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Abstract

Loop tiling and unrolling are two important program transformations to exploit locality

and expose instruction level parallelism, respectively. However, these transformations are not

independent and each can adversely a�ect the goal of the other. Furthermore, the best com-

bination will vary dramatically from one processor to the next. In this paper, we therefore

address the problem of how to select tile sizes and unroll factors simultaneously. We approach

this problem in an architecturally adaptive manner by means of iterative compilation, where

we generate many versions of a program and decide upon the best by actually executing them

and measuring their execution time. We evaluate several iterative strategies based on genetic

algorithms, random sampling and simulated annealing. We compare the levels of optimization

obtained by iterative compilation to several well-known static techniques and show that we

outperform each of them on a range of benchmarks across a variety of architectures. Finally,

we show how to quantitatively trade-o� the number of pro�les needed and the level of opti-

mization that can be reached. In this way, we can reach high levels of optimization within 50

iterations.
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1 Introduction

E�cient use of the memory hierarchy is essential for good performance due to the ever increasing

gap between processor and memory speed. Program transformations such as loop tiling or blocking

have been shown to be an e�ective approach to improving locality and cache exploitation [16, 12,

18, 23, 30]. In this approach one tries to divide the loop into smaller tiles in such a way that the

working set of each tile �ts in the cache thereby exploiting the available locality.

It is also important to fully utilise the internal parallelism within modern processors which are capa-

ble of issuing several instructions per cycle [13]. Loop unrolling is an important transformation for

this purpose [27] as it increases the size of the loop body exposing more instructions for Instruction

Level Parallelism (ILP). As we require e�ective utilization of the memory hierarchy and internal

parallelism, we need to combine both of these transformations. To illustrate the transformation we

consider in this paper, consider the example given in Figure 1. In this �gure, TJ and TK are the tile

sizes for the J and K loop, respectively, and U is the unroll factor of the I loop.

1

In this paper we study the combination of these two transformations and address the problem of

determining simultaneously optimal tile sizes and unroll factors for any given loop nest. Combining

the best tiling transformation for locality with the best unrolling factor for ILP, however, does

not give the best overall transformation as transformation application is not orthogonal in e�ect.

Loop unrolling can adversely a�ect locality and tiling may restrict the available instruction level

parallelism.

The close interaction between tiling and unrolling can be seen in Figure 2, which shows that a small

deviation from `good' tile sizes and unroll factors can cause a huge increase in execution time and

even a slow down with respect to the original program. We need to answer the question for which

tile sizes and unroll factors we obtain the minimum execution time. A static technique essentially

tries to give an analytical expression for this minimum. In [7, 21] we have studied the characteristics

of optimization spaces in detail for a variety of benchmarks and platforms and showed that di�erent

1

The variation on loop unrolling that we consider in this paper is unroll-and-jam [1, 9, 8] whereby an outer loop

is unrolled and the inner loops are fused. Epilogue code is not shown here for simplicity.
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Original Transformed

DO I = 1,N

DO J = 1,N

DO K = 1,N

A[I,J] = A[I,J] + B[I,K] * C[K,J]

DO JJ = 1,N,TJ

DO KK = 1,N,TK

DO I = 1,N,U

DO J = JJ,MIN(JJ+TJ-1,N)

DO K = KK,MIN(KK+TK-1,N)

A[I,J] = A[I,J] + B[I,K] * C[K,J]

A[I+1,J] = A[I+1,J] + B[I+1,K] * C[K,J]

...

A[I+U-1,J] = A[I+U-1,J] + B[I+U-1,K] * C[K,J]

Figure 1: Example Transformation
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platforms give rise to widely varying optimization spaces (see Figure 2) and that a compiler, using

a simpli�ed static cost model, would have great di�culty to predict this minimum. Instead, we

propose to actually search this space in a manner that is adaptable for di�erent architectures. We

call this approach iterative compilation, where we generate many versions of a program and try to

determine their execution time. This can be done by actually executing the program on the target

hardware, by employing one or more static models, or by a combination of both techniques. The

version that performs best is selected and thus we determine the best combined tile size and unroll

factor. In the present paper, we use real execution time to search the space for a minimal point

and by using a generic iterative compilation strategy, we can �nd excellent optimizations across a

range of architectures. Thus, we obtain highly architecture speci�c optimizations in an architecture

independent manner.

