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Abstra
t

We 
hara
terize the swit
hing 
lasses that do not 
ontain an a
y
li
 graph. The


hara
terization is by means of a set of forbidden graphs. We prove that in addition to

swit
hes of the 
y
les C

n

for n � 7 there are only �nitely many su
h graphs. In fa
t,

there are no su
h graphs with more than 9 verti
es. We give a representative of ea
h of

the 24 
lasses.

1 Introdu
tion

For a �nite undire
ted graph G = (V;E) and a set � � V , the swit
h of G by � is de�ned as

the graph G

�

= (V;E

0

), whi
h is obtained from G by removing all edges between � and its


omplement � and adding as edges all nonedges between � and �. The swit
hing 
lass [G℄

determined by G 
onsists of all swit
hes G

�

for subsets � � V .

A swit
hing 
lass is an equivalen
e 
lass of graphs under swit
hing, see the survey papers

by Seidel [7℄ and Seidel and Taylor [8℄. Generalizations of this approa
h 
an be found in

Gross and Tu
ker [4℄, Ehrenfeu
ht and Rozenberg [3℄, and Zaslavsky [10℄.

In this paper we solve a problem raised by A
harya [1℄ and by Zaslavsky in his dynami


survey in 1999 [11℄, whi
h asks for a 
hara
terization of those graphs that have an a
y
li


swit
h. Forbidden graphs for perfe
t graphs in swit
hing 
lasses were treated by Hertz [6℄.

We show that apart from the simple 
y
les C

n

for n � 7, there are only �nitely many


riti
ally 
y
li
 graphs (with respe
t to swit
hing), that is, graphs G whi
h have no a
y
li


swit
hes G

�

, but all of whose indu
ed proper subgraphs do have an a
y
li
 swit
h.

In fa
t, we shall prove that a 
riti
ally 
y
li
 graph G =2 [C

n

℄ has order at most 9. These

graphs are partitioned into 24 swit
hing 
lasses, and altogether there are 905 
riti
ally 
y
li


graphs of order at most 9 (up to isomorphism and ex
luding swit
hes of the 
y
les C

n

).
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In order to save the reader from long { and o

assionally tedious { te
hni
al 
onstru
tions

for the small graphs, we rely on a 
omputer program (in fa
t, two independent ones) for the


ases of order at most 9. Therefore our purpose is to prove that if G is a 
riti
ally 
y
li


graph of order n � 10, then G 2 [C

n

℄. The proof of this result uses the 
hara
terization from

[5℄ of the a
y
li
 graphs G { hen
eforth 
alled the spe
ial graphs { that have a non-trivial

a
y
li
 swit
h, see Se
tion 3.

The paper is stru
tured as follows: after some preliminaries we list the ne
essary details

of the spe
ial graphs from [5℄. Then we pro
eed with our a
tual results proving that 
riti
ally


y
li
 graphs 
an have only a limited number of isolated verti
es and as a 
onsequen
e, a

vertex in a 
riti
ally 
y
li
 graph has only a limited number of leaves adja
ent to it. We

prove that ea
h 
riti
ally 
y
li
 swit
hing 
lass, ex
ept [C

n

℄ for n � 8, 
ontains a (
riti
ally


y
li
) graph, whi
h is, ex
ept for two verti
es, a spe
ial graph. By verifying that for ea
h

type of spe
ial graph a 
ontradi
tion results { under the 
ondition that the order of the graph

is at least 10 { we �nally prove our result. At the end of the paper we shall spend some time

�
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on the programs used and we 
onsider also the question why not all of the 
riti
ally 
y
li


swit
hing 
lasses are used in our proof.

2 Premilinaries

For a (�nite) set V , let jV j be the 
ardinality of V . We shall often identify a subset A � V

with its 
hara
teristi
 fun
tion A : V ! Z

2

, where Z

2

= f0; 1g is the 
y
li
 group of order

two. We use the 
onvention that for x 2 V , A(x) = 1 if and only if x 2 A. The symmetri


di�eren
e of two sets A and B is denoted A+B, and for the di�eren
e between A and B we

write A�B. The restri
tion of a fun
tion f : V !W to a subset A � V is denoted by f j

A

.

The set E(V ) = ffx; yg j x; y 2 V; x 6= yg denotes the set of all unordered pairs of distin
t

elements of V . A graph is a pair G = (V;E) where V is the set of verti
es and E � E(V )

the set of edges. We write xy or yx for the undire
ted edge fx; yg 2 E; we 
all x and y

adja
ent. By 
onvention we write x 2 G for x 2 V . The graphs of this paper will be �nite,

undire
ted and simple, i.e., they 
ontain no loops or multiple edges. The 
ardinalities jV j

and jEj are 
alled the order, respe
tively, size of G. Analogously to sets, a graph G = (V;E)

will be identi�ed with the 
hara
teristi
 fun
tion G : E(V ) ! Z

2

of its set of edges so that

G(xy) = 1 for xy 2 E, and G(xy) = 0 for xy =2 E. Later we shall use both notations,

G = (V;E) and G : E(V ) ! Z

2

, for graphs.

For a graph G = (V;E) and X � V , let Gj

X

denote the subgraph of G indu
ed by X .

Hen
e, Gj

X

: E(X)! Z

2

. As shorthand we write G � x for the graph Gj

V�fxg

and, more

generally, G � I for Gj

V�I

. If for some X � G, Gj

X

has edges between all pairs of distin
t

verti
es, then we 
all it a 
lique. If Gj

X

has no edges at all, then X is 
alled independent.

For two graphs G and H on V we de�ne G+H to be the graph su
h that (G+H)(xy) =

G(xy) +H(xy) for all xy 2 E(V ), where + is addition modulo 2. We extend this operation

to graphs on sets of verti
es V and V

0

respe
tively, by �rst extending them to graphs on

V [ V

0

and setting all new edges to 0.

The disjoint union of two graphs G and H on the other hand is denoted G [H . We use

k �G as shorthand for the disjoint union of k 
opies of G.

Some graphs we shall en
ounter in the sequel are K

n

, the 
lique on n verti
es, and K

m;n

the 
omplete bipartite graph on a two disjoint sets of m and n verti
es respe
tively. The

graph P

n

denotes a path of n verti
es and C

n

denotes a 
y
le on n verti
es.

Let G = (V;E) be a graph. For a vertex v 2 V , the set N

G

(v) � V is the set of verti
es

adja
ent to v in G. The degree of v is de�ned by d

G

(v) = jN

G

(v)j. An isolated vertex has

degree zero, a leaf degree one. A vertex v is a leaf at z if v is a leaf adja
ent to z.

An a
y
li
 graph is a graph without 
y
les. A tree is a 
onne
ted a
y
li
 graph. If we �x

the root of the tree, say r, then the depth of a vertex v in that tree is well-de�ned: it is the

number of edges on the shortest path between v and x. Hen
e r has depth zero.

