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Abstract

We characterize the switching classes that do not contain an acyclic graph. The
characterization is by means of a set of forbidden graphs. We prove that in addition to
switches of the cycles C, for n > 7 there are only finitely many such graphs. In fact,
there are no such graphs with more than 9 vertices. We give a representative of each of
the 24 classes.

1 Introduction

For a finite undirected graph G = (V, E) and a set ¢ C V', the switch of G by ¢ is defined as
the graph G = (V, E'), which is obtained from G by removing all edges between ¢ and its
complement & and adding as edges all nonedges between o and @. The switching class [G]
determined by G consists of all switches G for subsets o C V.

A switching class is an equivalence class of graphs under switching, see the survey papers
by Seidel [7] and Seidel and Taylor [8]. Generalizations of this approach can be found in
Gross and Tucker [4], Ehrenfeucht and Rozenberg [3], and Zaslavsky [10].

In this paper we solve a problem raised by Acharya [1] and by Zaslavsky in his dynamic
survey in 1999 [11], which asks for a characterization of those graphs that have an acyclic
switch. Forbidden graphs for perfect graphs in switching classes were treated by Hertz [6].

We show that apart from the simple cycles C), for n > 7, there are only finitely many
critically cyclic graphs (with respect to switching), that is, graphs G which have no acyclic
switches G7, but all of whose induced proper subgraphs do have an acyclic switch.

In fact, we shall prove that a critically cyclic graph G ¢ [C},] has order at most 9. These
graphs are partitioned into 24 switching classes, and altogether there are 905 critically cyclic
graphs of order at most 9 (up to isomorphism and excluding switches of the cycles C,,).!

In order to save the reader from long — and occassionally tedious — technical constructions
for the small graphs, we rely on a computer program (in fact, two independent, ones) for the
cases of order at most 9. Therefore our purpose is to prove that if G is a critically cyclic
graph of order n > 10, then G € [C,,]. The proof of this result uses the characterization from
[5] of the acyclic graphs G — henceforth called the special graphs — that have a non-trivial
acyclic switch, see Section 3.

The paper is structured as follows: after some preliminaries we list the necessary details
of the special graphs from [5]. Then we proceed with our actual results proving that critically
cyclic graphs can have only a limited number of isolated vertices and as a consequence, a
vertex in a critically cyclic graph has only a limited number of leaves adjacent to it. We
prove that each critically cyclic switching class, except [C)y] for n > 8, contains a (critically
cyclic) graph, which is, except for two vertices, a special graph. By verifying that for each
type of special graph a contradiction results — under the condition that the order of the graph
is at least 10 — we finally prove our result. At the end of the paper we shall spend some time
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on the programs used and we consider also the question why not all of the critically cyclic
switching classes are used in our proof.

2 Premilinaries

For a (finite) set V, let |V| be the cardinality of V. We shall often identify a subset A CV
with its characteristic function A :V — Z,, where Zo = {0, 1} is the cyclic group of order
two. We use the convention that for z € V, A(z) = 1 if and only if z € A. The symmetric
difference of two sets A and B is denoted A + B, and for the difference between A and B we
write A — B. The restriction of a function f: V' — W to a subset A C V is denoted by f|a.

The set E(V) = {{z,y} | 2,y € V, x # y} denotes the set of all unordered pairs of distinct
elements of V. A graph is a pair G = (V, E) where V is the set of vertices and E C E(V)
the set of edges. We write zy or yz for the undirected edge {z,y} € FE; we call z and y
adjacent. By convention we write © € G for x € V. The graphs of this paper will be finite,
undirected and simple, i.e., they contain no loops or multiple edges. The cardinalities |V|
and |E| are called the order, respectively, size of G. Analogously to sets, a graph G = (V, E)
will be identified with the characteristic function G : E(V) — Z5 of its set of edges so that
G(zy) = 1 for zy € E, and G(zy) = 0 for zy ¢ E. Later we shall use both notations,
G = (V,E) and G : E(V) — Z,, for graphs.

For a graph G = (V, E) and X C V, let G|x denote the subgraph of G induced by X.
Hence, G|x : E(X) — Zy. As shorthand we write G — z for the graph G|y _¢,} and, more
generally, G — I for G|y_;. If for some X C G, G|x has edges between all pairs of distinct
vertices, then we call it a cligue. If G|x has no edges at all, then X is called independent.

For two graphs G and H on V we define G + H to be the graph such that (G + H)(zy) =
G(zy) + H(zy) for all zy € E(V), where + is addition modulo 2. We extend this operation
to graphs on sets of vertices V' and V' respectively, by first extending them to graphs on
V UV’ and setting all new edges to 0.

The disjoint union of two graphs G and H on the other hand is denoted G U H. We use
k - G as shorthand for the disjoint union of k copies of G.

Some graphs we shall encounter in the sequel are K, the clique on n vertices, and K, ,,
the complete bipartite graph on a two disjoint sets of m and n vertices respectively. The
graph P, denotes a path of n vertices and C,, denotes a cycle on n vertices.

Let G = (V, E) be a graph. For a vertex v € V, the set Ng(v) CV is the set of vertices
adjacent to v in G. The degree of v is defined by dg(v) = |Ng(v)|. An isolated vertez has
degree zero, a leaf degree one. A vertex v is a leaf at z if v is a leaf adjacent to z.

An acyclic graph is a graph without cycles. A tree is a connected acyclic graph. If we fix
the root of the tree, say r, then the depth of a vertex v in that tree is well-defined: it is the
number of edges on the shortest path between v and z. Hence r has depth zero.

A selector for G is a subset 0 C G, or alternatively a function o : G — Zy. A switch of a
graph G by o is the graph G such that for all zy € E(V),

G (zy) = o(z) + G(zy) + o(y) .

