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Abstract

In the �-calculus with replication, potential structural congruence is

introduced: a decidable notion of structural equivalence of processes close

to the original congruence. It is sound and complete with respect to a

semantic relation that maps processes to a submodel of the Multiset �-

Calculus M�.

Introduction

Since its introduction in [8], the �-calculus has appeared in many forms | e.g.,

polyadic [6], asynchronous [5] | and has been subjected to some changes. For

its elegance, the most striking one is the separation of behaviour and structure

in the `small �-calculus' of [7], a variant that excludes the operators of choice,

matching, and recursion, but includes the theoretically appealing operation of

replication. Here, inspired by the Chemical Abstract Machine of [1], rules of

structural equivalence of processes are distilled from the transition system of [8],

yielding both the essentials of process interaction in its new and simpler tran-

sition system, as well as a mathematically compact formulation of the statical

bonds in an environment of agents. For many variants of the �-calculus, progress

has been made in the understanding of behavioural equivalence of processes (see,

e.g., [9, 10, 11], among numerous others), but much less is known about their

anatomy (see [3, 4] though).

There are several reasons for the need of understanding the structure of

processes. First of all, the stipulation that structurally equivalent processes

should behave in the same manner (this is the STRUCT rule in the transition

system of [7]) entails that to understand their behaviour fully, one must �rst
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know what processes look like. Secondly, since the choice of the laws that con-

stitute structural congruence seems to be made slightly in favour of an elegant

transition system, it is questionable whether a law that is initially put forward

as a description of structure is not, in its essence, part of the dynamics. The

law !P � !P j P for replicating a process contributes a typical example. One

way to view replication is as a countably in�nite parallel composition of copies

of one process; this is established by `recursively unfolding' this law. However,

it was shown in [3] that this static view can be justi�ed only after the addition

of several other laws | e.g., closure properties of replication and distribution

of replication over parallel composition. But this law also provides a di�erent

perspective on replication. In the style of the heating and cooling rules of the

Chemical Abstract Machine of [1], its essence can be seen in the act of `spinning

o� a process P from a deposit !P ' (or absorbing P , when read from right to

left). This second view is clearly a more dynamical one: !P consists only po-

tentially of an in�nite number of copies of P . Hence, not until a proper model

is provided for the structure of a process, one can be sure that the distillate is

pure.

The Multiset �-Calculus M� of [2] was introduced originally as a concurrent

model for �-calculus processes. In order to describe their `true concurrent'

behaviour, process agents are mapped to multisets of molecules. The general

idea behind this semantics is that molecules can oat freely in the `multiset soup'

| disregarding any spatial ordering between them | and that their interaction

is local, i.e., independent of their surroundings. A natural question (answered

positively by the extended structural congruence of [3]) that emerged from this

approach is whether there could exist a set of laws that lay down the anatomy

of processes, which is sound and complete with respect to the semantic mapping

of [2]. In this paper we give a semantic mapping in such a way that the original

list of structural laws of [7] is sound and complete with respect to it, that is,

almost the original list. We compromise a bit in the treatment of replication.

Although we do not support the view from the extended structural congruence

of replication as an in�nite parallel composition of a process anymore | we

rather view replication as a potentially in�nite supply of a process from which a

�nite but unbound number of copies can be drawn | we still want a replication

to have the same capabilities of `spinning o�' a process as in the extended

structural congruence. For instance, in the extended congruence, the replication

of a parallel composition is identical to the replication of its components, as the

law ! (P j Q) � !P j !Q suggests. So, when we apply this law from left to

right, the release of a copy of the component process P is prepared and it can

be actuated by an application of the original law !P � !P j P for replication.

Thus in the extended congruence, we can derive ! (P jQ) � ! (P jQ) j P , or, to

put it into words: a component process P can be `spun o�' from the compound

replication ! (P j Q). This capability we also want in our new model and it

is exactly the compromise mentioned before: we will exchange the (less strict)

law ! (P j Q) � ! (P j Q) j P for the original one !P � !P j P . The relation
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induced by the set of laws of [7] after this substitution we call potential structural

congruence; it is the subject of this paper.

Let us illustrate the di�erence between the two laws by an example. Consider

the following silly game, played by Bob and Gary. Both possess a bag of marbles:

Bob's bag is �lled with blue and red marbles only; the colours of the marbles

Gary owns are green and red. We assume that the game does not come to an

end just because one of the two players is out of marbles: each bag contains a

su�cient number of both its colours. In between Bob and Gary there is a plate

�lled with a �nite number of blue, green, and red marbles. The goal of the

game is simple: in their urge for collecting still more marbles than they already

possess, both Bob and Gary take from the plate as much marbles of their own

colour as they can get hold of, one by one. There is one restriction, though:

only if Bob holds a blue marble in his left hand and a red marble in his right

hand, he may put them in his bag (if he wants to place marbles back onto the

plate, it must be done in this pairwise fashion as well). A similar restriction

applies to Gary. Now suppose that in the course of the game | in fact, very

near the end | the plate contains one marble of each colour. Of course, if

Bob is the quickest of the two he grabs his blue and red, and the game ends

with one green marble remaining (which Gary cannot take). Frustrated by the

unsatisfactory situation of one remaining marble that neither can take, Bob may

altruistically decide to give Gary a second chance and place a pair of blue and

red marbles back onto the plate. This act however will not temper Bob's (nor

Gary's) annoyance, since evidently the game always ends either with a green,

or with a blue marble remaining. Evidently, it is the pairing restriction that is

the cause of this residue.

The above game is an informal speci�cation of the structural equivalence

class of the process term R = ! (b j r) j ! (g j r) j b j g j r, where the b, g, and r

represent a blue, a green, and a red marble, respectively (thus, it does not specify

the behaviour of R). By an application of the original law, R is structurally

equivalent to both R

1

= ! (b j r) j ! (g j r) j g (indicating that Bob has put a blue

and a red marble into his bag) and R

2

= ! (bjr)j ! (g jr)jb (where Gary has put a

green and a red marble into his). Observe that the simpler R

3

= ! (b jr) j ! (g jr)

(where the plate does not contain any marbles) has a di�erent structure, in the

sense that it cannot be derived from R by a similar application. Only if we

drop the rather arti�cial pairing restriction and allow Bob and Gary to take

any marble of their colour that is left on the plate, R

3

can be derived by the

new law for replication from both R

1

and R

2

, as is expressed in the application

of the rules ! (g j r) j g � ! (g j r) and ! (b j r) j b � ! (b j r), respectively. So

the replication of the atomic processes b, g, and r, instead of the compound

processes (b j r) and (g j r), allows Bob and Gary to �nish the game with an

empty plate.

As we mentioned earlier, one of our goals is to give a multiset semantics

in the style of [2, 3] such that the laws of [7] together with the new one are

sound and complete. As they should both describe the behaviour of a process,
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the solutions (i.e., the multiset soups of molecules) yielded by the semantic

mapping of [2] and the one we propose here should be closely related. Thus,

our new view of replication as a solution is much the same as the one of [2, 3],

viz., it is a countably in�nite union of clusters of molecules (these clusters are

the connected components of [3] that represent independent processes) but with

an additional entity called a nucleus to which every other connected component

in the solution is drawn. This `nucleus bond' is a weak one (as compared to

the `strong force' responsible for the formation of connected components) in

the sense that if a solution is `poured out over two vessels', only �nitely many

connected components can be separated from their nucleus. For instance, by

applying the new law for replication to the process term R

4

= ! (b j r), we

achieve that the solution representing R

4

is `separated' into two solutions, viz.,

one that represents ! (bjr) (which need not be identical to the original solution),

and one that represents b. Thus, although a solution representing a replication

can potentially produce an in�nite number of connected components (as, for

instance, the law !P � !P j !P of the extended congruence suggests), the

nucleus bond forbids just that.

Clearly, if we had two maps of cities, but we could not decide whether or not

they belonged to the same city, those maps would probably be of little assis-

tence. Thus, we should also focus on the decidability of the potential structural

congruence, as was done for extended structural congruence (the second main

result of [3]). The latter result directs us to a natural method of proof: using

a computable transformation of process terms to show that two processes are

congruent in the potential fashion if and only if their images are congruent in the

extended style. So we reduce the decidability of potential structural congruence

to the decidability of extended structural congruence. A pleasant by-product

of this reduction is that it does not change the behaviour of a process; only

its structure. Thus, the semantic mapping we propose is just the functional

composition of the above-mentioned transformation of process terms with the

semantic mapping of [2, 3].

To obtain an intuitive vision of the organization of this paper, the reader

should bear in mind that the results in every section (except Section 8) are

meant to serve the result of Section 7, which is the gravitational center of the

paper. Here we show the completeness and decidability of potential structural

congruence. Its inductive proof consists of �ve lemmas (one for each �-calculus

operator) which rely heavily on the technical concepts introduced in Sections 4

and 5, where the foundation is laid for the proper treatment of restriction and

replication, respectively. Section 1 recalls the basic concepts of the Multiset

�-Calculus. The aforementioned transformation of processes is introduced in

Section 2 together with the semantic mapping it induces. For the latter we

show the soundness of potential structural congruence in Section 3 and we show

the behavioural invariance of the transformation in Section 8. The normal form

of processes introduced in Section 6 shows that a replication, a restriction, and a

guarded process term are akin: all three correspond to a cell | a solution with
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one distinct connected component, its nucleus | which is the main technical

concept of Section 5. More generally, it is shown in Section 6 that every process

term corresponds to a �nite union of cells.

This paper presents insight into the anatomy of �-calculus processes. We

believe it will lead to a better understanding of their behaviour.

1 Preliminaries

We recall a few notions from [2, 3, 4] that we will use extensively, and we add a

few new ones. The material in this paper relies heavily on the concepts and the

results of [2], and in particular of [3]; the reader who is unfamiliar with [2, 3] is

advised to read Sections 1{6 of [2] �rst.

In this paper we let N

+

= f1; 2; : : :g be the set of positive natural numbers,

and N = N

+

[ f0g the set of natural numbers (cf. the notation used in [4];

in [2, 3], these sets were denoted by N and N [ f0g, respectively). The set of

�-calculus names is denoted by N (instead of N in [2, 3]). Recall that #I is the

cardinality of a set I ; if I is countably in�nite, then #I = ! (where ! stands

for @

0

). For a mapping f and a set A, f � A denotes the restriction of f to A.

The set of �-calculus process terms we use is produced by the following

syntactical description:

P ::= 0; P j P; g:P; (�x)P; !P

where 0 denotes the inactive process, P j Q is the parallel composition of the

processes P and Q, (�x)P restricts the use of x 2 N to the scope P , and !P

is the replication of P . The remaining g:P denotes a guarded process, where g

can appear in two forms: as an input guard x(y), and as an output guard xz,

with x; y; z 2 N. There are two ways to bind a name y in a process term: by

input guarding x(y) and by restriction (�y). The set fn(P ) of free names of a

process term P consists of those names that occur unbound in P . For names

y; z 2 N, we denote by P [z=y] the process term obtained from P by replacing

every free occurrence of y in P by z, possibly renaming bound occurrences of z

in P to avoid name collisions. We refer to [7] for the operational semantics of

the �-calculus.

Recall from [2] that a multiset S is a countable set D

S

together with a

mapping �

S

: D

S

! N

+

[f!g that de�nes the multiplicity of the elements of D

S

in S. The multiset union is de�ned in the obvious way, adding the multiplicity

of each element: for a countable set I , we let S =

S

i2I

S

i

be the multiset de�ned

by D

S

=

S

i2I

D

S

i

and �

S

(d) =

P

i2I

�

S

i

(d), where summation is extended to

!, as usual. Note that we consider only countable unions. For a set D, S is

a multiset over D if D

S

� D. If S is a multiset over D and f : D ! E is a

mapping, then themultiset image f(S) of S under f is de�ned byD

f(S)

= f(D

S

)

and �

f(S)

(e) =

P

f(d)=e

�

S

(d). Note that f(

S

i2I

S

i

) =

S

i2I

f(S

i

) and that for

g : E ! F , (g � f)(S) = g(f(S)). We refer to Section 3 of [3] for more basic
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properties of multisets. From [4] we recall that a multiset S is contained in a

multiset T , denoted S � T , if there exists a multiset U such that S [ U = T .

We recall from [2] that strings of the form x(�) or xz, where x; z 2 N[N

+

[

New, are called schematic guards (where New is an uncountably in�nite set of

new names, disjoint with N and N); a guard is a string of the form x(y) or xz,

where x; z 2 N[New and y 2 N. Observe that only guards over N, i.e., guards

with names from N, occur in a �-calculus process term. A solution is a multiset

over the set of molecules Mol, where a molecule is a pair g:S with S a solution,

and g a schematic guard; we refer to Section 4 of [2] for a formal de�nition of

Mol and the set of solutions Sol. For a guard x(y), we denote by x(y):S the

molecule x(�):inc(S)[1=y], where inc(S) increases all natural numbers occurring

in S, and [1=y] substitutes the number 1 for all occurrences of y. For a solution

S (or a molecule, or a guard), the set fn(S) contains all names from N [ New

that occur in S; the set of new names in S is new(S) = fn(S)\New. A solution

S is a copy of a solution S

0

if there exists a bijection f : new(S)! new(S

0

) such

that f(S) = S

0

(where f(S) is the result of replacing every occurrence of a new

name n with f(n); see also Section 4 of [2] and Section 2 of [3]).

The semantic relation ) of [2] that maps each �-calculus process term to

a solution (modulo copies) is de�ned as the smallest relation that satis�es the

following requirements:

(S0) 0) ?

(S1) if P

1

) S

1

and P

2

) S

2

, then P

1

j P

2

) S

1

[ S

2

,

provided new(S

1

) \ new(S

2

) = ?

(S2) if P ) S and x 2 N, then (�x)P )

F

S[n=x],

provided n 2 New� new(S)

(S3) if P ) S and g is a guard over N, then g:P ) fg:Sg

(S4) if P ) S

i

for all i 2 N, then !P )

S

i2N

S

i

,

provided new(S

i

) \ new(S

j

) = ? for all i 6= j.

By Lemma 3 of [2], if P ) S, then fn(P ) = fn(S) \ N. Process terms are

multiset congruent, denoted as P �

m

Q, if fS j P ) Sg = fS j Q) Sg.

Recall from Section 4 of [3] that a solution V is connected if there do not exist

nonempty solutions S and T with new(S) \ new(T ) = ? such that V = S [ T .

Connectedness of a solution is preserved under substitutions [n=x], where x 2 N

and n 2 New: if V is connected, then V [n=x] is connected (see the proof of

Lemma 17 of [3]). By Lemma 7 of [3], every copy of a connected solution is

connected. As described in Lemma 10 and Lemma 11 of [3], every solution S

can be represented as a union S =

S

i2I

V

i

of nonempty connected solutions V

i

with mutually disjoint new(V

i

) in essentially one way (i.e., modulo a renaming

of the index set I); the V

i

are called the connected components of S when we

have this representation in mind. For a nonempty connected solution V , the

multiplicity of V in S is mult(V; S) = #fi 2 I j V

i

is a copy of V g; it yields
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the number (with its value in N [ f!g) of copies of a connected component in

S. Since the `copy-of' relation is an equivalence relation, it induces a partition

of I into equivalence classes, where i 2 I and i

0

2 I are equivalent if and only

if V

i

is a copy of V

i

0

, i.e., we view I as the union of mutually disjoint sets I

k

,

k 2 K, where V

i

is a copy of V

i

0

if and only if i and i

0

are member of the same

I

k

. So S =

S

k2K

S

i2I

k

V

i

, where the I

k

are essentially unique. For a nonempty

connected solution V , we let [V ] be the equivalence class under the copy-of

relation that contains V . Note that [V ] only consists of nonempty connected

solutions (see Lemma 7 of [3]). Recall from [4] that S is strongly contained in

a solution T , denoted S �

n

T , if S [ U = T for some solution U (i.e., S is

contained in T ) and new(S) \ new(U) = ?. Hence if T =

S

j2J

W

j

, where the

W

j

are the connected components of T , this is equivalent to the existence of a

partition J

S

; J

U

of J such that S =

S

j2J

S

W

j

and U =

S

j2J

U

W

j

(by Lemma 9

of [3]; cf. Lemma 3.3 of [4]).

Below we collect three basic properties of `copy-of' and `mult'; they will form

the building blocks of many of the proofs in subsequent sections. Note that the

�rst property relates the two notions. Let S; S

i

and T; T

i

, i 2 I , be solutions such

that the new(S

i

) are mutually disjoint and the new(T

i

) are mutually disjoint.

(Pa) S is a copy of T if and only if for all nonempty connected V , mult(V; S) =

mult(V; T )

(Pb) If S

i

is a copy of T

i

for every i 2 I , then

S

i2I

S

i

is a copy of

S

i2I

T

i

(Pc) For every nonempty connected V , mult(V;

S

i2I

S

i

) =

P

i2I

mult(V; S

i

)

Property (Pa) is implicitly shown in the proof of Lemma 3.14 of [4]; properties

(Pb) and (Pc) are Lemmas 3 and 12 of [3], respectively. Observe that (Pb)

follows from (Pa) and (Pc).

