
ontain

around 800 million transistors and operate at over 2 GHz.

2

se
tions of
ode, namely loop nest. Finding the
orre
t tile size and unroll fa
tor is
riti
al

as
an be seen from �gure 1, that shows the exe
ution time of matrix multipli
ation as a

fun
tion of tile size and unroll fa
tor for two distin
t pro
essors. A small deviation from

`good' tile sizes and unroll fa
tors may
ause a large in
rease in exe
ution time and even a

slow down with respe
t to the original program. Furthermore, the best tile size and unroll

fa
tor radi
ally
hanges from one pro
essor to the next as
an also be seen in Figure 1. Thus,

even if a
ompiler were able to determine the best optimization for a parti
ular pro
essor in

this highly non-linear optimization spa
e, it is extremely unlikely to be able to perform the

same task on an entirely di�erent pro
essor. Yet this is pre
isely what we hope to a
hieve,

namely, an optimizing
ompiler that has a longer lifetime than its hardware platform and is

apable of adaptation.

Clearly no
ompiler te
hnology solely based on stati
 analysis and a hardwired
ost model

of the target pro
essor is
apable of
hanging to a new ar
hite
ture. What is required is

a method where the
ompiler
an re
eive dynami
 feedba
k regarding its performan
e and

modify its behavior. The use of dynami
 information for
ompiler de
ision making has been

investigated for a number of years. Indeed, most popular produ
tion
ompilers are
apable of

making use of pro�le information [21℄. All of these s
hemes however,
hoose between options

determined stati
ally beforehand, again relying on hardwired
ost-models.

In this paper we investigate how
ompiler te
hnology may adapt to ar
hite
tural
hange by

taking an extreme point of view, where the
ompiler has no knowledge of the underlying

ar
hite
ture and attempts to sear
h for the best optimization using iterative
ompilation.

Here, the
ompiler investigates the optimization spa
e o�-line, generating di�erent version of

the sour
e program based on a generi
 sear
h strategy and a
tual exe
ution time feed-ba
k.

3

0
20

40
60

80
100

0

5

10

15

20
0

5

10

15

20

T
im

e

Unroll Tile Size

Pentium II

0
20

40
60

80
100

0

5

10

15

20
0

5

10

15

20

25

30

Tile SizeUnroll

T
im

e

UltraSpar

Figure 1: Exe
ution Time MxM for Unrolling and Tiling

Iterative
ompilation, based on the sele
tion of high level transformations, has been shown

to work a
ross a range of ar
hite
tures [13℄ and although preliminary work has shown this

approa
h to be highly e�e
tive [14℄, the number of exe
utions needed to �nd a good program

may be prohibitively expensive. We therefore also
onsider how additional information may

be used to guide the sear
h strategy and its e�e
t on both
ompiler eÆ
ien
y and
ode

performan
e.

In this paper we
onsider how a
ompletely generi
 approa
h to adaptive
ompilation may

be augmented with additional ma
hine spe
i�

ost models to improve the running time of

the
ompiler. Su
h an approa
h allows the iterative
ompiler to always produ
e good results

regardless of the platform, but available stati
 information
an be used to improve eÆ
ien
y.

In order to fo
us the
omparison, we will
onsider only a small transformation spa
e, namely

tiling and unrolling, a
ross several ben
hmarks and platforms.

This paper is organized as follows. In Se
tion 2 we dis
uss the implementation of the iterative

ompilation system and brie
y review its performan
e. In Se
tion 3 we dis
uss the
a
he

4

models used, the iterative sear
h algorithms and the ben
hmarks and platforms. In Se
tion 4

we dis
uss the performan
e of iterative
ompilation with
a
he models,
ompared to iterative

ompilation without
a
he models. In Se
tion 5 we give a detailed analysis of the levels of

optimization that
an be rea
hed when we limited the number of program exe
utions. We

show that
a
he models are
apable of redu
ing this number of program exe
utions by 50%.

In se
tion 6 we dis
uss the results obtained in this paper and some future dire
tions in our

resear
h. In se
tion 7 we dis
uss related work and we draw some
on
luding remarks in

se
tion 8.

2 Iterative Compilation

In this se
tion we brie
y dis
uss how the iterative
ompilation system is implemented and we

brie
y review its performan
e.

2.1 Implementation

Figure 2 shows an overview of the
ompiler system. For more details,
onsult [15℄. The

ompilation system is
entered around a global driver that reads a list of transformations

that it needs to examine together with the range of their parameters. The driver keeps

tra
k of the di�erent transformations evaluated so far and de
ides whi
h transformations

have to be applied next using a sear
h algorithm to steer through the optimization spa
e.

We have implemented several sear
h algorithms, in
luding a Geneti
 Algorithm, Simulated

Annealing, Pyramid Sear
h, Window Sear
h and Random Sear
h [13℄. In this paper we have

in
luded
a
he models in the driver that are used to de
ide whether or not to exe
ute the

5

Driver

List of Transformations

MT1 Compiler TDL−Files

F77

Transformed ProgramExecution
 Time

SSL−File

Target Platform

Cache Model

Figure 2: The Compilation Pro
ess

program, as explained in Se
tion 3 below. The global driver invokes the sour
e to sour
e

ompiler MT1 [2℄ and instru
ts it whi
h transformation to apply. MT1 has two me
hanisms

to
ontrol the appli
ation of transformations: a Transformation De�nition Language (TDL)

and a Strategy Spe
i�
ation Language (SSL) [1℄. For ea
h transformation in
luded in the

list of transformations, a transformation needs to be spe
i�ed in the TDL-�le. The global

driver
onstru
ts an SSL �le that spe
i�es the order in whi
h to apply
ertain transformations

and outputs it to MT1. After a predetermined number of iterations, the global driver stops

sear
hing and outputs the transformed program with the shortest exe
ution time.