A sele
tor for G is a subset � � G, or alternatively a fun
tion � : G! Z

2

. A swit
h of a

graph G by � is the graph G

�

su
h that for all xy 2 E(V ),

G

�

(xy) = �(x) +G(xy) + �(y) :

For a singleton sele
tor � = fxg we shall write G

x

instead of G

fxg

by 
onvention.

It should be 
lear that this de�nition of swit
hing is equivalent to the one given in the

introdu
tion. In Figure 1(7-3) a graph, the Chapel, is given and one of its swit
hes is the

graph in Figure 5(7-3'). As we shall 
ontinue to do in this paper, the sele
tor is indi
ated by

the bla
k verti
es.

The set [G℄ = fG

�

j � � V g is 
alled the swit
hing 
lass of G. We reserve lower 
ase �; �

for sele
tors (subsets) used in swit
hing.

A sele
tor � is 
onstant on X � V if X � �, or X \ � = ;. The name arises from the

fa
t that Gj

X

= G

�

j

X

. Note that always G

�

= G

V��

.

This paper 
on
erns itself with those graphs that do not have an a
y
li
 swit
h. We 
all

these graphs forbidden. Obviously, if a forbidden graph o

urs in another graph, then the

latter is also forbidden. For this reason we are interested in the graphs that are minimal in

this respe
t: they do not have an a
y
li
 swit
h, but all their indu
ed subgraphs do have an

2



a
y
li
 swit
h. We 
all these graphs and the 
orresponding swit
hing 
lass 
riti
ally 
y
li
. A

swit
h of a 
riti
ally 
y
li
 graphs is also 
riti
ally 
y
li
 so the latter notion is well-de�ned.

Let G be a 
riti
ally 
y
li
 graph. By de�nition, for all x 2 V , there is a swit
h G

�

su
h

that G

�

� x is a
y
li
. As a 
onsequen
e, all 
y
les in G

�

go through x and there is at least

one su
h 
y
le. Note that this also holds for G

�+fxg

. Note that it does not hold that in every


riti
ally 
y
li
 graph G there is a vertex x so that G� x is a
y
li
; the graph K

3;3

[ 3 �K

1

of Figure 3(9-2) is a 
ounterexample.

Example 2.1

Let G be the graph of Figure 5(7-3'). We want to prove that it is a 
riti
ally 
y
li
 graph.

For this we must show that it has no a
y
li
 swit
hes and removing any of the verti
es allows

for an a
y
li
 swit
h. For the latter it is suÆ
ient to observe that the verti
es 2; � � � ; 6 are

all on the only 
y
le of G, and G

f2;5g

� 7 and G

f3;6g

� 1 are a
y
li
.

To prove that G has no a
y
li
 swit
h observe that G has seven edges and an a
y
li


graph 
an have at most six. We shall now prove that applying any sele
tor will not de
rease

the number of edges, and thereby we have proved that there is no a
y
li
 swit
h.

First of all, the degree of every vertex in G is at most 3 = (n � 1)=2. Hen
e applying a

singleton sele
tor 
annot de
rease the number of edges.

For doubleton sele
tors, � = fx

1

; x

2

g, we 
an do the same. The number of edges that


hanges is j�j � (7 � j�j) = 10. We must make sure then that every sele
tor makes at most

�ve edges disappear. The only possible way, knowing that the maximum degree is three, is

to take � = f2; 6g, but in that 
ase only four edges are removed, be
ause one edge o

urs in

Gj

�

.

For sele
tors of size 3, �nally, twelve edges will 
hange. Hen
e we must look for sele
tors

that 
reate less than six edges (or, in other words, make more than six edges disappear). For

this, the sele
tor must 
ontain a vertex of degree three, say f2g. If we would also have 6 2 �,

then the number of edges to be removed is four and there are no other verti
es of degree

three. Adding two verti
es of degree two to � results always in a sele
tor having at most six

edges going to its 
omplement, be
ause always either the two of them are adja
ent, or one of

them is adja
ent to vertex 2. �

Note that C

n

for n � 6 have an a
y
li
 swit
h: take an independent set of 
ardinality

bn=2
. However, the following was already proved by A
harya [1℄.

Lemma 2.2

The 
y
les C

n

for n � 7 are 
riti
ally 
y
li
.

Proof:

First of all, removing any vertex gives us an a
y
li
 graph P

n�1

and hen
e we have to prove

that all swit
hes of C

n

; n � 7, have a 
y
le.

Let fx

1

; : : : ; x

n

g be the verti
es of C

n

. We �rst treat the sele
tors that sele
t the same

value, say 1, in two adja
ent verti
es, say x

1

and x

2

. We need only 
onsider non
onstant

sele
tors and without loss of generality we may assume that �(x

n

) = 0. Now �(x

3

) =

0, be
ause otherwise G

�

has a triangle fx

n

; x

2

; x

3

g. Then �(x

4

) = 1, be
ause otherwise

fx

1

; x

2

; x

4

g is a triangle. The same holds for x

5

and now we have a triangle, fx

n

; x

4

; x

5

g in

G

�

, sin
e n � 7 implies that x

5

is not a neighbour of x

n

. This takes 
are of all C

n

, where

n � 7 is odd.

The only 
ase left is the sele
tor � that sele
ts only the odd numbered verti
es of

C

n

. It is easy to verify that C

�

8

is isomorphi
 to itself, and if n � 10 and even, then

fx

1

; x

2

; x

4

; x

5

; x

7

; x

8

g indu
es a C

6

in C

�

n

. 2

We now state the result of our 
omputer sear
h for the 
riti
ally 
y
li
 graphs.

Theorem 2.3

There are 27 swit
hing 
lasses of 
riti
ally a
y
li
 graphs of order n � 9. The representatives

of these are given in the Figures 1, 2 and 3.

The main theorem proved in this paper is the following.
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Theorem 2.4

The swit
hing 
lasses [C

n

℄ are the only 
riti
ally 
y
li
 swit
hing 
lasses of order n � 10.

In our proofs we shall refer to the graphs from Figure 1, 2, 3 and 5. The bla
k verti
es

in the latter �gure indi
ate how these graphs 
an be swit
hed into the 
orresponding graph

from the former three �gures. We shall use Theorem 2.3 to the extent that they are in fa
t


riti
ally 
y
li
 graphs. We shall not use that these are in fa
t all of them of order at most

9.

(6-1)(5-1) (7-1)
(7-2)

(7-3)

(7-5)

(7-4)

Figure 1: The 
riti
ally 
y
li
 graphs on �ve, six and seven verti
es

3 The spe
ial graphs

We de�ne the spe
ial graphs of [5℄ (see Figure 4). We shall use these graphs extensively

in our proofs. The graphs have in 
ommon that they have non
onstant swit
hings into an

a
y
li
 graph.

The graph in Figure 4(1s) is denoted by S

k;m;`

. It is a graph K

1;k+m

where k of the k+m

leaves are substituted by an edge, and to whi
h ` isolated verti
es have been added. We let,

see also Figure 4(1s),

(S1) z be the 
entre of S,

(S2) H = f(z; y

i

; x

i

) j i = 1; 2; : : : ; kg be the extended star of S, where S(zy

i

) = 1 =

S(y

i

x

i

) for all i,

(S3) I = fu

1

; u

2

; : : : ; u

`

g be the set of isolated verti
es of S, and

(S4) M = fv

1

; v

2

; : : : ; v

m

g be the set of leaves adja
ent to z in S.