For a singleton selector o = {z} we shall write G* instead of G1*} by convention.

It should be clear that this definition of switching is equivalent to the one given in the
introduction. In Figure 1(7-3) a graph, the Chapel, is given and one of its switches is the
graph in Figure 5(7-3’). As we shall continue to do in this paper, the selector is indicated by
the black vertices.

The set [G] = {G? | 0 C V'} is called the switching class of G. We reserve lower case o, T
for selectors (subsets) used in switching.

A selector o is constant on X C V if X C g, or X N o = ). The name arises from the
fact that G|x = G7|x. Note that always G° = GV 7.

This paper concerns itself with those graphs that do not have an acyclic switch. We call
these graphs forbidden. Obviously, if a forbidden graph occurs in another graph, then the
latter is also forbidden. For this reason we are interested in the graphs that are minimal in
this respect: they do not have an acyclic switch, but all their induced subgraphs do have an



acyclic switch. We call these graphs and the corresponding switching class critically cyclic. A
switch of a critically cyclic graphs is also critically cyclic so the latter notion is well-defined.

Let G be a critically cyclic graph. By definition, for all z € V, there is a switch G such
that G — z is acyclic. As a consequence, all cycles in G go through z and there is at least
one such cycle. Note that this also holds for G7t{#}. Note that it does not hold that in every
critically cyclic graph G there is a vertex z so that G — z is acyclic; the graph K33 U3 - K;
of Figure 3(9-2) is a counterexample.

Example 2.1

Let G be the graph of Figure 5(7-3’). We want to prove that it is a critically cyclic graph.
For this we must show that it has no acyclic switches and removing any of the vertices allows
for an acyclic switch. For the latter it is sufficient to observe that the vertices 2,--- ,6 are
all on the only cycle of G, and G123} — 7 and G{3:6} — 1 are acyclic.

To prove that G has no acyclic switch observe that G has seven edges and an acyclic
graph can have at most six. We shall now prove that applying any selector will not decrease
the number of edges, and thereby we have proved that there is no acyclic switch.

First of all, the degree of every vertex in G is at most 3 = (n — 1)/2. Hence applying a
singleton selector cannot decrease the number of edges.

For doubleton selectors, ¢ = {x1,22}, we can do the same. The number of edges that
changes is |o| - (7 — |o|) = 10. We must make sure then that every selector makes at most
five edges disappear. The only possible way, knowing that the maximum degree is three, is
to take o = {2,6}, but in that case only four edges are removed, because one edge occurs in
Gl,-

For selectors of size 3, finally, twelve edges will change. Hence we must look for selectors
that create less than six edges (or, in other words, make more than six edges disappear). For
this, the selector must contain a vertex of degree three, say {2}. If we would also have 6 € o,
then the number of edges to be removed is four and there are no other vertices of degree
three. Adding two vertices of degree two to o results always in a selector having at most six
edges going to its complement, because always either the two of them are adjacent, or one of
them is adjacent to vertex 2. o

Note that C,, for n < 6 have an acyclic switch: take an independent set of cardinality
|n/2|. However, the following was already proved by Acharya [1].

Lemma 2.2

The cycles C,, for n > 7 are critically cyclic.

Proof:

First of all, removing any vertex gives us an acyclic graph P,_; and hence we have to prove
that all switches of C),,n > 7, have a cycle.

Let {z1,...,z,} be the vertices of C,,. We first treat the selectors that select the same
value, say 1, in two adjacent vertices, say z1 and z2. We need only consider nonconstant
selectors and without loss of generality we may assume that o(x,) = 0. Now o(z3) =
0, because otherwise G7 has a triangle {z,,22,25}. Then o(z4) = 1, because otherwise
{z1, 29,24} is a triangle. The same holds for z5 and now we have a triangle, {z,,z4, 25} in
G, since n > 7 implies that x5 is not a neighbour of x,,. This takes care of all C,,, where
n > 7 is odd.

The only case left is the selector o that selects only the odd numbered vertices of
Cpn. It is easy to verify that C§ is isomorphic to itself, and if n > 10 and even, then
{#1,%2, 24,25, 27,23} induces a Cs in C7. O

We now state the result of our computer search for the critically cyclic graphs.

Theorem 2.3
There are 27 switching classes of critically acyclic graphs of order n < 9. The representatives
of these are given in the Figures 1, 2 and 3.

The main theorem proved in this paper is the following.



Theorem 2.4
The switching classes [C},] are the only critically cyclic switching classes of order n > 10.

In our proofs we shall refer to the graphs from Figure 1, 2, 3 and 5. The black vertices
in the latter figure indicate how these graphs can be switched into the corresponding graph
from the former three figures. We shall use Theorem 2.3 to the extent that they are in fact
critically cyclic graphs. We shall not use that these are in fact all of them of order at most
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Figure 1: The critically cyclic graphs on five, six and seven vertices

3 The special graphs

We define the special graphs of [5] (see Figure 4). We shall use these graphs extensively
in our proofs. The graphs have in common that they have nonconstant switchings into an
acyclic graph.

The graph in Figure 4(1s) is denoted by Sk m.¢- It is a graph K j4m where k of the k+m
leaves are substituted by an edge, and to which £ isolated vertices have been added. We let,
see also Figure 4(1s),

(S1)  z be the centre of S,

(82) H = {(z,yi,z;) | i = 1,2,...,k} be the extended star of S, where S(zy;) = 1 =
S(yiz;) for all 4,

(S3) I ={uy,us,...,us} be the set of isolated vertices of S, and
(S4) M = {v1,ve,...,vmn} be the set of leaves adjacent to z in S.