This approach is highly attractive in situations which require high performance, such as embedded

systems where the compilation time can be amortised across the number of products shipped or in

the case of vendor supplied library codes for which the same argument holds. It is also useful in

contexts where the underlying architecture changes (e.g., additional memory, a new release of the

low-level compiler or a completely new processor) as the iterative search strategy has no hardwired

system dependent knowledge.

Although, theoretically, iterative compilation can �nd the optimal version of a program for any

architecture by simply considering all possibilities, in practice the search space is extremely large

and therefore in this paper we examine techniques that reduce this cost and show that iterative

compilation outperforms static techniques across a range of architectures.

In section 2 the implementation of our iterative compilation system is briey discussed. In order

to assess the e�ciency of our approach, we use a collection of small benchmark kernels and three

target platforms in section 3. In section 4 we show that we can �nd good tile sizes and unroll

factors by visiting only a tiny fraction of the entire optimization space. We assess the quality of

the optimization found by comparing it to two well-known static tile size selection algorithms in

section 5 and show that we outperform each of them in almost all cases and can �nd good solutions in

less than 6.5 minutes on average. After analysing the cost of compilation time in section 6, we limit
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the number of iterations to a realistic small and �xed amount and construct quantitative trade-o�

graphs, in section 7, that show that good performance can be reached with little cost. Finally, we

discuss related work in section 8, future directions in section 9 and draw some concluding remarks

in section 10.

2 Implementation of Iterative Compilation System

In this section we briey discuss how the iterative compilation system is implemented.

Driver

List of Transformations

MT1 Compiler TDL−Files

F77

Transformed ProgramExecution
    Time

SSL−File

Target Platform

Figure 3: The Compilation Process

Figure 3 shows an overview of the compiler system. For more details, consult [22]. The compilation

system is centred around a global driver that reads a list of transformations that it needs to examine

together with the range of their parameters. The driver keeps track of the di�erent transformations

evaluated so far and decides which transformations have to be applied next using a search algorithm

to steer through the optimization space. We have implemented several search algorithms, including

a genetic algorithm, simulated annealing, pyramid search, window search and random search (see

section 3). The global driver invokes the source to source compiler MT1 [5] and instructs it which
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transformation to apply. MT1 has two mechanisms to control the application of transformations: a

Transformation De�nition Language (TDL) [4] and a Strategy Speci�cation Language (SSL) [2]. For

each transformation included in the list of transformations, a transformation needs to be speci�ed

in the TDL-�le. The global driver constructs an SSL �le that speci�es the order in which to apply

certain transformations and outputs it to MT1.

Hence one step of the global driver consists of the following actions:

1. Decide the next set of parameters for the transformations using the search algorithm.

2. Construct an SSL �le that corresponds to this new sequence.

3. Invoke MT1 that starts the transformation process by reading in the source program, the SSL

�le and the TDL �le.

4. The transformed program is compiled for the target architecture and executed.

5. The execution time is measured and reported back to the global driver.

6. The global driver stores this execution time and starts the next step.

After a predetermined number of iterations, the global driver stops searching and outputs the

transformed program with the shortest execution time.

3 Experiment

In this section we discuss the parameters of our experiment, including the search algorithms em-

ployed by the global driver, the benchmarks and the target platforms.

3.1 Search Algorithms

We have implemented several search algorithms, including a genetic algorithm, simulated annealing,

pyramid search, window search and random search.
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Genetic algorithm Genetic Algorithms are modelled on natural evolution processes and manip-

ulate individuals in a population over several generations to improve their �tness. First, an

initial population of S programs is randomly selected. Second, in the crossover phase, for

a number of individuals a crossover point is determined in the bit representation of their

`chromosomes' that encode tile size and unroll factor. Di�erent parts of the upperhalf and

lowerhalf of these chromosomes are concatenated and thus new individuals are created. Third,

in the mutation phase, bits are ipped in the chromosomes based on the mutation probability.

Finally, the entire new population is evaluated and the execution time is used to establish the

�tness of the individuals. If the �tness is too low, the individual is deleted from the population

until a new population of 20 individuals is reached.

Simulated annealing SA is modelled on the physical process of heating up a solid and then

cooling it down slowly until it crystallizes. Initially, a random point is selected and neigboring

points are inspected. We move to the point with lowest execution time, or with a certain

probability depending on the current temperature to a point with higher execution time. The

temperature is subsequently decreased. We keep track of the best point visited so far.