Note that by the sele
tor fzg, the graph S

k;m;`

is swit
hed into S

k;`;m

.

The types (2s)-(8s) of graphs are denoted S(k;m), where k and m indi
ate the number

of leaves of the (bla
k) verti
es z

1

and z

2

. Be
ause of the symmetry in k and m in ea
h of

these graphs we may assume that k � m.

A graph of type (2s) is simply the disjoint union K

1;k

[K

1;m

. Adding an isolated vertex

to a graph of this type gives a graph of type (3s).

We denote by P

t

(m; k) the tree that is obtained from the path P

t

of t verti
es when the

leaves are substituted by K

1;m

and K

1;k

, see Figure 4(4s) for P

3

(k;m) (adding an isolated

vertex gives a graph of type (5s)), Figure 4(6s) for P

2

(k;m) and Figure 4(8s) for P

4

(k;m).

Further, K

1;3

(k;m) denotes the tree, where two of the leaves of K

1;3

are substituted by the

stars K

1;k

and K

1;m

, see Figure 4(7s).

The a
y
li
 graphs P

7

, T

7

, P

6

and P

4

[ P

2

are listed in Figure 4(9s), (10s), (11s) and

(12s) respe
tively. Their role is stri
tly limited in this paper, be
ause of their low order.
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(8-4)

(8-2)

(8-3)

(8-7)

(8-6)(8-5)

(8-8)

(8-9)

(8-1)

(8-10)

(8-12) (8-13) (8-14) (8-15)

(8-11)

Figure 2: Criti
ally 
y
li
 graphs on eight verti
es

(9-2)

(9-4) (9-5)

(9-1)

(9-3)

Figure 3: Criti
ally 
y
li
 graphs on nine verti
es
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Noti
e that P

6

equals P

4

(1; 1) of the type (8s), but we wish to treat this small instan
e

independently.

In [5℄ we proved

Theorem 3.1

i. Every swit
hing 
lass 
ontains at most one tree up to isomorphism. The trees that

have a non
onstant swit
h into a tree are fully 
hara
terized by (6s)-(10s), and (1s) for

m; ` = 0.

ii. Every swit
hing 
lass 
ontains at most three a
y
li
 graphs up to isomorphism. The

a
y
li
 graphs that have a non
onstant a
y
li
 swit
h are fully 
hara
terized by (1s)-

(12s) (the swit
hes are indi
ated by the bla
k verti
es).

The graphs of all ex
ept a few of the types, swit
h into an isomorphi
 
opy of themselves

if we apply the sele
tor indi
ated by the bla
kened verti
es, the 
entres of the spe
ial graphs.

There are �ve ex
eptions: a graph S

k;m;`

of type (1s) swit
hes into S

k;`;m

and these are only

isomorphi
 if m = `, and a graph of type (3s) swit
hes into a graph of type (4s) (and vi
e

versa). Finally, the graphs (11s) and (12s) swit
h into ea
h other.

(4s)

(9s)

z

x

1

y

1

x

k

u

`

u

1

y

k

v

m

v

1

(1s)

(2s)

v

1

v

k

u

1

u

m

z

1

z

2

(10s)

w

w

w

2

(8s)

(6s)

(5s)

w

1

(7s)

(3s)

w

2

w

2

w

1

w

1

(12s)(11s)

Figure 4: The spe
ial graphs (1s)-(12s)

In the following we shall often want to use the fa
t that a 
ertain spe
ial graph has a

unique swit
h. For instan
e, the graph S

1;2;0

is of type (1s), but also (4s), (6s) and (7s).

These give rise to a number of \extra" sele
tors that map S

1;2;0

into an a
y
li
 graph. In

this 
ase the extra sele
tors are fx

1

; zg, fy

1

; zg, and fy

1

; v

1

g respe
tively.
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We want to avoid situations su
h as these in our proofs and as it will turn out, it will

not bother us. However, to be pre
ise, we shall list the 
ondition on ea
h of the types, that

guarantees that the a
y
li
 swit
h is unique. There is one rather tri
ky thing that has to

be taken into a

ount: although S

1;0;2

is only of type (1s), swit
hing at the 
entre gives

S

1;2;0

of whi
h we have seen that the non
onstant a
y
li
 swit
h is not unique. This shows

that the 
ondition 
annot simply be found by 
he
king that a 
ertain graph is of one single

type only: this has to hold for all a
y
li
 swit
hes in the swit
hing 
lass. Note that this

problem only o

urs for the types (1s), (3s), (4s), (11s) and (12s), be
ause they 
an swit
h

to non-isomorphi
 a
y
li
 graphs.

Lemma 3.2

A spe
ial graph S

k;m;`

has a unique non
onstant swit
h into an a
y
li
 graph if k � 3, or

k = 2 and m+ ` � 2, or k � 1 and m; ` � 3� k.

Proof:

The graphs 3 � P

2

and 2 � P

2

[ 2 �K

1

have no non
onstant swit
h to an a
y
li
 graph. This

follows from Theorem 3.1 and the fa
t that they are not spe
ial.

Let � be a non
onstant sele
tor 
ontaining z. Suppose � is not the swit
h fzg. If k � 2,

then we have k = 2 and jI [M j � 1 by the previous paragraph.

Let k = 1 and m; ` � 2. Now, S has three 
omponents and hen
e the only possibility

for overlap is with (3s). But k = 1 and m � 2 ex
lude the possibility that the nontrivial


omponent of S

k;m;`

is a star.

For k = 0 and m; ` � 3, S is ex
lusively of type (1s), be
ause no other type of spe
ial

graph has more than three 
omponents. 2

The types (9s) and (10s) are obviously unique. The graph (11s) is also of type (8s), and

hen
e has two non
onstant a
y
li
 swit
hes. The same holds for the graph (12s). For the

other types (2s)-(8s) we now list the 
onditions.

Lemma 3.3

Under the following 
onditions do the spe
ial graphs S(k;m), k � m have a unique non
on-

stant swit
h to an a
y
li
 graph.

� (2s) needs k;m � 2,

� (3s)-(5s), (7s), (8s) need k � 2;m � 1,

� (6s) needs k;m � 3.

Proof:

Let S = S(k;m) be a spe
ial graph and let fz

1

; z

2

g � � with � non
onstant. We prove that

� = fz

1

; z

2

g if S

�

is to be an a
y
li
 graph.

First of all, K

1;2

[ K

1;2

has one non
onstant a
y
li
 swit
h (either sele
t the leaves, or

sele
t the two inner verti
es). For all types, ex
ept (6s), it now follows that k;m � 2 implies

the existen
e of a unique non
onstant swit
h to an a
y
li
 graph.

