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Abstrat

In this paper we further investigate the notion of iterative ompilation, in whih the

problem of determining the optimal program transformation is approahed by gener-

ating many versions of the soure program and by searhing for the best by atually

exeuting these versions on the target hardware to measure their exeution time. In

previous work we have shown that this approah an obtain high levels of optimization,

outperforming existing stati tehniques signi�antly. In this paper we address how

to inorporate stati models in the searh proedure in order to redue the number of

program exeutions. We fous on ahe models sine exploitation of the memory hi-

erarhy is very important in obtaining exeution speed. First, we show that by using
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these models alone and no pro�ling, far lower levels of optimization are obtained than

by using pro�ling information. Seond, we show that inluding aurate ahe models

an redue the number of program exeutions by 50% and still obtain the same levels

of optimization. We also show that less aurate models are apable of improving iter-

ative ompilation as muh as a simulator, in ase we have a limited number of pro�les.

Otherwise, these models may atually degrade the performane of iterative ompilation.

1 Introdution

By the year 2010 it is predited that there will be approximately 1 billion transistors available

on a hip

1

. This represents an opportunity and hallenge to omputer arhitets to design

and build proessors apable of exploiting suh a resoure. Inreasingly, proessors rely on

ompiler tehnology to exploit the potential resoures by arefully mapping appliations to

hardware [8℄. However, the rate of arhitetural hange is suh that in the near future it

will not be possible to produe high performane optimizing ompilers in the time available

and we therefore need to onsider adaptive ompilers, i.e., those that are able to ope with a

hanging hardware platform throughout their lifetime.

One of the main reasons that it will beome inreasingly diÆult to develop ompilers of

a suÆient quality at a ertain rate, is that the inherent problem of optimization is highly

omplex and varies onsiderably from one arhiteture to the next. Consider the frequently

ourring problem of trying to exploit the memory hierarhy and internal parallelism of a

proessor by applying tiling and unrolling transformations, respetively, to the most visited

1

The Semiondutor Industry Assoiation's 1997 projetion states that by 2010 a proessor hip will ontain

around 800 million transistors and operate at over 2 GHz.
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setions of ode, namely loop nest. Finding the orret tile size and unroll fator is ritial

as an be seen from �gure 1, that shows the exeution time of matrix multipliation as a

funtion of tile size and unroll fator for two distint proessors. A small deviation from

`good' tile sizes and unroll fators may ause a large inrease in exeution time and even a

slow down with respet to the original program. Furthermore, the best tile size and unroll

fator radially hanges from one proessor to the next as an also be seen in Figure 1. Thus,

even if a ompiler were able to determine the best optimization for a partiular proessor in

this highly non-linear optimization spae, it is extremely unlikely to be able to perform the

same task on an entirely di�erent proessor. Yet this is preisely what we hope to ahieve,

namely, an optimizing ompiler that has a longer lifetime than its hardware platform and is

apable of adaptation.

Clearly no ompiler tehnology solely based on stati analysis and a hardwired ost model

of the target proessor is apable of hanging to a new arhiteture. What is required is

a method where the ompiler an reeive dynami feedbak regarding its performane and

modify its behavior. The use of dynami information for ompiler deision making has been

investigated for a number of years. Indeed, most popular prodution ompilers are apable of

making use of pro�le information [21℄. All of these shemes however, hoose between options

determined statially beforehand, again relying on hardwired ost-models.

In this paper we investigate how ompiler tehnology may adapt to arhitetural hange by

taking an extreme point of view, where the ompiler has no knowledge of the underlying

arhiteture and attempts to searh for the best optimization using iterative ompilation.

