Fair Sticker Languages*

Hendrik Jan Hoogeboom Nike van Vugt

LIACS, Universiteit Leiden
Niels Bohrweg 1 2333 CA
Leiden, The Netherlands
{hoogeboo ,nvvugt}@liacs.nl

July 5, 2000

Abstract

Codings of fair sticker languages are characterized as languages ac-
cepted by blind one-counter automata.

1 Introduction

Abstracting from their bio-chemical properties, single DNA strands can be
seen as strings over the alphabet {a,c,g,t} where the letters represent the
nucleic acid bases adenine, cytosine, guanine, and thymine. Under favourable
circumstances two strands of DNA join (‘anneal’) to form a double strand,
provided the bases match: adenine binds with thymine, and cytosine binds
with guanine.

Adleman [Ad194] used this ‘complementarity principle’ to propose a bio-
chemical implementation of an algorithm to solve the Hamiltonian Path
Problem, the question whether a given graph contains a path entering each
of the nodes exactly once. In Adleman’s scheme nodes are represented by
short DNA strands, and edges are designed to match with the second half
of their source node and the first half of their target node. We illustrate
this in Figure 1 for two nodes ‘acgggtgg’ and ‘atcctagt’, connected by the
edge ‘cacctagg’. In this way, when the nodes and edges are put together in a
solution, paths in the graph are formed by self-assembly. Then the Hamilto-
nian paths may be detected in the solution by a rather involved biochemical
selection process.

Sticker systems are introduced as a formal language model for the self-
assembly phase of Adleman’s experiment [KP198]. A sticker system specifies
finite sets of upper and lower ‘stickers’ (single-stranded molecules), and a
finite set of axioms (used as a seed for the process joining upper and lower
strands). The complementarity relation is modelled by a binary relation on

“To be published in Acta Informatica

Figure 1: Connecting two nodes by an edge

the alphabet. The language generated by the system consists of all strings
formed by upper stickers for which an exactly matching (i.e., complemen-
tary) sequence of lower stickers can be found.

In the sequel we use the term ‘sticker system’ for the simple regular
sticker systems from [KP198].

Without restrictions, sticker systems generate only regular languages
(but not all of them). Additional restrictions can be imposed on the match-
ing pairs of strands to obtain more powerful languages. For example, the
matching is fair if the number of upper stickers used is the same as the num-
ber of lower stickers used. In [KP*98] it is demonstrated that the family
of fair sticker languages contains non-regular languages but not all regular
languages, while the family of languages generated by context-free matrix
grammars with arbitrary rules is given as an upper bound. In connection
with this rather large upper bound the following open problem is formulated:
“is the family [of fair sticker languages] included in the family of context-free
languages (or even in the family of linear languages)?.

We answer this question by giving a fair sticker language that is non-
linear (Example 2), while demonstrating that the fair sticker languages are
strictly included in another subfamily of the context-free languages, the
blind one-counter languages (Theorem 6 and Lemma 7).

We conclude by showing as our main result that the connection between
these two families is quite strong: blind one-counter languages can be char-
acterized as the codings of fair sticker languages (Theorem 12).

2 Preliminaries

We adhere to standard formal language theory notations and terminology
as in, e.g., [RS97].

The set of integers is denoted by Z. The empty string is written as A.
For a language L and a string w we define the left-quotient of L by w as the
set { z | wr € L }. We use REG, LIN, CF to denote the families of regular,
linear, and context-free languages. A letter to letter morphism is called a
coding. For a language family F, we use COD(F) to denote the family of
codings of languages in F.

Double stranded DNA molecules can be written as a pair of ‘matching’
strings over the alphabet {a, c, g, t} of bases. Alternatively, for the matching

base pairs we may use the symbols (?), (;), (g), (%) We appreciate both
approaches, and will not distinguish between a (two dimensional) pair of
matching strands like (agac,tctg) and a (one dimensional) string of paired
bases (3) (8) () (5).