2 Potential Structural Congruence

We introduce potential structural congruence, a relation that captures the struc-

tural equivalence of �-calculus process terms in a way that di�ers only slightly

from the standard structural congruence relation of [7]. Unlike the latter, it does

not only identify process terms !P and !P j P , but more generally it identi�es

!P and !P jQ, where P = Q jQ

0

. Thus, !P can replicate the components Q of

P without changing structure. Unlike the (extended) structural congruence of

[2, 3], it does not identify !P and !Q j !Q

0

. Thus, in potential structural con-

gruence, replication is treated in a way that di�ers essentially from that in the

extended version, where replication is modelled as a countably in�nite parallel

composition.

In Fig. 1, a number of possible laws of structural congruence are listed.

The list is the same as the one in [3], except for the last law (3.6), which is

added here. In [7], structural congruence � (denoted by �

std

in Fig. 1 and
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�

�

ptl

�

std

P � Q whenever P and Q are �-convertible,

P j 0 � P ,

P jQ � Q j P ,

(�)

(1.1)

(1.2)

(1.3)

(2.1)

(2.2)

(2.3)

(2.4)

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

P j (Q jR) � (P jQ) jR,

(�x)(�y)P � (�y)(�x)P ,

(�x)P � P , provided x =2 fn(P ),

(�x)(P jQ) � P j (�x)Q, provided x =2 fn(P ),

(�x)g:P � g:(�x)P , provided x does not occur in g,

! (P jQ) � ! (P jQ) j P .

!P j !P � !P , and

!0 � 0,

! !P � !P ,

! (P jQ) � !P j !Q,

!P � !P j P ,

Figure 1: The laws of structural congruence

by �

M

in [3]) is de�ned as the smallest congruence satisfying the laws (�),

(1.1), (1.2), (1.3), (2.1), (2.2), (2.3), and (3.1). In [2], (extended) structural

congruence (inconveniently also denoted �) is de�ned by adding the structural

laws (3.2), (3.3), (3.4), and (2.4). We de�ne a third relation, potential structural

congruence, denoted �

ptl

, as the smallest congruence satisfying the laws (�),

(1.1), (1.2), (1.3), (2.1), (2.2), (2.3), and (3.6). In order to keep uniformity

with extended structural congruence (which we denote by �), the structural

congruence of [7] is referred to as standard structural congruence and is denoted

by �

std

.

Note that, as shown in [7], law (2.2) is equivalent to the law (�x)0 � 0

(using laws (1.1) and (2.3)). Law (3.5) is included for its usefulness in the

version of extended structural congruence of [3]; its dependency on laws (3.1),

(3.2), and (3.3) is shown there. Structural law (3.1) is a consequence of (3.6)

(and structural law (1.1)): !P � ! (P j0) � ! (P j0)jP � !P jP , so (3.1) is more

restrictive than (3.6). On the other hand, in the presence of the law (3.2) (and
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the laws (1.2) and (1.3)), the laws (3.1) and (3.6) are equivalent: if we assume

(3.1), then ! (P jQ) � !P j !Q � !P j !Q jP � ! (P jQ) jP . Note that potential

structural congruence di�ers from standard structural congruence only in the

exchange of structural law (3.6) for (3.1). Thus, in terms of inclusion, it is in

between standard and extended structural congruence.

The main di�erence between standard structural congruence (or potential

structural congruence, for that matter) and extended structural congruence is

found in the treatment of replication. The combination of the laws (3.1){(3.4)

express the in�nite nature of replication. As was observed in the Introduction of

[3], the laws (3.2), (3.3), and (3.4) are basically cardinality laws that justify the

perception of replication as a countably in�nite parallel composition of copies of

a process. Structural law (3.1) by itself does not justify this perception; it rather

expresses that from a deposit !P one can extract a �nite but unbounded number

of copies of P , but conceals the nature of the deposit itself. Similarly, structural

law (3.6) expresses that one can extract a �nite number of components of P from

the deposit. Thus, for the laws (3.1) and (3.6), this number is only potentially

in�nite.

Another di�erence between extended and standard congruence that is closely

related, albeit more technical, and in which standard and potential congruence

co��ncide, is the preservation of the nesting depth ndr(P ) of replications in a

process term P , where ndr(P ) is de�ned as expected: ndr(0) = 0, ndr(P j

Q) = max(ndr(P ); ndr(Q)), ndr((�x)P ) = ndr(g:P ) = ndr(P ), and ndr( !P ) =

ndr(P ) + 1. Because of the structural laws (3.3) and (3.4), extended structural

congruence does not preserve the nesting depth of replications in a process term.

By a simple proof on the de�nition of �

ptl

it can be shown that potential (and

hence standard) structural congruence does preserve it.

One peculiar di�erence between standard and potential structural congru-

ence should be noted: in general, standard structural congruence forbids P as

a spin-o� of ! (P j Q). Yet in the vicinity of !Q the following all of a sudden

becomes possible: ! (P jQ) j !Q�

std

! (P jQ) j (P jQ) j !Q�

std

! (P jQ) jP j !Q,

by applying structural law (3.1) twice.

The main goal of this paper is twofold. First of all we want to understand

the structure of processes as expressed in the potential structural congruence;

we want to give a model that describes this structure, in the same way as was

done in [2, 3] for �. In particular, the new model should be suited to determine

the behaviour of processes. Secondly, we want to show that potential structural

congruence is decidable (as � was shown to be decidable in [3]).

The strategy we use is simple: we de�ne a mapping F on process terms and

show that F reduces �

ptl

to �, i.e., we prove that for all process terms P and Q,

P �

ptl

Q if and only if F(P ) � F(Q). By the decidability of � (Theorem 34 of

[3]), the decidability of �

ptl

follows, because the reduction F is e�ective. Since

� is sound and complete with respect to ) (by Theorem 33 of [3]), we obtain

the model that describes �

ptl

by proposing )

F

= ) � F as the new semantic

mapping.

9



De�nition 2.1 The mapping F on process terms is de�ned inductively by

F(0) = 0,

F(P jQ) = F(P ) jF(Q),

F((�x)P ) = (�x)F(P ),

F(g:P ) = g:(F(P ) j (�v)(�w)(vv:ww:F(P ) j vv:ww:0)),

provided v 6= w and v; w =2 fn(P ),

F( !P ) = !F(P ) j (�w)ww:ww:F(P ),

provided w =2 fn(P ).

Thus, F respects parallel composition, restriction, and the inactive process

0. Note that by the choice of v and w in the de�nition of F(g:P ) and F( !P ), F

is technically a relation, such that for every Q;Q

0

2 F(P ), Q�

�

Q

0

, where �

�

denotes �-conversion of process terms; by Theorem B of [2], Q and Q

0

have the

same semantics under ).

Intuitively, the reduction of �

ptl

to � can be split into two parts: the �rst

concerns the objective of \invalidating" the structural laws (3.2), (3.3), and

(3.4), which all involve replication; the second concerns the \invalidation" of

structural law (2.4), which involves guarding and restriction. Now the additional

(�w)ww:ww:F(P ) in parallel composition with !F(P ) in the de�nition of F( !P )

intuitively stands for an inactive agent (or `deposit') that records the replication

of P , or rather, the replication of F(P ). In this way, every single replication

inside a process term is registered in a separate and distinctive agent, and thus,

at least intuitively, this method \invalidates" structural laws (3.2), (3.3), and

(3.4), simply because the agents record di�erent replications on either side of

these laws, as opposed to structural law (3.6), where identical replications are

registered. The role of the guarded triplet g:(F(P ) j (�v)(�w)(vv:ww:F(P ) j

vv:ww:0)) in the de�nition of F(g:P ) is the invalidation of structural law (2.4).

Intuitively, this construction acts as a `detection mechanism' for the location

of a restriction (�x) that binds subprocesses of P . Assume, for instance, that

P contains the free name x and g is a guard in which x does not occur. Then

in F((�x)g:P ) = (�x)g:(F(P ) j (�v)(�w)(vv:ww:F(P ) j vv:ww:0)), the free x

occurring in both subterms F(P ) becomes bound by the same restriction (�x)

(where, for now, we assume that x occurs free in F(P ) as well), whereas in

F(g:(�x)P ) = g:((�x)F(P )j(�v)(�w)(vv:ww:(�x)F(P )jvv:ww:0)), two separate

restrictions are responsible for the binding of x. Thus, this method detects on

which side of g the restriction (�x) occurs. The reason why F(g:P ) has two

new agents will be explained in Section 4. We need the requirement v 6= w to

separate the new agents in F( !P ) from those in F(g:P ), which guarantees that

there is no `interference' between the two methods.

We want to stress the fact that in the de�nition of F( !P ) and F(g:P ), the

agents that are added cannot perform any communication action because of

10



the restrictions (�w) and (�v)(�w), respectively, and since their outer guards

are only output guards. Thus, F does not change the parallel behaviour of a

process. This will be partially formalized in Section 8.

Below we state some easy to prove properties of F, which show that F

behaves well on the free names of a process term; in the above paragraph we

already used the �rst informally.

Lemma 2.2 Let y; z 2 N. For every process term P ,

(1) fn(F(P )) = fn(P ), and

(2) F(P [z=y]) = F(P )[z=y].

Proof Straightforward by induction on the structure of P . �

The semantic relation we propose is just the composition of F with the

semantic relation ) of [2]. As explained earlier in this section, the goal of this

paper is to show that the composed relation serves as a model for potential

structural congruence.

De�nition 2.3 For a process term P and a solution S, we de�ne P )

F

S if

and only if F(P )) S. Thus, by the de�nition of),)

F

is the smallest relation

that satis�es the following requirements:

(SF0) 0)

F

?

(SF1) if P

1

)

F

S

1

and P

2

)

F

S

2

, then P

1

j P

2

)

F

S

1

[ S

2

,

provided new(S

1

) \ new(S

2

) = ?

(SF2) if P )

F

S and x 2 N, then (�x)P )

F

S[n=x],

provided n 2 New� new(S)

(SF3) if P )

F

S

0

; S

1

and g is a guard over N, then g:P )

F

fg:Tg where

T = S

0

[ fmm:fm

0

m

0

:S

1

g;mm:fm

0

m

0

:?gg,

provided new(S

0

) \ new(S

1

) = ?, and m;m

0

2 New� new(S

0

[ S

1

) with

m 6= m

0

(SF4) if P )

F

S; S

i

for all i 2 N, then !P )

F

(

S

i2N

S

i

) [ fmm:fmm:Sgg,

provided new(S

i

) \ new(S

j

) = ? for all i; j 2 N with i 6= j, new(S) \

new(S

i

) = ? for all i 2 N, and m 2 New� new(S) with m =2 new(S

i

) for

all i 2 N.

Process terms P and Q are multiset congruent by F, denoted P �

F

m

Q, if fS j

P )

F

Sg = fS j Q)

F

Sg.

Observe that if P )

F

S then fn(P ) = fn(S) \N, by Lemma 3 of [2] and

Lemma 2.2(1). Also note that P �

F

m

Q is equivalent with F(P ) �

m

F(Q), and

hence with F(P ) � F(Q), by Theorem 33 of [3]. Thus, the main objective of

this paper is to show that �

ptl

and �

F

m

are the same relation, i.e., that potential

structural congruence is sound and complete with respect to )

F

.

11



We need the next two lemmas in the following sections; the �rst is the

analogon of Lemma 5 of [2] and states that the set fS j P )

F

Sg consists only

of copies of one another, the second is the analogon of Lemma 6 of [2] and shows

that the semantic relation)

F

is compositional with respect to substitution, i.e.,

fS j P [z=y])

F

Sg = fS[z=y] j P )

F

Sg.

Lemma 2.4 If P )

F

S, then P )

F

S

0

if and only if S

0

is a copy of S.

Proof Immediate by Lemma 5 of [2] and by the de�nition of )

F

. �

Lemma 2.5 Let y; z 2 N.

(1) If P )

F

S, then P [z=y])

F

S[z=y].

(2) If P [z=y])

F

S

0

, then there exists S such that P )

F

S and S

0

= S[z=y].

Proof Immediate by Lemma 6 of [2] and Lemma 2.2(2). �

3 The Soundness of Potential Structural

Congruence

We show the �rst (and easy) half of our main objective in the following lemma

and corollary; note that the implication P �

ptl

Q =) F(P ) � F(Q) su�ces for

our purposes. Nevertheless, we show the stronger statement below.

Lemma 3.1 For all process terms P and Q, if P �

ptl

Q then F(P )�

ptl

F(Q).

Proof Let R be the relation on process terms de�ned by P RQ if F(P )�

ptl

F(Q). We show that R is a congruence relation that satis�es the laws of �

ptl

.

Since �

ptl

is the smallest congruence satisfying these laws, clearly P �

ptl

Q

implies P RQ.

It is easily shown that R is a congruence; in fact, this follows immediately

from �

ptl

being a congruence. For instance, to show transitivity of R, we have

that F(P )�

ptl

F(R)�

ptl

F(Q) implies F(P )�

ptl

F(Q) by transitivity of �

ptl

,

and F(P ) �

ptl

F(Q) implies F( !P ) = !F(P ) j (�w)ww:ww:F(P ) �

ptl

!F(Q) j

(�w)ww:ww:F(Q) = F( !Q), since by Lemma 2.2(1), fn(P ) = fn(F(P )) =

fn(F(Q)) = fn(Q), which shows that R is compatible with replication.

We show that R satis�es (�), in particular that P �

�

Q implies F(P ) �

�

F(Q). Since R is a congruence, it follows from the properties of �

�

that

it su�ces to prove the special cases (a) F((�z)P [z=y]) �

�

F((�y)P ), and (b)

F(x(z):P [z=y])�

�

F(x(y):P ), for x; y; z 2 N with z =2 fn(P ) and z 6= y.

(a)

F((�z)P [z=y]) = (�z)F(P [z=y]) = (�z)F(P )[z=y]

�

�

(�y)F(P )

= F((�y)P );

12



by Lemma 2.2(2) and �-conversion, respectively.

(b) Similarly, for v; w 6= y; z,

F(x(z):P [z=y]) = x(z):(F(P [z=y]) j

(�v)(�w)(vv:ww:F(P [z=y]) j vv:ww:0))

�

�

x(y):(F(P ) j (�v)(�w)(vv:ww:F(P ) j vv:ww:0))

= F(x(y):P ):

Next, observe that since F is compatible with parallel composition and re-

striction, and since F(0) = 0, it is easily shown that R satis�es structural

laws (1.1), (1.2), (1.3), and (2.1); e.g., F(P j (Q j R)) = F(P ) j F(Q j R) =

F(P ) j(F(Q) jF(R))�

ptl

(F(P ) jF(Q)) jF(R) = F(P jQ) jF(R) = F((P jQ) jR),

which shows the case for (1.3). By Lemma 2.2(1), (2.2) and (2.3) are also obvi-

ous. Finally, we have

F( ! (P jQ)) = ! (F(P ) jF(Q)) j (�w)ww:ww:F(P jQ)

�

ptl

( ! (F(P ) jF(Q)) jF(P )) j (�w)ww:ww:F(P jQ)

�

ptl

( !F(P jQ) j (�w)ww:ww:F(P jQ)) jF(P )

= F( ! (P jQ)) jF(P )

= F( ! (P jQ) j P );

which shows the case for (3.6). �

Corollary 3.2 For all process terms P and Q, if P �

ptl

Q, then P �

F

m

Q.

Proof By Lemma 3.1, P�

ptl

Q implies F(P )�

ptl

F(Q), and thus F(P ) � F(Q).

By Theorem B of [2], we have F(P ) �

m

F(Q). Consequently, P �

F

m

Q. �

4 Berries and Cherries

Due to the particular form of F( !P ) and F(g:P ), the molecules that appear in a

solution that is the semantics (by)

F

) of a process term have two di�erent over-

all shapes, viz., mm:fmm:Sg, and g:(S

0

[ fmm:fm

0

m

0

:S

1

g;mm:fm

0

m

0

:?gg),

according to (SF4) and (SF3), respectively. We will need the following proper-

ties of such molecules.

De�nition 4.1 A berry is a molecule mm:fmm:Sg with m 2 New. A cherry

is a molecule g:T with T = S

0

[ fmm:fm

0

m

0

:S

1

g;mm:fm

0

m

0

:?gg, where g is

a schematic guard, m;m

0

2 New with m 6= m

0

, S

0

and S

1

are solutions with

fn(S

0

) \ N = fn(S

1

) \ N, and all molecules of S

0

of the form g

1

:fg

2

:T

0

g are

berries.

The denomination of the two may become more apparent after the inspec-

tion of Fig. 2. Clearly, berries and cherries can be distinguished only by their

13



g:

?S

1

S

0

mm: mm:

m

0

m

0

: m

0

m

0

:

S

mm:

mm:

Figure 2: A berry and a cherry

form: if g:T is a berry, then T is a singleton solution, whereas if g:T is a cherry,

then T consists of at least two molecules. Because of this easy identi�cation

two inactive agents were needed in the de�nition of F(g:P ). The structural

di�erence between berries and cherries also guarantees that after a substitu-

tion [z=y] (where y; z 2 N [ N

+

[ New), a berry does not change into a cherry

(although it might not remain a berry), and vice versa. By the last require-

ment in De�nition 4.1 the representation of T in a cherry g:T is unique, i.e., if

also T = U

0

[ fnn:fn

0

n

0

:U

1

g; nn:fn

0

n

0

:?gg with all the requirements in De�ni-

tion 4.1, then U

0

= S

0

, U

1

= S

1

, n = m, and n

0

= m

0

, since nn:fn

0

n

0

:U

1

g and

nn:fn

0

n

0

:?g are evidently not berries.