Here, the ompiler investigates the optimization spae o�-line, generating di�erent version of

the soure program based on a generi searh strategy and atual exeution time feed-bak.
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Figure 1: Exeution Time MxM for Unrolling and Tiling

Iterative ompilation, based on the seletion of high level transformations, has been shown

to work aross a range of arhitetures [13℄ and although preliminary work has shown this

approah to be highly e�etive [14℄, the number of exeutions needed to �nd a good program

may be prohibitively expensive. We therefore also onsider how additional information may

be used to guide the searh strategy and its e�et on both ompiler eÆieny and ode

performane.

In this paper we onsider how a ompletely generi approah to adaptive ompilation may

be augmented with additional mahine spei� ost models to improve the running time of

the ompiler. Suh an approah allows the iterative ompiler to always produe good results

regardless of the platform, but available stati information an be used to improve eÆieny.

In order to fous the omparison, we will onsider only a small transformation spae, namely

tiling and unrolling, aross several benhmarks and platforms.

This paper is organized as follows. In Setion 2 we disuss the implementation of the iterative

ompilation system and briey review its performane. In Setion 3 we disuss the ahe
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models used, the iterative searh algorithms and the benhmarks and platforms. In Setion 4

we disuss the performane of iterative ompilation with ahe models, ompared to iterative

ompilation without ahe models. In Setion 5 we give a detailed analysis of the levels of

optimization that an be reahed when we limited the number of program exeutions. We

show that ahe models are apable of reduing this number of program exeutions by 50%.

In setion 6 we disuss the results obtained in this paper and some future diretions in our

researh. In setion 7 we disuss related work and we draw some onluding remarks in

setion 8.

2 Iterative Compilation

In this setion we briey disuss how the iterative ompilation system is implemented and we

briey review its performane.

2.1 Implementation

Figure 2 shows an overview of the ompiler system. For more details, onsult [15℄. The

ompilation system is entered around a global driver that reads a list of transformations

that it needs to examine together with the range of their parameters. The driver keeps

trak of the di�erent transformations evaluated so far and deides whih transformations

have to be applied next using a searh algorithm to steer through the optimization spae.

We have implemented several searh algorithms, inluding a Geneti Algorithm, Simulated

Annealing, Pyramid Searh, Window Searh and Random Searh [13℄. In this paper we have

inluded ahe models in the driver that are used to deide whether or not to exeute the
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Figure 2: The Compilation Proess

program, as explained in Setion 3 below. The global driver invokes the soure to soure

ompiler MT1 [2℄ and instruts it whih transformation to apply. MT1 has two mehanisms

to ontrol the appliation of transformations: a Transformation De�nition Language (TDL)

and a Strategy Spei�ation Language (SSL) [1℄. For eah transformation inluded in the

list of transformations, a transformation needs to be spei�ed in the TDL-�le. The global

driver onstruts an SSL �le that spei�es the order in whih to apply ertain transformations

and outputs it to MT1. After a predetermined number of iterations, the global driver stops

searhing and outputs the transformed program with the shortest exeution time.

2.2 Performane of Iterative Compilation

In this setion we briey review how muh speedup an be obtained by iterative ompilation

without using ahe models, as disussed in [13℄. In Figure 3 we show an example of the
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use of iterative ompilation where we optimize Matrix-Matrix Multipliation (IKJ version)

for di�erent data input sizes. Figure 3(a) shows the speedup as a funtion of the number

of iterations. We see that signi�ant speedups are obtained. We quantify the quality of the

transformation found by omparing this speedup to the speedups obtained from two well-

known stati tile size seletion algorithms: TSS proposed by Coleman and MKinley [7℄ and

LRW proposed by Lam, Rothberg andWolf [16℄. First, we unrolled the loop with unroll fators

of 1 to 20 and subsequently omputed the tile size for this unrolled loop. Improvements of

iterative ompilation over LRW and TSS are given in Figures 3(b) and 3(), respetively. In

[13℄ we show that iterative ompilation outperforms both TSS and LRW in more than 99% of

the ases we onsidered. The ompilation time is linear in the number of program exeutions

and in [13℄ we show that it takes 6 minutes on average for 50 exeutions. We onlude that

iterative ompilation is a powerful approah to program optimization, outperforming existing

stati tehniques signi�antly.

