
Fair Stiker Languages

�

Hendrik Jan Hoogeboom Nik�e van Vugt

LIACS, Universiteit Leiden

Niels Bohrweg 1 2333 CA

Leiden, The Netherlands

fhoogeboo,nvvugtg�lias.nl

July 5, 2000

Abstrat

Codings of fair stiker languages are haraterized as languages a-

epted by blind one-ounter automata.

1 Introdution

Abstrating from their bio-hemial properties, single dna strands an be

seen as strings over the alphabet fa; ; g; tg where the letters represent the

nulei aid bases adenine, ytosine, guanine, and thymine. Under favourable

irumstanes two strands of dna join (`anneal') to form a double strand,

provided the bases math: adenine binds with thymine, and ytosine binds

with guanine.

Adleman [Adl94℄ used this `omplementarity priniple' to propose a bio-

hemial implementation of an algorithm to solve the Hamiltonian Path

Problem, the question whether a given graph ontains a path entering eah

of the nodes exatly one. In Adleman's sheme nodes are represented by

short dna strands, and edges are designed to math with the seond half

of their soure node and the �rst half of their target node. We illustrate

this in Figure 1 for two nodes `agggtgg' and `attagt', onneted by the

edge `atagg'. In this way, when the nodes and edges are put together in a

solution, paths in the graph are formed by self-assembly. Then the Hamilto-

nian paths may be deteted in the solution by a rather involved biohemial

seletion proess.

Stiker systems are introdued as a formal language model for the self-

assembly phase of Adleman's experiment [KP

+

98℄. A stiker system spei�es

�nite sets of upper and lower `stikers' (single-stranded moleules), and a

�nite set of axioms (used as a seed for the proess joining upper and lower

strands). The omplementarity relation is modelled by a binary relation on

�

To be published in Ata Informatia

1

a

g g g

t

g g

a

t

t

a

g

t

 a

t

a

g g

Figure 1: Conneting two nodes by an edge

the alphabet. The language generated by the system onsists of all strings

formed by upper stikers for whih an exatly mathing (i.e., omplemen-

tary) sequene of lower stikers an be found.

In the sequel we use the term `stiker system' for the simple regular

stiker systems from [KP

+

98℄.

Without restritions, stiker systems generate only regular languages

(but not all of them). Additional restritions an be imposed on the math-

ing pairs of strands to obtain more powerful languages. For example, the

mathing is fair if the number of upper stikers used is the same as the num-

ber of lower stikers used. In [KP

+

98℄ it is demonstrated that the family

of fair stiker languages ontains non-regular languages but not all regular

languages, while the family of languages generated by ontext-free matrix

grammars with arbitrary rules is given as an upper bound. In onnetion

with this rather large upper bound the following open problem is formulated:

\is the family [of fair stiker languages℄ inluded in the family of ontext-free

languages (or even in the family of linear languages)?".

We answer this question by giving a fair stiker language that is non-

linear (Example 2), while demonstrating that the fair stiker languages are

stritly inluded in another subfamily of the ontext-free languages, the

blind one-ounter languages (Theorem 6 and Lemma 7).

We onlude by showing as our main result that the onnetion between

these two families is quite strong: blind one-ounter languages an be har-

aterized as the odings of fair stiker languages (Theorem 12).

2 Preliminaries

We adhere to standard formal language theory notations and terminology

as in, e.g., [RS97℄.

The set of integers is denoted by Z. The empty string is written as �.

For a language L and a string w we de�ne the left-quotient of L by w as the

set f x j wx 2 L g. We use REG; LIN;CF to denote the families of regular,

linear, and ontext-free languages. A letter to letter morphism is alled a

oding. For a language family F , we use COD(F) to denote the family of

odings of languages in F .

Double stranded dna moleules an be written as a pair of `mathing'

strings over the alphabet fa; ; g; tg of bases. Alternatively, for the mathing

2

base pairs we may use the symbols

�

a

t

�

,

�

t

a

�

,

�

g

�

,

�

g

�

. We appreiate both

approahes, and will not distinguish between a (two dimensional) pair of

mathing strands like (aga; ttg) and a (one dimensional) string of paired

bases

�

a

t

��

g

��

a

t

��

g

�

.

For our purposes we will onsider an alphabet � of `abstrat' dna bases,

and a relation � � � � � representing the omplementarity relation. We

extend � to a subset of �

�

��

�

by demanding that two strings are omple-

mentary if they are of equal length and their letters are one by one omple-

mentary.