In Section 7, where we prove the completeness of potential structural congru-

ence, we want to give a characterization of the sets fP j P �

F

m

Qg for arbitrary

process terms Q. The case in which Q is a restriction (�x)Q

0

(see Lemma 7.4)

is rather cumbersome, in the sense that it can `clash' with the restrictions in-

troduced in F(P ) (that evidently are of a di�erent kind) when P is a guarded

process term g:P

0

or a replication !P

0

. Consider for instance the latter. Let U

be a solution for which both !P

0

)

F

U and (�x)Q

0

)

F

U hold. By inspection

of (SF4) and (SF2), we derive that U =

S

i2N

S

i

[ fmm:fmm:S

0

gg = T

0

[n=x],

where P

0

)

F

S

i

; S

0

and Q

0

)

F

T

0

(and assuming the S

i

, S

0

, and T

0

sat-

isfy the conditions in (SF4) and (SF2)). Suppose that in the course of our

investigation we considered the case m = n. It is easily veri�ed that then

T

0

=

S

i2N

S

i

[ fxx:fxx:S

0

gg. But T

0

would not make sense in this case since

the molecule xx:fxx:S

0

g cannot appear in any solution that lies in the range of

)

F

. To exclude these cases a priori, we introduce properties of solutions that

make the range of )

F

more explicit.

De�nition 4.2 A solution S has the �rst berry-cherry (BC) property if it con-

tains only berries and cherries. It has the second berry-cherry (BC) property if

x 2 fn(S) \N implies that x 2 fn(g:T ) for a cherry g:T of S.

14



Observe that in the above example, the �rst BC property of T

0

forbids

m = n. In fact, the second BC property of T

0

also forbids that m = n and,

moreover, excludes that n 2 new(S

0

) because new(S

0

) \ new(S

i

) = ? for all

i 2 N. Below we show that every solution that is the semantics of a process

term satis�es the BC properties.

Lemma 4.3 For every process term P , if P )

F

S, then S has the �rst and the

second BC property.

Proof The proof is by induction on the structure of P ; it is trivial for P = 0.

Let P = P

1

j P

2

where P

i

)

F

S

i

with new(S

1

) \ new(S

2

) = ?. Then

P )

F

S

1

[ S

2

. Since D

S

1

[S

2

= D

S

1

[D

S

2

, both BC properties are immediate

by induction.

Let P = (�x)P

0

where P

0

)

F

S and let n 2 New � new(S). Then P )

F

S[n=x]. Note that D

S[n=x]

= fg[n=x]:T [n=x] j g:T 2 D

S

g. By induction, S

has both BC properties. Observe that, evidently, a molecule g[n=x]:T [n=x] is

a berry if g:T is a berry. Now assume that g:T 2 D

S

is a cherry, and let

T = S

0

[ fmm:fm

0

m

0

:S

1

g;mm:fm

0

m

0

:?gg. Then

g[n=x]:T [n=x] = g[n=x]:(S

0

[n=x] [ fmm:fm

0

m

0

:S

1

[n=x]g;mm:fm

0

m

0

:?gg):

Now fn(S

0

[n=x])\N = (fn(S

0

)\N)�fxg = (fn(S

1

)\N)�fxg = fn(S

1

[n=x])\

N. Moreover, since fg

0

1

:fg

0

2

:U

0

g 2 D

S

0

[n=x]

g = fg

1

[n=x]:fg

2

[n=x]:U [n=x]g j

g

1

:fg

2

:Ug 2 D

S

0

g, all molecules of the form g

0

1

:fg

0

2

:U

0

g in S

0

[n=x] are berries

by the above observation. Hence g[n=x]:T [n=x] is a cherry, and thus S[n=x]

has the �rst BC property. To show that S[n=x] has the second BC property,

let y 2 fn(S[n=x]) \ N. Obviously, y 2 fn(S) and y 6= x. By the second BC

property of S, there exists a cherry g:T in S with y 2 fn(g:T ). By the above,

g[n=x]:T [n=x] is a cherry in S[n=x], and, since y 6= x, y 2 fn(g[n=x]:T [n=x]).

We show the case P = g:P

0

for an input guard g = x(y) only. Let P

0

)

F

S

0

; S

1

with new(S

0

) \ new(S

1

) = ?. Then P )

F

fx(y):Tg, where T = S

0

[

fmm:fm

0

m

0

:S

1

g;mm:fm

0

m

0

:?gg. We show that x(y):T is a cherry. First recall

that x(y):T abbreviates x(�):inc(T )[1=y], where inc(T )[1=y] = inc(S

0

)[1=y] [

fmm:fm

0

m

0

:inc(S

1

)[1=y]g;mm:fm

0

m

0

:?gg. Now

fn(inc(S

0

)[1=y]) \N = (fn(S

0

) \N)� fyg

= (fn(S

1

) \N)� fyg

= fn(inc(S

1

)[1=y]) \N;

because fn(S

0

) \ N and fn(S

1

) \ N are both equal to fn(P

0

), cf. the remark

after De�nition 2.3. Moreover, since by induction S

0

has the �rst BC property,

all molecules of S

0

of the form g

1

:fg

2

:Ug are berries, and hence all molecules

of inc(S

0

)[1=y] of the form g

0

1

:fg

0

2

:U

0

g are also berries, because fg

0

1

:fg

0

2

:U

0

g 2

D

inc(S

0

)[1=y]

g = fg

1

:fg

2

:inc(U)[1=y]g j g

1

:fg

2

:Ug 2 D

S

0

g. Consequently, x(y):T

is a cherry, so immediately fx(y):Tg has the �rst and second BC property.
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Finally, let P = !P

0

where P

0

)

F

S; S

i

, i 2 N, such that the new(S

i

)

are mutually disjoint and disjoint with new(S), and let m 2 New with m =2

new(S) and m =2 new(S

i

). Then P )

F

S

0

= (

S

i2N

S

i

) [ fmm:fmm:Sgg. Since

mm:fmm:Sg is a berry, both BC properties are immediate by induction; the

second holds because x 2 fn(S

0

) \N implies x 2 fn(S

i

) \N, since fn(S) \N =

fn(P

0

) = fn(S

i

) \N. �

The BC properties are rather exible in the sense that they are closed un-

der, for instance, arbitrary multiset union (as is used in the above proof),

and copying, both of which are trivial to show. The �rst BC property is

also closed under multiset containment �; the second fails, which can be seen

by taking S = fg:T

c

; g:T

b

g, where g:T

c

is a cherry and g:T

b

is a berry with

x 2 fn(T

c

) \ fn(T

b

) \ N. Then S has the second BC property, but clearly

fg:T

b

g � S has not. The BC properties are also closed under all substitutions

[n=x] with n 2 New and x 2 N; this follows implicitly from the case P = (�x)P

0

in the proof of the above lemma. Evidently, they are not closed under inverse

substitutions [x=n]. However, we do have the following remarkable result: the

BC properties of a solution S are guaranteed if they hold for two (di�erent)

substitutions S[m=y] and S[n=x]. This will be used in the proof of Lemma 7.4.

Lemma 4.4 Let S be a solution such that both S[m=y] and S[n=x] have the

�rst and the second BC property, where x; y 2 N with x 6= y and m;n 2

New� new(S). Then S has the �rst and the second BC property.

Proof To show that S has the �rst BC property, we �rst observe that D

S

=

f(g:T )[x=n] j g:T 2 D

S[n=x]

g = f(g:T )[y=m] j g:T 2 D

S[m=y]

g. Now let g:T 2

D

S[n=x]

be a cherry with T = S

0

[ fm

1

m

1

:fm

2

m

2

:S

1

g;m

1

m

1

:fm

2

m

2

:?gg. We

show that (g:T )[x=n] 2 D

S

is a cherry. Note that by the �rst BC property of

S[m=y], (g:T )[x=n][m=y] 2 D

S[m=y]

is a cherry. Now assume that m

1

= n. Then

T [x=n][m=y] = S

0

[x=n][m=y] [ fxx:fm

0

2

m

0

2

:S

1

[x=n][m=y]g; xx:fm

0

2

m

0

2

:?gg;

with m

0

2

= m

2

[x=n]. Since neither xx:fm

0

2

m

0

2

:S

1

[x=n][m=y]g nor xx:fm

0

2

m

0

2

:?g

is a berry, this contradicts that (g:T )[x=n][m=y] is a cherry. Hence m

1

6= n, and

similarly it can be shown that m

2

6= n. Thus,

T [x=n] = S

0

[x=n] [ fm

1

m

1

:fm

2

m

2

:S

1

[x=n]g;m

1

m

1

:fm

2

m

2

:?gg:

Suppose z 2 fn(S

0

[x=n]) with z 2 N. If z 6= x, then, since z 2 fn(S

0

) and

hence z 2 fn(S

1

) because g:T is a cherry, z 2 fn(S

1

[x=n]) is immediate. If

z = x, then z 2 fn(S

0

[x=n][m=y]) since x 6= y. Thus z 2 fn(S

1

[x=n][m=y])

since (g:T )[x=n][m=y] is a cherry, and so z 2 fn(S

1

[x=n]). This shows that

fn(S

0

[x=n])\N � fn(S

1

[x=n])\N, and by symmetry we have fn(S

0

[x=n])\N =

fn(S

1

[x=n]) \ N. Finally, let m = h[x=n]:fh

0

[x=n]:S

0

[x=n]g be a molecule in

S

0

[x=n]. Then h:fh

0

:S

0

g 2 D

S

0

is a berry; let h = h

0

= n

1

n

1

. Again we have

n

1

6= n since otherwise xx:fxx:S

0

[x=n][m=y]g is a molecule in S

0

[x=n][m=y]
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that is not a berry. Hence h

0

[x=n] = h[x=n] = n

1

n

1

, and thus m is a berry. By

the same argument it can be shown that (g:T )[x=n] 2 D

S

is a berry whenever

g:T 2 D

S[n=x]

is a berry. This shows that S has the �rst BC property.

To show that S has the second BC property, let z 2 fn(S). If z 6= x, then

z 2 fn(S[n=x]) and so, by the second BC property of S[n=x], there exists a

cherry g:T 2 D

S[n=x]

with z 2 fn(g:T ). Thus z 2 fn((g:T )[x=n]) and, by the

argument in the previous paragraph, (g:T )[x=n] 2 D

S

is a cherry. The case that

z = x (and hence z 6= y) follows from a symmetric argument. �

5 Cells and Colonies

To simplify our notation in this section, let for an arbitrary guard g and m;m

0

2

New with m 6= m

0

, C(g;m;m

0

) be the cherry

g:fmm:fm

0

m

0

:?g;mm:fm

0

m

0

:?gg;

and let for an arbitrary solution S and m 2 New, B(m;S) be the berry

mm:fmm:Sg:

Note that g:0 )

F

fC(g;m;m

0

)g for every guard g over N and m;m

0

2 New

with m 6= m

0

.

We have now come to the heart of the paper, where we will give a `model' for

structural law (3.6), the one remaining law of structural congruence that involves

replication (see Fig. 1). Since the other laws that involve replication, (3.2){(3.5),

are no longer valid in �

ptl

, we can deduce from a close inspection of (3.6) only

that any model which gives meaning to the structure of processes (as expressed

in the laws of �

ptl

) should treat a replicated process as an atomic entity, similar

to the connected components of a solution. This is because, contrary to the

aforementioned laws of replication, in (3.6) the replication ! (P jQ) is the same

on either side. The entity we propose is a cell, a solution with an in�nite

structure that is distinguished by a special connected component: its nucleus.

In much the same way as the process term P on the right side of structural law

(3.6) can be seen as the o�spring of ! (P j Q), the division of a cell produces

an o�spring solution that consists of a �nite number of daughter cells. The

key technical construction we use is a partial order on connected solutions that

relates (the nucleus of) a cell to its o�spring.

Suppose we are interested in the following question: for given process terms

Q

1

and Q

2

, which process terms P can be found such that P �

F

m

Q

1

j Q

2

(Again, we will be interested in this type of question in Section 7, in particular

Lemma 7.3.) In Lemma 28 of [3], similar problems were investigated involving

�

m

instead of �

F

m

, so let us �rst consider solutions S with P ) S.

As an example, let P = ! ((�z)R

1

jR

2

), where R

1

= xz:0 and R

2

= x(y):0.
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The reader can easily verify by inspection of (S0){(S4) that

S = (

[

i2N

V

i

) [ (

[

j2N

U

j

)

where V

i

= fxn

i

:?g, U

j

= fx(y):?g, and the n

i

2 New are all distinct. Thus,

in fact, the V

i

and the U

j

constitute the connected components of S. Now if

we require P �

m

Q

1

j Q

2

, i.e., S = T

1

[ T

2

with Q

k

) T

k

, k 2 f1; 2g, and

new(T

1

) \ new(T

2

) = ?, then T

1

and T

2

must form a partition (multiset-wise)

of the connected components of S, i.e., we can deduce that T

k

= (

S

i2I

k

V

i

) [

(

S

j2J

k

U

j

), such that both I

1

, I

2

and J

1

, J

2

partition N. Depending on whether

I

k

and J

k

are �nite or in�nite, T

1

and T

2

(and hence Q

1

and Q

2

) can appear in

various forms. For instance, if I

1

is �nite and both J

1

and J

2

are in�nite, then

Q

1

�

m

Q

0

1

=

#I

1

z }| {

(�z)R

1

j : : : j (�z)R

1

j !R

2

and

Q

2

�

m

Q

0

2

= ! (�z)R

1

j !R

2

:

Not surprisingly, P � Q

0

1

jQ

0

2

, which can be shown by applying structural laws

(3.1), (3.2), and (3.5) for this particular instance of P . Our example shows that,

in general, the problem of �nding P such that P �

m

Q

1

jQ

2

is now reduced to

the problem of �nding Q

0

k

such that Q

0

k

�

m

Q

k

. This is exactly the inductive

argument that was used in the proof of the completeness of extended structural

congruence in [3].

Now let us return to our original question: �nd P such that P �

F

m

Q

1

jQ

2

.

Again, by inspection of (SF0){(SF4), the reader can check that P )

F

S such

that

S = (

[

i2N

V

i

) [ (

[

j2N

U

j

) [W;

where V

i

= fC(xn

i

; o

i

; o

0

i

)g, U

j

= fC(x(y); p; p

0

)g, and

W = fB(m; fC(xn; o; o

0

);C(x(y); q; q

0

)g)g;

where the m;n; n

i

; o

i

; o

0

i

; o; o

0

; p; p

0

; q; q

0

2 New are all distinct. Observe that

now the V

i

, the U

j

, and W form the connected components of S. Thus, as

before, if we set S = T

1

[ T

2

with Q

k

)

F

T

k

, k 2 f1; 2g, then clearly T

k

=

(

S

i2I

k

V

i

)[(

S

j2J

k

U

j

)[W

k

, whereW

k

=W if and only ifW

(kmod2)+1

= ?. But

now our choice of I

k

and J

k

is limited; not every combination yields solutions T

k

that make sense, i.e., are the semantics (by )

F

) of process terms Q

k

. Observe

that, in fact, the mere presence or the absence of W in T

k

is the cause of these

constraints: by inspection of (SF0){(SF4), it is straightforward that if W

k

= ?,

then both I

k

and J

k

are �nite, and if W

k

= W , then both I

k

and J

k

are

in�nite. To put it di�erently, if W is a connected component of T

k

, then (and
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only then) W forces the V

i

and U

j

to be of multiplicity ! in T

k

. So W is the

only connected component of T

k

with �nite multiplicity (viz., one); the other

connected components all have multiplicity ! in T

k

. In fact, this also holds for

the multiplicities in S: we call W the nucleus of the cell S. Observe that W

`contains a hidden copy of' V

i

and of U

j

: it is guarded by the ms in the berry

W consists of. It is this `forcing of hidden copies' we want to capture in the

next two de�nitions.

To conclude our example, Q

1

�

F

m

Q

0

1

= P and

Q

2

�

F

m

Q

0

2

=

#I

2

z }| {

(�z)R

1

j : : : j (�z)R

1

j

#J

2

z }| {

R

2

j : : : jR

2

;

or conversely. Thus, the division of S into T

1

and T

2

produces a �nite number

(viz., #I

2

+#J

2

in the above case) of daughter cells. Observe that in either case

P �

ptl

Q

0

1

jQ

0

2

, using structural law (3.6), and that, again, we reduced �nding

P �

F

m

Q

1

jQ

2

to �nding Q

0

k

�

F

m

Q

k

. This inductive argument is used in Section 7

in the proof of completeness of potential structural congruence.

De�nition 5.1 Let V and W be nonempty connected solutions. Then V is

directly hidden in W , denoted V � W , if, for some m 2 New and solutions

S and T , W = fmm:fmm:Sgg [ T and V

0

�

n

S for some copy V

0

of V with

new(V

0

) \ new(T ) = ?. We let < = �

+

; if V < W , then we say that V is

hidden in W .

Recall from the Preliminaries (or from [4]) that V

0

�

n

S if V

0

[U

0

= S with

new(V

0

) \ new(U

0

) = ?. Since V

0

is nonempty and connected, this just means

that it is a connected component of S and hence mult(V; S) � 1.

