
The design and implementation of a
Socca Editor

Table of Contents
................. 11  Abstract
................ 22  Introduction
............... 33  Problem description
............... 44  The implementation
.............. 44.1  The architecture
............. 64.1.1  The model package
............. 84.1.2  The view package
.............. 145  Problems encountered
............. 145.1  Event handling on Lines
............. 175.2  Text-fields in dialogs
............ 185.3  Inter package associations
........... 196  An example of the use of the editor
............... 196.1  Introduction
............. 196.2  Step by step walk-thru
.......... 247  Advantages and disadvantages of Java
.............. 247.1  Advantages of Java
............... 257.2  Disadvantages
................ 268  Future Work
................ 299  Conclusion
................ 3010  References
........ 3111  Appendix A: The documentation of the classes
.............. 3111.1   Class SoccaEditor
............ 3311.2   Class ModelChangeEvent
........... 4011.3   Interface ModelChangeListener
.............. 4111.4   Class Visibility
........... 4311.5   Class model.AssociationModel
.......... 4811.6   Class model.AssociationRoleModel
........... 5311.7   Class model.AttributeModel
............ 5611.8   Class model.ClassModel
........... 6211.9   Class model.ElementModel
.......... 6711.10   Class model.GeneralizationModel
........... 7011.11   Class model.MemberModel
............ 7411.12   Class model.ModelBase
............ 8011.13   Class model.NoteModel
........... 8311.14   Class model.OperationModel
........... 8711.15   Class model.PackageModel
........... 9011.16   Class model.ParameterModel
.......... 9311.17   Class model.UsesRelationModel
........... 9411.18   Class view.AssociationDialog

- i -



.......... 9811.19   Class view.AssociationRoleView

........... 10211.20   Class view.AssociationView

........... 10911.21   Class view.AttributeDialog

............ 11311.22   Class view.AttributeView

........... 11611.23   Class view.AttributesView

........... 11911.24   Class view.BoundedMovable

............ 12111.25   Class view.ClassDialog

............ 12711.26   Class view.ClassView

............ 13211.27   Class view.ElementView

............. 13811.28   Class view.Handle

.............. 14011.29   Class view.Line

............ 14411.30   Class view.LineSegment

............ 14811.31   Class view.MainWindow

............ 15111.32   Class view.MenuFactory

............. 15311.33   Class view.Mode

............ 15811.34   Class view.ModelTree

............. 16111.35   Class view.Movable

............. 16611.36   Class view.MyAction

........... 17011.37   Class view.OperationDialog

........... 17411.38   Class view.OperationView

........... 17711.39   Class view.OperationsView

........... 18011.40   Class view.PackageDialog

........... 18411.41   Class view.PackageLayout

............ 18511.42   Class view.PackageView

........... 19111.43   Class view.PackageWindow

.......... 19411.44   Class view.ParameterTableModel

........... 19511.45   Class view.RelativeMovable

............. 19911.46   Class view.Resizable

............. 20511.47   Class view.RolePanel

............. 20611.48   Class view.Selection

.......... 20911.49   Interface view.SelectionListener

.............. 21011.50   Class Hierarchy

- ii -



1  Abstract
A prototype for a Socca editor was developed in Java. This master thesis describes the design
of this prototype, some of the implementation trade-offs and a few of the more significant
problems that were encountered. The reasons why Java was chosen as the programming
language is also discussed. The thesis ends with a list of possible extensions to the editor and
future work. 

- 1 -

1  AbstractThe design and implementation of a Socca Editor



2  Introduction
The goal of the project was to create a prototype of a Socca editor. Socca (Specification Of
Coordinated and Cooperative Activities) is a specification formalism for the description,
analysis and specification of software processes that is being developed at the Computer
Science department of the University of Leiden. Socca describes a software process from four
different perspectives: 

1.  Data perspective: the class diagram, that is, the classes of the program, their attributes
and operations and the relationships between the classes. 

2.  Behavior perspective: The behavior of the classes (external STD). This perspective
describes the way a class may be used. There is a state transition diagram for each class. 

3.  Functionality perspective: the functionality of the operations (internal STD). There is a
state transition diagram (possibly more than one) for each operation that describes which
actions are performed (and their order) when the operations is called. 

4.  Communication perspective: the communication between objects (paradigm)

For a more detailed description of SOCCA, see [1] and [2]. 

- 2 -

2  IntroductionThe design and implementation of a Socca Editor



3  Problem description
The prototype of the editor partially supports the syntax of Socca. The focus of
implementation of the editor is currently on the data perspective; the other three perspectives
may be implemented on a later date. Although the other perspectives aren’t implemented
currently, the design of the editor anticipates their inclusion. 

Socca is currently being developed at the University of Leiden. Because of this constant
development, some areas of Socca are not thoroughly researched yet. Whenever this is the
case, the Unified Modeling Language (UML) has been used as a guide. UML is likely to
become the de-facto standard of modeling languages. So it is a good idea to follow UML
whenever possible, unless a better alternative for certain aspects of UML are found. The
result is an editor that implements UML but replaces some of the weaknesses of UML with
Socca. 

Pieter Jan ’t Hoen (hoen@wi.leidenuniv.nl) is currently working on integrating a module
concept with Socca. Socca currently has no real support for modules or packages. Once
modules have been added, a Socca model can be split up it smaller parts (modules) that are
each somewhat independent of each other. If the modules are chosen in such a way that the
number of interdependencies between the modules is kept low then the modules can be
designed mostly independent of each other, possibly by different people. If, at a later date, a
multi-user version is created of the editor, it can greatly benefit from this module concept. 

Work in this area isn’t finished but to allow some initial experimentation with these new
concepts, the editor has some very limited support for these modules. Since research is still
ongoing, basing the modules of the editor on the current research was deemed problematic.
Instead UML’s packages were used as basis for the module concept in the editor. 

UML package concept is not much more than a way to group parts of the data model together.
Such a group is placed in a rectangle and the name of the package is placed at the top of the
rectangle. The packages of the editor work in the same way. One concept of Pieter Jan’s work
was added; each data model element in a package is given a visibility icon. This visibility
(public, protected or private) determines whether a data model element outside the package
can have a relation with an element inside the package. If an element is public, it is visible to
elements outside the package and so it can have relations with elements outside the package.
If it is private, it is not visible outside the package and such relations are not possible.
Protected elements are only different from private elements when one package inherits from
another. Package inheritance is still work in progress and is as such not supported in the
editor. 

The data perspective is implemented using a graphical user interface that allows adding,
deleting and editing of classes (and their attributes and operations) and packages. It also
allows adding relationships between classes, editing them and removing them. These
relationships include inheritance relationships, uses relationships, aggregations, associations
and containment relationships (of a class within a package). The user can focus on a part of
the model by opening new views and/or suppressing parts of the view.

- 3 -

3  Problem descriptionThe design and implementation of a Socca Editor



4  The implementation
The editor is implemented in Java, version 1.1, using the Java Foundation Classes (JFC). Java
was chosen because of its platform independent nature and its ability to be used within a
WWW-browser. 

One of the requirements of the editor was that the information in the model can be shown in
multiple views. The editor had to support multiple windows that each show (a part of) the
model. These views are kept consistent; changes in one view result in updates of the other
views containing the same model elements. To support this type of behavior, the MVC
(Module View Controller) design pattern was used to keep the views consistent. 

4.1  The architecture
The editor uses the MVC (Module View Controller) concept that was first introduced by the
language Smalltalk [3]. In Smalltalk the programs that used this design pattern were split up
into a part that contained the data, the model, a part that presented the data to the user, the
view, and a part that allowed the user to manipulate the data, the controller. The advantage of
this approach is that, because there can be more than one view of a model, the data can be
visualized in different ways at the same time. Another advantage is that the source code of a
model or a view is easier to reuse in another program than a piece of source code that contains
both the model and view as a monolithic whole. 

Over time it was discovered that splitting in three parts is not always the best way. The
controller has strong dependencies on the model and view parts. Because of these
dependencies, the model and view It turned out to be better to split the program in a model
and a view part and put the controller in the view and/or in the model. This is the approach
that was taken while designing the editor. It is also the approach taken by the designers of the
Java Foundation Classes (JFC, a.k.a. swing). As a result the JFC classes and the classes of the
editor integrate quite naturally. This design pattern (using only model and view, no controller)
is described in Design Patterns [4] under the name Observer. 

- 4 -

4  The implementationThe design and implementation of a Socca Editor



The model (left) will send events (arrows in the middle) to the view (right) whenever a part of
the model changes 

The editor consists of three parts. These parts are all put in a separate package. There is the 
model  package that contains all the models. The view  package contains all the views that
correspond to the models in the model  package. This package also contains the dialogs that
are used by the view classes to interact with the user. There are some classes that don’t belong
to the model  or the view  packages. These classes are put in the global (or root) package. All
these classes in these packages are described below. There is a class diagram included in this
paper of the model and the view packages, to clarify this description. 

- 5 -

4.1  The architectureThe design and implementation of a Socca Editor



4.1.1  The model package

At the base of the model hierarchy is the ModelBase  class. This class contains all the
functionality needed to send events to the views to notify them of a change in the model. 

There are several classes that inherit from the class ModelBase : ElementModel , 
ContainmentModel , GeneralizationModel , UsesRelationModel , 
AssociationModel , AssociationRoleModel  and AggregateModel . 

ElementModel  represents the basic elements of the data perspective, i.e. packages and
classes (with the classes PackageModel  and ClassModel  to represent them).

A package may contain other packages and classes. This is expressed with the 
ContainmentModel  class. This class stores the visibility of the element outside of
the package and possibly another name (an alias), for the element. 

A class can inherit some of its attributes and operations from another class. This
relationship between classes is represented by the GeneralizationModel  class. A
generalization can optionally be given a name, for this reason the class has a name
attribute. 

A class can use another class in the implementation of its behavior. To show this in the
data perspective, an uses relation is drawn. Such a relation is represented by the class 
UsesRelationModel . This class will store the names of the operations that are used. 

When one class is in fact a composition of other classes, an aggregate relation is a
relation between classes exists. This aggregate relation is represented by the class 
AggregateModel . 

All the relations that don’t fall into one of the above categories can be represented by the
class AssociationModel . It represents a general relation between two or more
classes. A name and an optional stereotype can be given to an association. Each class
that is part of an association plays a certain role in the association. This role is described
with the class AssociationRoleModel . It stores the name of the role of that class,
the number of objects of that class that can participate in the association (multiplicity),
whether the association is navigable in that direction and finally if there is an inherent
ordering among the objects of that class that participate in the association. 

Classes can have members, i.e. operations and attributes. These members are represented
by the model MemberModel . This model stores the name and visibility of the member
and whether the member is part of an object or of the class itself (static  in C++) . 

The class AttributeModel  is a subclass of MemberModel . It stores the type of the
member, an optional initial value and whether the value of the member is derived from
other members. 

- 6 -

4.1.1  The model packageThe design and implementation of a Socca Editor



OperationModel  is also a subclass of MemberModel . The things it stores are an
optional return type, whether the operation is implemented or abstract and the parameters
that the operations needs. Of these parameters the type and optional default value are
stored. 

Although StdModel , StateModel  and TransitionModel  are classes mentioned
in the class diagram, these classes where not implemented due to time limitations. They
were left in the design to aid the future addition of state transition diagrams to the editor.

Every class has an external STD (State Transition Diagram). This STD is represented
with the StdModel  class. The StdModel has states and transitions. The states are
represented with the StateModel  class. The states are connected to one another by
transitions, represented with the TransitionModel  class.

- 7 -

4.1.1  The model packageThe design and implementation of a Socca Editor



4.1.2  The view package

In this section the classes in the view  package will be described. Most of the classes in this
package are the view of the corresponding model in the model  class. All the names of the
views end with "View", the corresponding model has the same name, but the "View" suffix is
replaced with "Model". For example, the class ElementView  is the view of the model 
ElementModel .

The class Movable  contains the functionality that allows the user to move a component
on the screen to a new location. The user can use the mouse to drag a component (that is
a subclass of Movable ) and this class will allow it to move. 

RelativeMovable  inherits from Movable  and allows a component on the screen to
be moved relative to another component. For example, A is a Movable  and B is a 
RelativeMovable  that moves relative to A. The user can move B around and the 
RelativeMovable  will keep track of the relative offset to A. If the user moves A
around, B will move as well to keep the offset the same. 

BoundedMovable  inherits from RelativeMovable . It restricts the movement of
B, relative to A, so that B is always on the contours of A. 

The class ElementView  is used to show an ElementModel  on the screen. It is the
base class of the classes ClassView  and PackageView . 

A ClassView that contains no attributes or operations.

ClassView  shows a ClassModel  on the screen. At the top of the classview there are
the stereotype and name labels and the visibility icon. The visibility icon uses the colors
of a traffic light to show public visibility (green), protected visibility (yellow) and
private visibility (red). Below the labels and icon there is a list of attributes 
(AttributesView ). Below the attributes is a list of operations 
(OperationsView ). 

A part of a ClassView, the AttributesView, that shows three attributes.

- 8 -

4.1.2  The view packageThe design and implementation of a Socca Editor



The AttributesView  class is used to show a list of attributes. It presents the
attributes in a vertical list and allows the user to scroll through them. Each attribute in
the list of attributes is shown using the AttributeView  class. It shows the visibility
(public, protected or private) of the argument, the name, the type and the initial value of
the attribute. 

Another part of a ClassView, the OperationsView, that shows three operations.

Just like there is an AttributesView  class that shows the attributes of a class, there
is an OperationsView  class that shows the operations of a class. Each operation in
the operation list is shown using the OperationView  class. Besides the visibility and
the name it also shows the parameters and the return type of the operation. 

An empty PackageView.

The objects of class PackageView  are rectangles with the name and stereotype of the
package at the left-upper corner. Inside the rectangle are the elements that are contained
by the package. 

The class PackageWindow  inherits from Java’s Window class. Every instance of 
PackageWindow  is a window on the screen. The window contains a menubar and a
toolbar. Below the toolbar is an instance of PackageView  

At any given time the PackageWindow  is in a certain mode. This can be the move
mode that allows the user to move, resize or select elements or it can be the addClass,
addPackage or addAssociation mode that allows the user to add a class, package or
association to the PackageView . Mode is the class that stores the current mode the 
PackageWindow  is in. 

- 9 -

4.1.2  The view packageThe design and implementation of a Socca Editor



A Line that is connected to a ClassView.

Most of the relations are drawn using lines between ClassView s. The Line  draws the
lines. A line can consist of one or more straight lines. Each of these straight lines is
drawn by a LineSegment . 

AssociationView drawn with a diamond shape.

The class AssociationView  is used to show an association between classes. The
class AssociationView  has two ways to draw itself. One way is used when there is
an association between exactly two classes. In that case the association is represented as
a line between the classes. The other way is used when there are more than two classes.
Then the AssociationView  will draw a diamond with the name and the stereotype
of the association inside the diamond. Each classes is connected to the diamond with a
single line. 

Each class that is part of an association plays a certain role in that association. The name
and multiplicity of that role is shown using the class AssociationRoleView . 

GeneralizationView , UsesRelationView , AggregateView : Although
these classes are needed to create a full featured editor (and for that reason they are in the
design of the editor) there was not enough time to implement these classes. 

- 10 -

4.1.2  The view packageThe design and implementation of a Socca Editor



 

 
A ModelTree that shows two classes and a binary association between them. It
also shows that the first class has two attributes and two operations.

While writing the Socca Editor, it became clear that there are situations where one would
like to have a PackageView  that only partially shows the contents of a 
PackageModel . In other words, one might want to delete an element from the 
PackageView  without deleting it from the PackageModel . In such a case, the user
should be able to re-add the deleted elements. 

To allow the user to add these deleted elements and to give the user a clear view of what
is in the model, a tree was created that shows everything that is inside a 
PackageModel . This tree, ModelTree , shows all the elements in the 
PackageModel  and everything that belongs to these elements. 

To the right is a screen-shot of a ModelTree . It is the tree of the package "Global". It
contains two classes ("class1" and "class2") and an association between these classes
("assoc1"). Class "class1" contains two attributes and two operations. 

A dialog that allows class "className" to be edited.

The class ClassDialog  is a dialog that is used to edit the properties of a 
ClassModel . The name, stereotype and visibility of a classes can be edited and
attributes and operations can be added, edited and removed. 

- 11 -

4.1.2  The view packageThe design and implementation of a Socca Editor



A Dialog allowing package "packageName" to be edited.

Just like there is a ClassDialog  to edit ClassModel s, there is a PackageDialog
to edit PackageModel s. The name, stereotype and visibility of the package can be
edited. 

The AttributeDialog  class is used to edit the properties of an attribute. There is a
text-field for the name, the data type and the initial value of the attribute. The drop-down
box can be used to change the visibility of the attribute. Finally, there are two check
boxes; if ‘Static member’ is checked it specifies that the attribute will part of the class
and not of the object. ‘Derived attribute’ specifies that the value of the attribute will be
derived from other attributes. 

- 12 -

4.1.2  The view packageThe design and implementation of a Socca Editor



Using the OperationDialog  dialog one can change the name, visibility and return
type of an operation. The table can be used to add, modify and remove the parameters of
the operation. Each parameter has a name, data type and an optional default type. The
‘Static member’ check-box has the same function as the ‘Static member’ check-box of
the AttributeDialog  dialog. The ‘Abstract operation’ check-box specifies that the
operation will not be implemented in the class it belongs to, but that it will be
implemented in a derived class. 

The name and stereo type of an association can be changed with the 
AssociationDialog  dialog. 

- 13 -

4.1.2  The view packageThe design and implementation of a Socca Editor



5  Problems encountered
During the development of the editor numerous problems were encountered. Most of these
were trivial and could easily be solved. Some of the problems however, required significantly
more time and effort to overcome them. These problems are described below. 

5.1  Event handling on Lines
The LineSegment  class that is described above, is used to draw the lines that represent an
association. There are two ways the lines can be drawn. One way is to draw directly on the 
PackageView . The disadvantage is that the PackageView  is not aware of these lines and
the lines will not be redrawn when an element inside the PackageView  moves or resizes.
Secondly, when the user wants to move a line to a different location, the line that was drawn
is not automatically erased. The only way to remove the line on the old location is to tell the 
PackageView  to redraw itself. This results in a lot of flickering.

The other way is to make every LineSegment  a real AWT Component . The advantage of
this approach is that AWT can then automatically handle the redraws and it can do this much
more efficiently than the application itself can. Secondly lines can be moved around without
flickering. There is, however, a disadvantage to using AWT’s Component . AWT keeps track
of the component’s location and size. The location is the x and y coordinate of the left-upper
corner of the Component  and the size is a width, height pair. These four values only allow
for rectangular shapes. Indeed, AWT does not support Component s that are not rectangular.

In version 1.1 of Java, transparency was introduced. This transparency allows the 
Component  to leave a part of its rectangle undrawn. The Component  behind it will then
show through. This can be used to simulate non-rectangular shapes. LineSegment  uses this
transparency to only draw the line itself. The rest of its rectangle is left untouched and will
show the components that lie below the LineSegment . This was fairly easy to get working
correctly. The real problems was with event handling.

