
Fair Sti
ker Languages

�

Hendrik Jan Hoogeboom Nik�e van Vugt

LIACS, Universiteit Leiden

Niels Bohrweg 1 2333 CA

Leiden, The Netherlands

fhoogeboo,nvvugtg�lia
s.nl

July 5, 2000

Abstra
t

Codings of fair sti
ker languages are
hara
terized as languages a
-

epted by blind one-
ounter automata.

1 Introdu
tion

Abstra
ting from their bio-
hemi
al properties, single dna strands
an be

seen as strings over the alphabet fa;
; g; tg where the letters represent the

nu
lei
 a
id bases adenine,
ytosine, guanine, and thymine. Under favourable

ir
umstan
es two strands of dna join (`anneal') to form a double strand,

provided the bases mat
h: adenine binds with thymine, and
ytosine binds

with guanine.

Adleman [Adl94℄ used this `
omplementarity prin
iple' to propose a bio-

hemi
al implementation of an algorithm to solve the Hamiltonian Path

Problem, the question whether a given graph
ontains a path entering ea
h

of the nodes exa
tly on
e. In Adleman's s
heme nodes are represented by

short dna strands, and edges are designed to mat
h with the se
ond half

of their sour
e node and the �rst half of their target node. We illustrate

this in Figure 1 for two nodes `a
gggtgg' and `at

tagt',
onne
ted by the

edge `
a

tagg'. In this way, when the nodes and edges are put together in a

solution, paths in the graph are formed by self-assembly. Then the Hamilto-

nian paths may be dete
ted in the solution by a rather involved bio
hemi
al

sele
tion pro
ess.

Sti
ker systems are introdu
ed as a formal language model for the self-

assembly phase of Adleman's experiment [KP

+

98℄. A sti
ker system spe
i�es

�nite sets of upper and lower `sti
kers' (single-stranded mole
ules), and a

�nite set of axioms (used as a seed for the pro
ess joining upper and lower

strands). The
omplementarity relation is modelled by a binary relation on

�

To be published in A
ta Informati
a

1

a

g g g

t

g g

a

t

t

a

g

t

 a

t

a

g g

Figure 1: Conne
ting two nodes by an edge

the alphabet. The language generated by the system
onsists of all strings

formed by upper sti
kers for whi
h an exa
tly mat
hing (i.e.,
omplemen-

tary) sequen
e of lower sti
kers
an be found.

In the sequel we use the term `sti
ker system' for the simple regular

sti
ker systems from [KP

+

98℄.

Without restri
tions, sti
ker systems generate only regular languages

(but not all of them). Additional restri
tions
an be imposed on the mat
h-

ing pairs of strands to obtain more powerful languages. For example, the

mat
hing is fair if the number of upper sti
kers used is the same as the num-

ber of lower sti
kers used. In [KP

+

98℄ it is demonstrated that the family

of fair sti
ker languages
ontains non-regular languages but not all regular

languages, while the family of languages generated by
ontext-free matrix

grammars with arbitrary rules is given as an upper bound. In
onne
tion

with this rather large upper bound the following open problem is formulated:

\is the family [of fair sti
ker languages℄ in
luded in the family of
ontext-free

languages (or even in the family of linear languages)?".

We answer this question by giving a fair sti
ker language that is non-

linear (Example 2), while demonstrating that the fair sti
ker languages are

stri
tly in
luded in another subfamily of the
ontext-free languages, the

blind one-
ounter languages (Theorem 6 and Lemma 7).

We
on
lude by showing as our main result that the
onne
tion between

these two families is quite strong: blind one-
ounter languages
an be
har-

a
terized as the
odings of fair sti
ker languages (Theorem 12).

2 Preliminaries

We adhere to standard formal language theory notations and terminology

as in, e.g., [RS97℄.

The set of integers is denoted by Z. The empty string is written as �.

For a language L and a string w we de�ne the left-quotient of L by w as the

set f x j wx 2 L g. We use REG; LIN;CF to denote the families of regular,

linear, and
ontext-free languages. A letter to letter morphism is
alled a

oding. For a language family F , we use COD(F) to denote the family of

odings of languages in F .

Double stranded dna mole
ules
an be written as a pair of `mat
hing'

strings over the alphabet fa;
; g; tg of bases. Alternatively, for the mat
hing

2

base pairs we may use the symbols

�

a

t

�

,

�

t

a

�

,

�

g

�

,

�

g

�

. We appre
iate both

approa
hes, and will not distinguish between a (two dimensional) pair of

mat
hing strands like (aga
; t
tg) and a (one dimensional) string of paired

bases

�

a

t

��

g

��

a

t

��

g

�

.

For our purposes we will
onsider an alphabet � of `abstra
t' dna bases,

and a relation � � � � � representing the
omplementarity relation. We

extend � to a subset of �

�

��

�

by demanding that two strings are
omple-

mentary if they are of equal length and their letters are one by one
omple-

mentary.