De�nition 5.1 is of a rather technical nature due to the presence of T . How-

ever, we want to stress that every result in this section (except the last) relies

solely on the fact that < is a partial order on nonempty connected solutions

that is closed under taking copies. Therefore, we postpone the illustration of

the technical details until the moment we need them, viz., in Lemma 5.10.

Lemma 5.2 The relation < is transitive, irreexive, and is preserved under

taking copies.

Proof Clearly, < is transitive by De�nition 5.1. We �rst show that < is

preserved under taking copies, i.e., that V

0

< W

0

whenever V < W , where V

0

is

a copy of V andW

0

is a copy ofW . Observe that it su�ces to show that V �W

implies V

0

�W

0

. LetW = fmm:fmm:Sgg[T , where V

1

�

n

S for some copy V

1

of V with new(V

1

)\new(T ) = ?. Then, for some injection f : new(W )! New,

W

0

= ff(m)f(m):ff(m)f(m):f(S)gg[f(T ). By Lemma 3.2(2) of [4], f(V

1

) �

n

f(S). Moreover, new(f(V

1

)) \ new(f(T )) = f(new(V

1

)) \ f(new(T )) = ?,

since f is injective. Clearly, f(V

1

) is a copy of V

0

. This proves that < is

preserved under copying. Finally, we show that there exists no in�nite sequence
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W

0

� W

1

� : : :. Assume the contrary. Since � is preserved under copying,

the W

i

, i � 0, can be chosen such that W

i

= fm

i

m

i

:fm

i

m

i

:S

i

gg [ T

i

and

W

i+1

�

n

S

i

, for solutions S

i

and T

i

, and with m

i

2 New. But then, when

we view the molecule m = m

0

m

0

:fm

0

m

0

:S

0

g as a rooted directed tree (cf. [2]),

there exists an in�nite directed path starting at the root of m of which the nodes

are labeled m

0

m

0

, m

0

m

0

, m

1

m

1

, m

1

m

1

, m

2

m

2

; : : : respectively. However, this

contradicts the de�nition of Sol and Mol of [2]. It follows that < is irreexive.

�

Thus, the partial order < is rather on equivalence classes [V ] than on the

connected solutions V . Hence, trivially, V < W only if V is not a copy of W .

Next, as explained in the example, we are interested in cells, which are

solutions of which all but one of its connected components have multiplicity !.

More generally, we are interested in �nite unions of such solutions, which we

will call colonies. As will be shown in the next section, every solution that is

the semantics by )

F

of a process term is such a colony.

De�nition 5.3 Let W be a nonempty connected solution. A solution X with

new(W ) \ new(X) = ? and mult(V;X) 2 f0; !g for all nonempty connected

V is an initial segment of W if for all nonempty connected V , mult(V;X) = !

if and only if V < W . For any pair (W;X) of such solutions, the union C =

W [ X is a cell; the nucleus of C is nuc(C) = W . A solution S is a colony if

S =

S

s

p=1

C

p

, s � 0, where the C

p

are cells such that new(C

p

) \ new(C

p

0

) = ?

for all p; p

0

2 f1; : : : ; sg with p 6= p

0

.

Note that in the previous example, (

S

i2N

V

i

)[(

S

j2N

V ) is an initial segment

of W , and thus S is a cell with nucleus W .

Obviously, by the irreexivity of < (Lemma 5.2), the nucleus nuc(C) of a

cell C is well de�ned, since it is the only connected component of multiplicity

one. We show that for every nonempty connected solution there exists a cell of

which it is the nucleus. In fact, let W be a nonempty connected solution and

consider the set f[V ] j V < Wg. Since by De�nition 5.1 the set f[V ] j V � Wg

is countable (because solutions are countable multisets), f[V ] j V < Wg is a

countable set. Let V

i

, i 2 I , be representatives of these equivalence classes.

Let furthermore for all i 2 I and j 2 N, f

i;j

: new(V

i

)! New� new(W ) be an

injection such that the new(f

i;j

(V

i

)) are mutually disjoint. Observe that the f

i;j

exist because New � new(W ) is uncountably in�nite and new(V

i

) is countable

for every i 2 I (as is observed just below Lemma 1 of [2], new(S) is countable

for every solution S). Then f

i;j

(V

i

) is a copy of V

i

for every i 2 I and j 2 N.

Thus X =

S

i2I

S

j2N

f

i;j

(V

i

) is an initial segment of W and so W [X is a cell

with nucleus W .

Using property (Pa) of Section 1, the following facts can easily be proved. If

X and Y are initial segments of a nonempty connected solution W , then X is

a copy of Y . By the distribution of multiset mappings over multiset union and
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the preservation of < under the `copy-of' relation (Lemma 5.2), every copy of a

cell is a cell and every copy of a colony is a colony.

For a cell C = nuc(C) [ X , if a connected component V of X is itself the

nucleus nuc(D) of a cell D, i.e., nuc(D) < nuc(C), then, as the following lemma

shows in a general setting, (a copy of) the cell D is already part of C.

Lemma 5.4 Let C and D

i

, i 2 I, be cells such that the new(D

i

) are mutually

disjoint, new(C) \ new(D

i

) = ?, and nuc(D

i

) < nuc(C) for all i 2 I. Then

C [

S

i2I

D

i

is a copy of C.

Proof Using (Pa), we show that mult(V;C [

S

i2I

D

i

) = mult(V;C) for all

nonempty connected V . By (Pc) this holds if mult(V;D

i

) = 0 for all i 2 I . Now

let mult(V;D

i

) � 1 for some i 2 I . Since D

i

is a cell, either V < nuc(D

i

) or V

is a copy of nuc(D

i

). Hence, since < is transitive and is preserved under taking

copies, V < nuc(C). Consequently, since C is a cell, mult(V;C) = ! and so

mult(V;C [

S

i2I

D

i

) = mult(V;C), by (Pc). �

Note that we could have applied Lemma 14 of [3], but that in fact Lemma 14

of [3] follows directly from (Pa) and (Pc).

Clearly, a �nite union of new-disjoint colonies is a colony. We use the fol-

lowing property of a colony S often in subsequent proofs and will refer to it as

the colony property:

for all nonempty connected V , mult(V; S) = ! if and only if there

exists a connected component W of S with V < W ;

this is an easy consequence of (Pc) and the transitivity of < (see Lemma 5.2).

Using the irreexivity of < it is also easy to show that a colony S is either

empty, or it has at least one connected component V with �nite multiplicity,

i.e., 1 � mult(V; S) < !. For every such V , if S =

S

s

p=1

C

p

, the union of

new-disjoint cells C

p

, then V is a copy of the nucleus of a particular cell C

p

.

The reverse need not hold, since it is possible that nuc(C

p

) has multiplicity

! in one of the other cells, and hence in S; however the following lemma |

which, in fact, we will not need in the sequel but we will state anyway | shows

that there exists at least one representation of the colony S as a �nite union of

new-disjoint cells C in which all the nuclei have �nite multiplicity. Moreover,

this representation of S is unique (up to taking copies of the cells C).

Lemma 5.5 For every colony S there exist new-disjoint cells C

1

; : : : ; C

s

, s � 0,

such that S =

S

s

p=1

C

p

and for all nonempty connected V , V is a copy of

nuc(C

p

) for some p 2 f1; : : : ; sg if and only if 1 � mult(V; S) < !.

Proof The if-part is obvious. Let S =

S

t

q=1

D

q

, where the D

q

are new-disjoint

cells. The proof of the only-if part is by induction on t. It is trivial for t = 0.

Assume t � 1 and let V be a copy of nuc(D

q

) for some q 2 f1; : : : ; tg such

that mult(V; S) = !. Then, by (Pc), there exists q

0

2 f1; : : : ; tg such that

mult(V;D

q

0

) = !. Hence nuc(D

q

) < nuc(D

q

0

). By Lemma 5.4, D

q

[ D

q

0

is a

cell. The proof now follows by induction. �
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The representation of the colony S in Lemma 5.5 can be viewed as a minimal

one, in the sense that S cannot be written as the union of a smaller number of

cells. However, even if we remove from a colony any in�nite number of copies

of one cell, we still end up with a copy of the colony.

Lemma 5.6 Let C

i

, i 2 I, be cells with mutually disjoint new(C

i

) and let S =

S

i2I

C

i

be a colony. If, for some cell C, the set K = fi 2 I j C

i

is a copy of Cg

is in�nite, then

S

i2I�K

C

i

is a copy of S.

Proof Since, by (Pa), the nuclei of the C

i

, i 2 K, are copies of nuc(C) we

have mult(nuc(C); S) = !. Hence, by the colony property of S, there exists a

connected component W of S with nuc(C) < W . Clearly, W is not a connected

component of C

i

with i 2 K, because if it were,W < nuc(C), which is impossible

by the irreexivity of <. Thus W is a connected component of C

j

for some

j 2 I �K, so W < nuc(C

j

) or W = nuc(C

j

) since C

j

is a cell. In each case,

nuc(C

i

) < nuc(C

j

) for all i 2 K. By Lemma 5.4, C

j

is a copy of C

j

[

S

i2K

C

i

,

and so

S

i2I�K

C

i

is a copy of S, by (Pb). �

The designation of the term cell to the union of a nonempty connected

solution with its initial segment is due to the following fundamental cell-division

property:

If a cell is split into two new-disjoint colonies, then the one contain-

ing the nucleus is always a copy of the cell.

We view the second colony as the `o�spring' of the original cell.

Lemma 5.7 Let S

1

; S

2

be colonies such that new(S

1

) \ new(S

2

) = ?. Let W

be a nonempty connected solution and X an initial segment of W . If W [X =

S

1

[ S

2

, then there exists a copy X

0

of X such that either S

1

= W [ X

0

and

X = X

0

[ S

2

, or conversely, S

2

=W [X

0

and X = X

0

[ S

1

.

Proof Observe that since W is a nonempty connected solution, by Lemmas 6

and 8 of [3], there exists X

0

such that either S

1

=W [X

0

and X = X

0

[ S

2

, or

the converse: S

2

=W [X

0

and X = S

1

[X

0

. By symmetry, it su�ces to prove

only the �rst case. We show that mult(V;X) = mult(V;X

0

) for all nonempty

connected V , since then, by (Pa), X is a copy of X

0

. If mult(V;X) = 0, then

obviously mult(V;X

0

) = 0, by (Pc). If mult(V;X) 6= 0, then mult(V;X) = !

since X is an initial segment. Hence V < W and so, by the colony property of

S

1

, mult(V; S

1

) = !. Consequently, mult(V;X

0

) = !, by (Pc). �

We will need the analogon of Lemma 6 of [3], which characterizes the division

of multisets, for an arbitrary number of colonies, i.e., if S

i

, i 2 I , and T

j

, j 2 J ,

are colonies with mutually disjoint new(S

i

) and mutually disjoint new(T

j

), and

if

S

i2I

S

i

=

S

j2J

T

j

, then there exist colonies U

i;j

, such that S

i

=

S

j2J

U

i;j

and T

j

=

S

i2I

U

i;j

. Unfortunately, this does not even hold for the smallest

nontrivial case where #I = #J = 2 and the S

i

and T

j

are single cells. To see
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this, let P = ! (�z)R

1

, where R

1

= xz:0 is the process term taken from the

example earlier in this section. The reader easily veri�es that P jP )

F

S

1

[S

2

,

where S

i

= nuc(S

i

) [X

i

, i 2 f1; 2g, with

nuc(S

i

) = fB(m

i

; fC(xn

i

; o

i

; o

0

i

)g)g;

X

i

=

[

k2K

i

fC(xn

k;i

; o

k;i

; o

0

k;i

)g;

K

1

and K

2

are in�nite and disjoint sets, and the m

i

; n

i

; o

i

; o

0

i

; n

k;i

; o

k;i

; o

0

k;i

2

New are all distinct. Observe that the S

i

are both cells. Now let T

j

= nuc(S

j

)[

X

(jmod2)+1

. Clearly, the S

i

and T

j

are all cells that are copies of one another.

Since the connected components of S

1

[S

2

are all distinct, the division depicted

nuc(S

1

)

nuc(S

2

)

S

1

?

? S

2

S

1

S

2

T

0

1

T

0

2

T

1

T

2

S

1

S

2

X

1

X

2

Figure 3: Quartet (S

1

; S

2

; T

1

; T

2

) is not divisible into colonies

on the left of Fig. 3 is unique, but clearly the solutions inside the small squares

are not colonies. However, in the division depicted on the right of Fig. 3 they

are, and, although not equal, T

j

is a copy of T

0

j

. So the general result we are

aiming for rather claims the existence of colonies U

i;j

such that S

i

is a copy of

S

j2J

U

i;j

and T

j

is a copy of

S

i2I

U

i;j

(cf. Lemma 15 of [3]). The situation

in Fig. 3 depicts precisely the construction we will use in the proof: we locate

the nuclei of all the cells the S

i

and the T

j

consist of by determining the `small

square' to which they belong (since nuclei are connected components, a unique

column i and row j can be assigned to them). Then the U

i;j

are constructed by

adding the proper initial segments to the `squares' that contain nuclei, otherwise

leaving them empty. So the U

i;j

are determined only by the nuclei of the cells

of the S

i

and the T

j

. As the following lemma shows, this construction indeed

yields copies of the S

i

and the T

j

.

Lemma 5.8 Let S =

S

s

p=1

C

p

be a colony of cells C

p

. Let also S =

S

k2K

W

k

,

where the W

k

are the connected components of S. Let K

0

� K be such that

there exists an injection  : f1; : : : ; sg ! K

0

with nuc(C

p

) = W

 (p)

for all p,

1 � p � s. Let X

k

, k 2 K

0

, be an initial segment of W

k

such that the new(X

k

)

are mutually disjoint and new(X

k

) \ new(S) = ?. Then

S

k2K

0

(W

k

[X

k

) is a

copy of S.
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Proof Let K

p

, 1 � p � s, be mutually disjoint sets with

S

s

p=1

K

p

= K

such that C

p

=

S

k2K

p

W

k

(see Lemma 9 of [3]). Clearly, since C

p

is a cell,

W

k

< nuc(C

p

) = W

 (p)

for all k 2 K

p

� f (p)g; in particular, W

k

< W

 (p)

for all k 2 (K

p

\K

0

) � f (p)g. Hence by Lemma 5.4, for every p 2 f1; : : : ; sg,

S

k2K

p

\K

0

(W

k

[X

k

) is a copy of W

 (p)

[X

 (p)

, and the latter is a copy of C

p

.

Consequently, by (Pb),

S

k2K

0

(W

k

[X

k

) =

S

s

p=1

S

k2K

p

\K

0

(W

k

[X

k

) is a copy

of

S

s

p=1

C

p

= S. �

We now prove the analogon of Lemma 6 of [3] for colonies in a slightly

generalized version.

Lemma 5.9 Let S

i

, i 2 I, and T

j

, j 2 J , be solutions with mutually disjoint

new(S

i

) and mutually disjoint new(T

j

). If

S

i2I

S

i

=

S

j2J

T

j

, then there exist

colonies U

i;j

, such that if S

i

is a colony, then S

i

is a copy of

S

j2J

U

i;j

, and if

T

j

is a colony, then T

j

is a copy of

S

i2I

U

i;j

.

Proof Let I

0

= fi 2 I j S

i

is a colonyg and J

0

= fj 2 J j T

j

is a colonyg. For

i 2 I

0

, let S

i

=

S

s

i

p=1

C

p;i

, where the C

p;i

are new-disjoint cells, and similarly

T

j

=

S

t

j

q=1

D

q;j

, for j 2 J

0

. Let C

p;i

= nuc(C

p;i

) [X

p;i

, where X

p;i

is an initial

segment of nuc(C

p;i

), and similarly for D

q;j

= nuc(D

q;j

) [ Y

q;j

. By Lemma 6

of [3], there exist U

0

i;j

such that S

i

=

S

j2J

U

0

i;j

and T

j

=

S

i2I

U

0

i;j

. Hence

S

j2J

U

0

i;j

=

S

s

i

p=1

nuc(C

p;i

) [

S

s

i

p=1

X

p;i

for all i 2 I

0

. Let U

0

i;j

=

S

k2K

i;j

W

k

,

where the W

k

, k 2 K

i;j

, are the connected components of U

0

i;j

and the K

i;j

are

mutually disjoint. By Lemma 10 of [3], there exist injections  

i

: f1; : : : ; s

i

g !

S

j2J

K

i;j

, i 2 I

0

, such that nuc(C

p;i

) =W

 

i

(p)

. Similarly, there exist injections

�

j

: f1; : : : ; t

j

g !

S

i2I

K

i;j

, j 2 J

0

, such that nuc(D

q;j

) = W

�

j

(q)

. Now let

L

i;j

= fk 2 K

i;j

j 9 p : k =  

i

(p) or 9 q : k = �

j

(q)g. Observe that L

i;j

is

�nite for every i 2 I and j 2 J (and L

i;j

= ? for every pair (i; j) with i 2 I� I

0

and j 2 J � J

0

). Let, for every k 2 L

i;j

, Z

k

be an initial segment of W

k

such that the new(Z

k

) are mutually disjoint and new(Z

k

)\new(

S

i

0

2I

S

i

0

) = ?.

De�ne U

i;j

=

S

k2L

i;j

(W

k

[ Z

k

). Clearly U

i;j

is a colony for all i 2 I and

j 2 J . Moreover, since for i 2 I

0

,  

i

is an injection f1; : : : ; s

i

g !

