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Abstrat

We haraterize the swithing lasses that do not ontain an ayli graph. The

haraterization is by means of a set of forbidden graphs. We prove that in addition to

swithes of the yles C

n

for n � 7 there are only �nitely many suh graphs. In fat,

there are no suh graphs with more than 9 verties. We give a representative of eah of

the 24 lasses.

1 Introdution

For a �nite undireted graph G = (V;E) and a set � � V , the swith of G by � is de�ned as

the graph G

�

= (V;E

0

), whih is obtained from G by removing all edges between � and its

omplement � and adding as edges all nonedges between � and �. The swithing lass [G℄

determined by G onsists of all swithes G

�

for subsets � � V .

A swithing lass is an equivalene lass of graphs under swithing, see the survey papers

by Seidel [7℄ and Seidel and Taylor [8℄. Generalizations of this approah an be found in

Gross and Tuker [4℄, Ehrenfeuht and Rozenberg [3℄, and Zaslavsky [10℄.

In this paper we solve a problem raised by Aharya [1℄ and by Zaslavsky in his dynami

survey in 1999 [11℄, whih asks for a haraterization of those graphs that have an ayli

swith. Forbidden graphs for perfet graphs in swithing lasses were treated by Hertz [6℄.

We show that apart from the simple yles C

n

for n � 7, there are only �nitely many

ritially yli graphs (with respet to swithing), that is, graphs G whih have no ayli

swithes G

�

, but all of whose indued proper subgraphs do have an ayli swith.

In fat, we shall prove that a ritially yli graph G =2 [C

n

℄ has order at most 9. These

graphs are partitioned into 24 swithing lasses, and altogether there are 905 ritially yli

graphs of order at most 9 (up to isomorphism and exluding swithes of the yles C

n

).
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In order to save the reader from long { and oassionally tedious { tehnial onstrutions

for the small graphs, we rely on a omputer program (in fat, two independent ones) for the

ases of order at most 9. Therefore our purpose is to prove that if G is a ritially yli

graph of order n � 10, then G 2 [C

n

℄. The proof of this result uses the haraterization from

[5℄ of the ayli graphs G { heneforth alled the speial graphs { that have a non-trivial

ayli swith, see Setion 3.

The paper is strutured as follows: after some preliminaries we list the neessary details

of the speial graphs from [5℄. Then we proeed with our atual results proving that ritially

yli graphs an have only a limited number of isolated verties and as a onsequene, a

vertex in a ritially yli graph has only a limited number of leaves adjaent to it. We

prove that eah ritially yli swithing lass, exept [C

n

℄ for n � 8, ontains a (ritially

yli) graph, whih is, exept for two verties, a speial graph. By verifying that for eah

type of speial graph a ontradition results { under the ondition that the order of the graph

is at least 10 { we �nally prove our result. At the end of the paper we shall spend some time

�
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on the programs used and we onsider also the question why not all of the ritially yli

swithing lasses are used in our proof.

2 Premilinaries

For a (�nite) set V , let jV j be the ardinality of V . We shall often identify a subset A � V

with its harateristi funtion A : V ! Z

2

, where Z

2

= f0; 1g is the yli group of order

two. We use the onvention that for x 2 V , A(x) = 1 if and only if x 2 A. The symmetri

di�erene of two sets A and B is denoted A+B, and for the di�erene between A and B we

write A�B. The restrition of a funtion f : V !W to a subset A � V is denoted by f j

A

.

The set E(V ) = ffx; yg j x; y 2 V; x 6= yg denotes the set of all unordered pairs of distint

elements of V . A graph is a pair G = (V;E) where V is the set of verties and E � E(V )

the set of edges. We write xy or yx for the undireted edge fx; yg 2 E; we all x and y

adjaent. By onvention we write x 2 G for x 2 V . The graphs of this paper will be �nite,

undireted and simple, i.e., they ontain no loops or multiple edges. The ardinalities jV j

and jEj are alled the order, respetively, size of G. Analogously to sets, a graph G = (V;E)

will be identi�ed with the harateristi funtion G : E(V ) ! Z

2

of its set of edges so that

G(xy) = 1 for xy 2 E, and G(xy) = 0 for xy =2 E. Later we shall use both notations,

G = (V;E) and G : E(V ) ! Z

2

, for graphs.

For a graph G = (V;E) and X � V , let Gj

X

denote the subgraph of G indued by X .

Hene, Gj

X

: E(X)! Z

2

. As shorthand we write G � x for the graph Gj

V�fxg

and, more

generally, G � I for Gj

V�I

. If for some X � G, Gj

X

has edges between all pairs of distint

verties, then we all it a lique. If Gj

X

has no edges at all, then X is alled independent.

For two graphs G and H on V we de�ne G+H to be the graph suh that (G+H)(xy) =

G(xy) +H(xy) for all xy 2 E(V ), where + is addition modulo 2. We extend this operation

to graphs on sets of verties V and V

0

respetively, by �rst extending them to graphs on

V [ V

0

and setting all new edges to 0.

The disjoint union of two graphs G and H on the other hand is denoted G [H . We use

k �G as shorthand for the disjoint union of k opies of G.

Some graphs we shall enounter in the sequel are K

n

, the lique on n verties, and K

m;n

the omplete bipartite graph on a two disjoint sets of m and n verties respetively. The

graph P

n

denotes a path of n verties and C

n

denotes a yle on n verties.

Let G = (V;E) be a graph. For a vertex v 2 V , the set N

G

(v) � V is the set of verties

adjaent to v in G. The degree of v is de�ned by d

G

(v) = jN

G

(v)j. An isolated vertex has

degree zero, a leaf degree one. A vertex v is a leaf at z if v is a leaf adjaent to z.

An ayli graph is a graph without yles. A tree is a onneted ayli graph. If we �x

the root of the tree, say r, then the depth of a vertex v in that tree is well-de�ned: it is the

number of edges on the shortest path between v and x. Hene r has depth zero.

A seletor for G is a subset � � G, or alternatively a funtion � : G! Z

2

. A swith of a

graph G by � is the graph G

�

suh that for all xy 2 E(V ),

G

�

(xy) = �(x) +G(xy) + �(y) :

For a singleton seletor � = fxg we shall write G

x

instead of G

fxg

by onvention.

