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Abstract

In this paper we further investigate the notion of iterative compilation, in which the
problem of determining the optimal program transformation is approached by gener-
ating many versions of the source program and by searching for the best by actually
executing these versions on the target hardware to measure their execution time. In
previous work we have shown that this approach can obtain high levels of optimization,
outperforming existing static techniques significantly. In this paper we address how
to incorporate static models in the search procedure in order to reduce the number of
program executions. We focus on cache models since exploitation of the memory hi-

erarchy is very important in obtaining execution speed. First, we show that by using



these models alone and no profiling, far lower levels of optimization are obtained than
by using profiling information. Second, we show that including accurate cache models
can reduce the number of program executions by 50% and still obtain the same levels
of optimization. We also show that less accurate models are capable of improving iter-
ative compilation as much as a simulator, in case we have a limited number of profiles.

Otherwise, these models may actually degrade the performance of iterative compilation.

1 Introduction

By the year 2010 it is predicted that there will be approximately 1 billion transistors available
on a chip'. This represents an opportunity and challenge to computer architects to design
and build processors capable of exploiting such a resource. Increasingly, processors rely on
compiler technology to exploit the potential resources by carefully mapping applications to
hardware [8]. However, the rate of architectural change is such that in the near future it
will not be possible to produce high performance optimizing compilers in the time available
and we therefore need to consider adaptive compilers, i.e., those that are able to cope with a

changing hardware platform throughout their lifetime.

One of the main reasons that it will become increasingly difficult to develop compilers of
a sufficient quality at a certain rate, is that the inherent problem of optimization is highly
complex and varies considerably from one architecture to the next. Consider the frequently
occurring problem of trying to exploit the memory hierarchy and internal parallelism of a

processor by applying tiling and unrolling transformations, respectively, to the most visited

!The Semiconductor Industry Association’s 1997 projection states that by 2010 a processor chip will contain

around 800 million transistors and operate at over 2 GHz.



sections of code, namely loop nest. Finding the correct tile size and unroll factor is critical
as can be seen from figure 1, that shows the execution time of matrix multiplication as a
function of tile size and unroll factor for two distinct processors. A small deviation from
‘good’ tile sizes and unroll factors may cause a large increase in execution time and even a
slow down with respect to the original program. Furthermore, the best tile size and unroll
factor radically changes from one processor to the next as can also be seen in Figure 1. Thus,
even if a compiler were able to determine the best optimization for a particular processor in
this highly non-linear optimization space, it is extremely unlikely to be able to perform the
same task on an entirely different processor. Yet this is precisely what we hope to achieve,
namely, an optimizing compiler that has a longer lifetime than its hardware platform and is

capable of adaptation.

Clearly no compiler technology solely based on static analysis and a hardwired cost model
of the target processor is capable of changing to a new architecture. What is required is
a method where the compiler can receive dynamic feedback regarding its performance and
modify its behavior. The use of dynamic information for compiler decision making has been
investigated for a number of years. Indeed, most popular production compilers are capable of
making use of profile information [21]. All of these schemes however, choose between options

determined statically beforehand, again relying on hardwired cost-models.

In this paper we investigate how compiler technology may adapt to architectural change by
taking an extreme point of view, where the compiler has no knowledge of the underlying
architecture and attempts to search for the best optimization using iterative compilation.
Here, the compiler investigates the optimization space off-line, generating different version of

the source program based on a generic search strategy and actual execution time feed-back.
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Figure 1: Execution Time MxM for Unrolling and Tiling

Iterative compilation, based on the selection of high level transformations, has been shown
to work across a range of architectures [13] and although preliminary work has shown this
approach to be highly effective [14], the number of executions needed to find a good program
may be prohibitively expensive. We therefore also consider how additional information may
be used to guide the search strategy and its effect on both compiler efficiency and code

performance.

In this paper we consider how a completely generic approach to adaptive compilation may
be augmented with additional machine specific cost models to improve the running time of
the compiler. Such an approach allows the iterative compiler to always produce good results
regardless of the platform, but available static information can be used to improve efficiency.
In order to focus the comparison, we will consider only a small transformation space, namely

tiling and unrolling, across several benchmarks and platforms.