S

j2J

L

i;j

and

S

j2J

L

i;j

�

S

j2J

K

i;j

, by Lemma 5.8,

S

j2J

U

i;j

is a copy of S

i

, and similarly

for T

j

, j 2 J

0

. �

Observe that Lemma 5.9 is valid even when

S

i2I

S

i

is a copy of

S

j2J

T

j

;

let

S

i2I

S

i

= f(

S

j2J

T

j

) =

S

j2J

f(T

j

) for some injection f : New! New. By

Lemma 5.9 there exist colonies U

i;j

, i 2 I , j 2 J , such that

S

j2J

U

i;j

is a copy

of S

i

if S

i

is a colony, and

S

i2I

U

i;j

is a copy of f(T

j

) if f(T

j

) is a colony. Hence

S

i2I

U

i;j

is a copy of T

j

if T

j

is a colony.

We have now reached the point where we need to explain the technical

details of De�nition 5.1. In the next section we show that every solution that

is the semantics of a process term (by )

F

) is a colony. More speci�cally, we

show that for process terms in a normal form, every replication, every guarded

process term, and every restriction corresponds to a cell (see Lemma 6.3).
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If we inspect the semantic rules (SF0){(SF4), we see that whenever a solution

with connected components of !-multiplicity is introduced (viz. in (SF4)), it

contains a connected component of the form fB(m;S)g that hides a copy (viz.

in S) of every other connected component in that solution, and vice versa. This

means that the solution corresponding to a replicated process term is a cell

with nucleus fB(m;S)g. The construction of (SF3) yields a cell as well: fg:Tg

with T = S

0

[ fmm:fm

0

m

0

:S

1

g;mm:fm

0

m

0

:?gg is a cell with an empty initial

segment, since it does not contain a berry. By the remaining (SF2) | which

`glues together' connected components that contain the free name x| a solution

fB(m;S)g containing a berry can become encapsulated in a larger connected

solution fB(m;S[n=x])g [ T

0

[n=x], where T

0

collects the `sticky' components

containing x; note that this is the case whenever x 2 fn(S). For this reason,

the solution T was needed in the environment of the solution fmm:fmm:Sgg in

De�nition 5.1. To explain the condition new(V

0

)\new(T ) = ? in De�nition 5.1,

consider the process terms P

0

= !R

1

and P = (�z)P

0

, where R

1

= xz:0, the

process term from the beginning of this section. We have

P

0

)

F

C = fB(m; fC(xz; o; o

0

)g)g [

[

i2N

fC(xz; o

i

; o

0

i

)g;

and so

P )

F

C[n=z] = fB(m; fC(xn; o; o

0

)g)g [

[

i2N

fC(xn; o

i

; o

0

i

)g

with all the names from New distinct. Clearly, both C and C[n=z] are cells

(with nuc(C) = fB(m; fC(xz; o; o

0

)g)g and nuc(C[n=z]) = C[n=z], i.e., C[n=z]

has an empty initial segment). However, if the condition were dropped, the

latter would no longer be a cell (nor a colony), since De�nition 5.1 would then

require C[n=z] to have

S

i2N

fC(xn

i

; p

i

; p

0

i

)g as an initial segment (with distinct

new names).

We need one more result for the restriction case in the proof of Lemma 6.3

in the next section: a substitution [n=x] applied to a nonempty colony S of cells

C

p

that each contain x yields a cell, provided that S has the �rst BC property

(recall from Lemma 4.3 that every solution that is the semantics of a process

term has the two BC properties). Without the �rst BC property this would fail,

since it would allow us to create unwanted berries of the form B(n; T ), i.e., the

new n in the berry would be the result of an application of (SF2), rather than of

(SF4). Consider, e.g., the solution S = fxx:fxx:S

1

gg where S

1

is an arbitrary

nonempty solution. Note that S is a cell (with empty initial segment) for which

the �rst BC property fails, since xx:fxx:S

1

g is a berry nor a cherry. Then

S[n=x] = fnn:fnn:S

1

[n=x]gg cannot be a cell (nor a colony), since it requires

the connected components of S

1

[n=x] to be of multiplicity !.

Lemma 5.10 Let S =

S

s

p=1

C

p

, s � 1, be a colony of cells C

p

such that x 2

fn(C

p

)\N. Let n 2 New with n =2 new(S). If S has the �rst BC property, then

S[n=x] is a cell with n 2 new(nuc(S[n=x])).
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Proof We �rst show that V < W implies fn(V ) \N � fn(W ) \N. By the

de�nition of < it su�ces to show that fn(V ) \ N � fn(W ) \ N if V � W ;

however, this is trivial, since fn(V

0

) \N = fn(V ) \N for every copy V

0

of V .

Now, let C

p

= W

p

[X

p

, where W

p

= nuc(C

p

) and X

p

is an initial segment

of W

p

. By the statement above, x 2 fn(W

p

) for every p 2 f1; : : : ; sg. Let

X

p

=

S

k2K

p

V

k

, where the V

k

, k 2 K

p

, are the connected components of X

p

and

the K

p

are mutually disjoint. Let, furthermore, K

x

p

= fk 2 K

p

j x 2 fn(V

k

)g,

and let W =

S

s

p=1

(W

p

[

S

k2K

x

p

V

k

) and X =

S

s

p=1

S

k2K

p

�K

x

p

V

k

. Clearly,

S[n=x] =W [n=x][X and new(W [n=x])\new(X) = ?. Also note that W [n=x]

is connected by Lemma 16 of [3].

In the remainder of the proof we show thatX is an initial segment ofW [n=x].

Observe that it follows that n 2 new(nuc(S[n=x])), since then nuc(S[n=x]) =

W [n=x]. Let V be a nonempty connected solution. Obviously, mult(V;X) = 0

if x 2 fn(V ). If x =2 fn(V ), then mult(V;

S

k2K

p

�K

x

p

V

k

) = mult(V;X

p

). Hence

by (Pc), mult(V;X) 2 f0; !g. Also, by the de�nition of X , mult(V;X) 6= 0 if

and only if x =2 fn(V ) and, for some p

0

2 f1; : : : ; sg, V < W

p

0

, since X

p

0

is an

initial segment of W

p

0

. Consequently, to complete the proof, it su�ces to show

that V < W [n=x] if and only if x =2 fn(V ) and V < W

p

0

for some p

0

2 f1; : : : ; sg.

To show the only-if part, note that it su�ces to show that V � W [n=x]

implies x =2 fn(V ) and V < W

p

0

. Assume V � W [n=x]. Then x =2 fn(V ) is

immediate by the �rst statement of the proof. By De�nition 5.1, W [n=x] =

fmm:fmm:Zgg [ T , where V

0

�

n

Z for some copy V

0

of V with new(V

0

) \

new(T ) = ?. Observe that m 6= n by the �rst BC property of S. We show that

n =2 new(V

0

). Suppose to the contrary that n 2 new(V

0

); then n =2 new(T ).

Hence W = fmm:fmm:Z[x=n]gg [ T , because n =2 new(S). Since n =2 new(T ),

W = W

p

0

for some p

0

2 f1; : : : ; sg and so W is a connected component of S.

Clearly V

0

[x=n] �

n

Z[x=n] and new(V

0

[x=n]) \ new(T ) = ?. Now let Y be an

arbitrary connected component of V

0

[x=n]. Then Y � W with x 2 fn(Y ). By

the colony property of S and by (Pc), mult(Y; S) = ! = mult(Y;X). But this

is impossible, since by de�nition x =2 fn(X). Hence n =2 new(V

0

).

To conclude the only-if part, by Lemmas 6 and 5 of [3], there exists p

0

2

f1; : : : ; sg and a solution T

p

0

, such that

(W

p

0

[

[

k2K

x

p

0

V

k

)[n=x] = fmm:fmm:Zgg [ T

p

0

and T

p

0

� T . Again by Lemmas 6 and 5 of [3], there exists a solution T

0

p

0

� T

p

0

such that either W

p

0

[n=x] = fmm:fmm:Zgg[ T

0

p

0

, or there exists k

0

2 K

x

p

0

such

that V

k

0

[n=x] = fmm:fmm:Zgg [ T

0

p

0

. Note that new(V

0

) \ new(T

0

p

0

) = ?.

Assume the �rst case. Then W

p

0

= fmm:fmm:Z[x=n]gg [ T

0

p

0

[x=n], since n =2

new(S). Clearly new(V

0

) \ new(T

0

p

0

[x=n]) = ?. Moreover, since n =2 new(V

0

),

V

0

= V

0

[x=n] �

n

Z[x=n] and so V � W

p

0

. In the second case it can be shown

similarly that V � V

k

0

and thus V < W

p

0

, since V

k

0

is a connected component

of X

p

0

.
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To show the if-part, it su�ces to show that V �W [n=x] whenever V �W

p

0

for some p

0

2 f1; : : : ; sg with x =2 fn(V ). Then W

p

0

= fmm:fmm:Zgg [ T

where V

0

�

n

Z for some copy V

0

of V with new(V

0

) \ new(T ) = ?. Hence

W [n=x] = fmm:fmm:Z[n=x]gg [ T

0

, where T

0

= (T [

S

p2f1;:::;sg�fp

0

g

(W

p

[

S

k2K

x

p

V

k

)[

S

k2K

x

p

0

V

k

)[n=x]. Clearly V

0

= V

0

[n=x] �

n

Z[n=x], since x =2 fn(V

0

)

and n =2 new(V

0

). Also new(V

0

) \ new(T

0

) = ?, since new(V

0

) \ new(T ) = ?,

the new(W

p

) and new(V

k

) are all mutually disjoint, and n =2 new(V

0

). Hence

V �W [n=x]. �

We have not yet explained why, in De�nition 5.1, we have de�ned < to be

the transitive closure of � rather than � itself. In fact, this is only for technical

convenience. Let us say that a cell C is pure if for every nonempty connected

solution V , V < nuc(C) i� V � nuc(C). In the next section we will show (in

Lemma 6.3) that every solution that is the semantics (under )

F

) of a process

term is a colony, and, in fact, a colony of pure cells. Here we note that it follows

from the proof of Lemma 5.10 that if (in the statement of the lemma) S is a

colony of pure cells C

p

, then S[n=x] is a pure cell. In fact, we have shown that

if V < W [n=x] then x =2 fn(V ) and V < W

p

0

, and so V � W

p

0

because C

p

0

is

pure. And we have shown that if V �W

p

0

and x =2 fn(V ) then V �W [n=x].

6 Cell Normal Form of Processes

Although by the absence of structural laws (3.2){(3.5) not much freedom re-

mains to normalize processes that are replications (as compared to the subcon-

nected normal form of [3] where the replication is `moved inwards' as much as

possible), we still have structural law (2.3) in �

ptl

which allows us to `strive for'

process terms of which restrictions cannot be moved inwards any further. As a

consequence of this absence, we miss the interplay between restriction and repli-

cation that, in the normal form of [3], guarantees that a restriction is connected

(i.e., yields a connected solution by )) and that only connected process terms

are replicated. The normal form we propose maps a restriction, a replication,

and a guarded process term to a cell (by )

F

), and, in general, maps a process

term to a colony.

We will write P

1

jP

2

j : : : jP

k

for any process term that is obtained from the

process term (: : : ((P

1

j P

2

) j P

3

) j : : : j P

k�1

) j P

k

by structural law (1.3), i.e., by

associativity of parallel composition. Moreover, for k = 0 we assume that this

process term equals the inactive process 0. For k � 0, we let

P

k

=

k

z }| {

P j : : : j P ;

the parallel composition of k copies of P .

De�nition 6.1 A process cell is a process term de�ned inductively as follows:
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if P

1

; : : : ; P

k

; P

k+1

, k � 0, are process cells, then

(i) g:(P

1

j : : : j P

k

) is a process cell,

(ii) ! (P

1

j : : : j P

k

) is a process cell, and

(iii) (�x)(P

1

j : : : j P

k

j P

k+1

) is a process cell, provided x 2 fn(P

i

)

for all i 2 f1; : : : ; k + 1g.

A process term P is in cell normal form (cnf), if P = P

1

j : : : jP

k

, k � 0, where

P

i

is a process cell for i 2 f1; : : : ; kg.

Note that in De�nition 6.1 the basis of the induction is formed by k = 0,

since then P

1

j : : : j P

k

= 0 as assumed. In the remainder, if there is no danger

of confusion, we abbreviate `process cell' also to `cell'.

The next two lemmas show that cnf is indeed a normal form of processes

(even for �

std

) and that the term `process cell' in De�nition 6.1 is not chosen

arbitrarily.

Lemma 6.2 For every process term P , there exists a process term P

0

in cnf

such that P

0

�

std

P .

Proof The proof is by induction on the structure of P . It is trivial for P = 0,

by taking k = 0 in De�nition 6.1. The cases P = g:P

1

and P = !P

1

are easy

and are treated in one stroke; by induction P

1

�

std

P

0

1

where P

0

1

is in cnf. By

De�nition 6.1(i) and (ii), respectively, g:P

0

1

and !P

0

1

are cells (and hence are in

cnf), and obviously g:P

1

�

std

g:P

0

1

and !P

1

�

std

!P

0

1

. The case P = P

1

j P

2

is

obvious and left to the reader. Finally, let P = (�x)P

1

. By induction P

1

�

std

P

0

1

where P

0

1

is in cnf, so let P

0

1

= P

1;1

j : : : jP

1;k

1

, k

1

� 0, where each P

1;j

is a cell.

Clearly (�x)P

0

1

�

std

P by congruence. Let P

0

1;1

; : : : ; P

0

1;k

1

be a permutation of

P

1;1

; : : : ; P

1;k

1

such that for l

1

with 0 � l

1

� k

1

, we have x 2 fn(P

0

1;j

) for 1 �

j � l

1

, and x =2 fn(P

0

1;j

) for l

1

< j � k

1

. Obviously, by application of structural

law (1.2) only, P

0

1

�

std

P

0

1;1

j : : : j P

0

1;k

1

. We consider three cases. If l

1

= 0, then

x =2 fn(P

0

1

), and hence choosing P

0

= P

0

1

, P

0

�

std

(�x)P

0

1

�

std

P by structural law

(2.2). If l

1

= k

1

> 0, then x 2 fn(P

1;j

) for every j 2 f1; : : : ; k

1

g and thus, letting

P

0

= (�x)P

0

1

, P

0

is a cell (and hence is in cnf), and P

0

�

std

P is immediate.

Thirdly, if 0 < l

1

< k

1

, then let P

0

= (�x)(P

0

1;1

j: : :jP

0

1;l

1

)jP

0

1;l

1

+1

j: : :jP

0

1;k

1

. Since

the P

0

1;j

are cells for 1 � j � k

1

, (�x)(P

0

1;1

j : : : j P

0

1;l

1

) is a cell because l

1

> 0,

and thus P

0

is in cnf. Moreover, P

0

�

std

(�x)(P

0

1;1

j : : : jP

0

1;k

1

)�

std

(�x)P

0

1

�

std

P

by structural law (2.3). �

Lemma 6.3 For every cell P , if P )

F

S, then S is a cell. In general, for

every process term P , if P )

F

S, then S is a colony.

Proof By Lemma 6.2 and Corollary 3.2, it su�ces to show the second part of

the lemma for process terms P in cnf only. This is obvious from (SF0), (SF1),

and the �rst part of the lemma. The proof of the �rst part is by induction on

the de�nition of process cell, cf. De�nition 6.1.
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Let P = g:P

0

. By (SF3), P )

F

fg:Tg for certain solutions T . Obviously,

fg:Tg is a cell, since it consists of a single connected component with an empty

initial segment (because g 6= mm for m 2 New). Note that in this case the

induction hypothesis is not needed.

Let P = ! (P

1

j : : :jP

k

). Assume by induction that P

j

)

F

C

j

; C

i;j

, 1 � j � k

and i 2 N, where the C

j

and C

i;j

are cells with mutually disjoint new(C

j

) and

with mutually disjoint new(C

i;j

). Let S

0

=

S

k

j=1

C

j

and assume that new(C

i;j

)

is disjoint with new(S

0

). LetW = fmm:fmm:S

0

gg and let X =

S

i2N

S

k

j=1

C

i;j

,

where m 2 New with m =2 new(S

0

) and m =2 new(C

i;j

). Then P )

F

W [ X ,

by (SF1) and (SF4), respectively. We show that X is an initial segment of

W . Since for �xed j, C

i;j

is a copy of C

i

0

;j

for all i; i

0

2 N (Lemma 2.4), we

have mult(V;X) 2 f0; !g for all connected V . Assume V < W . Then V � W

or V < V

1

with V

1

� W . Assume the �rst case. Then mult(V; S

0

) � 1 and

hence mult(V;

S

k

j=1

C

i;j

) � 1 for every i 2 N, since

S

k

j=1

C

i;j

is a copy of S

0

by

(Pb). Thus mult(V;X) = ! by (Pc). Next, assume the second case. By the

same argument, mult(V

1

;

S

k

j=1

C

i;j

) � 1 for every i 2 N. Thus mult(V

1

; C

i;j

) �

1 for some i; j with i 2 N and 1 � j � k. Since C

i;j

is a cell, we have

mult(V;C

i;j

) = ! and hence mult(V;X) = !, by (Pc). To show the converse,

note that mult(V;X) = ! implies that mult(V;C

i;j

) � 1 for some i; j with i 2 N

and 1 � j � k, and hence mult(V; S

0

) � 1, since S

0

is a copy of

S

k

j=1

C

i;j

. Thus

V �W and hence V < W .