Note that by the selector {z}, the graph Sk m, ¢ is switched into Sk ¢,m.

The types (2s)-(8s) of graphs are denoted S(k,m), where k& and m indicate the number
of leaves of the (black) vertices z; and z;. Because of the symmetry in k and m in each of
these graphs we may assume that k& > m.

A graph of type (2s) is simply the disjoint union K ; U K . Adding an isolated vertex
to a graph of this type gives a graph of type (3s).

We denote by P;(m, k) the tree that is obtained from the path P; of ¢ vertices when the
leaves are substituted by Ky, and K i, see Figure 4(4s) for P3(k,m) (adding an isolated
vertex gives a graph of type (5s)), Figure 4(6s) for Py(k,m) and Figure 4(8s) for Py(k,m).
Further, K1 3(k,m) denotes the tree, where two of the leaves of K 3 are substituted by the
stars K and K, see Figure 4(7s).

The acyclic graphs Pr, Ty, Ps and Py U P, are listed in Figure 4(9s), (10s), (11s) and
(12s) respectively. Their role is strictly limited in this paper, because of their low order.
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Figure 2: Critically cyclic graphs on eight vertices
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Figure 3: Critically cyclic graphs on nine vertices



Notice that Ps equals Py(1,1) of the type (8s), but we wish to treat this small instance
independently.
In [5] we proved

Theorem 3.1

i. Every switching class contains at most one tree up to isomorphism. The trees that
have a nonconstant switch into a tree are fully characterized by (6s)-(10s), and (1s) for
m,{ = 0.

ii. Every switching class contains at most three acyclic graphs up to isomorphism. The
acyclic graphs that have a nonconstant acyclic switch are fully characterized by (1s)-
(12s) (the switches are indicated by the black vertices).

The graphs of all except a few of the types, switch into an isomorphic copy of themselves
if we apply the selector indicated by the blackened vertices, the centres of the special graphs.
There are five exceptions: a graph S m.¢ of type (1s) switches into S ¢,m and these are only
isomorphic if m = ¢, and a graph of type (3s) switches into a graph of type (4s) (and vice
versa). Finally, the graphs (11s) and (12s) switch into each other.

V4 Z1

Figure 4: The special graphs (1s)-(12s)

In the following we shall often want to use the fact that a certain special graph has a
unique switch. For instance, the graph Si 2, is of type (1s), but also (4s), (6s) and (7s).
These give rise to a number of “extra” selectors that map S 2, into an acyclic graph. In
this case the extra selectors are {z,2}, {y1, 2}, and {y1, v} respectively.



We want to avoid situations such as these in our proofs and as it will turn out, it will
not bother us. However, to be precise, we shall list the condition on each of the types, that
guarantees that the acyclic switch is unique. There is one rather tricky thing that has to
be taken into account: although S is only of type (1s), switching at the centre gives
S1,2,0 of which we have seen that the nonconstant acyclic switch is not unique. This shows
that the condition cannot simply be found by checking that a certain graph is of one single
type only: this has to hold for all acyclic switches in the switching class. Note that this
problem only occurs for the types (1s), (3s), (4s), (11s) and (12s), because they can switch
to non-isomorphic acyclic graphs.

Lemma 3.2

A special graph Si ¢ has a unique nonconstant switch into an acyclic graph if k¥ > 3, or
k=2andm+£>2, ork<1andm,l>3—k.

Proof:

The graphs 3 - P, and 2 - P, U2 - K; have no nonconstant switch to an acyclic graph. This
follows from Theorem 3.1 and the fact that they are not special.

Let o be a nonconstant selector containing z. Suppose o is not the switch {z}. If k > 2,
then we have k = 2 and |T U M| < 1 by the previous paragraph.

Let £ = 1 and m,f¢ > 2. Now, S has three components and hence the only possibility
for overlap is with (3s). But k¥ = 1 and m > 2 exclude the possibility that the nontrivial
component of S, ¢ is a star.

For k = 0 and m,¢ > 3, S is exclusively of type (1s), because no other type of special
graph has more than three components. |

The types (9s) and (10s) are obviously unique. The graph (11s) is also of type (8s), and
hence has two nonconstant acyclic switches. The same holds for the graph (12s). For the
other types (2s)-(8s) we now list the conditions.

Lemma 3.3
Under the following conditions do the special graphs S(k,m), k > m have a unique noncon-
stant switch to an acyclic graph.

e (2s) needs k,m > 2,
e (3s)-(5s), (7s), (83) need k > 2,m > 1,
e (6s) needs k,m > 3.

Proof:
Let S = S(k,m) be a special graph and let {z1,22} C ¢ with o nonconstant. We prove that
o = {21,220} if S7 is to be an acyclic graph.

First of all, K; » U K1 2 has one nonconstant acyclic switch (either select the leaves, or
select the two inner vertices). For all types, except (6s), it now follows that &k, m > 2 implies
the existence of a unique nonconstant switch to an acyclic graph.

For (2s) this is all we can do, because Ki» + Ki 1 has two switches: the choice of 2,
in K; 1 is arbitrary. In the cases (3s)-(5s), (7s) and (8s) we do have a unique switch for
k > 2,m > 1, because the vertex z» can only be chosen in one way: it is the vertex in K ;
that is not a leaf in S.

In the case of (6s) we get k,m > 2, because of overlap with (1s). Because (6s) for
k > m,m = 2 overlaps with (7s) we arrive at the condition k,m > 3. O

Note, that there are cases that do overlap, but in which case the switches happen to
be equivalent: (5s)(k = 0 = m) and (2s)(k = 2,m = 0) are the same graph, but the
corresponding switches are complements.