This paper is organized as follows. In Section 2 we discuss the implementation of the iterative

compilation system and briefly review its performance. In Section 3 we discuss the cache



models used, the iterative search algorithms and the benchmarks and platforms. In Section 4
we discuss the performance of iterative compilation with cache models, compared to iterative
compilation without cache models. In Section 5 we give a detailed analysis of the levels of
optimization that can be reached when we limited the number of program executions. We
show that cache models are capable of reducing this number of program executions by 50%.
In section 6 we discuss the results obtained in this paper and some future directions in our
research. In section 7 we discuss related work and we draw some concluding remarks in

section 8.

2 Iterative Compilation

In this section we briefly discuss how the iterative compilation system is implemented and we

briefly review its performance.

2.1 Implementation

Figure 2 shows an overview of the compiler system. For more details, consult [15]. The
compilation system is centered around a global driver that reads a list of transformations
that it needs to examine together with the range of their parameters. The driver keeps
track of the different transformations evaluated so far and decides which transformations
have to be applied next using a search algorithm to steer through the optimization space.
We have implemented several search algorithms, including a Genetic Algorithm, Simulated
Annealing, Pyramid Search, Window Search and Random Search [13]. In this paper we have

included cache models in the driver that are used to decide whether or not to execute the
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Figure 2: The Compilation Process

program, as explained in Section 3 below. The global driver invokes the source to source
compiler MT1 [2] and instructs it which transformation to apply. MT1 has two mechanisms
to control the application of transformations: a Transformation Definition Language (TDL)
and a Strategy Specification Language (SSL) [1]. For each transformation included in the
list of transformations, a transformation needs to be specified in the TDL-file. The global
driver constructs an SSL file that specifies the order in which to apply certain transformations
and outputs it to MT1. After a predetermined number of iterations, the global driver stops

searching and outputs the transformed program with the shortest execution time.

2.2 Performance of Iterative Compilation

In this section we briefly review how much speedup can be obtained by iterative compilation

without using cache models, as discussed in [13]. In Figure 3 we show an example of the
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use of iterative compilation where we optimize Matrix-Matrix Multiplication (IK.J version)
for different data input sizes. Figure 3(a) shows the speedup as a function of the number
of iterations. We see that significant speedups are obtained. We quantify the quality of the
transformation found by comparing this speedup to the speedups obtained from two well-
known static tile size selection algorithms: TSS proposed by Coleman and McKinley [7] and
LRW proposed by Lam, Rothberg and Wolf [16]. First, we unrolled the loop with unroll factors
of 1 to 20 and subsequently computed the tile size for this unrolled loop. Improvements of
iterative compilation over LRW and TSS are given in Figures 3(b) and 3(c), respectively. In
[13] we show that iterative compilation outperforms both TSS and LRW in more than 99% of
the cases we considered. The compilation time is linear in the number of program executions
and in [13] we show that it takes 6 minutes on average for 50 executions. We conclude that
iterative compilation is a powerful approach to program optimization, outperforming existing

static techniques significantly.

3 Experiment

In this section we discuss the effect of adding cache models to the global driver. We discuss

the search algorithms, two different cache models and the benchmarks and platforms used.

3.1 Search Algorithms

Given a cache model, we can use it in two ways to select a transformation, as shown in
Figure 4. The first algorithm, shown in Figure 4(a), only uses the model. The second

algorithm, shown in Figure 4(b), uses the model to exclude certain transformations from



current = initial transformation

current = initial transformation REPEAT
REPEAT next = next transformation

next = next transformation IF model(next) better than a% model(current)

IF model(next) better than model(current) THEN ezecute(next)

THEN current = next IF exec_time(next) < exec_time(current)

THEN current = next
(a) Model-Only (b) Model+Execution

Figure 4: Search Algorithms

being executed. However, we still use execution times to select a new transformation. We
have included a “slack factor” « since we expect that a model will only capture the behavior
of the program partially. If a model is more accurate, we expect that we can use higher values
for o and thereby exclude more transformations from actual execution. Below we show that

the performance of iterative compilation is highly sensitive to a.