Finally, let P = (�x)P

0

where P

0

= P

1

j : : : j P

k

j P

k+1

with x 2 fn(P

i

) for

all 1 � i � k + 1. Assume by induction that P

i

)

F

C

i

, where C

i

is a cell, and

assume that the new(C

i

) are mutually disjoint. Then P

0

)

F

S

0

=

S

k+1

i=1

C

i

by

(SF1), and x 2 fn(C

i

) for all i. Recall from Lemma 4.3 that S

0

has the �rst BC

property. By (SF2) we have P )

F

S

0

[n=x] where n =2 new(S

0

). By Lemma 5.10,

S

0

[n=x] is a cell. �

It follows from this proof that for every process term P , if P )

F

S then S

is in fact a colony of pure cells, cf. the discussion following Lemma 5.10 (note

in particular that in the replication case we have shown that mult(V;X) = !

implies V �W ).

For a cell P = ! (P

1

j : : : j P

k

), by structural law (3.6), P can produce any

process term of the form P j P

i

, 1 � i � k; in fact by multiple applications of

(3.6), P�

ptl

P j(P

f(1)

j : : :jP

f(p)

), for every mapping f : f1; : : : ; pg ! f1; : : : ; kg.

If any of the P

i

is itself a replication, still other combinations are possible. We

want to give a full characterization of cells Q that P can produce in parallel

with itself, for arbitrary cells P ; that is, we do not restrict ourselves to cells

that are replications: also cells of the form (�x)(P

1

j : : : j P

k

) can `behave' in

this manner. To see this, let, for instance, P

0

= ! (R

1

j R

2

), where R

1

= xz:0

and R

2

= x(y):0, and let P = (�z)P

0

. Now by structural laws (3.6) and (2.3)

respectively, P �

ptl

(�z)(P

0

jR

2

)�

ptl

P jR

2

, but P cannot produce R

1

.

De�nition 6.4 For a cell P , the o�spring of P is the �nite setO(P ) of subterms
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of P de�ned inductively by

(i) O(g:(P

1

j : : : j P

k

)) = ?,

(ii) O( ! (P

1

j : : : j P

k

)) =

S

k

i=1

(O(P

i

) [ fP

i

g), and

(iii) O((�x)(P

1

j : : : jP

k

jP

k+1

)) = fQ 2 O(P

i

) j 1 � i � k+1 and x =2 fn(Q)g,

where P

i

is a cell for i 2 f1; : : : ; k; k + 1g with k � 0.

Observe that every process term in O(P ) is a cell. We now prove the �rst

half of the characterization mentioned earlier; the second half will be shown in

Theorem 6.6 below.

Lemma 6.5 For every cell P and every Q 2 O(P ), P jQ�

ptl

P .

Proof The proof is by induction on the structure of P , according to De�ni-

tion 6.1. It is obvious for the case P = g:P

0

with P

0

in cnf, since then O(P ) = ?.

Next, let P = ! (P

1

j : : : jP

k

), k � 0, where P

i

is a cell for all i 2 f1; : : : ; kg. Let

Q 2 O(P ). Then, for some j 2 f1; : : : ; kg, Q = P

j

or Q 2 O(P

j

). Assume the

�rst case. Then, using structural laws (1.2) and (3.6),

P jQ �

ptl

! (P

j

j (P

1

j : : : j P

j�1

j P

j+1

j : : : j P

k

)) j P

j

�

ptl

! (P

j

j (P

1

j : : : j P

j�1

j P

j+1

j : : : j P

k

))

�

ptl

P:

Assume the second case. By induction, P

j

j Q �

ptl

P

j

. By the previous case,

P �

ptl

P j P

j

. Hence P j Q �

ptl

P j P

j

j Q �

ptl

P j P

j

�

ptl

P . Finally, let

P = (�x)(P

1

j : : : j P

k

j P

k+1

), k � 0, where P

i

is a cell and x 2 fn(P

i

) for

all i 2 f1; : : : ; k; k + 1g. Then, for some j 2 f1; : : : ; k; k + 1g, Q 2 O(P

j

) and

x =2 fn(Q). By induction we have P

j

jQ �

ptl

P

j

. Hence, using structural laws

(1.2) and (2.3),

P jQ = (�x)(P

1

j : : : j P

k

j P

k+1

) jQ

�

ptl

(�x)(P

1

j : : : j P

j

jQ j P

j+1

j : : : j P

k

j P

k+1

)

�

ptl

(�x)(P

1

j : : : j P

j

j P

j+1

j : : : j P

k

j P

k+1

) = P:

�

By multiple applications of Lemma 6.5, clearly we have P jQ

1

j: : :jQ

p

�

ptl

P ,

p � 1, where Q

i

2 O(P ); by structural law (1.1) this even holds for p � 0.

We now turn to the main result of this section, showing the connection

between the o�spring O(P ) of a cell P and the `o�spring' of a cell C discussed

informally in the beginning of Section 5 and just before Lemma 5.7 (in which C

is divided into two colonies S

1

and S

2

). Note that this gives an answer to the

question put in the beginning of Section 5.
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Theorem 6.6 For every cell P , if P )

F

S

1

[ S

2

, where S

1

, S

2

are colonies

with new(S

1

) \ new(S

2

) = ?, then there exist Q

1

; : : : ; Q

s

2 O(P ) with s � 0,

such that either P )

F

S

1

and Q

1

j : : : jQ

s

)

F

S

2

, or conversely, P )

F

S

2

and

Q

1

j : : : jQ

s

)

F

S

1

.

Proof The proof is by induction on the structure of P , according to De�ni-

tion 6.1.

Let P = g:P

0

where P

0

is in cnf. Then P )

F

fg:Tg. Assume S

1

[ S

2

=

fg:Tg. Then S

1

= ? and S

2

= fg:Tg, or S

2

= ? and S

1

= fg:Tg. In both cases

the statement holds if s = 0 is chosen.

Let P = ! (P

1

j : : : j P

k

), k � 0, where P

j

is a cell. Let P

j

)

F

T

i;j

; T

0

j

, 1 �

j � k and i 2 N, such that the new(T

i;j

) are mutually disjoint, the new(T

0

j

) are

mutually disjoint, and new(

S

k

j=1

S

i2N

T

i;j

)\new(

S

k

j=1

T

0

j

) = ?. By Lemma 6.3,

T

i;j

and T

0

j

are cells. Let T

0

=

S

k

j=1

T

0

j

, letX =

S

k

j=1

S

i2N

T

i;j

, and letm 2 New

with m =2 new(T

0

) and m =2 new(X). Let W = fmm:fmm:T

0

gg and assume

P )

F

W [X = S

1

[S

2

. Observe that by the proof of Lemma 6.3, X is an initial

segment of W . By Lemma 5.7, there exists a copy X

0

of X such that either

S

1

=W [X

0

and X = X

0

[S

2

, or the converse, S

2

=W [X

0

and X = X

0

[S

1

.

Assume the �rst case; the proof of the second is the same. Clearly, by (Pb), S

1

is a copy of S

1

[S

2

and so P )

F

S

1

by Lemma 2.4. By Lemma 5.9 (applied to

X = X

0

[S

2

=

S

k

j=1

S

i2N

T

i;j

), there exist colonies U

i;j;h

with mutually disjoint

new(U

i;j;h

) such that U

i;j;1

[ U

i;j;2

is a copy of T

i;j

and

S

k

j=1

S

i2N

U

i;j;2

is a

copy of S

2

. Thus for all j 2 f1; : : : ; kg and i 2 N, we have by Lemma 2.4 that

P

j

)

F

U

i;j;1

[ U

i;j;2

. By induction there exist Q

i;j;1

; : : : ; Q

i;j;s

i;j

2 O(P

j

) such

that either P

j

)

F

U

i;j;1

and Q

i;j;1

j : : : jQ

i;j;s

i;j

)

F

U

i;j;2

, or P

j

)

F

U

i;j;2

and

Q

i;j;1

j : : : jQ

i;j;s

i;j

)

F

U

i;j;1

. Observe that Q

i;j;p

2 O(P ) and P

j

2 O(P ) for all

i; j; p. This implies that there exist Q

a

2 O(P ), a 2 A, such that S

2

is a copy of

S

a2A

D

a

where Q

a

)

F

D

a

and the new(D

a

) are mutually disjoint. Note that,

by Lemma 6.3, D

a

is a cell. For Q 2 O(P ), let r(Q) = #fa j Q

a

= Qg, let

A

�n

= fa j 0 < r(Q

a

) < !g, and A

in�n

= fa j r(Q

a

) = !g. Let A

l

, l 2 L, be the

equivalence classes of A

in�n

under the equivalence relation f(a; b) j Q

a

= Q

b

g.

Since O(P ) is �nite, L is �nite, and clearly for all l 2 L and a; b 2 A

l

, we have

by Lemma 2.4 that D

a

is a copy of D

b

. Hence by #L applications of Lemma 5.6,

S

a2A

D

a

is a copy of

S

a2A

fin

D

a

. Now let Q

�n

= fQ

a

2 O(P ) j a 2 A

�n

g. Since

O(P ) is �nite, Q

�n

is �nite, say Q

�n

= fR

1

; : : : ; R

t

g, and hence A

�n

is �nite.

Clearly, R

r(R

1

)

1

j: : :jR

r(R

t

)

t

)

F

S

a2A

fin

D

a

, and hence R

r(R

1

)

1

j: : :jR

r(R

t

)

t

)

F

S

2

.

Finally, let P = (�x)(P

1

j : : : jP

k

jP

k+1

) where P

i

is a cell with x 2 fn(P

i

) for

all i 2 f1; : : : ; k + 1g. Let P

i

)

F

T

i

, where the new(T

i

) are mutually disjoint,

and let T = T

1

[ : : : [ T

k

[ T

k+1

. Assume P )

F

T [n=x] = S

1

[ S

2

, where

n 2 New�new(T ). By Lemma 5.10, T [n=x] is a cell (cf. the proof of Lemma 6.3);

let T [n=x] =W [X , whereW = nuc(T [n=x]) and X is an initial segment ofW .

Note that n 2 new(W ) by Lemma 5.10. By Lemma 5.7, there exists a copyX

0

of

X such that either S

1

=W [X

0

and X = X

0

[S

2

, or the converse, S

2

=W [X

0
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and X = X

0

[ S

2

. Assume the �rst case. Then S

1

is a copy of T [n=x], so

P )

F

S

1

. Moreover, since T [n=x] = W [X

0

[ S

2

where n 2 new(W ) and the

new(W ), new(X

0

), and new(S

2

) are mutually disjoint, T = W [x=n] [X

0

[ S

2

.

Now let S = W [x=n] [ X

0

, so T = S [ S

2

with new(S) \ new(S

2

) = ?. By

Lemma 5.9, there exist colonies U

i;j

, 1 � i � k+1 and j 2 f1; 2g, with mutually

disjoint new(U

i;j

) such that U

i;1

[U

i;2

is a copy of T

i

and

S

k+1

i=1

U

i;2

is a copy of

S

2

. Hence P

i

)

F

U

i;1

[U

i;2

. By induction, there exist s

i

� 0 and Q

i;p

2 O(P

i

),

p 2 f1; : : : ; s

i

g, such that P

i

)

F

U

i;1

and Q

i;1

j : : : jQ

i;s

i

)

F

U

i;2

. Note that the

converse, P

i

)

F

U

i;2

and Q

i;1

j : : : jQ

i;s

i

)

F

U

i;1

, is impossible since x =2 fn(S

2

)

and hence x =2 fn(U

i;2

). Thus x =2 fn(Q

i;p

) and consequently Q

i;p

2 O(P ).

Moreover,

Q

1;1

j : : : jQ

1;s

1

j : : : jQ

k+1;1

j : : : jQ

k+1;s

k+1

)

F

S

2

;

since

S

k+1

i=1

U

i;2

is a copy of S

2

. �

7 The Completeness of Potential Structural

Congruence

As explained in Section 2, the proof of the decidability of potential structural

congruence is, more or less, immediate from its completeness, i.e., the converse

of Corollary 3.2. We use a method of proof similar to the one in [3], where it

was used to show that � and �

m

are identical, and the one in [4], where it was

used in the proof of completeness of structural inclusion. Apart from technical

details, P �

F

m

Q implies P �

ptl

Q is shown by induction on the structure of Q;

the �rst lemma forms the induction basis (which is the case Q = 0), and the

next four the induction steps depending on the form of Q, i.e., whether Q is

a guarded process term, a parallel composition, a restriction, or a replication,

respectively.

Lemma 7.1 For all process terms P , P �

F

m

0 if and only if P �

ptl

0.

Proof The if-direction is by Corollary 3.2. The only if-direction is shown by

induction on the structure of P . Assume P )

F

? in each case. The proof is

trivial for P = 0. For the cases P = !P

0

and P = g:P

0

the statement vacuously

holds, since then P )

F

? is impossible. Next, let P = P

1

j P

2

. Then P

1

)

F

?

and P

2

)

F

?, and so P

1

�

F

m

0 and P

2

�

F

m

0. Hence, by induction, P

1

�

ptl

0

and P

2

�

ptl

0, and thus P

1

jP

2

�

ptl

0 j0�

ptl

0, by structural law (1.1). Finally,

let P = (�x)P

0

. Then P

0

)

F

?, and so P

0

�

F

m

0. By induction P

0

�

ptl

0, and

hence (�x)P

0

�

ptl

(�x)0�

ptl

0, by structural law (2.2). �

In the next lemma, we treat the case that Q is a guarded process term g:Q

0

.

In its proof we exploit the �rst BC property in the case that P is a restriction

(�x)P

0

in the following way: (�x)P

0

�

F

m

g:Q

0

implies that (�x)P

0

)

F

fg:Tg
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where T = T

0

[fmm:fm

0

m

0

:T

1

g;mm:fm

0

m

0

:?gg (with the restrictions of (SF3))

and Q

0

)

F

T

0

; T

1

. Then, cf. (SF2), S

0

[n=x] = fg:Tg where P

0

)

F

S

0

and

n 2 New�new(S

0

). Since g is a guard overN, the n must occur in T (assuming

it occurs at all in g:T ) which implies exactly one of the following cases: (1)

m = n, (2) m

0

= n, (3) n occurs in T

0

, or (4) n occurs in T

1

. The �rst BC

property of S

0

= fg:T [x=n]g forbids each of them: if m = n or m

0

= n, then S

0

would consist of a molecule that is not a cherry anymore (neither a berry). If n

occurred in T

0

or in T

1

, then (since new(T

0

) \ new(T

1

) = ?) fn(T

0

[x=n]) would

contain x, but fn(T

1

[x=n]) would not, or vice versa, and thus, again, g:T [x=n]

would not be a cherry anymore. Hence the only case in which (�x)P

0

�

F

m

g:Q

0

is when x =2 fn(P

0

). Note that, consequently, structural law (2.4) is not needed.

Lemma 7.2 For every process term P , if P �

F

m

g:Q

0

where g is a guard over

N, then there exists a process term R such that P �

ptl

g:R and R�

F

m

Q

0

.

Proof We �rst observe that it su�ces to prove the statement of the lemma for

the case that x does not occur bound in P if x occurs bound in g. In fact, using

�-conversion (i.e., structural law (�)) to rename all bound occurrences of x in

P , a process term P can be constructed such that P �

ptl

P . The statement can

then be proved for P (cf. Corollary 3.2).

Throughout the proof, assume that P )

F

fg:Tg with

T = T

0

[ fmm:fm

0

m

0

:T

1

g;mm:fm

0

m

0

:?gg

such that m;m

0

2 New � new(T

0

[ T

1

), m 6= m

0

, new(T

0

) \ new(T

1

) = ?, and

Q

0

)

F

T

0

; T

1

. We proceed by induction on the structure of P . The cases P = 0

and P = !P

0

are trivial, since then P )

F

fg:Tg is impossible.

Let P = h:P

0

where h is a guard over N. Then fg:Tg = fh:Sg with

S = S

0

[ fnn:fn

0

n

0

:S

1

g; nn:fn

0

n

0

:?gg and P

0

)

F

S

0

; S

1

, such that new(S

0

) \

new(S

1

) = ? and n; n

0

2 New � new(S

0

[ S

1

) with n 6= n

0

. Observe that

h:S is cherry, cf. (the proof of) Lemma 4.3. First consider the case that g

is an output guard. Then h = g and S = T . Since all molecules of S

0

of

the form g

1

:fg

2

:S

0

g are berries and since evidently both mm:fm

0

m

0

:T

1

g and

mm:fm

0

m

0

:?g are not because m 6= m

0

, we have S

i

= T

i

, i 2 f0; 1g. Hence,

letting R = P

0

, we immediately obtain P �

ptl

g:R and R�

F

m

Q

0

. Next, consider

the case that g is an input guard; assume g = x(y) and h = x(v). Recall that

fx(v):Sg = fx(y):Tg abbreviates fx(�):inc(S)[1=v]g = fx(�):inc(T )[1=y]g.

