
Iterative Compilation in Program Optimization

T. Kisuki

y

P.M.W. Knijnenburg

y

M.F.P. O'Boyle

z

H.A.G. Wijsho�

y

y

Dept. of Computer Science, Leiden University

Niels Bohrweg 1, 2333 CA Leiden, the Netherlands

fkisuki,peterk,harrywg@cs.leidenuniv.nl

z

Institute for Computing Systems Architecture

the University, Edinburgh EH9 3JZ, U.K.

mob@dcs.ed.ac.uk

Abstract

In this paper we describe a novel approach to pro-

gram optimization, namely, iterative compilation. This

technique enables compilers to deliver e�cient code by

searching for the best sequence of optimizations using

pro�le-directed feedback. We have implemented this it-

erative approach in an existing compiler system which

is designed for embedded systems and compared its per-

formance to two of the best known static techniques.

Initial experimental results show that this approach de-

livers an average improvement of 35% over existing

techniques and delivers e�cient code with reasonable

compilation times.

1. Introduction

Modern compilers make extensive use of optimization

to improve program performance. The use of a par-

ticular optimization largely depends on static program

analysis based on simpli�ed machine models. Opti-

mizations include high-level loop transformations, such

as loop unrolling and tiling. These techniques are ex-

tensively studied for over 30 years and have produced,

in many cases, good results. However, the machine

models used are inherently inaccurate, and transfor-

mations are not independent in their e�ect on perfor-

mance making the compilers task of deciding the best

sequence of transformations di�cult. Typically, com-

pilers use heuristics that are based on averaging ob-

served behavior for a small set of benchmarks. Fur-

thermore, while the processor and memory hierarchy

is typically modelled by static analysis, this does not

account for the behavior of the entire system. For in-

stance, the register allocation policy and strategy for

introducing spill code in the back-end of the compiler

may have a signi�cant impact on performance. Thus

static analysis can improve program performance but

is limited by compile-time decidability.

Recently, we have investigated aggressive optimization

techniques for embedded systems where a di�erent ap-

proach to optimization, namely iterative compilation,

has been adopted [3]. In this approach, successive

transformations are applied to a program and their

worth determined by actually executing the resulting

code. Such an approach does not su�er from unde-

cidability issues and, given su�cient time, will �nd

the optimal program. The obvious drawback is that

compilation time dramatically increases. In the case

of embedded applications, however, only one program

is to be executed and the cost of compilation can be

amortised over the number of systems shipped and the

lifetime of the application. In such applications, per-

formance is critical. Hence the long compilation times

for iterative compilation can be a�orded.

Approaches to optimization based on searching have re-

cently received attention from other authors. Whaley

and Dongarra [20], and Bilmes et al. [6] describe sys-

tems for generating highly optimized BLAS routines.

These systems probe the underlying hardware to �nd

optimal values for blocking factors, unroll factors etc.

Experimentation has shown [6, 20] that these systems

are capable of producing more e�cient code than the

vendor supplied, hand optimized library BLAS rou-

tines. In contrast to the present approach, however,

these systems are only able to optimize BLAS routines

and are not general purpose compilers.

Wolf, Maydan and Chen [21] have described a com-

piler that also searches for the optimal optimization

by considering the entire optimization space. In con-

trast to the present approach, however, their compiler

uses a static cost model to evaluate the di�erent opti-

mizations. We believe that the present approach based

on actual execution times will deliver superior perfor-

mance.

Chow and Wu [8] apply `fractional factorial design' to

decide on a number of experiments to run for selecting

a collection of compiler switches. They, however, focus

on on/o� switches and do not consider the choice of

parameter values that might come from a large range

of values.

Over the past years, many proposals have been put

forward to use pro�le information, for example, in the

creation of superblocks [12] or hyperblocks [15] to en-

able e�cient scheduling for ILP processors. These

techniques are currently being employed in commercial

compilers [9]. Pro�les are also used to identify run-

time constants that can be exploited at compile time

[16]. The recently established workshop on Feedback

Directed Compilation shows that currently many pro-

posal are being put forward to exploit pro�le informa-

tion in the compiler chain. This paper can be seen as

taking pro�ling one step further by using many pro�les

for deciding between many alternatives.

Finally, within the OCEANS project, other approaches

to iterative compilation are considered. In [19] the in-

terplay between loop unrolling and software pipelining

is explored. In [17] a genetic algorithm approach to

searching is proposed.

In order to assess the feasibility of iterative compila-

tion, we have conducted several experiments [7, 13].

We generated all versions of three important linear al-

gebra routines using loop unrolling and tiling, and ex-

ecuted them on 7 di�erent platforms. We used a grid-

based search algorithm (the same as the search algo-

rithm in the present study) to see how fast a search

would �nd acceptable levels of optimization. We found

that by visiting only 2.5% of the search space we could

obtain an optimization that comes within 5% of the

absolute minimum of this search space.

From these feasibility studies, we concluded that iter-

ative compilation is a feasible and e�ective approach.

In this paper we discuss the implementation of iter-

ative compilation and report the initial results of this

approach. We also discuss the complexity of the search

procedure by examining the running times of the com-

piler.