Java’s event handling is currently quite complex. In Java 1.0 it was still pretty simple; when
the user clicks a mouse button, an event is sent to the component the mouse is on. This event
is sent to a method of the component. If the component decides to handle the event itself, it
will do so and the method returns true . On the other hand, if the component doesn’t handle
the event itself, it will return false . At that point AWT will sent the event to the parent
component which itself can decide whether to handle the event or not, etc.

This way of handling events has several disadvantages. The events are sent to a component
regardless of whether it is interested in them or not. This is a real problem with mouse-move
events, hundreds can be sent to the components per second when the user is moving the
mouse quickly and maybe there isn’t a single component interested in them. Performance
noticeably suffers from the resulting number of method calls. A second disadvantage is that to
react to an event, the programmer has to subclass the component. This leads to a explosion in
the number of classes.

- 14 -

5  Problems encounteredThe design and implementation of a Socca Editor



In Java 1.1 these problems were solved by introducing the concept of listeners. The
programmer can register one or more listeners to a component. All the events are then sent to
the listener(s). The advantage is that events are only sent to objects (the listeners) that are
interested in them and listeners can be registered without deriving a new class from the
component. This too is a concept that is easy enough to understand. What makes Java’s event
handling so complex is the desire to be compatible with the 1.0 way of event handling while
at the same time maximize the performance gains of the 1.1 way.

Back to LineSegment  and its rectangular shape. The problem is that LineSegment
either receives events on its entire rectangle or not at all. What is required is that only events
that are generated when the mouse pointer is close to the line are intercepted by the 
LineSegment  and the events that generated on other parts of the rectangle should be passed
on to the component that lies behind it.

In the above picture, a schematic view of a PackageView  is shown. Inside the 
PackageView  are two ClassViews , on top of one of them is an AssociationView
and on top of the AssociationView  a LineSegment . When the user clicks the mouse
on the line inside the LineSegment  the LineSegment  class should handle the event. If
the user clicks on the LineSegment , but not on the line, the event should be handled by the 
AssociationView , the right ClassView  or the PackageView , depending on the
location of the click.

The first thing that was tried to solve this problem was to use the 1.0 way of event handling. It
seemed like a perfect fit; the LineSegment  returns true  when the mouse is on the line and
it returns false  when the mouse is on a different part of the rectangle. Unfortunately,

- 15 -

5.1  Event handling on LinesThe design and implementation of a Socca Editor



because the application was written using Swing and Swing’s JComponent  registers an
event listener for its own use, the 1.0 compatibility code is disabled. The functions that were
used for event handling in 1.0 are simply not called anymore once an event listener is
registered (this is to maximize the performance gain of the new event handling code).

The only other option was to somehow adapt the 1.1 way of event handling to selectively pass
the event to the LineSegment  or to an underlying component. To achieve this, the AWT
source code was studied extensively. It was discovered that AWT sends the event to the 
LineSegment  if it has an event listener registered, LineSegment  then sends the event to
all the listeners. If LineSegment  doesn’t have any listeners registered it doesn’t receive the
event but the event is passed to an underlying component. The class that makes this decision
is AWT’s Container , it has the function getMouseEventTarget(int x, int y)
that will find a component that has listeners registered and contains the given location. If this
function could somehow be influenced to return the LineSegment  when the mouse is on
the line and the underlying component otherwise, all event handling would work as desired.
Frustratingly enough, the getMouseEventTarget  function is a private function and
cannot be overridden in a subclass.

The next approach that was tried was to receive the event in LineSegment  and then,
depending on the location of the mouse, send the event to the listeners or explicitly to the
parent of the component (PackageView ). The problem with this approach is that the parent
will, upon receiving the event, look if there is a child component that lies on the location of
the mouse and has any listeners registered. If so it will forward the event to this component.
In this case the LineSegment  is the component that lies on top and has listeners registered,
and thus the LineSegment  will receive the event. LineSegment  will try to sent it back to
the parent which will forward it again to the LineSegment . This recursive calling of event
handler functions will never stop.

Somehow the event should be tagged once the LineSegment  has rejected it and sent it to
the parent component. The parent component should then check the event for this tag and not
forward it if it is indeed tagged. Since events are generated internally in AWT the event cannot
be subclassed (AWT would still use the original class, not the subclass). So a way of tagging
the event should be found in the original event class. The AWT’s MouseEvent  class indeed
has a way of tagging the event: boolean consumed . This flag is meant to be used by the
listeners to tell the component that the event has already been processed and the component
itself should not take any more action. Although this flag is present in the MouseEvent
class, there aren’t many components that use it for this purpose, they don’t check this flag.
This flag could thus be misused for the tagging purpose. The source code of this solution
didn’t look pretty and it isn’t completely correct either. It is possible (like in the picture
above) that there is a component between the LineSegment  and the PackageView .
Sending the event from the LineSegment  to the PackageView  is thus not always correct.
Moreover, since the consumed  flag of the MouseEvent  is used in a way it was to meant to
be used, it is not guaranteed to even work in future versions of Java. A better solution had to
be found.

- 16 -

5.1  Event handling on LinesThe design and implementation of a Socca Editor



After studying the source code of AWT some more, it was discovered that the method 
getMouseEventTarget  calls the method contains(int x, int y)  of each child
in the container until it finds a child that returns true . It will start at the top and continue
calling the contains  method until it finds a child that says it contains the point. The
method contains  is public and can thus be overridden in the MouseEvent  class. The 
LineSegment  class can return true  if the x and y coordinates are on or near the line and 
false  otherwise. If it returns false, the Container  automatically goes on to the child that
lies underneath the LineSegment  and calls the contains  method of that child. This is
exactly what is needed. This approach turned out to work very elegantly and efficiently. After
optimizing the code a bit, this is the solution that is used in the editor. 

5.2  Text-fields in dialogs
Although the editor is currently not capable of supporting multiple users at the same time, it
was designed with a multi-user environment in mind. When multiple users are working on the
same project, it is important that each of them knows what the others are doing. For this
reason, their views of the model have to be up to date and consistent at all times. 
So when one user changes some aspect of the model or adds something new to it, all the users
should see this change immediately. In the current implementation of the editor, the views are
even updated while the user is typing in or changing a name or other string.

Most of the changes of the model are done using dialog boxes. These dialog boxes contain
text fields that can be used to change names, stereotypes, multiplicity, etc. When the user
types in one of these field, the field generates an event for each key press. The dialog box
receives this event and changes the underlying model accordingly. The model, in turn, will
generate an event to alert all the views of the change. Since the dialogs have registered
themselves with the model, they too receive the events and will update the fields. The result is
that all the views and dialogs are always up to date and consistent.

The internal implementation of JFC’s text-fields make this process a little harder than it
needs to be. These text-fields use the Document  class to store their string. The Document
class of JFC was meant to store and manipulate large text documents, but can also be (and is)
used for the shorter strings of the text-fields.

The Document  class has just two methods to change (part of) its contents: insertString
and remove . insertString  adds a string at a specified offset while remove  can be used
to remove a specified number of characters at a given offset.

The text-fields have only one method to change the string: setText . Internally the text-field
calls Document ’s remove  to remove the whole string and then insertString  to insert
the parameter of setText  into the Document .

The problem with this is, that the Document emits an event on each change. So when the
text-field calls the remove  and then the insertString  methods, two events are
generated. One that clears the string and one that sets the string to its new value. The dialog
box listens for document events and updates the model when one is received. 

- 17 -

5.2  Text-fields in dialogsThe design and implementation of a Socca Editor



When two dialog boxes are visible on the screen and the user is typing in one of them, the 
Document  of the active text-field generates events that are received by the dialog box. The
dialog box updates the model and the model sends events to all the views, including the
dialog boxes. The second dialog box also receives the event of the model and updates it’s
text-field. This text-field, unfortunately, generates two events; an event that makes the string
empty and an event that sets the string to its new value. Each of these events is received by
the second dialog box and the model is updated twice. The model sends out two events, etc.
The editor will end up in a never ending cycle of events.

The first solution that was tried was to ignore the ‘remove’ events and only handle the ‘insert’
events. This indeed worked correctly when the user typed in a new name, every text field had
the correct value. But when the user used the backspace key to erase a part of the name, the
generated ‘remove’ events were ignored and the text fields were no longer consistent. A
different solution was needed.

After some investigation it was discovered that the ‘remove’ events that were generated due
to the setText  method removed the entire string, while ‘remove’ events that were due to
use of the backspace key removed only one character of the string. The current
implementation of the editor ignores ‘remove’ events that will remove the entire string while
processing the other events. This works correctly unless the user wants to delete the last
character of the string, in that case the last character is the entire contents of the string and the
event is ignored.

5.3  Inter package associations
Associations between ClassView s are shown using lines or a combination of lines and a
diamond. These lines are drawn using the LineSegment  class as is described above. If the 
ClassView  or the diamond is moved by the user, the LineSegment  has to update its size
and/or location. When the ClassView s that play a role in the association are not all inside
the same package, things become a little more complicated.

If the user moves the package that contains the ClassView , the LineSegment  has to
update its size and location as well. Also, when the PackageView  is showing its scrollbars
and the user uses them to scroll the PackageView , the position of the ClassView  on the
screen changes and the LineSegment  needs to update its size and location. When the user
scrolls the PackageView  so that the ClassView  is no longer visible, the LineSegment
should disappear as well.

Above, it was explained that the components in Java have a specific z-ordering. Some
components are drawn in front of others. The editor should prevent a PackageView  to be
draw on top of the LineSegment  that goes to one of the PackageView ’s children.

- 18 -

5.3  Inter package associationsThe design and implementation of a Socca Editor



6  An example of the use of the editor

6.1  Introduction
In this section a step by step walk-thru will be given of the editor. This is done by creating the
producer-consumer pattern. The producer-consumer pattern consists of three classes: The 
Buffer , the Producer  and the Consumer . 
The Buffer : this class holds the items that are produced by the Producer  until they are
consumed by the Consumer . The Producer  can add items to the buffer by calling the 
put(value: string)  operation. The capacity of the buffer is limited so the Producer
cannot add new items to the buffer if the operation isFull()  : boolean  returns true .
The Consumer  can take one item out of the buffer by calling the operation get()  : 
string  unless isEmpty()  : boolean  returns true  in which case the buffer doesn’t
contain any items anymore. 
The Producer  can be told to produce more items by calling the operation 
produce(amount: integer) . 
The Consumer  consumes items when the consume(amount: integer)  operation is
called. 

In the next part of this section, the producer-consumer pattern will be created. A fairly
detailed description of the steps that are required are given so that the reader becomes familiar
with the functionality of the editor. 

6.2  Step by step walk-thru
When the editor is started (At Leiden run /home/most/run  on a Sun Ultra), it will open
two windows. The model tree at the left of the screen and a view of the ‘Global’  package
at the center of the screen. This example will focus on the window in the center of the screen,
the model tree will be ignored for now. 

- 19 -

6  An example of the use of the editorThe design and implementation of a Socca Editor



At the top of the package-view there is a menu bar with one menu item, the Mode menu. This
menu allows the user to change the mode the window is in. Usually the window is in Move
mode. In this mode the user can move and resize the contents of the package view and the
user can select or deselect elements. The other modes allow the user to add new things to the
package model (and thus the package view). There is a mode to add a new class to the
package, a mode to add a new package inside the package, a mode to add a new association
and a mode to add a new package role.

All the different modes that are in the Mode menu are also visible as icons on the toolbar just
below the menu bar. Selecting a mode with the menu has the same effect as selecting one
with an icon on the toolbar, so use the method that is more convenient to you. 

The first thing to do is to add the Buffer  class. For that, the window should be in the ‘Add
new class’ mode. Either select the second menu item of the Mode menu or select the second
icon of the toolbar. Move the mouse to the location where you want the buffer  class to be
created and press the left mouse button. 

Within seconds a dialog should appear. This dialog shows the name, stereotype and visibility
of the class. The newly created class doesn’t have a name yet, so the name text field is empty.
To give the class a name, click the left mouse button on the white text field next to the

- 20 -

6.2  Step by step walk-thruThe design and implementation of a Socca Editor



‘Name:’ label. Type the name of the class, for example ‘Buffer’. The buffer class has no
stereotype, so the stereotype text field can be left empty. Below the stereotype, there is the
visibility combo box. By default, the visibility is Private. To change this to Public, click on
the word Private. A drop down box will appear with the three choices Public, Protected and
Private. Click the left mouse button on the word Public. The drop down box will disappear
and the visibility will now be Public. 

At the top of the dialog there are the tabs General, Attributes and Operations. The General tab
is the one that is selected. By clicking with the left mouse button on the Operations tab, the
name, stereotype and visibility fields will disappear, the operations of the class will be shown.
Because the class was just created, it doesn’t have operations yet. To create a new operation,
click on the New button. 

A new dialog will appear. This is the operations dialog. At the top there is the name text field.
Click on the white text field next to the ‘Name:’ label to change the name. Enter the name of
the operation, e.g. ‘put’.

- 21 -

6.2  Step by step walk-thruThe design and implementation of a Socca Editor



Below the name text field there is the visibility combo box. It works just like the visibility
field of the class. You can use it to change the visibility of the operation to public.
Below the visibility field is the return type field. If the operation doesn’t return a value, you
can leave it empty. If it does return a value, the type of the value can be specified here.
Below the return type are the parameters. The information of the parameters is arranged in a
grid. Each row represents one parameter. Each rows contains the name, type and default value
of one parameter. To change a value, click on the cell and type in the new value.
To give the ‘put’ operation one parameter, ‘value’, do the following: Click with the left
mouse button on the top most field of the ‘Name’ column. Then enter the name of the
parameter: ‘value’. Click the mouse on the field right next to it, in the ‘Type’ column. Enter
the type of the parameter, ‘string’. To the right of the type field there is the field for the
default value. You may leave this field empty if no default value is needed. Otherwise enter
the default value in this field. Finally press enter to confirm your changes and click with the
mouse on the ‘Close’ button to dismiss the dialog. The class dialog will become visible again.
By pressing the ‘New’ button again the get , isFull  and isEmpty  operations can be
added. Once this is done the ‘Close’ button can be used to close this dialog as well. 

Now that the Buffer  class is created, it is time to create the Producer  class. Set the mode
of the window to ‘Add new class’ and click the left mouse button where the Producer  class
should appear. Giving the class it’s name (‘Producer’) and changing the visibility (‘Public’)
works the same as above with the Buffer . 

Once the Producer  is created create the Consumer  in a similar fashion. Next are the
associations between the Producer  and the Buffer  and between the Consumer  and the 
Buffer . Normally associations are created by switching to the ‘Add new association’ mode.
In this mode a new association, shown as a diamond, can be created. After the diamond is
visible the different roles that the classes play in the association can be shown with the ‘Add
new association role’ mode. However, in UML and thus in Socca  binary associations aren’t
usually shown with a diamond but simply with a straight line. To do this in the editor, don’t
use the ‘Add new association’ mode (as that would create the diamond), but switch directly to
the ‘Add new association role’ mode. Once in this mode, press the left mouse button on the 
Producer  class and drag the mouse (while holding the mouse button down) to the Buffer
class. Once the mouse is on the Buffer  class, release the left mouse button. A line will
appear, this is the binary association. Click on it with the left mouse button to raise and select
it. At the end points of the line there are two yellow circles. By dragging these yellow circles
around, the line can be moved. 

The classes can be moved around by pressing the left mouse button on their name, drag it to
the new location and release the mouse button. The class dialog can be shown by double
clicking on the name of the class or selecting ‘Edit...’ from the pop-up menu. The pop-up
menu is shown by pressing (and holding) the right mouse button on the class. Classes can be
deleted by selecting ‘Delete’ from the pop-up menu. There are two other items in the pop-up
menu: ‘Suppress’ and ‘Unsuppress’. Suppress will hide the contents of the class. This can be
used when the contents of the class is not important in that window. E.g. when one wants to
give a general overview of a large program, most of the details can be left out by suppressing
the classes. The classes will still be visible, but their contents will be hidden, thereby
simplifying the picture. When you want access to the contents, select the ‘Unsuppress’ item

- 22 -

6.2  Step by step walk-thruThe design and implementation of a Socca Editor



from the pop-up menu.

- 23 -

6.2  Step by step walk-thruThe design and implementation of a Socca Editor



7  Advantages and disadvantages of Java
Right from the start of this project using Java as the programming language was a
requirement. This choice was not arbitrary, there are some very compelling reasons to choose
Java. Some of these advantages are discussed here. Some of the disadvantages of Java will be
highlighted as well. 

7.1  Advantages of Java
Java is platform independent, a program can be used on every operating system that
supports Java. When a Java program is compiled, the output of the compiler is not
assembly like the output of a normal compiler but it is a platform independent byte code.
This byte code can be interpreted by the Java Virtual Machine (JVM). Every operating
system that has a JVM can be used to execute the program. The program doesn’t even
need to be recompiled to work on a different platform. The result of this byte code is that
processor specific details and operating specific details are dealt with on the target
computer. The programmer will be able to create programs that run on every popular
platform without worrying about machine specific details. 

Java is very object-oriented. This object oriented programming will lead to programs that
are easier to understand, extent and maintain. 

Java has no pointers. The number one cause of bugs in programs written in C or C++ are
incorrect use of pointers and incorrect memory management. Java uses references
instead of pointers. A reference is similar to pointers, except that the programmer cannot
use it as if it were an integer. This restriction has the effect that the language has more
control over the things a reference can point to. The Java compiler makes sure that a
reference only points to an object of the correct type or to null . Secondly, because the
references cannot start to point to a different object without the JVM knowing about it,
the JVM can deallocate a part of memory when the last reference to it disappears. This
garbage collection greatly simplifies programming and prevents a large number of bugs. 

Several advanced programming concept are included in the language. Multi-threading,
synchronization and exception handling and remote method invocation (RMI) are native
parts of the language and not add-on libraries as in other languages. This means that the
programmer can use these concepts easily and create programs that are more robust and
react faster than variants of the same program written in a different language. These
concepts are not used in the current state of the editor but will be essential once
multi-user capabilities are introduced. 

Java can be used on the World Wide Web. Most popular browsers can run Java
programs, called applets, inside a page. People will be able to use the editor everywhere
on the world. They don’t need to explicitly download or install the program. In practice,
however, it will take some time before this is a usable option. Most of the browsers only
support Java 1.0 or a subset of Java 1.1 . Since the editor uses Java 1.1 extensively it will

- 24 -

7  Advantages and disadvantages of JavaThe design and implementation of a Socca Editor



take several months, if not longer, before the editor can be used inside a browser. 

Java is so over-hyped that everybody is impressed when they learn that Java was used. 

7.2  Disadvantages
The object oriented nature of Java means that large portions of the Abstract
Window Toolkit  (AWT) and of the Java Foundation Classes  (JFC) are
private. If some functionality of these toolkits needs to be overridden by the
programmer, but the designer of the toolkit had not anticipated this need, this
encapsulation can complicate the live of the programmer. This frustrating effect has
hindered the progress of the editor at several occasions. One of them is the event
handling as discussed before. 