Pyramid or Grid search We de�ne a top level grid over the search space and evaluate each point

on this grid. We order the points in a priority queue. Around the best points we re�ne the

grid.

Window search We de�ne windows over the search space. Initially, the window is the entire

space. We take a number of samples and order them in a priority queue. Around the best

points we de�ne a smaller window.

Random search We randomly generate 2000 sets of parameters.

The GA, SA and Window algorithms contain parameters: the size of the initial population S, the

cross-over rate c and the mutation rate m in GA. In SA we need to de�ne the initial temperature

T

0

. In Window search we need to de�ne the shrink factor p and number of samples per window

s. We conducted a number of experiments with di�erent values for these parameters on a limited

set of benchmarks to establish which parameters perform best [20]. We found that for GA, a low
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cross-over rate performs best. We selected the following values for the parameters in GA: S = 20,

c = 0:4 and m = 0:01. Likewise, we found that good values for the parameters in Window search

are s = 75 and p = 75. Therefore, the experiments described below were conducted using these

values. We used for the initial temperature in SA the value of T

0

= 36700.

3.2 Benchmarks

In order to assess the e�ciency of iterative compilation for selecting tile sizes and unroll factors,

we use many small kernel benchmarks from multimedia applications that exhibit a wide variety of

memory access behaviour. In this way, we are able to give a statistically relevant analysis of the

results. Therefore, we chose the following benchmarks.

� Matrix-Matrix Multiplication (MxM). We use all 6 possible loop orders to generate 6 bench-

marks with highly di�erent memory access behaviour. We use data input sizes of N = 256,

N = 300 and N = 301.

� Matrix-Vector Multiplication (MxV). We use the two possible loop orders. We use data input

sizes N = 2048, N = 2300 and N = 2301.

� Forward Discrete Cosine Transform. This benchmark is one of the most important routines

from the low-level bit stream video encoder H263. It contains three initialization loops and two

main loops: the �rst loop repeatedly calculates innerproducts and the other loop is a matrix-

matrix multiplication. These loops are hand optimised in the reference implementation and

we undid some of this optimization in order to remove a dependence that would prohibit some

transformation. We use both the �rst main loop in isolation and the entire routine in our

experiments. We use data input sizes of N = 256, N = 300 and N = 301.

3.3 Platforms

We have conducted our experiments on three di�erent platforms: Pentium II, Hewlett-Packard

Precision Architecture (HP-PA 712/60) and UltraSparc. In order to compile a transformed version
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Figure 4: Speedup MxM { ijk version

of the source program we used the native Fortran77 compiler with full optimization on.

We restricted attention to tile sizes from 1 to 100 and unroll factors from 1 to 20. Not every

benchmark and data input size has been executed on every platform. Instead, we have considered

a total of 82 di�erent experiments.

4 Results

In this section we show how much speedup we obtain as a function of the number of iterations,

where we show the best speedup found so far. Due to space limitation, we present only part of

the speedup graphs that we have measured. For an exhaustive presentation of all these results the

reader is referred to the full version of this paper [20]. We consider both rectangular and square tiles

and show that square tiles achieve as much improvement as rectangular tiles in only a fraction of the

compilation time. In section 5 we discuss how good these levels of optimization are by comparing

them to existing static approaches.
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Figure 5: Speedup MxM { ikj version
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Figure 6: Speedup FDCT
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4.1 Rectangular Tile Sizes

In this section we discuss the results when we search for rectangular tile sizes together with unroll

factors. In this case, the search space consists of 20 � 100 � 100 = 200; 000 points. We let the

search algorithm run for 2000 iterations. We did not consider MxV in this experiment since it only

contains a double loop and rectangular tiling is not applicable.

4.1.1 Analysis of search algorithm performance

The results of iterative compilation are given in Figures 4 through 6. The x-axis denotes the

number of iterations, that is, the number of times a transformed version of the program is generated,

compiled and executed. The y-axis denotes the speedup of the fastest version found so far.