For (2s) this is all we 
an do, be
ause K

1;2

+ K

1;1

has two swit
hes: the 
hoi
e of z

2

in K

1;1

is arbitrary. In the 
ases (3s)-(5s), (7s) and (8s) we do have a unique swit
h for

k � 2;m � 1, be
ause the vertex z

2


an only be 
hosen in one way: it is the vertex in K

1;1

that is not a leaf in S.

In the 
ase of (6s) we get k;m � 2, be
ause of overlap with (1s). Be
ause (6s) for

k � m;m = 2 overlaps with (7s) we arrive at the 
ondition k;m � 3. 2

Note, that there are 
ases that do overlap, but in whi
h 
ase the swit
hes happen to

be equivalent: (5s)(k = 0 = m) and (2s)(k = 2;m = 0) are the same graph, but the


orresponding swit
hes are 
omplements.

4 Isolated verti
es

In this se
tion we give 
onstraints for the isolated verti
es in 
riti
ally 
y
li
 graphs. In

parti
ular, we prove our main tool for the �nal proof: if G is 
riti
ally 
y
li
 su
h that G�x

is a
y
li
 for a vertex x, then G� x has no isolated verti
es.
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Figure 5: Swit
hes of known 
riti
ally 
y
li
 graphs that are used in the proofs

Lemma 4.1

LetG be a 
riti
ally 
y
li
 graph. ThenG has at most two isolated verti
es orG = K

3;3

[3�K

1

((9-2) in Figure 3).

Proof:

Let I = fx

1

; x

2

; : : : ; x

m

g be the set of isolated verti
es of G, and assume that m � 3. Now

G � x

1

is not a
y
li
, and it has an a
y
li
 swit
h (G � x

1

)

�

. Hen
e � is not 
onstant on

G� I , say �(v

0

) = 0 and �(v

1

) = 1 for some v

0

; v

1

=2 I .

If two verti
es of I � fx

1

g have the same value for � , say �(x

2

) = i = �(x

3

), then v

1�i

is

the unique vertex of V � I with �(v

1�i

) = 1� i. Indeed, if it were �(v) = 1� i for another

v 2 V �I , then (x

2

; v

1�i

; x

3

; v) would form a 
y
le in (G�x

1

)

�

. Moreover, in this 
ase, there

exists a vertex of I , say x

4

, su
h that �(x

4

) = 1 � i, for, otherwise, extending � by setting

�(x

1

) = i would result x

1

to be a leaf of G

�


ontradi
ting the fa
t that all 
y
les of G

�

go

through x

1

. However, now (x

2

; v

1

; x

3

; x

4

) forms a 
y
le in (G�x

1

)

�

, whi
h is a 
ontradi
tion.

In parti
ular, m � 3 to avoid triangles with x

2

or x

3

. The swit
hing 
lass of the dis
rete

graph K

n


onsists of the 
omplete bipartite graphs of order n, see [7℄, and therefore m = 3,

and �(x

2

) 6= �(x

3

). Sin
e the graph (G � x

1

)

�

is a
y
li
 and G

�

(x

2

x

3

) = 1, it follows that

V � I is independent in (G � x

1

)

�

. Therefore G = K

r;s

[ 3 � K

1

for some r; s � 2. Sin
e

K

3;3

[ 3 � K

1

is a 
riti
ally 
y
li
 graph, and ea
h K

2;s

[ 3 � K

1

, for s � 4, has an a
y
li


swit
h (by swit
hing one of the verti
es in the part of size 2 of K

2;s

), the 
laim follows. 2

Lemma 4.2

Let G be 
riti
ally 
y
li
 of order n � 10. Then no vertex z 2 V is adja
ent to more than

two leaves of G.

Proof:

If a set L of leaves of G is adja
ent to a vertex z, then by swit
hing at z, � = fzg, the verti
es

of L be
ome isolated in G

�

. 2

Lemma 4.3

Let G be a 
riti
ally 
y
li
 graph of order n � 10. Then G has at most one isolated vertex.

Proof:

Suppose that G has exa
tly two isolated verti
es, I = fx

1

; x

2

g. Let (G � x

1

)

�

be a
y
li
,

where we assume that �(x

2

) = 0 without restri
tion. The set � is independent in G and in

(G� x

1

)

�

, for, otherwise, there would be a triangle (
ontaining x

2

) in (G � x

1

)

�

. In fa
t, �


ontains at most one vertex from ea
h 
onne
ted 
omponent of (G� I)

�

. Noti
e that these


onne
ted 
omponents are trees, be
ause (G� x

1

)

�

is a
y
li
.

Let � = fz

1

; : : : ; z

r

g, and set �(x

1

) = 0. Then

G

�

= (H + (T

1

[ T

2

+ : : : [ T

r

)) [ F;

where H = K

2;r

has the bipartition (fx

1

; x

2

g; fz

1

; : : : ; z

r

g), and the indu
ed subgraphs T

i

are disjoint trees with H \ T

i

= fz

i

g; and F is an a
y
li
 indu
ed subgraph or it is empty.

Sin
e G

�

is not a
y
li
, we must have r � 2.
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� By (7-1) and (7-2'), either F is dis
rete or it is a path P

2

. In both 
ases, jF j � 2, by

Lemma 4.1.

� By (8-6), there 
an be at most two nontrivial trees among T

1

; : : : ; T

r

.

� Let T

i

be nontrivial a tree. By (7-1) the depth of T

i

from the root z

i

is at most 3 and

there are no verti
es of degree more than 2 at depth higher than 1. The graph (7-2)

ex
ludes the possibility that a 
hild of z

i

has degree larger than two, and by (7-2') the

tree 
annot 
ontain both an indu
ed P

4

and an indu
ed P

3

. Hen
e ea
h nontrivial tree

T

i

has the form

T

i

= S

k

i

;s

i

;0

or P

4

(s

i

; 0);

where S

k

i

;s

i

;0

(for k

i

� 0) is one of the spe
ial trees with z

i

as its 
entre, and in P

4

(s

i

; 0),

z

i

is the 
entre adja
ent to the s

i

leaves. By Lemma 4.2, s

i

� 2.

We shall now 
onsider the three 
ases for zero, one and two nontrivial T

i

.

(0) If G

�

has no nontrivial 
omponents among T

1

; : : : ; T

r

, then G

�

equals either K

2;r

,

K

2;r

[K

1

, K

2;r

[ 2 �K

1

or K

2;r

[ P

2

. All these have an a
y
li
 swit
h; a 
ontradi
tion.

(1) Suppose G

�

has exa
tly one nontrivial tree among T

1

; : : : ; T

r

, say T

1

.

Let T

1

= P

4

(s

1

; 0).

� By (7-1), r = 2 (otherwise remove z

1

).

� By (7-2'), jF j = 0 (otherwise remove the verti
es of T

1

adja
ent to z

1

).

However, now n � 9 
ontradi
ts our assumption on n.

Let T

1

= S

k

1

;s

1

;0

with k

1

> 0, and let r � 3.

� By (7-2'), jF j = 0, s

1

= 0 and k

1

= 1 (otherwise remove z

1

).