In [13] we have described several algorithms that can be used to determine the next transfor-
mation, including a Genetic Algorithm, Simulated Annealing, Pyramid Search and Random
Search. We showed that these algorithms give rise to the same speedups within a margin
of a few percentage. Also, their running times are in the same order of magnitude. We can
explain this by observing that GA and SA are targeted towards huge search spaces requiring
many samples. In the present context we have to deal with a small search space (albeit where
sampling one point is an expensive operation) and we focus on the effect of taking fewer than
100 sample points. In this case, both GA and SA are still in their first phases and they
exhibit quite random behavior. Therefore, we will use a random algorithm to determine the

next transformation in the remainder of this paper.

Finally, we will compare the results obtained from iterative compilation including a cache

model with results obtained from iterative compilation without a cache model as described



in [13]. The search algorithm described in [13] that only uses execution time is called the
Execution-Only Algorithm below. This algorithm repeatedly picks a set of parameters, exe-
cutes the corresponding transformed program and selects the set of parameters that gives rise

to the shortest execution time.

3.2 Cache Models

We distinguish two extremes in the spectrum of possible models. First, as an upperbound,
we use a full cache simulator to compute the exact hit rate. This model is highly accurate
but in practice it is unlikely that it would be used, due to its high cost, but it provides a
good upperbound for the available static analysis. Other sophisticated cache models also
try to capture hit rates [22]. Second, as a lowerbound, we use a simple model proposed by
Coleman and McKinley [7] that is inexpensive but less accurate than a simulator. It uses
an approximation of the working set WS and the cross-interference rate C'IR. Other cache
models that might be used will fall in between these models in terms of accuracy and cost.
Therefore, the results obtained in this paper can be used to give insight into the efficiency of

such a model, by our analysis of the two extremes of the spectrum of possible models.

Using the full cache simulator, we say that a version of a program P; is better than another
version P; iff the hit rate of P, computed by the simulator is larger than the hit rate of P;.
The model proposed by Coleman and McKinley [7] can be described as follows. For two

versions P; and P, of a program, the model says that P, is better than P, iff
WS(P) >WS(P,) & WS(P) <CS && CIR(P)) < CIR(P,)

where WS is the working set of one tile, C'S is the cache size and C'I R is the cross interference

10



rate of one tile.

We include a slack factor « in the models as follows. For the cache simulator, we use the

following selection criterion in the search procedure:
CS:  hit rate(Py) > a% hit rate(Py)
For the Coleman/McKinley model, we have the following selection criterion:
CM: WS(P)>a% WS(P,) & WS(P) <CS && a% CIR(P) < CIR(P,)

Note that by taking @ = 0, the simulator reduces to the Execution-Only Algorithm. The

simple model then only checks whether the working set is smaller than the cache size.

3.3 Benchmarks and Platforms

In order to test the efficiency of the use of cache models in iterative compilation, we use
many small kernel benchmarks exhibiting widely different memory access behavior, on sev-
eral data input sizes and several platforms. In total we collected 162 measurements that we
use to quantify the efficiency of our approach to produce statistically relevant results. The
benchmarks considered are the most important and compute intensive kernels from multi-
media applications. We use all 6 possible loop permutations of matrix-matrix multiplication
on 3 data input sizes of 256, 300 and 301. We denote these by MxM-IJK, MxM-IKJ] etc.
We use the 2 loop orders in matrix-vector multiplication on data input sizes 2048, 2300 and
2301. We use 6 loop orders in Forward Discrete Cosine Transform (FDCT), one of the most
important routines from the low level bit stream video encoder H263. This routine consists

of an initialization loop, two 3D computation loops and one finalization loop. We also use the

11



6 variations of the second main computation loop from FDCT that consists of multiplication
of a transposed matrix. We use data input sizes of 256, 300 and 301. Finally, we use a Finite
Impulse Response filter (FIR), one of the most important DSP operations, with data sizes of

8192, 8300 and 8301.

We executed on the following platforms: Pentium II, Pentium III, HP-PA 712, UltraSparc I.
We used the native Fortran compiler or g77, with full optimization on. In this paper we
consider loop tiling, with tile sizes of 1 to 100, and loop unrolling, with unroll factors of 1 to
20. For the Model-Only Algorithm, we take 500 random points, and for the Execution-Only

and Model+Execution Algorithm, we allow a maximum of 400 program executions.