3 Experiment

In this setion we disuss the e�et of adding ahe models to the global driver. We disuss

the searh algorithms, two di�erent ahe models and the benhmarks and platforms used.

3.1 Searh Algorithms

Given a ahe model, we an use it in two ways to selet a transformation, as shown in

Figure 4. The �rst algorithm, shown in Figure 4(a), only uses the model. The seond

algorithm, shown in Figure 4(b), uses the model to exlude ertain transformations from
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urrent = initial transformation

REPEAT

next = next transformation

IF model(next) better than model(urrent)

THEN urrent = next

urrent = initial transformation

REPEAT

next = next transformation

IF model(next) better than �% model(urrent)

THEN exeute(next)

IF exe time(next) < exe time(urrent)

THEN urrent = next

(a) Model-Only (b) Model+Exeution

Figure 4: Searh Algorithms

being exeuted. However, we still use exeution times to selet a new transformation. We

have inluded a \slak fator" � sine we expet that a model will only apture the behavior

of the program partially. If a model is more aurate, we expet that we an use higher values

for � and thereby exlude more transformations from atual exeution. Below we show that

the performane of iterative ompilation is highly sensitive to �.

In [13℄ we have desribed several algorithms that an be used to determine the next transfor-

mation, inluding a Geneti Algorithm, Simulated Annealing, Pyramid Searh and Random

Searh. We showed that these algorithms give rise to the same speedups within a margin

of a few perentage. Also, their running times are in the same order of magnitude. We an

explain this by observing that GA and SA are targeted towards huge searh spaes requiring

many samples. In the present ontext we have to deal with a small searh spae (albeit where

sampling one point is an expensive operation) and we fous on the e�et of taking fewer than

100 sample points. In this ase, both GA and SA are still in their �rst phases and they

exhibit quite random behavior. Therefore, we will use a random algorithm to determine the

next transformation in the remainder of this paper.

Finally, we will ompare the results obtained from iterative ompilation inluding a ahe

model with results obtained from iterative ompilation without a ahe model as desribed

9



in [13℄. The searh algorithm desribed in [13℄ that only uses exeution time is alled the

Exeution-Only Algorithm below. This algorithm repeatedly piks a set of parameters, exe-

utes the orresponding transformed program and selets the set of parameters that gives rise

to the shortest exeution time.

3.2 Cahe Models

We distinguish two extremes in the spetrum of possible models. First, as an upperbound ,

we use a full ahe simulator to ompute the exat hit rate. This model is highly aurate

but in pratie it is unlikely that it would be used, due to its high ost, but it provides a

good upperbound for the available stati analysis. Other sophistiated ahe models also

try to apture hit rates [22℄. Seond, as a lowerbound , we use a simple model proposed by

Coleman and MKinley [7℄ that is inexpensive but less aurate than a simulator. It uses

an approximation of the working set WS and the ross-interferene rate CIR. Other ahe

models that might be used will fall in between these models in terms of auray and ost.

Therefore, the results obtained in this paper an be used to give insight into the eÆieny of

suh a model, by our analysis of the two extremes of the spetrum of possible models.

Using the full ahe simulator, we say that a version of a program P

1

is better than another

version P

2

i� the hit rate of P

1

omputed by the simulator is larger than the hit rate of P

2

.

The model proposed by Coleman and MKinley [7℄ an be desribed as follows. For two

versions P

1

and P

2

of a program, the model says that P

1

is better than P

2

i�

WS(P

1

) > WS(P

2

) && WS(P

1

) < CS && CIR(P

1

) < CIR(P

2

)

where WS is the working set of one tile, CS is the ahe size and CIR is the ross interferene
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rate of one tile.