It should be lear that this de�nition of swithing is equivalent to the one given in the

introdution. In Figure 1(7-3) a graph, the Chapel, is given and one of its swithes is the

graph in Figure 5(7-3'). As we shall ontinue to do in this paper, the seletor is indiated by

the blak verties.

The set [G℄ = fG

�

j � � V g is alled the swithing lass of G. We reserve lower ase �; �

for seletors (subsets) used in swithing.

A seletor � is onstant on X � V if X � �, or X \ � = ;. The name arises from the

fat that Gj

X

= G

�

j

X

. Note that always G

�

= G

V��

.

This paper onerns itself with those graphs that do not have an ayli swith. We all

these graphs forbidden. Obviously, if a forbidden graph ours in another graph, then the

latter is also forbidden. For this reason we are interested in the graphs that are minimal in

this respet: they do not have an ayli swith, but all their indued subgraphs do have an
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ayli swith. We all these graphs and the orresponding swithing lass ritially yli. A

swith of a ritially yli graphs is also ritially yli so the latter notion is well-de�ned.

Let G be a ritially yli graph. By de�nition, for all x 2 V , there is a swith G

�

suh

that G

�

� x is ayli. As a onsequene, all yles in G

�

go through x and there is at least

one suh yle. Note that this also holds for G

�+fxg

. Note that it does not hold that in every

ritially yli graph G there is a vertex x so that G� x is ayli; the graph K

3;3

[ 3 �K

1

of Figure 3(9-2) is a ounterexample.

Example 2.1

Let G be the graph of Figure 5(7-3'). We want to prove that it is a ritially yli graph.

For this we must show that it has no ayli swithes and removing any of the verties allows

for an ayli swith. For the latter it is suÆient to observe that the verties 2; � � � ; 6 are

all on the only yle of G, and G

f2;5g

� 7 and G

f3;6g

� 1 are ayli.

To prove that G has no ayli swith observe that G has seven edges and an ayli

graph an have at most six. We shall now prove that applying any seletor will not derease

the number of edges, and thereby we have proved that there is no ayli swith.

First of all, the degree of every vertex in G is at most 3 = (n � 1)=2. Hene applying a

singleton seletor annot derease the number of edges.

For doubleton seletors, � = fx

1

; x

2

g, we an do the same. The number of edges that

hanges is j�j � (7 � j�j) = 10. We must make sure then that every seletor makes at most

�ve edges disappear. The only possible way, knowing that the maximum degree is three, is

to take � = f2; 6g, but in that ase only four edges are removed, beause one edge ours in

Gj

�

.

For seletors of size 3, �nally, twelve edges will hange. Hene we must look for seletors

that reate less than six edges (or, in other words, make more than six edges disappear). For

this, the seletor must ontain a vertex of degree three, say f2g. If we would also have 6 2 �,

then the number of edges to be removed is four and there are no other verties of degree

three. Adding two verties of degree two to � results always in a seletor having at most six

edges going to its omplement, beause always either the two of them are adjaent, or one of

them is adjaent to vertex 2. �

Note that C

n

for n � 6 have an ayli swith: take an independent set of ardinality

bn=2. However, the following was already proved by Aharya [1℄.

Lemma 2.2

The yles C

n

for n � 7 are ritially yli.

Proof:

First of all, removing any vertex gives us an ayli graph P

n�1

and hene we have to prove

that all swithes of C

n

; n � 7, have a yle.

Let fx

1

; : : : ; x

n

g be the verties of C

n

. We �rst treat the seletors that selet the same

value, say 1, in two adjaent verties, say x

1

and x

2

. We need only onsider nononstant

seletors and without loss of generality we may assume that �(x

n

) = 0. Now �(x

3

) =

0, beause otherwise G

�

has a triangle fx

n

; x

2

; x

3

g. Then �(x

4

) = 1, beause otherwise

fx

1

; x

2

; x

4

g is a triangle. The same holds for x

5

and now we have a triangle, fx

n

; x

4

; x

5

g in

G

�

, sine n � 7 implies that x

5

is not a neighbour of x

n

. This takes are of all C

n

, where

n � 7 is odd.

The only ase left is the seletor � that selets only the odd numbered verties of

C

n

. It is easy to verify that C

�

8

is isomorphi to itself, and if n � 10 and even, then

fx

1

; x

2

; x

4

; x

5

; x

7

; x

8

g indues a C

6

in C

�

n

. 2

We now state the result of our omputer searh for the ritially yli graphs.

Theorem 2.3

There are 27 swithing lasses of ritially ayli graphs of order n � 9. The representatives

of these are given in the Figures 1, 2 and 3.

The main theorem proved in this paper is the following.
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Theorem 2.4

The swithing lasses [C

n

℄ are the only ritially yli swithing lasses of order n � 10.

In our proofs we shall refer to the graphs from Figure 1, 2, 3 and 5. The blak verties

in the latter �gure indiate how these graphs an be swithed into the orresponding graph

from the former three �gures. We shall use Theorem 2.3 to the extent that they are in fat

ritially yli graphs. We shall not use that these are in fat all of them of order at most

9.

(6-1)(5-1) (7-1)
(7-2)

(7-3)

(7-5)

(7-4)

Figure 1: The ritially yli graphs on �ve, six and seven verties

3 The speial graphs

We de�ne the speial graphs of [5℄ (see Figure 4). We shall use these graphs extensively

in our proofs. The graphs have in ommon that they have nononstant swithings into an

ayli graph.

The graph in Figure 4(1s) is denoted by S

k;m;`

. It is a graph K

1;k+m

where k of the k+m

leaves are substituted by an edge, and to whih ` isolated verties have been added. We let,

see also Figure 4(1s),

(S1) z be the entre of S,

(S2) H = f(z; y

i

; x

i

) j i = 1; 2; : : : ; kg be the extended star of S, where S(zy

i

) = 1 =

S(y

i

x

i

) for all i,

(S3) I = fu

1

; u

2

; : : : ; u

`

g be the set of isolated verties of S, and

(S4) M = fv

1

; v

2

; : : : ; v

m

g be the set of leaves adjaent to z in S.

Note that by the seletor fzg, the graph S

k;m;`

is swithed into S

k;`;m

.

