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Abstract

This report is based on the work I have done for my Master Thesis project.
The project as a whole consists of research done in the field of evolutionary
computation, and it is split into two distinct parts. The main theme is
adaptive evolutionary algorithms.

The first part covers the research done on solving binary constraint sat-
isfaction problems using adaptive evolutionary algorithms. This involves a
comparative study on three algorithms, each of which incorporates a differ-
ent adaptive fitness measure to guide its search to a solution for an instance
of a binary constraint satisfaction problem.

The second part mainly consists of the development of a library. Its
use is aimed at evolutionary algorithms in general. Furthermore, a genetic
programming algorithm is contructed, that incorporates an adaptive fitness
measure. This construction served as a test of the usability of the library.
The genetic programming algorithm has been used for experiments on dif-
ferent data sets from the data mining field.
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Chapter 1

Introduction

1.1 What to expect

This report has been written for the conclusion of my Master Thesis. During
the time I wrote this, I have been assisted and guided by A.E. Eiben and
E. Marchiori. They both did a great job in correcting my mistakes and
even more important, they frequently pointed me into the right direction.
The research preceding and described in this report has also resulted in two
articles:

A.E. Eiben, J.K. van der Hauw, J.I. van Hemert. Graph Coloring with
Adaptive Evolutionary Algorithms. Journal of Heuristics, 4(1):25-46.

A.E. Eiben, J.I. van Hemert, E. Marchiori, A.G. Steenbeek. Solving Bi-
nary Constraint Satisfaction Problems using Evolutionary Algorithms
with an Adaptive Fitness Function. In A.E. Eiben, Th. Béck, M.
Schoenauer, H.-P. Schwefel editors, Proceedings of the 5th Conference
on Parallel Problem Solving from Nature, number 1498 in LNCS, pages
196-205, Springer, Berlin.

The whole project, and therefore this whole document, has evolutionary
computation as a leading theme. In the field of evolutionary computation
one uses evolutionary algorithms to solve some kind of problem. The process
of getting the answer forms the computation part. The next section provides
some inside into evolutionary algorithms for those who have never heard
about it.

To make things even more difficult, the document is split into two parts.
Both have some things in common, which comes down to adaptive evolu-
tionary algorithms and me doing something with it. But because both are
separate research fields and because both were independently researched, we
decided to split the report into two parts. The order of these parts is the
same as the order in which both researches were carried out.
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The first part is about solving constraint satisfaction problems with evo-
lutionary algorithms. In short a constraint satisfaction problem is a bunch
of variables and a bunch of constraints. Each of the variables have to be
assigned a value, this value is from a fixed and predefined domain. But some
combinations of assignments of values are prohibited. These combinations
are defined in the constraints. Solving a constraint satisfaction problem
means finding values for all variables without violating the constraints.

The second part is focused on the construction of a library for program-
ming evolutionary algorithms. The library aims at evolutionary algorithms
as a whole, providing a broad spectrum of techniques from different fields
of evolutionary computation. Its usability is tested on the construction of
genetic programming algorithm that makes use of an adaptive fitness mea-
sure. The genetic programming algorithm is then tested on different data
sets from the field of data mining.

1.2 Evolutionary Algorithms

As often is observed when a new field of research is maturing a clutter of
names starts to form. After a while the names that have been formed will be
connected with the founders and their own research. The common divisor
of all these smaller research fields is then given a much broader name and it
will be seen as an umbrella for all all these fields.

The same goes for the evolutionary computation field. When someone
talks about evolutionary algorithms he implicitly says: ‘The field concerning
genetic programming, genetic algorithms, evolutionary programming, evolu-
tionary strategies, simulated annealing and classifier systems’. Evolutionary
computation is all about evolutionary algorithms, search algorithms based
on the theory of evolution by Charles Darwin. All of the research done inside
this field is based upon a driving force we can witness in nature: evolution.
But what is evolution about? It uses a basic principle which guides it to-
wards a goal; ‘Survival of the fittest’. By selecting those individuals from a
population that are closest to the goal, a pressure is created that drives the
population to the goal which seems best for survival of the individuals and
the population.

This principle would not be as powerful as we see today if things like
genetic operators would not exists. These operators, such as mutation and
crossover, make sure that during the lifetime of a population new individuals
are formed that resemble their parents, but have some new information of
their own. The operators provide the new ideas, while the natural selection
makes sure, the best ideas survive.

An evolutionary algorithm tries to mimic this behavior by creating an
artificial environment in which artificial individuals try to survive. By care-
fully constructing the environment it is possible to let a population of these
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individuals pursue a special goal. A goal which we want it to reach; the
solution of a problem. The optimizing power of an evolutionary algorithm
is so strong that it can solve all kind of optimizing problems. After all, it is
evolution that is responsible for the creation of the most powerful problem
solver known to mankind: ‘the human brain’.

Now that evolutionary computation is becoming increasingly popular,
the number of practical applications is growing rapidly. The optimizing
property of evolutionary algorithms is used for scheduling transportation of
goods, planning lectures, finding the best shape of all kind of constructions
and data mining purposes. Evolutionary algorithms are even used in an
application that finds the best coffee by mixing several different blends. A
panel of experts grades the coffee, which is then used as a fitness measure.

The field of evolutionary computation is still in the process of getting
recognition of the business community. Looking at the great number of
successes it has witnessed, undoubtedly this recognition will eventually be
there. Who knows what evolutionary algorithms will and can do for us in
the future?



Part 1

Solving Constraint
Satisfaction Problems with
Adaptive Evolutionary
Algorithms



Chapter 2

Introduction

This part of the report handles the experiments in solving constraint satis-
faction problems. These constraint satisfaction problems will be represented
in a binary form, which allows for a random generation using a set of param-
eters. The parameters have already been investigated in other experiments,
and therefore allow us to make a comparison on results.

To solve the constraint satisfaction problems we use three evolutionary
algorithms, where each algorithm makes use of a form of adaptivity. The
three algorithms are the co-evolutionary method of Paredis (Paredis, 1994;
Paredis, 1995b; Paredis, 1995a), the heuristic-based microgenetic method
of Dozier, G. et al. (Dozier et al., 1994) and the stepwise adaptation of
weights technique by Eiben et al. (Eiben et al., 1995; Eiben and Ruttkay,
1996; Eiben and van der Hauw, 1996; Eiben and van der Hauw, 1998; Eiben
et al., 1998a).

The performance of these algorithms in successfully solving the con-
straint satisfaction problems is measured and compared. Furthermore we
will see that the empirical results will conform with the theoretical assump-
tions made on the hardness of these kind of problems.

We compare the different algorithms using a test suit consisting of 625
generated problems. The results are then evaluated for 25 different param-
eters settings. The two best algorithms will be compared in a scale-up test,
where we look at how the performance changes when the size of the problem
grows.

The following chapter will explain more about what constraint satisfac-
tion problems are. Chapter 4 will show the difficulty of solving constraint
satisfaction problems and how to generate them randomly. The three algo-
rithms will be explained in Chapter 5. The experiments and the results will
be shown in Chapter 6, followed by the conclusions in Chapter 7. The last
chapter will discuss future research.



Chapter 3

Constraint Satisfaction
Problems

3.1 What is a CSP

When facing the task of solving a constraint satisfaction problem (CsP), the
problem is to find values for a given set of variables, without violating con-
straints that exist between those variables. The number of variables is fixed
and each variable gets its value from a finite domain. In a CSP, a constraint
can exist between any set of variables, but here we only examine binary con-
straint satisfaction problems, i.e., constraints between two variables. This
does not restrict our research because any CSP can be transformed into a
binary csp (Tsang, 1993).

Beside cspPs, another well known problem class is that of constraint op-
timization problems (COP). These two classes are similar except that a cop
has an additional function that has as input the values of the variables in a
possible solution. In addition to satisfying the constraints in the problem,
this function has to be minimized as well.

On the first sight it looks like a problem from the class of cops will
generally be harder to solve than a problem from the class of csps. But
this is not the case. Just like any other optimization problem, a COP can
be transformed into a decision problem, in this case a cSP. The decision
problem will be as hard to solve as the optimization problem.

Looking at the theoretical base of ¢sps and COPs, there is an extra
difficulty in solving CSPs using evolutionary algorithms. To be able to solve
a COP, an evolutionary algorithm will try to solve the problem using a fitness
objective, this function can be based or maybe even completely the same as
the function that comes with the cop. An evolutionary algorithm needs a
function to optimize, i.e., to base its selection mechanism on. It is therefore
quite naturally to provide the cOP’s function as the fitness function. When
an evolutionary algorithm has to solve a CsP, there is no function to base
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the fitness of a possible solution on. Therefore a completely new function
has to be made up for the evolutionary algorithm to optimize.

3.2 An example: Eight Queens

A well known example of a binary CsP is the Fight Queens Problem. Here we
want to place eight queens on a chess-board, such that they can not check
each other. We know that if we find a solution, every column will contain
precisely one queen, therefore each queen is assigned to one column. Every
queen gets a number corresponding to the row it is placed in.

Speaking in terms of binary CSPs, between every pair of queens there is
a set of two-tuples, which determine the combinations of values that are not
allowed. For the first and second queen the following combinations may not
occur: {(1,1), (1,2), (2,1), (2,2), (2,3), (3,2), (3,3), (3,4), (4,3), (4,4), (4,5),
(5,4), (5,5), (5,6), (6,5), (6,6), (6,7), (7,6), (7,7), (7,8), (8,7), (8,8)}. For
example, the (3,4) tells us that it is not allowed to place a queen in the first
column, third row and at the same time place a queen in the second column,
fourth row. But there is no objection to place a queen in the first column
of the first row and a queen in the third row of the second column, because
the tuple (1,3) is not in the set of forbidden combinations. The tuples in
the set of forbidden combinations represent the conflicts. Remember that
for this problem we need a set of forbidden combinations for each pair of
queens. Every queen is a potential danger to any other queen. The amount
of sets will therefore be 3 - 8- (8 — 1) = 28.

A solution of the Eight Queens Problem is a vector of eight values, these
values are the row number where the queen in that column is placed. One
of the solutions looks like this: (2,4,6,8,5,7,1,3), the board-representation
can be found in Figure 3.1.

0N ST W N
<

¢

Figure 3.1: A solution to the Eight Queens Problem.
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3.3 A formal definition

A constraint satisfaction problem is defined as a tuple (S, ¢), where S is
called the search space and ¢ is a Boolean function taking as input the
values of the variables. The search space S is defined as the Cartesian
product of variable domains; S = Dy X --- X D, for a CSP with n variables.
We define the solution of a constraint satisfaction problem s in terms of ¢,
where s € S. ¢(s) returns true if and only if s is a solution for the csp.

We will only consider binary csps, which enables us to define ¢ as a
conjuncture ¢y A ca A -+ A ¢, of binary constraints c¢;. A binary c; can be
defined as a three tuple ¢, = (v;,v;, C). Here the constraint ¢ is upon the
variables v; and v; with ¢ < j, without loss of generality. Cj is a matrix
of size |D;| - |Dj|, where each element Cy(z,y) € {0,1}. If Cr(z,y) = 1 we
speak of a conflict, which means the instantiation v; = z and v; = y may
not occur, thus resulting in ¢(v) = false.

Through this report we will also use m(v;) to denote the size of the
domain D; of variable v;, instead of writing |D;|. Furthermore m is used
when we mean the average size of the domain size over all the variables, it
is defined as follows:

_ it m(vi)
N n

3.4 A general binary CSP

To illustrate what a binary csp looks like, we give at an example. We take
five variables v1,...,vs, where each variable has a domain D; = {1,2,3,4}.
Note that the domains of the variables do not have to be the same in a
CsP, nor do they have to have the same size. There are three constraints
c1,c2 and c3, each of which relates to two variables v; and v;, and with a
matrix Cj representing the conflicts. This is denoted as the three-tuple
(vi,vj,Cy). Here are the constraints in the example: ¢; = (v1,v2,C4), ¢ =
<U2, U3, Cg) and Cc3 = <U2, V4, Cg)

W)

G

@ 7 ®
@

Figure 3.2: The variables and constraints in the binary CSP represented as
a graph.
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The variables and the way in which the constraints connect these vari-
ables can be represented as a graph. The nodes of the graph will represent
the variables, the edges will represent the relations as defined by the con-
straints (Figure 3.2). More precisely, there is an edge (v;,v;) in the graph
between variable v; and v; with ¢ < j iff (v;,v;, C) is a constraint of csp for
some C'. Figure 3.3 shows the conflicts between the values of the variables
in the constraints. For instance the matrix C belonging to the constraint
c1 tells us that the variables v; and v2 can not be assigned the value 2 at
the same time.

cip|1 2 3 4 Co|1 2 3 4 Cs|1 2 3 4
110 0 1 0 110 1 0 1 111 0 0 O
2|1 1 0 1 2|1 1 0 O 2/0 1. 1 0
3]0 0 1 0 310 0 0 O 310 0 0 O
410 1 1 1 410 0 1 0 410 0 0 1

Figure 3.3: Matrices for C, Cy and Cj.



Chapter 4

Generating Random CSPs

4.1 Introduction

In the field of constraint satisfaction problems, a lot of experiments have
been done on specific instances of CSPs, for instance on n-queens problem
(Dozier et al., 1994; Paredis, 1995a; Homaifar et al., 1992; Crawford, 1992),
on graph coloring (Davis, 1991; Eiben and van der Hauw, 1996; Eiben et al.,
1998a; Fleurent and Ferland, 1996a; Fleurent and Ferland, 1996b), and on
satisfiability (Selman et al., 1992; Eiben and van der Hauw, 1997; Selman
and Kautz, 1993; Béack et al., 1997; Back et al., 1998). These experiments
mostly consist of comparisons with other techniques that solve the same
problem. The drawback of this method of testing is that it is not possible
to say what kind of problems is easily tackled by a method and what kind
is not. It is only possible to speculate about the performance of a method
on other problems than those used in the experiments.

These speculations can only be based upon a comparison between the
domains' of the problems on which the technique was tested and the do-
mains of the problems where we want to say something about the expected
performance of the technique. However, this approach is not very effective,
since most problems have a search space that is very hard to get a grip on,
let alone compare it to other search spaces.

Nevertheless, it would be very interesting to know if a method will in
general perform better on a class of problems than other known techniques.
With this knowledge it would be easier to decide which technique to use
when facing the task to solve a new problem from this class. Especially
when the task is to come up with a method that solves the problem faster
then the currently used method. The best performing techniques within the
class could then be compared, and the winner could do the job. This way
no extensive study into the search space of a new problem is needed to find
good techniques to solve it.