We inlude a slak fator � in the models as follows. For the ahe simulator, we use the

following seletion riterion in the searh proedure:

CS : hit rate(P

1

) > �% hit rate(P

2

)

For the Coleman/MKinley model, we have the following seletion riterion:

CM : WS(P

1

) > �% WS(P

2

) && WS(P

1

) < CS && �% CIR(P

1

) < CIR(P

2

)

Note that by taking � = 0, the simulator redues to the Exeution-Only Algorithm. The

simple model then only heks whether the working set is smaller than the ahe size.

3.3 Benhmarks and Platforms

In order to test the eÆieny of the use of ahe models in iterative ompilation, we use

many small kernel benhmarks exhibiting widely di�erent memory aess behavior, on sev-

eral data input sizes and several platforms. In total we olleted 162 measurements that we

use to quantify the eÆieny of our approah to produe statistially relevant results. The

benhmarks onsidered are the most important and ompute intensive kernels from multi-

media appliations. We use all 6 possible loop permutations of matrix-matrix multipliation

on 3 data input sizes of 256, 300 and 301. We denote these by MxM-IJK, MxM-IKJ et.

We use the 2 loop orders in matrix-vetor multipliation on data input sizes 2048, 2300 and

2301. We use 6 loop orders in Forward Disrete Cosine Transform (FDCT), one of the most

important routines from the low level bit stream video enoder H263. This routine onsists

of an initialization loop, two 3D omputation loops and one �nalization loop. We also use the
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6 variations of the seond main omputation loop from FDCT that onsists of multipliation

of a transposed matrix. We use data input sizes of 256, 300 and 301. Finally, we use a Finite

Impulse Response �lter (FIR), one of the most important DSP operations, with data sizes of

8192, 8300 and 8301.

We exeuted on the following platforms: Pentium II, Pentium III, HP-PA 712, UltraSpar I.

We used the native Fortran ompiler or g77, with full optimization on. In this paper we

onsider loop tiling, with tile sizes of 1 to 100, and loop unrolling, with unroll fators of 1 to

20. For the Model-Only Algorithm, we take 500 random points, and for the Exeution-Only

and Model+Exeution Algorithm, we allow a maximum of 400 program exeutions.

4 Performane of Cahe Models

In this setion we disuss the results we obtained for iterative ompilation inorporating ahe

models. We use the speedup obtained from the Exeution-Only Algorithm [13℄, alled the

Exeution-Only speedup below, as the base line to whih we ompare results produed by

the ahe models. We also ompare the number of exeutions to the number of exeutions

required by the Exeution-Only Algorithm.

4.1 Cahe Simulator

In this setion we disuss the performane of iterative ompilation inorporating a full ahe

simulator. First, in Figure 5(a), we plotted the speedup obtained from the Model-Only

Algorithm as the point labeled Model-Only. On average, this speedup is only 82% of the

12
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Figure 5: Performane Cahe Simulator

Exeution-Only speedup, with a standard deviation of 15. This means that hit rate is not

an exat model for exeution time and, in fat, it is less aurate than we expeted. We

an explain this by observing that the hit rate is an average over the entire exeution of a

program and does not disriminate between a burst of misses and the same number of misses

that is more uniformly distributed. However, for a real proessor, a burst of misses will stall

the mahine for a signi�ant number of yles whereas oasional misses may be hided.

Seond, in Figure 5(a) we show the speedup from the Model+Exeution Algorithm as a

fration of the Exeution-Only speedup for di�erent values of �. In Figure 5(b), we have

plotted the number of real program exeutions against �. The point labeled Exe-Only in

this �gure orresponds to the number of iterations of the Exeution-Only Algorithm. We

see that for values of � up to 99.9 we obtain full speedup with a small standard deviation.

For � � 100, the average speedup drops quite fast. However, we need as many program
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exeutions as for the Exeution-Only Algorithm for values of � up to 99.5. We an explain

this by observing that the ahe hit rate for the benhmarks is, on average, high. For low

values of �, most transformations that are tried in the searh will have a hit rate within �%

of the best hit rate so far and hene they are exeuted. This means that the searh proeeds

quite similar to the Exeution-Only Algorithm and the speedups found are the same.