The types (2s)-(8s) of graphs are denoted S(k;m), where k and m indiate the number

of leaves of the (blak) verties z

1

and z

2

. Beause of the symmetry in k and m in eah of

these graphs we may assume that k � m.

A graph of type (2s) is simply the disjoint union K

1;k

[K

1;m

. Adding an isolated vertex

to a graph of this type gives a graph of type (3s).

We denote by P

t

(m; k) the tree that is obtained from the path P

t

of t verties when the

leaves are substituted by K

1;m

and K

1;k

, see Figure 4(4s) for P

3

(k;m) (adding an isolated

vertex gives a graph of type (5s)), Figure 4(6s) for P

2

(k;m) and Figure 4(8s) for P

4

(k;m).

Further, K

1;3

(k;m) denotes the tree, where two of the leaves of K

1;3

are substituted by the

stars K

1;k

and K

1;m

, see Figure 4(7s).

The ayli graphs P

7

, T

7

, P

6

and P

4

[ P

2

are listed in Figure 4(9s), (10s), (11s) and

(12s) respetively. Their role is stritly limited in this paper, beause of their low order.
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(8-4)

(8-2)

(8-3)

(8-7)

(8-6)(8-5)

(8-8)

(8-9)

(8-1)

(8-10)

(8-12) (8-13) (8-14) (8-15)

(8-11)

Figure 2: Critially yli graphs on eight verties

(9-2)

(9-4) (9-5)

(9-1)

(9-3)

Figure 3: Critially yli graphs on nine verties
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Notie that P

6

equals P

4

(1; 1) of the type (8s), but we wish to treat this small instane

independently.

In [5℄ we proved

Theorem 3.1

i. Every swithing lass ontains at most one tree up to isomorphism. The trees that

have a nononstant swith into a tree are fully haraterized by (6s)-(10s), and (1s) for

m; ` = 0.

ii. Every swithing lass ontains at most three ayli graphs up to isomorphism. The

ayli graphs that have a nononstant ayli swith are fully haraterized by (1s)-

(12s) (the swithes are indiated by the blak verties).

The graphs of all exept a few of the types, swith into an isomorphi opy of themselves

if we apply the seletor indiated by the blakened verties, the entres of the speial graphs.

There are �ve exeptions: a graph S

k;m;`

of type (1s) swithes into S

k;`;m

and these are only

isomorphi if m = `, and a graph of type (3s) swithes into a graph of type (4s) (and vie

versa). Finally, the graphs (11s) and (12s) swith into eah other.

(4s)

(9s)

z

x

1

y

1

x

k

u

`

u

1

y

k

v

m

v

1

(1s)

(2s)

v

1

v

k

u

1

u

m

z

1

z

2

(10s)

w

w

w

2

(8s)

(6s)

(5s)

w

1

(7s)

(3s)

w

2

w

2

w

1

w

1

(12s)(11s)

Figure 4: The speial graphs (1s)-(12s)

In the following we shall often want to use the fat that a ertain speial graph has a

unique swith. For instane, the graph S

1;2;0

is of type (1s), but also (4s), (6s) and (7s).

These give rise to a number of \extra" seletors that map S

1;2;0

into an ayli graph. In

this ase the extra seletors are fx

1

; zg, fy

1

; zg, and fy

1

; v

1

g respetively.
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We want to avoid situations suh as these in our proofs and as it will turn out, it will

not bother us. However, to be preise, we shall list the ondition on eah of the types, that

guarantees that the ayli swith is unique. There is one rather triky thing that has to

be taken into aount: although S

1;0;2

is only of type (1s), swithing at the entre gives

S

1;2;0

of whih we have seen that the nononstant ayli swith is not unique. This shows

that the ondition annot simply be found by heking that a ertain graph is of one single

type only: this has to hold for all ayli swithes in the swithing lass. Note that this

problem only ours for the types (1s), (3s), (4s), (11s) and (12s), beause they an swith

to non-isomorphi ayli graphs.

Lemma 3.2

A speial graph S

k;m;`

has a unique nononstant swith into an ayli graph if k � 3, or

k = 2 and m+ ` � 2, or k � 1 and m; ` � 3� k.

Proof:

The graphs 3 � P

2

and 2 � P

2

[ 2 �K

1

have no nononstant swith to an ayli graph. This

follows from Theorem 3.1 and the fat that they are not speial.

Let � be a nononstant seletor ontaining z. Suppose � is not the swith fzg. If k � 2,

then we have k = 2 and jI [M j � 1 by the previous paragraph.

Let k = 1 and m; ` � 2. Now, S has three omponents and hene the only possibility

for overlap is with (3s). But k = 1 and m � 2 exlude the possibility that the nontrivial

omponent of S

k;m;`

is a star.

For k = 0 and m; ` � 3, S is exlusively of type (1s), beause no other type of speial

graph has more than three omponents. 2

The types (9s) and (10s) are obviously unique. The graph (11s) is also of type (8s), and

hene has two nononstant ayli swithes. The same holds for the graph (12s). For the

other types (2s)-(8s) we now list the onditions.

Lemma 3.3

Under the following onditions do the speial graphs S(k;m), k � m have a unique nonon-

stant swith to an ayli graph.

� (2s) needs k;m � 2,

� (3s)-(5s), (7s), (8s) need k � 2;m � 1,

� (6s) needs k;m � 3.

Proof:

Let S = S(k;m) be a speial graph and let fz

1

; z

2

g � � with � nononstant. We prove that

� = fz

1

; z

2

g if S

�

is to be an ayli graph.

First of all, K

1;2

[ K

1;2

has one nononstant ayli swith (either selet the leaves, or

selet the two inner verties). For all types, exept (6s), it now follows that k;m � 2 implies

the existene of a unique nononstant swith to an ayli graph.

For (2s) this is all we an do, beause K

1;2

+ K

1;1

has two swithes: the hoie of z

2

in K

1;1

is arbitrary. In the ases (3s)-(5s), (7s) and (8s) we do have a unique swith for

k � 2;m � 1, beause the vertex z

2

an only be hosen in one way: it is the vertex in K

1;1

that is not a leaf in S.

In the ase of (6s) we get k;m � 2, beause of overlap with (1s). Beause (6s) for

k � m;m = 2 overlaps with (7s) we arrive at the ondition k;m � 3. 2

Note, that there are ases that do overlap, but in whih ase the swithes happen to

be equivalent: (5s)(k = 0 = m) and (2s)(k = 2;m = 0) are the same graph, but the

orresponding swithes are omplements.