2.2 Performan
e of Iterative Compilation

In this se
tion we brie
y review how mu
h speedup
an be obtained by iterative
ompilation

without using
a
he models, as dis
ussed in [13℄. In Figure 3 we show an example of the

6

3.20

3.40

3.60

3.80

4.00

4.20

4.40

4.60

4.80

5.00

5.20

5.40

0
100

200
300

400
N

um
ber of Iterations

Speedup

N
 = 256

N
 = 301

N
 = 300

M
xM

 (IK
J)

P
e
n
t
i
u
m

I
I

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

0
100

200
300

400
N

um
ber of Iterations

Speedup

N
 = 256

N
 = 301

N
 = 300

M
xM

 (IK
J)

H
P
-
P
A

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

0
100

200
300

400
N

um
ber of Iterations

Speedup

N
 = 256

N
 = 301

N
 = 300

M
xM

 (IK
J)

U
l
t
r
a
S
p
a
r

(
a
)
S
p
e
e
d
u
p

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Unroll:4

Unroll:1
Unroll:2
Unroll:3

Unroll:5
Unroll:6
Unroll:7
Unroll:8
Unroll:9
Unroll:10
Unroll:11
Unroll:12
Unroll:13
Unroll:14
Unroll:15
Unroll:16
Unroll:17
Unroll:18
Unroll:19
Unroll:20

Performance Improvement (%)

LR
W

: M
xM

 (N
=

256)

P
e
n
t
i
u
m

I
I

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

Unroll:4

Unroll:1

Unroll:2
Unroll:3

Unroll:5
Unroll:6
Unroll:7
Unroll:8

Unroll:9
Unroll:10
Unroll:11
Unroll:12

Unroll:13
Unroll:14
Unroll:15

Unroll:16
Unroll:17
Unroll:18
Unroll:19

Unroll:20

LR
W

: M
xM

 (N
=

256)

Performance Improvement (%)

H
P
-
P
A

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

220.00

Unroll:4

Unroll:1

Unroll:2
Unroll:3

Unroll:5
Unroll:6
Unroll:7
Unroll:8

Unroll:9
Unroll:10
Unroll:11
Unroll:12

Unroll:13
Unroll:14

Unroll:15

Unroll:16
Unroll:17
Unroll:18
Unroll:19

Unroll:20

Performance Improvement (%)

LR
W

: M
xM

 (N
=

256)

U
l
t
r
a
S
p
a
r

(
b
)
I
m
p
r
o
v
e
m
e
n
t
o
v
e
r
L
R
W

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

Unroll:4

Unroll:1

Unroll:2
Unroll:3

Unroll:5
Unroll:6
Unroll:7
Unroll:8

Unroll:9
Unroll:10
Unroll:11
Unroll:12

Unroll:13
Unroll:14
Unroll:15

Unroll:16
Unroll:17
Unroll:18
Unroll:19

Unroll:20

Performance Improvement (%)

T
S

S
: M

xM
 (N

=
256)

P
e
n
t
i
u
m

I
I

Unroll:4

Unroll:1

Unroll:2
Unroll:3

Unroll:5
Unroll:6
Unroll:7
Unroll:8

Unroll:9
Unroll:10
Unroll:11
Unroll:12

Unroll:13
Unroll:14
Unroll:15

Unroll:16
Unroll:17
Unroll:18
Unroll:19

Unroll:20

Performance Improvement (%)

T
S

S
: M

xM
 (N

=
256)

1800

1600

1400

1200

1000

800

600

400

200

0

H
P
-
P
A

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

Unroll:4

Unroll:1

Unroll:2
Unroll:3

Unroll:5
Unroll:6
Unroll:7
Unroll:8

Unroll:9
Unroll:10
Unroll:11
Unroll:12

Unroll:13
Unroll:14
Unroll:15

Unroll:16
Unroll:17
Unroll:18
Unroll:19

Unroll:20

Performance Improvement (%)

T
S

S
: M

xM
 (N

=
256)

U
l
t
r
a
S
p
a
r

(

)
I
m
p
r
o
v
e
m
e
n
t
o
v
e
r
T
S
S

F
i
g
u
r
e
3
:
E
x
a
m
p
l
e
P
e
r
f
o
r
m
a
n

e
I
t
e
r
a
t
i
v
e
C
o
m
p
i
l
a
t
i
o
n
:
M
x
M

(
I
K
J
v
e
r
s
i
o
n
)

7

use of iterative
ompilation where we optimize Matrix-Matrix Multipli
ation (IKJ version)

for di�erent data input sizes. Figure 3(a) shows the speedup as a fun
tion of the number

of iterations. We see that signi�
ant speedups are obtained. We quantify the quality of the

transformation found by
omparing this speedup to the speedups obtained from two well-

known stati
 tile size sele
tion algorithms: TSS proposed by Coleman and M
Kinley [7℄ and

LRW proposed by Lam, Rothberg andWolf [16℄. First, we unrolled the loop with unroll fa
tors

of 1 to 20 and subsequently
omputed the tile size for this unrolled loop. Improvements of

iterative
ompilation over LRW and TSS are given in Figures 3(b) and 3(
), respe
tively. In

[13℄ we show that iterative
ompilation outperforms both TSS and LRW in more than 99% of

the
ases we
onsidered. The
ompilation time is linear in the number of program exe
utions

and in [13℄ we show that it takes 6 minutes on average for 50 exe
utions. We
on
lude that

iterative
ompilation is a powerful approa
h to program optimization, outperforming existing

stati
 te
hniques signi�
antly.

3 Experiment

In this se
tion we dis
uss the e�e
t of adding
a
he models to the global driver. We dis
uss

the sear
h algorithms, two di�erent
a
he models and the ben
hmarks and platforms used.