For our purposes we will consider an alphabet ¥ of ‘abstract’ DNA bases,
and a relation p C ¥ x X representing the complementarity relation. We
extend p to a subset of ¥* x 3* by demanding that two strings are comple-
mentary if they are of equal length and their letters are one by one comple-
mentary.

The alphabet ¥,, representing matching pairs, consists of all symbols
(2) where (a,b) € p and a,b € ¥. As explained above, we identify 37, with
the subset p of ¥* x ¥*: (‘blll) (‘bl:) represents the same double stranded
molecule as (aj ... ap, by ...by) with (a;,b;) € p and a;,b; € 3.

Our definition of sticker systems is equivalent to the definition given in
[KPT98], but stated directly in terms of strings, avoiding a lengthy definition
of a ‘sticker operation’.

Definition 1 A sticker system is a 5-tuple v = (%, p, D, Dy, A) where ¥ is
an alphabet, p C 3 x 3 is the complementarity relation, D,, D, C ¥T are
finite sets of upper and lower stickers, and A C ¥* x X* is a finite set of
axioms. Il

The molecular (sticker) language generated by -~y is defined as M L(y) =
{(z,y) € p| z = zoz’,y = yoy' with (z9,y0) € A,z € D} and y € Dj}.
The fair molecular (sticker) language generated by +y is defined as M L¢(y) =
{(z,y) € p |z =xzoz’,y = yoy' with (zg,y0) € A,2" € D} and y € D} for
some n > 0}.

Furthermore, the (sticker) language generated by +y is the projection onto
the first (upper) component of the molecular language, L(y) = {z € ¥* |
(z,y) € ML(vy) for some y € ¥* }, and similarly for L¢(vy), the fair (sticker)
language generated by +.

The family of all sticker languages is denoted SL, while the family of fair
sticker languages is denoted SL;.

Example 2 Consider the following sticker system, a slight extension of the
one given in the proof of Theorem 3 in [KPT98]: v = (X, p, D, Dy, A) with

Y= {av b, C}v p= {(0’70’)7 (bv b)v (bv C)}a
D, ={aa,b}, Dy = {a,be},

A={AM}
Now ML(y) = { (%) (%) ()() }*. Consequently L(y) = {aa,bb}*, while
Lf()—{l“GL()I#a() #o(2)}- O

Obviously, L(vy) can be obtained from M L(y) by applying a coding. How-
ever, we may not reverse this: in general M L(v) is not the image of L(v)
under an inverse coding, as clear from Example 2.

A rather unexpected but useful normal form for sticker systems is proved
in the following theorem: without changing the language, we can always
replace the complementarity relation p by the identity ¢d on the alphabet
3l. Note that, of course, the molecular language does change if p was not
already equal to id.

Theorem 3 For every sticker system v = (X, p, Dy, Dy, A) a sticker system
v = (%,id, Dy, D}, A") can be constructed with L(v") = L(vy) and L¢(v') =
Lg()-

Proof. Let D), = {w € ¥ | (w,v) € p for some v € Dy}, and let A" =
{(z0,20) | (w0,y0) € A for some yo, and (20,%0) € p}-

Now assume that = € L(v), i.e., there is a y such that (z,y) € p, z =
20Ty ... ZTp and Y = YoY1 - . . Ym, where (xg,y0) € A, x; € Dy, for 1 < i < n
and n > 0, and y; € Dy for 1 < j < m and m > 0. Then z can also be
written as © = 2921 ... 2, where (2;,yx) € p for 0 < k < m. According
to the definition of A’ then (zg,29) € A’, and from the definition of Dj it
follows that z; € D) for 1 < j < m. Therefore (zoz1...%n, 2021 ... 2m) =
(z,z) € ML(%'), hence z € L(v).

To prove that L(y") C L(v), the above can be read backwards.

Obviously, the number of stickers used is not changed, hence L¢(y') =
L(vy) as well. O

The following result (a combination of Theorem 4.1, Theorem 4.7 and Corol-
lary 4.7 from [PRS98]) and its proof indicate that the sticker languages we
consider are not very suitable to implement states (of a finite state automa-
ton) except if one makes them explicit in the symbols. A coding makes it
possible to abstract from this.