4 Isolated verties

In this setion we give onstraints for the isolated verties in ritially yli graphs. In

partiular, we prove our main tool for the �nal proof: if G is ritially yli suh that G�x

is ayli for a vertex x, then G� x has no isolated verties.
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(8-5')

(5-1') (6-1')

(7-2')

(7-5')

2

(7-3')

1

5

7

6

4

3

(8-8')

Figure 5: Swithes of known ritially yli graphs that are used in the proofs

Lemma 4.1

LetG be a ritially yli graph. ThenG has at most two isolated verties orG = K

3;3

[3�K

1

((9-2) in Figure 3).

Proof:

Let I = fx

1

; x

2

; : : : ; x

m

g be the set of isolated verties of G, and assume that m � 3. Now

G � x

1

is not ayli, and it has an ayli swith (G � x

1

)

�

. Hene � is not onstant on

G� I , say �(v

0

) = 0 and �(v

1

) = 1 for some v

0

; v

1

=2 I .

If two verties of I � fx

1

g have the same value for � , say �(x

2

) = i = �(x

3

), then v

1�i

is

the unique vertex of V � I with �(v

1�i

) = 1� i. Indeed, if it were �(v) = 1� i for another

v 2 V �I , then (x

2

; v

1�i

; x

3

; v) would form a yle in (G�x

1

)

�

. Moreover, in this ase, there

exists a vertex of I , say x

4

, suh that �(x

4

) = 1 � i, for, otherwise, extending � by setting

�(x

1

) = i would result x

1

to be a leaf of G

�

ontraditing the fat that all yles of G

�

go

through x

1

. However, now (x

2

; v

1

; x

3

; x

4

) forms a yle in (G�x

1

)

�

, whih is a ontradition.

In partiular, m � 3 to avoid triangles with x

2

or x

3

. The swithing lass of the disrete

graph K

n

onsists of the omplete bipartite graphs of order n, see [7℄, and therefore m = 3,

and �(x

2

) 6= �(x

3

). Sine the graph (G � x

1

)

�

is ayli and G

�

(x

2

x

3

) = 1, it follows that

V � I is independent in (G � x

1

)

�

. Therefore G = K

r;s

[ 3 � K

1

for some r; s � 2. Sine

K

3;3

[ 3 � K

1

is a ritially yli graph, and eah K

2;s

[ 3 � K

1

, for s � 4, has an ayli

swith (by swithing one of the verties in the part of size 2 of K

2;s

), the laim follows. 2

Lemma 4.2

Let G be ritially yli of order n � 10. Then no vertex z 2 V is adjaent to more than

two leaves of G.

Proof:

If a set L of leaves of G is adjaent to a vertex z, then by swithing at z, � = fzg, the verties

of L beome isolated in G

�

. 2

Lemma 4.3

Let G be a ritially yli graph of order n � 10. Then G has at most one isolated vertex.

Proof:

Suppose that G has exatly two isolated verties, I = fx

1

; x

2

g. Let (G � x

1

)

�

be ayli,

where we assume that �(x

2

) = 0 without restrition. The set � is independent in G and in

(G� x

1

)

�

, for, otherwise, there would be a triangle (ontaining x

2

) in (G � x

1

)

�

. In fat, �

ontains at most one vertex from eah onneted omponent of (G� I)

�

. Notie that these

onneted omponents are trees, beause (G� x

1

)

�

is ayli.

Let � = fz

1

; : : : ; z

r

g, and set �(x

1

) = 0. Then

G

�

= (H + (T

1

[ T

2

+ : : : [ T

r

)) [ F;

where H = K

2;r

has the bipartition (fx

1

; x

2

g; fz

1

; : : : ; z

r

g), and the indued subgraphs T

i

are disjoint trees with H \ T

i

= fz

i

g; and F is an ayli indued subgraph or it is empty.

Sine G

�

is not ayli, we must have r � 2.
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� By (7-1) and (7-2'), either F is disrete or it is a path P

2

. In both ases, jF j � 2, by

Lemma 4.1.

� By (8-6), there an be at most two nontrivial trees among T

1

; : : : ; T

r

.

� Let T

i

be nontrivial a tree. By (7-1) the depth of T

i

from the root z

i

is at most 3 and

there are no verties of degree more than 2 at depth higher than 1. The graph (7-2)

exludes the possibility that a hild of z

i

has degree larger than two, and by (7-2') the

tree annot ontain both an indued P

4

and an indued P

3

. Hene eah nontrivial tree

T

i

has the form

T

i

= S

k

i

;s

i

;0

or P

4

(s

i

; 0);

where S

k

i

;s

i

;0

(for k

i

� 0) is one of the speial trees with z

i

as its entre, and in P

4

(s

i

; 0),

z

i

is the entre adjaent to the s

i

leaves. By Lemma 4.2, s

i

� 2.

We shall now onsider the three ases for zero, one and two nontrivial T

i

.

(0) If G

�

has no nontrivial omponents among T

1

; : : : ; T

r

, then G

�

equals either K

2;r

,

K

2;r

[K

1

, K

2;r

[ 2 �K

1

or K

2;r

[ P

2

. All these have an ayli swith; a ontradition.

(1) Suppose G

�

has exatly one nontrivial tree among T

1

; : : : ; T

r

, say T

1

.

Let T

1

= P

4

(s

1

; 0).

� By (7-1), r = 2 (otherwise remove z

1

).

� By (7-2'), jF j = 0 (otherwise remove the verties of T

1

adjaent to z

1

).

However, now n � 9 ontradits our assumption on n.

Let T

1

= S

k

1

;s

1

;0

with k

1

> 0, and let r � 3.

� By (7-2'), jF j = 0, s

1

= 0 and k

1

= 1 (otherwise remove z

1

).

In this ase T

1

is a path P

3

, and G

�

has an ayli swith for all r � 3 (swith all z

i

's and

the other end point of T

1

); a ontradition.

Then the ase for r = 2. In this ase, by (7-2'), F annot be a path P

2

, and so it is

disrete. Now G

�

has an ayli swith (swith at z

1

).