4 TIsolated vertices
In this section we give constraints for the isolated vertices in critically cyclic graphs. In

particular, we prove our main tool for the final proof: if G is critically cyclic such that G — z
is acyclic for a vertex z, then G — z has no isolated vertices.



O
o—o O
(5-1°) (6-1°) (8-5") (8-8")
o 14 2 3 o
i ® >®4 >.
6
7 5
(7-2) (7-3) (7-5)

Figure 5: Switches of known critically cyclic graphs that are used in the proofs

Lemma 4.1

Let G be a critically cyclic graph. Then G has at most two isolated vertices or G = K3 3U3-K;
((9-2) in Figure 3).

Proof:

Let I = {z1,x2,...,2,} be the set of isolated vertices of G, and assume that m > 3. Now
G — z1 is not acyclic, and it has an acyclic switch (G — z1)7. Hence 7 is not constant on
G — I, say 7(v9) = 0 and 7(v;) = 1 for some wvg,v1 ¢ I.

If two vertices of I — {z1} have the same value for 7, say 7(x2) =i = 7(z3), then v _; is
the unique vertex of V' — I with 7(v;_;) = 1 —i. Indeed, if it were 7(v) = 1 — i for another
v € V—1I, then (x2,v;_;,x3,v) would form a cycle in (G —x1)". Moreover, in this case, there
exists a vertex of I, say x4, such that 7(z4) = 1 — i, for, otherwise, extending 7 by setting
7(x1) = i would result z1 to be a leaf of G™ contradicting the fact that all cycles of GT go
through z1. However, now (x2,v1,x3,z4) forms a cycle in (G—x1)7, which is a contradiction.
In particular, m < 3 to avoid triangles with x5 or z3. The switching class of the discrete
graph K, consists of the complete bipartite graphs of order n, see [7], and therefore m = 3,
and 7(z2) # 7(x3). Since the graph (G — x1)" is acyclic and G (z223) = 1, it follows that
V — I is independent in (G — z1)". Therefore G = K, ;U3 - K; for some r,s > 2. Since
K33 U3 - K is a critically cyclic graph, and each K> s U3 - Ky, for s > 4, has an acyclic
switch (by switching one of the vertices in the part of size 2 of K> ), the claim follows. O

Lemma 4.2
Let G be critically cyclic of order n > 10. Then no vertex z € V is adjacent to more than
two leaves of G.

Proof:
If a set L of leaves of G is adjacent to a vertex z, then by switching at z, o = {z}, the vertices
of L become isolated in G7. m|

Lemma 4.3
Let G be a critically cyclic graph of order n > 10. Then G has at most one isolated vertex.
Proof:
Suppose that G has exactly two isolated vertices, I = {xy,z2}. Let (G — x;)" be acyclic,
where we assume that 7(z2) = 0 without restriction. The set 7 is independent in G and in
(G —z1)7, for, otherwise, there would be a triangle (containing z3) in (G — 1)7. In fact, 7
contains at most one vertex from each connected component of (G — I)7. Notice that these
connected components are trees, because (G — z1)7 is acyclic.

Let 7 ={z1,...,2r}, and set 7(x1) = 0. Then

GT=(H+(T1UT,+...UT,))UF,

where H = K>, has the bipartition ({z1,z2},{z1,...,2}), and the induced subgraphs T;
are disjoint trees with H NT; = {z;}; and F is an acyclic induced subgraph or it is empty.
Since G7 is not acyclic, we must have r > 2.



e By (7-1) and (7-2’), either F is discrete or it is a path P,. In both cases, |F| < 2, by
Lemma 4.1.

e By (8-6), there can be at most two nontrivial trees among T, ...,T;.

e Let T; be nontrivial a tree. By (7-1) the depth of T; from the root z; is at most 3 and
there are no vertices of degree more than 2 at depth higher than 1. The graph (7-2)
excludes the possibility that a child of z; has degree larger than two, and by (7-2’) the
tree cannot contain both an induced P, and an induced Ps;. Hence each nontrivial tree
T; has the form

Ti = Sk o Or P4(Si,0),

983,
where Sy, 5, 0 (for k; > 0) is one of the special trees with z; as its centre, and in Py(s;,0),
z; is the centre adjacent to the s; leaves. By Lemma 4.2, s; < 2.

We shall now consider the three cases for zero, one and two nontrivial T;.

(0) If G™ has no nontrivial components among T4, ...,T,, then G7 equals either K ,,
Ky, UKy, Ko, U2-K; or Ky, U P». All these have an acyclic switch; a contradiction.

(1) Suppose GT has exactly one nontrivial tree among T4, ...,T,, say T7.

Let Th = P4(81, 0)

e By (7-1), r = 2 (otherwise remove z1).

e By (7-2’), |F| = 0 (otherwise remove the vertices of T adjacent to z).

However, now n < 9 contradicts our assumption on n.
Let Ty = Sk,,s,,0 with k; > 0, and let r > 3.

e By (7-2’), |[F| =0, sy =0 and k; =1 (otherwise remove z1).

In this case T} is a path Ps, and G" has an acyclic switch for all r > 3 (switch all z;’s and
the other end point of T}); a contradiction.

Then the case for r = 2. In this case, by (7-2’), F' cannot be a path P», and so it is
discrete. Now G7 has an acyclic switch (switch at z).

Finally, if T1 = So.s,,0, then |T1| < 3 (by Lemma 4.2), and therefore r > 4, since |F| < 2.

e By (7-2’), F is discrete (otherwise remove z1).

e By (8-5), |F| <1, and by (85, if |F| =1, then s; = 1 (and in this case, T} is a path
Py).