4 Performance of Cache Models

In this section we discuss the results we obtained for iterative compilation incorporating cache
models. We use the speedup obtained from the Execution-Only Algorithm [13], called the
Execution-Only speedup below, as the base line to which we compare results produced by
the cache models. We also compare the number of executions to the number of executions

required by the Execution-Only Algorithm.

4.1 Cache Simulator

In this section we discuss the performance of iterative compilation incorporating a full cache
simulator. First, in Figure 5(a), we plotted the speedup obtained from the Model-Only

Algorithm as the point labeled Model-Only. On average, this speedup is only 82% of the

12
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Figure 5: Performance Cache Simulator

Execution-Only speedup, with a standard deviation of 15. This means that hit rate is not
an exact model for execution time and, in fact, it is less accurate than we expected. We
can explain this by observing that the hit rate is an average over the entire execution of a
program and does not discriminate between a burst of misses and the same number of misses
that is more uniformly distributed. However, for a real processor, a burst of misses will stall

the machine for a significant number of cycles whereas occasional misses may be hided.

Second, in Figure 5(a) we show the speedup from the Model+Execution Algorithm as a
fraction of the Execution-Only speedup for different values of o. In Figure 5(b), we have
plotted the number of real program executions against . The point labeled Exec-Only in
this figure corresponds to the number of iterations of the Execution-Only Algorithm. We
see that for values of o up to 99.9 we obtain full speedup with a small standard deviation.

For o > 100, the average speedup drops quite fast. However, we need as many program

13



executions as for the Execution-Only Algorithm for values of o up to 99.5. We can explain
this by observing that the cache hit rate for the benchmarks is, on average, high. For low
values of a, most transformations that are tried in the search will have a hit rate within a%
of the best hit rate so far and hence they are executed. This means that the search proceeds

quite similar to the Execution-Only Algorithm and the speedups found are the same.

The number of iterations required drops for 99.5 < a < 100 whereas speedups are around
100%. For o = 100, the average number of executions is reduced to 64. For o > 100, there
is a sharp and sudden drop in the speedup that we reach and in the number of program
executions. This means that we quickly find a transformation with a high hit rate that
subsequent transformations are not capable of improving by more than 100%. However, the

actual execution time for this transformation is far from optimal.

We conclude that iterative compilation incorporating a full cache simulator is capable of
reaching the same speedups as the Execution-Only Algorithm does. For values of the slack
factor o of 99.9 or 100, we reach this performance using less program execution than for the

Execution-Only Algorithm. In Section 5 we will investigate this improvement in more detail.

4.2 Simple Cache Models

In this section we discuss the performance of the simple cache model. First, the speedup
obtained from the Model-Only Algorithm is plotted as the point labeled Model-Only in Fig-
ure 6(a). We obtain 62% on average of the Execution-Only speedup with a large standard
deviation. This means that a search using this simple model only (as has been proposed by

Coleman and McKinley [7]) produces suboptimal results. In Figure 6(a), we show the speedup

14



\ \ \ ‘ T
250} . i
S 200.00 Frr } ..... } % % e | -
- |+ ] 7Ty, T
o | T T
g .....
200 -
29000 T . o 20
s S
Q 5
5 ]
S 80.001 | £ 1501 i
3 W =y
o L e .
[ o h=9
X N
. 8 .,
© 70.00 B £ 100\ 4
© =) ),
< z ™
8
& 60.00 i
o 50 - .
50.00| i
0L L |
40001, ‘ ‘ - | | | | | |
0.00 50.00 100.00 Model-Only 0.00 20.00 40.00 60.00 80.00 100.00 Exec-Only
Slack Factor Slack Factor
(a) Performance (b) Number of Executions

Figure 6: Performance Simple Cache Model

for the simple cache model as a fraction of the Execution-Only speedup for different values of
a. For o < 80 we reach at least 95% of this speedup. However, the standard deviation shows
that there are many benchmarks that reach a much lower speedup. At the same time, we ob-
serve from Figure 6(b) that the number of program executions drop to well below the number
of executions for the Execution-Only Algorithm (labeled by Exec-Only). From our detailed
analysis in the next section, we deduce that an optimal value of o equals 40. In this case, the
simple model is capable of excluding many executions early in the search and reaching levels
of optimization that are close to those of the simulator. In general, the speedup obtained
is less than the Execution-Only speedup, which shows that the simple model excludes many

program versions that actually have good execution times.