This paper is organized as follows. In section 2 we

discuss how iterative compilation is implemented. In

section 3 we discuss our experimental setup. In sec-

tion 4 results are discussed including performance im-

provement and actual compilation time. Finally, in

section 5, we draw some concluding remarks.

2. Iterative Compilation

In this section we discuss how the iterative compilation

system is implemented. Figure 1 shows an overview of

the compiler system.

Driver

List of Transformations

MT1 Compiler TDL−Files

F77

Transformed Program

Execution
 Time

SSL−File

Figure 1. The Compilation Process

The compilation system is centred around a global

driver. This driver keeps track of the di�erent trans-

formations evaluated so far and decides which transfor-

mations to apply next. The driver reads a list of trans-

formations that it needs to examine together with the

range of their parameters. For example, this list con-

tains the entry Unroll 1 - 20. The driver uses an

N dimensional array when N di�erent optimizations

need to be examined that represents the transforma-

tion space. Each point in this array corresponds to a

speci�c set of parameters for the transformations. It is

the role of the driver to search for the optimal parame-

ters for each transformation.

The algorithm used by the driver searches the transfor-

mation space, where each axis of the space corresponds

to a particular transformation and each point along an

axis corresponds to a particular transformation para-

meter value. By placing an integer lattice or grid over

this space and visiting lattice points, the algorithm has

a means of navigating the transformation space and de-

termining the best parameters for all transformations.

In [7, 13] we have shown that this algorithm can reach

high levels of optimization in a relatively small num-

ber of steps. The grid search algorithm can be brie
y

described as follows.

1. De�ne a coarse grid on the search space. Evalu-

ate all points on this grid by generating the trans-

formed programs and executing them.

2. Find the point with minimum execution time and

all points that are within an allowable distance

from this minimum.

3. Order these points in a priority queue, ordered by

execution time.

4. For each point in the queue,

� if the execution time associated with this

point is within an allowable distance from the

minimum found so far, re�ne the grid around

this point by forming a new grid with half the

spacing in each dimension.

� If new points are found that are close to the

minimum found so far, enqueue them in the

priority queue.

Using this algorithm the search space is traversed to

�nd optimal parameters for the transformations.

The global driver invokes the source to source com-

piler MT1 [5]. MT1 has two mechanisms to control

which transformation it applies to the input program:

a Transformation De�nition Language TDL [4] and a

Strategy Speci�cation Language SSL [2].

For each transformation included in the list of trans-

formations used by the global driver, a transformation

needs to be speci�ed in the TDL-�le. This �le needs

to be given beforehand by the user. A transformation

given in the TDL has the following general format:

TRANSFORMATION

name

TRANSFORM

input pattern

INTO

output pattern

CONDITION

conditions

Although the TDL is pattern-matching based, it allows

the inclusion of user de�ned functions that may exam-

ine and change the internal program representation. In

this way, almost any transformation can be speci�ed.

Next, in order to instruct MT1 to apply a speci�c se-

quence of transformations, the global driver constructs

an SSL �le that speci�es the order in which to apply

certain transformations.

Hence one step of the global driver consists of the fol-

lowing steps:

1. Decide the next set of parameters for the trans-

formations using its internal search space and the

search algorithm.

2. Construct an SSL �le that corresponds to this new

sequence.

3. Invoke MT1 that starts the transformation process

by reading in the source program, the SSL �le and

the TDL �le.

4. The transformed program is compiled for the tar-

get architecture and executed.

5. The execution time is measured and reported back

to the global driver.

6. The global driver stores this execution time and

starts the next step.

Finally, after a predetermined number of iterations, the

global driver stops searching and outputs the trans-

formed program with the shortest execution time.

3. Experimental Setup

In our experiments into the e�ciency of iterative com-

pilation, we use three transformations and �ve bench-

marks. We have selected the following transforma-

tions [1]:

1. Loop Tiling, with tile sizes 1 to 100;

2. Loop Unrolling, with unroll factors 1 to 20;

3. Array Padding, with pad sizes 1 to 10.

The driver applies these transformations in this order

and searches for the optimal tile size, unroll factor and

pad size. We studied the behavior of the search al-

gorithm in two cases: using unrolling and tiling, and

using unrolling, tiling and padding.

We selected �ve benchmarks: three general purpose ba-

sic linear algebra routines and two routines from multi-

media applications. Each benchmark is optimized us-

ing three input data sizes.

1. Matrix-Matrix Multiplication (MxM), data sizes

256, 300 and 301;

2. Matrix-Vector Multiplication (MxV), data sizes

2048, 2300 and 2301;

3. Successive Over Relaxation (SOR), data sizes 128,

150 and 151;

4. Forward Discrete Cosine Transform from mpeg2

(FDCT), data sizes 256, 300 and 301;

5. Motion compensation routine from H263 (RECO),

data sizes 2048, 2300 and 2301.

As our target platform we choose the Pentium II at

233 MHz. We used the Fortran compiler g77 (version

0.5.19.1) with optimization
ag -O on.

4. Results

In this section we discuss the results obtained by the

iterative compilation approach. We also discuss the

overall compilation time.