!Here the domain as defined by a problem, not the domain of the variables of a problem.

10
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We have to point out that in general it is not possible for any algorithm to
have a better performance than another algorithm. Wolpert and Macready
(Wolpert and Macready, 1995; Wolpert and Macready, 1997) have shown
that all algorithms that try to optimize a function, will perform equally
when averaged over all possible cost functions. This result, which they have
named the No Free Lunch Theorem, is informally discussed by Culberson
(Culberson, 1996), where he states that solving a collection of problem in-
stances from a NP-complete problem does not solve the NP-problem itself.
Often a NP-complete problem has a set of instances which are very easy to
solve. Our results will show that with binary ¢sps this claim also holds.

This gives rise to the question of how to collect information about a
method such that it has a general content. One way would be to test the
method on a test case consisting of problems from the whole class of prob-
lems we want to test. This can be achieved by constructing a problem
representation that can be used to represent any problem in the class of
problems. In the case of a CSP this is always possible, because every CSP
can be represented by an equivalent binary c¢sp (Tsang, 1993). But the
transformation can result in very complex domains for the variables. Bi-
nary CSPs with variables over a finite domain can be generated using a so
called random method. As every binary CSP can be produced in the process,
every CSP we are able to model using the formalism from Chapter 3, can
be produced this way. A binary constraint satisfaction problem created this
way is called a random binary constraint satisfaction problem. In section 4.3
two methods for generating csps will be shown.

4.2 Difficulty of a CSP

4.2.1 Measuring hardness

To compare techniques, information about the hardness of a problem is
needed. Two sorts of comparing measures lie beforehand, firstly the amount
of space needed to solve the problem, and secondly the amount of time
needed to solve the problem. The focus will lie on the second measure,
mainly because small binary csps take far more time to solve compared to
the amount of space they need, especially because of the simple representa-
tion of the solution inside of the evolutionary algorithms we will use. The
representation mainly consists of a possible solution, i.e., an instantiation of
the variables in the ¢sp. Furthermore the problem needs to be accessible so
we can check the possible solutions for validity.

The size of the problem increases quadratically with the number of vari-
ables and also quadratically with the size of the domain of the variables. The
search space, i.e., the number of possible solutions grows exponentially with
regard to the number of variables n: m” where m represents the average
domain size of all the variables.

11
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4.2.2 NP-completeness

The reason that solving CSPs is a very difficult task, whether randomly
generated or specific ones, lies in the fact that cSPs are member of a class
known as the class of NP-complete problems. The problems inside this class
are characterized by two facts. Firstly, given some solution to an instance
of an NP-complete problem, it should be possible to verify that it is correct
in polynomial time. Secondly, all problems in this class can be reduced to
any other NP-complete problem, using a function that can be evaluated in
polynomial time as well.

One of the problems from the NP-complete class, the famous satisfiability
problem (SAT), has been proven to be NP-complete. There is no known
algorithm that solves this problem in polynomial time. If it would exist,
every NP-complete problem would be solvable in polynomial time as well,
because of the reduction mechanism.

Proving that binary csps belong to the NP-complete problems class,
would imply the need for a verification algorithm and a reduction. It is easy
to see that the verification algorithm will work in polynomial time, because
a binary csp has at most %n(n— 1) constraints. Each constraint will have to
be checked once, which can be done in quadratic time, with respect to the
domain sizes of the variables. By carefully choosing a problem, the reduction
becomes easy as well. If we take a specific problem from the class of binary
csps that is known to be NP-complete, like graph coloring or the n-queens
problem, we can almost copy the problem into the binary ¢SP model.

4.2.3 Where are those hard CSPs?
Parameters of a problem class

If a problem has been identified as belonging to the class of NP-complete
problems, this does not mean that every instance of this problem is hard to
solve. The parameters of a NP-complete problem, i.e., the parameters that
define an instance from a class of problems, determine in a sense the difficulty
of this instance. When the parameters are changed another instance may
be created that could be more, less or just as difficult to solve.

A trivial example of this is when we look at an instance consisting of just
a few variables. A binary CSP with only two variables that have a domain
size of one can be easily solved. And even if there is no solution we can
verify that this is the case. Here there are only three possibilities:

1. No constraint present — solution
2. A constraint, without a conflict — solution

3. A constraint, with a conflict — no solution

12
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When looking at binary ¢SPs with more variables and with larger domain
sizes, the number of possible solutions grows exponentially when one of these
parameters is increased. It gets much harder to find a solution for particular
problem instances and it also gets much harder to find out if a solution does
exist.

The landscape of solvability

If the number of variables and the domain sizes are fixed, experiments reveal
an interesting phenomenon. When randomly generating binary CSPs, some
instances appear easy to solve, while others are quite a hard nut to crack.
This raises the question “What makes a binary csSP hard to solve?”.

In a number of articles Prosser et al. (Prosser, 1994; Prosser, 1996; Gent
et al., 1995) uses a method of exploring the landscape of the chance on
finding a solution for a binary csp. By using four parameters he creates a
three dimensional view on this landscape. From these four parameters, two
are fixed; the number of variables and their domain sizes. He defines the
density and the tightness of a problem and uses these to show the probability
that a problem instance has a solution. The first parameter, the density of
a binary CSP, is defined as the probability that a constraint exists between
two variables. The second parameter, the tightness of a binary CSP, is
defined as the probability of having a conflict between two given variables
in a constraint.

Setting the number of variables to 15 and the domain size of each variable
to 15, the two parameters density and tightness are varied throughout their
real valued domains, varying from zero to one. This gives a very remarkable
landscape. For low values of the parameters the chance a solution exists is
almost one. This remains so when the values are increased, until a certain
point. When this point is reached a steep curve takes the chance of having
a solvable problem from almost one to almost zero. This area is called
the mushy region or phase transition, it can be observed in Figure 4.1. It
marks the region where pairs of the parameters density and tightness create
problems which have a chance of having a solution somewhere between zero
and one.

The results from Prossers” work confirm what Smith (Smith, 1994) con-
jectures. Smith estimated the expected number of solutions given a binary
CsP, knowing that there are %dn(n —1) constraints and m™ possible instan-
tiations, with the following equation:

E = m"(1 — t)2dn(n=1) (4.1)

Smith thinks that the hardest problems would occur when E = 1, i.e., when
the problem probably has one solution. This enables us to find the critical
value for the tightness: fgp:

Ecrit =1- m—?/d(n—l) (4:2)

13
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Figure 4.1: Mushy region as predicted theoretically.

Prosser (Prosser, 1996) shows that the values found in his experiments agree
with the values predicted with Equation 4.2, except for low values of d
(d <0.3).

4.3 Two methods for generating CSPs

The following sections describe two slightly different methods for generating
random binary ¢spPs. Both method have been implemented in C++ and are
available as a library or problem instance generator. The package is called
RandomCsp, and can be downloaded from the Internet (see Appendix A).
Also documentation on the library and the problem instances generator is
available (van Hemert, 1998a).

4.3.1 Method by Prosser

The first method for creating random binary csps is developed and used
by Prosser in a number of articles (Prosser, 1994; Gent et al., 1995) where
some exact algorithms, i.e., algorithms that are able to tell if a problem has
a solution, for solving binary csps are compared. The method starts by
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calculating the exact number of constraints that will be produced.

-1
number of constraints = M

-d, (4.3)

where n is the number of variables and d is the constraint density

The method generates a random number between zero and one for every
combination of two variables. When this number is below the density of the
graph, a constraint is added. When the number of constraints calculated
with Equation 4.3 is reached the algorithm terminates.

For every constraint that is generated, a matrix of conflicts has to be
produced. This matrix is build by generating a random number in the range
of [0..1) for every possible pair of values of the two variables. When that
number is lower then the chosen tightness, a conflict is produced and stored
in the matrix. An overview of the method is given in Algorithm 1.

Algorithm 1 Generating binary ¢sPs using Prossers’ method.

constraints = density * variables * (variables - 1) * 0.5;
while (constraints > 0)
{
i=0;
while ((constraints > 0) && (i < variables - 1))
{
j =i+ 1
while ((constraints > 0) && (j < variables))

{

if ((random(1.0) < density) && no_edge(i, j))
{

constraints—-;

add_constraint(i, j);

for (x = 0; x < domainsize; ++x)

for (y = 0; y < domainsize; ++y)
if (random(1.0) < tightness)
add_conflict(i, j, x, y);

4.3.2 Method by Dozier

The method developed by Dozier has been used in his research on solving
random binary CsPs with a heuristic-based microgenetic algorithm (MID)
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(see Section 5.2). Tt uses roughly the same technique as the method in
section 4.3.1, but there are two differences:

1. The method for choosing between which variables constraints are added.
2. The way in which conflicts are produced.

The individual constraints are produced by randomly selecting two dis-
tinct variables, if no constraint exists between them a constraint is created.
This is repeated until we have created the number of constraints determined
in Equation 4.3.

Just as the number of constraints is determined in advance, so is the
number of conflicts that are generated for each constraint. When a con-
straint has been produced, the number of conflicts is determined with the
following equation, where v; and v; are two distinct variables and ¢ is the
tightness:

number of conflicts(v;,vj) = m(v;) - m(vj) - t, (4.4)

where m(v;) is the domainsize of variable i

The same procedure to generate conflicts is used as in generating constraints.
Two random values are chosen, one for each variable. If no conflict exists
between them, a conflict is added to the matrix of conflicts for this con-
straint. This is repeated until there are as much conflicts as calculated with
Equation 4.4. An overview of the method can be found in Algorithm 2.
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Algorithm 2 Generating binary ¢sps using Dozier’s method.

constraints = density * variables * (variables - 1) * 0.5;
while (constraints > 0)

{
do

{

i = random_integer() % n;
random_integer() % n;

}

while (i !'= j);

if (!constraint_exists(i, j))
{
add_constraint(i, j);
conflicts = tightness * domainsize(i) * domainsize(j);
while (conflicts > 0)
{
x = random_integer() % domainsize(i) ;
y = random_integer() % domainsize(j) ;
if (' conflict_exist(i, j, x, y))

{

add_conflict(i, j, x, y);
conflicts—-;
}
}
}

constraints——;

}
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Chapter 5

Three Algorithms

This chapter consists of the explanation of the three algorithms that were
tested in the experiments. All three are evolutionary algorithms, but each
one employs a different technique to help improve its performance on solving
CSPs.

The three algorithms share one common feature, they all make use of
adaptation. Which means that the population has to work with a fitness
objective that changes throughout the lifetime of the algorithm. Each algo-
rithm introduces its own way of adaptation. The co-evolutionary algorithm
uses two populations, that are entangled in a constant arms race. MID uses
two techniques, it provides information to offspring from their parents. And
it maintains a mechanism which evolves during the lifetime of the system, it
is used to help individuals escape local optima. The SAW-ing technique di-
rectly alters the fitness function thereby influencing the pressure of selection
in the population.

5.1 Co-evolutionary Algorithm

5.1.1 What makes up a co-evolutionary algorithm

This method uses a technique that is based on a natural phenomenon. When
a population evolves in an environment, this environment often changes,
partly because of the way the population interacts with its environment. An
environment will for instance contain other species. One of the interactions
will be the way in which the population reacts with one of the other species
inside the environment. Such as the way in which a population of predators
evolves better techniques to get its prey, and in return the prey will try to
counter these techniques and evolve its own methods for a better chance of
survival. This kind of interaction, which resembles an arms race, is a form
of co-evolution.

This is the process on which Paredis has based his Co-evolutionary ap-
proach to Constraint Satisfaction (ccs) (Paredis, 1994; Paredis, 1995b; Pare-
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dis, 1995a). This approach uses a system called Lifetime Fitness Evaluation
(LTFE).

A co-evolutionary algorithm based on CCs consists of two populations,
the solutions population and the constraints population. The solutions pop-
ulation consists of individuals that represent possible solutions to the csp
that is being handled by the algorithm. The constraints population consists
of all constraints that are in the csp.

To let these two populations interact the LTFE is used. It provides both
populations with a fitness value to base selections on. The fitness of an in-
dividual in either of the populations is based on a history of encounters. An
encounter occurs when an individual from one of the populations is paired
with an individual from the other population. In this co-evolutionary algo-
rithm two things can happen. An individual from the solutions population
is paired with a constraint, and the individual either violates the constraint
or does not violate the constraint. If it does not violate the constraint it
receives one point, otherwise it gets nothing. Likewise, the individual rep-
resenting the constraint respectively gets nothing, otherwise it receives one
point. The results of the encounters an individual makes are saved in its
history, this history has a finite size, thus only part of the results of all
encounters are registered.

Algorithm 3 The co-evolutionary algorithm.

i=0;

while (i < encounters)

{
solution = select(solutions_population);
constraint = select(constraints_population) ;
result = encounter(solution, constraint);
update_history_and_fitness(solution, result);
update_history_and_fitness(solution, 1 - result);
i++;

}

parents = select(solutions_population) ;

offspring = crossover_and_-mutate(parents) ;

evaluate(offspring) ;

insert(solutions_population, offspring);

The fitness of an individual is calculated from the history of the individ-
ual. It is simply the sum of all the points, i.e., the number of non-violated
constraints in the history of this individual. Because of the inverse effect the
encounters have on individuals from the opposite population an arms race
is created where individuals that are able to withstand the most individuals
from the other population gets the most chance of survival. The better indi-
viduals will be selected more often for an encounter, which results in better
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individuals getting paired more often with better individuals from the other
population.

Before the co-evolutionary algorithm starts, the two populations will
have to be initialized. This is done by letting all individuals in both pop-
ulations have a fixed number of encounters. When this is done the main
algorithm will start its work, as illustrated in Algorithm 3.

5.1.2 Techniques used in the implementation
The fitness function

As described in Section 5.1.1 the fitness function is calculated from the
history of an individual. This history consists of the results of the encounters
the individual has had over some finite time. It is represented as a vector
of zeros and ones, where a one means the individual had success in its
encounter and a zero means the it has failed to succeed. The history has
a fixed and finite size size(h). The fitness of an individual with history
h = (h1,...,hge(n)) becomes:

size(h)
fitness(h) = h;
i=0

To be successful in being selected, an individual has to obtain a high
fitness value. When we talk about the best individuals, we mean the indi-
viduals with the highest fitness value, the worst individuals are those that
have the lowest fitness value. This value can never exceed the size of the
history and it can never be lower than zero.

The selection mechanism

The selection mechanism used in the implementation is called linear ranked
based selection. In the implementation the linear function for selective pres-
sure from an article of Whitley is used (Whitley, 1989).

linear() =

population_size - <bias — \/bias2 — 4 (bias — 1) - mndom())

2/(bias — 1) ’
where random () generates a real number between 0 and 1.