Proposition 4 SL C REG = COD(SL).

3 Blind one-counter automata

A blind one-counter automaton (BCA) is a finite state device equipped with
an external memory (the ‘counter’) that contains an integer value which
may be incremented and decremented by the automaton.

Definition 5 A BcA is a 5-tuple B = (Q, %, 6, gin, F'), where @Q is a finite
set of states, ¥ is the input alphabet, ¢;;, € @ is the initial state, ' C @
is the set of final states , and § C @ x ¥ x {—1,0,1} x @ is a finite set of
instructions. Il

An instantaneous description of B is an element of () x ¥* x Z. For two
instantaneous descriptions (p, az, i) and (g, z, j), we write (p,ax,1) - (q,z,7)
if (p,a,e,q) € 6 and j =i+ e. By H* we denote the reflexive and transitive
closure of F-.

The language accepted by B consists of all strings for which the automa-
ton in a computation on this string ends in a final state and at the same
time has counter value zero. It is defined as L(B) = {z € ¥* | (¢in,z,0) F*
(f,A,0) for some f € F}. The family of all languages accepted by blind
one-counter automata (BCA-languages) is called 1BCA.

The datatype above is called blind because the automaton cannot test
its counter value during the computation, i.e., it may not check whether its
counter value is zero and act according to the outcome of this test.

The blind one-counter automaton can be ‘implemented’ on a more com-
monly known device: the stack of a pushdown automaton may act as a
counter. Consequently 1BCA C CF. Since the context-free language {w €
{a,b}* | #4(w) = #4(w) and #4(z) > #4(x) for every prefix z of w} is not
in 1BCA (see [Gre78, Theorem 3]), we even have 1BCA C CF.

In contrast with the definition of BCA given in [Gre78], we do not allow
A-instructions, i.e., instructions of the form (p, \, e, q). However, these two
definitions are equivalent, which can be explained as follows. The possi-
ble successful instruction sequences of the blind one-counter datatype are
naturally modelled by the ‘two-sided Dyck language’ D} = {w € {a,b}* |
#o(w) = #p(w)}, where a and b represent addition of +1 and —1, respec-
tively. Now, using standard AFA theory [GG69], the BCA can be seen as
a finite state device mapping input strings to strings over {a, b} according
to the instructions taken during the computation. The input is accepted
precisely when the output belongs to Dj. Hence it can be shown that the
family 1BCA is equal to the smallest language family that contains D] and is
closed under A-free homomorphism, inverse homomorphism and intersection
with regular languages. In other words, 1BCA equals C/ (D7), the faithful
rational cone generated by Dj. Similarly, the family of languages generated
by BCA’s that can have A-instructions is equal to C(D7), the rational cone
generated by Dj (the A-free homomorphism above is replaced by an arbi-
trary homomorphism). In [Lat79, Proposition I1.11] it is proved (as a special
case of a more general result) that C/(D%) = C(D}). Hence the BCA’s with
A-instructions are equivalent to the BCA’s without A-instructions.

From the discussion above we conclude that 1BCA is a principal rational
cone, and in particular that 1BCA is closed under codings, left-quotient with
strings, and union.

Apart from this connection with AFA/AFL theory, blind one-counter
automata were also studied as ‘integer weighted finite automata’ in [HH99]
and as ‘additive regular valence grammars (over Z)’ in [Pau80] (see also
[FS97]). In these devices the instructions (productions) are assigned an
integer value, and one considers only computations (derivations) for which

these values add to 0.

4 Fair sticker languages are BCA-languages

We answer the question left open in [KPT98, p. 419]: is the family of fair
sticker languages included in the family of context-free languages (or even
in the family of linear languages)? To start, observe that the language
L¢(y) = {z € {aa,bb}* | #4(x) = #4(x)} from Example 2 is context-free,
but not linear.