The alphabet �

�

, representing mat
hing pairs,
onsists of all symbols

�

a

b

�

where (a; b) 2 � and a; b 2 �. As explained above, we identify �

�

�

with

the subset � of �

�

� �

�

:

�

a

1

b

1

�

: : :

�

a

n

b

n

�

represents the same double stranded

mole
ule as (a

1

: : : a

n

; b

1

: : : b

n

) with (a

i

; b

i

) 2 � and a

i

; b

i

2 �.

Our de�nition of sti
ker systems is equivalent to the de�nition given in

[KP

+

98℄, but stated dire
tly in terms of strings, avoiding a lengthy de�nition

of a `sti
ker operation'.

De�nition 1 A sti
ker system is a 5-tuple
 = (�; �;D

u

;D

`

; A) where � is

an alphabet, � � � � � is the
omplementarity relation, D

u

;D

`

� �

+

are

�nite sets of upper and lower sti
kers, and A � �

�

� �

�

is a �nite set of

axioms. �

The mole
ular (sti
ker) language generated by
 is de�ned as ML(
) =

f(x; y) 2 � j x = x

0

x

0

; y = y

0

y

0

with (x

0

; y

0

) 2 A; x

0

2 D

�

u

and y

0

2 D

�

`

g.

The fair mole
ular (sti
ker) language generated by
 is de�ned asML

f

(
) =

f(x; y) 2 � j x = x

0

x

0

; y = y

0

y

0

with (x

0

; y

0

) 2 A; x

0

2 D

n

u

and y

0

2 D

n

`

for

some n � 0g.

Furthermore, the (sti
ker) language generated by
 is the proje
tion onto

the �rst (upper)
omponent of the mole
ular language, L(
) = fx 2 �

�

j

(x; y) 2ML(
) for some y 2 �

�

g, and similarly for L

f

(
), the fair (sti
ker)

language generated by
.

The family of all sti
ker languages is denoted SL, while the family of fair

sti
ker languages is denoted SL

f

.

Example 2 Consider the following sti
ker system, a slight extension of the

one given in the proof of Theorem 3 in [KP

+

98℄:
 = (�; �;D

u

;D

`

; A) with

� = fa; b;
g; � = f(a; a); (b; b); (b;
)g;

D

u

= faa; bg; D

`

= fa; b
g;

A = f(�; �)g:

Now ML(
) = f

�

a

a

��

a

a

�

;

�

b

b

��

b

�

g

�

. Consequently L(
) = faa; bbg

�

, while

L

f

(
) = fx 2 L(
) j #

a

(x) = #

b

(x)g. �

3

Obviously, L(
)
an be obtained from ML(
) by applying a
oding. How-

ever, we may not reverse this: in general ML(
) is not the image of L(
)

under an inverse
oding, as
lear from Example 2.

A rather unexpe
ted but useful normal form for sti
ker systems is proved

in the following theorem: without
hanging the language, we
an always

repla
e the
omplementarity relation � by the identity id on the alphabet

�. Note that, of
ourse, the mole
ular language does
hange if � was not

already equal to id.

Theorem 3 For every sti
ker system
 = (�; �;D

u

;D

`

; A) a sti
ker system

0

= (�; id;D

u

;D

0

`

; A

0

)
an be
onstru
ted with L(

0

) = L(
) and L

f

(

0

) =

L

f

(
).

Proof. Let D

0

`

= fw 2 �

+

j (w; v) 2 � for some v 2 D

`

g, and let A

0

=

f(x

0

; z

0

) j (x

0

; y

0

) 2 A for some y

0

, and (z

0

; y

0

) 2 �g.

Now assume that x 2 L(
), i.e., there is a y su
h that (x; y) 2 �, x =

x

0

x

1

: : : x

n

and y = y

0

y

1

: : : y

m

, where (x

0

; y

0

) 2 A, x

i

2 D

u

for 1 � i � n

and n � 0, and y

j

2 D

`

for 1 � j � m and m � 0. Then x
an also be

written as x = z

0

z

1

: : : z

m

, where (z

k

; y

k

) 2 � for 0 � k � m. A

ording

to the de�nition of A

0

then (x

0

; z

0

) 2 A

0

, and from the de�nition of D

0

`

it

follows that z

j

2 D

0

`

for 1 � j � m. Therefore (x

0

x

1

: : : x

n

; z

0

z

1

: : : z

m

) =

(x; x) 2ML(

0

), hen
e x 2 L(

0

).

To prove that L(

0

) � L(
), the above
an be read ba
kwards.

Obviously, the number of sti
kers used is not
hanged, hen
e L

f

(

0

) =

L

f

(
) as well. �

The following result (a
ombination of Theorem 4.1, Theorem 4.7 and Corol-

lary 4.7 from [PRS98℄) and its proof indi
ate that the sti
ker languages we

onsider are not very suitable to implement states (of a �nite state automa-

ton) ex
ept if one makes them expli
it in the symbols. A
oding makes it

possible to abstra
t from this.