The alphabet �

�

, representing mathing pairs, onsists of all symbols

�

a

b

�

where (a; b) 2 � and a; b 2 �. As explained above, we identify �

�

�

with

the subset � of �

�

� �

�

:

�

a

1

b

1

�

: : :

�

a

n

b

n

�

represents the same double stranded

moleule as (a

1

: : : a

n

; b

1

: : : b

n

) with (a

i

; b

i

) 2 � and a

i

; b

i

2 �.

Our de�nition of stiker systems is equivalent to the de�nition given in

[KP

+

98℄, but stated diretly in terms of strings, avoiding a lengthy de�nition

of a `stiker operation'.

De�nition 1 A stiker system is a 5-tuple = (�; �;D

u

;D

`

; A) where � is

an alphabet, � � � � � is the omplementarity relation, D

u

;D

`

� �

+

are

�nite sets of upper and lower stikers, and A � �

�

� �

�

is a �nite set of

axioms. �

The moleular (stiker) language generated by is de�ned as ML() =

f(x; y) 2 � j x = x

0

x

0

; y = y

0

y

0

with (x

0

; y

0

) 2 A; x

0

2 D

�

u

and y

0

2 D

�

`

g.

The fair moleular (stiker) language generated by is de�ned asML

f

() =

f(x; y) 2 � j x = x

0

x

0

; y = y

0

y

0

with (x

0

; y

0

) 2 A; x

0

2 D

n

u

and y

0

2 D

n

`

for

some n � 0g.

Furthermore, the (stiker) language generated by is the projetion onto

the �rst (upper) omponent of the moleular language, L() = fx 2 �

�

j

(x; y) 2ML() for some y 2 �

�

g, and similarly for L

f

(), the fair (stiker)

language generated by .

The family of all stiker languages is denoted SL, while the family of fair

stiker languages is denoted SL

f

.

Example 2 Consider the following stiker system, a slight extension of the

one given in the proof of Theorem 3 in [KP

+

98℄: = (�; �;D

u

;D

`

; A) with

� = fa; b; g; � = f(a; a); (b; b); (b;)g;

D

u

= faa; bg; D

`

= fa; bg;

A = f(�; �)g:

Now ML() = f

�

a

a

��

a

a

�

;

�

b

b

��

b

�

g

�

. Consequently L() = faa; bbg

�

, while

L

f

() = fx 2 L() j #

a

(x) = #

b

(x)g. �

3

Obviously, L() an be obtained from ML() by applying a oding. How-

ever, we may not reverse this: in general ML() is not the image of L()

under an inverse oding, as lear from Example 2.

A rather unexpeted but useful normal form for stiker systems is proved

in the following theorem: without hanging the language, we an always

replae the omplementarity relation � by the identity id on the alphabet

�. Note that, of ourse, the moleular language does hange if � was not

already equal to id.

Theorem 3 For every stiker system = (�; �;D

u

;D

`

; A) a stiker system

0

= (�; id;D

u

;D

0

`

; A

0

) an be onstruted with L(

0

) = L() and L

f

(

0

) =

L

f

().

Proof. Let D

0

`

= fw 2 �

+

j (w; v) 2 � for some v 2 D

`

g, and let A

0

=

f(x

0

; z

0

) j (x

0

; y

0

) 2 A for some y

0

, and (z

0

; y

0

) 2 �g.

Now assume that x 2 L(), i.e., there is a y suh that (x; y) 2 �, x =

x

0

x

1

: : : x

n

and y = y

0

y

1

: : : y

m

, where (x

0

; y

0

) 2 A, x

i

2 D

u

for 1 � i � n

and n � 0, and y

j

2 D

`

for 1 � j � m and m � 0. Then x an also be

written as x = z

0

z

1

: : : z

m

, where (z

k

; y

k

) 2 � for 0 � k � m. Aording

to the de�nition of A

0

then (x

0

; z

0

) 2 A

0

, and from the de�nition of D

0

`

it

follows that z

j

2 D

0

`

for 1 � j � m. Therefore (x

0

x

1

: : : x

n

; z

0

z

1

: : : z

m

) =

(x; x) 2ML(

0

), hene x 2 L(

0

).

To prove that L(

0

) � L(), the above an be read bakwards.

Obviously, the number of stikers used is not hanged, hene L

f

(

0

) =

L

f

() as well. �

The following result (a ombination of Theorem 4.1, Theorem 4.7 and Corol-

lary 4.7 from [PRS98℄) and its proof indiate that the stiker languages we

onsider are not very suitable to implement states (of a �nite state automa-

ton) exept if one makes them expliit in the symbols. A oding makes it

possible to abstrat from this.