The non-linearity of Lg(y) can be proved using the pumping lemma
for linear languages [HUT79, Exercise 6.11], which says that if K is linear,
then there is a constant n such that every z € K with |z| > n can be
written as z = wvwzry with |uvry| < n, [vz| > 1 and w'wz'y € K for all
i > 0. In the case of Lf(y), it is clear that there are no such u,v,w,z,y for
z = a?b'"a® € Ly(y).

We will now give a first answer to the question posed in [KPT98], by
proving that every fair sticker language is a BCA-language, hence context-
free.

Theorem 6 SL; C 1BCA.

Proof. Let v = (X,p, Dy, Dy, A). Because of Theorem 3 we may assume
that p = id. For each (z9,yo) € A, construct two BCA’s: By, and By, as
follows. We describe the construction of By, = (Q, %, 9, ¢in, {f}) in detail,
By, can be made in an analogous way.

If zo = A, then ¢;, = f. If g # A, then B, has a path labelled by zg
from its initial to its final state. In both cases the counter is not changed,
since the axioms do not have to be counted. Moreover, for each w € D, let
B;, have a (new) path labelled with w from its final to its final state and
add 1 to the counter at one moment somewhere along this path. Note that
L(Bz,) = {zo}, which does not seem very useful yet!

Now we construct from each pair of BCA’s By, and B,,, where (z9,y0) €
A, a BCA By, y, for which L(By y,) = Lt (Vao,y0)s Where vz 4o = (2, id, Dy, Dy,
{(z0,y0)}), as follows: for each pair of instructions (p,a,¢,q) in B,, and
(r,a,€',s) in By,, the BCA By, 4, contains the instruction ((p,), a,e—¢’, (g, s)).

Finally, it is clear that L(v) = Uz, y0)ca L(Buoy) is in 1BCA, since
1BCA is closed under union and A is finite. O

Omitting the counter from the previous proof, one constructs a finite state
automaton for L(y) = Uz, 40)e4 Zo - Dy Nyo - Dj. This elementary observa-
tion shows that SL C REG.

The inclusion SLy C 1BCA is strict because ba*b is not a fair sticker
language, although ba*b € REG C 1BCA.

Lemma 7 ba*b ¢ SL;.

Proof. We reconsider the proof of ba®th ¢ SL, cf. [PR98, Theorem 10].
Assume ba*b is the fair language of a sticker system v = ({a, b}, p, Dy, Dy, A).
According to Theorem 3 we may assume that p = id. Let D, Nat =
{z1,...,om} and DyNa’ = {y1,...,yn} be the sets of stickers consisting of
a’s only. Every string ba’b that is longer than the axioms can be decomposed
as au) ...l By = agy]fl ...yFn By, with v, the upper part of an axiom (or
a string from D, starting with b), and 3, € D,, ending in b, and similarly for
ag, Bp. The vector v; = (j1,...,jmsk1,...,kpn) assigns to ba’b the number
of stickers containing only a’s occurring in a possible decomposition of the
upper and the lower strand.

Because we have only a finite number of choices, an infinite number of
ba'b have the same strings o, oy, By, B¢ in their decompositions. According
to Dickson’s Lemma [Dic13, Lemma B] we can find ba’b and ba? b (i > i) in
this infinite sequence such that vy > v; (componentwise). Now the vector
vy — v; defines a ‘fair decomposition’ of ai'_i, which shows that baiba” ~ €
L(), contradicting L¢(y) = ba*b. O

In the next section we make our answer more precise, in the sense that we
show that 1BCA is a rather close upper bound for SL;: every BCA-language
is a coding of a fair sticker language.

5 BcCA-languages are codings of fair sticker lan-
guages

In the case of arbitrary, i.e., not necessarily fair, sticker languages the sim-
ulation of sticker systems by finite automata can be reversed provided that
one can use a coding (Proposition 4). In this section we demonstrate that
Proposition 4 can be extended to fair sticker languages and BCA-languages:
every language in 1BCA is the coding of a fair sticker language (Theorem 12).
First we illustrate this in Example 8. Then we show that, for a particular
kind of BCA called sticky, this example can be generalized (Lemma 10). Fi-
nally, we explain how these sticky BCA’s can be used to construct a coding
of a fair sticker language for every BCcA-language.