Proposition 4 SL � REG = COD(SL).

3 Blind one-
ounter automata

A blind one-
ounter automaton (b
a) is a �nite state devi
e equipped with

an external memory (the `
ounter') that
ontains an integer value whi
h

may be in
remented and de
remented by the automaton.

De�nition 5 A b
a is a 5-tuple B = (Q;�; Æ; q

in

; F), where Q is a �nite

set of states, � is the input alphabet, q

in

2 Q is the initial state, F � Q

is the set of �nal states , and Æ � Q � � � f�1; 0; 1g � Q is a �nite set of

instru
tions. �

4

An instantaneous des
ription of B is an element of Q � �

�

� Z. For two

instantaneous des
riptions (p; ax; i) and (q; x; j), we write (p; ax; i) ` (q; x; j)

if (p; a; "; q) 2 Æ and j = i+ ". By `

�

we denote the re
exive and transitive

losure of `.

The language a

epted by B
onsists of all strings for whi
h the automa-

ton in a
omputation on this string ends in a �nal state and at the same

time has
ounter value zero. It is de�ned as L(B) = fx 2 �

�

j (q

in

; x; 0) `

�

(f; �; 0) for some f 2 Fg. The family of all languages a

epted by blind

one-
ounter automata (b
a-languages) is
alled 1BCA.

The datatype above is
alled blind be
ause the automaton
annot test

its
ounter value during the
omputation, i.e., it may not
he
k whether its

ounter value is zero and a
t a

ording to the out
ome of this test.

The blind one-
ounter automaton
an be `implemented' on a more
om-

monly known devi
e: the sta
k of a pushdown automaton may a
t as a

ounter. Consequently 1BCA � CF. Sin
e the
ontext-free language fw 2

fa; bg

�

j #

a

(w) = #

b

(w) and #

a

(x) � #

b

(x) for every pre�x x of wg is not

in 1BCA (see [Gre78, Theorem 3℄), we even have 1BCA � CF.

In
ontrast with the de�nition of b
a given in [Gre78℄, we do not allow

�-instru
tions, i.e., instru
tions of the form (p; �; "; q). However, these two

de�nitions are equivalent, whi
h
an be explained as follows. The possi-

ble su

essful instru
tion sequen
es of the blind one-
ounter datatype are

naturally modelled by the `two-sided Dy
k language' D

�

1

= fw 2 fa; bg

�

j

#

a

(w) = #

b

(w)g, where a and b represent addition of +1 and �1, respe
-

tively. Now, using standard AFA theory [GG69℄, the b
a
an be seen as

a �nite state devi
e mapping input strings to strings over fa; bg a

ording

to the instru
tions taken during the
omputation. The input is a

epted

pre
isely when the output belongs to D

�

1

. Hen
e it
an be shown that the

family 1BCA is equal to the smallest language family that
ontains D

�

1

and is

losed under �-free homomorphism, inverse homomorphism and interse
tion

with regular languages. In other words, 1BCA equals C

f

(D

�

1

), the faithful

rational
one generated by D

�

1

. Similarly, the family of languages generated

by b
a's that
an have �-instru
tions is equal to C(D

�

1

), the rational
one

generated by D

�

1

(the �-free homomorphism above is repla
ed by an arbi-

trary homomorphism). In [Lat79, Proposition II.11℄ it is proved (as a spe
ial

ase of a more general result) that C

f

(D

�

1

) = C(D

�

1

). Hen
e the b
a's with

�-instru
tions are equivalent to the b
a's without �-instru
tions.

From the dis
ussion above we
on
lude that 1BCA is a prin
ipal rational

one, and in parti
ular that 1BCA is
losed under
odings, left-quotient with

strings, and union.

Apart from this
onne
tion with AFA/AFL theory, blind one-
ounter

automata were also studied as `integer weighted �nite automata' in [HH99℄

and as `additive regular valen
e grammars (over Z)' in [P�au80℄ (see also

[FS97℄). In these devi
es the instru
tions (produ
tions) are assigned an

integer value, and one
onsiders only
omputations (derivations) for whi
h

5

these values add to 0.

4 Fair sti
ker languages are b
a-languages

We answer the question left open in [KP

+

98, p. 419℄: is the family of fair

sti
ker languages in
luded in the family of
ontext-free languages (or even

in the family of linear languages)? To start, observe that the language

L

f

(
) = fx 2 faa; bbg

�

j #

a

(x) = #

b

(x)g from Example 2 is
ontext-free,

but not linear.

The non-linearity of L

f

(
)
an be proved using the pumping lemma

for linear languages [HU79, Exer
ise 6.11℄, whi
h says that if K is linear,

then there is a
onstant n su
h that every z 2 K with jzj > n
an be

written as z = uvwxy with juvxyj � n, jvxj � 1 and uv

i

wx

i

y 2 K for all

i � 0. In the
ase of L

f

(
), it is
lear that there are no su
h u; v; w; x; y for

z = a

2n

b

4n

a

2n

2 L

f

(
).