Java is a very young language. Support in operating systems and browsers has only been
added recently. Support for the less popular platforms may not even exist yet. Bug fixes
in the language, the libraries and the compiler are made on a regular basis. 

Java has been a popular language from the start. Backwards compatibility is an
important issue that slows down progress. Some of the less fortunate choices in the
earlier versions of Java (event handling and native peers) were corrected in Java 1.1 and
Java 1.2 but their effect is still noticeable. If the growth of Java had been more gradual,
the language could have been simpler and more elegant. 

- 25 -

7.2  DisadvantagesThe design and implementation of a Socca Editor



8  Future Work
The current implementation of the editor is limited in its functionality. Future versions might
extend this functionality in certain areas. A few of these possible extensions are discussed
here. 

More of UML’s class diagram. The editor supports only a subset of the class diagrams
that UML allows. To equal UML the editor must be extended to allow more kinds of
relations and the ability to add notes to parts of the model. Generalizations, aggregations
and dependencies should be added and at the same time Socca’s uses-relations might be
added. 

More of UML. Besides the class diagram, UML support many more diagrams. Some of
these, if compatible with Socca, might be included. Beside the class diagrams UML also
has use-case diagrams, sequence diagrams, collaboration diagrams, state diagrams,
activity diagrams and implementation diagrams. The state diagrams and activity
diagrams don’t add much if Socca’s internal and external STDs are supported. The other
diagrams might add some useful functionality. 

Socca’s internal and external STDs. Socca has three types of diagrams, the class
diagram, the internal STDs and the external STDs. To complete the Socca support, the
editor has to support least these internal and external STDs. 

Automatic generation of code. Most of the modern CASE tools are able to automatically
generate source code that the programmer can use as a basis of the program that is to be
written. It would be nice if the editor is extended to generate source code for several
popular programming languages. 

Full round-trip engineering. It happens quite often that while the programmers are
implementing the program, a change has to be made to the design. If the editor supports
full round-trip engineering, the code that has been generated by the editor and
subsequently modified by the programmers can be read back in, changes can be made
and the code can be written out again, without losing the implementation that was added
by the programmers. 

Socca process simulation/enacting. Socca’s STDs can be used in a simulation of the
program. Even before the program is fully implemented, certain aspects of the program
can be shown using a simulation. Especially the interaction of the different parts of the
program can be shown. The editor might show the STDs of the program and show which
state it is currently in and which transition will be used in the next step. 

Multi-user. In most enterprises it is rare that a single person designs and implements a
program. It is much more common that there is a small team of developers all working
on the program. The editor should allow them all to work simultaneously on the design
of the program. 

- 26 -

8  Future WorkThe design and implementation of a Socca Editor



Version control system. Several studies have been made of multi-user development
environments and each time it was concluded that, if the group of developers is not very
small, it is more efficient to have the developers work on a model that is known to be
correct, rather than with the most up to date version. The model is incrementally created
and each time a developer finishes a step in the development he/she ‘checks in’ his/her
changes. Once the changes are checked in, they become available to the other
developers. In other words, the other developers don’t see the inconsistent state the
model is in while the developer is making his/her changes but only see the consistent
end-result. The editor must use a version control system to support this. 

Repository of patterns. Certain problems show up in different programs over and over
again. It would be useful to have a collection of these problems and their solutions so
that the developers don’t have to reinvent the wheel. Gamma et al. wrote the book 
Design Patterns[4] for this purpose, but it would be even more useful to be able to
cut-and-paste these patterns into a design and to easily integrate them there. Over time
this repository can be updated and extended to increase its usefulness. 

Above it was mentioned that it is desirable to have an editor that is able to generate code.
The Socca modeling techniques can describe the program in such detail that most of the
program can be automatically generated from the model. There are, however, a few
issues that have to be addressed before efficient programs can be generated.

The Socca architecture uses STDs to describe the behavior of a class. Each operation has
one or more STDs and there are one or more STDs for the whole class. The STDs are
assumed to be executed on state-machines that each run on its own CPU. This theoretical
model is, although simple and powerful, very impractical. Current computers have one
or in rare cases a few CPUs. There can be hundreds or even thousands of STDs when a
non-trivial program is modeled. The state-machines for these STDs cannot each have
their own CPU. Running each state-machine in a thread of a multi-threaded program
isn’t practical either since the overhead of thread switching will make the program 
inefficient.

More research is needed to find a general method that will map the STDs of Socca onto a
number of threads in such a way that most or all of the parallelism of the model is
preserved while keeping the number of threads low so that the generated program runs
efficiently. If the number of threads is too high, the user may be able to manually make a
more efficient program and the code-generation becomes a less attractive feature of the 
editor.

One solution that was suggested is to extend Socca and add a notation to group parts of
the model in a single thread. The user can use this notation to annotate the model and
explicitly state that within a group of STDs, parallelism is not required. Since these
STDs are then known not to run at the same time, the code generation portion of the
editor can map the state-machines for these STDs to a single thread. An example of such
a mapping is to interleave the instructions of the state-machines. This results in
sequential execution that closely resembles parallel execution. This is exactly what an
operation system would do when multiple threads are run on a single CPU, except that

- 27 -

8  Future WorkThe design and implementation of a Socca Editor



the interleaving (scheduling) is not done at runtime but at code-generation time. 

One intuitive grouping of STDs would be to group all STDs of a class together; in other
words, within objects of such a class there is one thread to run the state-machines. The
state machines would not run in parallel but their execution would be interleaved.

- 28 -

8  Future WorkThe design and implementation of a Socca Editor



9  Conclusion
In this thesis the development of a prototype editor for Socca has been described. The general
architecture of the prototype was discussed and the model-view architecture was highlighted.
The classes of the editor were each shortly described. Some of the more significant problems
that were encountered during the development of the prototype were discussed. After that, a
step by step walk-thru was given so that the reader could become familiar with the
functionality of the editor. The advantages and disadvantages of the Java programming
languages were discussed to motivate the choice to use Java. And finally, a number of
possible directions for future work were presented.

- 29 -

9  ConclusionThe design and implementation of a Socca Editor



10  References
1.  Gregor Engels and Luuk P.J. Groenewegen. SOCCA: Specifications of Coordinated and

Cooperative Activities. In A.Finkelstein, J.Kramer, and B.A. Nuseibeh, editors, Software
Process Modelling and Technology, pages 71-102. Research Studies Press, Taunton,
1994. 

2.  Tineke de Bunje, Gregor Engels, Luuk P.J. Groenewegen, Aart Matsinger and Mark
Rijnbeek. Industrial Maintenance Modelled in SOCCA: an Experience Report.
Proceedings of the Fourth International Conference on the Software Process,
improvement and practice, page 13-26. Brington, UK, 1996. IEEE Computer Society
Press, Los Alamitos, California. 

3.  Glen E. Krasner and Stephen T. Pope. A cookbook for using the model view controller
user interface paradigm in Smalltalk-80. Journal of Object Oriented Programming,
1(3):26-49, August/September 1988. 

4.  Gamma, Helm, Johnson and Vlissides. Design Patterns. Addison-Wesley, Reading, MA,
1995. 

- 30 -

10  ReferencesThe design and implementation of a Socca Editor



11  Appendix A: The documentation of the 
classes

11.1   Class SoccaEditor
java.lang.Object
   |
   +----java.awt.Component
           |
           +----java.awt.Container
                   |
                   +----java.awt.Panel
                           |
                           +----java.applet.Applet
                                   |
                                   +----com.sun.java.swing.JApplet
                                           |
                                           +----SoccaEditor

public class SoccaEditor 
extends JApplet

The class SoccaEditor is the main class. This class contains the "main" method that is called
when the Socca editor is started. The "init" method is called when the editor is started as an
applet inside a browser. 

 SoccaEditor() 

 init () 
This method is called when the editor is run as an applet. 

 main(String[]) 
This method is called when the editor is run as an application.

 SoccaEditor 

- 31 -

11  Appendix A: The documentation of the classesThe design and implementation of a Socca Editor



 public SoccaEditor()

 main 

 public static void main(String args[])

This method is called when the editor is run as an application. It creates and shows a
MainWindow 

See Also: 
MainWindow 

 init  

 public void init()

This method is called when the editor is run as an applet. It, too, creates and shows a
MainWindow 

Overrides: 
init in class Applet 

See Also: 
MainWindow 

- 32 -

11.1  Class SoccaEditorThe design and implementation of a Socca Editor



11.2   Class ModelChangeEvent
java.lang.Object
   |
   +----java.util.EventObject
           |
           +----ModelChangeEvent

public class ModelChangeEvent 
extends EventObject

When something in a model changes, the model sends out a ModelChangeEvent. This event
is send to all the views that have registered themselves as event listeners. 

 ABSTRACT 
A function is now or is no longer abstract 

 AGGREGATE  
A attribute is now or is no longer an aggregate 

 ASSOCIATIONS 
An association was added to or removed from a class 

 ATTRIBUTES  
An attribute was added to or removed from a class 

 CLASSMEMBER  
An attribute or operation is now or is no longer a classmember 

 DERIVED  
A attribute is now or is no longer derived from other attributes 

 ELEMENTS  
An element (= a package or a class) was added to or removed from a package 

 GENERALIZATIONS  
An generalization was added to or removed from a class 

 INITIAL_VALUE  
The initial value of an attribute has changed 

 MULTIPLICITY  
The multiplicity of an association has changed 

 NAME  
The name of a class/package/attribute/etc has changed 

 NAVIGABLE  
An association is now or is no longer navigable 

 NOTES 
There was a note added to or removed from a model 

 OPERATIONS 
An operation was added to or removed from a class 

- 33 -

11.2  Class ModelChangeEventThe design and implementation of a Socca Editor



 OWNER 
The owner of a element or member has changed 

 PARAMETERS 
The parameters of an operation have changed 

 RETURNTYPE 
The return type of an operation has changed 

 ROLES 
A role was added to or removed from an association 

 STEREOTYPE 
The stereotype of a class/package/association/etc has changed 

 TYPE 
The type of an attribute or parameter has changed 

 type 
The type of the event. 

 USES_RELATIONS 
A uses-relation was added to or removed from a class 

 value 
The value of the changed variable at the moment the event was fired 

 VALUE_ADDED  
A value was added to the model 

 VALUE_CHANGED  
A value in the model has changed 

 VALUE_REMOVED  
A value was removed from the model 

 VISIBILITY  
The visibility of an element or member has changed 

 what 
What has been changed, this one of the 22 constants above.

 ModelChangeEvent(Object, int, int, Object) 
Create a new event.

 getType() 
Return the type of the event; VALUE_CHANGED, VALUE_ADDED or
VALUE_REMOVED 

 getValue() 
Return the value of the changed variable at the moment the event was fired 

 getWhat() 
Return what has been changed.

- 34 -

11.2  Class ModelChangeEventThe design and implementation of a Socca Editor



 VALUE_CHANGED  

 public static final int VALUE_CHANGED

A value in the model has changed

 VALUE_ADDED  

 public static final int VALUE_ADDED

A value was added to the model

 VALUE_REMOVED  

 public static final int VALUE_REMOVED

A value was removed from the model

 ABSTRACT 

 public static final int ABSTRACT

A function is now or is no longer abstract

 AGGREGATE  

 public static final int AGGREGATE

A attribute is now or is no longer an aggregate

 ASSOCIATIONS 

 public static final int ASSOCIATIONS

An association was added to or removed from a class

 ATTRIBUTES  

 public static final int ATTRIBUTES

An attribute was added to or removed from a class

 CLASSMEMBER  

 public static final int CLASSMEMBER

An attribute or operation is now or is no longer a classmember

 DERIVED  

- 35 -

11.2  Class ModelChangeEventThe design and implementation of a Socca Editor



 public static final int DERIVED

A attribute is now or is no longer derived from other attributes

 ELEMENTS  

 public static final int ELEMENTS

An element (= a package or a class) was added to or removed from a package

 GENERALIZATIONS  

 public static final int GENERALIZATIONS

An generalization was added to or removed from a class

 INITIAL_VALUE  

 public static final int INITIAL_VALUE

The initial value of an attribute has changed

 MULTIPLICITY  

 public static final int MULTIPLICITY

The multiplicity of an association has changed

 NAME  

 public static final int NAME

The name of a class/package/attribute/etc has changed

 NAVIGABLE  

 public static final int NAVIGABLE

An association is now or is no longer navigable

 NOTES 

 public static final int NOTES

There was a note added to or removed from a model

 OPERATIONS 

 public static final int OPERATIONS

An operation was added to or removed from a class

- 36 -

11.2  Class ModelChangeEventThe design and implementation of a Socca Editor



 OWNER 

 public static final int OWNER

The owner of a element or member has changed

 PARAMETERS 

 public static final int PARAMETERS

The parameters of an operation have changed

 ROLES 

 public static final int ROLES

A role was added to or removed from an association

 RETURNTYPE 

 public static final int RETURNTYPE

The return type of an operation has changed

 STEREOTYPE 

 public static final int STEREOTYPE

The stereotype of a class/package/association/etc has changed

 TYPE 

 public static final int TYPE

The type of an attribute or parameter has changed

 USES_RELATIONS 

 public static final int USES_RELATIONS

A uses-relation was added to or removed from a class

 VISIBILITY  

 public static final int VISIBILITY

The visibility of an element or member has changed

 type 

 private int type

- 37 -

11.2  Class ModelChangeEventThe design and implementation of a Socca Editor



The type of the event. This is one of VALUE_CHANGED, VALUE_ADDED and 
VALUE_REMOVED.

See Also: 
getType 

 what 

 private int what

What has been changed, this one of the 22 constants above.

See Also: 
getWhat 

 value 

 private Object value

The value of the changed variable at the moment the event was fired

See Also: 
getValue 

 ModelChangeEvent 

 public ModelChangeEvent(Object source,
                         int type,
                         int what,
                         Object value)

Create a new event. 

Parameters: 
source - the source of the event. 
type - the type of the event; VALUE_CHANGED, VALUE_ADDED or
VALUE_REMOVED. 
what - what has been changed 
value - the value of the changed variable at the moment the event was fired 

 getType 

 public int getType()

- 38 -

11.2  Class ModelChangeEventThe design and implementation of a Socca Editor



Return the type of the event; VALUE_CHANGED, VALUE_ADDED or
VALUE_REMOVED 

 getWhat 

 public int getWhat()

Return what has been changed. 

 getValue 

 public Object getValue()

Return the value of the changed variable at the moment the event was fired 

- 39 -

11.2  Class ModelChangeEventThe design and implementation of a Socca Editor



11.3   Interface ModelChangeListener
public interface ModelChangeListener 
extends EventListener

All views that are interested in receiving ModelChangeEvents should implement this interface
and register themself with the model. 

 valueAdded(ModelChangeEvent) 
This method is called when a value is added to a model 

 valueChanged(ModelChangeEvent) 
This method is called when a value in the model has changed 

 valueRemoved(ModelChangeEvent) 
This method is called when a value is removed from a model

 valueAdded 

 public abstract void valueAdded(ModelChangeEvent e)

This method is called when a value is added to a model 

 valueRemoved 

 public abstract void valueRemoved(ModelChangeEvent e)

This method is called when a value is removed from a model 

 valueChanged 

 public abstract void valueChanged(ModelChangeEvent e)

This method is called when a value in the model has changed 

- 40 -

11.3  Interface ModelChangeListenerThe design and implementation of a Socca Editor



11.4   Class Visibility
java.lang.Object
   |
   +----Visibility

public class Visibility  
extends Object 
implements Serializable

This class represents the visibility of classes, packages, attributes and operations. There are
three types of visibility: public, protected and private. These visibility types correspond to the
visibility that one might be familiar with from OO languages like C++ or Java. When the
visibility of a class/package/attribute/operation is shown or the screen a little trafic light is
shown. The colors red, yellow and green correspond to private, protected and public
respectively. 

 icon 
 label 
 PRIVATE  

Private visibility nobody but the class itself can access this element/member 
 PROTECTED 

Protected visibility, only the the subclasses can access it 
 PUBLIC  

Public visibility, everybody can access this element/member 
 text 

 Visibility (String, Icon) 
This constructor is private since there are only three visibility types and they are already
created as static members of this class, no other visibility types can be created.

 getRenderer() 
This method returns a ListCellRenderer that can be used to render listboxes in a dialog
box. 

- 41 -

11.4  Class VisibilityThe design and implementation of a Socca Editor



 toIcon() 
Convert the visibility to a trafic light icon. 

 toString() 
Convert the visibility one of the strings "Public", "Protected" or "Private" 

 PUBLIC  

 public static final Visibility PUBLIC

Public visibility, everybody can access this element/member

 PROTECTED 

 public static final Visibility PROTECTED

Protected visibility, only the the subclasses can access it

 PRIVATE  

 public static final Visibility PRIVATE

Private visibility nobody but the class itself can access this element/member

 text 

 private String text

 icon 

 private Icon icon

 label 

 private JLabel label

 Visibility  

 private Visibility(String text,
                    Icon icon)

This constructor is private since there are only three visibility types and they are already
created as static members of this class, no other visibility types can be created. 

 toIcon 

- 42 -

11.4  Class VisibilityThe design and implementation of a Socca Editor



 public Icon toIcon()

Convert the visibility to a trafic light icon. 

 toString 

 public String toString()

Convert the visibility one of the strings "Public", "Protected" or "Private" 

Overrides: 
toString in class Object 

 getRenderer 

 public static ListCellRenderer getRenderer()

This method returns a ListCellRenderer that can be used to render listboxes in a dialog
box. 

11.5   Class model.AssociationModel
java.lang.Object
   |
   +----model.ModelBase
           |
           +----model.AssociationModel

public class AssociationModel 
extends ModelBase

The class AssociationModel represents an association between classes. Each of these classes
play a certain role in the association. These roles are represented with the class
AssociationRoleModel. 

See Also: 
AssociationRoleModel

 name 
The name of the association. 

 owner 
The owner of this association. 

 roles 
The AssociationRoleModels that are part of this association 

- 43 -

11.5  Class model.AssociationModelThe design and implementation of a Socca Editor



 stereotype 
An optional stereotype of the association

 AssociationModel() 
The constructor of AssociationModel sets the name and sterotype to an empty string and
the owner to null.

 addRole(AssociationRoleModel) 
Add a new AssocationRoleModel to the association. 

 getName() 
Return the name of the association. 

 getOwner() 
Return the PackageModel that owns this association or null if there is currently no
owner. 

 getRole(int) 
Get one of the AssocationRoleModels. 

 getRoleCount() 
Return the number of AssocationRoleModels. 

 getStereotype() 
Return the stereotype of the association or null if there is none. 

 removeRole(AssociationRoleModel) 
Remove an AssocationRoleModel from the association. 

 setName(String) 
Change the name of the association. 

 setOwner(PackageModel) 
Set the owner of this association. 

 setStereotype(String) 
Set the stereotype. 

 toString() 
Convert this association to a string.

 name 

 private String name

The name of the association.