Example 8 Consider the BCA A with states Q = {a1, a3, by, ba, ¢, co} with
by as initial state, final state set {bg, cyp} and instructions

(bg,a,o,(ll), (alaba_labQ)v (b270’707a3)7 (a37b707b0)7
(807a707a1)a (alac70702)a (CQ,CL,O,CLg), (a3707+1780)-

The automaton accepts the language { w € {ab,ac}” | #p(w) = #.(w) }.
This can be verified by considering the four-letter segments abab, abac, acab,
and acac. While the automaton makes a cycle on these segments (starting
and ending in {bg,co}), it changes its counter by —1, 0, 0, and +1, respec-
tively.

First, we forget about the counter, and we have a look at the finite state
behaviour of A, (a(b+ c¢)a(b+ ¢))*. A computation can be simulated by a
sticker system with overlapping stickers, cf. [KP198, Lemma 5], illustrated
as follows, with brackets to delimit the stickers and the axiom:

[{a1 b2 a3 bo)(a1 b2 a3 co){a1 c2 a3 bo){a1 c2 az co)
[aq b2><0,3 b[) aq b2><a3 Cy al 02>(a3 bo aq 02>(a300>

Second, we can include the contents of the counter by representing it as the
difference between the number of upper and lower stickers in the computa-
tion of the sticker system. For each increment instruction we detach the last
component of an upper sticker, and similarly for decrement instructions and
lower stickers.

+1 +1

D (a1 bg as b0>(a1 bg ag)(00>(a1 Co as b0>(a1 Co a3><00>

[a1>(b2)(a3 b[) (I,1><b2><a3 Cy ai 02)(a3 b[) aq 02><0,3 CU>
-1 -1

Let v = (Q,id, D, Dy, A) be the sticker system specified by

A = { ([>‘>7 P‘))a ([>‘>7 [a1>)a (P‘)a [a102>) }
D, = {{aiba3z), (a1b2asby),(aicza3), (a1c2asbp), (co)}
(

Dg = {(agb()(”), a3b0a102>, <a300a1>, (0@,00@102), (a3b0>, <a300>, (bg)}

Then L(A) is obtained by applying to Ls(y) the coding h : Q@ — {a,b,c}
that maps a1, a3 to a, by, by to b, and ¢y, cs to c. O

A crucial property of the BCA from the above example is formalized in the
following notion.

Definition 9 Let A = (Q, X%, 4, ¢in, F)) be a BCA. It is called sticky if there
is a partition of its state set Q) = U?:o Q; such that ¢ is a subset of

(QoxEx{0} x Q1) U (Q1 xEx{-1,0} xQ2) U
(Qa x X x {0} x@3) U (@3 xXx{0,+1} x Qo)

and such that ¢;, € Qo and F C Q. O

The BCA A from Example 8 is sticky.

A sticky BCA changes its counter in a very restrictive way: in each seg-
ment of four instructions the automaton may increment and decrement its
counter only once, and only at specific positions. Note that the language
accepted by a sticky BCA always consists of strings with lengths that are
multiples of four.

We generalize the construction from Example 8.

Lemma 10 Let A be a sticky BCA. Then there exist a sticker system -y and
a coding h such that L(A) = h(L¢(7)).

Proof. Let A= (Q,%,0,qin, F') be a sticky BCA. We write the state set as
a disjoint union @) = U?:o Q; as in the definition for sticky BCA.

Let h : @ — X be a coding such that each instruction is of the form
(p,h(q),e,q), i.e., all instructions ending in a given state read the same
letter. This can easily be achieved by splitting states into several copies —
one for each letter from the alphabet, each of which has the same outgoing
instructions — and re-routing the instructions into the appropriate copy.
In the same vein we assume that there exists a partition Q2 = Q% U Q5
such that each instruction (p,a,e,q) entering Q9 (Q5) has e =0 (¢ = —1,
respectively). Similarly we assume Qo = Qf U QS“.