15
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5 Trade-off between Number of Executions and Levels

of Optimization

In this section we give a detailed description of the average performance of iterative compila-
tion using cache models when we limit the number of program executions. First, in Figure 7,
we depicted a trade-off graph between the number of executions and the levels of optimization
for the Execution-Only Algorithm. We have discussed these trade-off graphs in more detail
in [13]. The graph contains a number of equi-optimization curves that indicate the percent-
age of benchmarks that reach a certain level of optimization as a function of the number
of program executions. This level is expressed in terms of how close the speedup is to the
Execution-Only speedup (between 0 and 100%). From this graph we can deduce, for example,

that after 100 iteration, 48% of the benchmarks were fully optimized and thus reached 100%

16



of the Execution-Only speedup. Likewise, after 50 iterations, 77% of the benchmarks reached
at least 90% of the Execution-Only speedup. After 20 executions, almost every benchmark
reached at least 60% of the Execution-Only speedup. Note that this graph is based on 162
experiments, in each of which we determined the speedup for 0 to 100 executions. Hence,
the speedup of one benchmark after a certain number of executions contributes 0.6% on the

y-scale. Therefore, we claim that this graph is statistically accurate.

Next we construct trade-off graphs for the static models and both search algorithms. We
show in these graphs how close we come to the maximal speedup reached by the Execution-
Only Algorithm. We quantify the improvement by comparing the trade-off graph for the

Execution-Only Algorithm with the other trade-off graphs.

5.1 Model-Only Algorithm

In this section we discuss the trade-off that we obtain from the Model-Only Algorithm for
both cache models, depicted in Figure 8. Consistent with our earlier findings that the Model-
Only Algorithm reaches only 80% or less of the Execution-Only speedup, we see that the
trade-off is low. Both models fair equally poor. Only a few benchmarks reach 100% or 95%
of the Execution-Only speedup and only half the number of benchmarks reach 60% of this
speedup. Comparing this trade-off graph with Figure 7, we see that the Execution-Only
Algorithm only requires a few program executions to reach the same levels of optimization
as the Model-Only Algorithm does. We conclude that a search technique using static models
alone, as has been proposed by Wolf, Maydan and Chen [26], is not capable of obtaining the

same levels of optimization as iterative compilation that uses profiling information can.

17
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5.2 Cache Simulator

In Figure 9 we show trade-off graphs for the cache simulator for different values of a.. In Fig-
ure 10 we show the improvement over the Execution-Only Algorithm for 4 equi-optimization
curves. From Figure 10(a), we observe that the improvements over the Execution-Only Algo-
rithm are substantial: up to 4 times as many benchmarks reach full optimization within 25
executions for o« = 100. We observe that, for 30 or more executions, the trade-off is better
for a = 99.9 than for @ = 100. The improvement drops slowly as the number of executions
increase so that, eventually, cache models provide no improvement over the Execution-Only
Algorithm for more than one hundred executions. For o > 100, there is a substantial degra-
dation with respect to the Execution-Only Algorithm for almost any number of executions.
In general, for a = 99.9 or 100, there is a high improvement for up to 20 or 30 executions

but for more executions this improvement drops. This shows that a cache simulator is highly
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Figure 9: Trade-off Graphs for Cache Simulator for Different Values of «
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Figure 10: Improvement over the Execution-Only Algorithm for Simulator for Different Values

of a
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EO CS EO CS
50 exs. | 22 exs. || 100 exs. | 52 exs.

100%-curve || 23% 24% 48% 47%
95%-curve 55% 54% 75% 7%
90%-curve 78% 76% 88% 89%
80%-curve 90% 83% 96% 95%

Table 1: Comparison Number of Executions for Execution-Only and Simulator (o = 99.9)

effective in eliminating transformations that do not perform well early in the search. However,
for time critical embedded systems where failure to meet time constraints might cause failure
of the entire system, we might need to spend many more executions and even the inclusion
of a cache simulator is not sufficient to bring down the number of required executions to an

amount that may be evaluated within a few minutes.