The linear function is repeatedly used to determine which individual gets
selected for crossover. The population is sorted, from best to worse fitness.
The place an individual occupies in the sorted population is called its rank.
Thus the first individual from the top has a rank of one, the second has
a rank of two, and so on. Every time an individual needs to be selected,

20



Three Algorithms Co-evolutionary Algorithm

the linear function is called and the individual with the rank equal to the
value returned by the linear function is selected. If the bias is higher than
one, individuals at the top of the population get selected more often than
individuals at the bottom. When the bias is one, the selection is completely
random.

More precisely when the bias equals 1.5, it means that the best individ-
ual, i.e., the one at the top of the population, has one and a half as much
chance of getting selected for reproduction than the median one. Whitley
showed that a bias higher then 1.5 leads to premature convergence, while
lower values did not push the algorithm they tested to a good optimum.

The crossover

The crossover used in the co-evolutionary algorithm is called two point re-
duced surrogate parents crossover (Whitley, 1989; Booker, 1987). It uses a
special technique that tries to minimize the chance of generating offspring
that look much alike. The operator is the same as the standard two point
crossover operator, except for the way in which the crossover-points are
chosen. The operator finds the first position such that the values at that
position in both parents are different. It repeats this starting at the other
side of the individual. The part that lies between these two points is where
the two crossover-points will be chosen in.

An example can be found in Figure 5.1. Here the first difference in
values is at position 3 (position numbering starts from left and with one as
the first position), and looking from the other side, the first position is 6.
The bottom line shows the positions. The part in which the crossover-points
have to be chosen is marked bold in both parents. In the example two points
are chosen and the offspring is created.

Parents Offspring

98, 7 6 5|4 3 21 = 9 8 6 5 4 4 3 2 1
1 26 5 43 78 9 = 1 2 7 6 5 3 7 89

1 2 3 4 5 6

~

8

©

1 2 3 4 5 6

~
oo

9

Figure 5.1: Two point reduced surrogate crossover.

The idea behind this operator is to prevent the generation of offspring
that look almost the same, or worse are exact duplicates. If this would
happen it could result in premature convergence. The operator also enables
the algorithm to examine more possible solutions in the same number of
runs, because more different individuals will be generated.

Another interesting aspect of this operator is that the two parents create
offspring by exchanging information in the parts they do not agree on. The
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other two parts are copied without alteration, this ensures that the offspring
does not lie very far from their parents in the search space.

The mutation

The mutation is a simple operator called uniform mutation. It is applied
to freshly created offspring, and has one additional feature regarding the
mutation probability p,,. A random number between zero and one is gen-
erated for each variable in the vector v. If this number is lower than the p,,
the value is replaced with a random value from the domain of this variable.
The mutation probability depends on the parents of the individual. If the
parents are different, it is set to p,, = 0.001. If the parents are duplicates,
the mutation probability is raised to p,, = 0.01.

5.1.3 Parameters of the algorithm

The co-evolutionary algorithm has a number of parameters. These param-
eters can be modified and may yield better or worse results. When an
algorithm has a couple of parameters without knowledge of their exact in-
fluence on the performance, it is already very difficult to choose the right
setting. For the parameters of the co-evolutionary algorithm the values
are taken from articles of Paredis (Paredis, 1994; Paredis, 1995b; Paredis,
1995a). The parameters can be found in Table 5.1.

Parameter Value
Solutions population size 50
Constraints population size # constraints in CSP
Initial number of encounters 20
Number of encounters when running 20
History size 25
Parent selection linear ranking
Bias for linear ranked selection 1.5
Replacement strategy replace worse
Mutation probability with different parents 0.001
Mutation probability with duplicate parents 0.01
Crossover 2-point surrogate parents
Representation integer-based
Stopcondition solution found or

maximum # evaluations

Table 5.1: Fixed parameters of the co-evolutionary algorithm.
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5.2 Microgenetic Method

5.2.1 General idea

This algorithm gets its name from the small population size it uses. Together
with the incorporation of the Iterative Descent Method (IDM) as described
by Dozier et al. (Dozier et al., 1994; Dozier et al., 1995) its adopted name
is Microgenetic Iterative Descent (MID).

The basic operator in this method is called the value reassignment, which
is a kind of hill-climber algorithm. It works on one variable at a time, by
reassigning a new value to this variable using a heuristic mutation operator.
Two different objectives exist, the minimization of the number of constraint
violations this variable causes, and the minimization of the total number of
constraint violations the whole individual causes. In this research DM is
used, which minimizes the total number of constraint violations, it includes
a Breakout Management Mechanism for escaping local optima.

The Breakout Management Mechanism (BMM) stores a list of breakouts.
A breakout consists of two parts:

1. A 2-tuple called 'nogood’ — this is really just a pair of values that vio-
lates a constraint. Recall that we are dealing with binary constraints.

2. A weight — also called the value of the breakout.

When IDM gets trapped in a local optimum (see Section 5.2.2), it invokes the
Breakout Management Mechanism. For each pair of values from the individ-
ual that violates a constraint the BMM either creates a breakout or changes
the breakout if it already exists. The weight of a newly created breakout
is set to one. If the breakout already exists, the weight of the breakout is
incremented by one. These weights are used in the fitness function, which
will be explained in the next section.

5.2.2 Techniques used in the implementation
The representation

Before revealing the overall structure of an individual, we first describe a
single allele within this structure. Each allele consists of four elements (Fig-
ure 5.2), the name (or number) of the variable, the assigned value, the
number of constraint violations this variable is involved in and an h-value.
This h-value is used in choosing the pivot variable of an individual. It is
explained in the section on reproduction.
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Variable name

Value +— undergoes heuristic mutation
Constraint <— number of constraint violations
violations this value assignment causes

h-value <— used for choosing the pivot allele

Figure 5.2: Representation of an allele from an individual within MID.

The overall structure of an individual is made up of n alleles, one for
each variable in the problem. The structure also consists of the fitness value
and a pivot. The pivot determines which variable should be used for the
value reassignment process and it is also used for a single point mutation
operator.

Variable name Variable name Variable name
Value Value Value
Constraint Constraint Constraint
violations violations violations
h-value h-value h-value
Fitness
Pivot

Figure 5.3: Representation of an individual within MID.

The fitness function

To compute the fitness of an individual x = (x1,...,2,), it counts the
number of constraint violations each variable is involved in and then sums
these all up. Added to this is the weight of each breakout that is violated
by the individual.

n n n

fitness(z) =Y V(i) + > > Blwi,z;)

i=1 i=1j=1

Where V(i) gives the number of violated constraints involving the i-th vari-
able, and B(z;, z;) returns either the weight belonging to the breakout of
tuple (z;,x;), or zero when the breakout is not defined. We are trying to
minimize the fitness function, which has an optimum at zero. The fitness of
an individual is better than that of another individual if its fitness value is
lower.
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Initializing the population

Instead of randomly generating all the individuals to create the first genera-
tion for the population, a different scheme is adopted here. A first individual
is created by randomly choosing values for all the variables. The remaining
individuals are created by copying the first individual, after which a muta-
tion is done on one variable in each individual. A random variable is chosen
and then a random number is assigned from the domain of the variable.

When an individual is created, i.e., the variables have been assigned
a value, the other items inside the individual have to be initialized. The
h-value for each allele is set to zero and the number of constraint violations
the allele is involved in is counted. Then the fitness is calculated and the
pivot allele is chosen. The allele involved in the most constraint violations
is chosen as pivot, where ties are broken randomly.

Heuristic mutation

After selecting an individual for reproduction the reassignment process will
be run. This is a single-point heuristic mutation where a parent copies
itself to produce an offspring and then mutates one allele. The pivot of
the offspring points to the variable that will undergo the mutation. This
variable is assigned a value chosen randomly from its domain. No other
genetic operators are used.

The reproduction

The offspring that is created by the reassignment process is then compared
to its parent. If the fitness of the parent is better than or equal to that of
the offspring, the h-value of the corresponding pivot allele of the offspring
is decremented by one. And the individual is inspected to see if the pivot
should point to another allele. This is done by computing the s-value of each
allele, which is calculated by summing the number of constraint violations
of this allele and its h-value. The allele with the highest s-value will be
appointed as the new pivot. If there is a tie between the current pivot and
one or more other alleles, the current allele stays pivot. Ties between other
alleles are broken randomly. If the fitness of the parent is not better than
that of the offspring, the h-values and thus the pivot is left unchanged.

Using this method of inheriting information for choosing which allele
is to be mutated provides two interesting mechanisms for the algorithm to
exploit. First of all, a consecutive line of successful offsprings can optimize
the number of constraint violations related to one variable. Secondly, it
allows the algorithm to switch to other variables when this optimizing stops
or when other variables have higher s-values.

On the other hand, the method also poses a problem, after a while it
is possible that the h-value causes the system to choose an allele that is
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not involved in any constraint violations. This happens when the h-values
of the variables that are involved in constraint violations get lower than
the actual number of constraint violations. If the algorithm would reach
this state, no further progress will be made. In order to prevent this from
happening, the h-values will be reset to zero using a probability function r;
for an individual z:

1
Ty = ————
0] +2
where O, is the amount of variables involved in

constraint violations caused by individual z.

In addition to the heuristic mutation operator mentioned here before,
the algorithm makes use of one genetic operator as well. It is a single-point
uniform mutation operator, that is applied to the freshly generated offspring.
A value from the domain of the variable of the allele the pivot is pointing at
is randomly generated. This value is than assigned to the variable belonging
to the pivot allele.

Calling the Breakout Management Mechanism

As mentioned in Section 5.2.1, the algorithm makes use of a breakout system
to escape local optima. This implies that the algorithm must have a way
of deciding when to invoke this system. The system used here is identical
to that used by Morris (Morris, 1993). Let m(7) give the domain size of
variable 7, and let V' be the set of variables involved in constraint violations
caused by the best individual in the population. If we define y as the number
of consecutive offsprings created which do not have a better fitness than the
fitness of their parents, the BMM will be invoked when the following equation
y > > ey m(i) holds.

Once invoked, the BMM starts creating breakouts using the best indi-
vidual in the population. When a breakout already exists, its weight is
incremented by one. When the BMM is finished, all the individuals inside
the population have to be reevaluated. Furthermore the counter y has to be
reset to zero again.

5.2.3 Parameters of the algorithm

This algorithm does not have a lot of parameters, the ones mentioned in
Table 5.2 are mostly taken from articles of Dozier et al. (Dozier et al.,
1994; Dozier et al., 1995). Some of them are slightly different, to boost
performance, but they are still close to the originals.
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Parameter Value
Population size 8
Parent selection roulette-wheel
Replacement strategy replace worse (8+1)
Mutation one point with heuristic
Crossover none
Representation integer-based
Stopcondition solution found or max. evals.

Table 5.2: Fixed parameters of the Iterative Descent Method.

5.3 Stepwise Adaptation of Weights

5.3.1 Where SAW-ing is based on

The Stepwise Adaptation of Weights (SAW) mechanism first appeared in
(Eiben et al., 1995; Eiben and Ruttkay, 1996) and is invented by Eiben
et al. It has been used in numerous experiments to solve different kind of
problems, such as satisfiability problems (Eiben and van der Hauw, 1997;
van der Hauw, 1996; Béck et al., 1997), bin-packing (Vink, 1997) and graph
coloring (van der Hauw, 1996; Eiben and van der Hauw, 1996; Eiben and
van der Hauw, 1998; Eiben et al., 1998a).

The sAw-ing mechanism is an adaptive technique, which uses the idea
that after some generations, the constraints that are violated by the best
solution, i.e., the individual with the best fitness value, must be hard. By
increasing the penalty for violating these constraints, it gets more rewarding
for all individuals to make sure these constraints are not violated. Thus
focusing the search on the harder constraints.

Previous research from Eiben et al. (van der Hauw, 1996; Eiben and van
der Hauw, 1996; Eiben and van der Hauw, 1997; Eiben et al., 1998a) show
that the best performing algorithm with the SAwW-ing mechanism makes use
of an order-based representation with a decoder. The decoder takes as input
an individual in order-based representation and delivers a partial solution
for the csp. As we will show in Section 5.3.2 this makes it impossible to
count the number of violated constraints, to overcome this we will count
the number of unassigned variables. Thus the fitness function works on
variables, not on constraints.

To represent the penalties a system of weights is used. Every variable ¢
is assigned a weight w;. Initially these weights are all set to one. After some
generations the algorithm is interrupted and the best individual is evaluated.
The weight of every variable that has not been assigned a value by this
individual is increased with Aw. The fitness function will incorporate the
w; values, such that when an individual cannot assign a value to a variable 7,
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the w; will have a negative influence on the fitness function. This technique
closely resembles the original idea where every constraint is paired with a
weight, and where a weight is changed when the corresponding constraint is
violated.

One of the consequences of this technique is that we will have to decide
when to interrupt the algorithm to update the weights belonging to the
variables. In the first version called Offline-sAw (Eiben and Ruttkay, 1996;
Eiben et al., 1995), the algorithm was stopped and the best individual is
then used to make changes to the weights. The algorithm then had to
be restarted by hand using the new weights. The second version, which
is used in this experiments, is called Online-SAW. It uses a parameter T},
to determine when to interrupt the evolutionary algorithm to update the
weights. One of the results in (Eiben et al., 1998a) is that varying T, in a
range of 1 to 10000 has not much effect on the performance of the algorithm
when tested on hard problem instances of the graph coloring problem for
three colors. Another result shows that varying Aw from 1 to 30 also does
not alter the performance of the algorithm.

5.3.2 Techniques used in the implementation
The representation

Instead of just representing the values of each variable, this algorithm uses
an order-based representation. An order-based representation provides data
that is then fed into a decoder. This decoder transforms this data into an
actual solution. The individual is nothing more than a permutation of the
variables. The decoder used is a greedy algorithm, which tries to assign
every variable with the first possible value, starting with the lowest value,
without violating constraints. If no value can be assigned without violating
constraints, the variable is left unassigned.

The decoder tries to assign a value to each variable without violating
a constraint. It does this by looking in turn at each variable and then
for each variable tries every possible value from the domain of the variable
until it finds a value that does not violate any constraint. Unfortunately
this is quite a costly operator, because for every variable, and every value
from its domain size, every other constraint between this variable and any
other variable will have to be checked. For one variable this amounts to
checking quite a lot of possible conflicts. The worst case is when there is no
possible assignment, then the amount of checked conflicts for variable v; is
approximately:

tn(n—1)d

1
checked conflicts(v;) = T m= i(n —1)dm

An example of an individual that is decoded can be found in Figure 5.4.
After the decoding we end up with values for the variables v1, ..., v7, except
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for variable vg, it has a cross, which means no value could be assigned by
the decoder without violating a conflict.