Construction. A sticker system v = (Q,1id, Dy, Dy, A) is constructed as
follows. We keep the intuitive bracket notation from Example 8.

upper stickers. For every pair of consecutive instructions (pi,as, 2, p2),
(p2,as,0,p3) with p; € Q1, D,, contains the stickers (p1psp3) and, for
every py € QF, (p1pap3po). For each p, € Q(')'r, D,, contains the sticker

(p+)-

lower stickers. For every pair of consecutive instructions (ps,ag, o, po),
(po,a1,0,p1) with p3 € Q3, Dy contains the stickers (p3pop1) and, for
every ps € 3, (p3pop1pz2). For each p_ € Q5 , Dy contains the sticker
(p—). For every instruction (ps3,ag, g, po) with ps € Qs, po € F, Dy
contains the sticker (pspg).

azioms. For every instruction (¢, a1,0,p1) with p1 € Q1, A contains the

pairs ([A), [p1)) and, for every pa € Q3, ([\), [p1p2)). If gin € F, iee.,
A € L(A), then ([A),[A)) is added to A.

Correctness. Observe that A € L(A) iff A € Ly(vy) iff A € h(Ls(y)).
Now, let T = p1pops ... pn € Q1 be an element of Ly(y), for some n > 1.

First, we reconstruct a computation of A by following the computation
of 7 in 7.

Since there is no non-empty decomposition starting with (A,) € A —all
stickers in D, start with symbols from @Q; U Qar , whereas all stickers from
D, start with symbols from Q3 U Q5 — we know that the computation of m
in «y started either with (X\,p;) € A or with (A, p1p2) € A, where p; € Q1.
According to the construction of A, ¢ contains an instruction (g, a1,0,p1).

We continue by observing that each upper sticker of length 3 or 4 starts
at position 47 + 1, and that each lower sticker of length 2, 3 or 4 starts at
position 47 4 3, for some ¢ > 1. It is easy to see that this follows from the

only possible computation of m, here illustrated for n = 8:

D(pl — po = P3P) Ps = D6 = P7 o PR)
[p1---p2){(P3 = pa—p5---Ds){ Pr — D8)

Here the arrows indicate parts of a sticker that represent instructions from §,
while the dotted lines do not necessarily correspond to an instruction from
0 and, at the same time, indicate that the next symbol may be detached
to form a sticker of length 1. Moreover, observing D, we find instructions
(Paiv1,Q4iv2,€ditr2,Pait2) and (paiy2,a4i13,0,p4i43), while Dy gives rise to
instructions (psiy3, Giyd, €4ita,Paiva) and (Pajta, Gait5,0,Paits).

Since p,, is the last symbol of stickers from both D, and D,, we know
that p, € F C Qp, and there exists an instruction (p,—_1,an,&n,pp) in 4.
Note that n is a multiple of four, and we write n = 4k.

Second, we address the matter of fairness. To compute the contents of
the counter we study the even positions of w. Observe that e444 = +1 iff
Pai+4 € QS’, which implies that the sticker (ps;y4) is used in the upper part
of the solution. Otherwise, if 4,14 = 0, then p4; 4 is the fourth element of
the sticker (p4j+1P4i+2P4i+3P4ir4). Thus, the number of upper stickers equals
k-l—Zf;OI €4;14. Similarly, the number of lower stickers equals k—Zf;OI E4519.
Consequently, fairness of the sticker solution is equivalent to counter value
zero and acceptance by the BCA.

The above shows that h(Lg(y)) C L(A). For the converse inclusion
L(A) C h(L¢(7)) a similar reasoning can be given. O

Sticky BCA’s form a normal form for BCA’s accepting languages consisting
of strings with lengths that are multiples of four. The idea behind this is
the following.