Next we turn attention to the improvement in the number of executions needed so that the
simulator has approximately the same performance as the Execution-Only Algorithm. In
Table 1 we show how many executions are required for the simulator to reach the same
level of optimization as the Execution-Only Algorithm obtains after 50 and 100 executions.
We see that the simulator only needs about half as many executions as the Execution-Only
Algorithm. We conclude that incorporating a highly accurate cache model can reduce the
number of executions by 50% compared to the Execution-Only Algorithm and still reach the

same level of optimization.
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5.3 Simple Cache Models

In Figure 11 the trade-off graphs for the simple cache model are given. We reach levels of op-
timization that are lower than for the Execution-Only Algorithm. From Figure 12, we observe
that for a small number of executions (up to 20) the simple model outperforms the Execution-
Only Algorithm significantly for a slack factor of & = 40. Note that for & = 0, where we only
have the constraint W.S < CS, we obtain surprisingly good results. However, for a« > 80,
the simple model will actually degrade the Execution-Only Algorithm since improvements
less than zero are obtained. This holds, in particular, the original Coleman/McKinley model
(v = 100) that is comparable to the simulator in case & = 100.1. Comparing Figures 10
and 12, we see that for small numbers of program execution, this simple model with a = 40
actually reaches about 80% of the improvement of the simulator. For higher numbers of exe-
cution, however, the simulator outperforms the simple model significantly and a simple model

will only slightly improve the Execution-Only Algorithm.

The trade-off graphs in Figures 11 show that simple models are not adequate to reach full
optimization. In particular, this means that these models are of limited value in case we need

to highly optimize applications, as for instance is the case in embedded systems.

We cannot construct a table like Table 1 for the simple cache model, since inspection of
the trade-off graphs show that there does not exist a clearly defined number of executions
after which the simple model reaches the same level of optimization as the Execution-Only

Algorithm does after 50 or 100 executions.
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6 Discussion

In this paper we have discussed the inclusion of static cache models in iterative compilation
where we search for the best optimization by using model information and actual execution
times. In the entire spectrum of possible models, we have focussed on the two extremes: a
highly expensive but accurate model (viz. a cache simulator), and an inexpensive but less
accurate analytical model that tries to capture cache effects through simple expressions that

approximate cache behavior, proposed by Coleman and McKinley [7].

First, we have shown that searching for the best transformation using only static models, as
proposed by Wolf, Maydan and Chen [26], yields equal levels of optimization that are far less
than those obtained by iterative compilation. For this model-only approach to be effective,
we need more detailed models that also take into account, for instance, the distribution
of the misses in the memory reference trace. However, based on our present experience
with a full cache simulator, we claim that one needs real program profiling to find the best

transformation. This approach has recently received more attention by several authors [9].

Second, accurate cache models improve iterative compilation to a large extend, reducing the
number of executions by 50%. However, for a production compiler we need cheap analytical
models. Possible candidates are Cache Miss Equations [10] that can be implemented efficiently
using a stochastic approach [24]. Temam and coworkers have proposed other cache modeling
techniques [22]. Furthermore, we need to model more features of the underlying hardware,

like ILP exploitation, in order to be able to predict execution times accurately.

Third, less accurate models, like the simple model proposed by Coleman and McKinley [7]

are capable of improving iterative compilation as much as accurate models do, but only for a
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very limited number of program executions.

Fourth, we have included a slack factor « in the models. The performance of the models is
highly sensitive to this slack factor. We have shown that for the cache simulator the best
option is &« = 100 when we have a limited budget of up to 30 program executions and oo = 99.9
for higher budgets. However, for the simple cache model, a value of & = 40 is best. In this
case, a performance improvement of up to 80% of the improvement obtained by the simulator
can be realized. However, if we would choose a larger value for o in the simple model, we
may actually degrade from the Execution-Only Algorithm. In particular, this degradation
is considerable for & = 100, which corresponds to the original Coleman/McKinley model.
Furthermore, a value of o = 0 for the simple model which corresponds to a constraint that

the working set is smaller than the cache size, produces remarkably good results.