Individual Partial solution

2 3 7 4 1 5 6 decoder 9 1 3 5 4 x 4

Figure 5.4: Example of decoding an individual.

The fitness function

The use of the decoder means that violated constraints cannot be counted,
because they will not occur. Instead we first decode the individual x to
obtain a partial solution. Every variable v; that has not been assigned a value
in the partial solution is multiplied by its weight w;. The results of these
multiplications are then summed to produce the fitness of the individual z.

fitness(v) = Zwi - x(v,14) (5.1)
i=1

. 1 if variable v; is not assigned a value,
where x(v,i) = 0 otherwise.

To find the minimum of this function, the evolutionary algorithm will
have to generate an individual that has no variables with unassigned values.
This is the only case where the fitness function is zero. If the weights w;
would not be changed during the lifetime of the evolutionary algorithm, but
instead would stay constant, we would end up with a conventional fitness
function that only counts the number of variables with unassigned values.
Such a fitness function always prefers an individual with fewer variables that
have unassigned values, i.e., give a better fitness value. The fitness function
in Equation 5.1 however can give a worse fitness value to a individual with
less unassigned variables, this happens when the weights of the unassigned
variables have, relative to other weights, a high value.

The selection mechanism

During a great number of experiments, involving numerous operators, se-
lection mechanisms and other techniques, Eiben et al. (Eiben et al., 1998a;
Eiben and van der Hauw, 1997; Eiben and van der Hauw, 1996; van der
Hauw, 1996) found that he best strategy involved a populations size of one.
Our experiments will be done using the same preservative selection strategy,
denoted as (1 + 1).

29



Three Algorithms Stepwise Adaptation of Weights

The mutation

Just as in the previous section, the mutation will be the same as in the
experiments of Fiben et al. This mutation is called swap. It is an order-
based operator that swaps pairs of genes. The parameter p,, determines the
probability that an allele is used in a swapping session. If it is used, the
second allele for swapping is selected randomly from the individual. This
parameter will be set to p,, = 1/n as results by Eiben et al. show that this
value (or higher ones) give optimal results.

An example of a swap operation is in Figure 5.5. First the allele at
position 6 is chosen for the session, then the allele at position 2 is chosen.
They are swapped resulting in a new individual.

Before After

2 3 7415 6 — 2 5 7 4 1 3 6

Figure 5.5: Example of the swap operation.

5.3.3 Parameters of the algorithm

The sAw-ing algorithm has a number of parameters. These parameters can
be modified and may effect the quality of the results. When an algorithm
has a couple of parameters without knowledge of their exact influence on
the performance, it is already very difficult to choose the right setting. For
the parameters of the SAW-ing algorithm the values are taken from articles
of Eiben et al. Some effort was taken into optimizing the parameters, but
these ended into the same results as these articles (Eiben et al., 1998a; Eiben
and van der Hauw, 1997; Eiben and van der Hauw, 1996; van der Hauw,
1996). The parameters that were used in the experiments can be found in
Table 5.3.

Parameter Value
Aw 1
Initial w for each variable 1
Ty, 250
Selection (1+1)
Population size 1
Representation order-based
Crossover none
Mutation type swap
Mutationrate (py,) 1/n
Stopcondition solution found or T},,, evaluations

Table 5.3: Fixed parameters of the Stepwise Adaptation of Weights algo-
rithm.
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Chapter 6

Experiments and results

6.1 Measuring performance

6.1.1 Success rate

One of the measures of performance is the success rate (SR). It is defined as
the average number of times a method finds a solution, during a number of

runs:
#runs
> success(run;)
“
SR(#runs) = — ,
H#runs
1 when a solution is found in run;,
where success(run;) = .
0 otherwise.

Some care has to be taken when results are interpreted concerning the
success rate. When the success rate of an algorithm is lower then one, this
does not mean it did not find all the solutions. When the experiments involve
problems that are not solvable we have no way in telling how much of the
problems actually did find a solution. That is except if one of the algorithms
has a success rate of one. As all algorithms are tested on the same test suit,
if one of them has a success rate of one, we can say something extra on the
performance of the algorithms that did not find all solutions.

6.1.2 Average evaluations to success

If the performance of several algorithms has to be compared, one of the
most obvious measures seems to be the measure of time complezity, i.e., the
time an algorithm needs to complete a task. But this measure has some
disadvantages. It highly depends on the hardware and the implementation
of the algorithm itself. Not only that, but other less obvious things like
compiler optimizations can disturb the measure. A more robust measure is
required, one which does not depend on external factors. One such measure
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is computational complexity. It measures the performance of an algorithm
by counting the number of basic operations.

This of course leads to the question: “What are basic operations?”.
In search algorithms the basic operation is often defined as the creation
and evaluation of a new candidate solution. This definition is not perfect,
because it does not define how much time can be spend on the creation
and evaluation of a candidate solution. Also it does not measure work done
outside these operations. But the advantages are numerous, first of all its
independence of external events. Furthermore, every search algorithm needs
to create and evaluate candidate solutions. And best of all, when we look at
scale-ups of results, i.e., how the performance varies when changing certain
parameters, the comparison becomes independent of the absolute amount of
time an algorithm has spend in the experiment. A scale-up test compares
the change in performance between algorithms, measured as a change in the
number of basic operations, which is much more fair than trying to compare
algorithms on fixed parameter settings.

The measurement used in the experiments is called average number of
evaluations to solution (AES). It is defined as the sum over all runs of the
total number of evaluations needed to reach a solution divided by the number
of successful runs (Section 6.1.1). Consequently, when the srR = 0, the AES
is undefined.

#runs
> evaluations(run;)
“
AES(#runs) = -
(# ) SR(F#runs) - #runs
. 0, if no solution has been found,
where evaluations(run;) = L. .
evaluations in run; otherwise.

On very few occasions the AES can lead to strange results. When the
number of successful runs is relatively low, lets say 1 or 2 out of a hundred,
and the algorithm has found a solution in relatively few evaluations (it got
lucky), the AES will report a low number. It is therefore important to al-
ways report the SR and AES together, so that it is possible to make a clear
interpretation.

6.2 Comparing three algorithms

To compare the three algorithms, we need a test suite of problem instances.
This test suite will be created with one of the random generators described
in Section 4.3. For our experiments we choose the generator by Dozier.
Although the number of constraints and conflicts are more fixed then in
the method of Prosser, the choice of constraint placements seems to be
more random in Dozier’s method. The difference lies in the selection of
pairs of variables where a constraint will be added. Prosser’s method uses a
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double loop that generates a random number between zero and one for every
combination of two variables. If this number is below the density parameter
a constraint is added. When the density parameter is quite high, i.e., near
one, chances are that the constraints are all added in the first iterations of
the second loop. This would result in an unfair distribution of constraints
over the variables, the variables looked at first in the first loop will get
more constraints assigned than the variables that have not been looked at.
Dozier’s method assigns all constraints by randomly selecting two variables,
preventing any ordering in the variables and their chance of assignment.

The test suite consists of a total of 625 problem instances. It is divided
into 25 combinations of the density and tightness parameter. Thus every
combination consists of 25 problem instances. Every algorithm did 10 runs
on each problem instance. When an algorithm had not found a solution
after 100000 evaluations it was terminated and the run was marked as un-
successful. The parameters for the number of variables and the domain size
of all the variables are set to n = 15 and m = 15.

The results of the experiments can be found in Table 6.1. The table
shows the success rate for each algorithm for every combination, together
with the AES (in brackets).

The first thing that is clear from the results is that ccs is not able to
compete with the other two algorithms. There is no combination of the
parameters where SAW and MID perform worse then ccs. Therefore ccs is
left out of further comparisons and experiments. However the conclusions
will contain speculations on the worse performance of ccs.

Only the comparison between SAW and MID remains. For the less difficult
problems, i.e., with low values for the connectivity and tightness parameters,
SAW seems to be at the winning hand. But on the harder problems ((d =
0.1,t =0.9), (d =0.3,t =0.7) and (d = 0.5, = 0.5)) the success rate of SAW
drops down to a lower value than that of MID. However, SAW is has lower
values for the AES on the problem instances. For two of the combinations
((d=0.1,£ =0.9) and (d = 0.5,¢ = 0.5)) even two and a half time as fast.

6.3 Scaling up of MID and SAW

Based on results from Section 6.2 the next results will not include infor-
mation about ccs. The experiments described in this section are called
scaling-up tests. Here the size of a problem, in this case the number of
variables, is increased in a number of steps. This gives us insight into the
robustness of the algorithms, which is very important, because most real life
problems are very large.

Before revealing the experiments and the results first some words on the
fairness of this kind of testing. We will look at how the AES of the algorithms
changes when the problem size is increased. This kind of measure is more fair
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density | alg. tightness
0.1 0.3 0.5 0.7 0.9
CceCs 1.00 (3) 1.00 (15) 1.00 (449) 1.00 (2789) | 0.62 (30852)
0.1 MID 1.00 (1) 1.00 (4) 1.00 (21) 1.00 (87) 0.96 (2923)
SAW 1.00 (1) 1.00 (1) 1.00 (2) 1.00 (9) 0.64 (1159)
CceCs 1.00 (96) 1.00 (11778) | 0.18 (43217) 0.00 (-) 0.00 (-)
0.3 MID 1.00 (3) 1.00 (50) 1.00 (323) | 0.52 (32412) 0.00 (-)
SAW 1.00 (1) 1.00 (2) 1.00 (36) 0.23 (21281) 0.00 (-)
(e]ef:] 1.00 (1547) | 0.08 (39679) 0.00 (-) 0.00 (-) 0.00 (-)
0.5 MID 1.00 (10) 1.00 (177) | 0.90 (26792) 0.00 (-) 0.00 (-)
SAW 1.00 (1) 1.00 (8) 0.74 (10722) 0.00 (-) 0.00 (-)
CceCs 1.00 (9056) 0.00 (-) 0.00 (-) 0.00 (-) 0.00 (-)
0.7 MID 1.00 (20) 1.00 (604) 0.00 (-) 0.00 (-) 0.00 (-)
SAW 1.00 (1) 1.00 (73) 0.00 (-) 0.00 (-) 0.00 (-)
ces || 0.912 (28427) 0.00 (-) 0.00 (-) 0.00 (-) 0.00 (-)
0.9 MID 1.00 (33) 1.00 (8136) 0.00 (-) 0.00 (-) 0.00 (-)
SAW 1.00 (1) 1.00 (3848) 0.00 (-) 0.00 (-) 0.00 (-)

Table 6.1: Success rates and the corresponding AES values (within brackets) for the co-evolutionary EA (ccs), the Micro-
genetic algorithm with Iterative Descent (MID), and the SAW-ing EA (SAw). In this experiment the number of variables is set
to n = 15 and the domain size of each variable is set to m = 15.

sjmsoa pue sjuowrradxy

MYVS pue I jo dn Surfeog



Experiments and results Scaling up of MID and SAW

than the previous comparisons, because the AES only measures the number
of search steps an algorithm does. It does not show how much work an
algorithm performs for each search step, but when a scale-up is performed,
the behavior of the performance is compared, which is by far more fair than
only comparing AES values for a number of fixed parameter settings.

The experiment consists of varying n from 10 to 40 with a step size of
5, while keeping the other parameters constant (m = 15,¢ = 0.3,d = 0.3).
Again 25 problem instances were generated and 10 runs were done on each
instance. All runs for both algorithms were successful, therefore we will only
show the AES values (Figure 6.1).

n MID SAW 20000

TMID" ——

0 10 T
1 5 5 2 2 14000
2 0 ]. 6 3 5 12000 |

25 410 30 10000
30 1039 190 :'O'z:
35 3462 1465 w0 |
40 17252 18668 200

Figure 6.1: AES results for the scale-up tests of MID and SAW.

For the first part until n = 35, SAW scales up much better then MID.
Between n = 35 and n = 40, the lines cross each other and MID gets the
upper hand. Because neither of the algorithms performs better than the
other on the whole range of n, and because the difference between both
algorithms decreases as n grows, we are not able to conclude if one of the
algorithms performs significantly better than the other.
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Chapter 7

Conclusions

This research consists of two major experiments in which we compare three
algorithms that incorporate adaptive mechanisms to improve their perfor-
mance. The comparison is based upon results that were produced by having
the algorithms solve randomly generated binary constraint satisfaction prob-
lems.

7.1 First experiment

The first experiment consists of comparing the algorithms on different com-
binations of two parameters: the connectivity and density of binary con-
straint satisfaction problems. The outcome is that the results closely match
the theoretically estimated landscape of solvability. Prosser (Prosser, 1996)
also concluded this, which again gives us a stronger feeling that this theo-
retical estimated landscape is precise enough in pointing out where to find
hard instances of binary constraint satisfaction problems.

An interesting conclusion can be drawn. The co-evolutionary method,
at least the one as implemented and used here, does not have a satisfactory
performance compared to the other two algorithms; MID and sAw. It was
often observed during runs of the algorithm that after a while the fitness
values of all the members in the solution population were almost the same.
By this time the fitness value of the members of the constraint population
were all zero, except for one or two. Once in a while the algorithm is able
to change which individual occupies the top of the constraint population,
showing that the algorithm is still exploring the search landscape. But
it seems that the pressure inside both of the populations is gone. The
low performance of ccs made us decide to cut the algorithm from further
experiments, some suggestions on improvement will be made in Section 8.

The performance of the algorithms MID and sAw differ significantly on
three combinations of the density and tightness parameters, all of which are
situated in the mushy region. On two of these combinations SAW is two and
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a half times as fast as MID, but SAW has a lower success rate on all three
combinations. In one case the success rate of SAW is half that of MID’s.
On all combinations SAW has a lower AES value, but mostly the difference
between MID and SAW are not to large.

7.2 Second experiment

The second experiment is only performed on MID and SAW, this is due to the
low performance of CCs in the first experiment. The experiment consists of
a scale-up test, where we increase the size of the problem and observe the
behavior in performance of the two algorithms. We observed that SAW scales
up much better than MID in the first part of the test where the number of
variables lies between 10 and 35. But when the number of variables is 40,
the difference in performance of both algorithms is not very high. Here saw
performs only slightly worse than MID.
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Chapter 8

Future research

8.1 Dynamic constraints

An interesting research area is that of constraints that change during the
runtime of the algorithm. A lot of problems in the real world have con-
straints that can change, because of a change in the environment. If an
algorithm is robust enough to cope with such a change and continue its
search to a new optimum, this can be seen as a very important feature for
an algorithm. Evolutionary algorithms with adaptive fitness measures are
promising candidates for such robust methods.