Finally, if T

1

= S

0;s

1

;0

, then jT

1

j � 3 (by Lemma 4.2), and therefore r � 4, sine jF j � 2.

� By (7-2'), F is disrete (otherwise remove z

1

).

� By (8-5), jF j � 1, and by (8-5'), if jF j = 1, then s

1

= 1 (and in this ase, T

1

is a path

P

2

).

The remaining ases, s

1

= 1 and jF j = 1, and s

1

= 2 and F = ;, have ayli swithes for

all r (swith with respet to x

1

, x

2

and a leaf at z

1

); a ontradition.

(2) Suppose that G

�

has exatly two nontrivial trees in T

1

; : : : ; T

r

, say T

1

and T

2

, and

assume without loss of generality that jT

1

j � jT

2

j.

� By (8-8'), r � 3.

� By (8-4) and (8-7), jF j � 1.

� By (8-7), if r = 3, then jF j = 0.

Hene r + jF j � 3. Sine n � 10, it follows that jT

1

j+ jT

2

j � 10� r � jF j � 7.

First we treat the trees of depth at most 1. In this ase, T

1

= S

0;s

1

;0

. By Lemma 4.2

s

1

� 2, and hene jT

1

j � 3. Therefore jT

2

j � 4, whih ontradits the assumption jT

1

j � jT

2

j.

Let t

1

be the depth of T

1

and suppose that t

1

� 2. Now by (8-1) and (8-2), jT

2

j = 2,

that is, T

2

is a path P

2

, and onsequently jT

1

j � 5. If T

1

= S

k

1

;s

1

;0

(k

1

> 0), then k

1

= 1

otherwise we have (8-3) by removing a middle vertex from a P

3

).

It follows that jT

1

j = t

1

+ 1 + s

1

� 5. Reall that s

1

� 2. However, the ase t

1

� 2

and s

1

= 2 is exluded by (9-1), and the ases t

1

= 3 and 1 � s

1

� 2 are exluded by (8-4)

(remove the hild of z

1

on the path of depth t

1

). 2
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As in the above, we have

Lemma 4.4

Let G be a ritially yli graph of order n � 10. Then no vertex z 2 V is adjaent to more

than one leaf of G.

Lemma 4.5

Let G be a ritially yli graph of order n � 10 and let x 2 G.

i. G � x an have at most two isolated verties. Moreover, if G � x has two isolated

verties, then x is adjaent to exatly one of these in G.

ii. If a vertex z 6= x is adjaent to m leaves of G � x, then m � 2. Moreover, if m = 2,

then x is adjaent to exatly one of these.

Proof:

For (i) we only need to observe that if G � x has three isolated verties, then in either G

x

or G at least two of these are isolated and we an apply Lemma 4.3. The same holds if the

number of isolated verties is two, but x is not adjaent to exatly one of them in G.

For (ii), assume that there is a vertex z 6= x adjaent to more than two leaves. The vertex

x is adjaent to at most one of these in either G or G

x

and the result then follows from

Lemma 4.4. 2

We say that a vertex y 2 V is ompatible with x, if

� G� x is ayli,

� G� y and G

x

� y are not ayli.

Note that if y is ompatible with x, then all yles in G (and G

x

) go through x, but not all

of them go through y.

Lemma 4.6

Let G be ritially yli graph suh that G� x is ayli.

i. If y is ompatible with x, then G� fx; yg is a speial graph.

ii. If G is of order n � 8, then there exists a vertex y 2 V that is ompatible with x unless

G 2 [C

n

℄.

Proof:

Let (G � y)

�

be ayli and set S = G � fx; yg. Beause S and S

�

are both ayli graphs

it follows that either (a) S is speial or (b) � is onstant on S.

In the ase (b) all yles go through x and y whih ontradits the fat that G� y is not

ayli. To see this, let there be a yle that does not go through y. There are two seletors

onstant on S. The �rst of these is � = S [ fxg. But then (G� y)

�

equals G� y whih is a

ontradition, beause the former is ayli and the latter is not. If on the other hand � = S,

then (G� y)

�

= (G

x

� y)

S[fxg

= G

x

� y and again we have a ontradition.

For the seond part, suppose G =2 [C

n

℄. Sine G has no ayli swithes, there are yles

in G and G

x

, and they all pass through x, beause G � x is ayli. Moreover, sine C

k

is

ritially yli for k � 7, the indued yles of G and G

x

have length at most 6.

If G or G

x

has an indued yle C

5

or C

6

, then let y be a vertex that is not on suh a

yle. It is lear that G � y and G

x

� y both ontain yles, and therefore eah suh y is

ompatible with x.

If G and G

x

have both an indued yle of length at most 4, then these two yles have

altogether at most 7 verties (sine they share the vertex x), and, by n � 8, there exists a

vertex y that is not on these yles. For eah suh vertex y, both G� y and G

x

� y are not

ayli. This proves the laim. 2
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Lemma 4.7

Let G be ritially yli of order n � 10 suh that G � x is ayli. Then G � x has no

isolated verties.

Proof:

Assume to the ontrary of the laim that u is isolated in G�x. In this ase u is either a leaf

adjaent to x (or isolated) in G and isolated (or a leaf adjaent to x) in G

x

. Hene G � u

and G

x

� u are not ayli and by Lemma 4.6(i), S = G� fx; ug is a speial graph.

In this ase, by Lemma 4.5(ii) and the fat that n � 10, S must be either of type (1s) or

one of (5s), (7s), (8s) with k = 2 = m.

In the latter three ases S has a unique swith at the two entres � = fz

1

; z

2

g by

Lemma 3.3, and it is easy to see that (G � u)

�

is not ayli, sine x is adjaent to ex-

atly one leaf adjaent to both entres in S and remains to be so in S

�

.

Consider then the ase S = S

k;m;`

. Without restrition we an assume that �(z) = 1.

Extend � to the whole domain by setting �(u) = 0.

We have n = (2k + 1) +m + ` + 2 � 10, and thus k �

1

2

(7 � (m + `)). By Lemma 4.5,

m � 2 and ` � 1. (Reall that u is an isolated vertex of G� x.) In partiular, k � 2, and if

k = 2, then m = 2, ` = 1 and n = 10. In these ases, the speial ayli graph S has a unique

swith S

�

to another ayli graph (by Lemma 3.2), where � = fzg. By the uniqueness of �,

we have that �(v) = �(v) for all v =2 fx; ug.