3.1 Sear
h Algorithms

Given a
a
he model, we
an use it in two ways to sele
t a transformation, as shown in

Figure 4. The �rst algorithm, shown in Figure 4(a), only uses the model. The se
ond

algorithm, shown in Figure 4(b), uses the model to ex
lude
ertain transformations from

8

urrent = initial transformation

REPEAT

next = next transformation

IF model(next) better than model(
urrent)

THEN
urrent = next

urrent = initial transformation

REPEAT

next = next transformation

IF model(next) better than �% model(
urrent)

THEN exe
ute(next)

IF exe
 time(next) < exe
 time(
urrent)

THEN
urrent = next

(a) Model-Only (b) Model+Exe
ution

Figure 4: Sear
h Algorithms

being exe
uted. However, we still use exe
ution times to sele
t a new transformation. We

have in
luded a \sla
k fa
tor" � sin
e we expe
t that a model will only
apture the behavior

of the program partially. If a model is more a

urate, we expe
t that we
an use higher values

for � and thereby ex
lude more transformations from a
tual exe
ution. Below we show that

the performan
e of iterative
ompilation is highly sensitive to �.

In [13℄ we have des
ribed several algorithms that
an be used to determine the next transfor-

mation, in
luding a Geneti
 Algorithm, Simulated Annealing, Pyramid Sear
h and Random

Sear
h. We showed that these algorithms give rise to the same speedups within a margin

of a few per
entage. Also, their running times are in the same order of magnitude. We
an

explain this by observing that GA and SA are targeted towards huge sear
h spa
es requiring

many samples. In the present
ontext we have to deal with a small sear
h spa
e (albeit where

sampling one point is an expensive operation) and we fo
us on the e�e
t of taking fewer than

100 sample points. In this
ase, both GA and SA are still in their �rst phases and they

exhibit quite random behavior. Therefore, we will use a random algorithm to determine the

next transformation in the remainder of this paper.

Finally, we will
ompare the results obtained from iterative
ompilation in
luding a
a
he

model with results obtained from iterative
ompilation without a
a
he model as des
ribed

9

in [13℄. The sear
h algorithm des
ribed in [13℄ that only uses exe
ution time is
alled the

Exe
ution-Only Algorithm below. This algorithm repeatedly pi
ks a set of parameters, exe-

utes the
orresponding transformed program and sele
ts the set of parameters that gives rise

to the shortest exe
ution time.

3.2 Ca
he Models

We distinguish two extremes in the spe
trum of possible models. First, as an upperbound ,

we use a full
a
he simulator to
ompute the exa
t hit rate. This model is highly a

urate

but in pra
ti
e it is unlikely that it would be used, due to its high
ost, but it provides a

good upperbound for the available stati
 analysis. Other sophisti
ated
a
he models also

try to
apture hit rates [22℄. Se
ond, as a lowerbound , we use a simple model proposed by

Coleman and M
Kinley [7℄ that is inexpensive but less a

urate than a simulator. It uses

an approximation of the working set WS and the
ross-interferen
e rate CIR. Other
a
he

models that might be used will fall in between these models in terms of a

ura
y and
ost.

Therefore, the results obtained in this paper
an be used to give insight into the eÆ
ien
y of

su
h a model, by our analysis of the two extremes of the spe
trum of possible models.

Using the full
a
he simulator, we say that a version of a program P

1

is better than another

version P

2

i� the hit rate of P

1

omputed by the simulator is larger than the hit rate of P

2

.

The model proposed by Coleman and M
Kinley [7℄
an be des
ribed as follows. For two

versions P

1

and P

2

of a program, the model says that P

1

is better than P

2

i�

WS(P

1

) > WS(P

2

) && WS(P

1

) < CS && CIR(P

1

) < CIR(P

2

)

where WS is the working set of one tile, CS is the
a
he size and CIR is the
ross interferen
e

10

rate of one tile.

We in
lude a sla
k fa
tor � in the models as follows. For the
a
he simulator, we use the

following sele
tion
riterion in the sear
h pro
edure:

CS : hit rate(P

1

) > �% hit rate(P

2

)

For the Coleman/M
Kinley model, we have the following sele
tion
riterion:

CM : WS(P

1

) > �% WS(P

2

) && WS(P

1

) < CS && �% CIR(P

1

) < CIR(P

2

)

Note that by taking � = 0, the simulator redu
es to the Exe
ution-Only Algorithm. The

simple model then only
he
ks whether the working set is smaller than the
a
he size.

3.3 Ben
hmarks and Platforms

In order to test the eÆ
ien
y of the use of
a
he models in iterative
ompilation, we use

many small kernel ben
hmarks exhibiting widely di�erent memory a

ess behavior, on sev-

eral data input sizes and several platforms. In total we
olle
ted 162 measurements that we

use to quantify the eÆ
ien
y of our approa
h to produ
e statisti
ally relevant results. The

ben
hmarks
onsidered are the most important and
ompute intensive kernels from multi-

media appli
ations. We use all 6 possible loop permutations of matrix-matrix multipli
ation

on 3 data input sizes of 256, 300 and 301. We denote these by MxM-IJK, MxM-IKJ et
.

We use the 2 loop orders in matrix-ve
tor multipli
ation on data input sizes 2048, 2300 and

2301. We use 6 loop orders in Forward Dis
rete Cosine Transform (FDCT), one of the most

important routines from the low level bit stream video en
oder H263. This routine
onsists

of an initialization loop, two 3D
omputation loops and one �nalization loop. We also use the

11

6 variations of the se
ond main
omputation loop from FDCT that
onsists of multipli
ation

of a transposed matrix. We use data input sizes of 256, 300 and 301. Finally, we use a Finite

Impulse Response �lter (FIR), one of the most important DSP operations, with data sizes of

8192, 8300 and 8301.

We exe
uted on the following platforms: Pentium II, Pentium III, HP-PA 712, UltraSpar
 I.

We used the native Fortran
ompiler or g77, with full optimization on. In this paper we

onsider loop tiling, with tile sizes of 1 to 100, and loop unrolling, with unroll fa
tors of 1 to

20. For the Model-Only Algorithm, we take 500 random points, and for the Exe
ution-Only

and Model+Exe
ution Algorithm, we allow a maximum of 400 program exe
utions.

4 Performan
e of Ca
he Models

In this se
tion we dis
uss the results we obtained for iterative
ompilation in
orporating
a
he

models. We use the speedup obtained from the Exe
ution-Only Algorithm [13℄,
alled the

Exe
ution-Only speedup below, as the base line to whi
h we
ompare results produ
ed by

the
a
he models. We also
ompare the number of exe
utions to the number of exe
utions

required by the Exe
ution-Only Algorithm.