8.2 Adapting history size

As we observed during experiments with the co-evolutionary algorithm, it
often happened that the fitness value of all the members from the solution
population became equal to the maximum size of the history. This leads to
a drop in the selective pressure, because individuals do not have to compete
to stay inside the population.

One way of sustaining pressure is to increase the size of the history and
the number of encounters. This way the better individuals can use the
larger history to show that they are actually better then the rest. Which
leaves us with the decision when to change the history size and the number
of encounters. A good starting point is to do it when the fitness value of
the member with the highest rank is (almost) equal to the fitness value
of the member with the lowest rank. This is the point where we observe
that the number of changes inside the solution population drops and that
the constraints population almost exclusively consists of individuals with a
fitness value of zero.
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8.3 Penalizing the constraints

8.3.1 Using a different representation

Because the same representation for SAW was used in this experiment as in
the those done on graph coloring by Eiben et al. (Eiben and van der Hauw,
1996; Eiben and van der Hauw, 1998; Eiben et al., 1998a), we also used
the same way of penalizing variables that were not instantiated. It could
be interesting to see what the performance of the SAw-ing technique would
be if we would stick to the authentic idea of penalizing violated constraints.
The easiest way of implementing is to use an integer-based representation
where the fitness would be calculated as weighted constraint violations.

8.3.2 Another approach using permutations

The permutation-based representation for the SAwW-ing techniques, as used
in the experiments seems less appropriate for counting violated constraints,
because there are no constraints violated once the individual is decoded.
Instead we have uninstantiated variables. But when the process of decoding
is doing its work we can still observe which constraints are responsible for the
constraint violations. Instead of counting uninstantiated variables we can
keep track of all the constraints that were the cause of an uninstantiated
variable. When decoding is finished the weights of these constraints can be
adjusted. The fitness function will still only return zero when a solution to
the csp is found, on the simple idea that a solution is found when there are
no constraints that prevent us on instantiating variables.

Because we are dealing with binary CSPs every constraint can be the
cause of one of two uninstantiated variables. This technique ones again
give the SAW-ing mechanism a chance to focus on the constraints. For high
values (near one) of the density of a graph this is especially important,
because there will be more constraints then variables.

8.4 Improving the problem instance generator

8.4.1 Disconnected graphs

It is possible that the techniques explained in Section 4.3 for generating
random CSPs create graphs that are disconnected, i.e., the graph can be
divided into more than one group of vertices, such that there are no edges
between vertices that reside in different groups. The chance that such a
graph is generated increases when the density of a graph is low. Prosser
recognizes this too in (Prosser, 1996) and uses it as a probable reason for
justifying the difference between the obtained results and the theoretical
estimations. Further research by Kwan et al. (Kwan et al., 1996) showed
that the estimations made by Smith are not accurate for sparse graphs.
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This has lead to the development of a better model for predicting the phase
transitions of binary csPs. But this model has not yet resulted into a way
of generating random binary CSPs.

Because of the results mentioned previously, it may be wise to prevent
the random generator for binary OsPs to generate disconnected graphs. We
could try to change the generator such that it is forced to generate con-
straints that at least make the graph fully connected. But this could give
the generated graphs some unknown and unwanted property that changes
its solvability. Another approach is to discard graphs that are disconnected
and to perform experiments only with connected graphs. This should be
done rather carefully, because a loop like mentioned in Algorithm 4 could
be infinite if the parameters are set such that it is not possible to generate
connected graphs (n > constraints + 1).

Algorithm 4 Generating connected binary CSPs.

while (number of binary csps > 0)
{
binary_csp = generate_binary_csp();
if (connected(binary_csp))
{
add_to_list(binary_csp) ;
number_of _binary_csps——;

}
}

8.4.2 Random domain sizes

It would be interesting to know what happens with the difficulty of solving
binary csps, when the domain sizes of the variables would not be equal
throughout the problem. These domain sizes could, for instance, be drawn
from a random uniform distribution. This sounds more natural, because
real life problems are not restricted to having one constant size for every
variable’s domain.

8.5 Combining different techniques

Sometimes the combination of two techniques can lead to an even better
one. When such a combination can easily be created it is always worthwhile
to have a look at it. If we look closely at MID and SAwW, it is clear that
these methods can be combined quite easily. MID keeps the penalty term
caused by violated constraints in the fitness function identical throughout its
lifetime, and focuses the adaptation on the penalty caused by breakouts. The
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SAW-ing mechanism can thus be applied on the penalty term for violating
constraints.

Combinations where CCS is involved are a little bit more complicated
to produce. Its LTFE system causes much difficulty in adapting the fitness
function. Another aspect is that by changing the interactions between the
two populations, we could just be throwing away the careful balance that
is introduced by the system, maybe causing it to converge to a non-global
optimum from which it cannot escape.
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Chapter 9

Introduction

This part of the report will give an non-technical overview of a library for
programming evolutionary algorithms. Because we are aiming at a frame-
work that can be used in a broad field, we will have to incorporate techniques
from all the different subareas that reside within the field of evolutionary
computation. One of these subareas is genetic programming, a method where
programs are evolved to perform certain tasks.

The incorporation of a general genetic programming frame within the
whole framework will be necessary to complete the second goal: testing the
extensibility of the framework by using it for the construction of a genetic
programming algorithm, which will be added to the library in the future.
This genetic programming algorithm will be provided with an adaptive fit-
ness function. We have chosen the Stepwise Adaptation of Weights method
to fulfill the role of adaptive measurement.

The genetic programming algorithm will be tested on different classifica-
tion test sets. These sets are taken from standard data sets from the field of
data mining. The idea here is to breed rules that should classify the records
from the data set as good as possible, and then take the best rules and test
how well they perform on the classification of another data set that holds
the same sort of information.

The goals we want to reach in this part are highly integrated and they
have a chronological ordering. First the framework needs to be build, before
we can use it for the construction of a genetic program. Although the em-
phasis in this part lies on these two goals, we will apply the adaptive genetic
programming algorithm to data mining problems, because we are interested
in the performance of it, and because we want to test the implementation
on real problems. The same ordering is used in this report. We will start by
explaining the basic idea that was used in the construction of the framework
and we will give information on the availability of the framework and its doc-
umentation. We will continue with information on the genetic programming
algorithm and finish with the experiments on data mining.
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Chapter 10

A library for evolutionary
algorithm programming

10.1 A general overview

Many libraries for programming evolutionary algorithms exist, but most
of these have two major drawbacks. Firstly, these libraries are so called
toolkits, which means that they provide a collection of handy functions and
objects that can be used to construct a new evolutionary algorithm. This is
similar to programming toolkits that contain things such as string handling
and hash tables. Generally speaking, these toolkits consist of containers
and functions, that put together, provide the user with a library of building
blocks for the construction of an evolutionary algorithm. Thus the user has
to determine which building blocks are needed, and how to use them to
build a new algorithm. To do this job, a user needs to know exactly which
blocks should be connected and how they should be connected. This takes
a lot of time to learn. Secondly, these libraries are aimed at a specific area
within the field of evolutionary computation. Using methods from other
areas means that the user will have to make the necessary changes him or
herself, basically doing work that was already done in other libraries of this
kind.

The problems with using toolkits occurs when the library or the pro-
gram that was build with it, has to be changed. For instance, when a new
selection mechanism has been added to the library, incorporation of this
new mechanism into a program that was designed for an older version of the
library, often requires a step by step change of the source code. This is hard
work, for just trying out a new selection mechanism.

By using a framework we can overcome the problem of having to dig
through hundreds or even thousands of lines of source code, just for trying
out a new or other mechanisms. A framework does not supply the user with
loosely connected building blocks, instead it provides an almost running
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algorithm. The user only has to put in the last pieces of the puzzle and
maybe has to change the parts of the framework that are not appropriate
for the problem. The framework will then provide a running evolutionary
algorithm using the provided pieces, substituting the changed parts.

When additions are made to the library, programs made with it can eas-
ily make use of these additions, by only changing some lines of code in a
specific and predetermined place. As long as the new method is compatible
with the old one, in a high level specification sense, the library will pro-
duce a new evolutionary algorithm without the need of much work. One
can imagine things going horribly wrong when trying to use a new genetic
algorithm operator on a genetic program for instance. On the other hand a
selection mechanism could easily be tested on different kind of algorithms,
thus providing an easy way of sharing techniques between different areas of
research.

To provide a running algorithm, the framework needs strong connections
between the different parts that make up the library. These parts are called
objects, taken from the Object Oriented Paradigm. The connections should
not require that an object knows what the actual implementation behind
another object is. By showing only the interface of an object, i.e., the
way an object requires others to make use of it, an object can hide its
implementation. The interface part of an object is called its abstract part.
Together, these parts make up the abstract layer of the library.

A framework can only produce running programs when it has an actual
implemented algorithms inside. The pieces of implemented code that provide
the functionality of the different methods that are described in the abstract
layer form another layer in the library: the implementation layer. Eventually
this layer should grow when the library is equipped with new methods. The
two layers and the parts into which they are divided are shown in Figure 10.1.

To put the abstract and implementation layer together a system is needed
such that objects know only of the interfaces of other objects and such that
changing objects within an implementation is made easy. This is accom-
plished using a technique called an abstract factory method taken from the
software engineering paradigm called Design Patterns (Gamma et al., 1994).
By forcing every object in the library to use factories for the creation of new
objects, we can easily control which implementation is used in a program. If
a user wants to make use of another method, for instance another selection
mechanism, only the factory that creates this object has to be changed. The
factory is part of the package for which it creates objects, it is an object as
well, that has to be provided by the user of the library. A default factory is
provided for each package, that creates basic objects from the library.

The construction of the library is an ongoing project where multiple
people use the library for their own purpose and afterwards donate their
material to the main authors of the library. These in turn incorporate it
into the library. This way the library can be extended faster and it can
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Figure 10.1: Overview of the Library for Evolutionary Algorithm Program-
ming.

benefit from the diversity of the provided material.

As the library is distributed under the GNU Public License (GPL2), ev-
eryone can use the library for its own personal projects, and everyone is free
to modify the library as long as they do not violate the GPL2. This license
is provided with the distribution package for the library, and users of the
library are advised to read it.

For technical information on the library we point you to the program-
ming manual (van Hemert, 1998b), please note that as the development of
the library continues, the current state of the library can differ from the
information provided in this chapter.

10.2 Structure of the library

This section zooms in on the library to reveal the structure of the individual
objects. Before we continue, some words on the meaning of the terminologies
used in this report. When talking about libraries in general we could be
talking about a toolkit, a framework, or even on a combination of the two.
A library is nothing more than a collection of objects that together provide
a kind of functionality. Our framework is a kind of library as well. We will
use the words framework and library intertwined throughout the text.

The objects in the library, such as a population and a fitness function,
should really be called classes. As the library is build using object oriented
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techniques, a definition (or type) is called a class and an instance of such a
class is called an object. Because there will be no technical information on
programming issues in this report, we will continue to name these essential
items objects.

To provide some more structure, the library is divided into a number
of packages. A package holds a collection of objects, where every object
only belongs to this package. The contents of a package is based upon the
functionality it should provide. The package consists of objects that together
provide the functionality of the package. It could be the case that one object
is needed in different packages, the decision where to put this object is then
based on intuitive and maintenance grounds. Intuitive as in: “Where would
I look first when trying to find this object?” And from a maintenance point
of view; “What will happen when an object is changed within the library?”

If an object is changed, the objects should be distributed over all the
packages such that most of the objects that have to be changed with it are
in the same package. Note that packages work from a different angle on the
layers, i.e., if an object is derived from an object of the abstract layer, both
objects will be put in the same package.

10.3 A more detailed view

This section describes the objects that make up the library. Again no tech-
nical information is given, just a small overview of every object. The objects
are grouped in smaller sections, where each section equals a package in the
library, except for the first one. The library has no package named ‘main’,
it is provided here for grouping the objects in the root of the library. Note
that abstract and implemented objects are not discussed differently. Only
the structure of the library is described here, which leaves out the details of
the inner workings of the implemented objects.

An overview of all the different objects can be found in Figure 10.2. The
objects are placed in a striped box, representing the package. The three
objects, that are not part of a striped box, placed at the top of the picture
belong to the main package. To better understand this figure we provide
some notational remarks. The notation used here is taken from the Unified
Modeling Language (UML) (Burkhardt, 1997; Fowler and Scott, 1997), with
some modifications to keep the picture from getting cluttered with arrows.

Arrows with diamonds The object with the diamond attached holds the
object where the arrow points to and is responsible for its creation and
destruction.

Striped box around smaller box A package with its name in the top left
corner of the box. This is not the usual way of representing packages
in UML.
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Borders of objects

Continued lines — An object that plays a role in providing the
actual evolutionary algorithm.

Striped lines — A factory that produces objects in the same pack-
age.

Every package has its name in the top-left corner, and its factory in the
top-right corner. Objects that have access to a factory are able to produce
instances of objects from that package. For example the Population object
has access to the ReproductionFactory, thus it can produce objects from
the Reproduction package. The factories have to be provided by the user of
the system, they determine which implemented version of an object from the
abstract layer will be created. Default versions of the factories are provided
by the library, they choose the basic objects that are present in the library.
How these default objects look can be found in the technical documentation.
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10.3.1 Main package

This package is not present as a real package in the library, it is the collec-
tion of objects that are often used in other packages or that have a great
responsibility. In the library these objects can be found in the root of the
directory tree. Note that the first object is not included in the library, but
used here for the purpose of explanation.

Main

The library does not contain an object called main, instead this should be
provided by the user. It is included here to show how some of the objects
in the library have to be used in an actual implementation.

Configuration

The configuration is responsible for reading in the configuration file. Most
of the other objects in the library have access to this object, and they can
use it to obtain information from the configuration file.

Experiment

This object provides the actual experiments that have to be performed.
It sets up the Statistics object and makes sure problem instances are
produced before starting the evolutionary algorithm.

Statistics

A couple of objects have access to the statistics. It stores the data provides
by these objects, and uses this data to provide information during and after
the experiments. Data comes in the form of success rate, average evaluations
to solution and average fitness.

10.3.2 Core package

Objects that reside in this package make up the inner workings of an evo-
lutionary algorithm. Often they require little or no change when a new
algorithm is being made. They either represent some sort of container for
other objects or they provide a very simple algorithm.