Now, the only verties in G that an beome adjaent to u in G

�

are x and z and beause

G

�

is not ayli, these onnetions must exist: G

�

(ux) = 1 = G

�

(uz) and they are the only

edges of G

�

inident with u. Moreover, x is adjaent in G

�

to exatly one vertex v 2 H [ I ,

sine G

�

ontains a yle but G

�

� u does not.

If v = x

i

, say v = x

1

. If ` � 1, then fx; x

1

; z; u; y

1

; u

1

; y

2

g indues an (7-4) in G

�

.

Therefore ` = 0. If jM j � 1, then fx; x

1

; z; u; y

1

; w; v

1

g indues an (7-4) in G

�

for w = x

2

or

w = y

2

depending on the value G

�

(xv

1

). Therefore also m = 0. Now k � 4, and G

�

ontains

an indued (7-4) obtained by removing x

2

.

If v = y

i

, say v = y

1

, then G

�

j

fx;y

1

;x

1

;z;ug

is an indued C

5

, and hene G

�

has an indued

(6-1) obtained by removing x

2

.

If v = u

i

, say v = u

1

. To avoid (8-3) as being indued by fx; u

1

; z; u; x

1

; y

1

; y

2

; v

i

g (for

any v

i

2M), we must have G

�

(xv

i

) = 0 (if m > 0). Now, however, (G

�

)

z

is ayli.

If v = z, then G

�

has an ayli swith for fzg. This ontradition ompletes the proof

of the lemma. 2

5 The ases

In this setion, let G be a ritially yli graph of order n = jV j � 10, let x 2 V be a �xed

vertex.

Sine G is ritially yli, there exists an ayli swith (G�x)

�

of the subgraph G�x.

Sine the swithes of ritially yli graphs are ritiially yli, we an assume that � is

onstant on V , and therefore that G� x is ayli already.

Assume that y is a vertex ompatible with x, that is, G � y and G

x

� y are both not

ayli. We know by Lemma 4.6(ii) that verties suh as x and y de�ned above exist if the

swithing lass does not ontain C

n

. In the following we shall onsider every type of speial

graph in turn and show that eah ase leads to a ontradition, thereby proving our main

theorem that besides graphs in [C

n

℄ there no ritially yli graphs of order n � 10.

By Lemma 4.6(i), S = G � fx; yg is a speial ayli graph, and (G � y)

�

is ayli for

a nononstant seletor �. The speial graph S annot be of type (9s), (10s), (11s) or (12s),

beause the order of S should be at least 8 to ensure that n � 10.

Without restrition we an assume that �(x) = 0. This follows from the symmetry in

the de�nition of ompatibility, i.e. the fat that both G� y and G

x

� y are not ayli. We

extend � to the whole domain by setting �(y) = 0. Note that (G� y)

�

= G

�

� y.

In the following proofs a number of simple properties are often used, and we note them

here: �rst of all, the vertex y is adjaent to at most one vertex of eah omponent of S. If

not, G � x would not be ayli. Also, there must be a yle in G that does not ontain y,

beause G� y is not ayli. This also holds for G

x

� y.
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We shall now formulate a few onditions that hold for the, still remaining, speial graphs

(1s)-(8s). Let L

H

(z) be the set of leaves adjaent to z in H , and let I

H

denote the set of

isolated verties in H .

Lemma 5.1

Given the de�nitions above, we have that

i. I

S

� N

G

(y).

ii. for all z 2 S, jL

S

(z)j � 3. Moreover, jL

S

(z)j = 3 implies jN

G

(x) \ L

S

(z)j � 1 and

jN

G

(y) \ L

S

(z)j = 1.

Proof:

Claim (i) follows from Lemma 4.7.

We have jN

G

(y)\L

S

(z)j � 1, sine G�x is ayli. If jL

S

(z)j � 3, then, by Lemma 4.5(ii),

jL

S

(z) �N

G

(y)j � 2, and x is adjaent to at most one vertex of L

S

(z) �N

G

(y). Hene, in

this ase, we must have jL

S

(z)j = 3 and in that ase x and y are eah adjaent to at least

one vertex. In the ase of y it is exatly one vertex. 2

Note how the previous Lemma restrits the values of k and m for the types (2s)-(8s) and

m for (1s). On the other hand n � 10 gives a lower bound on these values for most types.

5.1 The ase (1s)

We shall now onsider �rst the most diÆult ase, S

k;m;`

. Suppose that S = S

k;m;`

, and

adopt the notations of (S1)-(S4) for it. Without restrition we may assume that �(z) = 1.

Lemma 5.2 We have

i. k = 2,

ii. 1 � `;m � 2 and m+ ` � 3,

iii. M � N

G

(x),

iv. if ` = 2, then jN

G

(x) \ I j = 1,

v. if m = 2, then jN

G

(y) \M j = 1.

vi. jN

G

(x) \ (H [ I)� fzgj � 1,

Proof:

By Lemma 4.3, jN

G

(x) \ I j � 1 for, otherwise, swith with fx; yg to obtain two isolated

verties. By Lemma 4.5(ii) we have both ` � 2 and Claim (iv).

If k = 0, then m+ ` � 7 ontraditing the bounds m � 3 from Lemma 5.1(ii) and ` � 2.

If k = 1, then m + ` � 5, sine n � 10. In this ase, ` = 2 and m = 3. If k = 2,

then m + ` � 3. Therefore by Lemma 3.2, in all ases k � 1, S

z

is the unique ayli

swith of S. It follows that �j

S

= fzg, and therefore M � N

G

(x), for, otherwise the ayli

graph G

�

� y would have an isolated vertex ontraditing Lemma 4.7 (remember that we

have �(x) = 0 = �(y)). Lemma 4.5(ii) then implies m � 2, and as a onsequene k � 2,

beause as was shown above, if k = 1, then we must have m = 3. The Claim (v) follows from

Lemma 4.5(ii).

Claim (vi) follows from the fat that G

�

j

H[I

is onneted and G

�

� y is ayli.