In every four steps, A changes the contents of its counter by at most
+4. The new BCA B however, may change its counter by at most +1 in the
corresponding four steps. To make up for this, we change the interpretation
of the counter value of B: each unit on the counter of B represents 4 units
on the counter of A, a construction known at least since [FMR68]. Now, B
simulates the computation of A. Each change made to the counter of A is
recorded in the finite state memory of B. Only when allowed (at the specific
points in the four step cycle), B moves any excess of +4 units of A’s counter
as one unit to (or from) its own counter.

Lemma 11 For each BCA that accepts only strings with lengths a multiple
of four, there exists an equivalent sticky BCA.

Proof. Let A = (Q,%,0,qin, F) be a BCA. We construct a sticky BCA B
such that L(A) = L(B).
Let I ={0,1,2,3}. The state set Q' of B equals

Qx1Ix{-4,-3,...,2,3},

10

the elements of which are denoted as p.i.m, rather than as (p,i,m). Here
p € @ represents the state of A, i € I keeps track of the four step cycle,
and —4 < m < 3 is the remainder value of A’s counter not yet stored in
the counter of B. (Hence, if ¢ is the value of A’s counter and ¢ the value
of B’s counter, then the equality ¢ = 4¢’ + m should hold for each pair of
corresponding instantaneous descriptions of A and B.) The initial state of
B equals ¢;,.0.0, its final state set equals F' x {0} x {0}.
Let (p,a,e,q) be an instruction of A. Then B has the instructions

(p.0.m, a, 0, q.l.m+e)

p.l.m, a, —1,¢2.m+e+4) if m4e<—1
p.l.m, a, 0, q.2.m+¢) if m4+e>-1
p.2.m, a, 0, q.3.m+e)

p.3.m, a, +1,q.0m+e—4) if m4+e>1
(p.3.m, a, 0, q.0.m+e) if m+e<li

a
a
a
a

(
(
(
(

We chose to check the relation between m + ¢ and +1 rather than between
m + ¢ and £4, although the latter seems more logical. The reason for this
is that we need to prevent the occurrence of the situation where ¢ = 0 and
¢ =4c +m = 0 while ¢ # 0 and m # 0 (which can occur only when m
is a multiple of 4), i.e., B does not accept while it should. Because of this
choice, the reachable configurations of B satisfy the following restrictions,
for p.i.m € Q':

if =0 thenm e {-3,-2,— 10}
1 {—4,-3,-2,-1,0,1}
2 (~1,0,1, }
3 (~2,-1,0,1,2,3}

It is easy to see that B is sticky, as it adheres to the four step cycle from
Definition 9.

Moreover, note that our construction introduces for each instruction
(p,a,¢e,q) of A exactly one instruction (p.i.m, a,¢’, g.i'.m') for each pair i, m.
This makes it straightforward to show that a computation (gi,,zy,0) H
(¢,y,c) of A corresponds with a computation (¢;,.0.0,zy,0) F/ (g.i.m,y,c)
of B satisfying ¢ = 4¢’ +m, and 7 = j mod 4.

To show that L(B) C L(A), observe that if B reaches a final state
¢.0.0 with counter value zero, then A (using the corresponding computa-
tion) reaches final state ¢, also with counter value zero.

Conversely, assume that 4 reaches a final state ¢ € F' with counter value
zero. Now the corresponding computation of B reaches some state g.i.m and
counter value ¢’ satisfying the invariant m+4c¢’ = 0. By the length restriction
of strings accepted by A we know that ¢ = 0. Hence, taking into account the
reachable states of B, we have m € {—3,...,0}. Thus m + 4¢’ = 0 implies
that m = 0 and thus ¢’ = 0, corresponding to acceptance with counter value
zero in final state ¢.0.0.

11

A more formal inductive proof that L(A) = L(B) is left to the reader.
El

Finally we arrive at our main result, the equivalence of blind one-counter
languages and codings of fair sticker languages. Note the similarity with the
situation for (arbitrary) sticker languages (Proposition 4).

Theorem 12 SL; C 1BCA = COD(SLy).