4.1. Single Data Size

We have executed the search algorithm on all bench-

marks and for three �xed input data sizes. In Fig-

ures 2 and 3 we have shown the performance improve-

ment of our technique over the original execution time.

The x-axis shows the number of iterations (or com-

pile/execute cycles) and the y-axis shows the speedup

over the original program. We restrict the number of

iterations to 400 in each case, since our previous re-

search [7, 13] showed that it is likely that within this

number of iterations high levels of optimization are ob-

tained. Table 1 shows the optimal parameters for the

transformations found in the search.

First, in Figure 2 loop tiling and loop unrolling are ap-

plied as transformations. The �rst observation is that,

except in the case of SOR, the search algorithm �nds

good speedups, up to a speedup of 3.4 in the case of

MxV. SOR is not improved much because this kernel

the transformations that we currently examine do not

apply to it (c.f. [10]). Note that the platform used in

this study only has a small issue width. Hence the ef-

fect of loop unrolling to expose ILP is limited. Another

observation is that the search algorithm �nds good pa-

rameters quickly. Within 50 evaluations in all cases

except for MxM and SOR the performance improve-

ment is close to maximum. For MxM and SOR more

than 100 evaluations are required to obtain a good per-

formance improvement. This corresponds ot 5% of the

entire search space. After 300 evaluations, there is no

performance improvement observed in any case. This

corresponds to 15% of the entire search space.

Second, Figure 3 shows the performance improvement

when array padding is also considered. This enlarges

the transformation space by a factor of 10. Compar-

ing Figures 2 and 3, we can see that although the

search space is larger comparable speedups are ob-

tained within the same number of iterations. In case

of MxV, a signi�cantly larger speedup is found. In

other cases (e.g., MxM) a slightly smaller improvement

than in the previous case is found. 350 evaluations are

required to obtain comparable or better results than

in the �rst case. However, in this case, this number

of evaluations corresponds to only 1.75% of the entire

search space. Hence we do not observe a scaling up of

the number of iterations required with the size of the

search space.

Third, table 1 shows the best parameters for the trans-

formations found within 400 iterations and the itera-

tion in which these values have been found. From this

table, we can observe that the best parameters highly

depend on the input data size. The e�ect of inter-

ference among transformations can also observed from

this table.

4.2. Multiple Data Sizes

In the previous section we have shown that our iterative

approach to optimization yields signi�cant speedups

for the case of �xed input data sizes. Hence, if pro-

�ling shows that the kernel is heavily biased towards

a certain input data size, this approach can be used.

However, in many cases pro�ling will yield a distribu-

tion of input data sizes. In this case we cannot simply

optimize for one single data input size. Instead we need

to optimize the program so that the average execution

time is minimized.

To deal with this situation, we execute the transformed

program on several data input sizes. We collect the dif-

ferent execution times and compute the weighted av-

erage where weights correspond to the distribution of

data sizes obtained from pro�ling. The search proceeds

exactly like before, yielding an optimization that min-

imizes the average execution time.