Suppose then that k � 3. By Claim (vi) it follows that there are at least two pairs x

i

y

i

suh that G(xx

i

) = 0 = G(xy

i

), say for i = 1; 2. Let the seletors �

i

be suh that (G� x

i

)

�

i

are ayli, where we may hoose �

i

(z) = 1. The speial graph S � x

i

, whih is S

k�1;m+1;`

,

has a unique ayli swith (S�x

i

)

z

, sine n � 10 and k � 3 by Lemma 3.2 (note that ` = 0

implies m � 4, beause n � 10).

It is then lear that �

i

= � when we set �

i

(x

i

) = 0. By Lemma 4.7, the vertex y

i

is not

isolated in G

�

i

� x

i

, and therefore G

�

i

(yy

i

) = G(yy

i

) = 1 for i=1,2 (sine G(xy

i

) = 0 =

G

�

i

(xy

i

)) and we have a yle in G� x. This ontradition proves ase (i). 2
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Notie that, in this ase, the above Lemma implies that n � 11.

We �nish the ase S = S

k;m;`

.

Assume G(xu

1

) = 1. Then G(xz) = 1, sine otherwise (x; u

1

; z) would be a triangle in

G

�

� y. Also, G(xx

i

) = 0 = G(xy

i

) for i = 1; 2, beause G

�

� y is ayli.

We have G(xy) = 0, for, otherwise (x; y; u

1

) is a triangle in G, and to avoid (5-1) with

the edges G(x

i

y

i

) = 1, we would have to have that y is adjaent to two verties in H � fzg

giving a yle to G� x. Note that now all edges involving x are known.

Now (x; z; v

1

) is a triangle in G, and to avoid (7-5'), neessarily (1) G(yz) = 1 or (2)

G(yv

1

) = 1, and y is adjaent to no other verties of H [M .

(1) If G(yz) = 1, then jM j = 1, beause otherwise y must be adjaent to either one of

the v

i

(Lemma 5.2(v)), but then (y; z; v

i

) is a yle of G� x. Lemma 5.2(ii) implies jI j = 2

and fx; u

1

; y; z; y

1

; x

2

; u

2

g indues a (7-4). We have G(xu

2

) = 0 by Lemma 5.2(iv).

(2) If G(yv

1

) = 1, then fu

1

; y; x; v

1

; z; y

1

; x

2

g indues a (7-3).

Therefore G(xu

1

) = 0, and onsequently I = fu

1

g by Lemma 5.2(iv).

By Lemma 5.2, m = 2, and we have G(xv

1

) = 1 = G(xv

2

), G(yv

1

) = 1, G(yv

2

) = 0, and

G(yu

1

) = 1, G(xu

1

) = 0.

In this ase G(yw) = 0 for all w 2 S � fu

1

; v

1

g, sine G� x is ayli.

To avoid a yle in G

�

� y, G(xx

i

) = 0 = G(xy

i

) for i = 1 or 2, say i = 1. There are two

ases here.

(1) G(xz) = 0. Now G(xy) = 1, sine otherwise fx; v

1

; v

2

; z; y; x

1

; y

1

; u

1

g indues an (8-9)

in G.

(2) G(xz) = 1. To avoid fx; z; v

1

; y

1

; x

1

; y; u

1

g induing a (7-5') we must have G(xy) = 1.

In both ases, G(xy) = 1. But fx; y; v

1

; x

1

; y

1

g indues a (5-1'). This ontradition proves

the present ase.

5.2 The other ases

Let S = S(k;m) where we assume that k � m. Let z

1

and z

2

be the two entres of S, and

L = fv

1

; : : : ; v

k

g and M = fu

1

; : : : ; u

m

g be the sets of leaves of S adjaent to z

1

and z

2

,

respetively.

Lemma 5.3

i. If S is of type (3s)-(8s), then jL

S

(z

i

)j � 2 for i = 1 or 2.

ii. If S

�

is the unique ayli swith of S and z 2 S, suh that S 6= S

�

and jL

S

(z)j = 3,

then x and y are eah adjaent to exatly one, but di�erent leaf at z.

Proof:

For Claim (i), assume both z

1

and z

2

have three leaves adjaent to them in S. By Lemma 5.1(ii),

y is adjaent to one leaf at z

1

and one at z

2

giving a yle in G�x for the types (4s)-(8s). For

(3s) we an apply the same reasoning, but taking y instead of x: G

�

� y has a yle. Note

that we need that � is the unique nononstant seletor mapping S into an ayli graph.

However, we have k = 3 = m and by Lemma 3.3 the result follows.

To avoid a yle in G

�

� y, x is adjaent to at most one of the leaves. Now, ase (ii)

follows from Lemma 4.5(ii) and Lemma 5.1(ii). 2

Note that by Lemma 5.1(ii), Lemma 5.2(i) and (ii), Lemma 5.3(i) it already follows that

there are no ritially yli graphs of order at least 12 unless they are in [C

n

℄ for n � 12.

5.3 The ases (2s)-(4s)

By the fat that n � 10 and Lemma 5.1(ii), we have k = 3 and 2 � m � 3. In all these

ases the unique nononstant swith mapping S into an ayli graph is � = fz

1

; z

2

g by

Lemma 3.3. Reall that we still have �(x) = 0 = �(y).

By Lemma 5.3(ii), x is adjaent to one of the v

i

, say v

1

, and y is adjaent to an other v

i

,

say v

3

. To avoid a yle in G

�

� y, x must be adjaent to z

2

, and y is not adjaent to any of

the other v

i

or z

1

.

We now go over the ases one by one.
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(2s) S = S(k;m) = K

1;k

[K

1;m

. Beause n � 10 and the bounds on k and m, we know

that k = 3 = m. By Lemma 5.3, x is adjaent to a leaf u

i

, say u

1

and y to a leaf u

i

di�erent

from u

1

, say u

3

. Beause of the uniity of �, x must be adjaent to z

1

to ensure that G

�

� y

is ayli.

The only remaining unknown is G(xy). If G(xy) = 0, then we have (5-1) fx; v

1

; z; u

3

; yg,

and if G(xy) = 1, then we have (7-4) fu

1

; x; y; v

3

; z

1

; v

2

; u

2

g.

(3s) S = S(k;m) = K

1;k

[ K

1;m

[ K

1

. Beause of the uniqueness of �, S is mapped

into a tree of type (4s). To avoid yles in G

�

, neessarily G(xz

1

) = 1, G(xw) = 0 (for the

isolated vertex w of G) and G(xu

i

) = 0 for all u

i

2 M . By the above, G(xz

2

) = 1 and

G(xv

2

) = 0 = G(xv

3

).