We will now give a �rst answer to the question posed in [KP

+

98℄, by

proving that every fair sti
ker language is a b
a-language, hen
e
ontext-

free.

Theorem 6 SL

f

� 1BCA.

Proof. Let
 = (�; �;D

u

;D

`

; A). Be
ause of Theorem 3 we may assume

that � = id. For ea
h (x

0

; y

0

) 2 A,
onstru
t two b
a's: B

x

0

and B

y

0

, as

follows. We des
ribe the
onstru
tion of B

x

0

= (Q;�; Æ; q

in

; ffg) in detail,

B

y

0

an be made in an analogous way.

If x

0

= �, then q

in

= f . If x

0

6= �, then B

x

0

has a path labelled by x

0

from its initial to its �nal state. In both
ases the
ounter is not
hanged,

sin
e the axioms do not have to be
ounted. Moreover, for ea
h w 2 D

u

, let

B

x

0

have a (new) path labelled with w from its �nal to its �nal state and

add 1 to the
ounter at one moment somewhere along this path. Note that

L(B

x

0

) = fx

0

g, whi
h does not seem very useful yet!

Now we
onstru
t from ea
h pair of b
a's B

x

0

and B

y

0

, where (x

0

; y

0

) 2

A, a b
a B

x

0

;y

0

for whi
h L(B

x

0

;y

0

) = L

f

(

x

0

;y

0

), where

x

0

;y

0

= (�; id;D

u

;D

`

;

f(x

0

; y

0

)g), as follows: for ea
h pair of instru
tions (p; a; "; q) in B

x

0

and

(r; a; "

0

; s) in B

y

0

, the b
a B

x

0

;y

0

ontains the instru
tion (hp; ri; a; "�"

0

; hq; si).

Finally, it is
lear that L

f

(
) =

S

(x

0

;y

0

)2A

L(B

x

0

;y

0

) is in 1BCA, sin
e

1BCA is
losed under union and A is �nite. �

Omitting the
ounter from the previous proof, one
onstru
ts a �nite state

automaton for L(
) =

S

(x

0

;y

0

)2A

x

0

�D

�

u

\ y

0

�D

�

`

. This elementary observa-

tion shows that SL � REG.

The in
lusion SL

f

� 1BCA is stri
t be
ause ba

�

b is not a fair sti
ker

language, although ba

�

b 2 REG � 1BCA.

Lemma 7 ba

�

b =2 SL

f

.

6

Proof. We re
onsider the proof of ba

+

b 62 SL,
f. [PR98, Theorem 10℄.

Assume ba

�

b is the fair language of a sti
ker system
 = (fa; bg; �;D

u

;D

`

; A).

A

ording to Theorem 3 we may assume that � = id. Let D

u

\ a

+

=

fx

1

; : : : ; x

m

g and D

`

\ a

+

= fy

1

; : : : ; y

n

g be the sets of sti
kers
onsisting of

a's only. Every string ba

i

b that is longer than the axioms
an be de
omposed

as �

u

x

j

1

1

: : : x

j

m

m

�

u

= �

`

y

k

1

1

: : : y

k

n

n

�

`

, with �

u

the upper part of an axiom (or

a string from D

u

starting with b), and �

u

2 D

u

ending in b, and similarly for

�

`

; �

`

. The ve
tor �

i

= (j

1

; : : : ; j

m

; k

1

; : : : ; k

n

) assigns to ba

i

b the number

of sti
kers
ontaining only a's o

urring in a possible de
omposition of the

upper and the lower strand.

Be
ause we have only a �nite number of
hoi
es, an in�nite number of

ba

i

b have the same strings �

u

; �

`

; �

u

; �

`

in their de
ompositions. A

ording

to Di
kson's Lemma [Di
13, Lemma B℄ we
an �nd ba

i

b and ba

i

0

b (i

0

> i) in

this in�nite sequen
e su
h that �

i

0

� �

i

(
omponentwise). Now the ve
tor

�

i

0

� �

i

de�nes a `fair de
omposition' of a

i

0

�i

, whi
h shows that ba

i

ba

i

0

�i

2

L

f

(
),
ontradi
ting L

f

(
) = ba

�

b. �

In the next se
tion we make our answer more pre
ise, in the sense that we

show that 1BCA is a rather
lose upper bound for SL

f

: every b
a-language

is a
oding of a fair sti
ker language.

5 b
a-languages are
odings of fair sti
ker lan-

guages

In the
ase of arbitrary, i.e., not ne
essarily fair, sti
ker languages the sim-

ulation of sti
ker systems by �nite automata
an be reversed provided that

one
an use a
oding (Proposition 4). In this se
tion we demonstrate that

Proposition 4
an be extended to fair sti
ker languages and b
a-languages:

every language in 1BCA is the
oding of a fair sti
ker language (Theorem 12).