- 44 -

11.5  Class model.AssociationModelThe design and implementation of a Socca Editor



 stereotype 

 private String stereotype

An optional stereotype of the association

 owner 

 private PackageModel owner

The owner of this association.

 roles 

 private Vector roles

The AssociationRoleModels that are part of this association

 AssociationModel 

 public AssociationModel()

The constructor of AssociationModel sets the name and sterotype to an empty string and
the owner to null. 

 getName 

 public synchronized String getName()

Return the name of the association. 

 setName 

 public synchronized void setName(String name)

Change the name of the association. This method will send out an event to all the views
to allow them to update themselves. 

Parameters: 
name - the new name 

 getStereotype 

 public synchronized String getStereotype()

- 45 -

11.5  Class model.AssociationModelThe design and implementation of a Socca Editor



Return the stereotype of the association or null if there is none. 

 setStereotype 

 public synchronized void setStereotype(String stereotype)

Set the stereotype. This method will send out an event to all the views to allow them to
update themselves. 

Parameters: 
stereotype - the new stereotype, use null or "" if there is no stereotype 

 getRoleCount 

 public synchronized int getRoleCount()

Return the number of AssocationRoleModels. 

 getRole 

 public synchronized AssociationRoleModel getRole(int index)

Get one of the AssocationRoleModels. 

Parameters: 
index - the number of the role. This index should be between 0 and getRoleCount() 

 addRole 

 public synchronized void addRole(AssociationRoleModel a)

Add a new AssocationRoleModel to the association. An role model may only added
once, adding it again will have no effect. This method will send out an event to all the
views to allow them to update themselves. 

Parameters: 
a - the new role-model that will be added. 

 removeRole 

 public synchronized void removeRole(AssociationRoleModel a)

Remove an AssocationRoleModel from the association. If the role model is not part of
the association calling this method will have no effect. 

Parameters: 
a - the AssociationRoleModel that will be removed 

 getOwner 

- 46 -

11.5  Class model.AssociationModelThe design and implementation of a Socca Editor



 public synchronized PackageModel getOwner()

Return the PackageModel that owns this association or null if there is currently no
owner. 

 setOwner 

 public synchronized void setOwner(PackageModel owner)

Set the owner of this association. 

 toString 

 public synchronized String toString()

Convert this association to a string. This will return the name of the association or if
there is no name the string "<unnamed>" 

Overrides: 
toString in class Object 

- 47 -

11.5  Class model.AssociationModelThe design and implementation of a Socca Editor



11.6   Class model.AssociationRoleModel
java.lang.Object
   |
   +----model.ModelBase
           |
           +----model.AssociationRoleModel

public class AssociationRoleModel 
extends ModelBase

The class AssociationModel represents an association between classes. Each of these classes
play a certain role in the association. These roles are represented with the class
AssociationRoleModel. 

See Also: 
AssociationModel

 AGGREGATE  
 aggregate 

The association can be a normal association, an aggregate or a composite; This variable
specifies which it is. 

 association 
The association this role is a part of 

 COMPOSITE  
 klass 

The class that plays a role in the association 
 multiplicity  

The multiplicity of the role 
 name 

The name of the role 
 navigable 

Is this association navigable in this direction 
 NORMAL  
 ordered 

Are the objects that play this role ordered or is there no inherent ordering

 AssociationRoleModel(ClassModel) 

- 48 -

11.6  Class model.AssociationRoleModelThe design and implementation of a Socca Editor



 getAggregate() 
Return whether the association is a NORMAL association, an AGGREGATE or a
COMPOSITE. 

 getAssociation() 
Return the AssociationModel this role belongs to. 

 getKlass() 
Return the class that plays this role in the association. 

 getMultiplicity () 
Return the multiplicity of the role. 

 getName() 
Return the name of the role. 

 isNavigable() 
Return whether this role is navigable in this direction 

 isOrdered() 
Return whether the objects that play this role are ordered or not. 

 setAggregate(int) 
Change whether the association is a normal association, an aggregate or a composite. 

 setAssociation(AssociationModel) 
Change the association of which this role is a part. 

 setMultiplicity (String) 
Change the multiplicity of the role. 

 setName(String) 
Change the name of the role. 

 setNavigable(boolean) 
Set whether this role is navigable in this direction 

 setOrdered(boolean) 
Set whether the objects that play this role are ordered or not. 

 toString() 
Convert this role to a string.

 NORMAL  

 public static final int NORMAL

 AGGREGATE  

 public static final int AGGREGATE

 COMPOSITE  

- 49 -

11.6  Class model.AssociationRoleModelThe design and implementation of a Socca Editor



 public static final int COMPOSITE

 klass 

 private ClassModel klass

The class that plays a role in the association

 association 

 private AssociationModel association

The association this role is a part of

 name 

 private String name

The name of the role

 multiplicity  

 private String multiplicity

The multiplicity of the role

 aggregate 

 private int aggregate

The association can be a normal association, an aggregate or a composite; This variable
specifies which it is.

 navigable 

 private boolean navigable

Is this association navigable in this direction

 ordered 

 private boolean ordered

Are the objects that play this role ordered or is there no inherent ordering

 AssociationRoleModel 

 public AssociationRoleModel(ClassModel klass)

- 50 -

11.6  Class model.AssociationRoleModelThe design and implementation of a Socca Editor



 getAssociation 

 public synchronized AssociationModel getAssociation()

Return the AssociationModel this role belongs to. 

 setAssociation 

 synchronized void setAssociation(AssociationModel association)

Change the association of which this role is a part. This method does _NOT_ send out
any events since it is meant to be used to change a role without an association into a role
that belongs to an association, after that the role is not suppost to change associations. 

 getKlass 

 public synchronized ClassModel getKlass()

Return the class that plays this role in the association. This method is called getKlass and
not getClass because java.lang.Object already contains a getClass operation that can’t be
overwritten. 

 getName 

 public synchronized String getName()

Return the name of the role. 

 setName 

 public synchronized void setName(String name)

Change the name of the role. This method sends out an event to notify the views of the
change. 

 getMultiplicity  

 public synchronized String getMultiplicity()

Return the multiplicity of the role. 

 setMultiplicity  

 public synchronized void setMultiplicity(String multiplicity)

Change the multiplicity of the role. This method sends out an event to notify the views of
the change. 

 getAggregate 

 public synchronized int getAggregate()

- 51 -

11.6  Class model.AssociationRoleModelThe design and implementation of a Socca Editor



Return whether the association is a NORMAL association, an AGGREGATE or a
COMPOSITE. 

 setAggregate 

 public synchronized void setAggregate(int aggregate)

Change whether the association is a normal association, an aggregate or a composite. 

Parameters: 
aggregate - valid values are NORMAL, AGGREGATE and COMPOSITE. 

 isNavigable 

 public synchronized boolean isNavigable()

Return whether this role is navigable in this direction 

 setNavigable 

 public synchronized void setNavigable(boolean navigable)

Set whether this role is navigable in this direction 

 isOrdered 

 public synchronized boolean isOrdered()

Return whether the objects that play this role are ordered or not. 

 setOrdered 

 public synchronized void setOrdered(boolean ordered)

Set whether the objects that play this role are ordered or not. 

 toString 

 public synchronized String toString()

Convert this role to a string. This will return the name of the role or the string
"<unnamed>" if it has no name. 

Overrides: 
toString in class Object 

- 52 -

11.6  Class model.AssociationRoleModelThe design and implementation of a Socca Editor



11.7   Class model.AttributeModel
java.lang.Object
   |
   +----model.ModelBase
           |
           +----model.MemberModel
                   |
                   +----model.AttributeModel

public class AttributeModel  
extends MemberModel

The class AttributeModel represents one attribute of a class. 

 derived 
Is the attribute derived from other attributes and thus its value is determined based on
these attributes. 

 initialValue  
The initial value of the attribute. 

 type 
The data type of the attribute.

 AttributeModel () 

 getInitialValue() 
Return the initial value of the attribute. 

 getType() 
Return the data type of this attribute. 

 isDerived() 
Return whether the value of the attribute is derived from other attributes. 

 setDerived(boolean) 
Set whether the value of the attribute is derived from other attributes. 

 setInitialValue(String) 
Change the initial value of the attribute. 

- 53 -

11.7  Class model.AttributeModelThe design and implementation of a Socca Editor



 setType(String) 
Change the data type of the attribute. 

 toString() 
Convert the attribute to a string. 

 toString(boolean) 
Convert the attribute to a string.

 type 

 private String type

The data type of the attribute.

 initialValue  

 private String initialValue

The initial value of the attribute. That is, the value it will have before any value is
assigned to it.

 derived 

 private boolean derived

Is the attribute derived from other attributes and thus its value is determined based on
these attributes.

 AttributeModel  

 public AttributeModel()

 getType 

 public synchronized String getType()

Return the data type of this attribute. 

 setType 

 public synchronized void setType(String type)

Change the data type of the attribute. This method will notify the views by sending an
event them. 

- 54 -

11.7  Class model.AttributeModelThe design and implementation of a Socca Editor



 getInitialValue 

 public synchronized String getInitialValue()

Return the initial value of the attribute. 

 setInitialValue 

 public synchronized void setInitialValue(String value)

Change the initial value of the attribute. This method will notify the views by sending an
event to them. 

 isDerived 

 public synchronized boolean isDerived()

Return whether the value of the attribute is derived from other attributes. 

 setDerived 

 public synchronized void setDerived(boolean derived)

Set whether the value of the attribute is derived from other attributes. 

 toString 

 public synchronized String toString()

Convert the attribute to a string. This method calls toString(false) 

Overrides: 
toString in class Object 

 toString 

 public synchronized String toString(boolean terse)

Convert the attribute to a string. 

Parameters: 
terse - If true then only the name (or "<unnamed>" if there is no name) is returned. 
If false then the name is optionally prefixed with a "/" and/or a "$" to show that the
attribute is derived or a class member, respectively. The name is followed by the
data type and the initial value (if there is one). 

- 55 -

11.7  Class model.AttributeModelThe design and implementation of a Socca Editor



11.8   Class model.ClassModel
java.lang.Object
   |
   +----model.ModelBase
           |
           +----model.ElementModel
                   |
                   +----model.ClassModel

public class ClassModel 
extends ElementModel

The class ClassModel represents one class. This class keeps track of the attributes and
operations of the class and the relations it has. 

 associationRoles 
All the roles the class plays in various associations 

 attributes 
The attributes of the class. 

 operations 
The operations of the class. 

 usesRelations 
All the uses-relations that class has

 ClassModel() 

 addAssociationRole(AssociationRoleModel) 
Add a new role to the class. 

 addAttribute (AttributeModel) 
Add a new attribute to the class. 

 addOperation(OperationModel) 
Add a new operation to the class. 

 addUsesRelation(UsesRelationModel) 
 getAssociationRole(int) 

Return one specific association-role. 

- 56 -

11.8  Class model.ClassModelThe design and implementation of a Socca Editor



 getAssociationRoleCount() 
Return the number of association-roles this class has. 

 getAttribute (int) 
Return one specific attribute. 

 getAttributeCount () 
Return the number of attributes this class has. 

 getOperation(int) 
Return one specific operation. 

 getOperationCount() 
Return the number of operations this class has. 

 getUsesRelation(int) 
 getUsesRelationCount() 
 removeAllAssociationRoles() 

Remove all roles from the class. 
 removeAllAttributes () 

Remove all attributes from the class. 
 removeAllOperations() 

Remove all operations from the class. 
 removeAllUsesRelations() 
 removeAssociationRole(AssociationRoleModel) 

Remove a role from the class. 
 removeAttribute(AttributeModel) 

Remove an attribute from the class. 
 removeOperation(OperationModel) 

Remove an operation from the class. 
 removeUsesRelation(UsesRelationModel) 

 attributes 

 private Vector attributes

The attributes of the class.

 operations 

 private Vector operations

The operations of the class.

 associationRoles 

 private Vector associationRoles

All the roles the class plays in various associations

- 57 -

11.8  Class model.ClassModelThe design and implementation of a Socca Editor



 usesRelations 

 private Vector usesRelations

All the uses-relations that class has

 ClassModel 

 public ClassModel()

 getAttributeCount  

 public synchronized int getAttributeCount()

Return the number of attributes this class has. 

 getAttribute  

 public synchronized AttributeModel getAttribute(int index)

Return one specific attribute. 

Parameters: 
index - the number of the attribute. This value should be between 0 and
getAttributeCount() 

 addAttribute  

 public synchronized void addAttribute(AttributeModel a)

Add a new attribute to the class. If the attribute is already added, this method does
nothing. In all other cases, the method will notify the views of the addition by sending
out an event. 

Parameters: 
a - the new attribute 

 removeAttribute 

 public synchronized void removeAttribute(AttributeModel a)

Remove an attribute from the class. If the class doens’t have the attribute, nothing
happens. In all other cases, the method will notify the views of the removal by sending
out an event. 

- 58 -

11.8  Class model.ClassModelThe design and implementation of a Socca Editor



Parameters: 
a - the attribute that will be removed. 

 removeAllAttributes  

 public synchronized void removeAllAttributes()

Remove all attributes from the class. This method calls removeAttribute for all attributes
of the class. 

 getOperationCount 

 public synchronized int getOperationCount()

Return the number of operations this class has. 

 getOperation 

 public synchronized OperationModel getOperation(int index)

Return one specific operation. 

Parameters: 
index - the number of the operations. This value should be between 0 and
getOperationCount() 

 addOperation 

 public synchronized void addOperation(OperationModel o)

Add a new operation to the class. If the operation is already added, this method does
nothing. In all other cases, the method will notify the views of the addition by sending
out an event. 

Parameters: 
o - the new operation 

 removeOperation 

 public synchronized void removeOperation(OperationModel o)

Remove an operation from the class. If the class doens’t have the operation, nothing
happens. In all other cases, the method will notify the views of the removal by sending
out an event. 

Parameters: 
o - the operation that will be removed. 

 removeAllOperations 

- 59 -

11.8  Class model.ClassModelThe design and implementation of a Socca Editor



 public synchronized void removeAllOperations()

Remove all operations from the class. This method calls removeOperation for all
operations of the class. 

 getAssociationRoleCount 

 public synchronized int getAssociationRoleCount()

Return the number of association-roles this class has. 

 getAssociationRole 

 public synchronized AssociationRoleModel getAssociationRole(int index)

Return one specific association-role. 

Parameters: 
index - the number of the role. This value should be between 0 and
getAssociationRoleCount() 

 addAssociationRole 

 synchronized void addAssociationRole(AssociationRoleModel a)

Add a new role to the class. If the role is already added, this method does nothing. In all
other cases, the method will notify the views of the addition by sending out an event. 

Parameters: 
o - the new role 

 removeAssociationRole 

 public synchronized void removeAssociationRole(AssociationRoleModel a)

Remove a role from the class. If the class doens’t have the role, nothing happens. In all
other cases, the method will notify the views of the removal by sending out an event. 

Parameters: 
a - the role that will be removed. 

 removeAllAssociationRoles 

 public synchronized void removeAllAssociationRoles()

Remove all roles from the class. This method calls removeAssociationRole for all roles
of the class. 

 getUsesRelationCount 

 public synchronized int getUsesRelationCount()

 getUsesRelation 

- 60 -

11.8  Class model.ClassModelThe design and implementation of a Socca Editor



 public synchronized UsesRelationModel getUsesRelation(int index)

 addUsesRelation 

 public synchronized void addUsesRelation(UsesRelationModel u)

 removeUsesRelation 

 public synchronized void removeUsesRelation(UsesRelationModel u)

 removeAllUsesRelations 

 public synchronized void removeAllUsesRelations()

- 61 -

11.8  Class model.ClassModelThe design and implementation of a Socca Editor



11.9   Class model.ElementModel
java.lang.Object
   |
   +----model.ModelBase
           |
           +----model.ElementModel

public class ElementModel 
extends ModelBase

This class represents one element. It is the base class for ClassModel and PackageModel. 

See Also: 
ClassModel, PackageModel

 generalizations 
The generalizations of this element 

 name 
The name of the element 

 owner 
The package that owns this element 

 stereotype 
The stereotype of the element 

 visibility  
The visibility (private, protected or public) of this element

 ElementModel() 
This constructor is package private because ElementModel should never be directly
instanciated, instead a ClassModel or a PackageModel should be created.

 addGeneralization(GeneralizationModel) 
Add a new generalization to this element. 

 getGeneralization(int) 
Return one specifiec generalization model. 

- 62 -

11.9  Class model.ElementModelThe design and implementation of a Socca Editor



 getGeneralizationCount() 
Return the number of generalizations this element has. 

 getName() 
Return the name of the element. 

 getOwner() 
Return the package that owns this element. 

 getStereotype() 
Return the stereotype of the element or null if there is none. 

 getVisibility () 
Return the visibility of this element. 

 removeGeneralization(GeneralizationModel) 
Remove a generalization from this element. 

 setName(String) 
Change the name of the association. 

 setOwner(PackageModel) 
Change the owner of this element. 

 setStereotype(String) 
Set the stereotype. 

 setVisibility(Visibility) 
Set the visibility of this element. 

 toString() 
Convert this element to a string.

 name 

 private String name

The name of the element

 stereotype 

 private String stereotype

The stereotype of the element

 owner 

 private PackageModel owner

The package that owns this element

 visibility  

 private Visibility visibility

- 63 -

11.9  Class model.ElementModelThe design and implementation of a Socca Editor



The visibility (private, protected or public) of this element

 generalizations 

 private Vector generalizations

The generalizations of this element

 ElementModel 

 ElementModel()

This constructor is package private because ElementModel should never be directly
instanciated, instead a ClassModel or a PackageModel should be created. 

 getName 

 public synchronized String getName()

Return the name of the element. 

 setName 

 public synchronized void setName(String name)

Change the name of the association. This method will send out an event to all the views
to allow them to update themselves. 

Parameters: 
name - the new name 

 getStereotype 

 public synchronized String getStereotype()

Return the stereotype of the element or null if there is none. 

 setStereotype 

 public synchronized void setStereotype(String stereotype)

Set the stereotype. This method will send out an event to all the views to allow them to
update themselves. 

Parameters: 
stereotype - the new stereotype, use null or "" if there is no stereotype 

- 64 -

11.9  Class model.ElementModelThe design and implementation of a Socca Editor



 getGeneralizationCount 

 public synchronized int getGeneralizationCount()

Return the number of generalizations this element has. 

 getGeneralization 

 public synchronized GeneralizationModel getGeneralization(int index)

Return one specifiec generalization model. 

Parameters: 
index - the number of the generalization. This value should be between 0 and
getGeneralizationCount() 

 addGeneralization 

 synchronized void addGeneralization(GeneralizationModel g)

Add a new generalization to this element. If the generalization is already added, this
method does nothing. In all other cases, the method will notify the views of the addition
by sending out an event. 

Parameters: 
g - the new generalization 

 removeGeneralization 

 public synchronized void removeGeneralization(GeneralizationModel g)

Remove a generalization from this element. If the element doens’t have the
generalization, nothing happens. In all other cases, the method will notify the views of
the removal by sending out an event. 

Parameters: 
g - the generalization that will be removed. 

 getOwner 

 public synchronized PackageModel getOwner()

Return the package that owns this element. 

 setOwner 

 public synchronized void setOwner(PackageModel owner)

Change the owner of this element. This method will notify the views of the change by
sending out an event. 