We have conducted two experiments to assess this ap-

proach. We used unrolling, tiling and padding as trans-

formations. We did not consider SOR as a benchmark

since for this kernel only very small improvements can

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

2.10

2.20

2.30

0 100 200 300 400
Number of Iterations

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

N = 256

N = 301
N = 300

MxM

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

3.00

3.20

3.40

0 100 200 300 400
Number of Iterations

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

N = 2300
N = 2301

N = 2048
MxV

0 100 200 300 400
Number of Iterations

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

SOR
N = 128
N = 150
N = 151

1.012

1.014

1.018

1.008

1.020

1.010

1.016

1.006

1.004

1.10

1.12

1.14

1.16

1.18

1.20

1.22

0 100 200 300 400
Number of Iterations

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

N = 256

N = 301
N = 300

FDCT

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

0 100 200 300 400
Number of Iterations

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

N = 2300
N = 2301

N = 2048

RECO

Figure 2. Performance Improvement using Unroll and Tile

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

2.10

2.20

0 100 200 300 400
Number of Iterations

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

N = 256

N = 301
N = 300

MxM

1.50

2.00

2.50

3.00

3.50

0 100 200 300 400
Number of Iterations

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

N = 2300
N = 2301

N = 2048
MxV

0 100 200 300 400
Number of Iterations

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

SOR
N = 128
N = 150
N = 151

1.012

1.014

1.018

1.008

1.020

1.010

1.016

1.006

1.004

1.10

1.12

1.14

1.16

1.18

1.20

1.22

0 100 200 300 400
Number of Iterations

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

N = 256

N = 301
N = 300

FDCT

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

0 100 200 300 400
Number of Iterations

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

N = 2300
N = 2301

N = 2048

RECO

Figure 3. Performance Improvement using Unroll, Tile and Pa dding

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

N = 300 N = 301N = 256

MxM

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

MxV
N = 2048 N = 2300 N = 2301

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

0.00

0.20

0.40

0.60

0.80

1.00

1.20

N = 300 N = 301N = 256
FDCT

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

RECO
N = 2048 N = 2300 N = 2301

Average of Four Average of Three Single

Figure 4. Comparison of Performance Improvement using Mult iple Data Sizes

Original T & U T & U & P

Space 2000 20000

Time Tile Unroll Iteration Time Tile Unroll Pad Iteration Time

MxM

256 1.38 4 15 299 0.59 51 13 5 299 0.63

300 1.64 32 13 228 0.89 99 13 3 292 1.01

301 1.68 32 13 102 0.91 99 13 3 290 1.03

MxV

2048 0.93 16 9 73 0.27 16 7 5 354 0.25

2300 0.52 46 6 160 0.31 19 6 8 364 0.31

2301 0.55 32 7 117 0.31 21 6 7 68 0.31

SOR

128 1.84 40 17 109 1.81 11 6 3 61 1.83

150 3.05 59 18 275 3.00 26 17 2 353 3.00

151 3.11 21 17 71 3.07 11 17 1 310 3.07

FDCT

256 1.90 1 11 22 1.62 1 5 2 297 1.61

300 3.16 1 9 66 2.59 1 11 5 112 2.59

301 3.19 1 5 106 2.61 1 5 4 296 2.61

RECO

2048 0.36 11 16 34 0.26 11 16 3 171 0.25

2300 0.46 76 16 365 0.30 71 15 4 315 0.30

2301 0.45 99 16 43 0.32 41 17 3 312 0.30

Table 1. Best Parameter Values
T = Tiling, U = Unrolling, P = Padding, Time = Execution Time in Seconds

be obtained. We expect that the speedups obtained

when using many data sizes for optimization are less

than the speedups obtained running the program on

one data size. However, results reported below show

that this is not always the case.

First, we searched for an optimization using input data

sizes 256, 300 and 301 for MxM and FDCT, and 2048,

2300 and 2301 for MxV and RECO. We obtained a

transformed program that was ran again on these data

sizes. We measured the speedup and compared this

with the speedup that we obtained in section 4.1. The

results are given in Figure 4. The grey bar corresponds

to the speedup found using the average and the black

bar is the speedup found in section 4.1. We see that in

the case of MxM even a better speedup is obtained than

previously. In the other cases, a slight degradation can

be observed. However, this degradation is small.

In order to check the stability of our technique over a

wider number of data sizes, we searched for an opti-

mization using four di�erent data sizes: 250, 260, 290

and 310 for MxM and FDCT, and 2000, 2100, 2200

and 2400 for MxV and RECO. Once again,we ran the

transformed program on the old data sizes and com-

pared the speedup obtained with the speedup from

section 4.1. The results are given in Figure 4. The

white bar corresponds to the speedup found using the

average. We see that in most cases the speedups found

are slightly smaller than those found in section 4.1, but

not much. We see that in this case the speedups found

are also slightly less than in the �rst case above. Ap-

parently, optimizing using the same data sizes as when

executing the optimized program is better than using

di�erent data sizes for optimization.

We conclude that although di�erent optimizations are

found using the multiple data size approach, the re-

sulting program still yields signi�cant speedups. It ap-

pears that there many values for the parameters of the

transformations that yield good speedups. The driver

always �nds a set of these good values. Hence we con-

clude that the technique of searching produces stable

results in the sense that the optimization it �nds is

e�ective for a range of input data sizes.

4.3. Using Small Input Sizes

The time required for iterative compilation largely de-

pends on the execution time of the transformed pro-

gram, as we show in Section 4.5 below. The execution

time, in turn, depends on the sizes of the arrays ac-

cessed in the program. In this section we consider the

possibility to use small arrays to optimize programs

that will use large arrays in reality thereby reducing

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

500 750 1024 1500 1750 2048 2500

MxM

1.00

1.50

2.00

2.50

3.00

3.50

4.00

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

2500 3072 3500 4096 4500 5120 5500 6144

MxV

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

500 750 1024 1500 1750 2048 2500 2750 3072

FDCT

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

2500 3072 3500 4096 4500 5120 5500 6144 6500

RECO

Figure 5. Performance Improvement using Small Data Sizes. W hite bar corresponds to tiling and
unrolling. Grey bar corresponds to tiling, unrolling and pa dding.

the compilation time we would need when we would

use these large arrays in the optimization process.

In order to gain more insight in this heuristic, we took

the programs that have been optimized with input sizes

N = 256 for MxM and FDCT, and input sizeN = 2048

for MxV and RECO. We ran these optimized programs

on several larger data input sizes. We used the pro-

grams that have been optimized using unrolling and

tiling as well as the programs that have been opti-

mized using unrolling, tiling and padding. The results

are shown in Figure 5. In this �gure, the white bar

corresponds to tiling and unrolling, and the grey bar

corresponds to tiling, unrolling and padding.

From the �gure we observe that all benchmarks, except

RECO, can be optimized well by using small data sizes.