Finally, in this paper we have considered computational kernels only. In [20] we have discussed
an approach to applying iterative compilation to entire, large applications. We need to include
many more transformations for this purpose. We have shown that a tree-like approach,
where tiling and unrolling are just one node, can be efficient. By careful use of profiling
information, many loop nests can be tiled and unrolled in tandem. In this way we expect that
we can optimize large applications within 1000 program executions. Even if compilation and
execution times for these applications are large, the optimization process can be done within
several days or a few weeks at most. Although this is time consuming, hand optimization of
these applications will takes months rather than weeks and, moreover, iterative compilation
is an automatic procedure requiring no human interaction. Therefore iterative compilation

will be highly competitive for time critical applications.
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7 Related Work

Over the past years, many authors have considered limited search techniques for optimization
purposes. In particular, for tiling and unrolling, Coleman and McKinley [7] and Lam, Roth-
berg and Wolf [16] employ a restricted search for tile sizes based on a simple cache model.
Carr [4] computes unroll factors in order to minimize the difference in machine and loop bal-
ance. Carr computes how much benefit the unroll-and-jam of a loop has for a range of unroll
factors based on static models and searches at compile time to decide which unroll factor has
the most benefit. In contrast to these approaches, the present approach uses actual execution

times and moreover considers both loop tiling and unrolling at the same time.

Haley and Dongarra [25], and Bilmes et al. [3] describe systems for generating highly optimized
BLAS routines that probe the underlying hardware to find optimal transformation parameters.
They show to be capable of outperforming vendor supplied, hand optimized library BLAS
routines. In contrast to the present approach, however, these systems are only able to optimize

BLAS routines and are not general purpose compilers.

Wolf, Maydan and Chen [26] have described a compiler that also searches for the optimal
optimization by considering the entire optimization space. Han, Rivera and Tseng [11] also
describe a compiler that searches for tile and pad sizes using static models. In contrast
to the present approach, however, their compilers use static cost models to evaluate the
different optimizations. From this paper it follows that our approach based on actual execution
times delivers superior performance and can adapt to any architecture, requiring no prior
modeling phase. Chow and Wu [5] apply ‘fractional factorial design’ to decide on a number

of experiments to run for selecting a collection of compiler switches. They, however, focus
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on on/off switches and do not consider the choice of parameter values that might come from
a large range of values. Bodin and co-workers explore in [23] the interplay between loop
unrolling and software pipelining. This approach can be fully integrated with the present
approach since they target a different phase in the compiler, namely, the code generation

phase. In [19], Nisbett proposes a genetic algorithm approach to searching.

Over the past years, many proposals have been put forward to use profile information, for
example, in the creation of superblocks [12] or hyperblocks [17] to enable efficient scheduling
for ILP processors. These techniques are currently being employed in commercial compilers
[6]. Profiles are also used to identify runtime constants that can be exploited at compile
time [18]. The recently established workshop on Feedback Directed Optimization shows that
currently many proposals are being put forward to exploit profile information in the compiler
chain [9]. This paper can be seen as taking profiling one step further by using many profiles

for deciding between many alternatives.

8 Conclusion

In this paper we have discussed the inclusion of cache models in iterative compilation where we
search for an optimal optimization. In previous work we have shown that iterative compilation
can yield high levels of optimization, outperforming static techniques significantly. We have
considered two types of models: one highly accurate but highly expensive (cache simulator)
as an upperbound, and one less expensive but also less accurate as a lowerbound. First, we
have shown that these models alone while using no program execution are not capable of

producing levels of optimization as high as iterative compilation can. Second, we have shown
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that iterative compilation incorporating accurate models is capable of reducing the number
of required program executions by 50% and still obtain the same levels of optimization. Less
accurate models can improve iterative compilation in case there is a small budget of profiles.
However, we have also shown that these less accurate cache models may actually degrade
the performance of iterative compilation in case more profiles can be afforded. We conclude
that, in order to obtain maximal speedup, accurate models together with a limited number

of profiles are required.
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