First we illustrate this in Example 8. Then we show that, for a parti
ular

kind of b
a
alled sti
ky, this example
an be generalized (Lemma 10). Fi-

nally, we explain how these sti
ky b
a's
an be used to
onstru
t a
oding

of a fair sti
ker language for every b
a-language.

Example 8 Consider the b
a A with states Q = fa

1

; a

3

; b

0

; b

2

;

0

;

2

g with

b

0

as initial state, �nal state set fb

0

;

0

g and instru
tions

(b

0

; a; 0; a

1

); (a

1

; b;�1; b

2

); (b

2

; a; 0; a

3

); (a

3

; b; 0; b

0

);

(

0

; a; 0; a

1

); (a

1

;
; 0;

2

); (

2

; a; 0; a

3

); (a

3

;
;+1;

0

):

The automaton a

epts the language f w 2 fab; a
g

�

j #

b

(w) = #

(w) g.

This
an be veri�ed by
onsidering the four-letter segments abab, aba
, a
ab,

and a
a
. While the automaton makes a
y
le on these segments (starting

and ending in fb

0

;

0

g), it
hanges its
ounter by �1, 0, 0, and +1, respe
-

tively.

7

First, we forget about the
ounter, and we have a look at the �nite state

behaviour of A, (a(b +
)a(b +
))

�

. A
omputation
an be simulated by a

sti
ker system with overlapping sti
kers,
f. [KP

+

98, Lemma 5℄, illustrated

as follows, with bra
kets to delimit the sti
kers and the axiom:

[iha

1

b

2

a

3

b

0

iha

1

b

2

a

3

0

iha

1

2

a

3

b

0

iha

1

2

a

3

0

i

[a

1

b

2

iha

3

b

0

a

1

b

2

iha

3

0

a

1

2

iha

3

b

0

a

1

2

iha

3

0

i

Se
ond, we
an in
lude the
ontents of the
ounter by representing it as the

di�eren
e between the number of upper and lower sti
kers in the
omputa-

tion of the sti
ker system. For ea
h in
rement instru
tion we deta
h the last

omponent of an upper sti
ker, and similarly for de
rement instru
tions and

lower sti
kers.

+1 +1

[iha

1

b

2

a

3

b

0

iha

1

b

2

a

3

ih

0

iha

1

2

a

3

b

0

iha

1

2

a

3

ih

0

i

[a

1

ihb

2

iha

3

b

0

a

1

ihb

2

iha

3

0

a

1

2

iha

3

b

0

a

1

2

iha

3

0

i

-1 -1

Let
 = (Q; id;D

u

;D

`

; A) be the sti
ker system spe
i�ed by

A = f ([�i; [�i); ([�i; [a

1

i); ([�i; [a

1

2

i) g

D

u

= fha

1

b

2

a

3

i; ha

1

b

2

a

3

b

0

i; ha

1

2

a

3

i; ha

1

2

a

3

b

0

i; h

0

ig

D

`

= fha

3

b

0

a

1

i; ha

3

b

0

a

1

2

i; ha

3

0

a

1

i; ha

3

0

a

1

2

i; ha

3

b

0

i; ha

3

0

i; hb

2

ig:

Then L(A) is obtained by applying to L

f

(
) the
oding h : Q ! fa; b;
g

that maps a

1

; a

3

to a, b

0

; b

2

to b, and

0

;

2

to
. �

A
ru
ial property of the b
a from the above example is formalized in the

following notion.

De�nition 9 Let A = (Q;�; Æ; q

in

; F) be a b
a. It is
alled sti
ky if there

is a partition of its state set Q =

S

3

i=0

Q

i

su
h that Æ is a subset of

(Q

0

� �� f0g �Q

1

) [(Q

1

� �� f�1; 0g �Q

2

) [

(Q

2

� �� f0g �Q

3

) [(Q

3

� �� f0;+1g �Q

0

)

and su
h that q

in

2 Q

0

and F � Q

0

. �

The b
a A from Example 8 is sti
ky.

A sti
ky b
a
hanges its
ounter in a very restri
tive way: in ea
h seg-

ment of four instru
tions the automaton may in
rement and de
rement its

ounter only on
e, and only at spe
i�
 positions. Note that the language

a

epted by a sti
ky b
a always
onsists of strings with lengths that are

multiples of four.

We generalize the
onstru
tion from Example 8.

8

Lemma 10 Let A be a sti
ky b
a. Then there exist a sti
ker system
 and

a
oding h su
h that L(A) = h(L

f

(
)).

Proof. Let A = (Q;�; Æ; q

in

; F) be a sti
ky b
a. We write the state set as

a disjoint union Q =

S

3

i=0

Q

i

as in the de�nition for sti
ky b
a.