In this 
ase T

1

is a path P

3

, and G

�

has an a
y
li
 swit
h for all r � 3 (swit
h all z

i

's and

the other end point of T

1

); a 
ontradi
tion.

Then the 
ase for r = 2. In this 
ase, by (7-2'), F 
annot be a path P

2

, and so it is

dis
rete. Now G

�

has an a
y
li
 swit
h (swit
h at z

1

).

Finally, if T

1

= S

0;s

1

;0

, then jT

1

j � 3 (by Lemma 4.2), and therefore r � 4, sin
e jF j � 2.

� By (7-2'), F is dis
rete (otherwise remove z

1

).

� By (8-5), jF j � 1, and by (8-5'), if jF j = 1, then s

1

= 1 (and in this 
ase, T

1

is a path

P

2

).

The remaining 
ases, s

1

= 1 and jF j = 1, and s

1

= 2 and F = ;, have a
y
li
 swit
hes for

all r (swit
h with respe
t to x

1

, x

2

and a leaf at z

1

); a 
ontradi
tion.

(2) Suppose that G

�

has exa
tly two nontrivial trees in T

1

; : : : ; T

r

, say T

1

and T

2

, and

assume without loss of generality that jT

1

j � jT

2

j.

� By (8-8'), r � 3.

� By (8-4) and (8-7), jF j � 1.

� By (8-7), if r = 3, then jF j = 0.

Hen
e r + jF j � 3. Sin
e n � 10, it follows that jT

1

j+ jT

2

j � 10� r � jF j � 7.

First we treat the trees of depth at most 1. In this 
ase, T

1

= S

0;s

1

;0

. By Lemma 4.2

s

1

� 2, and hen
e jT

1

j � 3. Therefore jT

2

j � 4, whi
h 
ontradi
ts the assumption jT

1

j � jT

2

j.

Let t

1

be the depth of T

1

and suppose that t

1

� 2. Now by (8-1) and (8-2), jT

2

j = 2,

that is, T

2

is a path P

2

, and 
onsequently jT

1

j � 5. If T

1

= S

k

1

;s

1

;0

(k

1

> 0), then k

1

= 1

otherwise we have (8-3) by removing a middle vertex from a P

3

).

It follows that jT

1

j = t

1

+ 1 + s

1

� 5. Re
all that s

1

� 2. However, the 
ase t

1

� 2

and s

1

= 2 is ex
luded by (9-1), and the 
ases t

1

= 3 and 1 � s

1

� 2 are ex
luded by (8-4)

(remove the 
hild of z

1

on the path of depth t

1

). 2

9



As in the above, we have

Lemma 4.4

Let G be a 
riti
ally 
y
li
 graph of order n � 10. Then no vertex z 2 V is adja
ent to more

than one leaf of G.

Lemma 4.5

Let G be a 
riti
ally 
y
li
 graph of order n � 10 and let x 2 G.

i. G � x 
an have at most two isolated verti
es. Moreover, if G � x has two isolated

verti
es, then x is adja
ent to exa
tly one of these in G.

ii. If a vertex z 6= x is adja
ent to m leaves of G � x, then m � 2. Moreover, if m = 2,

then x is adja
ent to exa
tly one of these.

Proof:

For (i) we only need to observe that if G � x has three isolated verti
es, then in either G

x

or G at least two of these are isolated and we 
an apply Lemma 4.3. The same holds if the

number of isolated verti
es is two, but x is not adja
ent to exa
tly one of them in G.

For (ii), assume that there is a vertex z 6= x adja
ent to more than two leaves. The vertex

x is adja
ent to at most one of these in either G or G

x

and the result then follows from

Lemma 4.4. 2

We say that a vertex y 2 V is 
ompatible with x, if

� G� x is a
y
li
,

� G� y and G

x

� y are not a
y
li
.

Note that if y is 
ompatible with x, then all 
y
les in G (and G

x

) go through x, but not all

of them go through y.

Lemma 4.6

Let G be 
riti
ally 
y
li
 graph su
h that G� x is a
y
li
.

i. If y is 
ompatible with x, then G� fx; yg is a spe
ial graph.

ii. If G is of order n � 8, then there exists a vertex y 2 V that is 
ompatible with x unless

G 2 [C

n

℄.

Proof:

Let (G � y)

�

be a
y
li
 and set S = G � fx; yg. Be
ause S and S

�

are both a
y
li
 graphs

it follows that either (a) S is spe
ial or (b) � is 
onstant on S.

In the 
ase (b) all 
y
les go through x and y whi
h 
ontradi
ts the fa
t that G� y is not

a
y
li
. To see this, let there be a 
y
le that does not go through y. There are two sele
tors


onstant on S. The �rst of these is � = S [ fxg. But then (G� y)

�

equals G� y whi
h is a


ontradi
tion, be
ause the former is a
y
li
 and the latter is not. If on the other hand � = S,

then (G� y)

�

= (G

x

� y)

S[fxg

= G

x

� y and again we have a 
ontradi
tion.

For the se
ond part, suppose G =2 [C

n

℄. Sin
e G has no a
y
li
 swit
hes, there are 
y
les

in G and G

x

, and they all pass through x, be
ause G � x is a
y
li
. Moreover, sin
e C

k

is


riti
ally 
y
li
 for k � 7, the indu
ed 
y
les of G and G

x

have length at most 6.

If G or G

x

has an indu
ed 
y
le C

5

or C

6

, then let y be a vertex that is not on su
h a


y
le. It is 
lear that G � y and G

x

� y both 
ontain 
y
les, and therefore ea
h su
h y is


ompatible with x.

If G and G

x

have both an indu
ed 
y
le of length at most 4, then these two 
y
les have

altogether at most 7 verti
es (sin
e they share the vertex x), and, by n � 8, there exists a

vertex y that is not on these 
y
les. For ea
h su
h vertex y, both G� y and G

x

� y are not

a
y
li
. This proves the 
laim. 2
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Lemma 4.7

Let G be 
riti
ally 
y
li
 of order n � 10 su
h that G � x is a
y
li
. Then G � x has no

isolated verti
es.

Proof:

Assume to the 
ontrary of the 
laim that u is isolated in G�x. In this 
ase u is either a leaf

adja
ent to x (or isolated) in G and isolated (or a leaf adja
ent to x) in G

x

. Hen
e G � u

and G

x

� u are not a
y
li
 and by Lemma 4.6(i), S = G� fx; ug is a spe
ial graph.

In this 
ase, by Lemma 4.5(ii) and the fa
t that n � 10, S must be either of type (1s) or

one of (5s), (7s), (8s) with k = 2 = m.

In the latter three 
ases S has a unique swit
h at the two 
entres � = fz

1

; z

2

g by

Lemma 3.3, and it is easy to see that (G � u)

�

is not a
y
li
, sin
e x is adja
ent to ex-

a
tly one leaf adja
ent to both 
entres in S and remains to be so in S

�

.

Consider then the 
ase S = S

k;m;`

. Without restri
tion we 
an assume that �(z) = 1.

Extend � to the whole domain by setting �(u) = 0.