For each data input size, the speedup is at least as

large as the speedup obtained previously. In case of

MxM, we see that data input sizes that are powers of

two (N = 1024 and N = 2048) give rise to speedups

that are twice the speedup obtained for N = 256. In

the other cases, the speedup is about the same as the

speedup for N = 256 and is larger than the speedup

obtained forN = 300 andN = 301 that are non powers

of two also. In case of MxV, again the data sizes that

are powers of two perform very well, although not as

good as was the case for MxM. The other data sizes

reach a speedup that is about the same as the speedups

obtained earlier for N = 2300 and N = 2301. In case

of FDCT, we reach for each data input size a speedup

that is larger than the speedups obtained for small data

input sizes. In this case we do not observe a correlation

between speedup and whether the data size is a power

of two. Finally, RECO shows erratic behavior and even

has a slow down for one case. In some cases we have

a speedup that is the same as previously and in other

cases it is smaller. In this benchmark we observe that

adding padding as a transformation in general gives

worse performance than without padding.

We conclude that the heuristic of using small data in-

put sizes to reduce compilation time in general seems

to give acceptable results, in some cases outperforming

the speedup obtained with the small data size. MxM

suggests that there might be a correlation between the

size of the data used to optimize, the size of the data

used in reality and the cache size. RECO shows that

we need to study this correlation in more depth in order

to use the heuristic to good e�ect.

4.4. Comparison with Static Techniques

In this section we address the question how e�cient our

iterative techniques is by comparing it to a number of

`standard' values that a compiler might choose for the

parameters and to two well-known static tile size selec-

tion algorithms. The �rst algorithm has been proposed

by Coleman and McKinley [10] and the second by Lam,

Rothberg and Wolf [14]. Rivera and Tseng have shown

that these algorithms are among the best known tile

size selection algorithms [18].

4.4.1 Standard Parameter Values

In Figure 6 we have shown the improvement of itera-

tive compilation over a number of `standard' values for

the unroll factor and the tile size. We considered unroll

factors of 2, 4, 8 and 16, and tile sizes of 4, 8, 16 and

32. These values were chosen because they seem rea-

sonable: small unroll factors and tile sizes that corre-

spond to cache line sizes, from 4 to 64 lines per tile. We

see that in each case (except unroll factor of 1 for MxV)

iterative compilation outperforms these standard set-

tings. In some cases, in particular for MxM, large im-

provements can be observed. This can be explained

by the fact that MxM can be substantially improved

using loop unrolling and tiling. If correct unroll fac-

tors and tile sizes are chosen, the improvement is much

larger than when other factors are selected. In the

other cases, loop unrolling and tiling cannot improve

the loop to a large extend. This is the case, for instance,

for FDCT where an output dependence sequentializes

the loop body and loop unrolling cannot expose high

levels of ILP to the hardware. Here the performance

improvement is low (as can also be observed in sec-

tion 4.1) and searching for optimnal parameters will

not result in much better performance. Nevertheless,

iterative compilation does �nd better unroll factors and

tile sizes than just �xed settings. In the case of MxV,

the transformations exploit the temporal reuse of the

vector and it does not seem to matter much whether

small or large portions of this vector are exploited. In

all cases, speedups over 3 are obtained.

We conclude that iterative compilation is capable of

outperforming simple �xed values for the parameters.

However, the experiments also show that care must be

taken when to invoke the iterative compilation process.

We must be sure that the transformations under con-

sideration can indeed improve the target code signi�-

cantly and that the choice for the parameters will in-

uence the e�ciency of the resulting code to a large

extend, as is the case for MxM. Under these conditions

iterative compilation is capable of making a far better

choice than standard settings can.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

Unroll:2 Tile:4

Unroll:2 Tile:16

Unroll:2 Tile:8

Unroll:2 Tile:32

Unroll:4 Tile:4

Unroll:4 Tile:8

Unroll:4 Tile:16

Unroll:4 Tile:32

Unroll:8 Tile:4

Unroll:8 Tile:8

Unroll:8 Tile:16

Unroll:8 Tile:32

Unroll:16 Tile:4

Unroll:16 Tile:8

Performance Improvement (%)

Unroll:16 Tile:16

Unroll:16 Tile:32

M
xM

 (N
=256)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Unroll:2 Tile:4

Unroll:2 Tile:16

Unroll:2 Tile:8

Unroll:2 Tile:32

Unroll:4 Tile:4

Unroll:4 Tile:8

Unroll:4 Tile:16

Unroll:4 Tile:32

Unroll:8 Tile:4

Unroll:8 Tile:8

Unroll:8 Tile:16

Unroll:8 Tile:32

Unroll:16 Tile:4

Unroll:16 Tile:8

Performance Improvement (%)

Unroll:16 Tile:16

Unroll:16 Tile:32

F
D

C
T

 (N
=256)

−8.00

−6.00

−4.00

−2.00

0.00

2.00

4.00

6.00

8.00

10.00

Performance Improvement (%)