Let h : Q ! � be a
oding su
h that ea
h instru
tion is of the form

(p; h(q); "; q), i.e., all instru
tions ending in a given state read the same

letter. This
an easily be a
hieved by splitting states into several
opies {

one for ea
h letter from the alphabet, ea
h of whi
h has the same outgoing

instru
tions { and re-routing the instru
tions into the appropriate
opy.

In the same vein we assume that there exists a partition Q

2

= Q

0

2

[Q

�

2

,

su
h that ea
h instru
tion (p; a; "; q) entering Q

0

2

(Q

�

2

) has " = 0 (" = �1,

respe
tively). Similarly we assume Q

0

= Q

0

0

[Q

+

0

.

Constru
tion. A sti
ker system
 = (Q; id;D

u

;D

`

; A) is
onstru
ted as

follows. We keep the intuitive bra
ket notation from Example 8.

upper sti
kers. For every pair of
onse
utive instru
tions (p

1

; a

2

; "

2

; p

2

),

(p

2

; a

3

; 0; p

3

) with p

1

2 Q

1

, D

u

ontains the sti
kers hp

1

p

2

p

3

i and, for

every p

0

2 Q

0

0

, hp

1

p

2

p

3

p

0

i. For ea
h p

+

2 Q

+

0

, D

u

ontains the sti
ker

hp

+

i.

lower sti
kers. For every pair of
onse
utive instru
tions (p

3

; a

0

; "

0

; p

0

),

(p

0

; a

1

; 0; p

1

) with p

3

2 Q

3

, D

`

ontains the sti
kers hp

3

p

0

p

1

i and, for

every p

2

2 Q

0

2

, hp

3

p

0

p

1

p

2

i. For ea
h p

�

2 Q

�

2

, D

`

ontains the sti
ker

hp

�

i. For every instru
tion (p

3

; a

0

; "

0

; p

0

) with p

3

2 Q

3

, p

0

2 F , D

`

ontains the sti
ker hp

3

p

0

i.

axioms. For every instru
tion (q

in

; a

1

; 0; p

1

) with p

1

2 Q

1

, A
ontains the

pairs ([�i; [p

1

i) and, for every p

2

2 Q

0

2

, ([�i; [p

1

p

2

i). If q

in

2 F , i.e.,

� 2 L(A), then ([�i; [�i) is added to A.

Corre
tness. Observe that � 2 L(A) i� � 2 L

f

(
) i� � 2 h(L

f

(
)).

Now, let � = p

1

p

2

p

3

: : : p

n

2 Q

+

be an element of L

f

(
), for some n � 1.

First, we re
onstru
t a
omputation of A by following the
omputation

of � in
.

Sin
e there is no non-empty de
omposition starting with (�; �) 2 A { all

sti
kers in D

u

start with symbols from Q

1

[Q

+

0

, whereas all sti
kers from

D

`

start with symbols from Q

3

[Q

�

2

{ we know that the
omputation of �

in
 started either with (�; p

1

) 2 A or with (�; p

1

p

2

) 2 A, where p

1

2 Q

1

.

A

ording to the
onstru
tion of A, Æ
ontains an instru
tion (q

in

; a

1

; 0; p

1

).

We
ontinue by observing that ea
h upper sti
ker of length 3 or 4 starts

at position 4i + 1, and that ea
h lower sti
ker of length 2, 3 or 4 starts at

position 4i + 3, for some i � 1. It is easy to see that this follows from the

9

only possible
omputation of �, here illustrated for n = 8:

[ih p

1

! p

2

! p

3

� � � p

4

ih p

5

! p

6

! p

7

� � � p

8

i

[p

1

� � � p

2

ih p

3

! p

4

! p

5

� � � p

6

ih p

7

! p

8

i

Here the arrows indi
ate parts of a sti
ker that represent instru
tions from Æ,

while the dotted lines do not ne
essarily
orrespond to an instru
tion from

Æ and, at the same time, indi
ate that the next symbol may be deta
hed

to form a sti
ker of length 1. Moreover, observing D

u

we �nd instru
tions

(p

4i+1

; a

4i+2

; "

4i+2

; p

4i+2

) and (p

4i+2

; a

4i+3

; 0; p

4i+3

), while D

`

gives rise to

instru
tions (p

4i+3

; a

4i+4

; "

4i+4

; p

4i+4

) and (p

4i+4

; a

4i+5

; 0; p

4i+5

).

Sin
e p

n

is the last symbol of sti
kers from both D

u

and D

`

, we know

that p

n

2 F � Q

0

, and there exists an instru
tion (p

n�1

; a

n

; "

n

; p

n

) in Æ.

Note that n is a multiple of four, and we write n = 4k.

Se
ond, we address the matter of fairness. To
ompute the
ontents of

the
ounter we study the even positions of �. Observe that "

4i+4

= +1 i�

p

4i+4

2 Q

+

0

, whi
h implies that the sti
ker hp

4i+4

i is used in the upper part

of the solution. Otherwise, if "

4i+4

= 0, then p

4i+4

is the fourth element of

the sti
ker hp

4i+1

p

4i+2

p

4i+3

p

4i+4

i. Thus, the number of upper sti
kers equals

k+

P

k�1

i=0

"

4i+4

. Similarly, the number of lower sti
kers equals k�

P

k�1

i=0

"

4i+2

.