Proposition 4 SL � REG = COD(SL).

3 Blind one-ounter automata

A blind one-ounter automaton (ba) is a �nite state devie equipped with

an external memory (the `ounter') that ontains an integer value whih

may be inremented and deremented by the automaton.

De�nition 5 A ba is a 5-tuple B = (Q;�; Æ; q

in

; F), where Q is a �nite

set of states, � is the input alphabet, q

in

2 Q is the initial state, F � Q

is the set of �nal states , and Æ � Q � � � f�1; 0; 1g � Q is a �nite set of

instrutions. �

4

An instantaneous desription of B is an element of Q � �

�

� Z. For two

instantaneous desriptions (p; ax; i) and (q; x; j), we write (p; ax; i) ` (q; x; j)

if (p; a; "; q) 2 Æ and j = i+ ". By `

�

we denote the reexive and transitive

losure of `.

The language aepted by B onsists of all strings for whih the automa-

ton in a omputation on this string ends in a �nal state and at the same

time has ounter value zero. It is de�ned as L(B) = fx 2 �

�

j (q

in

; x; 0) `

�

(f; �; 0) for some f 2 Fg. The family of all languages aepted by blind

one-ounter automata (ba-languages) is alled 1BCA.

The datatype above is alled blind beause the automaton annot test

its ounter value during the omputation, i.e., it may not hek whether its

ounter value is zero and at aording to the outome of this test.

The blind one-ounter automaton an be `implemented' on a more om-

monly known devie: the stak of a pushdown automaton may at as a

ounter. Consequently 1BCA � CF. Sine the ontext-free language fw 2

fa; bg

�

j #

a

(w) = #

b

(w) and #

a

(x) � #

b

(x) for every pre�x x of wg is not

in 1BCA (see [Gre78, Theorem 3℄), we even have 1BCA � CF.

In ontrast with the de�nition of ba given in [Gre78℄, we do not allow

�-instrutions, i.e., instrutions of the form (p; �; "; q). However, these two

de�nitions are equivalent, whih an be explained as follows. The possi-

ble suessful instrution sequenes of the blind one-ounter datatype are

naturally modelled by the `two-sided Dyk language' D

�

1

= fw 2 fa; bg

�

j

#

a

(w) = #

b

(w)g, where a and b represent addition of +1 and �1, respe-

tively. Now, using standard AFA theory [GG69℄, the ba an be seen as

a �nite state devie mapping input strings to strings over fa; bg aording

to the instrutions taken during the omputation. The input is aepted

preisely when the output belongs to D

�

1

. Hene it an be shown that the

family 1BCA is equal to the smallest language family that ontains D

�

1

and is

losed under �-free homomorphism, inverse homomorphism and intersetion

with regular languages. In other words, 1BCA equals C

f

(D

�

1

), the faithful

rational one generated by D

�

1

. Similarly, the family of languages generated

by ba's that an have �-instrutions is equal to C(D

�

1

), the rational one

generated by D

�

1

(the �-free homomorphism above is replaed by an arbi-

trary homomorphism). In [Lat79, Proposition II.11℄ it is proved (as a speial

ase of a more general result) that C

f

(D

�

1

) = C(D

�

1

). Hene the ba's with

�-instrutions are equivalent to the ba's without �-instrutions.

From the disussion above we onlude that 1BCA is a prinipal rational

one, and in partiular that 1BCA is losed under odings, left-quotient with

strings, and union.

Apart from this onnetion with AFA/AFL theory, blind one-ounter

automata were also studied as `integer weighted �nite automata' in [HH99℄

and as `additive regular valene grammars (over Z)' in [P�au80℄ (see also

[FS97℄). In these devies the instrutions (produtions) are assigned an

integer value, and one onsiders only omputations (derivations) for whih

5

these values add to 0.

4 Fair stiker languages are ba-languages

We answer the question left open in [KP

+

98, p. 419℄: is the family of fair

stiker languages inluded in the family of ontext-free languages (or even

in the family of linear languages)? To start, observe that the language

L

f

() = fx 2 faa; bbg

�

j #

a

(x) = #

b

(x)g from Example 2 is ontext-free,

but not linear.

The non-linearity of L

f

() an be proved using the pumping lemma

for linear languages [HU79, Exerise 6.11℄, whih says that if K is linear,

then there is a onstant n suh that every z 2 K with jzj > n an be

written as z = uvwxy with juvxyj � n, jvxj � 1 and uv

i

wx

i

y 2 K for all

i � 0. In the ase of L

f

(), it is lear that there are no suh u; v; w; x; y for

z = a

2n

b

4n

a

2n

2 L

f

().