4.1 Ca
he Simulator

In this se
tion we dis
uss the performan
e of iterative
ompilation in
orporating a full
a
he

simulator. First, in Figure 5(a), we plotted the speedup obtained from the Model-Only

Algorithm as the point labeled Model-Only. On average, this speedup is only 82% of the

12

70.00

75.00

80.00

85.00

90.00

95.00

100.00

105.00

99.00 99.50 100.00 100.50Model−Only

P
er

ce
nt

ag
e

E
xe

cu
tio

n−
O

nl
y

S
pe

ed
up

Slack Factor

(a) Performan
e

Slack Factor

200

150

100

50

0

250

99.0 99.5 100.0 100.5 Exec−Only

N
um

be
r

of
 E

xe
cu

tio
ns

(b) Number of Exe
utions

Figure 5: Performan
e Ca
he Simulator

Exe
ution-Only speedup, with a standard deviation of 15. This means that hit rate is not

an exa
t model for exe
ution time and, in fa
t, it is less a

urate than we expe
ted. We

an explain this by observing that the hit rate is an average over the entire exe
ution of a

program and does not dis
riminate between a burst of misses and the same number of misses

that is more uniformly distributed. However, for a real pro
essor, a burst of misses will stall

the ma
hine for a signi�
ant number of
y
les whereas o

asional misses may be hided.

Se
ond, in Figure 5(a) we show the speedup from the Model+Exe
ution Algorithm as a

fra
tion of the Exe
ution-Only speedup for di�erent values of �. In Figure 5(b), we have

plotted the number of real program exe
utions against �. The point labeled Exe
-Only in

this �gure
orresponds to the number of iterations of the Exe
ution-Only Algorithm. We

see that for values of � up to 99.9 we obtain full speedup with a small standard deviation.

For � � 100, the average speedup drops quite fast. However, we need as many program

13

exe
utions as for the Exe
ution-Only Algorithm for values of � up to 99.5. We
an explain

this by observing that the
a
he hit rate for the ben
hmarks is, on average, high. For low

values of �, most transformations that are tried in the sear
h will have a hit rate within �%

of the best hit rate so far and hen
e they are exe
uted. This means that the sear
h pro
eeds

quite similar to the Exe
ution-Only Algorithm and the speedups found are the same.

The number of iterations required drops for 99:5 � � � 100 whereas speedups are around

100%. For � = 100, the average number of exe
utions is redu
ed to 64. For � > 100, there

is a sharp and sudden drop in the speedup that we rea
h and in the number of program

exe
utions. This means that we qui
kly �nd a transformation with a high hit rate that

subsequent transformations are not
apable of improving by more than 100%. However, the

a
tual exe
ution time for this transformation is far from optimal.

We
on
lude that iterative
ompilation in
orporating a full
a
he simulator is
apable of

rea
hing the same speedups as the Exe
ution-Only Algorithm does. For values of the sla
k

fa
tor � of 99.9 or 100, we rea
h this performan
e using less program exe
ution than for the

Exe
ution-Only Algorithm. In Se
tion 5 we will investigate this improvement in more detail.

4.2 Simple Ca
he Models

In this se
tion we dis
uss the performan
e of the simple
a
he model. First, the speedup

obtained from the Model-Only Algorithm is plotted as the point labeled Model-Only in Fig-

ure 6(a). We obtain 62% on average of the Exe
ution-Only speedup with a large standard

deviation. This means that a sear
h using this simple model only (as has been proposed by

Coleman and M
Kinley [7℄) produ
es suboptimal results. In Figure 6(a), we show the speedup

14

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.00 50.00 100.00 Model−Only

P
er

ce
nt

ag
e

E
xe

cu
tio

n−
O

nl
y

S
pe

ed
up

Slack Factor

(a) Performan
e

0.00 20.00 40.00 60.00 80.00 100.00

250

200

150

100

50

0

Slack Factor

Exec−Only

N
um

be
r

of
 E

xe
cu

tio
ns

(b) Number of Exe
utions

Figure 6: Performan
e Simple Ca
he Model

for the simple
a
he model as a fra
tion of the Exe
ution-Only speedup for di�erent values of

�. For � � 80 we rea
h at least 95% of this speedup. However, the standard deviation shows

that there are many ben
hmarks that rea
h a mu
h lower speedup. At the same time, we ob-

serve from Figure 6(b) that the number of program exe
utions drop to well below the number

of exe
utions for the Exe
ution-Only Algorithm (labeled by Exe
-Only). From our detailed

analysis in the next se
tion, we dedu
e that an optimal value of � equals 40. In this
ase, the

simple model is
apable of ex
luding many exe
utions early in the sear
h and rea
hing levels

of optimization that are
lose to those of the simulator. In general, the speedup obtained

is less than the Exe
ution-Only speedup, whi
h shows that the simple model ex
ludes many

program versions that a
tually have good exe
ution times.

15

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Number of Executions

P
er

ce
nt

ag
e

of
 B

en
ch

m
ar

ks

100% of EO
95% of EO
90% of EO
80% of EO
70% of EO
60% of EO

20 40 60 80 100

Figure 7: Trade-o� Graph for the Exe
ution-Only Algorithm

5 Trade-o� between Number of Exe
utions and Levels

of Optimization

In this se
tion we give a detailed des
ription of the average performan
e of iterative
ompila-

tion using
a
he models when we limit the number of program exe
utions. First, in Figure 7,

we depi
ted a trade-o� graph between the number of exe
utions and the levels of optimization

for the Exe
ution-Only Algorithm. We have dis
ussed these trade-o� graphs in more detail

in [13℄. The graph
ontains a number of equi-optimization
urves that indi
ate the per
ent-

age of ben
hmarks that rea
h a
ertain level of optimization as a fun
tion of the number

of program exe
utions. This level is expressed in terms of how
lose the speedup is to the

Exe
ution-Only speedup (between 0 and 100%). From this graph we
an dedu
e, for example,

that after 100 iteration, 48% of the ben
hmarks were fully optimized and thus rea
hed 100%

16

of the Exe
ution-Only speedup. Likewise, after 50 iterations, 77% of the ben
hmarks rea
hed

at least 90% of the Exe
ution-Only speedup. After 20 exe
utions, almost every ben
hmark

rea
hed at least 60% of the Exe
ution-Only speedup. Note that this graph is based on 162

experiments, in ea
h of whi
h we determined the speedup for 0 to 100 exe
utions. Hen
e,

the speedup of one ben
hmark after a
ertain number of exe
utions
ontributes 0.6% on the

y-s
ale. Therefore, we
laim that this graph is statisti
ally a

urate.