The number of iterations required drops for 99:5 � � � 100 whereas speedups are around

100%. For � = 100, the average number of exeutions is redued to 64. For � > 100, there

is a sharp and sudden drop in the speedup that we reah and in the number of program

exeutions. This means that we quikly �nd a transformation with a high hit rate that

subsequent transformations are not apable of improving by more than 100%. However, the

atual exeution time for this transformation is far from optimal.

We onlude that iterative ompilation inorporating a full ahe simulator is apable of

reahing the same speedups as the Exeution-Only Algorithm does. For values of the slak

fator � of 99.9 or 100, we reah this performane using less program exeution than for the

Exeution-Only Algorithm. In Setion 5 we will investigate this improvement in more detail.

4.2 Simple Cahe Models

In this setion we disuss the performane of the simple ahe model. First, the speedup

obtained from the Model-Only Algorithm is plotted as the point labeled Model-Only in Fig-

ure 6(a). We obtain 62% on average of the Exeution-Only speedup with a large standard

deviation. This means that a searh using this simple model only (as has been proposed by

Coleman and MKinley [7℄) produes suboptimal results. In Figure 6(a), we show the speedup

14
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Figure 6: Performane Simple Cahe Model

for the simple ahe model as a fration of the Exeution-Only speedup for di�erent values of

�. For � � 80 we reah at least 95% of this speedup. However, the standard deviation shows

that there are many benhmarks that reah a muh lower speedup. At the same time, we ob-

serve from Figure 6(b) that the number of program exeutions drop to well below the number

of exeutions for the Exeution-Only Algorithm (labeled by Exe-Only). From our detailed

analysis in the next setion, we dedue that an optimal value of � equals 40. In this ase, the

simple model is apable of exluding many exeutions early in the searh and reahing levels

of optimization that are lose to those of the simulator. In general, the speedup obtained

is less than the Exeution-Only speedup, whih shows that the simple model exludes many

program versions that atually have good exeution times.
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Figure 7: Trade-o� Graph for the Exeution-Only Algorithm

5 Trade-o� between Number of Exeutions and Levels

of Optimization

In this setion we give a detailed desription of the average performane of iterative ompila-

tion using ahe models when we limit the number of program exeutions. First, in Figure 7,

we depited a trade-o� graph between the number of exeutions and the levels of optimization

for the Exeution-Only Algorithm. We have disussed these trade-o� graphs in more detail

in [13℄. The graph ontains a number of equi-optimization urves that indiate the perent-

age of benhmarks that reah a ertain level of optimization as a funtion of the number

of program exeutions. This level is expressed in terms of how lose the speedup is to the

Exeution-Only speedup (between 0 and 100%). From this graph we an dedue, for example,

that after 100 iteration, 48% of the benhmarks were fully optimized and thus reahed 100%
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of the Exeution-Only speedup. Likewise, after 50 iterations, 77% of the benhmarks reahed

at least 90% of the Exeution-Only speedup. After 20 exeutions, almost every benhmark

reahed at least 60% of the Exeution-Only speedup. Note that this graph is based on 162

experiments, in eah of whih we determined the speedup for 0 to 100 exeutions. Hene,

the speedup of one benhmark after a ertain number of exeutions ontributes 0.6% on the

y-sale. Therefore, we laim that this graph is statistially aurate.

Next we onstrut trade-o� graphs for the stati models and both searh algorithms. We

show in these graphs how lose we ome to the maximal speedup reahed by the Exeution-

Only Algorithm. We quantify the improvement by omparing the trade-o� graph for the

Exeution-Only Algorithm with the other trade-o� graphs.