We have n = (2k + 1) +m + ` + 2 � 10, and thus k �

1

2

(7 � (m + `)). By Lemma 4.5,

m � 2 and ` � 1. (Re
all that u is an isolated vertex of G� x.) In parti
ular, k � 2, and if

k = 2, then m = 2, ` = 1 and n = 10. In these 
ases, the spe
ial a
y
li
 graph S has a unique

swit
h S

�

to another a
y
li
 graph (by Lemma 3.2), where � = fzg. By the uniqueness of �,

we have that �(v) = �(v) for all v =2 fx; ug.

Now, the only verti
es in G that 
an be
ome adja
ent to u in G

�

are x and z and be
ause

G

�

is not a
y
li
, these 
onne
tions must exist: G

�

(ux) = 1 = G

�

(uz) and they are the only

edges of G

�

in
ident with u. Moreover, x is adja
ent in G

�

to exa
tly one vertex v 2 H [ I ,

sin
e G

�


ontains a 
y
le but G

�

� u does not.

If v = x

i

, say v = x

1

. If ` � 1, then fx; x

1

; z; u; y

1

; u

1

; y

2

g indu
es an (7-4) in G

�

.

Therefore ` = 0. If jM j � 1, then fx; x

1

; z; u; y

1

; w; v

1

g indu
es an (7-4) in G

�

for w = x

2

or

w = y

2

depending on the value G

�

(xv

1

). Therefore also m = 0. Now k � 4, and G

�


ontains

an indu
ed (7-4) obtained by removing x

2

.

If v = y

i

, say v = y

1

, then G

�

j

fx;y

1

;x

1

;z;ug

is an indu
ed C

5

, and hen
e G

�

has an indu
ed

(6-1) obtained by removing x

2

.

If v = u

i

, say v = u

1

. To avoid (8-3) as being indu
ed by fx; u

1

; z; u; x

1

; y

1

; y

2

; v

i

g (for

any v

i

2M), we must have G

�

(xv

i

) = 0 (if m > 0). Now, however, (G

�

)

z

is a
y
li
.

If v = z, then G

�

has an a
y
li
 swit
h for fzg. This 
ontradi
tion 
ompletes the proof

of the lemma. 2

5 The 
ases

In this se
tion, let G be a 
riti
ally 
y
li
 graph of order n = jV j � 10, let x 2 V be a �xed

vertex.

Sin
e G is 
riti
ally 
y
li
, there exists an a
y
li
 swit
h (G�x)

�

of the subgraph G�x.

Sin
e the swit
hes of 
riti
ally 
y
li
 graphs are 
riti
ially 
y
li
, we 
an assume that � is


onstant on V , and therefore that G� x is a
y
li
 already.

Assume that y is a vertex 
ompatible with x, that is, G � y and G

x

� y are both not

a
y
li
. We know by Lemma 4.6(ii) that verti
es su
h as x and y de�ned above exist if the

swit
hing 
lass does not 
ontain C

n

. In the following we shall 
onsider every type of spe
ial

graph in turn and show that ea
h 
ase leads to a 
ontradi
tion, thereby proving our main

theorem that besides graphs in [C

n

℄ there no 
riti
ally 
y
li
 graphs of order n � 10.

By Lemma 4.6(i), S = G � fx; yg is a spe
ial a
y
li
 graph, and (G � y)

�

is a
y
li
 for

a non
onstant sele
tor �. The spe
ial graph S 
annot be of type (9s), (10s), (11s) or (12s),

be
ause the order of S should be at least 8 to ensure that n � 10.

Without restri
tion we 
an assume that �(x) = 0. This follows from the symmetry in

the de�nition of 
ompatibility, i.e. the fa
t that both G� y and G

x

� y are not a
y
li
. We

extend � to the whole domain by setting �(y) = 0. Note that (G� y)

�

= G

�

� y.

In the following proofs a number of simple properties are often used, and we note them

here: �rst of all, the vertex y is adja
ent to at most one vertex of ea
h 
omponent of S. If

not, G � x would not be a
y
li
. Also, there must be a 
y
le in G that does not 
ontain y,

be
ause G� y is not a
y
li
. This also holds for G

x

� y.
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We shall now formulate a few 
onditions that hold for the, still remaining, spe
ial graphs

(1s)-(8s). Let L

H

(z) be the set of leaves adja
ent to z in H , and let I

H

denote the set of

isolated verti
es in H .

Lemma 5.1

Given the de�nitions above, we have that

i. I

S

� N

G

(y).

ii. for all z 2 S, jL

S

(z)j � 3. Moreover, jL

S

(z)j = 3 implies jN

G

(x) \ L

S

(z)j � 1 and

jN

G

(y) \ L

S

(z)j = 1.

Proof:

Claim (i) follows from Lemma 4.7.

We have jN

G

(y)\L

S

(z)j � 1, sin
e G�x is a
y
li
. If jL

S

(z)j � 3, then, by Lemma 4.5(ii),

jL

S

(z) �N

G

(y)j � 2, and x is adja
ent to at most one vertex of L

S

(z) �N

G

(y). Hen
e, in

this 
ase, we must have jL

S

(z)j = 3 and in that 
ase x and y are ea
h adja
ent to at least

one vertex. In the 
ase of y it is exa
tly one vertex. 2

Note how the previous Lemma restri
ts the values of k and m for the types (2s)-(8s) and

m for (1s). On the other hand n � 10 gives a lower bound on these values for most types.

5.1 The 
ase (1s)

We shall now 
onsider �rst the most diÆ
ult 
ase, S

k;m;`

. Suppose that S = S

k;m;`

, and

adopt the notations of (S1)-(S4) for it. Without restri
tion we may assume that �(z) = 1.

Lemma 5.2 We have

i. k = 2,

ii. 1 � `;m � 2 and m+ ` � 3,

iii. M � N

G

(x),

iv. if ` = 2, then jN

G

(x) \ I j = 1,

v. if m = 2, then jN

G

(y) \M j = 1.

vi. jN

G

(x) \ (H [ I)� fzgj � 1,

Proof:

By Lemma 4.3, jN

G

(x) \ I j � 1 for, otherwise, swit
h with fx; yg to obtain two isolated

verti
es. By Lemma 4.5(ii) we have both ` � 2 and Claim (iv).

If k = 0, then m+ ` � 7 
ontradi
ting the bounds m � 3 from Lemma 5.1(ii) and ` � 2.

If k = 1, then m + ` � 5, sin
e n � 10. In this 
ase, ` = 2 and m = 3. If k = 2,

then m + ` � 3. Therefore by Lemma 3.2, in all 
ases k � 1, S

z

is the unique a
y
li


swit
h of S. It follows that �j

S

= fzg, and therefore M � N

G

(x), for, otherwise the a
y
li


graph G

�

� y would have an isolated vertex 
ontradi
ting Lemma 4.7 (remember that we

have �(x) = 0 = �(y)). Lemma 4.5(ii) then implies m � 2, and as a 
onsequen
e k � 2,

be
ause as was shown above, if k = 1, then we must have m = 3. The Claim (v) follows from

Lemma 4.5(ii).