Unroll:2 Tile:4

Unroll:2 Tile:16

Unroll:2 Tile:8

Unroll:2 Tile:32

Unroll:4 Tile:4

Unroll:4 Tile:8

Unroll:4 Tile:16

Unroll:4 Tile:32

Unroll:8 Tile:4

Unroll:8 Tile:8

Unroll:8 Tile:16

Unroll:8 Tile:32

Unroll:16 Tile:4

Unroll:16 Tile:8

Unroll:16 Tile:16

Unroll:16 Tile:32

M
xV

 (N
=2048)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

Unroll:2 Tile:4

Unroll:2 Tile:16

Unroll:2 Tile:8

Unroll:2 Tile:32

Unroll:4 Tile:4

Unroll:4 Tile:8

Unroll:4 Tile:16

Unroll:4 Tile:32

Unroll:8 Tile:8

Unroll:8 Tile:16

Unroll:8 Tile:32

Unroll:16 Tile:4

Unroll:16 Tile:8

Performance Improvement (%)

Unroll:16 Tile:16

Unroll:16 Tile:32

R
E

C
O

 (N
=2048)

Unroll:8 Tile:4

F
igure

6.Im
provem

entofIterative
C

om
pilation

over
S

tanda
rd

V
alues

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00
Unroll:4

Unroll:1
Unroll:2
Unroll:3

Unroll:5
Unroll:6
Unroll:7
Unroll:8
Unroll:9

Unroll:10
Unroll:11
Unroll:12
Unroll:13
Unroll:14
Unroll:15
Unroll:16
Unroll:17
Unroll:18
Unroll:19
Unroll:20

Performance Improvement (%)

T
SS: M

xM
 (N

=256)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

Unroll:4

Unroll:1
Unroll:2
Unroll:3

Unroll:5
Unroll:6
Unroll:7
Unroll:8
Unroll:9

Unroll:10
Unroll:11
Unroll:12
Unroll:13
Unroll:14
Unroll:15
Unroll:16
Unroll:17
Unroll:18
Unroll:19
Unroll:20

Performance Improvement (%)

T
SS: M

xM
 (N

=300)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

Unroll:4

Unroll:1
Unroll:2
Unroll:3

Unroll:5
Unroll:6
Unroll:7
Unroll:8
Unroll:9

Unroll:10
Unroll:11
Unroll:12
Unroll:13
Unroll:14
Unroll:15
Unroll:16
Unroll:17
Unroll:18
Unroll:19
Unroll:20

Performance Improvement (%)

T
SS: M

xM
 (N

=301)

F
igure

7.Im
provem

entofIterative
C

om
pilation

over
T

S
S

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Unroll:4

Unroll:1
Unroll:2
Unroll:3

Unroll:5
Unroll:6
Unroll:7
Unroll:8
Unroll:9
Unroll:10
Unroll:11
Unroll:12
Unroll:13
Unroll:14
Unroll:15
Unroll:16
Unroll:17
Unroll:18
Unroll:19
Unroll:20

Performance Improvement (%)

L
R

W
: M

xM
 (N

=256)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

Unroll:4

Unroll:1
Unroll:2
Unroll:3

Unroll:5
Unroll:6
Unroll:7
Unroll:8
Unroll:9
Unroll:10
Unroll:11
Unroll:12
Unroll:13
Unroll:14
Unroll:15
Unroll:16
Unroll:17
Unroll:18
Unroll:19
Unroll:20

Performance Improvement (%)

L
R

W
: M

xM
 (N

=300)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

Unroll:4

Unroll:1

Unroll:2
Unroll:3

Unroll:5
Unroll:6
Unroll:7
Unroll:8

Unroll:9
Unroll:10
Unroll:11
Unroll:12

Unroll:13
Unroll:14
Unroll:15

Unroll:16
Unroll:17
Unroll:18
Unroll:19

Unroll:20

Performance Improvement (%)

L
R

W
: M

xM
 (N

=301)

F
igure

8.Im
provem

entofIterative
C

om
pilation

over
LR

W

4.4.2 Static Tile Size Selction

In this section we turn attention to two important tile

size selection algorithms. We show that iterative com-

pilation outperforms both techniques. We restrict at-

tention to matrix-matrix multiplication since it follows

from the previous section that for this benchmark it

matters signi�cantly which tile size and unroll factor

is chosen. Hence this benchmark is ideally suited to

compare iterative compilation with other techniques.

The TSS algorithm by Coleman and McKinley [10] con-

siders the size of the working set in the loop body and

requires that this working set is smaller than the cache

size. It also takes into account an estimate of the cross

interference between di�erent arrays and tries to min-

imize this cross interference. We unrolled the loop a

number of times and computed the tile size using TSS

for the unrolled loop.

The LRW algorithm by Lam, Rothberg and Wolf [14]

does not consider the working set nor the cross inter-

ference rate. It computes a tile size based only on the

size of the cache. We have used this tile size together

with di�erent unrolling factors.

In Figures 7 and 8 we have shown the improvement

of iterative compilation over TSS and LRW, respec-

tively. In these �gures we have considered matrix-

matrix multiplication for three input sizes. We see that

for each unroll factor the compiler might choose and

corresponding tile size, iterative compilation outper-

forms the static technique signi�cantly. Our technique

provides, on average, a 44% improvement over TSS and

a 25% improvement over LRW and the improvement in

speedup is always at least 20%. In particular, we see

that if the compiler would have chosen no unrolling

(unroll factor of 1), the speedup obtained by iterative

compilation is 140% better than the speedup obtained

from TSS, and 120% better than the speedup obtained

from LRW. If the compiler would have chosen an un-

roll factor of 4 (like the SGI compiler standardly does),

iterative compilation improves TSS over 60% for input

sizes 256 and 300, and over 30% for input size 301.