Consequently, fairness of the sti
ker solution is equivalent to
ounter value

zero and a

eptan
e by the b
a.

The above shows that h(L

f

(
)) � L(A). For the
onverse in
lusion

L(A) � h(L

f

(
)) a similar reasoning
an be given. �

Sti
ky b
a's form a normal form for b
a's a

epting languages
onsisting

of strings with lengths that are multiples of four. The idea behind this is

the following.

In every four steps, A
hanges the
ontents of its
ounter by at most

�4. The new b
a B however, may
hange its
ounter by at most �1 in the

orresponding four steps. To make up for this, we
hange the interpretation

of the
ounter value of B: ea
h unit on the
ounter of B represents 4 units

on the
ounter of A, a
onstru
tion known at least sin
e [FMR68℄. Now, B

simulates the
omputation of A. Ea
h
hange made to the
ounter of A is

re
orded in the �nite state memory of B. Only when allowed (at the spe
i�

points in the four step
y
le), B moves any ex
ess of �4 units of A's
ounter

as one unit to (or from) its own
ounter.

Lemma 11 For ea
h b
a that a

epts only strings with lengths a multiple

of four, there exists an equivalent sti
ky b
a.

Proof. Let A = (Q;�; Æ; q

in

; F) be a b
a. We
onstru
t a sti
ky b
a B

su
h that L(A) = L(B).

Let I = f0; 1; 2; 3g. The state set Q

0

of B equals

Q� I � f�4;�3; : : : ; 2; 3g;

10

the elements of whi
h are denoted as p:i:m, rather than as (p; i;m). Here

p 2 Q represents the state of A, i 2 I keeps tra
k of the four step
y
le,

and �4 � m � 3 is the remainder value of A's
ounter not yet stored in

the
ounter of B. (Hen
e, if
 is the value of A's
ounter and

0

the value

of B's
ounter, then the equality
 = 4

0

+m should hold for ea
h pair of

orresponding instantaneous des
riptions of A and B.) The initial state of

B equals q

in

:0:0, its �nal state set equals F � f0g � f0g.

Let (p; a; "; q) be an instru
tion of A. Then B has the instru
tions

(p:0:m; a; 0; q:1:m+")

(p:1:m; a; �1; q:2:m+"+4) if m+ " < �1

(p:1:m; a; 0; q:2:m+") if m+ " � �1

(p:2:m; a; 0; q:3:m+")

(p:3:m; a; +1; q:0:m+"�4) if m+ " � 1

(p:3:m; a; 0; q:0:m+") if m+ " < 1

We
hose to
he
k the relation between m+ " and �1 rather than between

m+ " and �4, although the latter seems more logi
al. The reason for this

is that we need to prevent the o

urren
e of the situation where i = 0 and

 = 4

0

+m = 0 while

0

6= 0 and m 6= 0 (whi
h
an o

ur only when m

is a multiple of 4), i.e., B does not a

ept while it should. Be
ause of this

hoi
e, the rea
hable
on�gurations of B satisfy the following restri
tions,

for p:i:m 2 Q

0

:

if i = 0 thenm 2 f�3;�2;�1; 0g

1 f�4;�3;�2;�1; 0; 1g

2 f�1; 0; 1; 2g

3 f�2;�1; 0; 1; 2; 3g

It is easy to see that B is sti
ky, as it adheres to the four step
y
le from

De�nition 9.

Moreover, note that our
onstru
tion introdu
es for ea
h instru
tion

(p; a; "; q) of A exa
tly one instru
tion (p:i:m; a; "

0

; q:i

0

:m

0

) for ea
h pair i;m.

This makes it straightforward to show that a
omputation (q

in

; xy; 0) `

j

(q; y;
) of A
orresponds with a
omputation (q

in

:0:0; xy; 0) `

j

(q:i:m; y;

0

)

of B satisfying
 = 4

0

+m, and i = j mod 4.

To show that L(B) � L(A), observe that if B rea
hes a �nal state

q:0:0 with
ounter value zero, then A (using the
orresponding
omputa-

tion) rea
hes �nal state q, also with
ounter value zero.

Conversely, assume that A rea
hes a �nal state q 2 F with
ounter value

zero. Now the
orresponding
omputation of B rea
hes some state q:i:m and

ounter value

0

satisfying the invariantm+4

0

= 0. By the length restri
tion

of strings a

epted by A we know that i = 0. Hen
e, taking into a

ount the

rea
hable states of B, we have m 2 f�3; : : : ; 0g. Thus m + 4

0

= 0 implies

that m = 0 and thus

0

= 0,
orresponding to a

eptan
e with
ounter value

zero in �nal state q:0:0.