The �rst observation is that iterative compilation indeed yields high levels of optimization. For

example, we obtain a speedup of over 18 for MxM (IKJ version) and a speedup of 30 for MxM (KIJ

version) on the HP-PA. For these benchmarks, we obtain speedups of over 7, respectively 4, on

the Pentium, and 5.5, respectively 3.3, on the UltraSparc. We have shown in [20] that these high

levels of optimization are found across all our benchmarks and platforms for all data input sizes.

This gives some con�dence in the viability of our approach. In section 5 we give a more quanti�ed

assessment of this by comparing iterative compilation to two well-known static techniques.

The second observation we can make is that these search algorithms do not di�er much in their

e�ciency. The speedups found by the di�erent search algorithms are within 5% on average of each

other [20]. In the table below, we have given the number of iterations required to obtain maximal

speedup. We also gave the number of iterations needed to reach 90% of this maximum.

max. 90% of max.

GA 808.4 its. 76.5 its.

SA 767.6 its. 144.6 its.

Pyramid 1043.9 its. 251.7 its.

Window 835.6 its. 65.6 its.

Random 747.0 its. 162.2 its.
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We observe that we on average need roughly between 750 and 1000 iterations in order to obtain

the maximum speedup. We also observe, however, that iterative compilation reaches high levels of

optimization much earlier and that the last few hundred iterations are used for a small increase

in the �nal outcome. From the table we also observe that SA and Random reach their maximum

fastest. It should be noted that SA shows quite random behaviour also, especially in its earlier

phases where the probability to accept degradations is high. Also, Window search exhibits random

behaviour because we draw random samples from the window that initially covers the entire search

space. In our opinion this suggests that the underlying search space indeed is quite irregular and

regular searching approaches will not yield acceptable results. Pyramid search is slowest because

initially we de�ne a grid over the entire search space that consists of 500 points. Many of these

point may be located in regions that perform badly. Therefore, Pyramid search has a high initial

overhead. This is also reected in the high number of iterations needed to reach 90% of the maximal

speedup. In general, we see that we need only a fraction of the number of iterations for maximal

speedup to reach 90% of this maximum. Although the average number of iterations we need to

reach this 90% lies between 0.03% and 0.13% of the entire search space, the absolute number is

far too high to settle for it. However, this observation enables us to propose a trade-o� between

the number of evaluations we employ and the level of optimization that we can �nd. This topic is

discussed in more detail in section 7 where we show a quantitative trade-o� graph.

4.1.2 Conclusion

We conclude that iterative compilation is capable of �nding good unroll factors and tile sizes across

a wide variety of benchmarks, data input sizes and platforms. Several natural algorithms all perform

almost equally well. We reach high levels of optimization visiting between 0.375% and 0.5% of the

entire search space. We can reach 90% of maximum optimization by visiting a far smaller fraction of

the search space: between 0.03% and 0.13%. However, searching for rectangular tile sizes requires

a large search space of 200,000 points. Therefore, in the next section, we consider the possibility to

search for square tiles that reduces the size of the search space to 2000 points.
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Figure 7: Speedup MxM { ijk version
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Figure 8: Speedup MxM { ikj version

4.2 Square Tile Sizes

In this section we search for square tile sizes, reducing the size of the search space by a factor

100 to 2000 points. We implemented four search algorithms: GA, Pyramid, Random and SA. We

compared the search algorithms and found that they reached their maximum improvement in about

the same number of steps [20]. In this section we only present the results using Pyramid search.

The results are given in Figures 7 through 10. We used 400 iterations to determine the maximal

speedup, which is 20% of the number of iterations we used for rectangular tiles.
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Figure 9: Speedup MxV
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4.2.1 Analysis of results

Comparing the speedups obtained using square tiles with the speedups obtained using rectangular

tiles shows that they are about the same. In one case (MxM-KIJ on HP-PA) square tiling performs

about 30% slower than rectangular tiling. In one other case (MxM-IKJ for N = 300 on Pentium)

square tiling obtains a speedup of 4.03 whereas for rectangular tiling, speedups of 7.22 are obtained

by 4 out of 5 search algorithms (the other algorithm also yielded a speedup of 4). However, in some

other cases square tiling outperforms rectangular tiling: for the �rst loop in FDCT square tiling

performs 45% better than rectangular tiling on the UltraSparc. In all other cases, square tiling

is within 5% on average from rectangular tiling. In general, the di�erence between the di�erent

search algorithms for rectangular tiling is of the same order of magnitude than the di�erence between

square and rectangular tiling [20]. This shows that square tiles can provide the same speedup as

rectangular tiles do and therefore we can restrict attention to square tiles.