5.1 Model-Only Algorithm

In this setion we disuss the trade-o� that we obtain from the Model-Only Algorithm for

both ahe models, depited in Figure 8. Consistent with our earlier �ndings that the Model-

Only Algorithm reahes only 80% or less of the Exeution-Only speedup, we see that the

trade-o� is low. Both models fair equally poor. Only a few benhmarks reah 100% or 95%

of the Exeution-Only speedup and only half the number of benhmarks reah 60% of this

speedup. Comparing this trade-o� graph with Figure 7, we see that the Exeution-Only

Algorithm only requires a few program exeutions to reah the same levels of optimization

as the Model-Only Algorithm does. We onlude that a searh tehnique using stati models

alone, as has been proposed by Wolf, Maydan and Chen [26℄, is not apable of obtaining the

same levels of optimization as iterative ompilation that uses pro�ling information an.
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Figure 8: Tradeo� Model-Only for Both Cahe Models

5.2 Cahe Simulator

In Figure 9 we show trade-o� graphs for the ahe simulator for di�erent values of �. In Fig-

ure 10 we show the improvement over the Exeution-Only Algorithm for 4 equi-optimization

urves. From Figure 10(a), we observe that the improvements over the Exeution-Only Algo-

rithm are substantial: up to 4 times as many benhmarks reah full optimization within 25

exeutions for � = 100. We observe that, for 30 or more exeutions, the trade-o� is better

for � = 99:9 than for � = 100. The improvement drops slowly as the number of exeutions

inrease so that, eventually, ahe models provide no improvement over the Exeution-Only

Algorithm for more than one hundred exeutions. For � > 100, there is a substantial degra-

dation with respet to the Exeution-Only Algorithm for almost any number of exeutions.

In general, for � = 99:9 or 100, there is a high improvement for up to 20 or 30 exeutions

but for more exeutions this improvement drops. This shows that a ahe simulator is highly
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Figure 9: Trade-o� Graphs for Cahe Simulator for Di�erent Values of �
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Figure 10: Improvement over the Exeution-Only Algorithm for Simulator for Di�erent Values

of �
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EO CS EO CS

50 exs. 22 exs. 100 exs. 52 exs.

100%-urve 23% 24% 48% 47%

95%-urve 55% 54% 75% 77%

90%-urve 78% 76% 88% 89%

80%-urve 90% 88% 96% 95%

Table 1: Comparison Number of Exeutions for Exeution-Only and Simulator (� = 99:9)

e�etive in eliminating transformations that do not perform well early in the searh. However,

for time ritial embedded systems where failure to meet time onstraints might ause failure

of the entire system, we might need to spend many more exeutions and even the inlusion

of a ahe simulator is not suÆient to bring down the number of required exeutions to an

amount that may be evaluated within a few minutes.

Next we turn attention to the improvement in the number of exeutions needed so that the

simulator has approximately the same performane as the Exeution-Only Algorithm. In

Table 1 we show how many exeutions are required for the simulator to reah the same

level of optimization as the Exeution-Only Algorithm obtains after 50 and 100 exeutions.

We see that the simulator only needs about half as many exeutions as the Exeution-Only

Algorithm. We onlude that inorporating a highly aurate ahe model an redue the

number of exeutions by 50% ompared to the Exeution-Only Algorithm and still reah the

same level of optimization.
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5.3 Simple Cahe Models

In Figure 11 the trade-o� graphs for the simple ahe model are given. We reah levels of op-

timization that are lower than for the Exeution-Only Algorithm. From Figure 12, we observe

that for a small number of exeutions (up to 20) the simple model outperforms the Exeution-

Only Algorithm signi�antly for a slak fator of � = 40. Note that for � = 0, where we only

have the onstraint WS < CS, we obtain surprisingly good results. However, for � � 80,

the simple model will atually degrade the Exeution-Only Algorithm sine improvements

less than zero are obtained. This holds, in partiular, the original Coleman/MKinley model

(� = 100) that is omparable to the simulator in ase � = 100:1. Comparing Figures 10

and 12, we see that for small numbers of program exeution, this simple model with � = 40

atually reahes about 80% of the improvement of the simulator. For higher numbers of exe-

ution, however, the simulator outperforms the simple model signi�antly and a simple model

will only slightly improve the Exeution-Only Algorithm.