In this case, iterative compilation improves LRW over

30% for each input size.

From these �gures we conclude that iterative compila-

tion is capable of outperforming static techniques sig-

ni�cantly. This shows that the long compilation times

for iterative compilation can pay o� in terms of per-

formance of the compiled code. Certainly in the case

of embedded applications the improvements over static

techniques are strong enough to warrant this approach.

4.5. Compilation Time

An important consideration for the feasibility of itera-

tive compilation is the running time of the approach.

Figure 9(a) shows the average compilation time for

each benchmark and the average of these times.

We observe that compilation time is proportional to

the number of iterations. The average compile time

using 400 iterations ranges from 7.7 minutes (MxV) to

25.4 minutes (FDCT). On average we need 16 minutes

for 400 iterations. Note that the kernels we used are

representative for embedded kernels and in this case

this amount of time can easily be a�orded. In fact, the

�gure shows that for time-critical kernels many more

iterations can be a�orded: since compilation time can

be seen as an integral component of the total devel-

opment time of the embedded system, we can a�ord

several hours to heavily optimize the compute inten-

sive routines.

In Figures 9(b) and 9(c) we have given the breakdown

of the execution times for 400 iterations. On average,

about 50% of the total compilation is spent execut-

ing the transformed code. The time needed for na-

tive f77 compilation is not large, but signi�cant. Note

that in case the target platform needs static instruc-

tion scheduling or software pipelining, this time can be

much larger. In some cases, the time for MT1 and the

global driver is larger than the execution time of the

transformed code (RECO).

5. Conclusions and Future Work

In this paper we have described a new approach to pro-

gram optimization, namely iterative compilation. We

have shown that this approach is able to �nd good

optimizations by visiting a relatively small fraction of

the entire optimization space. In the case where loop

unrolling, tiling and array padding are considered, 350

evaluations are required to �nd a satisfactory optimiza-

tion, which corresponds to 1.75% of the entire search

space. On a Pentium II at 233 MHz, it took 16 minutes

on average to execute all 400 iterations. This compila-

tion time is very tolerable for embedded systems since

we can a�ord several hours to highly optimize compute

intensive routines.

The most important factor in the running time of it-

erative compilation is the execution time of the trans-

formed program. This is what we expected. However,

Figure 9 shows that within a few minutes the search can

be completed, if the execution time of the benchmark

0.00

5.00

10.00

15.00

20.00

25.00

0 100 200 300 400

C
om

pi
la

tio
n

T
im

e
(m

in
.)

Number of Iterations

RECO
FDCT

Average
MxV
SOR

MxM

(a)

Ex.Time
 F77
MT1 + Driver

0.00

5.00

10.00

15.00

20.00

25.00

MxM MxV SOR FDCT RECO Average

C
om

pi
la

tio
n

T
im

e
at

 4
00

th
 It

er
at

io
n

(m
in

.)

(b)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

D
ec

om
po

si
tio

n
of

 T
ot

al
 C

om
pi

la
tio

n
T

im
e

(%
)

Ex.TimeF77

MxM MxV SOR FDCT RECO Average

MT1 + Driver

(c)

Figure 9. Compilation Time

itself is small. This is good news for embedded appli-

cation where the compute intensive kernels themselves

are small and fast, but are called very many times. In

these cases very many points in the search space can

be visited within a few hours, which is an acceptable

time span to highly optimize embedded kernels.

In many other cases, however, the initial running time

of the routine is much larger. Moreover, we need to

consider more transformations and to apply this ap-

proach to entire applications. In such cases, search

spaces are huge. Therefore, we need aggressive pruning

and other improved search methods in order to bring

down the number of iterations to a reasonable amount.

In this paper we have used a very simple search al-

gorithm as a basis for iterative compilation. There is

in fact a large body of literature on non-linear opti-

mization [11], though it is based on a continuous un-

derlying optimization function rather than the discrete

space we consider. Techniques such as polynomial �t-

ting could be applied to help improve the performance

of the search algorithm. We will also study the applica-

bility of other techniques from mathematical optimiza-

tion theory, like simulated annealing, in the present

setting.

There exists a large body of literature on static se-

lection of transformations and static performance pre-

diction. We intend to incorporate these models in the

global driver to in order to reduce the search space size.

The static models can provide initial seed points in the

search space from which to begin a search, or equally

importantly, eliminate from consideration those regions

which we can statically predict will have poor perfor-

mance.

One further approach to reducing compilation time is

to optimize the code using small data sizes. The re-

sults reported in Section 4.3 suggest that optimizations

found this way may well be suited for larger data sizes.

However, these results also suggest that the optimiza-

tions found perform less than when optimizations are

obtained using actual data sizes. In future work we will

investigate the correlation between the data size used

to optimize, the data size used in reality and the cache

size. We will also investigate how to trade o� compila-

tion time and optimization levels using this approach.