The remaining cases, sy = 1 and |F| = 1, and s; = 2 and F' = (), have acyclic switches for
all r (switch with respect to z1, x> and a leaf at 21); a contradiction.

(2) Suppose that GT has exactly two nontrivial trees in T7,...,T;, say T; and T5, and
assume without loss of generality that |T}| > |T5|.

e By (8-8),r <3.
e By (8-4) and (8-7), |F| < 1.
e By (8-7), if r = 3, then |F| = 0.

Hence r + |F| < 3. Since n > 10, it follows that |Ti| + |T2| > 10 —r — |F| > 7.

First we treat the trees of depth at most 1. In this case, 71 = Sps,,0. By Lemma 4.2
s1 <2, and hence |T}| < 3. Therefore |T>| > 4, which contradicts the assumption |14 | > |T3|.

Let t; be the depth of T} and suppose that t; > 2. Now by (8-1) and (8-2), |Tz| = 2,
that is, T5 is a path P, and consequently |T1| > 5. If Ty = Sk, 5,0 (k1 > 0), then &k =1
otherwise we have (8-3) by removing a middle vertex from a P3).

It follows that |Th| = ¢t1 + 1+ s; > 5. Recall that s; < 2. However, the case t; > 2
and s; = 2 is excluded by (9-1), and the cases t; = 3 and 1 < s; < 2 are excluded by (8-4)
(remove the child of z; on the path of depth ¢;). ad



As in the above, we have

Lemma 4.4
Let G be a critically cyclic graph of order n > 10. Then no vertex z € V is adjacent to more
than one leaf of G.

Lemma 4.5
Let G be a critically cyclic graph of order n > 10 and let = € G.

i. G — x can have at most two isolated vertices. Moreover, if G — = has two isolated
vertices, then z is adjacent to exactly one of these in G.

ii. If a vertex z # x is adjacent to m leaves of G — z, then m < 2. Moreover, if m = 2,
then x is adjacent to exactly one of these.

Proof:
For (i) we only need to observe that if G — x has three isolated vertices, then in either G*
or G at least two of these are isolated and we can apply Lemma 4.3. The same holds if the
number of isolated vertices is two, but z is not adjacent to exactly one of them in G.

For (ii), assume that there is a vertex z # x adjacent to more than two leaves. The vertex
x is adjacent to at most one of these in either G or G* and the result then follows from
Lemma 4.4. O

We say that a vertex y € V is compatible with z, if
e G — z is acyclic,
e G —y and G* — y are not acyclic.

Note that if y is compatible with z, then all cycles in G (and G*) go through z, but not all
of them go through y.

Lemma 4.6
Let G be critically cyclic graph such that G — z is acyclic.

i. If y is compatible with z, then G — {z,y} is a special graph.

ii. If G is of order n > 8, then there exists a vertex y € V that is compatible with z unless

G € [C,.

Proof:
Let (G — y)™ be acyclic and set S = G — {x,y}. Because S and S™ are both acyclic graphs
it follows that either (a) S is special or (b) 7 is constant on S.

In the case (b) all cycles go through x and y which contradicts the fact that G — y is not
acyclic. To see this, let there be a cycle that does not go through y. There are two selectors
constant on S. The first of these is 7 = SU {z}. But then (G —y)” equals G — y which is a
contradiction, because the former is acyclic and the latter is not. If on the other hand 7 = S,
then (G —y)” = (G* — y)°“{#} = G* — y and again we have a contradiction.

For the second part, suppose G ¢ [C),]. Since G has no acyclic switches, there are cycles
in G and G*, and they all pass through z, because G — z is acyclic. Moreover, since C}, is
critically cyclic for & > 7, the induced cycles of G and G* have length at most 6.

If G or G* has an induced cycle C5 or Cg, then let y be a vertex that is not on such a
cycle. It is clear that G — y and G* — y both contain cycles, and therefore each such y is
compatible with z.

If G and G* have both an induced cycle of length at most 4, then these two cycles have
altogether at most 7 vertices (since they share the vertex z), and, by n > 8, there exists a
vertex y that is not on these cycles. For each such vertex y, both G —y and G* — y are not
acyclic. This proves the claim. a
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Lemma 4.7

Let G be critically cyclic of order n > 10 such that G — z is acyclic. Then G — z has no
isolated vertices.

Proof:

Assume to the contrary of the claim that w is isolated in G — z. In this case u is either a leaf
adjacent to z (or isolated) in G and isolated (or a leaf adjacent to z) in G*. Hence G — u
and G* — u are not acyclic and by Lemma 4.6(i), S = G — {z,u} is a special graph.

In this case, by Lemma 4.5(ii) and the fact that n > 10, S must be either of type (1s) or
one of (5s), (7s), (8s) with &k =2 =m.

In the latter three cases S has a unique switch at the two centres 7 = {z1,22} by
Lemma 3.3, and it is easy to see that (G — u)T is not acyclic, since z is adjacent to ex-
actly one leaf adjacent to both centres in .S and remains to be so in S”.

Consider then the case S = Sg . Without restriction we can assume that 7(z) = 1.
Extend 7 to the whole domain by setting 7(u) = 0.

We have n = (2k + 1) + m + £+ 2 > 10, and thus k > (7 — (m + ()). By Lemma 4.5,
m < 2 and £ < 1. (Recall that u is an isolated vertex of G — z.) In particular, k > 2, and if
k =2,thenm =2,/ =1 and n = 10. In these cases, the special acyclic graph S has a unique
switch S? to another acyclic graph (by Lemma 3.2), where p = {z}. By the uniqueness of p,
we have that p(v) = 7(v) for all v ¢ {z,u}.