- 65 -

11.9  Class model.ElementModelThe design and implementation of a Socca Editor



 getVisibility  

 public synchronized Visibility getVisibility()

Return the visibility of this element. 

 setVisibility 

 public synchronized void setVisibility(Visibility visibility)

Set the visibility of this element. This method will notify the views of the change by
sending out an event. 

 toString 

 public synchronized String toString()

Convert this element to a string. This will return the name of the element or if there is no
name the string "<unnamed>" 

Overrides: 
toString in class Object 

- 66 -

11.9  Class model.ElementModelThe design and implementation of a Socca Editor



11.10   Class model.GeneralizationModel
java.lang.Object
   |
   +----model.ModelBase
           |
           +----model.GeneralizationModel

public class GeneralizationModel 
extends ModelBase

This class represents a generalization relation between elements. 

 name 
An optional name for the generalization, may be null 

 subtype 
The element that is the sub-type 

 supertype 
The element that is the super-type

 GeneralizationModel(ElementModel, ElementModel) 

 getName() 
Return the name of the generalization. 

 getSubtype() 
Return the sub-type of the generalization. 

 getSupertype() 
Return the super-type of the generalization. 

 setName(String) 
Change the name of the generalization.

 name 

- 67 -

11.10  Class model.GeneralizationModelThe design and implementation of a Socca Editor



 private String name

An optional name for the generalization, may be null

 supertype 

 private ElementModel supertype

The element that is the super-type

 subtype 

 private ElementModel subtype

The element that is the sub-type

 GeneralizationModel 

 public GeneralizationModel(ElementModel supertype,
                            ElementModel subtype)

 getName 

 public synchronized String getName()

Return the name of the generalization. 

 setName 

 public synchronized void setName(String name)

Change the name of the generalization. This method will send out an event to all the
views to allow them to update themselves. 

 getSupertype 

 public synchronized ElementModel getSupertype()

Return the super-type of the generalization. 

 getSubtype 

 public synchronized ElementModel getSubtype()

Return the sub-type of the generalization. 

- 68 -

11.10  Class model.GeneralizationModelThe design and implementation of a Socca Editor



- 69 -

11.10  Class model.GeneralizationModelThe design and implementation of a Socca Editor



11.11   Class model.MemberModel
java.lang.Object
   |
   +----model.ModelBase
           |
           +----model.MemberModel

public class MemberModel 
extends ModelBase

A class can have attributes and operations. This class has all the things that attibutes and
operation have in common. 

 classMember 
Is the member part of an object or part of the class (static) 

 name 
The name of the member 

 owner 
The class which is the owner of this member 

 visibility  
The visibility (private, protected or public) of the member

 MemberModel() 

 getName() 
Return the name of the member 

 getOwner() 
Return the class which owns this member. 

 getVisibility () 
Return the visibility of the member 

 isClassMember() 
Is this member a class member (static). 

 setClassMember(boolean) 
Set whether the member is a class member. 

- 70 -

11.11  Class model.MemberModelThe design and implementation of a Socca Editor



 setName(String) 
Change the name of the member. 

 setOwner(ClassModel) 
Set the owner of this member. 

 setVisibility(Visibility) 
Change the visibility of the member.

 name 

 private String name

The name of the member

 visibility  

 private Visibility visibility

The visibility (private, protected or public) of the member

 classMember 

 private boolean classMember

Is the member part of an object or part of the class (static)

 owner 

 private ClassModel owner

The class which is the owner of this member

 MemberModel 

 MemberModel()

 getName 

 public synchronized String getName()

Return the name of the member 

 setName 

- 71 -

11.11  Class model.MemberModelThe design and implementation of a Socca Editor



 public synchronized void setName(String name)

Change the name of the member. This method will send out an event to all the views to
allow them to update themselves. 

Parameters: 
name - the new name 

 getVisibility  

 public synchronized Visibility getVisibility()

Return the visibility of the member 

 setVisibility 

 public synchronized void setVisibility(Visibility visibility)

Change the visibility of the member. This method will send out an event to all the views
to allow them to update themselves. 

Parameters: 
visibility - the new visibility 

 isClassMember 

 public synchronized boolean isClassMember()

Is this member a class member (static). 

 setClassMember 

 public synchronized void setClassMember(boolean classMember)

Set whether the member is a class member. This method will send out an event to all the
views to allow them to update themselves. 

 getOwner 

 public synchronized ClassModel getOwner()

Return the class which owns this member. 

 setOwner 

 public synchronized void setOwner(ClassModel owner)

Set the owner of this member. This method will send out an event to all the views to
allow them to update themselves. 

Parameters: 
owner - the new class that will own this member 

- 72 -

11.11  Class model.MemberModelThe design and implementation of a Socca Editor



- 73 -

11.11  Class model.MemberModelThe design and implementation of a Socca Editor



11.12   Class model.ModelBase
java.lang.Object
   |
   +----model.ModelBase

public class ModelBase 
extends Object 
implements Serializable

ModelBase is the base class of the model hierarchy. This class contains all the functionality
needed to send events to the views when a model changes. 

 listenerList 
The list of listeners. 

 notes 
Each model can have a number of notes attached to it. 

 properties 
A set of properties that views can associate with a model.

 ModelBase() 
The constructor of ModelBase is package-private; use the constructor of a derived class
to instantiate a model.

 addModelChangeListener(ModelChangeListener) 
Add a listener to the list that’s notified each time a change to the data model occurs. 

 addNote(NoteModel) 
Add a note to the model. 

 fireValueAdded(int, Object) 
Fire an event signaling that a value was added to the model. 

 fireValueChanged(int, Object) 
Fire an event signaling that a value of the model has changed. 

 fireValueRemoved(int, Object) 
Fire an event signaling that a value was removed from the model. 

- 74 -

11.12  Class model.ModelBaseThe design and implementation of a Socca Editor



 getNote(int) 
Get a note. 

 getNoteCount() 
Get the number of Notes. 

 getProperty(String) 
Get a property that a view has associated with this model. 

 removeModelChangeListener(ModelChangeListener) 
Remove a listener from the list that’s notified each time a change to the data model
occurs. 

 removeNote(NoteModel) 
Remove a note from the model. 

 setProperty(String, Object) 
Set a property in the hashtable of this model.

 listenerList 

 private transient EventListenerList listenerList

The list of listeners. All objects that are interested in receiving events when the model
changes should implement the interface ModelChangeListener and register themself with
the addModelChangeListener method below. The addModelChangeListener method will
add the interested object as a lister to this listenerList.

 properties 

 private Hashtable properties

A set of properties that views can associate with a model. The model itself will not use
any of the information that is stored in this hashtable, but the views that store the
information may later you it for themselves. Examples of things to store in here: the size
and the location of a view.

See Also: 
getProperty, setProperty 

 notes 

 private Vector notes

Each model can have a number of notes attached to it. This is currently not
used/implemented in the views, but this vector can be used if such implementation is
later added

 ModelBase 

- 75 -

11.12  Class model.ModelBaseThe design and implementation of a Socca Editor



 ModelBase()

The constructor of ModelBase is package-private; use the constructor of a derived class
to instantiate a model. 

 getProperty 

 public synchronized Object getProperty(String propName)

Get a property that a view has associated with this model. Views can associate a property
to this model by calling setProperty() 

Parameters: 
propName - the name of the property 

Returns: 
the value of the property 

See Also: 
setProperty 

 setProperty 

 public synchronized void setProperty(String propName,
                                      Object value)

Set a property in the hashtable of this model. The model itself will not use any of the
information that is stored in this hashtable, but the views that store the information may
later you it for themselves. Examples of things that can be stored: the size of a view and
the location of a view. 

Parameters: 
propName - the name of the property 
value - the value of the property 

See Also: 
getProperty 

 getNoteCount 

 public synchronized int getNoteCount()

Get the number of Notes. 

Returns: 
the number of notes attachted to this model 

 getNote 

- 76 -

11.12  Class model.ModelBaseThe design and implementation of a Socca Editor



 public synchronized NoteModel getNote(int index)

Get a note. 

Parameters: 
index - the number of the note. The notes are numbered from 0 to getNoteCount(). 

Returns: 
the note 

See Also: 
addNote, removeNote 

 addNote 

 public synchronized void addNote(NoteModel n)

Add a note to the model. 

Parameters: 
n - the note to add. 

See Also: 
getNote, removeNote 

 removeNote 

 public synchronized void removeNote(NoteModel n)

Remove a note from the model. Calling this method with a note that is not attached to
the model is legal, it that case the call does nothing. 

Parameters: 
n - the note to remove 

See Also: 
getNote, addNote 

 addModelChangeListener 

 public void addModelChangeListener(ModelChangeListener l)

Add a listener to the list that’s notified each time a change to the data model occurs. 

Parameters: 
l - the ModelChangeListener 

See Also: 
removeModelChangeListener 

 removeModelChangeListener 

 public void removeModelChangeListener(ModelChangeListener l)

- 77 -

11.12  Class model.ModelBaseThe design and implementation of a Socca Editor



Remove a listener from the list that’s notified each time a change to the data model
occurs. 

Parameters: 
l - the ModelChangeListener 

See Also: 
addModelChangeListener 

 fireValueChanged 

 protected void fireValueChanged(int what,
                                 Object value)

Fire an event signaling that a value of the model has changed. 

Parameters: 
what - an integer identifying which type of value has been changed. See
ModelChangeEvent for a list of valid values for parameter what. 
value - the new value of the variable. 

See Also: 
ModelChangeEvent 

 fireValueAdded 

 protected void fireValueAdded(int what,
                               Object value)

Fire an event signaling that a value was added to the model. 

Parameters: 
what - an integer identifying which type of value has been added. See
ModelChangeEvent for a list of valid values for parameter what. 
value - the new value. 

See Also: 
ModelChangeEvent 

 fireValueRemoved 

 protected void fireValueRemoved(int what,
                                 Object value)

Fire an event signaling that a value was removed from the model. 

Parameters: 
what - an integer identifying which type of value has been removed. See
ModelChangeEvent for a list of valid values for parameter what. 
value - the value just before it was removed. 

See Also: 
ModelChangeEvent 

- 78 -

11.12  Class model.ModelBaseThe design and implementation of a Socca Editor



- 79 -

11.12  Class model.ModelBaseThe design and implementation of a Socca Editor



11.13   Class model.NoteModel
java.lang.Object
   |
   +----model.ModelBase
           |
           +----model.NoteModel

public class NoteModel 
extends ModelBase

The class NoteModel allows notes to be added to another model. A note is just a piece of text
that helps the designer to clarify the design but has no meaning to the computer. 

 owner 
To which model this note belongs 

 text 
The text of the note.

 NoteModel(ModelBase) 
Constructor; creates an empty note. 

 NoteModel(ModelBase, String) 
Constructor; creates an note with specified text.

 getOwner() 
Return the model to which this note belongs. 

 getText() 
Return the text of the note. 

 setOwner(ModelBase) 
Change the owner of this note. 

 setText(String) 
Change the text of the note.

 text 

- 80 -

11.13  Class model.NoteModelThe design and implementation of a Socca Editor



 private String text

The text of the note.

 owner 

 private ModelBase owner

To which model this note belongs

 NoteModel 

 public NoteModel(ModelBase owner)

Constructor; creates an empty note. 

 NoteModel 

 public NoteModel(ModelBase owner,
                  String text)

Constructor; creates an note with specified text. 

 getOwner 

 public synchronized ModelBase getOwner()

Return the model to which this note belongs. 

 setOwner 

 public synchronized void setOwner(ModelBase owner)

Change the owner of this note. 

 getText 

 public synchronized String getText()

Return the text of the note. 

 setText 

 public synchronized void setText(String text)

Change the text of the note. 

- 81 -

11.13  Class model.NoteModelThe design and implementation of a Socca Editor



- 82 -

11.13  Class model.NoteModelThe design and implementation of a Socca Editor



11.14   Class model.OperationModel
java.lang.Object
   |
   +----model.ModelBase
           |
           +----model.MemberModel
                   |
                   +----model.OperationModel

public class OperationModel 
extends MemberModel

The class OperationModel represents one operation of a class. 

 abstractOperation 
Will this operation be implemented in the class to which it belongs or will it be abstract
and be implemented in a subclass. 

 parameters 
The parameter of the operation 

 returnType 
The return type of the operation.

 OperationModel() 

 addParameter(ParameterModel) 
Add a new parameter 

 getParameter(int) 
Return one specific parameter 

 getParameterCount() 
Return the number of parameters this operation has. 

 getReturnType() 
Return the return type of this operation 

 isAbstract() 
Return if the operation is abstract. 

- 83 -

11.14  Class model.OperationModelThe design and implementation of a Socca Editor



 removeParameter(int) 
Remove a parameter 

 setAbstract(boolean) 
Set whether the operation is abstract. 

 setParameter(int, ParameterModel) 
Set one parameter 

 setParameters(Vector) 
Set all the parameters of the operation 

 setReturnType(String) 
Change the return type of this operation. 

 toString() 
Convert the operation to a string. 

 toString(boolean) 
Convert the operation to a string.

 parameters 

 private Vector parameters

The parameter of the operation

 returnType 

 private String returnType

The return type of the operation.

 abstractOperation 

 private boolean abstractOperation

Will this operation be implemented in the class to which it belongs or will it be abstract
and be implemented in a subclass.

 OperationModel 

 public OperationModel()

 getParameterCount 

 public synchronized int getParameterCount()

- 84 -

11.14  Class model.OperationModelThe design and implementation of a Socca Editor



Return the number of parameters this operation has. 

 getParameter 

 public synchronized ParameterModel getParameter(int index)

Return one specific parameter 

 setParameter 

 public synchronized void setParameter(int index,
                                       ParameterModel param)

Set one parameter 

 addParameter 

 public synchronized void addParameter(ParameterModel param)

Add a new parameter 

 removeParameter 

 public synchronized void removeParameter(int index)

Remove a parameter 

 setParameters 

 public synchronized void setParameters(Vector newParams)

Set all the parameters of the operation 

 getReturnType 

 public synchronized String getReturnType()

Return the return type of this operation 

 setReturnType 

 public synchronized void setReturnType(String type)

Change the return type of this operation. This method will notify the views by sending
an event to them. 

 isAbstract 

 public synchronized boolean isAbstract()

Return if the operation is abstract. 

- 85 -

11.14  Class model.OperationModelThe design and implementation of a Socca Editor



 setAbstract 

 public synchronized void setAbstract(boolean abstr)

Set whether the operation is abstract. This method will notify the views by sending an
event to them. 

 toString 

 public synchronized String toString(boolean terse)

Convert the operation to a string. 

Parameters: 
terse - If true then only the name (or "<unnamed>" if there is no name) is returned. 
If false then the name is optionally prefixed with a ’$’ to show that the operation is
a class member. The name is followed by a list of parameters (if there are any) and
an optional return type. 

 toString 

 public synchronized String toString()

Convert the operation to a string. This calls toString(false); 

Overrides: 
toString in class Object 

- 86 -

11.14  Class model.OperationModelThe design and implementation of a Socca Editor



11.15   Class model.PackageModel
java.lang.Object
   |
   +----model.ModelBase
           |
           +----model.ElementModel
                   |
                   +----model.PackageModel

public class PackageModel 
extends ElementModel

This class contains the information about one package 

 associations 
The associations between classes inside this package 

 elements 
The elements (packages and classes) inside this package

 PackageModel() 

 addAssociation(AssociationModel) 
Add a new association. 

 addElement(ElementModel) 
Add a new element to the package 

 getAssociation(int) 
Get one specific association. 

 getAssociationCount() 
Get the number of association between classes inside the package. 

 getElement(int) 
Get one specific element from the package 

 getElementCount() 
Return the number of elements in the package 

 removeAssociation(AssociationModel) 
Remove an association from the package. 

- 87 -

11.15  Class model.PackageModelThe design and implementation of a Socca Editor



 removeElement(ElementModel) 
Remove an element from the package 

 associations 

 private Vector associations

The associations between classes inside this package

 elements 

 private Vector elements

The elements (packages and classes) inside this package

 PackageModel 

 public PackageModel()

 getElementCount 

 public synchronized int getElementCount()

Return the number of elements in the package 

 getElement 

 public synchronized ElementModel getElement(int index)

Get one specific element from the package 

 addElement 

 public synchronized void addElement(ElementModel e)

Add a new element to the package 

 removeElement 

 public synchronized void removeElement(ElementModel e)

Remove an element from the package 

- 88 -

11.15  Class model.PackageModelThe design and implementation of a Socca Editor



 getAssociationCount 

 public synchronized int getAssociationCount()

Get the number of association between classes inside the package. 

 getAssociation 

 public synchronized AssociationModel getAssociation(int index)

Get one specific association. 

 addAssociation 

 public synchronized void addAssociation(AssociationModel a)

Add a new association. 

 removeAssociation 

 public synchronized void removeAssociation(AssociationModel a)

Remove an association from the package. 

- 89 -

11.15  Class model.PackageModelThe design and implementation of a Socca Editor



11.16   Class model.ParameterModel
java.lang.Object
   |
   +----model.ParameterModel

public class ParameterModel 
extends Object 
implements Serializable

This class contains the information about one parameter of a operations. 

 defaultValue 
The default value of the parameter, may be null 

 name 
The name of the parameter 

 type 
The data type of the parameter

 ParameterModel(String, String, String) 
Constructor; create a new parameter.

 getDefaultValue() 
Return the default value of the parameter 

 getName() 
Return the name of the parameter 

 getType() 
Return the data type of the parameter 

 name 

 private String name

- 90 -

11.16  Class model.ParameterModelThe design and implementation of a Socca Editor



The name of the parameter

 type 

 private String type

The data type of the parameter

 defaultValue 

 private String defaultValue

The default value of the parameter, may be null

 ParameterModel 

 public ParameterModel(String name,
                       String type,
                       String defaultValue)

Constructor; create a new parameter. 