The trade-o� graphs in Figures 11 show that simple models are not adequate to reah full

optimization. In partiular, this means that these models are of limited value in ase we need

to highly optimize appliations, as for instane is the ase in embedded systems.

We annot onstrut a table like Table 1 for the simple ahe model, sine inspetion of

the trade-o� graphs show that there does not exist a learly de�ned number of exeutions

after whih the simple model reahes the same level of optimization as the Exeution-Only

Algorithm does after 50 or 100 exeutions.
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Figure 11: Trade-o� Graphs for Cahe Model for Di�erent Values of �
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Figure 12: Improvement over the Exeution-Only Algorithm for Cahe Model for Di�erent

Values of �
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6 Disussion

In this paper we have disussed the inlusion of stati ahe models in iterative ompilation

where we searh for the best optimization by using model information and atual exeution

times. In the entire spetrum of possible models, we have foussed on the two extremes: a

highly expensive but aurate model (viz. a ahe simulator), and an inexpensive but less

aurate analytial model that tries to apture ahe e�ets through simple expressions that

approximate ahe behavior, proposed by Coleman and MKinley [7℄.

First, we have shown that searhing for the best transformation using only stati models, as

proposed by Wolf, Maydan and Chen [26℄, yields equal levels of optimization that are far less

than those obtained by iterative ompilation. For this model-only approah to be e�etive,

we need more detailed models that also take into aount, for instane, the distribution

of the misses in the memory referene trae. However, based on our present experiene

with a full ahe simulator, we laim that one needs real program pro�ling to �nd the best

transformation. This approah has reently reeived more attention by several authors [9℄.

Seond, aurate ahe models improve iterative ompilation to a large extend, reduing the

number of exeutions by 50%. However, for a prodution ompiler we need heap analytial

models. Possible andidates are Cahe Miss Equations [10℄ that an be implemented eÆiently

using a stohasti approah [24℄. Temam and oworkers have proposed other ahe modeling

tehniques [22℄. Furthermore, we need to model more features of the underlying hardware,

like ILP exploitation, in order to be able to predit exeution times aurately.

Third, less aurate models, like the simple model proposed by Coleman and MKinley [7℄

are apable of improving iterative ompilation as muh as aurate models do, but only for a
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very limited number of program exeutions.

Fourth, we have inluded a slak fator � in the models. The performane of the models is

highly sensitive to this slak fator. We have shown that for the ahe simulator the best

option is � = 100 when we have a limited budget of up to 30 program exeutions and � = 99:9

for higher budgets. However, for the simple ahe model, a value of � = 40 is best. In this

ase, a performane improvement of up to 80% of the improvement obtained by the simulator

an be realized. However, if we would hoose a larger value for � in the simple model, we

may atually degrade from the Exeution-Only Algorithm. In partiular, this degradation

is onsiderable for � = 100, whih orresponds to the original Coleman/MKinley model.

Furthermore, a value of � = 0 for the simple model whih orresponds to a onstraint that

the working set is smaller than the ahe size, produes remarkably good results.