Now, the only vertices in G that can become adjacent to u in G™ are z and z and because
G7 is not acyclic, these connections must exist: G7(uz) = 1 = G" (uz) and they are the only
edges of G7 incident with u. Moreover, z is adjacent in G to exactly one vertex v € HU I,
since G” contains a cycle but G™ — u does not.

If v =uasayv=uax. Ifl>1 then {z,21,2,u,y1,u1,y2} induces an (7-4) in G7.
Therefore £ = 0. If |M| > 1, then {x, 21, z,u,y1,w,v1 } induces an (7-4) in G™ for w = x5 or
w = y5 depending on the value G (zv). Therefore also m = 0. Now k > 4, and G” contains
an induced (7-4) obtained by removing .

If v = y;, say v = y1, then G7|(, 4, 2,24} is an induced C5, and hence G™ has an induced
(6-1) obtained by removing x».

If v = u;, say v = uy. To avoid (8-3) as being induced by {z,u1, z,u, z1,y1, y2,v;} (for
any v; € M), we must have G7 (zv;) = 0 (if m > 0). Now, however, (G7)? is acyclic.

If v = 2, then G7 has an acyclic switch for {z}. This contradiction completes the proof
of the lemma. a

5 The cases

In this section, let G be a critically cyclic graph of order n = |V| > 10, let € V be a fixed
vertex.

Since G is critically cyclic, there exists an acyclic switch (G — z)? of the subgraph G — z.
Since the switches of critically cyclic graphs are criticially cyclic, we can assume that o is
constant on V| and therefore that G — z is acyclic already.

Assume that y is a vertex compatible with z, that is, G — y and G* — y are both not
acyclic. We know by Lemma 4.6(ii) that vertices such as x and y defined above exist if the
switching class does not contain C),. In the following we shall consider every type of special
graph in turn and show that each case leads to a contradiction, thereby proving our main
theorem that besides graphs in [C},] there no critically cyclic graphs of order n > 10.

By Lemma 4.6(i), S = G — {x,y} is a special acyclic graph, and (G — y)“ is acyclic for
a nonconstant selector o. The special graph S cannot be of type (9s), (10s), (11s) or (12s),
because the order of S should be at least 8 to ensure that n > 10.

Without restriction we can assume that o(x) = 0. This follows from the symmetry in
the definition of compatibility, i.e. the fact that both G — y and G* — y are not acyclic. We
extend o to the whole domain by setting o(y) = 0. Note that (G —y)” = G7 —y.

In the following proofs a number of simple properties are often used, and we note them
here: first of all, the vertex y is adjacent to at most one vertex of each component of S. If
not, G — x would not be acyclic. Also, there must be a cycle in G that does not contain y,
because G — y is not acyclic. This also holds for G* — y.
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We shall now formulate a few conditions that hold for the, still remaining, special graphs
(1s)-(8s). Let Lp(z) be the set of leaves adjacent to z in H, and let Iy denote the set of
isolated vertices in H.

Lemma 5.1
Given the definitions above, we have that

i. Is C Na(y)-

ii. for all z € S, |Lg(z)] < 3. Moreover, |Lg(z)| = 3 implies |Ng(z) N Ls(z)| > 1 and
Ne(y) N Ls(2)] = 1.

Proof:
Claim (i) follows from Lemma 4.7.

We have |[N¢(y)NLg(z)| < 1, since G—z is acyclic. If |[Lg(z)| > 3, then, by Lemma 4.5(ii),
|Ls(2) — Na(y)| < 2, and z is adjacent to at most one vertex of Lg(z) — Ng(y). Hence, in
this case, we must have |Lg(z)| = 3 and in that case z and y are each adjacent to at least
one vertex. In the case of y it is exactly one vertex. m|

Note how the previous Lemma restricts the values of k and m for the types (2s)-(8s) and
m for (1s). On the other hand n > 10 gives a lower bound on these values for most types.

5.1 The case (1s)

We shall now consider first the most difficult case, Si . Suppose that S = Si ¢, and
adopt the notations of (S1)-(S4) for it. Without restriction we may assume that o(z) = 1.

Lemma 5.2 We have
i k=2,
ii. 1</l m<2and m+{> 3,
iii. M C Ng(z),
iv. if £ =2, then [Ng(z)NI| =1,
v. if m =2, then |Ng(y) N M| = 1.
vi. [Ng(x)Nn(HUI)—{z}| <1,

Proof:
By Lemma 4.3, |[Ng(z) N I| < 1 for, otherwise, switch with {z,y} to obtain two isolated
vertices. By Lemma 4.5(ii) we have both ¢ < 2 and Claim (iv).

If k =0, then m + £ > 7 contradicting the bounds m < 3 from Lemma 5.1(ii) and ¢ < 2.

If k. =1, then m+ /¢ > 5, since n > 10. In this case, f = 2 and m = 3. If &k = 2,
then m 4+ ¢ > 3. Therefore by Lemma 3.2, in all cases & > 1, S§* is the unique acyclic
switch of S. It follows that o|s = {2}, and therefore M C Ng(z), for, otherwise the acyclic
graph G’ — y would have an isolated vertex contradicting Lemma 4.7 (remember that we
have o(z) = 0 = o(y)). Lemma 4.5(ii) then implies m < 2, and as a consequence k > 2,
because as was shown above, if £ = 1, then we must have m = 3. The Claim (v) follows from
Lemma 4.5(ii).

Claim (vi) follows from the fact that G7|gyr is connected and G7 — y is acyclic.