The next observation is that iterative compilation reaches high levels of optimization rapidly. In the

table below we have shown the average number of iterations needed to �nd the maximal speedup

and 90% of this maximal speedup, for each platform. We see that we improve by a factor of 8 over

searching for rectangular tile sizes, both for �nding the maximal improvement and for �nding 90%

of this maximal improvement.

max. 90% of max.

Pentium 146 its. 31.3 its.

HP-PA 79.9 its. 23.9 its.

Ultra 127 its. 38.2 its.

Average 116.2 its. 30.9 its.

4.2.2 Conclusion

We conclude that the speedup obtained using square tiles is almost as good as the one obtained

using rectangular tiles. However, the time needed for iterative compilation is a factor of 8 smaller for

square tiles than for rectangular tiles. This provides our �rst heuristic for managing the complexity
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of iterative compilation by only considering square tiles.

5 Comparison with Static Techniques

In this section we quantify the e�ciency of iterative compilation by comparing the performance

improvements to two static tile size selection algorithms. In [30] it has been shown that these tiling

algorithms perform as good as or better than a host of other tiling techniques. The �rst algorithm,

TSS by Coleman and McKinley [12], considers the size of the working set in the loop body and

requires that this working set is smaller than the cache size. It also takes into account an estimate

of the cross interference between di�erent arrays and tries to minimise this cross interference. We

unrolled the loop a number of times and computed the tile size using TSS for the unrolled loop.

The second algorithm, LRW by Lam, Rothberg and Wolf [23], does not consider the working set

nor the cross interference rate. It computes a tile size based only on the size of the cache. We have

used this tile size together with di�erent unrolling factors.

We compute the comparison between our approach and the static approaches as follows. Let S

it

be the speedup obtained by iterative compilation and let S

TSS

be the speedup obtained by TSS.

Then the improvement of iterative compilation over TSS, I

TSS

, is given by

I

TSS

=

S

it

� S

TSS

S

TSS

� 100%

We compute the improvement of iterative compilation over LRW likewise. Note that when iterative

compilation produces a lower speedup than TSS, a negative improvement is obtained. The results

are given in Figures 11 through 17 (see also [20]).

We immediately observe from these �gures that iterative compilation outperforms the other tech-

niques signi�cantly, up to 1800% for MxM-IKJ on the HP-PA. Note that we show that this im-

provement holds for each unroll factor less than or equal to 20 that the compiler might choose.

From the �gures it can also be observed that for an unroll factor of 1, which corresponds to no

unrolling, improvements over tiling only are large.

In the full version of the paper [20] it is shown that the observations given above hold for almost
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Figure 17: Improvement over LRW for FDCT, N = 256

each benchmark, data size and platform. In particular, iterative compilation improves in all cases

on Pentium. For UltraSparc, there is 1 case out of 600 where iterative compilation performs 2%

less than TSS and it always performs better than LRW. For HP-PA, there are 20 out of 600 cases

where iterative compilation performs 2% less than TSS and 2 cases where iterative compilation

performs 3% less than LRW. On examining the code, this slight degradation is due to statistical

noise in measuring the execution time. This means that speedups found by iterative compilation

are the same in these cases as those found by static means. Hence, summing up, in 99.4% of our

benchmarks iterative compilation outperforms a static tile size selection algorithm. In the other

cases only a very slight degradation of about 2% can be observed that is largely due to noise. From

this data we conclude that iterative compilation is a powerful optimization technique outperforming

existing static techniques signi�cantly.

6 Compilation Time

In this section we discuss the compilation time required for iterative compilation that we show

in Figure 18 as a function of the number of iterations, together with the breakdown in the times

required for searching and program transformation in MT1, native Fortran77 compilation and

execution. We observe that the relationship is almost linear. For 400 iterations, we need on average

on Pentium 14.6 minutes, on HP-PA 65.23 minutes and on UltraSparc 64.49 minutes.
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Figure 18: Compilation Time and Decomposition of Compilation Time
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In case of the Pentium and UltraSparc, most time is spent in executing the transformed program.