References

[1] D.F. Bacan, S.L. Graham, and O.J. Sharp. Com-

piler transformations for high-performance com-

puting. Technical Report UCB/CSD-93-781,

Computer Science Division, UCB, 1993.

[2] R.A.M. Bakker, F. Breg, P.M.W. Knijnen-

burg, P. Touber, and H.A.G. Wijsho�. Strat-

egy Speci�cation Language. Oceans De-

liverable D2.1.a, 1997. Available through

www.wi.leidenuniv.nl/~peterk.

[3] M. Barreteau, F. Bodin, Z. Chamski, H.-P.

Charles, C. Eisenbeis, J. Gurd, J. Hoogerbrugge,

P. Hu, W. Jalby, T. Kisuki, P.M.W. Knijnen-

burg, P. van der Mark, A. Nisbet, M.F.P. O'Boyle,

E. Rohou, A. Seznec, E.A. St�ohr, M. Tre�ers, and

H.A.G. Wijsho�. OCEANS: Optimizing compil-

ers for embedded applications. In P. Amestoy et

al., editor, Proc. Euro-Par 99, volume 1685 of Lec-

ture Notes in Computer Science, pages 1171{1175,

1999.

[4] A.J.C. Bik, P.J. Brinkhaus, P.M.W. Knij-

nenburg, P. Touber, and H.A.G. Wijsho�.

Transformation De�nition Language. Oceans

Deliverable D1.1, 1997. Available through

www.wi.leidenuniv.nl/~peterk.

[5] A.J.C. Bik and H.A.G. Wijsho�. MT1: A proto-

type restructuring compiler. Technical Report no.

93-32, Department of Computer Science, Leiden

University, 1993.

[6] J. Bilmes, K. Asanovi�c, C.W. Chin, and J. Dem-

mel. Optimizing matrix multiply using PHiPAC:

A portable, high-performance, ANSI C coding

methodology. In Proc. ICS'97, pages 340{347,

1997.

[7] F. Bodin, T. Kisuki, P.M.W. Knijnenburg, M.F.P.

O'Boyle, and E. Rohou. Iterative compilation in a

non-linear optimisation space. In Proc. Workshop

on Pro�le and Feedback Directed Compilation,

1998. Organised in conjuction with PACT'98.

[8] K. Chow and Y. Wu. Feedback-directed selection

and characterization of compiler optimizatons. In

Proc. 2nd Workshop on Feedback Directed Opti-

mization, 1999. Organized in conjunction with

MICRO 32.

[9] R. Cohn and P.G. Lowney. Feedback directed opti-

mization in Compaq's compilation tools for Alpha.

In Proc. 2nd Workshop on Feedback Directed Op-

timization, 1999. Organized in conjunction with

MICRO 32.

[10] S. Coleman and K. McKinley. Tile size selection

using cache organization and data layout. In Proc.

Programming Language Design and Implementa-

tion, pages 279{290, 1995.

[11] E. Hansen. Global Optimization Using Interval

Analysis. Marcel Dekker Inc., New York, 1992.

[12] Wen-mei W. Hwu et al. The Superblock: An

E�ective Technique for VLIW and Superscalar

Compilation. The Journal of Supercomputing,

7(1/2):229{248, May 1993.

[13] T. Kisuki, P.M.W. Knijnenburg, M.F.P. O'Boyle,

F. Bodin, and H.A.G. Wijsho�. A feasibility study

in iterative compilation. In Proc. ISHPC'99, vol-

ume 1615 of Lecture Notes in Computer Science,

pages 121{132, 1999.

[14] M.S. Lam, E.E. Rothberg, and M.E. Wolf. The

cache performance and optimizations of blocked

algorithms. In Proc. ASPLOS'91, pages 63{74,

1991.

[15] S.A. Mahlke, D.C. Lin, W.Y. Chen, R.E. Hank,

and R.A. Bringmann. E�ective compiler support

for predicated execution using the hyperblock. In

iProc. MICRO 25, 1992.

[16] M. Mock, M. Berryman, C. Chambers, and S.J.

Eggers. Calpa: A tool for automating dynamic

compilation. In Proc. 2nd Workshop on Feedback

Directed Optimization, 1999. Organized in con-

junction with MICRO 32.

[17] A. Nisbet. GAPS: Genetic algorithm optimised

parallelization. In Proc. Workshop on Pro�le and

Feedback Directed Compilation, 1998. Workshop

organised in conjunction with PACT'98.

[18] G. Rivera and C.-W. Tseng. A comparison of com-

piler tiling algorithms. In Proc. 8th Int'l Conf. on

Compiler Construction, 1999.

[19] P. van der Mark, E. Rohou, F. Bodin, Z. Chamski,

and C. Eisenbeis. Using iterative compilation for

managing software pipeline { unrolling tradeo�s.

In Proc. SCOPES99, 1999.

[20] R. C. Whaley and J. J. Dongarra. Automatically

tuned linear algebra software. In Proc. Alliance

98, 1998.

[21] M.E. Wolf, D.E. Maydan, and D.-K. Chen. Com-

bining loop transformations considering caches

and scheduling. Int'l. J. of Parallel Programming,

26(4):479{503, 1998.