Next we
onstru
t trade-o� graphs for the stati
 models and both sear
h algorithms. We

show in these graphs how
lose we
ome to the maximal speedup rea
hed by the Exe
ution-

Only Algorithm. We quantify the improvement by
omparing the trade-o� graph for the

Exe
ution-Only Algorithm with the other trade-o� graphs.

5.1 Model-Only Algorithm

In this se
tion we dis
uss the trade-o� that we obtain from the Model-Only Algorithm for

both
a
he models, depi
ted in Figure 8. Consistent with our earlier �ndings that the Model-

Only Algorithm rea
hes only 80% or less of the Exe
ution-Only speedup, we see that the

trade-o� is low. Both models fair equally poor. Only a few ben
hmarks rea
h 100% or 95%

of the Exe
ution-Only speedup and only half the number of ben
hmarks rea
h 60% of this

speedup. Comparing this trade-o� graph with Figure 7, we see that the Exe
ution-Only

Algorithm only requires a few program exe
utions to rea
h the same levels of optimization

as the Model-Only Algorithm does. We
on
lude that a sear
h te
hnique using stati
 models

alone, as has been proposed by Wolf, Maydan and Chen [26℄, is not
apable of obtaining the

same levels of optimization as iterative
ompilation that uses pro�ling information
an.

17

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

P
er

ce
nt

ag
e

of
 B

en
ch

m
ar

ks
 (

%
)

CS CM

100% of EO

95% of EO

90% of EO

80% of EO

70 % of EO

60 % of EO

Figure 8: Tradeo� Model-Only for Both Ca
he Models

5.2 Ca
he Simulator

In Figure 9 we show trade-o� graphs for the
a
he simulator for di�erent values of �. In Fig-

ure 10 we show the improvement over the Exe
ution-Only Algorithm for 4 equi-optimization

urves. From Figure 10(a), we observe that the improvements over the Exe
ution-Only Algo-

rithm are substantial: up to 4 times as many ben
hmarks rea
h full optimization within 25

exe
utions for � = 100. We observe that, for 30 or more exe
utions, the trade-o� is better

for � = 99:9 than for � = 100. The improvement drops slowly as the number of exe
utions

in
rease so that, eventually,
a
he models provide no improvement over the Exe
ution-Only

Algorithm for more than one hundred exe
utions. For � > 100, there is a substantial degra-

dation with respe
t to the Exe
ution-Only Algorithm for almost any number of exe
utions.

In general, for � = 99:9 or 100, there is a high improvement for up to 20 or 30 exe
utions

but for more exe
utions this improvement drops. This shows that a
a
he simulator is highly

18

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

20 40 60 80 100
Number of Executions

P
er

ce
nt

ag
e

of
 B

en
ch

m
ar

ks

100% of EO
95% of EO
90% of EO
80% of EO
70% of EO
60% of EO

20 40 60 80 100

(a) � = 99:5

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Number of Executions

100% of EO
95% of EO
90% of EO
80% of EO
70% of EO
60% of EO

20 40 60 80 100

P
er

ce
nt

ag
e

of
 B

en
ch

m
ar

ks

(b) � = 99:9

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Number of Executions

100% of EO
95% of EO
90% of EO
80% of EO
70% of EO
60% of EO

20 40 60 80 100

P
er

ce
nt

ag
e

of
 B

en
ch

m
ar

ks

(
) � = 100:0

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

Number of Executions

100% of EO

95% of EO

90% of EO

80% of EO

70% of EO

60% of EO

20 40 60 80 100

P
er

ce
nt

ag
e

of
 B

en
ch

m
ar

ks

(d) � = 100:1

Figure 9: Trade-o� Graphs for Ca
he Simulator for Di�erent Values of �

19

−50.00

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

20 40 60 80 100

Number of Executions

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t (

%
)

100.1
100.0

99.5
99.9

(a) 100%-
urve

−60.00

−40.00

−20.00

0.00

20.00

40.00

60.00

80.00

20 40 60 80 100

Number of Executions

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t (

%
)

100.1
100.0

99.5
99.9

(b) 95%-
urve

−50.00

−40.00

−30.00

−20.00

−10.00

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

20 40 60 80 100

Number of Executions

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t (

%
)

100.1
100.0

99.5
99.9

(
) 90%-
urve

−30.00

−20.00

−10.00

0.00

10.00

20.00

20 40 60 80 100

Number of Executions

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t (

%
)

100.1
100.0

99.5
99.9

(d) 80%-
urve

Figure 10: Improvement over the Exe
ution-Only Algorithm for Simulator for Di�erent Values

of �

20

EO CS EO CS

50 exs. 22 exs. 100 exs. 52 exs.

100%-
urve 23% 24% 48% 47%

95%-
urve 55% 54% 75% 77%

90%-
urve 78% 76% 88% 89%

80%-
urve 90% 88% 96% 95%

Table 1: Comparison Number of Exe
utions for Exe
ution-Only and Simulator (� = 99:9)

e�e
tive in eliminating transformations that do not perform well early in the sear
h. However,

for time
riti
al embedded systems where failure to meet time
onstraints might
ause failure

of the entire system, we might need to spend many more exe
utions and even the in
lusion

of a
a
he simulator is not suÆ
ient to bring down the number of required exe
utions to an

amount that may be evaluated within a few minutes.