Parameters: 
name - the name of the parameter 
type - the data type of the parameter 
defaultValue - the default value of the parameter, may be null 

 getName 

 public synchronized String getName()

Return the name of the parameter 

 getType 

 public synchronized String getType()

Return the data type of the parameter 

 getDefaultValue 

 public synchronized String getDefaultValue()

Return the default value of the parameter 

- 91 -

11.16  Class model.ParameterModelThe design and implementation of a Socca Editor



- 92 -

11.16  Class model.ParameterModelThe design and implementation of a Socca Editor



11.17   Class model.UsesRelationModel
java.lang.Object
   |
   +----model.ModelBase
           |
           +----model.UsesRelationModel

public class UsesRelationModel 
extends ModelBase

 operations 
 provider 
 user 

 UsesRelationModel() 

 user 

 private ClassModel user

 provider 

 private ClassModel provider

 operations 

 private Vector operations

 UsesRelationModel 

 public UsesRelationModel()

- 93 -

11.17  Class model.UsesRelationModelThe design and implementation of a Socca Editor



11.18   Class view.AssociationDialog
java.lang.Object
   |
   +----java.awt.Component
           |
           +----java.awt.Container
                   |
                   +----java.awt.Window
                           |
                           +----java.awt.Dialog
                                   |
                                   +----com.sun.java.swing.JDialog
                                           |
                                           +----view.AssociationDialog

public class AssociationDialog 
extends JDialog 
implements ActionListener, DocumentListener, ModelChangeListener

This is a dialog box that allows the user to edit an Association and its roles 

 closeButton 
The close button, when the user click on it, the dialog disappears 

 model 
The model of which this is a view 

 name 
A text-field that shows the name of the association 

 stereotype 
A text-field that shows the stereotype of the association 

 tabbedPane 
The TabbedPane in which the roles are shown

 AssociationDialog(Frame, AssociationModel) 
Constructor; creates the dialog box for AssociationModel model 

- 94 -

11.18  Class view.AssociationDialogThe design and implementation of a Socca Editor



 actionPerformed(ActionEvent) 
This method is called when the user has pushed a button or pressed the enter-key in a
text field. 

 changedUpdate(DocumentEvent) 
This method is called when the user has changed something in a text-field that is neither
an insert nor a remove. 

 handleDocumentEvent(DocumentEvent) 
This method is called when the value in the name or stereotype text-fields has changed. 

 insertUpdate(DocumentEvent) 
This method is called when the user has entered something in a text-field. 

 removeUpdate(DocumentEvent) 
This method is called when the user has removed something from a text-field. 

 showRole(AssociationRoleModel) 
This method makes sure that the tabbed pane shows the specified role. 

 valueAdded(ModelChangeEvent) 
This method is called when a value is added to the model. 

 valueChanged(ModelChangeEvent) 
This method is called when a value in the model has changed. 

 valueRemoved(ModelChangeEvent) 
This method is called when a value is removed from the model.

 model 

 private AssociationModel model

The model of which this is a view

 tabbedPane 

 private JTabbedPane tabbedPane

The TabbedPane in which the roles are shown

 name 

 private JTextField name

A text-field that shows the name of the association

 stereotype 

 private JTextField stereotype

A text-field that shows the stereotype of the association

- 95 -

11.18  Class view.AssociationDialogThe design and implementation of a Socca Editor



 closeButton 

 private JButton closeButton

The close button, when the user click on it, the dialog disappears

 AssociationDialog 

 public AssociationDialog(Frame frame,
                          AssociationModel model)

Constructor; creates the dialog box for AssociationModel model 

Parameters: 
frame - the window this dialog belongs to. 
model - the model of which this is a view 

 showRole 

 public void showRole(AssociationRoleModel arm)

This method makes sure that the tabbed pane shows the specified role. 

Parameters: 
arm - the role to show in the tabbed pane 

 actionPerformed 

 public void actionPerformed(ActionEvent e)

This method is called when the user has pushed a button or pressed the enter-key in a
text field. This method is public as an implementation detail and should not be called by
a programmer. 

 insertUpdate 

 public void insertUpdate(DocumentEvent e)

This method is called when the user has entered something in a text-field. This method is
public as an implementation detail and should not be called by a programmer. 

 removeUpdate 

 public void removeUpdate(DocumentEvent e)

- 96 -

11.18  Class view.AssociationDialogThe design and implementation of a Socca Editor



This method is called when the user has removed something from a text-field. This
method is public as an implementation detail and should not be called by a programmer. 

 changedUpdate 

 public void changedUpdate(DocumentEvent e)

This method is called when the user has changed something in a text-field that is neither
an insert nor a remove. This method is public as an implementation detail and should not
be called by a programmer. 

 handleDocumentEvent 

 private void handleDocumentEvent(DocumentEvent e)

This method is called when the value in the name or stereotype text-fields has changed.
This method will call the setName or setStereotype methods of the model to propagate
the change. 

 valueChanged 

 public void valueChanged(ModelChangeEvent e)

This method is called when a value in the model has changed. This method will update
the values in the text-fields. This method is public as an implementation detail and
should not be called by a programmer. 

 valueAdded 

 public void valueAdded(ModelChangeEvent e)

This method is called when a value is added to the model. This method is public as an
implementation detail and should not be called by a programmer. 

 valueRemoved 

 public void valueRemoved(ModelChangeEvent e)

This method is called when a value is removed from the model. This method is public as
an implementation detail and should not be called by a programmer. 

- 97 -

11.18  Class view.AssociationDialogThe design and implementation of a Socca Editor



11.19   Class view.AssociationRoleView
java.lang.Object
   |
   +----java.awt.Component
           |
           +----java.awt.Container
                   |
                   +----com.sun.java.swing.JComponent
                           |
                           +----view.Movable
                                   |
                                   +----view.RelativeMovable
                                           |
                                           +----view.BoundedMovable
                                                   |
                                                   +----view.Handle
                                                           |
                                                           +----view.AssociationRoleView

public class AssociationRoleView 
extends Handle 
implements ModelChangeListener

This is a view of the AssociationRoleModel. It shows the name and multiplicity of the role. 

 classView 
The view of the class that plays the role in the association 

 container 
The container that is the parent of the name and multiplicity labels 

 model 
The model of which this is a view 

 multiplicity  
A label that shows the multiplicity of the role 

 multiplicityContainer  
The container that is the parent of the multiplicity label. 

 name 
A label that shows the name of the role 

 nameContainer 
The container that is the parent of the name label, it moves relative to this.

- 98 -

11.19  Class view.AssociationRoleViewThe design and implementation of a Socca Editor



 AssociationRoleView(AssociationRoleModel, ClassView, Container) 
The constructor of the AssociationRoleView class.

 getClassView() 
Return the view of the class that plays the role in the association. 

 raise() 
Place the role-view at the front; raising it above all other components. 

 remove() 
This method is called when the role-view is being removed. 

 valueAdded(ModelChangeEvent) 
This method is doesn’t do anything but needs to be there to satisfy the
ModelChangeListener interface signature. 

 valueChanged(ModelChangeEvent) 
This method is called when a value in the model changes. 

 valueRemoved(ModelChangeEvent) 
This method is doesn’t do anything but needs to be there to satisfy the
ModelChangeListener interface signature.

 model 

 private AssociationRoleModel model

The model of which this is a view

 classView 

 private ClassView classView

The view of the class that plays the role in the association

 container 

 private Container container

The container that is the parent of the name and multiplicity labels

 name 

 private JLabel name

A label that shows the name of the role

- 99 -

11.19  Class view.AssociationRoleViewThe design and implementation of a Socca Editor



 nameContainer 

 private RelativeMovable nameContainer

The container that is the parent of the name label, it moves relative to this.

 multiplicity  

 private JLabel multiplicity

A label that shows the multiplicity of the role

 multiplicityContainer  

 private RelativeMovable multiplicityContainer

The container that is the parent of the multiplicity label.

 AssociationRoleView 

 public AssociationRoleView(AssociationRoleModel model,
                            ClassView classView,
                            Container container)

The constructor of the AssociationRoleView class. 

Parameters: 
model - the model of which this is a view 
classView - the view of the class that plays the role in the association 
container - the container that is the parent of the name and multiplicity labels. 

 raise 

 public void raise()

Place the role-view at the front; raising it above all other components. 

Overrides: 
raise in class Movable 

 getClassView 

 public ClassView getClassView()

Return the view of the class that plays the role in the association. 

- 100 -

11.19  Class view.AssociationRoleViewThe design and implementation of a Socca Editor



 remove 

 public void remove()

This method is called when the role-view is being removed. It will remove the name and
multiplicity containers of the screen. 

 valueChanged 

 public void valueChanged(ModelChangeEvent e)

This method is called when a value in the model changes. This method is public as an
implementation detail and should not be called by a programmer. 

 valueAdded 

 public void valueAdded(ModelChangeEvent e)

This method is doesn’t do anything but needs to be there to satisfy the
ModelChangeListener interface signature. This method is public as an implementation
detail and should not be called by a programmer. 

 valueRemoved 

 public void valueRemoved(ModelChangeEvent e)

This method is doesn’t do anything but needs to be there to satisfy the
ModelChangeListener interface signature. This method is public as an implementation
detail and should not be called by a programmer. 

- 101 -

11.19  Class view.AssociationRoleViewThe design and implementation of a Socca Editor



11.20   Class view.AssociationView
java.lang.Object
   |
   +----java.awt.Component
           |
           +----java.awt.Container
                   |
                   +----com.sun.java.swing.JComponent
                           |
                           +----view.Movable
                                   |
                                   +----view.Resizable
                                           |
                                           +----view.AssociationView

public class AssociationView 
extends Resizable 
implements ModelChangeListener

This class represents an association; it does this either with a line (in case of a binary
association) or a diamond (is all other cases). 

 container 
 diamondVisible 

Whether the diamond is visible or not 
 lines 

All the lines that are connected to the roles 
 mode 

A reference to the Mode object, this is used to check in which mode the PackageWindow
is 

 model 
The model of this view 

 modelToViewMap 
A hashtable to convert a model into a view 

 mouseDragPoint 
The point where the user first pressed the mouse button when the user is dragging the
mouse 

 name 
The name label of the association 

 namePanel 
The panel that contains the name and the stereotype labels 

 packageView 

- 102 -

11.20  Class view.AssociationViewThe design and implementation of a Socca Editor



 roles 
All the roles of this association 

 stereotype 
The stereotype label of the association

 AssociationView(AssociationModel, PackageView, Container) 

 addRole(AssociationRoleModel) 
Add a new role to this association. 

 contains(int, int) 
This method is called by the AWT event handling to determin whether the point (x, y)
lies inside of this component. 

 doResize(int, int) 
This method is called to resize the component. 

 findFrame() 
Find the Frame ancestor of this component. 

 findMode(Component) 
Find the PackageWindow ancestor of this component and get its Mode. 

 getModel() 
Return the model of which this is a view 

 mouseClicked(MouseEvent) 
This method is called when the user clicks the mouse on the association-view. 

 mouseDragged(MouseEvent) 
This method is called when the user drags the mouse on the association-view. 

 mousePressed(MouseEvent) 
This method is called when the user presses a mouse button on the association-view. 

 mouseReleased(MouseEvent) 
This method is called when the user releases the mouse button. 

 paintComponent(Graphics) 
This method overrides the paintComponent of the super class to allow the diamond to be
painted in a non-rectangular fashion. 

 remove() 
This method is called when the association is being removed. 

 removeRole(AssociationRoleModel) 
Remove a role from this association. 

 updateName() 
Update the contents of the name label. 

 updatePoly() 

- 103 -

11.20  Class view.AssociationViewThe design and implementation of a Socca Editor



 updateStereotype() 
Update the contents of the stereotype label. 

 valueAdded(ModelChangeEvent) 
This method is called when a role is added to the association model. 

 valueChanged(ModelChangeEvent) 
This method is called when the name of the stereotype of the association model has
changed. 

 valueRemoved(ModelChangeEvent) 
This method is called when a role is removed from the association model.

 model 

 private AssociationModel model

The model of this view

 packageView 

 private PackageView packageView

 container 

 private Container container

 name 

 private JLabel name

The name label of the association

 stereotype 

 private JLabel stereotype

The stereotype label of the association

 namePanel 

 private JPanel namePanel

The panel that contains the name and the stereotype labels

 roles 

 private Vector roles

All the roles of this association

- 104 -

11.20  Class view.AssociationViewThe design and implementation of a Socca Editor



 lines 

 private Hashtable lines

All the lines that are connected to the roles

 modelToViewMap 

 private Hashtable modelToViewMap

A hashtable to convert a model into a view

 diamondVisible 

 private boolean diamondVisible

Whether the diamond is visible or not

 mode 

 private Mode mode

A reference to the Mode object, this is used to check in which mode the PackageWindow 
is

 mouseDragPoint 

 private Point mouseDragPoint

The point where the user first pressed the mouse button when the user is dragging the 
mouse

 AssociationView 

 public AssociationView(AssociationModel model,
                        PackageView packageView,
                        Container container)

 getModel 

 public AssociationModel getModel()

Return the model of which this is a view 

 addRole 

 private void addRole(AssociationRoleModel roleModel)

- 105 -

11.20  Class view.AssociationViewThe design and implementation of a Socca Editor



Add a new role to this association. Called in response to an event from the model. 

 removeRole 

 private void removeRole(AssociationRoleModel model)

Remove a role from this association. Called in response to an event from the model. 

 remove 

 void remove()

This method is called when the association is being removed. It will remove all the lines
to the class-views. 

 updateName 

 private void updateName()

Update the contents of the name label. Called in response to an event from the model. 

 updateStereotype 

 private void updateStereotype()

Update the contents of the stereotype label. If the stereotype is an empty string, the label
is removed (so that only the name is visible and not the stereotype label). If the
stereotype is not an empty string the label is added and it’s value is updated. 

 doResize 

 protected void doResize(int deltaX,
                         int deltaY)

This method is called to resize the component. 

Overrides: 
doResize in class Resizable 

 valueAdded 

 public void valueAdded(ModelChangeEvent e)

This method is called when a role is added to the association model. This method is
public as an implementation detail and should not be called by a programmer. 

 valueRemoved 

 public void valueRemoved(ModelChangeEvent e)

This method is called when a role is removed from the association model. This method is
public as an implementation detail and should not be called by a programmer. 

- 106 -

11.20  Class view.AssociationViewThe design and implementation of a Socca Editor



 valueChanged 

 public void valueChanged(ModelChangeEvent e)

This method is called when the name of the stereotype of the association model has
changed. This method is public as an implementation detail and should not be called by a
programmer. 

 mouseClicked 

 public void mouseClicked(MouseEvent e)

This method is called when the user clicks the mouse on the association-view. When the
user double clicks on the association-view an AssociationDialog is created and shown,
allowing the user to edit the values in the association model. This method is public as an
implementation detail and should not be called by a programmer. 

Overrides: 
mouseClicked in class Movable 

 mouseDragged 

 public void mouseDragged(MouseEvent e)

This method is called when the user drags the mouse on the association-view. If the
current mode is the AddAssociationRole mode a line is shown from the point where the
user pressed the mouse button down to the current position of the mouse. If the user
releases the mouse button on a class-view, a new association role is created. This method
is public as an implementation detail and should not be called by a programmer. 

Overrides: 
mouseDragged in class Resizable 

 mousePressed 

 public void mousePressed(MouseEvent e)

This method is called when the user presses a mouse button on the association-view.
This method is public as an implementation detail and should not be called by a
programmer. 

Overrides: 
mousePressed in class Resizable 

 mouseReleased 

 public void mouseReleased(MouseEvent e)

This method is called when the user releases the mouse button. If the user has dragged
the mouse to a class-view and the current mode is the AddAssociationRole mode, a new
association role is created. This method is public as an implementation detail and should

- 107 -

11.20  Class view.AssociationViewThe design and implementation of a Socca Editor



not be called by a programmer. 

Overrides: 
mouseReleased in class Resizable 

 paintComponent 

 public void paintComponent(Graphics g)

This method overrides the paintComponent of the super class to allow the diamond to be
painted in a non-rectangular fashion. This method is public as an implementation detail
and should not be called by a programmer. 

Overrides: 
paintComponent in class JComponent 

 updatePoly 

 private void updatePoly()

 contains 

 public boolean contains(int x,
                         int y)

This method is called by the AWT event handling to determin whether the point (x, y)
lies inside of this component. True is returned if this is the case, false otherwise. This
method is public as an implementation detail and should not be called by a programmer. 

Overrides: 
contains in class JComponent 

 findFrame 

 protected Frame findFrame()

Find the Frame ancestor of this component. The frame is needed to show dialog boxes. 

 findMode 

 protected Mode findMode(Component c)

Find the PackageWindow ancestor of this component and get its Mode. 

- 108 -

11.20  Class view.AssociationViewThe design and implementation of a Socca Editor



11.21   Class view.AttributeDialog
java.lang.Object
   |
   +----java.awt.Component
           |
           +----java.awt.Container
                   |
                   +----java.awt.Window
                           |
                           +----java.awt.Dialog
                                   |
                                   +----com.sun.java.swing.JDialog
                                           |
                                           +----view.AttributeDialog

public class AttributeDialog  
extends JDialog 
implements ActionListener, DocumentListener, ModelChangeListener

This is a dialog box that allows the user to edit an attribute. 

 classMember 
A checkbox that shows whether the attribute is a normal member or a class member
(static) 

 closeButton 
The close button, when the user click on it, the dialog disappears 

 derived 
A checkbox that show whether the value of the attribute is derived from other attributes 

 initialValue  
A text-field that shows the initial value of the attribute 

 model 
The model of which this is a view 

 name 
A text-field that shows the name of the attribute 

 type 
A text-field that shows the data type of the attribute 

 visibility  
A combobox that shows the visibility of the attribute

- 109 -

11.21  Class view.AttributeDialogThe design and implementation of a Socca Editor



 AttributeDialog (Frame, AttributeModel) 
Constructor; creates the dialog box for AttributeModel model 

 actionPerformed(ActionEvent) 
This method is called when the user has pushed a button or pressed the enter-key in a
text field. 

 changedUpdate(DocumentEvent) 
This method is called when the user has changed something in a text-field that is neither
an insert nor a remove. 

 handleDocumentEvent(DocumentEvent) 
This method is called when the value in the name, type or initial value text-fields has
changed. 

 insertUpdate(DocumentEvent) 
This method is called when the user has entered something in a text-field. 

 removeUpdate(DocumentEvent) 
This method is called when the user has removed something from a text-field. 

 valueAdded(ModelChangeEvent) 
 valueChanged(ModelChangeEvent) 

This method is called when a value in the model has changed. 
 valueRemoved(ModelChangeEvent) 

 model 

 private AttributeModel model

The model of which this is a view

 name 

 private JTextField name

A text-field that shows the name of the attribute

 initialValue  

 private JTextField initialValue

A text-field that shows the initial value of the attribute

 type 

 private JTextField type

- 110 -

11.21  Class view.AttributeDialogThe design and implementation of a Socca Editor



A text-field that shows the data type of the attribute

 visibility  

 private JComboBox visibility

A combobox that shows the visibility of the attribute

 classMember 

 private JCheckBox classMember

A checkbox that shows whether the attribute is a normal member or a class member 
(static)

 derived 

 private JCheckBox derived

A checkbox that show whether the value of the attribute is derived from other attributes

 closeButton 

 private JButton closeButton

The close button, when the user click on it, the dialog disappears

 AttributeDialog  

 public AttributeDialog(Frame parent,
                        AttributeModel model)

Constructor; creates the dialog box for AttributeModel model 

Parameters: 
parent - the window this dialog belongs to. 
model - the model of which this is a view 

 actionPerformed 

 public void actionPerformed(ActionEvent e)

This method is called when the user has pushed a button or pressed the enter-key in a
text field. This method is public as an implementation detail and should not be called by
a programmer. 