Claim (vi) follows from the fa
t that G

�

j

H[I

is 
onne
ted and G

�

� y is a
y
li
.

Suppose then that k � 3. By Claim (vi) it follows that there are at least two pairs x

i

y

i

su
h that G(xx

i

) = 0 = G(xy

i

), say for i = 1; 2. Let the sele
tors �

i

be su
h that (G� x

i

)

�

i

are a
y
li
, where we may 
hoose �

i

(z) = 1. The spe
ial graph S � x

i

, whi
h is S

k�1;m+1;`

,

has a unique a
y
li
 swit
h (S�x

i

)

z

, sin
e n � 10 and k � 3 by Lemma 3.2 (note that ` = 0

implies m � 4, be
ause n � 10).

It is then 
lear that �

i

= � when we set �

i

(x

i

) = 0. By Lemma 4.7, the vertex y

i

is not

isolated in G

�

i

� x

i

, and therefore G

�

i

(yy

i

) = G(yy

i

) = 1 for i=1,2 (sin
e G(xy

i

) = 0 =

G

�

i

(xy

i

)) and we have a 
y
le in G� x. This 
ontradi
tion proves 
ase (i). 2
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Noti
e that, in this 
ase, the above Lemma implies that n � 11.

We �nish the 
ase S = S

k;m;`

.

Assume G(xu

1

) = 1. Then G(xz) = 1, sin
e otherwise (x; u

1

; z) would be a triangle in

G

�

� y. Also, G(xx

i

) = 0 = G(xy

i

) for i = 1; 2, be
ause G

�

� y is a
y
li
.

We have G(xy) = 0, for, otherwise (x; y; u

1

) is a triangle in G, and to avoid (5-1) with

the edges G(x

i

y

i

) = 1, we would have to have that y is adja
ent to two verti
es in H � fzg

giving a 
y
le to G� x. Note that now all edges involving x are known.

Now (x; z; v

1

) is a triangle in G, and to avoid (7-5'), ne
essarily (1) G(yz) = 1 or (2)

G(yv

1

) = 1, and y is adja
ent to no other verti
es of H [M .

(1) If G(yz) = 1, then jM j = 1, be
ause otherwise y must be adja
ent to either one of

the v

i

(Lemma 5.2(v)), but then (y; z; v

i

) is a 
y
le of G� x. Lemma 5.2(ii) implies jI j = 2

and fx; u

1

; y; z; y

1

; x

2

; u

2

g indu
es a (7-4). We have G(xu

2

) = 0 by Lemma 5.2(iv).

(2) If G(yv

1

) = 1, then fu

1

; y; x; v

1

; z; y

1

; x

2

g indu
es a (7-3).

Therefore G(xu

1

) = 0, and 
onsequently I = fu

1

g by Lemma 5.2(iv).

By Lemma 5.2, m = 2, and we have G(xv

1

) = 1 = G(xv

2

), G(yv

1

) = 1, G(yv

2

) = 0, and

G(yu

1

) = 1, G(xu

1

) = 0.

In this 
ase G(yw) = 0 for all w 2 S � fu

1

; v

1

g, sin
e G� x is a
y
li
.

To avoid a 
y
le in G

�

� y, G(xx

i

) = 0 = G(xy

i

) for i = 1 or 2, say i = 1. There are two


ases here.

(1) G(xz) = 0. Now G(xy) = 1, sin
e otherwise fx; v

1

; v

2

; z; y; x

1

; y

1

; u

1

g indu
es an (8-9)

in G.

(2) G(xz) = 1. To avoid fx; z; v

1

; y

1

; x

1

; y; u

1

g indu
ing a (7-5') we must have G(xy) = 1.

In both 
ases, G(xy) = 1. But fx; y; v

1

; x

1

; y

1

g indu
es a (5-1'). This 
ontradi
tion proves

the present 
ase.

5.2 The other 
ases

Let S = S(k;m) where we assume that k � m. Let z

1

and z

2

be the two 
entres of S, and

L = fv

1

; : : : ; v

k

g and M = fu

1

; : : : ; u

m

g be the sets of leaves of S adja
ent to z

1

and z

2

,

respe
tively.

Lemma 5.3

i. If S is of type (3s)-(8s), then jL

S

(z

i

)j � 2 for i = 1 or 2.

ii. If S

�

is the unique a
y
li
 swit
h of S and z 2 S, su
h that S 6= S

�

and jL

S

(z)j = 3,

then x and y are ea
h adja
ent to exa
tly one, but di�erent leaf at z.

Proof:

For Claim (i), assume both z

1

and z

2

have three leaves adja
ent to them in S. By Lemma 5.1(ii),

y is adja
ent to one leaf at z

1

and one at z

2

giving a 
y
le in G�x for the types (4s)-(8s). For

(3s) we 
an apply the same reasoning, but taking y instead of x: G

�

� y has a 
y
le. Note

that we need that � is the unique non
onstant sele
tor mapping S into an a
y
li
 graph.

However, we have k = 3 = m and by Lemma 3.3 the result follows.

To avoid a 
y
le in G

�

� y, x is adja
ent to at most one of the leaves. Now, 
ase (ii)

follows from Lemma 4.5(ii) and Lemma 5.1(ii). 2

Note that by Lemma 5.1(ii), Lemma 5.2(i) and (ii), Lemma 5.3(i) it already follows that

there are no 
riti
ally 
y
li
 graphs of order at least 12 unless they are in [C

n

℄ for n � 12.

5.3 The 
ases (2s)-(4s)

By the fa
t that n � 10 and Lemma 5.1(ii), we have k = 3 and 2 � m � 3. In all these


ases the unique non
onstant swit
h mapping S into an a
y
li
 graph is � = fz

1

; z

2

g by

Lemma 3.3. Re
all that we still have �(x) = 0 = �(y).

By Lemma 5.3(ii), x is adja
ent to one of the v

i

, say v

1

, and y is adja
ent to an other v

i

,

say v

3

. To avoid a 
y
le in G

�

� y, x must be adja
ent to z

2

, and y is not adja
ent to any of

the other v

i

or z

1

.

We now go over the 
ases one by one.
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(2s) S = S(k;m) = K

1;k

[K

1;m

. Be
ause n � 10 and the bounds on k and m, we know

that k = 3 = m. By Lemma 5.3, x is adja
ent to a leaf u

i

, say u

1

and y to a leaf u

i

di�erent

from u

1

, say u

3

. Be
ause of the uni
ity of �, x must be adja
ent to z

1

to ensure that G

�

� y

is a
y
li
.

The only remaining unknown is G(xy). If G(xy) = 0, then we have (5-1) fx; v

1

; z; u

3

; yg,

and if G(xy) = 1, then we have (7-4) fu

1

; x; y; v

3

; z

1

; v

2

; u

2

g.