Suppose then that k¥ > 3. By Claim (vi) it follows that there are at least two pairs z;y;
such that G(zz;) = 0 = G(xy;), say for i = 1,2. Let the selectors 7; be such that (G — z;)™
are acyclic, where we may choose 7;(z) = 1. The special graph S — x;, which is Sk_1,m+1.¢,
has a unique acyclic switch (S — z;)?, since n > 10 and k£ > 3 by Lemma 3.2 (note that £ =0
implies m > 4, because n > 10).

It is then clear that 7; = ¢ when we set 7;(z;) = 0. By Lemma 4.7, the vertex y; is not
isolated in G™ — x;, and therefore G™ (yy;) = G(yy;) = 1 for i=1,2 (since G(zy;) = 0 =
GTi(zy;)) and we have a cycle in G — z. This contradiction proves case (i). m|
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Notice that, in this case, the above Lemma implies that n < 11.

We finish the case S = S m.e.

Assume G(zu1) = 1. Then G(zz) = 1, since otherwise (z,u1,2) would be a triangle in
G7 —y. Also, G(zx;) = 0= G(xy;) for i = 1,2, because G’ — y is acyclic.

We have G(zy) = 0, for, otherwise (z,y,u;) is a triangle in G, and to avoid (5-1) with
the edges G(z;y;) = 1, we would have to have that y is adjacent to two vertices in H — {z}
giving a cycle to G — z. Note that now all edges involving x are known.

Now (z,z,v1) is a triangle in G, and to avoid (7-5’), necessarily (1) G(yz) =1 or (2)
G(yvi) =1, and y is adjacent to no other vertices of H U M.

(1) If G(yz) = 1, then |M| = 1, because otherwise y must be adjacent to either one of
the v; (Lemma 5.2(v)), but then (y, z,v;) is a cycle of G — . Lemma 5.2(ii) implies |I| = 2
and {z,u1,y,2,y1, T2, us} induces a (7-4). We have G(zuz) = 0 by Lemma 5.2(iv).

(2) If G(yvy) = 1, then {u1,y,z,v1,2,y1,22} induces a (7-3).

Therefore G(zu1) = 0, and consequently I = {u1} by Lemma 5.2(iv).

By Lemma 5.2, m = 2, and we have G(zv1) = 1 = G(zv2), G(yv1) = 1, G(yvs) = 0, and
G(yur) =1, G(zuy) = 0.

In this case G(yw) =0 for all w € S — {uy, v}, since G — z is acyclic.

To avoid a cycle in G — y, G(zz;) = 0 = G(zy;) for i = 1 or 2, say ¢ = 1. There are two
cases here.

(1) G(zz) = 0. Now G(zy) = 1, since otherwise {z, vy, v2,2,y,Z1,y1, u1 } induces an (8-9)
in G.

(2) G(zz) = 1. To avoid {z, z,v1,y1,%1,y, u1 } inducing a (7-5’) we must have G(zy) = 1.

In both cases, G(zy) = 1. But {z,y,v1,21,y:} induces a (5-1’). This contradiction proves
the present case.

5.2 The other cases

Let S = S(k,m) where we assume that k& > m. Let z; and 2z, be the two centres of S, and
L ={vy,...,ux} and M = {uy,... ,un} be the sets of leaves of S adjacent to z; and z»,
respectively.

Lemma 5.3
i. If S is of type (3s)-(8s), then |Ls(z;)| <2 fori=1or 2.

ii. If S7 is the unique acyclic switch of S and z € S, such that S # S? and |Ls(z)| = 3,
then x and y are each adjacent to exactly one, but different leaf at z.

Proof:
For Claim (i), assume both z; and 22 have three leaves adjacent to them in S. By Lemma, 5.1(ii),
y is adjacent to one leaf at z; and one at z» giving a cycle in G —z for the types (4s)-(8s). For
(3s) we can apply the same reasoning, but taking y instead of x: G — y has a cycle. Note
that we need that o is the unique nonconstant selector mapping S into an acyclic graph.
However, we have k = 3 = m and by Lemma 3.3 the result follows.

To avoid a cycle in G° — y, z is adjacent to at most one of the leaves. Now, case (ii)
follows from Lemma 4.5(ii) and Lemma 5.1(ii). a

Note that by Lemma 5.1(ii), Lemma 5.2(i) and (ii), Lemma 5.3(i) it already follows that
there are no critically cyclic graphs of order at least 12 unless they are in [C,,] for n > 12.

5.3 The cases (2s)-(4s)

By the fact that n > 10 and Lemma 5.1(ii), we have ¥ = 3 and 2 < m < 3. In all these
cases the unique nonconstant switch mapping S into an acyclic graph is o = {z1,22} by
Lemma 3.3. Recall that we still have o(z) = 0 = o(y).

By Lemma 5.3(ii), z is adjacent to one of the v;, say v1, and y is adjacent to an other v;,
say vs. To avoid a cycle in G? —y, x must be adjacent to z», and y is not adjacent to any of
the other v; or 2.

We now go over the cases one by one.
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(28) S =S(k,m) = K1 UKy . Because n > 10 and the bounds on &k and m, we know
that £k = 3 = m. By Lemma 5.3, z is adjacent to a leaf u;, say u; and y to a leaf u; different
from w1, say us. Because of the unicity of o, x must be adjacent to z; to ensure that G7 —y
is acyclic.

The only remaining unknown is G(zy). If G(xy) = 0, then we have (5-1) {z, vy, 2z, us3,y},
and if G(zy) = 1, then we have (7-4) {u1,x,y, vs, 21, V2, us}.

(3s) S = S(k,m) = K1 UKy, UK. Because of the uniqueness of o, S is mapped
into a tree of type (4s). To avoid cycles in G7, necessarily G(zz1) = 1, G(zw) = 0 (for the
isolated vertex w of G) and G(zu;) = 0 for all u; € M. By the above, G(zz2) = 1 and
G(zv2) =0 = G(zv3).