Evolutionary Algorithm

Although this object is what gives the library its name, it does not provide
much functionality. It has one population and a stop condition, and uses
these to run the main evolutionary algorithm loop until the stop condition is
true. The loop consists of asking the population to go to the next generation.
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Population

This object is responsible for the creation and destruction of quite a lot of
other objects. It has a pool where it stores all the genotypes that reside in the
population. After the population is initialized using the Initialization
object its main functionality is provided in the building of new generations.
To accomplish this it has a Reproduction object, that given a pool of geno-
types generates a new pool using predefined genetic operators.

Pool

The pool is just a storage container for genotypes. It is mentioned here
because it can have a functionality of its own that can be useful for other
parts of the library. For instance when the selection method used in an
implementation is rank based, it could be handy to have a pool that stores
its genotypes sorted on fitness.

Genotype

The genotype basically provides two functionalities. Firstly, it stores the
data that is used by the genetic operators. Secondly. it stores the fitness
value after it has been calculated by the fitness function.

Initialization

Before the evolutionary algorithm can begin its main loop, an initial popu-
lation has to be generated. This object is used for initializing the data part
of a genotype.

StopCondition

Some objects in the library have access to the stop condition. These ob-
jects can request the stop condition to terminate the evolutionary algorithm
before the next loop starts. It handles two types of requests: termination
because a solution was found, and termination because of an event other
than finding a solution.

10.3.3 Reproduction package

One of the most important packages, because this package takes full respon-
sibility in providing facilities for the selection mechanisms and the genetic
operators. It has one main object that controls which objects are called and
in which sequence. All other objects provide either a selection mechanism
or a genetic operator.
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Reproduction

Here the main control procedure for the reproduction takes place. This
object decides which other objects in the reproduction package are used,
and in which order. The default is a steady state evolutionary algorithm,
where we first select a list of parents. These parents then produce offspring
by recombination, which are mutated afterwards. The last operation is
selecting who will survive and go to the next generation.

SelectParents
This object gets as input the current pool and returns a list of parents,
which are used in one or more genetic operators.

ProduceOperator

The ProducelOperator gets its name from the fact that given some par-
ents, it creates new genotypes using these parents. The new genotypes,
called offspring, are returned as a list. Depending on the reproduction algo-
rithm, this list can then be given to the SelectSurvivors object or to the
ChangeOperator object. Examples of genetic operators that fall into this
category are crossovers and mutation operators that copy existing genotypes.

ChangeOperator

This operator does not create new genotypes, instead it takes existing geno-
types and alters their data. Examples of such an operator are normal mu-
tation operators and heuristic repair methods.

SelectSurvivors

The final step in reproduction is determining the contents of the new pool.
This is the responsibility of the SelectSurvivors object, which given a list
of new genotypes and the old pool, outputs the new pool.

10.3.4 Common package

When constructing a new algorithm one of the most important thing is to
have good building blocks. Although this library is aimed at evolutionary
computation and not on data structures, a few building blocks are provided.

Array

This is a very simple array, with two advantages over other implementations.
It always checks its input, and provides the user with useful information
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when something went wrong. Furthermore, it is possible to add a name to
the array, which will be used when an error is reported.

Tree

The tree object provides the basic functionality of an n-ary tree. It hides
most of its internal structure, and it has basic features for the manipulation
and traversal of a tree. The tree object has already been added to the library
and will be used for the implementation of the adaptive genetic program.

String

This class should be replaced with the string class from the standard C++
because it is much more efficient and easier to use. For now this object
provides basic string manipulation.

Random

It is very hard to find a good random generator that works on different
platforms and compilers, and at the same times guaranteeing the same re-
sults. We have chosen for the standard random generator that comes with
the libraries provided by the Egcs compiler. This object merely raps the
generator with a nice interface.

10.3.5 Error package

During the development of a computer program mistakes are almost in-
evitable. By providing a good system for detecting anomalies during the
runtime of a program, errors can be exposed more quickly and more easily.
But a program often needs more than debugging facilities, it needs a proper
way of handling errors caused by not using the program correctly.

To report errors in a program, the library provides a small collection of
different exceptions that can be used for reporting errors. Such an exception
can be thrown anywhere in the library, it can than be handled by objects
that were responsible for calling this code, or if this is not the case, it can
be handled by the main program.

Warning

This object should only be used if something strange is found, but which
does not cause immediate danger for further execution of the program. For
example a parameter that has not been given in the configuration file, but
which can be provided with a default value. In other words, it should report
on actions taken by the program that may not be anticipated by the user of
the program.
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Error

An error should be the result of wrong usage of the program, such as failing
to read in a file or trying to set a parameter to an unacceptable value.

InternalError

This exception helps a programmer in locating problems in a program. It
reports on wrong usage of objects within the library. For instance, supplying
a genetic operator with data it was not designed to manipulate should result
in an internal error. Hypothetically speaking, this error should only occur
during the development of a program.

LibraryError

The library error is not used much, and is not to be used in objects outside
of the library. If this error occurs it means something is wrong inside the
library. This could be something innocent like a function that has not been
implemented yet, but it can also mean a bug has been found.

10.4 Availability

During the development of LEAP, a tool was used to produce a document
containing technical information on the inner workings of the library. This
tool is called DOC++, and it is freely available on the Internet. The Library
for Evolutionary Algorithm Programming is free as well, it is made available
to the public under the GNU Public License (GPL2). This license can be
found inside the main archive, in the file ‘COPYING’. LEAP has its own page
on the World Wide Web from which the latest version can be obtained. For
the address of this page we point you to Appendix A.

Archives of the technical documentation can be downloaded from the
LEAP page in Postscript and HTML format, in addition the HTML format has
been put online. The documentation is also included in the main archive, but
it has to be compiled by Doc++ before it can be used. This documentation
will have to be maintained throughout the development of the library, it
is therefore important to have matching versions of the documentation and
library.

The library has been developed using the experimental Egcs compiler
(version 1.0.3a), this was necessary because of the lack of good C++ support
in older compilers. No attempt to test the library on other systems and
compilers has been made so far, but it is known not to work on versions of
the GNU compiler equal or lower than 2.7.2.1.

As development continues the library will become more dependent on
the Standard Template Library (STL). Without this library LEAP will be
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useless. STL is freely available for almost every platform and compiler. A
good implementation of STL is provided by Egcs, but for those who want to
download their own version or who want to have a look at the documenta-
tion, we point you to the Internet address in Appendix A.
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Chapter 11

An Adaptive (enetic
Programming algorithm for
Data Mining

11.1 Genetic programming and data mining

11.1.1 What is genetic programming?

Genetic programming (GP) started out as a new kind of genetic algorithm.
One that does not operate on bit strings, but instead uses trees to represent
individuals. Because of the special nature behind the idea of genetic pro-
gramming and due to the success of the applications, genetic programming
has become a field on its own. The special nature lies in the interpretation of
the individuals. In genetic algorithms the individual is a static solution for
a problem that was supplied to the genetic algorithm. However in genetic
programming, an individual is a function or program that can be stored
and used on different input than that during the execution of the genetic
programming algorithm.

When genetic programming first started the structure of an individual
was represented as a tree (Koza, 1992). Later other representation were
adopted, such as linear and graph representations. These structures still
represent a kind of program or function. Although using these representa-
tions have produced promising results, we will use the tree representation
here, because it easily represents the functions we are going to breed. For
the reader who is interested in the more advanced topics of genetic program-
ming, we point you to a book written by Banzhaf et al. (Banzhaf et al.,
1998) and a book edited by Kinnear (Kinnear, 1994).

Genetic programming has produced numerous successful applications,
in a wide variety of fields. It has been applied in robotics, function ap-
proximation, creation of jazz melodies, construction of randomizers, cellular
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automata rules, data mining, and much more. When genetic programming is
applied for data mining purposes, it is often used to breed rules that provide
information on a data set. Different sorts of information can be gathered
from data, we could be looking for rules that tell us something about the
relations of the different data fields or we could be looking for rules that are
able to predict an unknown data field from new data sets. We will test our
GP algorithm on this last sort of information.

11.1.2 What is data mining?

The most important goal of data mining is to find new information that is
potentially interesting and useful by looking at data. This search can be
on a lot of different kinds of information. Examples of useful information
are summary of data, classification rules, analysis of changes, detection of
anomalies and clustering of data. The basic idea in all these different types
of information is the discovery of information in data that gives a higher
form of knowledge on the complete data set.

With so many different types of information, the field where data mining
can be applied is very large. Some areas are medicine, finance and marketing.
In these areas data mining has been used to analyze genetic sequences, make
predictions on the stock market and discover buying patterns.

As the main focus of this research is on the development of a usable li-
brary, and not on the construction of a very efficient algorithm that outper-
forms presuccessors, we will not try any advanced data mining techniques.
Instead the GP algorithm will be tested on a number of data sets that are
commonly used to compare classification algorithms.

11.2 A genetic program for classification

11.2.1 Representation

The genetic program contains individuals that represent classification rules.
These rules will have to work with records, r = (r,r2,...,r,), with n the
number of records, i.e. the number of data fields. The attribute r;, with
1 <4 < n, can have any value. Most of the time a value is from one of
these three domains: boolean, real or nominal. In the data sets used in
the experiments later on, the attributes have been scaled to the real valued
domain such that 0 < r; < 1. The rules will have to classify the records
from the provided test set into two classes.

Given this information, we choose the building blocks for the classifica-
tion rules. There will be two types of building blocks, functions and atoms.
The set of functions will consist of Boolean functions with two arguments
from this set: {and, or,nor,nand}. Note that this set is functionally com-
plete. The atoms will read the value from one attribute, compare it to a
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rule(r) = (As(r;,0.347) nor A-(rp,0.674)) and A (r;,0.240)

Figure 11.1: An example of a classification rule.

fixed constant ¢, and return a boolean value. Two types of atoms will be
provided, one that checks if the value from an attribute is greater than c:
As (r;, ¢), and one that checks if the value is less than ¢: A (r;, c). Here ¢ is
chosen from the same domain as r;. Figure 11.1 shows an example of a rule
that can be produced using these functions and atoms. This rule returns
either true or false depending on the record r. The GP is build such that
the syntax as described here can easily be extended.

The atoms return a boolean value, therefore they are able to serve as
input to the Boolean functions. Note that normally genetic programming
uses a set of terminals, instead of atoms, these terminals represent the in-
formation as found in the data it receives as input. If the standard way of
encoding would be used we would have to add two new functions, ‘<’ and
‘>’ and add two types of terminals, one for reading a field from a record, and
one representing a constant. But as we will show next this would complicate
the structure of individuals in the GP algorithm.

The rules are easily represented as trees, especially because we already
made a distinction between functions and atoms. The functions become the
nodes of the tree and the atoms will be represented as leaves. When the rule
from Figure 11.1 is represented as a tree, it will look like Figure 11.2. We
can evaluate the rule on a record by doing a postorder tree traversal which
returns the class as false or true at the root of the tree.

A (r1,0.240
A (r0,0.674)
<

Figure 11.2: Representation of a classification rule as a tree.
If standard representation for genetic programming would be used, i.e.,

terminals instead of atoms, we would have to make sure that the tree is kept
in a certain form. The reason for this is that not all functions understand
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the same type of arguments. The and function for instance only accepts
boolean values, but the terminals are real-valued. The ‘<’ function requires
two real-valued arguments, but the and functions returns a boolean value.
When constructing a tree, we would have to make sure these restrictions are
not violated. To overcome this problem, the idea of atoms is introduced,
where some of the functions are combined with the terminals to produce a
set of atoms. When creating trees, the leaves of the tree will be selected
from this set. In the next chapter we will show that this idea can be easily
extended to other representations.

11.2.2 Initialization

Before the GP algorithm can start its main loop, a population of individuals
has to be created randomly. Thus we need a method for randomly creating
trees. Three methods are commonly used in genetic programming.

Full method

Starting with a function at the root of the tree, this method continues to
fill the tree with randomly chosen members of the function set, up to a
predefined maximum depth of the tree. When this depth is reached, the
method chooses the leaves from the tree from the set of atoms. An atom
is further initialized by randomly selecting an attribute r; and randomly
selecting a value for the constant ¢ from the domain of r;. Note that trees
created this way will always be completely filled.

Grow method

This method starts out with a function for the root and then keeps selecting
members from the conjunction of the functions and atoms set randomly.
The initialization of an atom is the same as with the full method. To keep
the method from running forever, a maximum depth is introduced. When
it reaches this depth it will only select from the set of atoms.

Ramped half-and-half

This is not a new method for creating trees, but it is a combination of the
other two commonly used methods. This technique generates half of the
population using the full method and half of it using the grow method. This
way a wide variety of trees are created.

11.2.3 Reproduction

Every generation two parents are selected using rank-based selection (Sec-
tion 5.1.2), which breed two offspring using crossover or by copying them-
selves, this is determined using a crossover probability. Another probability,
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the mutation probability, determines whether the offspring is mutated. The
offspring is put into the population using a worst rank replacement strategy.

Crossover

The crossover used by the GP algorithm is the basic subtree swap as defined
by Koza(Koza, 1992). When two parents have been selected from the pop-
ulation for sexual reproduction, a random process chooses a crossover point
in both parents. The choice is biased to give functions a higher probability
of being selected than atoms. The offspring is created by swapping the sub-
trees between the two crossover points in both parents, an example is shown
in Figure 11.3.

A (r0,0.674
A (r0,0.921)
<

Figure 11.3: Crossover in genetic programming by swapping subtrees.

An exception is made when the size of a child is larger than the predeter-
mined maximum number of nodes an individual is allowed to have. When
this happens, the offspring will be disposed and a copy of the parent will be
used as offspring.
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Mutation

Because the GP algorithm uses atoms instead of terminals, we will have to
make sure that the mutation operator has effect on the whole rule that is
represented by an individual. To ensure this two mutation operators are
used independently. Whenever an individual has been selected for muta-
tion, a node (function) or leaf (atom) is chosen randomly from the tree for
participation in the operation. If a node (function) is selected, the subtree
mutation operator is applied. If a leaf is chosen, a random choice is made to
determine whether we will do a subtree mutation or a subatomic mutation.
Both operators have an equal chance of being chosen.

The subtree mutation replaces the selected node and the complete sub-
tree underneath it with a subtree that is generated using the grow initial-
ization method described in Section 11.2.2. It also uses the same maximum
depth for the complete tree. Figure 11.4 gives an example of this operator.

A (r1,0.388

A (r2,0.298

<(r )
A_(r0,0.128)
>

Figure 11.4: Mutation in genetic programming by replacing subtrees with
randomly generated ones.