We will now give a �rst answer to the question posed in [KP

+

98℄, by

proving that every fair stiker language is a ba-language, hene ontext-

free.

Theorem 6 SL

f

� 1BCA.

Proof. Let = (�; �;D

u

;D

`

; A). Beause of Theorem 3 we may assume

that � = id. For eah (x

0

; y

0

) 2 A, onstrut two ba's: B

x

0

and B

y

0

, as

follows. We desribe the onstrution of B

x

0

= (Q;�; Æ; q

in

; ffg) in detail,

B

y

0

an be made in an analogous way.

If x

0

= �, then q

in

= f . If x

0

6= �, then B

x

0

has a path labelled by x

0

from its initial to its �nal state. In both ases the ounter is not hanged,

sine the axioms do not have to be ounted. Moreover, for eah w 2 D

u

, let

B

x

0

have a (new) path labelled with w from its �nal to its �nal state and

add 1 to the ounter at one moment somewhere along this path. Note that

L(B

x

0

) = fx

0

g, whih does not seem very useful yet!

Now we onstrut from eah pair of ba's B

x

0

and B

y

0

, where (x

0

; y

0

) 2

A, a ba B

x

0

;y

0

for whih L(B

x

0

;y

0

) = L

f

(

x

0

;y

0

), where

x

0

;y

0

= (�; id;D

u

;D

`

;

f(x

0

; y

0

)g), as follows: for eah pair of instrutions (p; a; "; q) in B

x

0

and

(r; a; "

0

; s) in B

y

0

, the ba B

x

0

;y

0

ontains the instrution (hp; ri; a; "�"

0

; hq; si).

Finally, it is lear that L

f

() =

S

(x

0

;y

0

)2A

L(B

x

0

;y

0

) is in 1BCA, sine

1BCA is losed under union and A is �nite. �

Omitting the ounter from the previous proof, one onstruts a �nite state

automaton for L() =

S

(x

0

;y

0

)2A

x

0

�D

�

u

\ y

0

�D

�

`

. This elementary observa-

tion shows that SL � REG.

The inlusion SL

f

� 1BCA is strit beause ba

�

b is not a fair stiker

language, although ba

�

b 2 REG � 1BCA.

Lemma 7 ba

�

b =2 SL

f

.

6

Proof. We reonsider the proof of ba

+

b 62 SL, f. [PR98, Theorem 10℄.

Assume ba

�

b is the fair language of a stiker system = (fa; bg; �;D

u

;D

`

; A).

Aording to Theorem 3 we may assume that � = id. Let D

u

\ a

+

=

fx

1

; : : : ; x

m

g and D

`

\ a

+

= fy

1

; : : : ; y

n

g be the sets of stikers onsisting of

a's only. Every string ba

i

b that is longer than the axioms an be deomposed

as �

u

x

j

1

1

: : : x

j

m

m

�

u

= �

`

y

k

1

1

: : : y

k

n

n

�

`

, with �

u

the upper part of an axiom (or

a string from D

u

starting with b), and �

u

2 D

u

ending in b, and similarly for

�

`

; �

`

. The vetor �

i

= (j

1

; : : : ; j

m

; k

1

; : : : ; k

n

) assigns to ba

i

b the number

of stikers ontaining only a's ourring in a possible deomposition of the

upper and the lower strand.

Beause we have only a �nite number of hoies, an in�nite number of

ba

i

b have the same strings �

u

; �

`

; �

u

; �

`

in their deompositions. Aording

to Dikson's Lemma [Di13, Lemma B℄ we an �nd ba

i

b and ba

i

0

b (i

0

> i) in

this in�nite sequene suh that �

i

0

� �

i

(omponentwise). Now the vetor

�

i

0

� �

i

de�nes a `fair deomposition' of a

i

0

�i

, whih shows that ba

i

ba

i

0

�i

2

L

f

(), ontraditing L

f

() = ba

�

b. �

In the next setion we make our answer more preise, in the sense that we

show that 1BCA is a rather lose upper bound for SL

f

: every ba-language

is a oding of a fair stiker language.

5 ba-languages are odings of fair stiker lan-

guages

In the ase of arbitrary, i.e., not neessarily fair, stiker languages the sim-

ulation of stiker systems by �nite automata an be reversed provided that

one an use a oding (Proposition 4). In this setion we demonstrate that

Proposition 4 an be extended to fair stiker languages and ba-languages:

every language in 1BCA is the oding of a fair stiker language (Theorem 12).