By Lemma 4.5(ii), m = 2 and y is adjacent to one of the u;, say us.

The only unknown is the edge zy. If G(xy) = 0, then we have (7-5%) {v1, x, 22, u1,y,v3, 21 },
and if G(zy) = 1, then we have (7-4) {v1,z,y, us, 22,v2, u1 }.

(4s) Now S = S(k,m) = Ps(k,m). Because S is connected, y is not adjacent to any
other vertex of S (except v3). Hence, m = 2 and z is adjacent to one of the w;, say u
(Lemma 4.5(ii)). To prevent cycles in G” —y,  must be adjacent to z;. If G(zy) = 0, then we
have (5-1) {z,u1, 22, v3,y} and if G(zy) = 1, then we have (7-4) in G* {v1, 21, v2,v3, 2, u1,y}.

5.4 The cases (5s)-(8s)

(6s) S(k,m) = Py(k,m). In this case, n > 10 implies k¥ = 3 = m, but then G — z is not
acyclic.

In the remaining cases (5s), (7s) and (8s), let wy be the neighbour of z; of degree 2 and
let wy be the single unnamed vertex (dg(w2) equals 0, 1 or 2 depending on the case), see
Figure 4(5s), (7s) and (8s).

By Lemma 5.1(ii) and n > 10,2 < k <3, m > 1, and k + m > 4. In all these cases the
unique nonconstant switch mapping S into an acyclic graph is ¢ = {z1, 22} by Lemma 3.3.

We can assume that z is adjacent to a vertex in L, say G(zvy) = 1. This follows from
Lemma, 5.3(ii) if £ = 3. On the other hand, if k¥ = 2, then necessarily m = 2, since n > 10,
and in this case Ng(y) N L = 0 or Ng(y) N M = 0 in order to avoid a cycle in G — z. By
Lemma 4.5(il), Ng(z) " M # 0 or Ng(z) N L # 0, respectively. Since now k = m (= 2), the
assumption is validated.

Claim 1: G(zz1) = 1 = G(x22), and G(zu) = 0 for all u ¢ {v1, 21,22, ws,y}. Moreover,
G(zw2) = 0 if dg(w2) # 0 (that is, excepting the case (5s)).

Proof:

Recall that o(z) = 0, and, indeed, o = {21, 22}. The claim follows, since G’ — y is acyclic.
Claim 2: G(yv) = 1 holds for exactly one vertex v € S — {w2}, and either (i) v € L, say
G(yv3) = 1, in which case k =3 and m = 1, (ii) v € M, say G(yuz) = 1, in which case k = 2,
m = 2. Moreover, G(yw2) = 1 holds only in the case (5s).

Proof:

The first statement follows from the fact that G — x is acyclic. Now if y is not adjacent to a
vertex of M, then |M| =1 by Lemma 4.5(ii) and the fact that G(zu) =0 for all w € M. It
follows that k = 3, and, consequently, y is adjacent to a vertex of L. On the other hand, if
G(yu) = 1 for a u € M, then G(yv) = 0 for all v € L to avoid a cycle in G — z, and in this
case, k = 2 by Lemma 4.5. That G(yw2) = 1 in the case (5s) follows from Lemma 5.1(i). In
the other two cases, G(yws) = 1 would result in a cycle in G — z.

These two claims together determine G with the exception of the value for G(zy).

The cases are all excluded:

(5s) z is not adjacent to wi and neither is y. Hence in G7 — y the vertex w; is isolated
contradicting Lemma 4.7.

(7s) In both cases, G(zy) = 1 to avoid (7-4) as being the subgraph induced by the
vertices {z, 21, w1, 22, V2, w2,y}. Now G contains a switch of (7-4) if k = 3 and m = 1 (this
is G** — {vy,v3,u2}), and G contains (7-5’) if k = 2 =m (this is G — {u1,vs, 22}).

(8s) In both cases, G(zy) = 1 to avoid (6-1) as being the subgraph induced by the vertices
{z, z1, w1, ws, 22,y}. Now {x, 21, w1, ws, 22,y,u; } induces (7-3”).

This proves Theorem 2.4.
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6 Concluding remarks

Finding the critically cyclic graphs was done as follows: a program was written in C that
listed for a number n of vertices a representative of each switching class that did not contain
any acyclic switches. In a later phase, when we were looking for critically cyclic graphs on n
vertices, we only had to make sure that all critically cyclic graphs of lower order could not
anymore occur in these graphs. The program was run in this way for up to 12 vertices. We
used here the files from [9] which list generators for the switching classes up to isomorphism
and up to complementation for up to 10 vertices.

A computer program in the functional language Scheme verified that the critically cyclic
graphs found were in fact critically cyclic. Also, the authors verified this by hand.

In our proofs, not all of the critically cyclic graphs were used. The graphs that were not
used are (8-10)-(8-15) and (9-3)-(9-5). Lemma 4.6 excludes the cycles Cs and Cy. For the
other graphs, except (8-12), the reason is that if they are induced subgraphs of any graph of
order at least 10, then this graph also contains one of the cyclic graphs from Figure 1, 2 and
3 or it contains (8-12). The graph (8-12) does not occur in our proofs, because it is overruled
by Lemmas 4.6 and 4.7, that is, if G is a forbidden graph of order 10 that does not have 2
isolated vertices and such that G — z is acyclic and G — {z,y} is special, then G contains an
induced critically acyclic graph that was used in the proofs.

As an aside we note that our program found that the graphs (8-9) and (8-12) have a
similar property: adding two vertices to either of these graphs in any way, always results in
a graph that contains a switch of one of the other critically cyclic graphs.
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