Next we turn attention to the improvement in the number of exe
utions needed so that the

simulator has approximately the same performan
e as the Exe
ution-Only Algorithm. In

Table 1 we show how many exe
utions are required for the simulator to rea
h the same

level of optimization as the Exe
ution-Only Algorithm obtains after 50 and 100 exe
utions.

We see that the simulator only needs about half as many exe
utions as the Exe
ution-Only

Algorithm. We
on
lude that in
orporating a highly a

urate
a
he model
an redu
e the

number of exe
utions by 50%
ompared to the Exe
ution-Only Algorithm and still rea
h the

same level of optimization.

21

5.3 Simple Ca
he Models

In Figure 11 the trade-o� graphs for the simple
a
he model are given. We rea
h levels of op-

timization that are lower than for the Exe
ution-Only Algorithm. From Figure 12, we observe

that for a small number of exe
utions (up to 20) the simple model outperforms the Exe
ution-

Only Algorithm signi�
antly for a sla
k fa
tor of � = 40. Note that for � = 0, where we only

have the
onstraint WS < CS, we obtain surprisingly good results. However, for � � 80,

the simple model will a
tually degrade the Exe
ution-Only Algorithm sin
e improvements

less than zero are obtained. This holds, in parti
ular, the original Coleman/M
Kinley model

(� = 100) that is
omparable to the simulator in
ase � = 100:1. Comparing Figures 10

and 12, we see that for small numbers of program exe
ution, this simple model with � = 40

a
tually rea
hes about 80% of the improvement of the simulator. For higher numbers of exe-

ution, however, the simulator outperforms the simple model signi�
antly and a simple model

will only slightly improve the Exe
ution-Only Algorithm.

The trade-o� graphs in Figures 11 show that simple models are not adequate to rea
h full

optimization. In parti
ular, this means that these models are of limited value in
ase we need

to highly optimize appli
ations, as for instan
e is the
ase in embedded systems.

We
annot
onstru
t a table like Table 1 for the simple
a
he model, sin
e inspe
tion of

the trade-o� graphs show that there does not exist a
learly de�ned number of exe
utions

after whi
h the simple model rea
hes the same level of optimization as the Exe
ution-Only

Algorithm does after 50 or 100 exe
utions.

22

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Number of Executions

100% of EO
95% of EO
90% of EO
80% of EO
70% of EO
60% of EO

P
er

ce
nt

ag
e

of
 B

en
ch

m
ar

ks

20 40 60 80 100

(a) � = 0

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Number of Executions

100% of EO
95% of EO
90% of EO
80% of EO
70% of EO
60% of EO

P
er

ce
nt

ag
e

of
 B

en
ch

m
ar

ks

20 40 60 80 100

(b) � = 40

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Number of Iterations

100% of EO
95% of EO
90% of EO
80% of EO
70% of EO
60% of EO

P
er

ce
nt

ag
e

of
 B

en
ch

m
ar

ks

20 40 60 80 100

(
) � = 60

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

Number of Executions

100% of EO

95% of EO

90% of EO

80% of EO

70% of EO

60% of EO

20 40 60 80 100

P
er

ce
nt

ag
e

of
 B

en
ch

m
ar

ks

(d) � = 100

Figure 11: Trade-o� Graphs for Ca
he Model for Di�erent Values of �

23

0
40
60
100

−50.00

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

Number of Executions

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t (

%
)

20 40 60 80 100

(a) 100%-
urve

−60.00

−40.00

−20.00

0.00

20.00

40.00

60.00

80.00

100.00

0
40
60
100

Number of Executions
P

er
fo

rm
an

ce
 Im

pr
ov

em
en

t (
%

)
20 40 60 80 100

(b) 95%-
urve

−40.00

−20.00

0.00

20.00

40.00

60.00

80.00

0
40
60
100

Number of Executions

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t (

%
)

20 40 60 80 100

(
) 90%-
urve

−30.00

−20.00

−10.00

0.00

10.00

20.00

30.00

0
40
60
100

Number of Executions

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t (

%
)

20 40 60 80 100

(d) 80%-
urve

Figure 12: Improvement over the Exe
ution-Only Algorithm for Ca
he Model for Di�erent

Values of �

24

6 Dis
ussion

In this paper we have dis
ussed the in
lusion of stati

a
he models in iterative
ompilation

where we sear
h for the best optimization by using model information and a
tual exe
ution

times. In the entire spe
trum of possible models, we have fo
ussed on the two extremes: a

highly expensive but a

urate model (viz. a
a
he simulator), and an inexpensive but less

a

urate analyti
al model that tries to
apture
a
he e�e
ts through simple expressions that

approximate
a
he behavior, proposed by Coleman and M
Kinley [7℄.

First, we have shown that sear
hing for the best transformation using only stati
 models, as

proposed by Wolf, Maydan and Chen [26℄, yields equal levels of optimization that are far less

than those obtained by iterative
ompilation. For this model-only approa
h to be e�e
tive,

we need more detailed models that also take into a

ount, for instan
e, the distribution

of the misses in the memory referen
e tra
e. However, based on our present experien
e

with a full
a
he simulator, we
laim that one needs real program pro�ling to �nd the best

transformation. This approa
h has re
ently re
eived more attention by several authors [9℄.

Se
ond, a

urate
a
he models improve iterative
ompilation to a large extend, redu
ing the

number of exe
utions by 50%. However, for a produ
tion
ompiler we need
heap analyti
al

models. Possible
andidates are Ca
he Miss Equations [10℄ that
an be implemented eÆ
iently

using a sto
hasti
 approa
h [24℄. Temam and
oworkers have proposed other
a
he modeling

te
hniques [22℄. Furthermore, we need to model more features of the underlying hardware,

like ILP exploitation, in order to be able to predi
t exe
ution times a

urately.

Third, less a

urate models, like the simple model proposed by Coleman and M
Kinley [7℄

are
apable of improving iterative
ompilation as mu
h as a

urate models do, but only for a

25

very limited number of program exe
utions.