By the same argument as above, it follows that inc(S

i

)[1=v] = inc(T

i

)[1=y],

i 2 f0; 1g. Note that if y 6= v, then y =2 fn(S

i

) and hence y =2 fn(P

0

). Now

inc(T

i

) = inc(S

i

)[1=v][y=1] = inc(S

i

)[y=v] = inc(S

i

[y=v]), so T

i

= S

i

[y=v]. Now

let R = P

0

[y=v]. By Lemma 2.5(1), R )

F

T

i

and so R �

F

m

Q

0

. Moreover,

P = x(v):P

0

�

ptl

x(y):R by structural law (�), since y =2 fn(P

0

) if y 6= v.

Let P = (�x)P

0

. Then fg:Tg = S

0

[n=x] where P

0

)

F

S

0

and n 2 New �

new(S

0

). Note that x =2 fn(g:T ) and hence, by the assumption in the begin-

ning of the proof, x does not occur in g. Then S

0

= fg:T [x=n]g, since g is
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a guard over N, i.e., n does not occur in g. Moreover, since g:T [x=n] is ev-

idently not a berry, by the �rst BC property of S

0

(Lemma 4.3) it must be

a cherry, which implies that m 6= n and m

0

6= n. Thus T [x=n] = T

0

[x=n] [

fmm:fm

0

m

0

:T

1

[x=n]g;mm:fm

0

m

0

:?gg with z 2 fn(T

0

[x=n]) i� z 2 fn(T

1

[x=n])

for all z 2 N that do not occur bound in g. Hence if x 2 fn(T

0

[x=n]), then

x 2 fn(T

1

[x=n]), and so n 2 new(T

0

) \ new(T

1

) which contradicts new(T

0

) \

new(T

1

) = ?. For the same reason, x =2 fn(T

1

[x=n]). Consequently, x =2 fn(S

0

),

i.e., S

0

[n=x] = S

0

, and so P

0

�

F

m

g:Q

0

. By induction, there exists R with

P

0

�

ptl

g:R and R �

F

m

Q

0

. Hence P �

ptl

g:R, since x =2 fn(P

0

) and thus

(�x)P

0

�

ptl

P

0

by structural law (2.2).

Finally, let P = P

1

j P

2

. Then fg:Tg = S

1

[ S

2

where P

j

)

F

S

j

, j 2 f1; 2g,

with new(S

1

) \ new(S

2

) = ?. Thus either S

1

= fg:Tg and S

2

= ?, or S

1

= ?

and S

2

= fg:Tg. Assume the �rst case, the proof of the second is the same.

Then P

1

�

F

m

g:Q

0

and P

2

�

F

m

0. By induction there exists R with P

1

�

ptl

g:R and

R�

F

m

Q

0

, and by Lemma 7.1 we obtain P

2

�

ptl

0. Hence P

1

jP

2

�

ptl

g:Rj0�

ptl

g:R

by structural law (1.1). �

To treat the case that Q is a parallel composition Q

1

jQ

2

, what we want to

prove (using induction on the structure of P ) is

if P �

F

m

Q

1

jQ

2

, then there exist R

1

and R

2

such that P �

ptl

R

1

jR

2

,

R

1

�

F

m

Q

1

, and R

2

�

F

m

Q

2

;

this however, we cannot, because in the case that P is a parallel composition

P

1

j P

2

, it is impossible to �nd the process terms Q

1

and Q

2

needed in the

induction step. Instead we prove the lemma below (of which the above statement

is a consequence). We use Theorem 6.6 in its proof; this allows us to treat the

three cases in which P can appear as a cell in one stroke.

Lemma 7.3 For every process term P , if P )

F

T

1

[ T

2

where T

1

, T

2

are

colonies with new(T

1

)\ new(T

2

) = ?, then there exist process terms R

1

and R

2

such that R

1

)

F

T

1

, R

2

)

F

T

2

, and P �

ptl

R

1

jR

2

.

Proof The proof is by induction on the structure of P . Observe that by

Lemma 6.2 and Corollary 3.2, it su�ces to prove the statement of the lemma

for the case that P is in cnf.

Let P = 0. Then T

1

[T

2

= ? and hence T

1

= T

2

= ?. Now let R

1

= R

2

= 0,

since then by structural law (1.1), P �

ptl

0 j 0.

Let P be a cell. Then, by Theorem 6.6, either P )

F

T

1

and, for s � 0,

Q

1

j : : : jQ

s

)

F

T

2

with Q

i

2 O(P ), or the converse, Q

1

j : : : j Q

s

)

F

T

1

and

P )

F

T

2

. Assume the �rst case; the second is the same. Let R

1

= P and

R

2

= Q

1

j : : : jQ

s

. By s applications of Lemma 6.5, P = R

1

�

ptl

R

1

jR

2

.

Let P = P

1

j P

2

with P

i

)

F

S

i

and new(S

1

) \ new(S

2

) = ?. Suppose

S

1

[S

2

= T

1

[T

2

. By Lemma 6.3, S

1

and S

2

are colonies. Hence by Lemma 5.9,

there exist colonies U

i;j

, i; j 2 f1; 2g, with mutually disjoint new(U

i;j

), such

that S

i

is a copy of U

i;1

[ U

i;2

and T

j

is a copy of U

1;j

[ U

2;j

. Consequently,
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P

i

)

F

U

i;1

[U

i;2

. By induction, there exist R

i;j

, i; j 2 f1; 2g, with R

i;j

)

F

U

i;j

and P

i

�

ptl

R

i;1

j R

i;2

. Now let R

1

= R

1;1

j R

2;1

and R

2

= R

1;2

j R

2;2

, since

then R

j

)

F

U

1;j

[ U

2;j

by (SF1), and hence R

j

)

F

T

j

since T

j

is a copy of

U

1;j

[ U

2;j

. Moreover, P = P

1

j P

2

�

ptl

(R

1;1

j R

1;2

) j (R

2;1

j R

2;2

)�

ptl

R

1

j R

2

by structural laws (1.2) and (1.3). �

Similar to the previous case, we are forced to include solutions (instead of

process terms) in the statement of the lemma below to show the case Q =

(�x)Q

0

; we cannot prove

if P �

F

m

(�x)Q

0

, then there exists R such that P �

ptl

(�x)R and

R�

F

m

Q

0

immediately (again, in the case that P is a parallel composition P

1

j P

2

, it is

impossible to deduce the existence of a process term Q

0

needed in the induction

step). Whereas in the previous case we required the solutions to be colonies,

here we require them to have the two BC properties. The reason why the

�rst BC property is included in the statement is much the same as why it was

needed in the dual case P = (�x)P

0

in Lemma 7.2. The second BC property

of T is needed in the case that P is a replication !P

0

: by (SF4) we infer that

P )

F

S

i2N

S

i

[ fmm:fmm:Sgg = T [n=x] where the S

i

; S are new-disjoint.

Now if n appeared in S, i.e., T =

S

i2N

S

i

[ fmm:fmm:S[x=n]gg, then T would

not have the second BC property because x 2 fn(T ), but x does not appear in

any cherry of T . Thus, n does not appear in S and, similarly, n 6= m (cf. the

discussion in Section 4).

Lemma 7.4 For every process term P , if P )

F

T [n=x] where x 2 N, n 2

New� new(T ), and T has the �rst and second BC property, then there exists a

process term R such that P �

ptl

(�x)R and R)

F

T .

Proof The proof is by induction on the structure of P . Note that x does not

occur free in P . In fact, by an argument similar to the one in the proof of

Lemma 7.2, we may assume that x does not occur at all (i.e., neither free nor

bound) in P .

Let P = 0 and assume P )

F

T [n=x]. Then T = ? and hence, letting

R = 0, R)

F

T and P �

ptl

(�x)R by structural law (2.2).

Let P = g:P

0

and let P

0

)

F

S

0

; S

1

with new(S

0

) \ new(S

1

) = ?. Then

P )

F

fg:Sg, where S = S

0

[ fmm:fm

0

m

0

:S

1

g;mm:fm

0

m

0

:?gg with m;m

0

2

New � new(S

0

[ S

1

) and m 6= m

0

. Assume fg:Sg = T [n=x]; observe that x =2

fn(g:S), and that x does not occur in g. Also note that since g is a guard overN,

n does not occur in g, so T = fg:S[x=n]g. By the same argument as in the proof

of Lemma 7.2 (case P = (�x)P

0

) using the �rst BC property of T , m 6= n and

m

0

6= n, and thus S[x=n] = S

0

[x=n] [ fmm:fm

0

m

0

:S

1

[x=n]g;mm:fm

0

m

0

:?gg.

Tracing this argument even further, using that new(S

0

) \ new(S

1

) = ?, x =2

fn(T ) and so T = T [n=x]. Hence, letting R = P , we have R )

F

T and

P �

ptl

(�x)R by structural law (2.2).

35



Let P = !P

0

where P

0

)

F

S; S

i

, i 2 N, such that the new(S

i

) are mutually

disjoint and disjoint with new(S). Let m 2 New with m =2 new(S) and m =2

new(S

i

). Then P )

F

(

S

i2N

S

i

) [ fmm:fmm:Sgg = T [n=x]. Now, m 6= n and

n =2 new(S) by the second BC property of T and since the new(S

i

) and new(S)

are mutually disjoint. Thus T = (

S

i2N�fjg

S

i

) [ S

j

[x=n] [ fmm:fmm:Sgg for

exactly one j 2 N. To use induction (applied to P

0

)

F

S

j

[x=n][n=x] = S

j

),

we show that S

j

[x=n] has both the BC properties. Clearly, S

j

[x=n] has the

�rst BC property, since S

j

[x=n] � T and T has the �rst BC property. To

show that S

j

[x=n] has the second BC property, suppose that y 2 fn(S

j

[x=n]).

If x 6= y, then y 2 fn(S

j

). Note that by Lemma 4.3, S

j

has the second BC

property. Thus there exists a cherry g:T

0

2 D

S

j

with y 2 fn(g:T

0

). Hence

y 2 fn((g:T

0

)[x=n]) and (g:T

0

)[x=n] 2 D

S

j

[x=n]

. Thus, (g:T

0

)[x=n] 2 D

T

, and

since (g:T

0

)[x=n] cannot be a berry, by the �rst BC property of T it must be a

cherry. If x = y, then, by the second BC property of T , there exists a cherry

g:T

0

2 D

T

with y 2 fn(g:T

0

). Hence g:T

0

2 D

S

j

[x=n]

, since x =2 fn(S

i

), i 2 N,

and x =2 fn(mm:fmm:Sg). Consequently S

j

[x=n] has the second BC property.

By induction there exists R

0

with R

0

)

F

S

j

[x=n] and P

0

�

ptl

(�x)R

0

. Now take

R = P jR

0

since then clearly R)

F

T and P�

ptl

P jP

0

�

ptl

P j(�x)R

0

�

ptl

(�x)R,

by structural laws (3.1) and (2.3), respectively, and the fact that x does not occur

in P .

Let P = P

1

j P

2

and let P

i

)

F

S

i

with new(S

1

) \ new(S

2

) = ?. Then

P )

F

S

1

[ S

2

. Assume S

1

[ S

2

= T [n=x]. Since the new(S

i

) are mutually

disjoint, either T = S

1

[x=n] [ S

2

, or T = S

1

[ S

2

[x=n]. Assume the �rst case.

Note that S

1

[x=n] has the �rst BC property, since S

1

[x=n] � T and T has

the �rst BC property. The second BC property of S

1

[x=n] follows from the

second BC property of S

1

, the �rst and the second BC property of T , and

from x =2 fn(S

2

), by an argument similar to the previous case. By induction

there exists R

1

with R

1

)

F

S

1

[x=n] and P

1

�

ptl

(�x)R

1

. Consequently, letting

R = R

1

jP

2

, R)

F

T and P �

ptl

(�x)R

1

jP

2

�

ptl

(�x)R by structural law (2.3).

Let P = (�y)P

0

where P

0

)

F

S with m 2 New � new(S). Then P )

F

S[m=y]. Assume S[m=y] = T [n=x]. Note that since x does not occur in P , y 6= x.

First consider the case m = n. Then T = S[m=y][x=n] = S[x=y]. Now take R =

P

0

[x=y], since then P�

ptl

(�x)R by structural law (�), and furthermore R)

F

T

by Lemma 2.5(1). Next, consider the case m 6= n. Then S = T [n=x][y=m] =

T [y=m][n=x]. Since by Lemma 4.3, S has the �rst and second BC property, and

since by assumption T = T [y=m][m=y] has the �rst and second BC property,

T [y=m] has the �rst and second BC property by Lemma 4.4. By induction,

applied to P

0

)

F

S = T [y=m][n=x], there exists R

0

with R

0

)

F

T [y=m] and

P

0

�

ptl

(�x)R

0

. Hence, letting R = (�y)R

0

, we have R )

F

T [y=m][m=y] = T

and P �

ptl

(�y)(�x)R

0

�

ptl

(�x)R by structural law (2.1). �

The �nal lemma treats the case that Q is a replication !Q

0

. As in Lemma 7.2

(forQ = g:Q

0

), the assertion is made directly on the process term !Q

0

. Also note

that the cases in which P is the null process, a guarded process, or a restriction
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are excluded in its proof. The technical assumptions on the o�spring O( !Q

0

)

are needed in the case that P is a parallel composition | the only nontrivial

case remaining | which is shown by an application of Lemma 7.3.

Lemma 7.5 Let !Q

0

be a cell such that for every process term R

0

, R

0

�

F

m

Q

0

implies !R

0

j Q

2

�

ptl

!R

0

whenever Q

2

�

F

m

Q

1

2 O( !Q

0

). For every process

term P , if P �

F

m

!Q

0

, then there exists a process term R with P �

ptl

!R and

R�

F

m

Q

0

.

Proof The proof is by induction on the structure of P . By an argument similar

to the one in the proof of Lemma 7.3, it su�ces to prove the statement in the

lemma for the case that P is in cnf. The proof is trivial for the cases P = 0

and P = g:P

0

; it is easily checked that then P �

F

m

!Q

0

is impossible. We can

also exclude the case P = (�x)P

0

as the following argument shows: assume

P

0

)

F

S with n 2 New � new(S). Observe that S is a colony by Lemma 6.3.

Then P )

F

S[n=x]. Since P is a cell, n 2 new(nuc(S[n=x])) by Lemma 5.10.

Now let Q

0

)

F

T; T

i

, i 2 N, such that the new(T

i

) are mutually disjoint and

disjoint with new(T ). Assume !Q

0

)

F

(

S

i2N

T

i

) [ fmm:fmm:Tgg = S[n=x].

Since by Lemma 4.3 S has the �rst BC property, n 6= m, and so n 2 new(T )

since nuc(S[n=x]) = fmm:fmm:Tgg, cf. the proof of Lemma 6.3. Hence S =

(

S

i2N

T

i

)[fmm:fmm:T [x=n]gg. Now let V be a connected component of T [x=n]

containing x. Clearly V < fmm:fmm:T [x=n]gg. Since S is a colony, by its

colony property we have that mult(V; S) = mult(V;

S

i2N

T

i

) = !. However,

this is impossible since x =2 fn(T

i

).

Let P = P

1

j P

2

where P

i

)

F

S

i

, i 2 f1; 2g, with new(S

1

) \ new(S

2

) = ?.

Assume !Q

0

)

F

S

1

[S

2

. By Theorem 6.6, there exist R

1

; : : : ; R

s

2 O( !Q

0

) such

that either P

1

�

F

m

!Q

0

and P

2

�

F

m

R

1

j: : :jR

s

, or the converse, P

1

�

F

m

R

1

j: : :jR

s

and

P

2

�

F

m

!Q

0

. Assume the �rst case; the second has the same proof. By induction,

there exists R with P

1

�

ptl

!R and R �

F

m

Q

0

. Moreover, by Lemma 7.3, there

exist R

0

1

; : : : ; R

0

s

such that P

2

�

ptl

R

0

1

j : : : jR

0

s

and R

0

p

�

F

m

R

p

, 1 � p � s. Hence

P

1

jP

2

�

ptl

!R jR

0

1

j : : : jR

0

s

�

ptl

!R by the assumption in the statement of the

lemma.

Let P = !P

0

and assume !P

0

�

F

m

!Q

0

. Since both !P

0

and !Q

0

are cells,

there exists a cell C such that !P

0

)

F

C and !Q

0

)

F

C. Hence (cf. the proof

of Lemma 6.3) nuc(C) = fmm:fmm:Sgg for some m 2 New, with P

0

)

F

S

and Q

0

)

F

S. Thus, choosing R = P

0

, we have P = !R and R�

F

m

Q

0

. �

We are now able to show the completeness of potential structural congruence.

Lemma 7.6 For all process terms P and Q, if P �

F

m

Q, then P �

ptl

Q.

Proof The proof is by induction on the structure of Q. By Lemma 6.2 and

Corollary 3.2 we may restrict ourselves to process terms Q in cnf; observe that

if Q is in cnf then every subterm of Q is in cnf. If Q = 0, then P �

ptl

Q by

Lemma 7.1.
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Let Q = g:Q

0

. Then by Lemma 7.2, P �

ptl

g:R for some process term R

with R �

F

m

Q

0

. By induction, R �

ptl

Q

0

and hence P �

ptl

g:Q

0

by congruence

of �

ptl

.

Let Q = Q

1

j Q

2

. Then P )

F

T

1

[ T

2

with Q

1

)

F

T

1

, Q

2

)

F

T

2

, and

new(T

1

)\new(T

2

) = ?. By Lemma 6.3, T

1

and T

2

are colonies. By Lemma 7.3,

there exist process terms R

1

and R

2

with P�

ptl

R

1

jR

2

, R

1

�

F

m

Q

1

, and R

2

�

F

m

Q

2

.