First we illustrate this in Example 8. Then we show that, for a partiular

kind of ba alled stiky, this example an be generalized (Lemma 10). Fi-

nally, we explain how these stiky ba's an be used to onstrut a oding

of a fair stiker language for every ba-language.

Example 8 Consider the ba A with states Q = fa

1

; a

3

; b

0

; b

2

;

0

;

2

g with

b

0

as initial state, �nal state set fb

0

;

0

g and instrutions

(b

0

; a; 0; a

1

); (a

1

; b;�1; b

2

); (b

2

; a; 0; a

3

); (a

3

; b; 0; b

0

);

(

0

; a; 0; a

1

); (a

1

; ; 0;

2

); (

2

; a; 0; a

3

); (a

3

; ;+1;

0

):

The automaton aepts the language f w 2 fab; ag

�

j #

b

(w) = #

(w) g.

This an be veri�ed by onsidering the four-letter segments abab, aba, aab,

and aa. While the automaton makes a yle on these segments (starting

and ending in fb

0

;

0

g), it hanges its ounter by �1, 0, 0, and +1, respe-

tively.

7

First, we forget about the ounter, and we have a look at the �nite state

behaviour of A, (a(b +)a(b +))

�

. A omputation an be simulated by a

stiker system with overlapping stikers, f. [KP

+

98, Lemma 5℄, illustrated

as follows, with brakets to delimit the stikers and the axiom:

[iha

1

b

2

a

3

b

0

iha

1

b

2

a

3

0

iha

1

2

a

3

b

0

iha

1

2

a

3

0

i

[a

1

b

2

iha

3

b

0

a

1

b

2

iha

3

0

a

1

2

iha

3

b

0

a

1

2

iha

3

0

i

Seond, we an inlude the ontents of the ounter by representing it as the

di�erene between the number of upper and lower stikers in the omputa-

tion of the stiker system. For eah inrement instrution we detah the last

omponent of an upper stiker, and similarly for derement instrutions and

lower stikers.

+1 +1

[iha

1

b

2

a

3

b

0

iha

1

b

2

a

3

ih

0

iha

1

2

a

3

b

0

iha

1

2

a

3

ih

0

i

[a

1

ihb

2

iha

3

b

0

a

1

ihb

2

iha

3

0

a

1

2

iha

3

b

0

a

1

2

iha

3

0

i

-1 -1

Let = (Q; id;D

u

;D

`

; A) be the stiker system spei�ed by

A = f ([�i; [�i); ([�i; [a

1

i); ([�i; [a

1

2

i) g

D

u

= fha

1

b

2

a

3

i; ha

1

b

2

a

3

b

0

i; ha

1

2

a

3

i; ha

1

2

a

3

b

0

i; h

0

ig

D

`

= fha

3

b

0

a

1

i; ha

3

b

0

a

1

2

i; ha

3

0

a

1

i; ha

3

0

a

1

2

i; ha

3

b

0

i; ha

3

0

i; hb

2

ig:

Then L(A) is obtained by applying to L

f

() the oding h : Q ! fa; b; g

that maps a

1

; a

3

to a, b

0

; b

2

to b, and

0

;

2

to . �

A ruial property of the ba from the above example is formalized in the

following notion.

De�nition 9 Let A = (Q;�; Æ; q

in

; F) be a ba. It is alled stiky if there

is a partition of its state set Q =

S

3

i=0

Q

i

suh that Æ is a subset of

(Q

0

� �� f0g �Q

1

) [(Q

1

� �� f�1; 0g �Q

2

) [

(Q

2

� �� f0g �Q

3

) [(Q

3

� �� f0;+1g �Q

0

)

and suh that q

in

2 Q

0

and F � Q

0

. �

The ba A from Example 8 is stiky.

A stiky ba hanges its ounter in a very restritive way: in eah seg-

ment of four instrutions the automaton may inrement and derement its

ounter only one, and only at spei� positions. Note that the language

aepted by a stiky ba always onsists of strings with lengths that are

multiples of four.

We generalize the onstrution from Example 8.

8

Lemma 10 Let A be a stiky ba. Then there exist a stiker system and

a oding h suh that L(A) = h(L

f

()).

Proof. Let A = (Q;�; Æ; q

in

; F) be a stiky ba. We write the state set as

a disjoint union Q =

S

3

i=0

Q

i

as in the de�nition for stiky ba.