Fourth, we have in
luded a sla
k fa
tor � in the models. The performan
e of the models is

highly sensitive to this sla
k fa
tor. We have shown that for the
a
he simulator the best

option is � = 100 when we have a limited budget of up to 30 program exe
utions and � = 99:9

for higher budgets. However, for the simple
a
he model, a value of � = 40 is best. In this

ase, a performan
e improvement of up to 80% of the improvement obtained by the simulator

an be realized. However, if we would
hoose a larger value for � in the simple model, we

may a
tually degrade from the Exe
ution-Only Algorithm. In parti
ular, this degradation

is
onsiderable for � = 100, whi
h
orresponds to the original Coleman/M
Kinley model.

Furthermore, a value of � = 0 for the simple model whi
h
orresponds to a
onstraint that

the working set is smaller than the
a
he size, produ
es remarkably good results.

Finally, in this paper we have
onsidered
omputational kernels only. In [20℄ we have dis
ussed

an approa
h to applying iterative
ompilation to entire, large appli
ations. We need to in
lude

many more transformations for this purpose. We have shown that a tree-like approa
h,

where tiling and unrolling are just one node,
an be eÆ
ient. By
areful use of pro�ling

information, many loop nests
an be tiled and unrolled in tandem. In this way we expe
t that

we
an optimize large appli
ations within 1000 program exe
utions. Even if
ompilation and

exe
ution times for these appli
ations are large, the optimization pro
ess
an be done within

several days or a few weeks at most. Although this is time
onsuming, hand optimization of

these appli
ations will takes months rather than weeks and, moreover, iterative
ompilation

is an automati
 pro
edure requiring no human intera
tion. Therefore iterative
ompilation

will be highly
ompetitive for time
riti
al appli
ations.

26

7 Related Work

Over the past years, many authors have
onsidered limited sear
h te
hniques for optimization

purposes. In parti
ular, for tiling and unrolling, Coleman and M
Kinley [7℄ and Lam, Roth-

berg and Wolf [16℄ employ a restri
ted sear
h for tile sizes based on a simple
a
he model.

Carr [4℄
omputes unroll fa
tors in order to minimize the di�eren
e in ma
hine and loop bal-

an
e. Carr
omputes how mu
h bene�t the unroll-and-jam of a loop has for a range of unroll

fa
tors based on stati
 models and sear
hes at
ompile time to de
ide whi
h unroll fa
tor has

the most bene�t. In
ontrast to these approa
hes, the present approa
h uses a
tual exe
ution

times and moreover
onsiders both loop tiling and unrolling at the same time.

Haley and Dongarra [25℄, and Bilmes et al. [3℄ des
ribe systems for generating highly optimized

BLAS routines that probe the underlying hardware to �nd optimal transformation parameters.

They show to be
apable of outperforming vendor supplied, hand optimized library BLAS

routines. In
ontrast to the present approa
h, however, these systems are only able to optimize

BLAS routines and are not general purpose
ompilers.

Wolf, Maydan and Chen [26℄ have des
ribed a
ompiler that also sear
hes for the optimal

optimization by
onsidering the entire optimization spa
e. Han, Rivera and Tseng [11℄ also

des
ribe a
ompiler that sear
hes for tile and pad sizes using stati
 models. In
ontrast

to the present approa
h, however, their
ompilers use stati

ost models to evaluate the

di�erent optimizations. From this paper it follows that our approa
h based on a
tual exe
ution

times delivers superior performan
e and
an adapt to any ar
hite
ture, requiring no prior

modeling phase. Chow and Wu [5℄ apply `fra
tional fa
torial design' to de
ide on a number

of experiments to run for sele
ting a
olle
tion of
ompiler swit
hes. They, however, fo
us

27

on on/o� swit
hes and do not
onsider the
hoi
e of parameter values that might
ome from

a large range of values. Bodin and
o-workers explore in [23℄ the interplay between loop

unrolling and software pipelining. This approa
h
an be fully integrated with the present

approa
h sin
e they target a di�erent phase in the
ompiler, namely, the
ode generation

phase. In [19℄, Nisbett proposes a geneti
 algorithm approa
h to sear
hing.

Over the past years, many proposals have been put forward to use pro�le information, for

example, in the
reation of superblo
ks [12℄ or hyperblo
ks [17℄ to enable eÆ
ient s
heduling

for ILP pro
essors. These te
hniques are
urrently being employed in
ommer
ial
ompilers

[6℄. Pro�les are also used to identify runtime
onstants that
an be exploited at
ompile

time [18℄. The re
ently established workshop on Feedba
k Dire
ted Optimization shows that

urrently many proposals are being put forward to exploit pro�le information in the
ompiler

hain [9℄. This paper
an be seen as taking pro�ling one step further by using many pro�les

for de
iding between many alternatives.

8 Con
lusion

In this paper we have dis
ussed the in
lusion of
a
he models in iterative
ompilation where we

sear
h for an optimal optimization. In previous work we have shown that iterative
ompilation

an yield high levels of optimization, outperforming stati
 te
hniques signi�
antly. We have

onsidered two types of models: one highly a

urate but highly expensive (
a
he simulator)

as an upperbound, and one less expensive but also less a

urate as a lowerbound. First, we

have shown that these models alone while using no program exe
ution are not
apable of

produ
ing levels of optimization as high as iterative
ompilation
an. Se
ond, we have shown

28

that iterative
ompilation in
orporating a

urate models is
apable of redu
ing the number

of required program exe
utions by 50% and still obtain the same levels of optimization. Less

a

urate models
an improve iterative
ompilation in
ase there is a small budget of pro�les.

However, we have also shown that these less a

urate
a
he models may a
tually degrade

the performan
e of iterative
ompilation in
ase more pro�les
an be a�orded. We
on
lude

that, in order to obtain maximal speedup, a

urate models together with a limited number

of pro�les are required.