By induction, R

1

�

ptl

Q

1

and R

2

�

ptl

Q

2

. Hence P �

ptl

Q

1

jQ

2

.

Let Q = (�x)Q

0

with Q

0

)

F

T and n 2 New�new(T ). Then P )

F

T [n=x],

and by Lemma 4.3, T has the �rst and second BC property. By Lemma 7.4,

there exists a process term R with P �

ptl

(�x)R and R �

F

m

Q

0

. By induction,

R�

ptl

Q

0

and so P �

ptl

(�x)Q

0

.

Let Q = !Q

0

. By assumption, !Q

0

is a cell. By induction, R

0

�

ptl

Q

0

for

every process term R

0

with R

0

�

F

m

Q

0

, which implies !R

0

�

ptl

!Q

0

. Also by

induction, since O( !Q

0

) consists only of subterms of Q

0

, we have Q

2

�

ptl

Q

1

for all process terms Q

1

and Q

2

with Q

1

2 O( !Q

0

) and Q

2

�

F

m

Q

1

. Hence

!R

0

j Q

2

�

ptl

!Q

0

j Q

1

�

ptl

!Q

0

�

ptl

!R

0

, by Lemma 6.5. Thus, since !Q

0

satis�es all the requirements in Lemma 7.5, there exists a process term R with

P �

ptl

!R and R�

F

m

Q

0

. By induction, R�

ptl

Q

0

and so P �

ptl

!Q

0

. �

This last result proves the �rst main result of this paper: potential structural

congruence and multiset congruence by F are the same.

Theorem 7.7 For all process terms P and Q, P �

ptl

Q if and only if P �

F

m

Q.

Proof Immediate by Corollary 3.2 and Lemma 7.6. �

As we claimed earlier, the decidability of potential structural congruence is

a consequence of the previous result. Thus we obtain the second main result of

this paper.

Theorem 7.8 It is decidable, for process terms P and Q,

whether or not P �

ptl

Q.

Proof By Theorem 7.7 (and Theorem 33 of [3]), P �

ptl

Q if and only if

F(P ) � F(Q). Since by Theorem 34 of [3], � is decidable and since the reduction

F is e�ective, P �

ptl

Q is decidable. �

8 Behavioural Invariance of Process

Transformation

We indicated in Section 2 that the mapping F does not change the behaviour of

processes; since only inactive agents are added, one might expect then that F is

a strong bisimulation on the transition system of the �-calculus, but, unfortu-

nately, it is not, as the following trivial counterexample shows. Let P = x(y):0 j

xz:0. Clearly P ! 0j0, and so P ! 0. Let R = (�v)(�w)(vv:ww:0jvv:ww:0). It
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can be veri�ed easily that F(P ) = P

1

jP

2

, where P

1

�

std

x(y):R and P

2

�

std

xz:R.

Clearly, whenever F(P )! P

0

, then P

0

�

std

R jR, but F(0)�

std

R jR does not

hold. Instead, we show that ) �F �)

�1

is contained in a strong bisimulation

on the transition system of M�, which shows (since, by Theorem A of [2], )

is a strong bisimulation between the transition systems of the �-calculus and

M�) that P and F(P ) are strongly bisimilar. In fact, we will use a multiset

transition system which is obtained from M� by adding communication labels

to the transitions, and we show that the semantics of P and F(P ) are strongly

bisimilar even in that system; this is an immediate consequence of Theorem 8.7

and Theorem 8.8 that are proven at the end of this section.

De�nition 8.1 The Multiset �-Calculus with communication labels Mc� is the

multiset transition system (Mol; T ) where T consists of all the basic transitions

fx(�):S; xz:S

0

g

x(�); xz

�! dec(S[z=1]) [ S

0

where x; z 2 N [ New, S and S

0

are solutions, and dec(S[z=1]) decreases every

number that occurs in S[z=1] by one.

We refer to Sections 3 and 4 of [2] for a detailed discussion on multiset

transition systems. In particular we note that by the (labeled analogue of the)

chemical law, the transition relation of Mc� consists of all transitions

fx(�):S; xz:S

0

g [ S

00

x(�); xz

�! dec(S[z=1]) [ S

0

[ S

00

.

Clearly, if S

x(�); xz

�! S

0

in Mc�, then S ! S

0

in M�. Conversely, if S ! S

0

in

M�, then there exist x; z 2 N [ New such that S

x(�); xz

�! S

0

in Mc�. However,

solutions that are bisimilar in M� need not be bisimilar in Mc� (take, e.g.,

fx(�):?; xz:?g and fy(�):?; yz

0

:?g). Thus bisimilarity in Mc� is stricter than

bisimilarity in M�.

In the remainder of this section we will show that)�F�)

�1

is an instance of

expanding a solution by adding dummy molecules to its subsolutions. Moreover,

we prove that this expansion does not change the solution's behaviour. Of

course, this depends on what exactly we mean by dummy molecules. To be

on the safe side, to a solution S we only add output molecules nm:U with

n;m 2 New � new(S). This guarantees that whenever a communication takes

place in the expansion, the molecule nm:U has no part in it, since it needs

the input molecule n(�):U

0

to communicate with (that is evidently not in the

expansion of S). The new names in the dummy molecules we take from a

predetermined set D � New.

De�nition 8.2 Let D � New. D-Expansion, denoted �

D

, is the smallest

binary relation on Sol such that

if S

i

�

D

T

i

for all i 2 I ,

then

S

i2I

fg

i

:S

i

g �

D

S

i2I

fg

i

:T

i

g [

S

k2K

fn

k

m

k

:U

k

g,
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where the g

i

are schematic guards, and n

k

;m

k

2 D. If S �

D

T , then T is called

a D-expansion of S. D-Exclusive expansion, denoted �

e

D

, is the relation

f(S; T ) j S �

D

T and new(S) \D = ?g.

If S �

e

D

T , then T is called a D-exclusive expansion of S.

Evidently, S �

e

D

T =) S �

D

T =) S �

g

T for all D � New and all

solutions S and T , where �

g

is the nested containment relation of [4]. Hence

by Lemma 4.11 of [4], new(S) � new(T ) whenever S �

e

D

T . It is easy to show

that S �

e

D

T implies S �

e

D

T [

S

k2K

fn

k

m

k

:U

k

g with n

k

;m

k

2 D. Below we

collect some other easy to prove properties of expansion.

Lemma 8.3 Let D � New. For all solutions S, T , S

i

and T

i

, i 2 I,

(1) if S

i

�

e

D

T

i

for every i 2 I, then

S

i2I

S

i

�

e

D

S

i2I

T

i

,

(2) if S �

e

D

T , then for every mapping

f : N [ (New�D) [ N

+

! N [ (New�D) [ N

+

;

f(S) �

e

D

f(T ), and

(3) if S �

e

D

T , then for every guard g over N, fg:Sg �

e

D

fg:Tg.

Proof The proof of (1) is obvious, cf. the proof of Lemma 4.3(1) of [4]. We show

(2) by induction on the de�nition of �

D

(cf. the notion of induction on the de�n-

ition of �

g

in [4]). Let S =

S

i2I

fg

i

:S

i

g and T =

S

i2I

fg

i

:T

i

g[

S

k2K

fn

k

m

k

:U

k

g

with S

i

�

D

T

i

and n

k

;m

k

2 D, such that new(S) \ D = ?. By induc-

tion, f(S

i

) �

D

f(T

i

). Now f(S) =

S

i2I

ff(g

i

):f(S

i

)g �

D

S

i2I

ff(g

i

):f(T

i

)g [

S

k2K

fn

k

m

k

:f(U

k

)g = f(T ), and hence f(S) �

e

D

f(T ), since new(f(S)) \D =

f(new(S)) \D = ?. The proof of (3) is similar to the proof of Lemma 4.3(3)

of [4] (and uses (2) of the current lemma). �

If T is a D-exclusive expansion of S, then it is, of course, also an expansion

with respect to the subset of D consisting of new names that actually occur in

T . Or we can add to D any name from New, as long as it does not appear in

S; also with respect to this set T is an expansion of S.

Lemma 8.4 Let D � New. If S �

e

D

T , then S �

e

D

0

T for all D

0

with new(T )\

D � D

0

� New� new(S).

Proof The proof is by induction on the de�nition of �

D

. Let S �

D

T with

new(S)\D = ?, and let new(T )\D � D

0

� New�new(S). It follows that S =

S

i2I

fg

i

:S

i

g and T =

S

i2I

fg

i

:T

i

g[

S

k2K

fn

k

m

k

:U

k

g with S

i

�

D

T

i

for all i 2 I .

By induction, S

i

�

D

0

i

T

i

for all D

0

i

with new(T

i

) \ D � D

0

i

� New � new(S

i

).

Since in particular new(T

i

) \ D � new(T ) \ D � D

0

� New � new(S) �

New�new(S

i

), we have S

i

�

D

0

T

i

for all i 2 I . Hence S �

e

D

0

T , since obviously

n

k

;m

k

2 D

0

and new(S) \D

0

= ?. �
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We additionally need a result similar to Lemma 8.3(1), only for di�erent sets

D

i

.

Lemma 8.5 Let D

i

� New, i 2 I. If S

i

�

e

D

i

T

i

for all i 2 I, and the new(T

i

)

are mutually disjoint, then

S

i2I

S

i

�

e

D

S

i2I

T

i

with D =

S

i2I

(new(T

i

) \D

i

).

Proof We show that D \ new(

S

i2I

S

i

) = ?. Since the new(T

i

) are mutually

disjoint and new(S

i

) � new(T

i

) for all i 2 I , new(T

i

) \ new(S

j

) = ? if i 6= j.

Moreover, since D

i

\ new(S

i

) = ?, we have D \ new(

S

i2I

S

i

) = ?. Thus

new(T

i

) \ D

i

� D � New � new(

S

j2I

S

j

) � New � new(S

i

), for all i 2 I .

Consequently, by Lemma 8.4, S

i

�

e

D

T

i

for all i 2 I , and so S �

e

D

T by

Lemma 8.3(1). �

The result in Lemma 8.4 induces a relation that is independent of the set D

with which solutions are expanded.

De�nition 8.6 For solutions S and T , if S�

New�new(S)

T , then T is an expan-

sion of S, denoted S � T .

Before we show that expansion is a strong bisimulation on the transition

system Mc�, we show that a solution corresponding to a process term P can be

expanded to one corresponding to F(P ). Note that S�

New�new(S)

T if and only

if S �

e

New�new(S)

T ; this is implicitly used in the proof of the theorem below.

Note also that, by Lemma 8.4, S �

e

D

T implies S � T .

Theorem 8.7 For every process term P , there exist solutions S and T such

that P ) S, P )

F

T , and S � T .

Proof The statement in the lemma clearly is a consequence of the following

asymmetrical statement (using Lemma 4 of [2]):

if P )

F

T , then there exists S with P ) S and S � T ,

that we will show by induction on the structure of P . It is obvious for P = 0,

since ? � ?.

Let P = P

1

j P

2

. Then P )

F

T

1

[ T

2

= T with new(T

1

) \ new(T

2

) = ?

and P

i

)

F

T

i

, i 2 f1; 2g. By induction there exist S

i

with P

i

) S

i

and

S

i

� T

i

. Since new(S

i

) � new(T

i

) we have that new(S

1

) \ new(S

2

) = ?,

and so P ) S

1

[ S

2

= S. By Lemma 8.5, S

1

[ S

2

�

e

D

T

1

[ T

2

with D =

new(T

1

[ T

2

)� new(S

1

[ S

2

). Hence S � T by Lemma 8.4.

Let P = g:P

0

. Then, for T

0

= T

0

[ fmm:fm

0

m

0

:T

1

g;mm:fm

0

m

0

:?gg with

m;m

0

=2 new(T

0

[T

1

) and P

0

)

F

T

0

, we have P )

F

fg:T

0

g = T . By induction,

there exists S

0

with P

0

) S

0

and S

0

� T

0

. Hence P ) fg:S

0

g = S. Note

that S

0

�

e

New�new(S)

T

0

because new(S) = new(S

0

). Now since m =2 new(T

0

),

m =2 new(S), and thus S

0

�

e

New�new(S)

T

0

by De�nition 8.2. Consequently S � T

by Lemma 8.3(3).
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Let P = (�x)P

0

. Then P )

F

T

0

[n=x] = T with n 2 New � new(T

0

) and

P

0

)

F

T

0

. By induction, P

0

) S

0

with S

0

� T

0

. Since n =2 new(S

0

), P )

S

0

[n=x] = S. Now since new(S) � new(S

0

) [ fng and n =2 new(T

0

), we obtain

new(T

0

) \ (New� new(S

0

)) � New� new(S). Consequently, S

0

�

e

New�new(S)

T

0

by Lemma 8.4, and so S � T by Lemma 8.3(2).

Let P = !P

0

. Then P )

F

S

i2N

T

i

[ fmm:fmm:T

0

gg = T with P

0

)

F

T

i

,

m =2 new(T

i

), and the new(T

i

) are mutually disjoint. By induction, there exist

S

i

, i 2 N, with P

0

) S

i

and S

i

� T

i

. Thus the new(S

i

) are mutually disjoint

and so P )

S

i2N

S

i

= S. By Lemma 8.5, we have S �

e

D

S

i2N

T

i

with D =

S

i2N

new(T

i

)�

S

i2N

new(S

i

). Hence also S�

e

New�new(S)

S

i2N

T

i

by Lemma 8.4.

Thus, by De�nition 8.2, S � T since m 2 New� new(S). �

Theorem 8.8 Expansion is a strong bisimulation on the multiset transition

system Mc�.

Proof We prove that for every set D � New and all solutions S and T with

S �

e

D

T ,

(1) if S

x(�); xz

�! S

0

, then there exists T

0

with T

x(�); xz

�! T

0

and S

0

�

e

D

T

0

, and

(2) if T

x(�); xz

�! T

0

, then there exists S

0

with S

x(�); xz

�! S

0

and S

0

�

e

D

T

0

.

Thus in particular, choosing D = New � new(S), it follows from Lemma 8.4

that S � T implies

(1) if S

x(�); xz

�! S

0

, then there exists T

0

with T

x(�); xz

�! T

0

and S

0

� T

0

, and

(2) if T

x(�); xz

�! T

0

, then there exists S

0

with S

x(�); xz

�! S

0

and S

0

� T

0

.

Let S =

S

i2I

fg

i

:S

i

g and let T =

S

i2I

fg

i

:T

i

g [ U with U =

S

k2K

fg

k

:U

k

g,

g

k

= n

k

m

k

, S

i

�

e

D

T

i

, n

k

;m

k

2 D, and K \ I = ?.

To show (1), S

x(�); xz

�! S

0

means that there exist i

1

; i

2

2 I , such that g

i

1

=

x(�), g

i

2

= xz, and S

0

= dec(S

i

1

[z=1])[S

i

2

[S

3

, with S

3

=

S

i2I�fi

1

;i

2

g

fg

i

:S

i

g.

Hence T = fx(�):T

i

1

; xz:T

i

2

g [

S

i2I�fi

1

;i

2

g

fg

i

:T

i

g [ U and so T

x(�); xz

�! T

0

=

dec(T

i

1

[z=1]) [ T

i

2

[ T

3

[ U , with T

3

=

S

i2I�fi

1

;i

2

g

fg

i

:T

i

g. It su�ces to show

that S

0

�

e

D

dec(T

i

1

[z=1]) [ T

i

2

[ T

3

. Since new(S) \D = ?, z =2 D, and so we

have dec(S

i

1

[z=1]) �

e

D

dec(T

i

1

[z=1]) by Lemma 8.3(2). Obviously, S

3

�

e

D

T

3

,

and thus S

0

�

e

D

T

0

, by Lemma 8.3(1).

To show (2), T

x(�); xz

�! T

0

implies that there exist i

1

; i

2

2 I [K, such that

g

i

1

= x(�) and g

i

2

= xz. Evidently i

1

=2 K, so x 2 fn(S). Since new(S)\D = ?,

x =2 D, which implies that i

2

=2 K. The proof now proceeds as in (1). �
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Conclusion

We presented a multiset semantics for �-calculus process terms such that poten-

tial structural congruence is sound and complete with respect to that semantics.

It is still open whether a similar result holds for the standard structural con-

gruence, but we believe that it cannot be done in the same manner. Presently,

there is some con�dence that (at least for process terms without restriction)

the decidability of standard structural congruence can be shown using linear

equations of �nite multisets.

Since the process transformation F in Section 2 only adds dummy agents to

its argument, it should be clear that F also preserves the concurrent behaviour

of a process. To formalize this, we need a proper notion of bisimulation of Petri

net processes (which express the concurrent behaviour of a Petri net). This

notion however, we have not developed yet.

The process transformation F bears some other reductions that might be

useful; for instance, we claim that if we modify the de�nition of F( !P ) such

that it respects replication | i.e., change it into F( !P ) = !F(P ) | then it

induces a model for extended structural congruence in which only structural

law (2.4) is no longer valid. To model the dual congruence | the one obtained

by adding (2.4) to potential structural congruence | we claim that F with the

following modi�cation

F(g:P ) = g:((�v)(�w)(vv:ww:F(P ) j vv:ww:0))

will do the job.
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