The subtree crossover only works on full building blocks, it only replaces
a set of functions and atoms with a new set. This can be very destructive,
especially when a node is chosen at a low depth of a tree. Here we want to
introduce a less disruptive mutation, which we will call subatomic, because
it operates on items in an atom.

When an atom is selected for subatomic mutation we randomly pick
either the attribute r; or the constant ¢, again with an equal chance. If the
attribute r; is selected, it will be replaced by randomly selecting an attribute
from the record. If the constant is selected, a small random number is
generated —d < Ac < d, which is then added to the constant ¢ to form the
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new constant ¢‘. This is shown in Equation 11.1.

0, ifc+ Ac <0,
d=<1, if c+Ac> 1, (11.1)
c+ Ac, otherwise.

A (r1,0.388

Figure 11.5: Example of a subatomic mutation.

11.2.4 Fitness function

The fitness of an individual in the population is defined as the number of
wrongly classified records from the data set. This value has to be minimized
by the @P algorithm, and if an individual with a fitness value of zero is
found, this would mean a perfect classification rule for this data set. To
evaluate an individual means that its prediction has to be verified on every
record in the data set. If we define D as the set of all the records in the
data set we can state the fitness of individual z as:

fitness(z) = Z |evaluate(x,r) — class(r)|
reD

Because the function set consists of Boolean functions, the GP algorithm
can only predict two classes. The tests will also be restricted to data sets
with two classes, thus class(r) will give a one or a zero, depending on which
class record r belongs. The evaluate(x,r) function traverses the tree of
individual z and calculates the value of the rule, returning a one if the
outcome is true and a zero if it is false. In the next section the fitness
function is slightly changed to incorporate an adaptive technique.

11.3 Applying an adaptive fitness measure

More and more evolutionary algorithms are using an adaptive fitness mea-
sure to guide their search to an optimum solution. As one major aim of
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this project is to build a modern and extensible library, it would be good to
include such adaptive techniques. The only problem is that some of them
are quite specifically build for tackling certain problems. The Microgenetic
Method from Dozier (Dozier et al., 1994; Dozier et al., 1995) (see also Sec-
tion 5.2) is an example of such a technique. One of its basic components,
the Breakout Management System, requires a problem where we can iden-
tify pairs of values (nogoods) that cause the algorithm to get stuck in local
optima. If a problem does not have such a feature, which is the case in
classification of data sets, the method can not be used.

To improve the extensibility of the library we want to include an adaptive
fitness measure that can easily be used in many evolutionary algorithms
working on different sorts of problems. A promising candidate for this is the
SAW-ing technique by Eiben et al. (van der Hauw, 1996; Eiben and van der
Hauw, 1996; Back et al., 1997; Back et al., 1998; Eiben et al., 1998b; Eiben
et al., 1998a). It is also described in Section 5.3. This technique changes
the fitness function using a vector of weights. These weights depend on the
problem at hand, but with some creativity they can be added to almost
every problem.

In a classification problem, the problem solver is presented with a number
of records from a data set. It is up to the problem solver to find one or more
rules that classify this list of records as good as possible. For an evolutionary
algorithm this means that every time an individual needs to be evaluated,
the rule it represents has to be checked on this list of records. In other
words, when if we order a list of records of size n such that every record gets
a unique number from 1,...,n. To introduce the SAW-ing technique into
the genetic programming algorithm, a vector w = (wq,...,w,) is defined,
where every w;,1 < ¢ < n is paired with record 7. The weights are used in
the fitness function as follows:

fitness(z) = Z wy - |evaluate(x,r) — class(r)|
reD

All weights in the vector w are set to one before the algorithm starts.
After a number of generations, determined by the parameter 7}, the genetic
programming algorithm is interrupted. The fitness of the best individual in
the population is determined, and for every rule it does not classify correctly,
the corresponding weight is incremented by one. The whole population then
needs to be reevaluated, because of the changed fitness function. This may
take a lot of time, because of the large population sizes used in genetic
programming and because we are doing classification problems. As the data
set does not change, we can speed up this reevaluation by storing a vector of
fails and successes for each individual. This vector is updated the first time
an individual is evaluated, and stores boolean values, one for each record.
Instead of having to evaluate an individual all over again, we can look at the
vector when we need to calculate the fitness value of an individual. When the
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whole population has been reevaluated the Gp algorithm continues its run.
Note that the reevaluation process is not the same as a fitness evaluation,
because there is no need for a complete tree evaluation on all records in
the training set. These reevaluation are not counted as evaluations, and
therefore, will have no effect in the maximum number of evaluations.

The idea behind this way of applying SAW to data mining is that some
records might be hard to classify, i.e., when trying to find a general rule
from a set of records, some records differ much from the others. To help
focus the search of the GP into finding a rule that is also able to classify
these records, individuals get an extra reward if they classify such a record.
In other words, when an individual succeeds in classifying a record that has
got a high weight because it often was not classified correctly by the best
individual in the population, that individual can benefit from the extra high
penalty the other individuals get by not classifying it correctly.

11.4 Parameters of the algorithm

The GP contains quite a lot of parameters, as can be seen from Table 11.1.
Most of the values were taken from default or recommended values from the
appropriate literature.
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Parameter Value
Representation trees
Initial maximum tree depth )
Maximum number of nodes 200
Function set {and, or,nand, nor}
Atom set attribute greater or less
than a constant

Population size 1000
Initialization method ramped half-and-half
Parent selection linear ranking
Bias for linear ranked selection 1.5
Replacement strategy replace worse
Mutation type 1. subtree replacement
2. subatomic mutation

Subatomic d parameter 0.1
Mutation probability 0.1
Crossover swap subtrees
Crossover probability 0.9
Crossover functions:atoms ratio 4:1
Stop condition perfect classification or
10000 created individuals

SAW-ing update interval T}, 250
SAW-ing Aw parameter 1
SAW-ing initial weights 1

Table 11.1: Fixed parameters of the adaptive genetic algorithm program-
ming.
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Chapter 12

Experiments and results

In this chapter we will first describe the construction of a genetic program
using the LEAP library. The results will consist of an overview of the devel-
opment path that was followed and of the structure of the Gp. The second
section consists of experiments on data mining. Also, comparisons will be
made with other data mining techniques.

12.1 Building a genetic programming algorithm

The genetic programming algorithm as constructed here contains three sep-
arate packages. One package for reading and using the data set, another
package that holds all the components of the GP, and another one that
makes up SAW. This section will describe some details of these packages
and how they were constructed, beginning with the data set. An overview
of these packages and of the objects that they contain can be found in Fig-
ure 12.1. To keep the figure from getting cluttered, all connections to the
library are left out. Most of these are obvious, as almost all objects showed
are inherited from objects from the library.

As the apP will be used for classifying data, it is necessary to construct
an object that reads in the problem, i.e., the data set. The fitness function,
represented by the Classification object, will have to traverse a list of
records to evaluate each freshly created classification rule. The object that
stores this list is called DatasetProblem, it contains a list of records. For the
experiments the data sets will have to be split up into two distinct parts.
One part is used for the training phase. This is one run of the GP, from
which the best individual is taken and tested on the other part of the data
set, this is called the test phase. The distinct parts are called respectively
training set and test set.

One of the core objects needed in a tree-based GP is of course a tree.
Eventually, our aim is to put all the objects constructed here into the li-
brary, we therefore make an n-ary tree that can easily be reused for other
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Figure 12.1: Overview of the new objects, and their relations, that make up
the GP.

projects. The tree object will hide its internal structure, and it will only
show basic information to other objects. Its interface is handled by iterators
(Gamma et al., 1994) and functions working on these iterators. For exam-
ple, two iterators, both pointing at a node in a tree, have to be swapped,
such that a crossover as shown in Section 11.2.3 is performed. To get
the job done, we just have to call the appropriate function SwapSubtree
with the iterators as arguments. The tree object will be wrapped inside a
TreeData object, which is handled by four other objects in the GP struc-
ture, these are: TreeCrossover, TreeMutation, TreeInitialization and
Classification.

In genetic programming, the nodes of a tree have to represent something.
In this @P all nodes are all of the same type, called GP_Node. The differ-
ent types of nodes, such as functions and atoms, are all inherited from this
node. This allows for an easy extension of the nodes set. This inheritance
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tree! is showed in Figure 12.2. Some work into extending this set has al-
ready begun, but in this version of the GP we will use the objects presented
in Figure 12.2, as this set implements the functionality needed for the ap
described in Chapter 11.

Tree
U N I ____________________ '
, GP-Node |
| GP_Node |
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: Less || Greater Two_Or || Two_And| | Two_Nand| | Two_Nor | |

Figure 12.2: The inheritance tree for GP_Node.

The connection between the GP and the data set is made by the GP_Node
and the Classification objects. The GP_Node needs the Records object
to read the individual data fields in a record when it is being evaluated. For
example when an atom is being evaluated, it needs to know the value of
one of the attributes of the current records. The Classification object
iterates through all the records and tries each record on the individual which
it is evaluating. For this it needs the DatasetProblem. Both relations can
be seen in Figure 12.1.

The TreeInitialization implements the ramped half-and-half tree ini-
tialization method, by calling calling the appropriate function from the
TreeBuilder object. This object implements the first two methods as
described in Section 11.2.2. The mutation operator also uses one of the
functions from TreeBuilder. If the TreeMutation object has to perform a
subtree mutation, it uses the grow method to generate a new subtree. The
last object from the GP package, TreeCrossover, uses only the TreeData
object.

!The word tree is taken from the terminology used in Object Oriented programming.
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At this point, we almost have a running GP that tries to classify data
into two classes. There is one object missing that has to control these two
packages. We need an experiment manager that performs cross-validation
tests using the GeneticProgramming and Dataset package. This object is
called CrossvalidationExperiment. It runs the GP the required number
of times on the provided training sets and for every run it calculates the
number of wrongly classified records in the test set.

The GP is extended with the SAW-ing technique by replacing the default
evolutionary algorithm object with the SAWingEvolutionaryAlgorithmob-
ject. It differs from the default evolutionary algorithm object, because it
interrupts the main evolutionary loop every 7, number of generations, and
then the SAw-ing mechanism will update its weights. This process is de-
scribed in Section 11.3. The sSAw-ing mechanism is implemented by the SAW
object, which looks similar to the Classification object, but differs in two
respects. It does not alter the fitness value stored by a genotype. Secondly,
it contains a vector of weights that can be read by the Classification
object. We will denote this algorithm as GP+SAW, and version without SAW
as GP.

12.2 Data mining with a genetic program

This section describes three experiments conducted on different data sets,
where the GP has to classify the records into one of two distinct classes.
These data sets are taken from existing collections used for research on
neural networks and machine learning. The first collection, aimed at neural
networks, is called Probenl (Prechelt, 1994). The second collection is called
Statlog. 1t has mainly been used for research on machine learning. The
Internet addresses of these collections are in Appendix A.

The data set collections are accompanied with results gathered using dif-
ferent techniques. We will compare the performance of the GP and GP+SAW
with these results. Unfortunally, both collections use different kinds of tests
to acquire their results. To provide a fair comparison, we will use the same
technique when we are comparing with the performance of an algorithm
from one of these collections.

The results in the Probenl collection are produced by splitting the data
set into two equal parts. The first part is used as a training set and the
second part is used for testing. We call this the ‘50% training set — 50% test
set” experiments, or ‘50/50 test’ in short. The comparisons in this section
with Probenl are all based on the percentage of wrongly classified records in
the test set. Probenl provides three permutation of each data set, therefore
each table of results on a 50/50 test gives three columns of data and one
column with the average over these three values.

Statlog uses n fold cross-validation tests to compare the performance of
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algorithms. This involves partitioning the data set into n distinct parts.
The experiment consists of doing n runs of the algorithm, each run selecting
one part to act as test set, while the remaining parts are used in the training
phase. The results over all runs are averaged over n. Statlog also reports the
percentage of wrongly classified records in the training set, we will do the
same in all the n folded cross-validation tests. The different algorithms are
sorted by their performance on the test set first. If this performance does
not differ, further sorting is done based on the performance on the training
set.

12.2.1 Test set 1: Breast cancer

The first data set comes from the Probenl data set collection. We will only
compare the results with Probenl, because Statlog does not contain this data
set. This data set is originally provided by the UCI machine learning data
set, and it is called the ‘Wisconsin breast cancer database’. The objective
is to classify the set into two types of cancer cells; benign and malignant.
The class distribution is shown in Table 12.1. A record consists of nine
input attributes, all having a nominal value between 1 and 10. This values
are linearly scaled to a number between 0 and 1. There were 16 missing
values of one attribute, they were all encoded with the average (0.35) of
that attribute over all the other records.

class quantity percentage
Benign 458 65.5%
Malignant 241 34.5%

699 100.0%

Table 12.1: Class distribution of the Wisconsin breast cancer data set.

50% Training set — 50% test set

The results as shown in Table 12.2 show that the difference between the
best neural network and GP is only 0.002. The GP+SAW has a bit lower
performance, 0.014 less than the best neural network.

12.2.2 Test set 2: Diabetes

This data set originates from the National Institute of Diabetes and Diges-
tive and Kidney Diseases, it contains information on female Pima Indians,
all at least 21 years old. Comparisons will be made on results from both
Probenl and Statlog. The set has to be classified into two classes; tested
positive for diabetes and tested negative for diabetes. The input consists of
eight attributes, they are all scaled to a number between 0 and 1.
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algorithm cancerl cancer2 cancerd average
Pivot NN 0.015 0.045 0.034 0.031
No-shortcut NN 0.014 0.048 0.037 0.033
U ap 0.032 0.040 0.029 0.033
Linear NN 0.029 0.050 0.052 0.044
O Gop+saw 0.026 0.054 0.054 0.045

Table 12.2: Percentage of wrongly classified records in a 50/50 test during
the test phase on the Wisconsin breast cancer data set.

class quantity percentage
No diabetes 500 65%
Diabetes 268 35%

768 100.0%

Table 12.3: Class distribution of the Pima Indians Diabetes data set.

50% Training set — 50% test set

The results of of this test clearly show (Table 12.4) that both genetic pro-
gramming algorithms are beaten by the neural networks. The GP+SAwW
performance is better than GP, the difference is 0.01.

algorithm diabetesl diabetes2 diabetes3 average
No-shortcut NN 0.241 0.264 0.226 0.244
Linear NN 0.258 0.247 0.229 0.245
Pivot NN 0.246 0.259 0.231 0.245
O GP+sAw 0.234 0.281 0.302 0.276
0 ap 0.271 0.294 0.294 0.286

Table 12.4: Percentage of wrongly classified records during the test phase
in a 50/50 test on the diabetes data set.