By Lemma 4.5(ii), m = 2 and y is adjaent to one of the u

i

, say u

2

.

The only unknown is the edge xy. If G(xy) = 0, then we have (7-5') fv

1

; x; z

2

; u

1

; y; v

3

; z

1

g,

and if G(xy) = 1, then we have (7-4) fv

1

; x; y; u

2

; z

2

; v

2

; u

1

g.

(4s) Now S = S(k;m) = P

3

(k;m). Beause S is onneted, y is not adjaent to any

other vertex of S (exept v

3

). Hene, m = 2 and x is adjaent to one of the u

i

, say u

1

(Lemma 4.5(ii)). To prevent yles in G

�

�y, x must be adjaent to z

1

. If G(xy) = 0, then we

have (5-1) fx; u

1

; z

2

; v

3

; yg and if G(xy) = 1, then we have (7-4) in G

x

fv

1

; z

1

; v

2

; v

3

; x; u

1

; yg.

5.4 The ases (5s)-(8s)

(6s) S(k;m) = P

2

(k;m). In this ase, n � 10 implies k = 3 = m, but then G � x is not

ayli.

In the remaining ases (5s), (7s) and (8s), let w

1

be the neighbour of z

1

of degree 2 and

let w

2

be the single unnamed vertex (d

S

(w

2

) equals 0, 1 or 2 depending on the ase), see

Figure 4(5s), (7s) and (8s).

By Lemma 5.1(ii) and n � 10, 2 � k � 3, m � 1, and k +m � 4. In all these ases the

unique nononstant swith mapping S into an ayli graph is � = fz

1

; z

2

g by Lemma 3.3.

We an assume that x is adjaent to a vertex in L, say G(xv

1

) = 1. This follows from

Lemma 5.3(ii) if k = 3. On the other hand, if k = 2, then neessarily m = 2, sine n � 10,

and in this ase N

G

(y) \ L = ; or N

G

(y) \M = ; in order to avoid a yle in G � x. By

Lemma 4.5(ii), N

G

(x) \M 6= ; or N

G

(x) \ L 6= ;, respetively. Sine now k = m (= 2), the

assumption is validated.

Claim 1: G(xz

1

) = 1 = G(xz

2

), and G(xu) = 0 for all u =2 fv

1

; z

1

; z

2

; w

2

; yg. Moreover,

G(xw

2

) = 0 if d

S

(w

2

) 6= 0 (that is, exepting the ase (5s)).

Proof:

Reall that �(x) = 0, and, indeed, � = fz

1

; z

2

g. The laim follows, sine G

�

� y is ayli.

Claim 2: G(yv) = 1 holds for exatly one vertex v 2 S � fw

2

g, and either (i) v 2 L, say

G(yv

3

) = 1, in whih ase k = 3 and m = 1, (ii) v 2M , say G(yu

2

) = 1, in whih ase k = 2,

m = 2. Moreover, G(yw

2

) = 1 holds only in the ase (5s).

Proof:

The �rst statement follows from the fat that G� x is ayli. Now if y is not adjaent to a

vertex of M , then jM j = 1 by Lemma 4.5(ii) and the fat that G(xu) = 0 for all u 2 M . It

follows that k = 3, and, onsequently, y is adjaent to a vertex of L. On the other hand, if

G(yu) = 1 for a u 2 M , then G(yv) = 0 for all v 2 L to avoid a yle in G� x, and in this

ase, k = 2 by Lemma 4.5. That G(yw

2

) = 1 in the ase (5s) follows from Lemma 5.1(i). In

the other two ases, G(yw

2

) = 1 would result in a yle in G� x.

These two laims together determine G with the exeption of the value for G(xy).

The ases are all exluded:

(5s) x is not adjaent to w

1

and neither is y. Hene in G

�

� y the vertex w

1

is isolated

ontraditing Lemma 4.7.

(7s) In both ases, G(xy) = 1 to avoid (7-4) as being the subgraph indued by the

verties fx; z

1

; w

1

; z

2

; v

2

; w

2

; yg. Now G ontains a swith of (7-4) if k = 3 and m = 1 (this

is G

z

1

� fv

1

; v

3

; u

2

g), and G ontains (7-5') if k = 2 = m (this is G� fu

1

; v

2

; z

2

g).

(8s) In both ases, G(xy) = 1 to avoid (6-1) as being the subgraph indued by the verties

fx; z

1

; w

1

; w

2

; z

2

; yg. Now fx; z

1

; w

1

; w

2

; z

2

; y; u

1

g indues (7-3').

This proves Theorem 2.4.

14



6 Conluding remarks

Finding the ritially yli graphs was done as follows: a program was written in C that

listed for a number n of verties a representative of eah swithing lass that did not ontain

any ayli swithes. In a later phase, when we were looking for ritially yli graphs on n

verties, we only had to make sure that all ritially yli graphs of lower order ould not

anymore our in these graphs. The program was run in this way for up to 12 verties. We

used here the �les from [9℄ whih list generators for the swithing lasses up to isomorphism

and up to omplementation for up to 10 verties.

A omputer program in the funtional language Sheme veri�ed that the ritially yli

graphs found were in fat ritially yli. Also, the authors veri�ed this by hand.

In our proofs, not all of the ritially yli graphs were used. The graphs that were not

used are (8-10)-(8-15) and (9-3)-(9-5). Lemma 4.6 exludes the yles C

8

and C

9

. For the

other graphs, exept (8-12), the reason is that if they are indued subgraphs of any graph of

order at least 10, then this graph also ontains one of the yli graphs from Figure 1, 2 and

3 or it ontains (8-12). The graph (8-12) does not our in our proofs, beause it is overruled

by Lemmas 4.6 and 4.7, that is, if G is a forbidden graph of order 10 that does not have 2

isolated verties and suh that G� x is ayli and G�fx; yg is speial, then G ontains an

indued ritially ayli graph that was used in the proofs.

As an aside we note that our program found that the graphs (8-9) and (8-12) have a

similar property: adding two verties to either of these graphs in any way, always results in

a graph that ontains a swith of one of the other ritially yli graphs.
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