However, for HP-PA, the time required for native Fortran77 compilation is the dominant factor and

the time required for the global driver can be larger than the execution time of the transformed

program. Hence most reduction in time required for iterative compilation can be obtained from

reducing the number of actual executions, that need both native compilation and running the

program.

7 Trade-o� between Number of Iterations and Level of Op-

timization

In this section we discuss how much improvement we can obtain from iterative compilation when

limiting the number of iterations. Thus we investigate how much performance gain is available for

a given compilation time \budget".

7.1 Comparing Improvements

We need to de�ne a metric that we can use to compare improvements. In this subsection we discuss

two possibilities. We use both metrics below to construct a trade-o� graph between the number

of iterations and the levels of optimization that result. First, we want to quantify the e�ect of a

transformation. There are two natural approaches.

Speedup Suppose the execution time of the original program is t

0

and the execution time of the

transformed program is t

1

. The speedup of the transformation S is de�ned as

S =

t

0

t

1

As we keep track of the best version found so far, the speedup is always greater than or equal

to one, S � 1.

Execution time improvement This quantity is de�ned as the di�erence between the original

execution time and the execution time of the transformed program, relative to the execution

22



time of the original execution time. The improvement I of the transformation is therefore

de�ned as

I =

t

0

� t

1

t

0

� 100%

If the transformation slows down the original program, I < 0. Otherwise, 0 � I < 100%. If

I = 0%, then the transformation has no e�ect. If t

1

decreases to 0 seconds, I increases to

100%. In the present case of iterative compilation, I lies between 0% and 100%.

Using the two measures above, we can de�ne a metric to quantify how close a transformation

comes to another transformation. There are two properties we require this metric to have. First, if

transformation T

1

has no e�ect, but transformation T

2

has a positive e�ect, we want to be able to

say that T

1

reaches 0% of the improvement of T

2

. Second, if T

1

results in the same running time

as T

2

, we want to be able to say that T

1

reaches 100% of the improvement of T

2

.

Speedup Since the minimal speedup we obtain from iterative compilation is 1, we de�ne the metric

M

S

based on speedup by

M

S

(T

1

; T

2

) =

S

1

� 1

S

2

� 1

� 100%

where S

i

is the speedup obtained from transformation T

i

. It is easy to see that M

S

has the

two properties discussed above.

Execution time improvement We want the metric M

I

to measure how close the improvement

I

1

comes to I

2

. That is, we want the relation I

1

= M

I

(T

1

; T

2

) � I

2

to hold. Therefore, we

de�ne

M

I

(T

1

; T

2

) =

t

0

� t

1

t

0

� t

2

� 100%

where t

0

is the original execution time and t

i

is the execution time resulting from transfor-

mation T

i

. Again it is easy to see that M

I

has the two properties discussed above. We can

rewrite M

I

in terms of speedup as follows.

M

I

(T

1

; T

2

) =

S

2

S

1

�

S

1

� 1

S

2

� 1

� 100%

Below, T

2

is the transformation with maximal improvement, hence S

2

� S

1

and M

I

�M

S

.
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For example, suppose we have a program that runs in 20 seconds. Suppose transformation T

1

reduces the running time to 4 seconds, and transformation T

2

reduces the running time to 2 seconds.

Then S

1

= 5 and S

2

= 10, and I

1

= 80% and I

2

= 90%. To compute comparisons, M

S

(T

1

; T

2

) =

4

9

� 100% � 44% and M

I

(T

1

; T

2

) =

20�4

20�2

� 100% � 88%. Hence we see the di�erence between the two

metrics. There is a large di�erence between speedups and therefore M

S

is only 44%. On the other

hand, there is not so much di�erence in running times compared to the original running time. T

1

already reduces the running time to a large extend. The metric M

I

records this and says that T

1

reaches 88% of T

2

.

7.2 Quantitative Trade-o� Graphs

We now want to compare the transformation T

i

found in iteration i to the �nal transformation T

m

with maximal e�ect that has been found after 400 iterations. We use the results of both the Pyramid

and the Random search algorithm since this last algorithm inspects the entire search space in a

few iterations and hence delivers high levels of optimization rapidly. We use both metrics discussed

above in this comparison. In this way, we are able to focus on both speedup and execution time

improvement. We proceed as follows.