12 Fold cross-validation

The performance results in Table 12.5 have been sorted by performance on
the test set. For algorithms that have an equal result, a second ordering
has been done on the performance on the training set. After inserting GP
and GP+SAW into the list, the list was truncated after Ac2. Both genetic
programming algorithms perform average, with a difference of 0.01 between
them.
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algorithm training  test algorithm training  test
LogDisc 0.219 0.223 QuaDisc 0.237 0.262
Dipol92 0.220 0.224 Bayes 0.239 0.262
Discrim 0.220 0.225 O ap 0.255 0.263
Smart 0.177 0.232 C4.5 0.131  0.270
Radial 0.218 0.243 IndCart 0.079 0.271
Itrule 0.223 0.245 BayTree 0.008 0.271
BackProp 0.198 0.248 LVQ 0.101 0.272
Calb 0.232  0.250 Kohonen 0.134 0.273
Cart 0.227 0.255 0 GrP+saw 0.246 0.273
Castle 0.260 0.258 Ac2 0.0 0.276

Table 12.5: Percentage of wrongly classified records in a 12 fold cross-
validation test on the diabetes data set.

12.2.3 Test set 3: Credit cards

This data set is taken from the UCI machine learning database. Both Statlog
and Probenl contain this data set, but they have transformed it into a
different encoding. We have conducted both type of tests to both encodings,
thus every table of results contains two entries for each algorithm, one for
Statlog and one for Probenl. The class distribution for this data set is
given in Table 12.6. The data set consists of information on clients, from
a Australian credit card firm. It is divided into two classes; those who are
granted credit and those who are denied credit.

The data set encoding in Statlog uses 14 attributes, consisting of contin-
uous and categorical. All attributes were scaled linearly to a value between
0 and 1. The Probenl set uses 51 attributes, encoding any categorical at-
tribute using a vector the size of the category and assigning a 1 to only one
position in the vector.

class quantity percentage
Granted 307 44.5%
Denied 383 55.5%

690 100.0%

Table 12.6: Class distribution of the Australian Credit Approval data set.

50% Training set — 50% test set

On this data set, the GP shares the first place with the Linear neural net-
work (Table 12.7), followed closely by GP+SAw. The same algorithms per-
form much worse on the same data set with a different encoding, having a
difference of 0.072 between both GP+SAW results and a difference of 0.113
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between both GP results. Note that Statlog does not have different permu-
tations of its data sets. Entries in the table for Statlog are therefore marked
as ‘“—".

algorithm cardl card2 card3 average
Linear NN 0.134 0.192 0.144 0.157
g ap® 0.157 0.197 0.116 0.157
Pivot NN 0.136 0.192 0.174 0.167
0 cpr+saw? 0.119 0.174 0.191 0.161

No-shortcut NN 0.141 0.189 0.188 0.173

O apr+saw’ — — 0.243
O ap? — — 0.270
“Probenl
bStatlog

Table 12.7: Percentage of wrongly classified records during the test phase
in a 50/50 test on the credit card data set.

10 Fold cross-validation

The results from this test (Table 12.8), are similar to those from the 50/50
test, in a sense that both genetic programming algorithms perform better
using the Probenl encoded data set, than using the Statlog encoded data
set. The difference between the results on the different encodings is 0.096
for gp and 0.077 for GP4+sSAw. The performance on the Statlog encoding
is worse than most other algorithms, with a difference of 0.120 between GP
and the best algorithm.
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algorithm training  test algorithm training  test
Calb 0.132 0.131 0 ap? 0.149 0.155
Itrule 0.162 0.137 Smart 0.090 0.158
LogDisc 0.125 0.141 BayTree 0 0.171
Discrim 0.139 0.141 KNN 0 0.181
Dipol92 0.139 0.141 Ac2 0 0.181
Radial 0.107 0.145 Newld 0 0.181
Cart 0.145 0.145 LvQ 0.065 0.197
Castle 0.144 0.148 Alloc80 0.194 0.201
Bayes 0.136 0.151 Cn2 0.001 0.204
IndCart 0.081 0.152 QuaDisc 0.185 0.207
U Gep+saw? 0.138 0.152 0 GP+saw? 0.231 0.229
BackProp 0.087 0.154 O gpb 0.254 0.251
C4.5 0.099 0.155 Default 0.440 0.440

“Probenl — Runs on all three permutations of the data set are averaged.
bStatlog

Table 12.8: Percentage of wrongly classified records in a 10 fold cross-
validation test on the credit cards data set.
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Chapter 13

Conclusions

13.1 Swuccess of the library

13.1.1 Ease of extensibility

One disadvantage of this library is its age, as it is just a few months old,
the library is only equipped with a few basic objects. This led to a lot of
work that had to be done in the construction of the genetic program. But
as long as the library is growing, these exceptionally high amounts of work
will probably decrease. However, this ‘growing principle’ brings additional
work as well, we will discuss this in Section 13.1.2.

A very nice feature derived from the idea of having a running framework,
is the fast response a developer gets during the construction of a new algo-
rithm or technique. Because it is easy to take a default program and then
to start changing this program to get the desired algorithm, the program
can be executed from a very early state. This enables the developer to test
the implementation from a very early start.

When an algorithm has to be implemented, a lot of work will go into
designing the structure of the program. Things like storage of data, reading
in of parameters, efficient usage of time and space, and hopefully re-usability
and comprehensibility all take part in making this process of designing more
difficult. As algorithms get larger and more complex, the construction of
programs gets slower. A library, such as this one, where the developer gets
a running system that already has a structure, can help in speeding up the
time it takes to implement new ideas.

13.1.2 Amount of work

As the library grows, users of it will get more chances of trying out new
ideas that have been implemented by others, without having to go through
the developing process themselves. Thereby saving a lot of time and work.
But to make this work two essential items are needed. Users of the system
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that have developed something new will have to donate their efforts to the
library, and the maintainers of the library will have to keep it up to date.

Not only the maintainers of the library will have to do a lot of work,
users will have to do quite a lot of work too. Just as with everything that
is new, using a new library will require some time to get use to. But as
the library has examples and as it is a running system, a user can begin
by changing small parts of the library at a time. For instance a user could
start by constructing a new genetic operator and use it to replace it in an
example program.

The problem in maintaining a growing library is that it has quite a lot
of different areas that require work. A handful of them are listed here:

Squashing bugs Whenever there is programming, there will be bugs. A
good design and the usage of software engineering techniques can help
prevent bugs or speed up the time in finding bugs. But errors will
always be made, and one of the tasks of the maintainers is to correct
these errors.

Adding new material As users donate their material it is vital that it
gets incorporated into the library. If this does not happen, users could
lose the motivation to turn in new material or even lose interest in
using the library.

Testing new material Including new material, especially if it has been
made by others, is very difficult and time consuming. The code will
have to be checked to see if it works correctly, and to fully grasp its
functionality.

Keeping the library consistent One of the most important issues is to
keep the library consistent. This is best illustrated with an example.
Lets assume that a new feature has been added to the library such
that it can now handle trees represented as linear arrays. Although
the library already consists of operators that work on arrays, it might
not be a good idea to let them work on these particular arrays.

Keeping the documentation up-to-date One of the most frustrating
moments when using a system is to find out that the contents of man-
ual is not in line with the system. Especially for users that just started
using a system it is very important that the documentation actually
tells what the system does.

Maintaining a change-log When a system gets larger, it gets more diffi-
cult to identify updates and new features. Users should have a way of
making sure if it is interesting to download a new version.
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13.1.3 Debugging facilities

Having good debugging facilities helps users and maintainers in identifying
problems and errors much earlier. It is always more informative to see an
error message such as ‘Tried to read beyond the end of a list’ than just a
plain ‘Segmentation fault’. The library provides an easy way of handling
errors that for most checks only takes two lines of code. It is very important
for the amount of development time that these checks keep getting built in.
A good point on these checks is that when a system is running they take
up precious computing time. Although this can not be denied, two good
reasons block this argument. Firstly, the amount of time that was spent on
fixing a system could have been spent on doing experiments if good checks
were built in, such that the error in the system was identified much quicker.
Secondly, it is much easier to remove checks, than it is to remove bugs.

13.1.4 Difficulty of C++

C++ is a strongly typed computer language, which means that the type of
an object will have to be known at compilation time. This helps speed up
the execution time of a program and it can also help in the prevention of
errors. The compiler can check if types are consistently used in the source
code. Because C++ is this strongly typed, it is not easy to build a library
that is usable for every type, as soon as we want to introduce a variable we
will have to define its type, making it impossible for a user of the library to
change it.

To overcome this problem templates were introduced. These enable a
developer to defer the exact type of some of the variables until a user wants to
use the code. The user then has to specify the types of these variables. This
works very well with containers for instance. As containers only store things,
it is not necessary to know anything about the functionality of a variable.
But the problem of templates is that they will have to be compiled when
the user has specified the type of variable. This prevents the construction
of a life system, because without knowing the type of variables we can not
produce code.

Templates are very popular in the construction of libraries, such as the
Standard Template Library (STL). Most of the time they are easy to use
and very efficient, because they are compiled with the knowledge of the type
of variables. We will try to use templates in the library where suitable, but
the main goal will still be a running system.

13.2 Experiments on data mining

Looking at the results presented in Section 12.2, it is clear that we did
not produce a killer algorithm that beats all the competition. But this
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was not our primary goal. We wanted to construct a library and test its
usability on genetic programming. To observe if the GP, as constructed in
the experiment, actually worked, it was used in experiments on different
data sets.

Taking another look at the experiments on data mining, it is quite safe
to say the GP and GP+SAW did not perform all too bad. Although neither
one ever had the best results, they competed reasonably well with other
algorithms in the 50/50 tests on the Probenl data sets. On the Statlog data
sets however, the performance varied widely, with a largest difference of 0.12
measured between GP and the best algorithm on the credit cards data set.

The worst difference measured between a GP and a GP+SAW on the same
data set is 0.027. Showing that both algorithms have about the same perfor-
mance on these data sets. Furthermore, GP+SAW had a better performance
than GP in 4 of the 7 tests. An interesting point is the difference in perfor-
mance on the different encodings of the credit card data set. This difference
is smaller for GP+SAW than for GP in both tests. the This could mean that
GP+SAW is less sensitive to a different encoding than GPp.

Because of the small differences in performance of both algorithms we
can not select one of the algorithms as being better than the other. However,
the GP+SAW seems to be les sensitive to different encodings that GP.
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Chapter 14

Future work

14.1 On the library

14.1.1 Maintenance

As already discussed in the conclusions, the library will have to be contin-
ually maintained. The first maintenance task is to clean up the library by
removing unnecessary code, adding more checks and by finishing some of
the interfaces.

Another important issue is the amount of STL that is used in the library.
As STL is getting more popular, and because it is very easy to use it will
be used more in the library. It is therefore a good idea to try to make use
of the same syntax. This allows for easier use of the library, especially for
those already familiar to STL.

One major point is the technical documentation, which is still not even
half finished. Furthermore, the genetic programming package still has to be
documented. But can better be delayed until the library has been cleaned

up.

14.1.2 Genetic programming

The genetic programming algorithm has been constructed such that its parts
can be easily reused. Of course it would be better if the whole package
would be incorporated into the library. This would be a good test too see
how difficult it is to incorporate new material into the library itself.

The genetic programming package would be a good extension to the
library as it opens up a path to another field of evolutionary computation.
As soon as it is in the library, work could start to extend this package,
keeping it compatible with other parts of the library where possible. The
syntactical restriction of functions that handle only one type of argument
should be removed. Furthermore, other techniques and methods that have
proven successful in boosting performance should be included.
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14.1.3 New implementation objects

Every new object in the implementation layer makes the library more in-
teresting. They provide the library with more functionality, as long as the
object is usable by other objects from the implementation layer.

Sometimes it would be desirable to extend the abstract layer of the
library. A good example here might be repair operators. Although they
look as if they could easily be added as a kind of change operator, some
of them could be doing a lot of exotic work. Maybe working on whole
populations at once, or maybe even on multiple populations at once. There
is no limitation to fantasy. Work has already begun on repair operators,
and when they will be added to the library, the abstract layer will probably
be extended.

14.2 On data mining

One interesting idea of handling a data mining problem is to use the co-
evolutionary model. By using two populations, one for the rules and one
that holds the records from the data set, we can try a system such as the
ccs as described in Section 5.1. This would save a lot of computing power
when evaluating an individual, because the LTFE system only works on a
subset of the data set. Instead of the normal procedure that calculates the
fitness of an individual using the whole data set.

A more straight forward method of research is to change the GP by ex-
tending it with other function, atoms and terminal sets. It still lacks some
basic features, such as the possibility to use it for classifying data that has
more than two classes. Other improvements could be possible by incor-
porating more advanced genetic programming ideas, such as automatically
defined functions, recursion and different representations.
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Appendix A

Addresses on the Internet

CSP & EA http://www.wi.leidenuniv.nl/” jvhemert/csp-ea

This page contains the algorithms as described in Part 1. It contains a
lot of programs that were used for doing research on different constraint
satisfaction problems. It also contains the problem instance generator used
in the experiments, called RandomCsp.

DOC++ http://www.imaginator.com/doc++
DOC++ is the documentation tool that has been used for generating the
KETEX and HTML based technical documentation. It is free for usage.

Egcs http://egcs.cygnus.com

The Egcs compiler is used for the development of LEAP. It is free for down-
loading and comes standard with most Linux distributions. Eventually it
will supersede the GNU G++ compiler. Egcs comes equipped with a good
implementation of the Standard Template Library.

LEAP http://www.wi.leidenuniv.nl/”jvhemert/leap

For downloading of the Library for Evolutionary Algorithm Programming
we point you to this page. It also offers the complete documentation in
Postscript and HTML format, and it has an online version of the HTML doc-
umentation.

Probenl ftp://ftp.ira.uka.deas/pub/neuron/probenl.tar.gz

Probenl consists of twelve learning problems using real data. Along with
the data comes a technical report describing a set of rules and conventions
for performing and reporting benchmark tests and their results.
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Statlog http://www.ncc.up.pt/liacc/ML/statlog

The project Statlog offers data sets that were used in research on machine
learning. The data sets are all accompanied with test results and a detailed
description of the data and the experiments.

STL http://www.sgi.com/Technology/STL

This is the main site for the Standard Template Library as developed by
Silicon Graphics. Beside good documentation about its contents, it offers
links to many other informative pages as well.
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