- 111 -

11.21  Class view.AttributeDialogThe design and implementation of a Socca Editor



 insertUpdate 

 public void insertUpdate(DocumentEvent e)

This method is called when the user has entered something in a text-field. This method is
public as an implementation detail and should not be called by a programmer. 

 removeUpdate 

 public void removeUpdate(DocumentEvent e)

This method is called when the user has removed something from a text-field. This
method is public as an implementation detail and should not be called by a programmer. 

 changedUpdate 

 public void changedUpdate(DocumentEvent e)

This method is called when the user has changed something in a text-field that is neither
an insert nor a remove. This method is public as an implementation detail and should not
be called by a programmer. 

 handleDocumentEvent 

 private void handleDocumentEvent(DocumentEvent e)

This method is called when the value in the name, type or initial value text-fields has
changed. This method will call the setName, setType or setInitialValue methods of the
model to propagate the change. 

 valueAdded 

 public void valueAdded(ModelChangeEvent e)

 valueRemoved 

 public void valueRemoved(ModelChangeEvent e)

 valueChanged 

 public void valueChanged(ModelChangeEvent e)

This method is called when a value in the model has changed. This method will update
the values in the text-fields. This method is public as an implementation detail and
should not be called by a programmer. 

- 112 -

11.21  Class view.AttributeDialogThe design and implementation of a Socca Editor



11.22   Class view.AttributeView
java.lang.Object
   |
   +----java.awt.Component
           |
           +----java.awt.Container
                   |
                   +----com.sun.java.swing.JComponent
                           |
                           +----com.sun.java.swing.JLabel
                                   |
                                   +----view.AttributeView

public class AttributeView  
extends JLabel 
implements ModelChangeListener

This class shows one attribute on the screen. The attribute is shown as a trafic light icon
showing the visibility, followed by the name, data type and initial value of the attribute 

 model 
The model of which this class is a view

 AttributeView (AttributeModel) 
Constructor; create an AttributeView for AttributeModel model 

 deselected() 
This method is called when the attribute is deselected. 

 getModel() 
Return the model of which this class is a view. 

 selected() 
This method is called when the attribute is selected. 

 valueAdded(ModelChangeEvent) 
 valueChanged(ModelChangeEvent) 

This method is called when a value in the model has changed. 

- 113 -

11.22  Class view.AttributeViewThe design and implementation of a Socca Editor



 valueRemoved(ModelChangeEvent) 

 model 

 private AttributeModel model

The model of which this class is a view

 AttributeView  

 public AttributeView(AttributeModel model)

Constructor; create an AttributeView for AttributeModel model 

 valueChanged 

 public void valueChanged(ModelChangeEvent e)

This method is called when a value in the model has changed. This method will update
the label and the icon. This method is public as an implementation detail and should not
be called by a programmer. 

 valueAdded 

 public void valueAdded(ModelChangeEvent e)

 valueRemoved 

 public void valueRemoved(ModelChangeEvent e)

 selected 

 public void selected()

This method is called when the attribute is selected. 

 deselected 

 public void deselected()

This method is called when the attribute is deselected. 

 getModel 

- 114 -

11.22  Class view.AttributeViewThe design and implementation of a Socca Editor



 public AttributeModel getModel()

Return the model of which this class is a view. 

- 115 -

11.22  Class view.AttributeViewThe design and implementation of a Socca Editor



11.23   Class view.AttributesView
java.lang.Object
   |
   +----java.awt.Component
           |
           +----java.awt.Container
                   |
                   +----com.sun.java.swing.JComponent
                           |
                           +----com.sun.java.swing.JPanel
                                   |
                                   +----view.AttributesView

public class AttributesView  
extends JPanel 
implements ModelChangeListener

This class show a list of attributes; all the attributes of a class. 

 box 
 model 

The class model that owns the attributes that are shown by this class 
 modelToViewMap 

A hashtable that maps and attribute model to a view 
 mouseListener 

if this is not null than all mouse events that occur on the attribute views will be send to
this listener.

 AttributesView (ClassModel, MouseListener) 
The AttributesView constructor; show a list of the attributes of ClassModel model.

 addAttribute (AttributeModel) 
Add a new attribute to the list 

 removeAttribute(AttributeModel) 
Remove an attribute from the list. 

- 116 -

11.23  Class view.AttributesViewThe design and implementation of a Socca Editor



 valueAdded(ModelChangeEvent) 
This method is called when an attribute was added to the model. 

 valueChanged(ModelChangeEvent) 
 valueRemoved(ModelChangeEvent) 

This method is called when an attribute was removed from the model.

 model 

 private ClassModel model

The class model that owns the attributes that are shown by this class

 modelToViewMap 

 private Hashtable modelToViewMap

A hashtable that maps and attribute model to a view

 box 

 private Box box

 mouseListener 

 private MouseListener mouseListener

if this is not null than all mouse events that occur on the attribute views will be send to
this listener.

 AttributesView  

 public AttributesView(ClassModel model,
                       MouseListener mouseListener)

The AttributesView constructor; show a list of the attributes of ClassModel model. 

Parameters: 
model - the classmodel that owns the attributes that are to be shown by this class. 
mouseListener - if this is not null than all mouse events that occur on the attribute
views will be send to this listener. 

 addAttribute  

- 117 -

11.23  Class view.AttributesViewThe design and implementation of a Socca Editor



 private void addAttribute(AttributeModel attrib)

Add a new attribute to the list 

 removeAttribute 

 private void removeAttribute(AttributeModel attrib)

Remove an attribute from the list. 

 valueAdded 

 public void valueAdded(ModelChangeEvent e)

This method is called when an attribute was added to the model. This method is public as
an implementation detail and should not be called by a programmer. 

 valueRemoved 

 public void valueRemoved(ModelChangeEvent e)

This method is called when an attribute was removed from the model. This method is
public as an implementation detail and should not be called by a programmer. 

 valueChanged 

 public void valueChanged(ModelChangeEvent e)

- 118 -

11.23  Class view.AttributesViewThe design and implementation of a Socca Editor



11.24   Class view.BoundedMovable
java.lang.Object
   |
   +----java.awt.Component
           |
           +----java.awt.Container
                   |
                   +----com.sun.java.swing.JComponent
                           |
                           +----view.Movable
                                   |
                                   +----view.RelativeMovable
                                           |
                                           +----view.BoundedMovable

public class BoundedMovable 
extends RelativeMovable

The class Movable contains the functionality that allows the user to move a component on the
screen to a new location. The user can use the mouse to drag a component (that is a subclass
of Movable) and this class will allow it to move. 

RelativeMovable inherits from Movable and allows a component on the screen to be moved
relative to another component. For example, A is a Movable and B is a RelativeMovable that
moves relative to A. The user can move B around and the RelativeMovable will keep track of
the relative offset to A. If the user moves A around, B will move as well to keep the offset the
same. 

BoundedMovable inherits from RelativeMovable. It restricts the movement of B, relative to
A, so that B is always on the contours of A. 

 BoundedMovable(Movable, ModelBase, String) 
The constructor of the BoundedMovable 

 distance(Point, Point) 
Calculate the distance between points P and Q. 

 project(Point, Point, Point) 
Project point P on the line between A and B. 

 updateLocation() 

- 119 -

11.24  Class view.BoundedMovableThe design and implementation of a Socca Editor



 BoundedMovable 

 public BoundedMovable(Movable movable,
                       ModelBase modelBase,
                       String locationName)

The constructor of the BoundedMovable 

Parameters: 
movable - the movable on which outline the BoundedMovable will move 
modelBase - the model in which the location of the BoundedMovable will be stored 
locationName - the name under which the location of the BoundedMovable will be
stored in the model. 

 updateLocation 

 protected void updateLocation()

Overrides: 
updateLocation in class RelativeMovable 

 project 

 private Point project(Point p,
                       Point a,
                       Point b)

Project point P on the line between A and B. Return the point on the line after the
projection of P. If the projection of P lies not between A and B, return A or B itself,
whichever is closer. 

 distance 

 private int distance(Point p,
                      Point q)

Calculate the distance between points P and Q. This method calculates (p.x - q.x)^2 +
(p.y - p.y)^2. It does not take the square root. Thus it really returns the square of the
distance instead of the distance itself. For the purpose of finding the point with minimal
distance this doesn’t matter. 

- 120 -

11.24  Class view.BoundedMovableThe design and implementation of a Socca Editor



11.25   Class view.ClassDialog
java.lang.Object
   |
   +----java.awt.Component
           |
           +----java.awt.Container
                   |
                   +----java.awt.Window
                           |
                           +----java.awt.Dialog
                                   |
                                   +----com.sun.java.swing.JDialog
                                           |
                                           +----view.ClassDialog

public class ClassDialog 
extends JDialog 
implements ActionListener, DocumentListener, MouseListener, ModelChangeListener

This is a dialog box that allows the user to edit a ClassModel. 

 attributesView 
A list which displays all the attributes of this class. 

 closeButton 
The close button, when the user click on it, the dialog disappears 

 deleteAttribButton  
Buttons to create a new attribute, edit an attribute or delete an attribute 

 deleteOperButton 
Buttons to create a new operation, edit an operation or delete an operation 

 editAttribButton  
Buttons to create a new attribute, edit an attribute or delete an attribute 

 editOperButton 
Buttons to create a new operation, edit an operation or delete an operation 

 frame 
 model 

The class model can be edited by this dialog. 
 name 

The text-field that shows the name of the class 
 newAttribButton  

Buttons to create a new attribute, edit an attribute or delete an attribute 
 newOperButton 

Buttons to create a new operation, edit an operation or delete an operation 

- 121 -

11.25  Class view.ClassDialogThe design and implementation of a Socca Editor



 operationsView 
A list which displays all the operations of this class. 

 selectedAttrib 
The attribute that is currently selected. 

 selectedOper 
The operation that is currently selected. 

 stereotype 
The text-field that shows the stereotype of the class 

 tabbedPane 
The TabbedPane that allows switching between general class pane and the attributes and
operation panes. 

 visibility  
The combobox that shows the visibility of the class

 ClassDialog(Frame, ClassModel) 
Constructor; creates the dialog box for ClassModel model 

 actionPerformed(ActionEvent) 
This method is called when the user has pushed a button or pressed the enter-key in a
text field. 

 changedUpdate(DocumentEvent) 
This method is called when the user has changed something in a text-field that is neither
an insert nor a remove. 

 handleDocumentEvent(DocumentEvent) 
This method is called when the value in the name or stereotype text-fields has changed. 

 insertUpdate(DocumentEvent) 
This method is called when the user has entered something in a text-field. 

 mouseClicked(MouseEvent) 
This method is called when the user that clicked the mouse on an attribute or operation. 

 mouseEntered(MouseEvent) 
 mouseExited(MouseEvent) 
 mousePressed(MouseEvent) 
 mouseReleased(MouseEvent) 
 removeUpdate(DocumentEvent) 

This method is called when the user has removed something from a text-field. 
 valueAdded(ModelChangeEvent) 
 valueChanged(ModelChangeEvent) 

This method is called when a value in the model has changed. 

- 122 -

11.25  Class view.ClassDialogThe design and implementation of a Socca Editor



 valueRemoved(ModelChangeEvent) 

 model 

 private ClassModel model

The class model can be edited by this dialog.

 frame 

 private Frame frame

 tabbedPane 

 private JTabbedPane tabbedPane

The TabbedPane that allows switching between general class pane and the attributes and
operation panes.

 name 

 private JTextField name

The text-field that shows the name of the class

 stereotype 

 private JTextField stereotype

The text-field that shows the stereotype of the class

 visibility  

 private JComboBox visibility

The combobox that shows the visibility of the class

 closeButton 

 private JButton closeButton

The close button, when the user click on it, the dialog disappears

 attributesView 

 private AttributesView attributesView

A list which displays all the attributes of this class.

- 123 -

11.25  Class view.ClassDialogThe design and implementation of a Socca Editor



 operationsView 

 private OperationsView operationsView

A list which displays all the operations of this class.

 selectedAttrib 

 private AttributeView selectedAttrib

The attribute that is currently selected.

 selectedOper 

 private OperationView selectedOper

The operation that is currently selected.

 newAttribButton  

 private JButton newAttribButton

Buttons to create a new attribute, edit an attribute or delete an attribute

 editAttribButton  

 private JButton editAttribButton

Buttons to create a new attribute, edit an attribute or delete an attribute

 deleteAttribButton  

 private JButton deleteAttribButton

Buttons to create a new attribute, edit an attribute or delete an attribute

 newOperButton 

 private JButton newOperButton

Buttons to create a new operation, edit an operation or delete an operation

 editOperButton 

 private JButton editOperButton

Buttons to create a new operation, edit an operation or delete an operation

 deleteOperButton 

 private JButton deleteOperButton

- 124 -

11.25  Class view.ClassDialogThe design and implementation of a Socca Editor



Buttons to create a new operation, edit an operation or delete an operation

 ClassDialog 

 public ClassDialog(Frame frame,
                    ClassModel model)

Constructor; creates the dialog box for ClassModel model 

Parameters: 
frame - the window this dialog belongs to. 
model - the model of which this is a view 

 actionPerformed 

 public void actionPerformed(ActionEvent e)

This method is called when the user has pushed a button or pressed the enter-key in a
text field. This method is public as an implementation detail and should not be called by
a programmer. 

 insertUpdate 

 public void insertUpdate(DocumentEvent e)

This method is called when the user has entered something in a text-field. This method is
public as an implementation detail and should not be called by a programmer. 

 removeUpdate 

 public void removeUpdate(DocumentEvent e)

This method is called when the user has removed something from a text-field. This
method is public as an implementation detail and should not be called by a programmer. 

 changedUpdate 

 public void changedUpdate(DocumentEvent e)

This method is called when the user has changed something in a text-field that is neither
an insert nor a remove. This method is public as an implementation detail and should not
be called by a programmer. 

 handleDocumentEvent 

- 125 -

11.25  Class view.ClassDialogThe design and implementation of a Socca Editor



 private void handleDocumentEvent(DocumentEvent e)

This method is called when the value in the name or stereotype text-fields has changed.
This method will call the setName or setStereotype methods of the model to propagate
the change. 

 valueChanged 

 public void valueChanged(ModelChangeEvent e)

This method is called when a value in the model has changed. This method will update
the values in the text-fields. This method is public as an implementation detail and
should not be called by a programmer. 

 valueAdded 

 public void valueAdded(ModelChangeEvent e)

 valueRemoved 

 public void valueRemoved(ModelChangeEvent e)

 mouseClicked 

 public void mouseClicked(MouseEvent e)

This method is called when the user that clicked the mouse on an attribute or operation.
This selects the attribute/operation and if the click was a double-click that a dialog box is
shown that allows the user to edit the attribute/operation. This method is public as an
implementation detail and should not be called by a programmer. 

 mousePressed 

 public void mousePressed(MouseEvent e)

 mouseReleased 

 public void mouseReleased(MouseEvent e)

 mouseEntered 

 public void mouseEntered(MouseEvent e)

 mouseExited 

 public void mouseExited(MouseEvent e)

- 126 -

11.25  Class view.ClassDialogThe design and implementation of a Socca Editor



11.26   Class view.ClassView
java.lang.Object
   |
   +----java.awt.Component
           |
           +----java.awt.Container
                   |
                   +----com.sun.java.swing.JComponent
                           |
                           +----view.Movable
                                   |
                                   +----view.Resizable
                                           |
                                           +----view.ElementView
                                                   |
                                                   +----view.ClassView

public class ClassView 
extends ElementView

This class shows one class element on the screen. At the top of the classview there are the
stereotype and name labels and the visibility icon. The visibility icon uses the colors of a
traffic light to show public visibility (green), protected visibility (yellow) and private
visibility (red). Below the labels and icon there is a list of attributes (AttributesView). Below
the attributes is a list of operations (OperationsView). 

 attributesView 
The list of attributes 

 mode 
A reference to the PackageWindow’s Mode. 

 model 
The class model that this class is a view of 

 mouseDragPoint 
The point where the mouse was dragged to. 

 operationsView 
The list of operations 

 popup 
The menu that pops up when the user presses the right mouse button on the class view

- 127 -

11.26  Class view.ClassViewThe design and implementation of a Socca Editor



 ClassView(ClassModel, PackageView) 
Constructor; create a view of the class model.

 addNotify() 
 doResize(int, int) 

This method is called to resize the component. 
 findMode(Component) 

Find the PackageWindow ancestor of this component and get its Mode. 
 getModel() 

Return the model that is shown with this view. 
 mouseClicked(MouseEvent) 

This method is called when the user clicks a mouse button. 
 mouseDragged(MouseEvent) 

This method is called when the user drags the mouse while holding a mouse button
down. 

 mousePressed(MouseEvent) 
This method is called when the user presses a mouse button. 

 mouseReleased(MouseEvent) 
This method is called when the user releases a mouse button. 

 paintComponent(Graphics) 
Override paintComponent in the super class to clear the background of the class view
before drawing the component. 

 updatePoly() 
Update the outline polygon.

 model 

 private ClassModel model

The class model that this class is a view of

 attributesView 

 private AttributesView attributesView

The list of attributes

 operationsView 

 private OperationsView operationsView

- 128 -

11.26  Class view.ClassViewThe design and implementation of a Socca Editor



The list of operations

 popup 

 private JPopupMenu popup

The menu that pops up when the user presses the right mouse button on the class view

 mouseDragPoint 

 private Point mouseDragPoint

The point where the mouse was dragged to.

 mode 

 private Mode mode

A reference to the PackageWindow’s Mode.

 ClassView 

 public ClassView(ClassModel model,
                  PackageView parentPackage)

Constructor; create a view of the class model. 

Parameters: 
model - the model that will be shown with this view 
parentPackage - the package that owns this class 

 addNotify 

 public void addNotify()

Overrides: 
addNotify in class Movable 

 getModel 

 public ClassModel getModel()

Return the model that is shown with this view. 

 mousePressed 

- 129 -

11.26  Class view.ClassViewThe design and implementation of a Socca Editor



 public void mousePressed(MouseEvent e)

This method is called when the user presses a mouse button. If the mouse button is the
right mouse button, the popup menu is shown. This method is public as an
implementation detail and should not be called by a programmer. 

Overrides: 
mousePressed in class ElementView 

 mouseClicked 

 public void mouseClicked(MouseEvent e)

This method is called when the user clicks a mouse button. If the user double-clicks, then
a dialog box is shown allowing the user to edit the class. This method is public as an
implementation detail and should not be called by a programmer. 

Overrides: 
mouseClicked in class Movable 

 mouseDragged 

 public void mouseDragged(MouseEvent e)

This method is called when the user drags the mouse while holding a mouse button
down. If the current mode is AddAssociationRole then a line from the class to the
current mouse position is drawn. If the mouse button is release over another class or over
a AssociationView, a new association role will be created. This method is public as an
implementation detail and should not be called by a programmer. 

Overrides: 
mouseDragged in class Resizable 

 mouseReleased 

 public void mouseReleased(MouseEvent e)

This method is called when the user releases a mouse button. If the current mode is
AddAssociationRole and the mouse button is release over another class or over a
AssociationView, a new association role will be created. This method is public as an
implementation detail and should not be called by a programmer. 

Overrides: 
mouseReleased in class Resizable 

 doResize 

 protected void doResize(int x,
                         int y)

- 130 -

11.26  Class view.ClassViewThe design and implementation of a Socca Editor



This method is called to resize the component. 