Referen
es

[1℄ M. Barreteau, F. Bodin, P. Brinkhaus, Z. Chamski, H.-P. Charles, C. Eisenbeis, J. Gurd, J. Hoogerbrugge,

P. Hu, W. Jalby, P.M.W. Knijnenburg, M.F.P. O'Boyle, E. Rohou, R. Sakellariou, A. Sezne
, E.A. St�ohr,

M. Tre�ers, and H.A.G. Wijsho�. OCEANS: Optimizing
ompilers for embedded appli
ations. In Pro
.

Euro-Par 98, volume 1470 of Le
ture Notes in Computer S
ien
e, pages 1123{1130, 1998.

[2℄ A.J.C. Bik and H.A.G. Wijsho�. MT1: A prototype restru
turing
ompiler. Te
hni
al Report no. 93-32,

Department of Computer S
ien
e, Leiden University, 1993.

[3℄ J. Bilmes, K. Asanovi�
, C.W. Chin, and J. Demmel. Optimizing matrix multiply using PHiPAC: A

portable, high-performan
e, ANSI C
oding methodology. In Pro
. ICS'97, pages 340{347, 1997.

[4℄ S. Carr. Combining optimization for
a
he and instru
tion level parallelism. In Pro
. PACT'96, pages

238{247, 1996.

[5℄ K. Chow and Y. Wu. Feedba
k-dire
ted sele
tion and
hara
terization of
ompiler optimizatons. In Pro
.

2nd Workshop on Feedba
k Dire
ted Optimization, 1999. Organized in
onjun
tion with MICRO 32.

[6℄ R. Cohn and P.G. Lowney. Feedba
k dire
ted optimization in Compaq's
ompilation tools for Alpha. In

Pro
. 2nd Workshop on Feedba
k Dire
ted Optimization, 1999. Organized in
onjun
tion with MICRO

32.

[7℄ S. Coleman and K.S. M
Kinley. Tile size sele
tion using
a
he organization and data layout. In Pro
.

PLDI'95, pages 279{290, 1995.

[8℄ C. Dulong, R. Krishnaiyer, D. Kulkarni, D. Lavery, W. Li, J. Ng, and D. Sehr. An overview of the Intel

IA-64
ompiler. Intel Te
nology Journal, Q4, 1999.

[9℄ B. Calder et al., editor. Pro
. Workshop on Feedba
k Dire
ted Optimization, 1999. Available through

http://www-
se.u
sd.edu/users/
alder/fdo.

[10℄ S. Gosh, M. Martonosi, and S. Malik. Ca
he miss equations: A
ompiler framework for analyzing and

tunig memory behavior. ACM Trans. on Programming Languages and Systems, 21(4):703{746, 1999.

29

[11℄ H. Han, G. Rivera, and C.-W. Tseng. Software support for improving lo
ality in s
ienti�

odes. In Pro
.

CPC2000, pages 213{228, 2000.

[12℄ Wen-mei W. Hwu et al. The Superblo
k: An E�e
tive Te
hnique for VLIW and Supers
alar Compilation.

The Journal of Super
omputing, 7(1/2):229{248, May 1993.

[13℄ T. Kisuki, P.M.W. Knijnenburg, and M.F.P. O'Boyle. Combined sele
tion of tile sizes and unroll fa
tors

using iterative
ompilation. Te
hni
al Report 2000-07, LIACS, Leiden University, 2000. Submitted to

PACT2000.

[14℄ T. Kisuki, P.M.W. Knijnenburg, M.F.P. O'Boyle, F. Bodin, and H.A.G. Wijsho�. A feasibility study

in iterative
ompilation. In Pro
. ISHPC'99, volume 1615 of Le
ture Notes in Computer S
ien
e, pages

121{132, 1999.

[15℄ T. Kisuki, P.M.W. Knijnenburg, M.F.P. O'Boyle, and H.A.G. Wijsho�. Iterative
ompilation in program

optimization. In Pro
. CPC2000, pages 35{44, 2000.

[16℄ M.S. Lam, E.E. Rothberg, and M.E. Wolf. The
a
he performan
e and optimizations of blo
ked algo-

rithms. In Pro
. ASPLOS'91, pages 63{74, 1991.

[17℄ S.A. Mahlke, D.C. Lin, W.Y. Chen, R.E. Hank, and R.A. Bringmann. E�e
tive
ompiler support for

predi
ated exe
ution using the hyperblo
k. In Pro
. MICRO 25, 1992.

[18℄ M. Mo
k, M. Berryman, C. Chambers, and S.J. Eggers. Calpa: A tool for automating dynami

ompi-

lation. In Pro
. 2nd Workshop on Feedba
k Dire
ted Optimization, 1999. Organized in
onjun
tion with

MICRO 32.

[19℄ A. Nisbet. GAPS: Geneti
 algorithm optimised parallelization. In Pro
. Workshop on Pro�le and Feedba
k

Dire
ted Compilation, 1998. Workshop organised in
onjun
tion with PACT'98.

[20℄ M.F.P. O'Boyle, N.P. Motogelwa, and P.M.W. Knijnenburg. Feedba
k assisted iterative
ompilation.

Te
hni
al Report 012, Division of Informati
s, Edinburgh University, 2000.

[21℄ M.D. Smith. Over
oming
hallenges to feedba
k-dire
ted optimization. In Pro
. Dynamo'00, 2000.

[22℄ O. Temam, C. Fri
ker, and W. Jalby. Ca
he interferen
e phenomena. In Pro
. SIGMETRICS'94, pages

261{271, 1994.

[23℄ P. van der Mark, E. Rohou, F. Bodin, Z. Chamski, and C. Eisenbeis. Using iterative
ompilation for

managing software pipeline { unrolling tradeo�s. In Pro
. SCOPES99, 1999.

[24℄ X. Vera, J. Llosa, A. Gonz�alez, and C. Ciuraneta. A fast implementation of Ca
he Miss Equations. In

Pro
. CPC2000, pages 319{325, 2000.

[25℄ R. C. Whaley and J. J. Dongarra. Automati
ally tuned linear algebra software. In Pro
. Allian
e 98,

1998.

[26℄ M.E. Wolf, D.E. Maydan, and D.-K. Chen. Combining loop transformations
onsidering
a
hes and

s
heduling. Int'l. J. of Parallel Programming, 26(4):479{503, 1998.

30