(3s) S = S(k;m) = K

1;k

[ K

1;m

[ K

1

. Be
ause of the uniqueness of �, S is mapped

into a tree of type (4s). To avoid 
y
les in G

�

, ne
essarily G(xz

1

) = 1, G(xw) = 0 (for the

isolated vertex w of G) and G(xu

i

) = 0 for all u

i

2 M . By the above, G(xz

2

) = 1 and

G(xv

2

) = 0 = G(xv

3

).

By Lemma 4.5(ii), m = 2 and y is adja
ent to one of the u

i

, say u

2

.

The only unknown is the edge xy. If G(xy) = 0, then we have (7-5') fv

1

; x; z

2

; u

1

; y; v

3

; z

1

g,

and if G(xy) = 1, then we have (7-4) fv

1

; x; y; u

2

; z

2

; v

2

; u

1

g.

(4s) Now S = S(k;m) = P

3

(k;m). Be
ause S is 
onne
ted, y is not adja
ent to any

other vertex of S (ex
ept v

3

). Hen
e, m = 2 and x is adja
ent to one of the u

i

, say u

1

(Lemma 4.5(ii)). To prevent 
y
les in G

�

�y, x must be adja
ent to z

1

. If G(xy) = 0, then we

have (5-1) fx; u

1

; z

2

; v

3

; yg and if G(xy) = 1, then we have (7-4) in G

x

fv

1

; z

1

; v

2

; v

3

; x; u

1

; yg.

5.4 The 
ases (5s)-(8s)

(6s) S(k;m) = P

2

(k;m). In this 
ase, n � 10 implies k = 3 = m, but then G � x is not

a
y
li
.

In the remaining 
ases (5s), (7s) and (8s), let w

1

be the neighbour of z

1

of degree 2 and

let w

2

be the single unnamed vertex (d

S

(w

2

) equals 0, 1 or 2 depending on the 
ase), see

Figure 4(5s), (7s) and (8s).

By Lemma 5.1(ii) and n � 10, 2 � k � 3, m � 1, and k +m � 4. In all these 
ases the

unique non
onstant swit
h mapping S into an a
y
li
 graph is � = fz

1

; z

2

g by Lemma 3.3.

We 
an assume that x is adja
ent to a vertex in L, say G(xv

1

) = 1. This follows from

Lemma 5.3(ii) if k = 3. On the other hand, if k = 2, then ne
essarily m = 2, sin
e n � 10,

and in this 
ase N

G

(y) \ L = ; or N

G

(y) \M = ; in order to avoid a 
y
le in G � x. By

Lemma 4.5(ii), N

G

(x) \M 6= ; or N

G

(x) \ L 6= ;, respe
tively. Sin
e now k = m (= 2), the

assumption is validated.

Claim 1: G(xz

1

) = 1 = G(xz

2

), and G(xu) = 0 for all u =2 fv

1

; z

1

; z

2

; w

2

; yg. Moreover,

G(xw

2

) = 0 if d

S

(w

2

) 6= 0 (that is, ex
epting the 
ase (5s)).

Proof:

Re
all that �(x) = 0, and, indeed, � = fz

1

; z

2

g. The 
laim follows, sin
e G

�

� y is a
y
li
.

Claim 2: G(yv) = 1 holds for exa
tly one vertex v 2 S � fw

2

g, and either (i) v 2 L, say

G(yv

3

) = 1, in whi
h 
ase k = 3 and m = 1, (ii) v 2M , say G(yu

2

) = 1, in whi
h 
ase k = 2,

m = 2. Moreover, G(yw

2

) = 1 holds only in the 
ase (5s).

Proof:

The �rst statement follows from the fa
t that G� x is a
y
li
. Now if y is not adja
ent to a

vertex of M , then jM j = 1 by Lemma 4.5(ii) and the fa
t that G(xu) = 0 for all u 2 M . It

follows that k = 3, and, 
onsequently, y is adja
ent to a vertex of L. On the other hand, if

G(yu) = 1 for a u 2 M , then G(yv) = 0 for all v 2 L to avoid a 
y
le in G� x, and in this


ase, k = 2 by Lemma 4.5. That G(yw

2

) = 1 in the 
ase (5s) follows from Lemma 5.1(i). In

the other two 
ases, G(yw

2

) = 1 would result in a 
y
le in G� x.

These two 
laims together determine G with the ex
eption of the value for G(xy).

The 
ases are all ex
luded:

(5s) x is not adja
ent to w

1

and neither is y. Hen
e in G

�

� y the vertex w

1

is isolated


ontradi
ting Lemma 4.7.

(7s) In both 
ases, G(xy) = 1 to avoid (7-4) as being the subgraph indu
ed by the

verti
es fx; z

1

; w

1

; z

2

; v

2

; w

2

; yg. Now G 
ontains a swit
h of (7-4) if k = 3 and m = 1 (this

is G

z

1

� fv

1

; v

3

; u

2

g), and G 
ontains (7-5') if k = 2 = m (this is G� fu

1

; v

2

; z

2

g).

(8s) In both 
ases, G(xy) = 1 to avoid (6-1) as being the subgraph indu
ed by the verti
es

fx; z

1

; w

1

; w

2

; z

2

; yg. Now fx; z

1

; w

1

; w

2

; z

2

; y; u

1

g indu
es (7-3').

This proves Theorem 2.4.
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6 Con
luding remarks

Finding the 
riti
ally 
y
li
 graphs was done as follows: a program was written in C that

listed for a number n of verti
es a representative of ea
h swit
hing 
lass that did not 
ontain

any a
y
li
 swit
hes. In a later phase, when we were looking for 
riti
ally 
y
li
 graphs on n

verti
es, we only had to make sure that all 
riti
ally 
y
li
 graphs of lower order 
ould not

anymore o

ur in these graphs. The program was run in this way for up to 12 verti
es. We

used here the �les from [9℄ whi
h list generators for the swit
hing 
lasses up to isomorphism

and up to 
omplementation for up to 10 verti
es.

A 
omputer program in the fun
tional language S
heme veri�ed that the 
riti
ally 
y
li


graphs found were in fa
t 
riti
ally 
y
li
. Also, the authors veri�ed this by hand.

In our proofs, not all of the 
riti
ally 
y
li
 graphs were used. The graphs that were not

used are (8-10)-(8-15) and (9-3)-(9-5). Lemma 4.6 ex
ludes the 
y
les C

8

and C

9

. For the

other graphs, ex
ept (8-12), the reason is that if they are indu
ed subgraphs of any graph of

order at least 10, then this graph also 
ontains one of the 
y
li
 graphs from Figure 1, 2 and

3 or it 
ontains (8-12). The graph (8-12) does not o

ur in our proofs, be
ause it is overruled

by Lemmas 4.6 and 4.7, that is, if G is a forbidden graph of order 10 that does not have 2

isolated verti
es and su
h that G� x is a
y
li
 and G�fx; yg is spe
ial, then G 
ontains an

indu
ed 
riti
ally a
y
li
 graph that was used in the proofs.

As an aside we note that our program found that the graphs (8-9) and (8-12) have a

similar property: adding two verti
es to either of these graphs in any way, always results in

a graph that 
ontains a swit
h of one of the other 
riti
ally 
y
li
 graphs.
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