Finally, in this paper we have onsidered omputational kernels only. In [20℄ we have disussed

an approah to applying iterative ompilation to entire, large appliations. We need to inlude

many more transformations for this purpose. We have shown that a tree-like approah,

where tiling and unrolling are just one node, an be eÆient. By areful use of pro�ling

information, many loop nests an be tiled and unrolled in tandem. In this way we expet that

we an optimize large appliations within 1000 program exeutions. Even if ompilation and

exeution times for these appliations are large, the optimization proess an be done within

several days or a few weeks at most. Although this is time onsuming, hand optimization of

these appliations will takes months rather than weeks and, moreover, iterative ompilation

is an automati proedure requiring no human interation. Therefore iterative ompilation

will be highly ompetitive for time ritial appliations.
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7 Related Work

Over the past years, many authors have onsidered limited searh tehniques for optimization

purposes. In partiular, for tiling and unrolling, Coleman and MKinley [7℄ and Lam, Roth-

berg and Wolf [16℄ employ a restrited searh for tile sizes based on a simple ahe model.

Carr [4℄ omputes unroll fators in order to minimize the di�erene in mahine and loop bal-

ane. Carr omputes how muh bene�t the unroll-and-jam of a loop has for a range of unroll

fators based on stati models and searhes at ompile time to deide whih unroll fator has

the most bene�t. In ontrast to these approahes, the present approah uses atual exeution

times and moreover onsiders both loop tiling and unrolling at the same time.

Haley and Dongarra [25℄, and Bilmes et al. [3℄ desribe systems for generating highly optimized

BLAS routines that probe the underlying hardware to �nd optimal transformation parameters.

They show to be apable of outperforming vendor supplied, hand optimized library BLAS

routines. In ontrast to the present approah, however, these systems are only able to optimize

BLAS routines and are not general purpose ompilers.

Wolf, Maydan and Chen [26℄ have desribed a ompiler that also searhes for the optimal

optimization by onsidering the entire optimization spae. Han, Rivera and Tseng [11℄ also

desribe a ompiler that searhes for tile and pad sizes using stati models. In ontrast

to the present approah, however, their ompilers use stati ost models to evaluate the

di�erent optimizations. From this paper it follows that our approah based on atual exeution

times delivers superior performane and an adapt to any arhiteture, requiring no prior

modeling phase. Chow and Wu [5℄ apply `frational fatorial design' to deide on a number

of experiments to run for seleting a olletion of ompiler swithes. They, however, fous

27



on on/o� swithes and do not onsider the hoie of parameter values that might ome from

a large range of values. Bodin and o-workers explore in [23℄ the interplay between loop

unrolling and software pipelining. This approah an be fully integrated with the present

approah sine they target a di�erent phase in the ompiler, namely, the ode generation

phase. In [19℄, Nisbett proposes a geneti algorithm approah to searhing.

Over the past years, many proposals have been put forward to use pro�le information, for

example, in the reation of superbloks [12℄ or hyperbloks [17℄ to enable eÆient sheduling

for ILP proessors. These tehniques are urrently being employed in ommerial ompilers

[6℄. Pro�les are also used to identify runtime onstants that an be exploited at ompile

time [18℄. The reently established workshop on Feedbak Direted Optimization shows that

urrently many proposals are being put forward to exploit pro�le information in the ompiler

hain [9℄. This paper an be seen as taking pro�ling one step further by using many pro�les

for deiding between many alternatives.

8 Conlusion

In this paper we have disussed the inlusion of ahe models in iterative ompilation where we

searh for an optimal optimization. In previous work we have shown that iterative ompilation

an yield high levels of optimization, outperforming stati tehniques signi�antly. We have

onsidered two types of models: one highly aurate but highly expensive (ahe simulator)

as an upperbound, and one less expensive but also less aurate as a lowerbound. First, we

have shown that these models alone while using no program exeution are not apable of

produing levels of optimization as high as iterative ompilation an. Seond, we have shown
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that iterative ompilation inorporating aurate models is apable of reduing the number

of required program exeutions by 50% and still obtain the same levels of optimization. Less

aurate models an improve iterative ompilation in ase there is a small budget of pro�les.

However, we have also shown that these less aurate ahe models may atually degrade

the performane of iterative ompilation in ase more pro�les an be a�orded. We onlude

that, in order to obtain maximal speedup, aurate models together with a limited number

of pro�les are required.
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