Let h : Q ! � be a oding suh that eah instrution is of the form

(p; h(q); "; q), i.e., all instrutions ending in a given state read the same

letter. This an easily be ahieved by splitting states into several opies {

one for eah letter from the alphabet, eah of whih has the same outgoing

instrutions { and re-routing the instrutions into the appropriate opy.

In the same vein we assume that there exists a partition Q

2

= Q

0

2

[Q

�

2

,

suh that eah instrution (p; a; "; q) entering Q

0

2

(Q

�

2

) has " = 0 (" = �1,

respetively). Similarly we assume Q

0

= Q

0

0

[Q

+

0

.

Constrution. A stiker system = (Q; id;D

u

;D

`

; A) is onstruted as

follows. We keep the intuitive braket notation from Example 8.

upper stikers. For every pair of onseutive instrutions (p

1

; a

2

; "

2

; p

2

),

(p

2

; a

3

; 0; p

3

) with p

1

2 Q

1

, D

u

ontains the stikers hp

1

p

2

p

3

i and, for

every p

0

2 Q

0

0

, hp

1

p

2

p

3

p

0

i. For eah p

+

2 Q

+

0

, D

u

ontains the stiker

hp

+

i.

lower stikers. For every pair of onseutive instrutions (p

3

; a

0

; "

0

; p

0

),

(p

0

; a

1

; 0; p

1

) with p

3

2 Q

3

, D

`

ontains the stikers hp

3

p

0

p

1

i and, for

every p

2

2 Q

0

2

, hp

3

p

0

p

1

p

2

i. For eah p

�

2 Q

�

2

, D

`

ontains the stiker

hp

�

i. For every instrution (p

3

; a

0

; "

0

; p

0

) with p

3

2 Q

3

, p

0

2 F , D

`

ontains the stiker hp

3

p

0

i.

axioms. For every instrution (q

in

; a

1

; 0; p

1

) with p

1

2 Q

1

, A ontains the

pairs ([�i; [p

1

i) and, for every p

2

2 Q

0

2

, ([�i; [p

1

p

2

i). If q

in

2 F , i.e.,

� 2 L(A), then ([�i; [�i) is added to A.

Corretness. Observe that � 2 L(A) i� � 2 L

f

() i� � 2 h(L

f

()).

Now, let � = p

1

p

2

p

3

: : : p

n

2 Q

+

be an element of L

f

(), for some n � 1.

First, we reonstrut a omputation of A by following the omputation

of � in .

Sine there is no non-empty deomposition starting with (�; �) 2 A { all

stikers in D

u

start with symbols from Q

1

[Q

+

0

, whereas all stikers from

D

`

start with symbols from Q

3

[Q

�

2

{ we know that the omputation of �

in started either with (�; p

1

) 2 A or with (�; p

1

p

2

) 2 A, where p

1

2 Q

1

.

Aording to the onstrution of A, Æ ontains an instrution (q

in

; a

1

; 0; p

1

).

We ontinue by observing that eah upper stiker of length 3 or 4 starts

at position 4i + 1, and that eah lower stiker of length 2, 3 or 4 starts at

position 4i + 3, for some i � 1. It is easy to see that this follows from the

9

only possible omputation of �, here illustrated for n = 8:

[ih p

1

! p

2

! p

3

� � � p

4

ih p

5

! p

6

! p

7

� � � p

8

i

[p

1

� � � p

2

ih p

3

! p

4

! p

5

� � � p

6

ih p

7

! p

8

i

Here the arrows indiate parts of a stiker that represent instrutions from Æ,

while the dotted lines do not neessarily orrespond to an instrution from

Æ and, at the same time, indiate that the next symbol may be detahed

to form a stiker of length 1. Moreover, observing D

u

we �nd instrutions

(p

4i+1

; a

4i+2

; "

4i+2

; p

4i+2

) and (p

4i+2

; a

4i+3

; 0; p

4i+3

), while D

`

gives rise to

instrutions (p

4i+3

; a

4i+4

; "

4i+4

; p

4i+4

) and (p

4i+4

; a

4i+5

; 0; p

4i+5

).

Sine p

n

is the last symbol of stikers from both D

u

and D

`

, we know

that p

n

2 F � Q

0

, and there exists an instrution (p

n�1

; a

n

; "

n

; p

n

) in Æ.

Note that n is a multiple of four, and we write n = 4k.

Seond, we address the matter of fairness. To ompute the ontents of

the ounter we study the even positions of �. Observe that "

4i+4

= +1 i�

p

4i+4

2 Q

+

0

, whih implies that the stiker hp

4i+4

i is used in the upper part

of the solution. Otherwise, if "

4i+4

= 0, then p

4i+4

is the fourth element of

the stiker hp

4i+1

p

4i+2

p

4i+3

p

4i+4

i. Thus, the number of upper stikers equals

k+

P

k�1

i=0

"

4i+4

. Similarly, the number of lower stikers equals k�

P

k�1

i=0

"

4i+2

.