Proof. By Theorem 6, SL; C 1BCA. The inclusion is strict by Lemma 7.
As 1BCA is closed under codings, the inclusion COD(SLy) C 1BCA follows.
We proceed by proving the converse inclusion.

Let L € 1BCA. For every string w, we define L,, = { z | wz € L,|z| =
0 mod 4 }. By the closure properties we have established for 1BCA, L,, is
also in 1BCA, and, by Lemma 11, it is accepted by a sticky BCA. Conse-
quently, it is the coding of a fair sticker language (Lemma 10).

Note that L = U‘w|§3w-Lw. A sticker system for the language w- Ly,
is obtained from the one for L,, by replacing each axiom (z,y) by (wz,wy)
and extending the used coding with the identity on the alphabet of L. As-
suming the sticker systems representing the w-L,, have disjoint alphabets
(by renaming), we build a sticker system for L by taking their (finite) union.

O

Our characterization shows that COD(SLy) is a more ‘robust’ family than
SLy itself, comparable to the situation for COD(SL) and SL. In particu-
lar, we can conclude that COD(SL) enjoys the many closure properties of
a principal rational cone (arbitrary morphisms, inverse morphisms, inter-
section with regular languages, and union). Some of these properties seem
to require rather involved proofs, should we want to show them by direct
construction.

Acknowledgements. We are indebted to Michel Latteux, Holger Petersen
and Matthias Jantzen for their helpful suggestions concerning the equiva-
lence of blind one-counter automata with and without A-instructions. We
thank Tero Harju and a referee for their suggestions.

References

[Ad194] L.M. Adleman. Molecular computation of solutions to combinatorial
problems, Science 226:1021-1024, November 1994.

[Dic13] L.E. Dickson. Finiteness of the odd perfect and primitive abundant
numbers with n distinct prime factors, American Journal of Mathemat-
ics 35:413-422, 1913.

12

[FS97] H. Fernau, R. Stiebe. Regulation by valences, Mathematical Founda-
tions of Computer Science 1997, Lecture Notes in Computer Science,
volume 1295, Tgor Privara, Peter Ruzicka (eds.), 239-248, Springer-
Verlag, 1997.

[FMR68] P.C. Fischer, A.R. Meyer, A.L. Rosenberg. Counter machines and
counter languages, Mathematical Systems Theory 2:265-283, 1968.

[GG69] S. Ginsburg, S.A. Greibach. Abstract families of languages, Mem-
oirs of the American Mathematical Society 87:1-32, 1969.

[Gre78] S.A. Greibach. Remarks on blind and partially blind one-way mul-
ticounter machines, Theoretical Computer Science 7:311-324, 1978.

[HH99] V. Halava, T. Harju. Languages accepted by integer weighted finite
automata, Jewels are forever, J. Karhumki, H. Maurer, Gh. Paun, G.
Rozenberg (eds.), 123-134, Springer-Verlag, 1999.

[HU79] J.E. Hopcroft, J.D. Ullman. Introduction to automata theory, lan-
guages, and computation, Addison-Wesley, 1979.

[KP*98] L. Kari, Gh. Pdun, G. Rozenberg, A. Salomaa, S. Yu. DNA com-
puting, sticker systems, and universality, Acta Informatica 35:401-420,
1998.

[Lat79] M. Latteux. Coénes rationnels commutatifs, Journal of Computer
and System Sciences 18:307-333, 1979.

[Pau80] Gh. Paun. A new generative device: valence grammars, Revue
Roumaine de Mathématiques Pures et Appliquées 25(6):911-924, 1980.

[PR98] Gh. Paun, G. Rozenberg. Sticker systems, Theoretical Computer
Science 204:183-203, 1998.

[PRS98] Gh. Paun, G. Rozenberg, A. Salomaa. DNA computing. New com-
puting paradigms, Springer-Verlag, 1998.

[RS97] G. Rozenberg, A. Salomaa (eds.). Handbook of formal languages,
Springer-Verlag, 1997.

13