11

A more formal indu
tive proof that L(A) = L(B) is left to the reader.

�

Finally we arrive at our main result, the equivalen
e of blind one-
ounter

languages and
odings of fair sti
ker languages. Note the similarity with the

situation for (arbitrary) sti
ker languages (Proposition 4).

Theorem 12 SL

f

� 1BCA = COD(SL

f

).

Proof. By Theorem 6, SL

f

� 1BCA. The in
lusion is stri
t by Lemma 7.

As 1BCA is
losed under
odings, the in
lusion COD(SL

f

) � 1BCA follows.

We pro
eed by proving the
onverse in
lusion.

Let L 2 1BCA. For every string w, we de�ne L

w

= f x j wx 2 L; jxj =

0 mod 4 g. By the
losure properties we have established for 1BCA, L

w

is

also in 1BCA, and, by Lemma 11, it is a

epted by a sti
ky b
a. Conse-

quently, it is the
oding of a fair sti
ker language (Lemma 10).

Note that L =

S

jwj�3

w �L

w

. A sti
ker system for the language w �L

w

is obtained from the one for L

w

by repla
ing ea
h axiom (x; y) by (wx;wy)

and extending the used
oding with the identity on the alphabet of L. As-

suming the sti
ker systems representing the w �L

w

have disjoint alphabets

(by renaming), we build a sti
ker system for L by taking their (�nite) union.

�

Our
hara
terization shows that COD(SL

f

) is a more `robust' family than

SL

f

itself,
omparable to the situation for COD(SL) and SL. In parti
u-

lar, we
an
on
lude that COD(SL

f

) enjoys the many
losure properties of

a prin
ipal rational
one (arbitrary morphisms, inverse morphisms, inter-

se
tion with regular languages, and union). Some of these properties seem

to require rather involved proofs, should we want to show them by dire
t

onstru
tion.

A
knowledgements. We are indebted to Mi
hel Latteux, Holger Petersen

and Matthias Jantzen for their helpful suggestions
on
erning the equiva-

len
e of blind one-
ounter automata with and without �-instru
tions. We

thank Tero Harju and a referee for their suggestions.

Referen
es

[Adl94℄ L.M. Adleman. Mole
ular
omputation of solutions to
ombinatorial

problems, S
ien
e 226:1021{1024, November 1994.

[Di
13℄ L.E. Di
kson. Finiteness of the odd perfe
t and primitive abundant

numbers with n distin
t prime fa
tors, Ameri
an Journal of Mathemat-

i
s 35:413{422, 1913.

12

[FS97℄ H. Fernau, R. Stiebe. Regulation by valen
es, Mathemati
al Founda-

tions of Computer S
ien
e 1997, Le
ture Notes in Computer S
ien
e,

volume 1295, Igor Pr��vara, Peter Ruzi
ka (eds.), 239{248, Springer-

Verlag, 1997.

[FMR68℄ P.C. Fis
her, A.R. Meyer, A.L. Rosenberg. Counter ma
hines and

ounter languages, Mathemati
al Systems Theory 2:265{283, 1968.

[GG69℄ S. Ginsburg, S.A. Greiba
h. Abstra
t families of languages, Mem-

oirs of the Ameri
an Mathemati
al So
iety 87:1{32, 1969.

[Gre78℄ S.A. Greiba
h. Remarks on blind and partially blind one-way mul-

ti
ounter ma
hines, Theoreti
al Computer S
ien
e 7:311{324, 1978.

[HH99℄ V. Halava, T. Harju. Languages a

epted by integer weighted �nite

automata, Jewels are forever, J. Karhumki, H. Maurer, Gh. P�aun, G.

Rozenberg (eds.), 123{134, Springer-Verlag, 1999.

[HU79℄ J.E. Hop
roft, J.D. Ullman. Introdu
tion to automata theory, lan-

guages, and
omputation, Addison-Wesley, 1979.

[KP

+

98℄ L. Kari, Gh. P�aun, G. Rozenberg, A. Salomaa, S. Yu. DNA
om-

puting, sti
ker systems, and universality, A
ta Informati
a 35:401{420,

1998.

[Lat79℄ M. Latteux. Cônes rationnels
ommutatifs, Journal of Computer

and System S
ien
es 18:307{333, 1979.

[P�au80℄ Gh. P�aun. A new generative devi
e: valen
e grammars, Revue

Roumaine de Math�ematiques Pures et Appliqu�ees 25(6):911{924, 1980.

[PR98℄ Gh. P�aun, G. Rozenberg. Sti
ker systems, Theoreti
al Computer

S
ien
e 204:183{203, 1998.

[PRS98℄ Gh. P�aun, G. Rozenberg, A. Salomaa. DNA
omputing. New
om-

puting paradigms, Springer-Verlag, 1998.

[RS97℄ G. Rozenberg, A. Salomaa (eds.). Handbook of formal languages,

Springer-Verlag, 1997.

13