Consequently, fairness of the stiker solution is equivalent to ounter value

zero and aeptane by the ba.

The above shows that h(L

f

()) � L(A). For the onverse inlusion

L(A) � h(L

f

()) a similar reasoning an be given. �

Stiky ba's form a normal form for ba's aepting languages onsisting

of strings with lengths that are multiples of four. The idea behind this is

the following.

In every four steps, A hanges the ontents of its ounter by at most

�4. The new ba B however, may hange its ounter by at most �1 in the

orresponding four steps. To make up for this, we hange the interpretation

of the ounter value of B: eah unit on the ounter of B represents 4 units

on the ounter of A, a onstrution known at least sine [FMR68℄. Now, B

simulates the omputation of A. Eah hange made to the ounter of A is

reorded in the �nite state memory of B. Only when allowed (at the spei�

points in the four step yle), B moves any exess of �4 units of A's ounter

as one unit to (or from) its own ounter.

Lemma 11 For eah ba that aepts only strings with lengths a multiple

of four, there exists an equivalent stiky ba.

Proof. Let A = (Q;�; Æ; q

in

; F) be a ba. We onstrut a stiky ba B

suh that L(A) = L(B).

Let I = f0; 1; 2; 3g. The state set Q

0

of B equals

Q� I � f�4;�3; : : : ; 2; 3g;

10

the elements of whih are denoted as p:i:m, rather than as (p; i;m). Here

p 2 Q represents the state of A, i 2 I keeps trak of the four step yle,

and �4 � m � 3 is the remainder value of A's ounter not yet stored in

the ounter of B. (Hene, if is the value of A's ounter and

0

the value

of B's ounter, then the equality = 4

0

+m should hold for eah pair of

orresponding instantaneous desriptions of A and B.) The initial state of

B equals q

in

:0:0, its �nal state set equals F � f0g � f0g.

Let (p; a; "; q) be an instrution of A. Then B has the instrutions

(p:0:m; a; 0; q:1:m+")

(p:1:m; a; �1; q:2:m+"+4) if m+ " < �1

(p:1:m; a; 0; q:2:m+") if m+ " � �1

(p:2:m; a; 0; q:3:m+")

(p:3:m; a; +1; q:0:m+"�4) if m+ " � 1

(p:3:m; a; 0; q:0:m+") if m+ " < 1

We hose to hek the relation between m+ " and �1 rather than between

m+ " and �4, although the latter seems more logial. The reason for this

is that we need to prevent the ourrene of the situation where i = 0 and

 = 4

0

+m = 0 while

0

6= 0 and m 6= 0 (whih an our only when m

is a multiple of 4), i.e., B does not aept while it should. Beause of this

hoie, the reahable on�gurations of B satisfy the following restritions,

for p:i:m 2 Q

0

:

if i = 0 thenm 2 f�3;�2;�1; 0g

1 f�4;�3;�2;�1; 0; 1g

2 f�1; 0; 1; 2g

3 f�2;�1; 0; 1; 2; 3g

It is easy to see that B is stiky, as it adheres to the four step yle from

De�nition 9.

Moreover, note that our onstrution introdues for eah instrution

(p; a; "; q) of A exatly one instrution (p:i:m; a; "

0

; q:i

0

:m

0

) for eah pair i;m.

This makes it straightforward to show that a omputation (q

in

; xy; 0) `

j

(q; y;) of A orresponds with a omputation (q

in

:0:0; xy; 0) `

j

(q:i:m; y;

0

)

of B satisfying = 4

0

+m, and i = j mod 4.

To show that L(B) � L(A), observe that if B reahes a �nal state

q:0:0 with ounter value zero, then A (using the orresponding omputa-

tion) reahes �nal state q, also with ounter value zero.

Conversely, assume that A reahes a �nal state q 2 F with ounter value

zero. Now the orresponding omputation of B reahes some state q:i:m and

ounter value

0

satisfying the invariantm+4

0

= 0. By the length restrition

of strings aepted by A we know that i = 0. Hene, taking into aount the

reahable states of B, we have m 2 f�3; : : : ; 0g. Thus m + 4

0

= 0 implies

that m = 0 and thus

0

= 0, orresponding to aeptane with ounter value

zero in �nal state q:0:0.