We base our comparison on the transformations using square tiles discussed in section 4.2. We

measured the speedup found after 25 iterations in all 82 experiments that we have conducted. We

counted the number of cases where we reached 100% of the speedup. This yields a percentage of

the experiments that reach this maximal result. Likewise, we counted the number of cases where

we reached at least 95%, 90%, 80% and 70% of the maximal speedup. We also counted the cases

where we reached at least 100%, 99%, 98%, 97%, 95%, 90% and 80% of the maximal execution

time improvement.

We followed the same procedure after 50, 75 and 100 iterations. The results are plotted in Figure

19 that provide quantitative trade-o� graphs. From these �gures we can deduce, for example, that

using the Random algorithm after 100 iteration, 58% of the benchmarks were fully optimized and

thus reached 100% of the speedup or execution time improvement. Likewise, we see that after 50
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(a) Random: Trade-o� Speedup
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Figure 19: Trade-o� Graphs for Pyramid search (top) and Random search (bottom)
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iterations, 85% of the benchmarks reached at least 90% of the maximal speedup and 79% of the

benchmarks reached at least 97% of the execution time improvement. Conversely, given a budget

if N iterations, we can deduce the e�ect of iterative compilation in terms of how likely it is that a

certain level of improvement is reached.

There are a number of observations we can make. First, we see that after 25 iterations most

benchmarks reach high levels of optimization: more than 50% reach 95% of the maximal speedup

and 45% reach 99% of the maximal execution time improvement for Random search. Likewise, after

25 iterations more than 50% of the benchmarks reach 90% of the maximal speedup and 97% of the

maximal execution time improvement for Pyramid search. For 50 iterations, all benchmarks reach

at least 70% of their maximal speedup and 80% of their maximal execution time improvement for

Random search, and 90% of the benchmarks reach 60% of their maximal speedup and 70% of their

maximal execution time improvement for Pyramid search. Conversely, after 100 iterations most

benchmarks reach high levels of optimization. For 50 or more iterations, the \equibars" for 70%

and 80% of the speedup, and the \equibars" for 80% and 90% of the execution time improvement

are close together. This means that there are few programs with an improvement between 70%

and 80% in speedup (or between 80% and 90% in execution time improvement). The vast majority

reaches a higher level of optimization.

Comparing the trade-o� graphs for Pyramid search and Random search we observe that Random

search reaches the highest levels of optimization quickest. One reason for this is that Random search

takes samples from the entire optimization space, whereas Pyramid search evaluates a 50 point grid

�rst. Therefore, after 25 iterations, Pyramid search only has inspected half of the search space.

This shows that if we are only willing to execute a few iterations, Random search can outperform

other approaches. The trade-o� graph suggests that after taking 50 random samples, we have a

high probability to have found a good optimization.

In Table 1, we have shown the compilation time in minutes required for 25, 50, 75 and 100 iterations.

We observe that the times for 25 or 50 iterations can be a�orded. In future work we hope to bring

down these compilation times even further by including static models in the search.
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Compilation time 25 its. 50 its. 75 its. 100 its.

Pentium 1.23 m. 2.37 m. 3.27 m. 4.63 m.

HP-PA 4.10 m. 7.68 m. 10.4 m. 14.34 m.

UltraSparc 4.66 m. 9.02 m. 12.51 m. 17.77 m.

Table 1: Compilation Time for Small Numbers of Iterations

8 Related Work

There are many paper dealing with tile size selection [12, 16, 23, 27, 30]. All these selection

algorithms use static analysis and models to compute tile sizes, in contrast to the present approach

that uses dynamic pro�ling information. Carr and Kennedy [9] and Carr [8] compute unroll-and-

jam factors in order to minimise the di�erence in machine and loop balance. Carr computes how

much bene�t the unroll-and-jam of a loop has for a range of unroll factors based on static models

and searches at compile time to decide which unroll factor has the most bene�t. In contrast, the

present approach uses actual execution times and moreover considers loop tiling at the same time.

Currently, searching techniques are employed in hardware generation, for example, in design space

exploration [14]. In this approach, many implementations of a design are generated and static mod-

els are used to estimate for example die size and speed of the circuit. Optimal points in the design

space are called Pareto points. For example, one such point signi�es that some implementation

gives the fastest circuit for a given die size, or alternatively the smallest die for a given speed.

Whaley and Dongarra [32], and Bilmes et al. [6] describe systems for generating highly optimized

BLAS routines that probe the underlying hardware to �nd optimal transformation parameters.