11

A more formal indutive proof that L(A) = L(B) is left to the reader.

�

Finally we arrive at our main result, the equivalene of blind one-ounter

languages and odings of fair stiker languages. Note the similarity with the

situation for (arbitrary) stiker languages (Proposition 4).

Theorem 12 SL

f

� 1BCA = COD(SL

f

).

Proof. By Theorem 6, SL

f

� 1BCA. The inlusion is strit by Lemma 7.

As 1BCA is losed under odings, the inlusion COD(SL

f

) � 1BCA follows.

We proeed by proving the onverse inlusion.

Let L 2 1BCA. For every string w, we de�ne L

w

= f x j wx 2 L; jxj =

0 mod 4 g. By the losure properties we have established for 1BCA, L

w

is

also in 1BCA, and, by Lemma 11, it is aepted by a stiky ba. Conse-

quently, it is the oding of a fair stiker language (Lemma 10).

Note that L =

S

jwj�3

w �L

w

. A stiker system for the language w �L

w

is obtained from the one for L

w

by replaing eah axiom (x; y) by (wx;wy)

and extending the used oding with the identity on the alphabet of L. As-

suming the stiker systems representing the w �L

w

have disjoint alphabets

(by renaming), we build a stiker system for L by taking their (�nite) union.

�

Our haraterization shows that COD(SL

f

) is a more `robust' family than

SL

f

itself, omparable to the situation for COD(SL) and SL. In partiu-

lar, we an onlude that COD(SL

f

) enjoys the many losure properties of

a prinipal rational one (arbitrary morphisms, inverse morphisms, inter-

setion with regular languages, and union). Some of these properties seem

to require rather involved proofs, should we want to show them by diret

onstrution.

Aknowledgements. We are indebted to Mihel Latteux, Holger Petersen

and Matthias Jantzen for their helpful suggestions onerning the equiva-

lene of blind one-ounter automata with and without �-instrutions. We

thank Tero Harju and a referee for their suggestions.

Referenes

[Adl94℄ L.M. Adleman. Moleular omputation of solutions to ombinatorial

problems, Siene 226:1021{1024, November 1994.

[Di13℄ L.E. Dikson. Finiteness of the odd perfet and primitive abundant

numbers with n distint prime fators, Amerian Journal of Mathemat-

is 35:413{422, 1913.

12

[FS97℄ H. Fernau, R. Stiebe. Regulation by valenes, Mathematial Founda-

tions of Computer Siene 1997, Leture Notes in Computer Siene,

volume 1295, Igor Pr��vara, Peter Ruzika (eds.), 239{248, Springer-

Verlag, 1997.

[FMR68℄ P.C. Fisher, A.R. Meyer, A.L. Rosenberg. Counter mahines and

ounter languages, Mathematial Systems Theory 2:265{283, 1968.

[GG69℄ S. Ginsburg, S.A. Greibah. Abstrat families of languages, Mem-

oirs of the Amerian Mathematial Soiety 87:1{32, 1969.

[Gre78℄ S.A. Greibah. Remarks on blind and partially blind one-way mul-

tiounter mahines, Theoretial Computer Siene 7:311{324, 1978.

[HH99℄ V. Halava, T. Harju. Languages aepted by integer weighted �nite

automata, Jewels are forever, J. Karhumki, H. Maurer, Gh. P�aun, G.

Rozenberg (eds.), 123{134, Springer-Verlag, 1999.

[HU79℄ J.E. Hoproft, J.D. Ullman. Introdution to automata theory, lan-

guages, and omputation, Addison-Wesley, 1979.

[KP

+

98℄ L. Kari, Gh. P�aun, G. Rozenberg, A. Salomaa, S. Yu. DNA om-

puting, stiker systems, and universality, Ata Informatia 35:401{420,

1998.

[Lat79℄ M. Latteux. Cônes rationnels ommutatifs, Journal of Computer

and System Sienes 18:307{333, 1979.

[P�au80℄ Gh. P�aun. A new generative devie: valene grammars, Revue

Roumaine de Math�ematiques Pures et Appliqu�ees 25(6):911{924, 1980.

[PR98℄ Gh. P�aun, G. Rozenberg. Stiker systems, Theoretial Computer

Siene 204:183{203, 1998.

[PRS98℄ Gh. P�aun, G. Rozenberg, A. Salomaa. DNA omputing. New om-

puting paradigms, Springer-Verlag, 1998.

[RS97℄ G. Rozenberg, A. Salomaa (eds.). Handbook of formal languages,

Springer-Verlag, 1997.

13