They show to be capable of outperforming vendor supplied, hand optimized library BLAS routines.

In contrast to the present approach, however, these systems are only able to optimise BLAS routines

and are not general purpose compilers.

Wolf, May Dan and Chen [33] have described a compiler that also searches for the optimal opti-

mization by considering the entire optimization space. Han, Rivera and Tseng [18] also describe
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a compiler that searches for tile and pad sizes using static models. In contrast to the present ap-

proach, however, their compilers use static cost models to evaluate the di�erent optimizations. Our

approach based on actual execution times will deliver superior performance and can adapt to any

architecture, requiring no prior modelling phase.

Chow and Wu [10] apply `fractional factorial design' to decide on a number of experiments to run

for selecting a collection of compiler switches. They, however, focus on on/o� switches and do not

consider the choice of parameter values that might come from a large range of values.

Over the past years, many proposals have been put forward to use pro�le information, for exam-

ple, in the creation of superblocks [19] or hyperblocks [24] to enable e�cient scheduling for ILP

processors. These techniques are currently being employed in commercial compilers [11]. Pro�les

are also used to identify runtime constants that can be exploited at compile time [26]. The recently

established workshop on Feedback Directed Optimization shows that currently many proposals are

being put forward to exploit pro�le information in the compiler chain [15]. This paper can be seen

as taking pro�ling one step further by using many pro�les for deciding between many alternatives.

The present research was started within the Esprit project OCEANS [3]. Within this project, other

approaches to iterative compilation are considered. Bodin explores in [31] the interplay between

loop unrolling and software pipelining. This approach can be fully integrated with the present

approach since Bodin targets a di�erent phase in the compiler, namely, the code generation phase.

In [28], Nisbett proposes a genetic algorithm approach to searching.

9 Future Directions

The obvious drawback of iterative compilation is its long compilation time that is required in order

to generate many versions of the source program and execute them to obtain pro�ling information.

In this section we discuss a few possible solutions.

The �rst approach is to use analytical models in the search. We intend to use the static models

to guide the search by using them to decide whether one version of the program is better than
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another. Only if the models predict that some version might be better than the best one found so

far, we will actually pro�le that version. In this way, pro�ling the transformed program will only be

done in situations where static information is insu�cient to give reliable predictions. These models

should be accurate enough to cover a large portion of the search space or, alternatively, should be

accurate for certain aspects of the search space. Currently, we are implementing a cache model

to measure the impact of the transformations at compile time on memory access behaviour and

a parameterised scheduler to measure the impact on ILP exploitation. We are also implementing

Cache Miss Equations [17] and the procedure to statically evaluate the e�ect of Unroll-and-Jam

proposed by Carr [8]. In the long term we envisage a compilation system where the user can trade-o�

levels of optimization and compilation time by tuning the complexity and accuracy of static models,

the number of points that are inspected and the number of programs that are actually executed.

In this compilation model, traditional compilers use models of low to medium complexity, visit

one point and execute no programs. The present paper discusses the situation where there are no

models and many points are visited and evaluated. The compilers by Wolf, Maydan and Cheng

[33], and the one by Han, Rivera and Tseng [18] fall in between by using low complexity models,

visit many points but do not execute any program.

In the present paper we discuss how to deal with parameters for a given transformation. How-

ever, many other transformations can be employed that do not have such a parameter, like loop

interchange. In [25] we discuss an approach by considering decision trees for applying a host of

transformations, including data transformations [29]. Loop unrolling and tiling is one node in this

tree and the present approach to transformation space exploration can be used in this node to

determine optimal parameters. However, we need to ensure that good tile sizes and unroll factors

can be found very quickly for this approach to be feasible.

10 Conclusion

In this paper we have discussed how to simultaneously select tile sizes and unroll factors using a novel

approach to program optimization, namely, iterative compilation. This approach generates many

29



transformed versions of the source program and searches for the best by compiling and executing

these programs. We have implemented this approach and we have shown that it is able to �nd high

levels of optimization rapidly, outperforming existing approaches signi�cantly. We have shown how

to trade-o� compilation time and levels of optimization by limiting the number of iterations. In

this way, within 50 iterations, high levels of optimization on average can be found. The compilation

time required is then reduced to less than 6.5 minutes on average.
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