Overrides: 
doResize in class ElementView 

 updatePoly 

 private void updatePoly()

Update the outline polygon. 

 findMode 

 protected Mode findMode(Component c)

Find the PackageWindow ancestor of this component and get its Mode. 

 paintComponent 

 public void paintComponent(Graphics g)

Override paintComponent in the super class to clear the background of the class view
before drawing the component. 

Overrides: 
paintComponent in class JComponent 

- 131 -

11.26  Class view.ClassViewThe design and implementation of a Socca Editor



11.27   Class view.ElementView
java.lang.Object
   |
   +----java.awt.Component
           |
           +----java.awt.Container
                   |
                   +----com.sun.java.swing.JComponent
                           |
                           +----view.Movable
                                   |
                                   +----view.Resizable
                                           |
                                           +----view.ElementView

public class ElementView 
extends Resizable 
implements ModelChangeListener, SelectionListener

Class ElementView is the base class of ClassView and PackageView. It contains the things
ClassView and PackageView have in common. 

See Also: 
ClassView, PackageView

 contentPanel 
The panel that shows the rest of the information of the element. 

 model 
The model that is shown with this view. 

 nameLabel 
The label that is used to show the name of the element. 

 namePanel 
The panel that shows the name and stereotype of the element. 

 parentPackage 
The package that owns this element 

 stereoTypeLabel 
The label that is used to show the stereotype of the element. 

 suppressed 
If the element is suppressed, only the name and stereotype is shown. 

 unsuppressedSize 
When the element is suppressed, remember the size of the element it had when it was not 
suppressed.

- 132 -

11.27  Class view.ElementViewThe design and implementation of a Socca Editor



 ElementView(ElementModel, PackageView) 
Constructor; create a view of the element model.

 deselected() 
This method is called when the element is deselected. 

 doResize(int, int) 
This method is called to resize the component. 

 findFrame() 
Find the Frame ancestor of this component. 

 getParentPackage() 
Return the package that owns this element 

 isSuppressed() 
Return whether the element is currently suppressed. 

 mousePressed(MouseEvent) 
This method is called when the user pressed a mouse button on this element. 

 selected() 
This method is called when the element is selected. 

 setName(String) 
Change the name that is shown in the name label. 

 setStereotype(String) 
Change the stereotype that is shown in the stereotype label. 

 setSuppressed(boolean) 
Suppress or unsuppress this element. 

 setVisibility(Visibility) 
Change the visibility that is shown in the visibility icon. 

 valueAdded(ModelChangeEvent) 
 valueChanged(ModelChangeEvent) 

This method is called when the name, stereotype or visibility of the model has changed. 
 valueRemoved(ModelChangeEvent) 

 model 

 private ElementModel model

The model that is shown with this view.

- 133 -

11.27  Class view.ElementViewThe design and implementation of a Socca Editor



 parentPackage 

 protected PackageView parentPackage

The package that owns this element

 namePanel 

 protected JPanel namePanel

The panel that shows the name and stereotype of the element.

 contentPanel 

 protected JPanel contentPanel

The panel that shows the rest of the information of the element.

 nameLabel 

 private JLabel nameLabel

The label that is used to show the name of the element.

 stereoTypeLabel 

 private JLabel stereoTypeLabel

The label that is used to show the stereotype of the element.

 suppressed 

 private boolean suppressed

If the element is suppressed, only the name and stereotype is shown.

 unsuppressedSize 

 private Dimension unsuppressedSize

When the element is suppressed, remember the size of the element it had when it was not 
suppressed.

 ElementView 

 ElementView(ElementModel model,
             PackageView parentPackage)

Constructor; create a view of the element model. 

- 134 -

11.27  Class view.ElementViewThe design and implementation of a Socca Editor



Parameters: 
model - the model that will be shown with this view 
parentPackage - the package that owns this element. 

 getParentPackage 

 public PackageView getParentPackage()

Return the package that owns this element 

 setSuppressed 

 public void setSuppressed(boolean suppressed)

Suppress or unsuppress this element. When the element is suppressed, only the name and
stereotype is shown. 

 isSuppressed 

 public boolean isSuppressed()

Return whether the element is currently suppressed. 

 setName 

 public void setName(String name)

Change the name that is shown in the name label. 

Overrides: 
setName in class Component 

 setStereotype 

 public void setStereotype(String stereotype)

Change the stereotype that is shown in the stereotype label. 

 setVisibility 

 public void setVisibility(Visibility visibility)

Change the visibility that is shown in the visibility icon. 

 valueChanged 

 public void valueChanged(ModelChangeEvent e)

- 135 -

11.27  Class view.ElementViewThe design and implementation of a Socca Editor



This method is called when the name, stereotype or visibility of the model has changed.
This method calls setName, setStereotype or setVisibility to propagate the change. 

 valueAdded 

 public void valueAdded(ModelChangeEvent e)

 valueRemoved 

 public void valueRemoved(ModelChangeEvent e)

 selected 

 public void selected()

This method is called when the element is selected. It changes the color of the name and
stereotype labels. 

 deselected 

 public void deselected()

This method is called when the element is deselected. It changes the color of the name
and stereotype labels back to normal. 

 mousePressed 

 public void mousePressed(MouseEvent e)

This method is called when the user pressed a mouse button on this element. This will
select the element. 

Overrides: 
mousePressed in class Resizable 

 doResize 

 protected void doResize(int x,
                         int y)

This method is called to resize the component. 

Overrides: 
doResize in class Resizable 

 findFrame 

 protected Frame findFrame()

Find the Frame ancestor of this component. The frame is needed to show dialog boxes. 

- 136 -

11.27  Class view.ElementViewThe design and implementation of a Socca Editor



- 137 -

11.27  Class view.ElementViewThe design and implementation of a Socca Editor



11.28   Class view.Handle
java.lang.Object
   |
   +----java.awt.Component
           |
           +----java.awt.Container
                   |
                   +----com.sun.java.swing.JComponent
                           |
                           +----view.Movable
                                   |
                                   +----view.RelativeMovable
                                           |
                                           +----view.BoundedMovable
                                                   |
                                                   +----view.Handle

public class Handle 
extends BoundedMovable

A Handle is a little yellow circle that can be used to move the lines of the associations. 

 Handle(Movable, ModelBase, String) 
The constructor the the Handle.

 paintComponent(Graphics) 
Paint a little yellow circle.

 Handle 

 public Handle(Movable movable,
               ModelBase modelBase,
               String locationName)

The constructor the the Handle. 

Parameters: 
movable - the movable on which outline the handle will move 
modelBase - the model in which the location of the handle will be stored 
locationName - the name under which the location of the handle will be stored in

- 138 -

11.28  Class view.HandleThe design and implementation of a Socca Editor



the model. 

 paintComponent 

 public void paintComponent(Graphics g)

Paint a little yellow circle. 

Overrides: 
paintComponent in class JComponent 

- 139 -

11.28  Class view.HandleThe design and implementation of a Socca Editor



11.29   Class view.Line
java.lang.Object
   |
   +----java.awt.Component
           |
           +----view.Line

public class Line 
extends Component 
implements MouseListener, MouseMotionListener, SelectionListener

Most of the relations are drawn using lines between ClassViews. The class Line draws the
lines. A line can consist of one or more straight lines. Each of these straight lines is drawn by
the class LineSegment. 

See Also: 
LineSegment

 a 
One side of the line 

 b 
The other side of the line 

 container 
The container to which the line segments are added 

 lineSegments 
All the line segments of the line

 Line(Handle, Handle, Container) 
The constructor 

 deselected() 
This method is called when the line is deselected. 

 mouseClicked(MouseEvent) 
 mouseDragged(MouseEvent) 

- 140 -

11.29  Class view.LineThe design and implementation of a Socca Editor



 mouseEntered(MouseEvent) 
 mouseExited(MouseEvent) 
 mouseMoved(MouseEvent) 
 mousePressed(MouseEvent) 

This method is called when the user presses a mouse button on a line segment. 
 mouseReleased(MouseEvent) 
 raise() 

Raise all the line segments to the front. 
 remove() 

This method is called when the line is about to be removed, it will remove all the line
segments from the screen. 

 selected() 
This method is called when the line is selected.

 a 

 private Handle a

One side of the line

 b 

 private Handle b

The other side of the line

 container 

 private Container container

The container to which the line segments are added

 lineSegments 

 private Vector lineSegments

All the line segments of the line

 Line 

 public Line(Handle a,
             Handle b,
             Container c)

- 141 -

11.29  Class view.LineThe design and implementation of a Socca Editor



The constructor 

Parameters: 
a - one side of the line 
b - the other side of the line 
c - the container to which the line segments are added 

 selected 

 public void selected()

This method is called when the line is selected. This method calls the selected() method
of all the line segments of this line. 

 deselected 

 public void deselected()

This method is called when the line is deselected. This method calls the deselected()
method of all the line segments of this line. 

 mousePressed 

 public void mousePressed(MouseEvent e)

This method is called when the user presses a mouse button on a line segment. This will
raise all the line segments to the front and set the line as selection. 

 mouseDragged 

 public void mouseDragged(MouseEvent e)

 mouseClicked 

 public void mouseClicked(MouseEvent e)

 mouseReleased 

 public void mouseReleased(MouseEvent e)

 mouseEntered 

 public void mouseEntered(MouseEvent e)

 mouseExited 

 public void mouseExited(MouseEvent e)

 mouseMoved 

- 142 -

11.29  Class view.LineThe design and implementation of a Socca Editor



 public void mouseMoved(MouseEvent e)

 raise 

 public void raise()

Raise all the line segments to the front. 

 remove 

 public void remove()

This method is called when the line is about to be removed, it will remove all the line
segments from the screen. 

- 143 -

11.29  Class view.LineThe design and implementation of a Socca Editor



11.30   Class view.LineSegment
java.lang.Object
   |
   +----java.awt.Component
           |
           +----java.awt.Container
                   |
                   +----com.sun.java.swing.JComponent
                           |
                           +----view.LineSegment

public class LineSegment 
extends JComponent 
implements ComponentListener, ChangeListener

Most of the relations are drawn using lines between ClassViews. The class Line draws the
lines. A line can consist of one or more straight lines. Each of these straight lines is drawn by
the class LineSegment. 

See Also: 
Line

 a 
One side of the line 

 b 
The other side of the line 

 x 
 y1 
 y2 

 LineSegment(Handle, Handle) 
Create a new LineSegment that draws a line between a and b 

 addListeners() 
 addNotify() 

- 144 -

11.30  Class view.LineSegmentThe design and implementation of a Socca Editor



 componentHidden(ComponentEvent) 
 componentMoved(ComponentEvent) 

This method is called when handle a or handle b has been moved. 
 componentResized(ComponentEvent) 
 componentShown(ComponentEvent) 
 contains(int, int) 

Return true if point (ex, ey) is on or close by the line, false otherwise. 
 deselected() 

This method is called when the line segment is deselected. 
 paint(Graphics) 
 raise() 

Bring the line segment to the front. 
 selected() 

This method is called when the line segment is selected. 
 stateChanged(ChangeEvent) 

This method is called when a scrollpane has been scrolled. 
 updateLocationAndSize() 

If handle A or handle B have changed position this method is called to change the
location and the size of the line.

 a 

 private Handle a

One side of the line

 b 

 private Handle b

The other side of the line

 x 

 private int x

 y1 

 private int y1

 y2 

 private int y2

 LineSegment 

- 145 -

11.30  Class view.LineSegmentThe design and implementation of a Socca Editor



 public LineSegment(Handle a,
                    Handle b)

Create a new LineSegment that draws a line between a and b 

 addNotify 

 public void addNotify()

Overrides: 
addNotify in class JComponent 

 addListeners 

 private void addListeners()

 raise 

 public void raise()

Bring the line segment to the front. 

 selected 

 public void selected()

This method is called when the line segment is selected. 

 deselected 

 public void deselected()

This method is called when the line segment is deselected. 

 updateLocationAndSize 

 private void updateLocationAndSize()

If handle A or handle B have changed position this method is called to change the
location and the size of the line. 

 paint 

 public void paint(Graphics g)

Overrides: 
paint in class JComponent 

 contains 

- 146 -

11.30  Class view.LineSegmentThe design and implementation of a Socca Editor



 public boolean contains(int ex,
                         int ey)

Return true if point (ex, ey) is on or close by the line, false otherwise. 

Overrides: 
contains in class JComponent 

 componentMoved 

 public void componentMoved(ComponentEvent e)

This method is called when handle a or handle b has been moved. This method calls
updateLocationAndSize(); 

 componentResized 

 public void componentResized(ComponentEvent e)

 componentShown 

 public void componentShown(ComponentEvent e)

 componentHidden 

 public void componentHidden(ComponentEvent e)

 stateChanged 

 public void stateChanged(ChangeEvent e)

This method is called when a scrollpane has been scrolled. This method calls
updateLocationAndSize(); 

- 147 -

11.30  Class view.LineSegmentThe design and implementation of a Socca Editor



11.31   Class view.MainWindow
java.lang.Object
   |
   +----java.awt.Component
           |
           +----java.awt.Container
                   |
                   +----java.awt.Window
                           |
                           +----java.awt.Frame
                                   |
                                   +----com.sun.java.swing.JFrame
                                           |
                                           +----view.MainWindow

public class MainWindow  
extends JFrame 
implements ActionListener

This class creates the main window of the editor. It shows the main menu bar, allows files to
be loaded and saved and it shows the model tree of the global package. 

 globalScopePackage 
The top most package, the global scope. 

 mainWindow 
A static reference to the (only) instance of this class 

 modelTree 
The model tree that shows the global scope package. 

 windows 
A list of PackageWindows

 MainWindow (String) 
Create a new main window, load the file with the name filename if filename is not null.

 actionPerformed(ActionEvent) 
This method is called when the user has chosen a new look and feel from the menu. 

- 148 -

11.31  Class view.MainWindowThe design and implementation of a Socca Editor



 addWindow(Window) 
Add a new window to the list of windows. 

 closeAllWindows() 
Close all the windows in the list of windows. 

 getModelTree() 
Return the model tree of the global scope package. 

 load(String) 
Load a global scope package and its contents from file. 

 quit() 
Quit the editor. 

 setGlobalScopePackage(PackageModel) 
Change the global scope package.

 mainWindow 

 public static MainWindow mainWindow

A static reference to the (only) instance of this class

 globalScopePackage 

 private PackageModel globalScopePackage

The top most package, the global scope.

 modelTree 

 private ModelTree modelTree

The model tree that shows the global scope package.

 windows 

 private Vector windows

A list of PackageWindows

 MainWindow  

 public MainWindow(String filename)

Create a new main window, load the file with the name filename if filename is not null. 

 getModelTree 

- 149 -

11.31  Class view.MainWindowThe design and implementation of a Socca Editor



 public ModelTree getModelTree()

Return the model tree of the global scope package. 

 actionPerformed 

 public void actionPerformed(ActionEvent event)

This method is called when the user has chosen a new look and feel from the menu. Try
to load the new look and feel and if that fails, disable the menu entry. 

 addWindow 

 public void addWindow(Window w)

Add a new window to the list of windows. 

 closeAllWindows 

 private void closeAllWindows()

Close all the windows in the list of windows. 

 setGlobalScopePackage 

 private void setGlobalScopePackage(PackageModel globalScopePackage)

Change the global scope package. Close all the windows that show the old package and
create a new window. 

 quit 

 private void quit()

Quit the editor. 

 load 

 private void load(String filename)

Load a global scope package and its contents from file. 

- 150 -

11.31  Class view.MainWindowThe design and implementation of a Socca Editor



11.32   Class view.MenuFactory
java.lang.Object
   |
   +----view.MenuFactory

public class MenuFactory 
extends Object

This class contains only static methods that are used to create menus and toolbars. 

 resources 

 MenuFactory() 

 () 
 createMenu(String, MyAction[]) 

Create a normal menu with the actions given in parameter actions. 
 createPopupMenu(MyAction[]) 

Create a popup menu with the actions given in parameter actions. 
 createRadioMenu(String, MyAction[]) 

Create a menu with radio items with the actions given in parameter actions. 
 createRadioToolbar(MyAction[]) 

Create a tool bar with radio buttons with the actions given in parameter actions. 
 createToolbar(MyAction[]) 

Create a tool bar with the actions given in parameter actions. 
 getResourceString(String) 

 resources 

 private static ResourceBundle resources

 MenuFactory 

- 151 -

11.32  Class view.MenuFactoryThe design and implementation of a Socca Editor



 public MenuFactory()

 createMenu 

 public static JMenu createMenu(String name,
                                MyAction actions[])

Create a normal menu with the actions given in parameter actions. 

 createRadioMenu 

 public static JMenu createRadioMenu(String name,
                                     MyAction actions[])

Create a menu with radio items with the actions given in parameter actions. 

 createPopupMenu 

 public static JPopupMenu createPopupMenu(MyAction actions[])

Create a popup menu with the actions given in parameter actions. 

 createToolbar 

 public static JToolBar createToolbar(MyAction actions[])

Create a tool bar with the actions given in parameter actions. 

 createRadioToolbar 

 public static JToolBar createRadioToolbar(MyAction actions[])

Create a tool bar with radio buttons with the actions given in parameter actions. 

 getResourceString 

 public static String getResourceString(String nm)

 static void ()

- 152 -

11.32  Class view.MenuFactoryThe design and implementation of a Socca Editor



11.33   Class view.Mode
java.lang.Object
   |
   +----view.Mode

public class Mode 
extends Object

At any given time the PackageWindow is in a certain mode. This can be the move mode that
allows the user to move, resize or select elements or it can be the addClass, addPackage or
addAssociation that allows the user to add a class, package or association to the
PackageView. Mode is the class that stores the current mode the PackageWindow is in. 

 actions 
The actions of the mode menu and the mode toolbar. 

 ADD_ASSOCIATION_MODE  
The mode that allows the user to add a new association 

 ADD_ASSOCIATIONROLE_MODE  
The mode that allows the user to add a new role to the model 

 ADD_CLASS_MODE 
The mode that allows the user to add a new class to the model 

 ADD_GENERALIZATION_MODE  
The mode that allows the user to add a new generalization 

 ADD_PACKAGE_MODE  
The mode that allows the user to add a new package to the model 

 currentMode 
The mode the PackageWindow is currently in. 

 menu 
The mode menu 

 MOVE_MODE  
The mode that allows the user to move, resize or select elements 

 toolbar 
The mode toolbar

 Mode(PackageView) 

- 153 -

11.33  Class view.ModeThe design and implementation of a Socca Editor



 createMenu() 
Create a mode menu and return it. 

 createToolbar() 
Create a mode toolbar and return it. 

 getCurrentMode() 
Return the currently active mode. 

 getCurrentMode(Component) 
Return the currently active mode. 

 isAddAssociation() 
Return whether the current mode is the add association mode. 

 isAddAssociationRole() 
Return whether the current mode is the add association role mode. 

 isAddClass() 
Return whether the current mode is the add class mode. 

 isAddPackage() 
Return whether the current mode is the add package mode. 

 isMove() 
Return whether the current mode is the move mode. 

 setCurrentMode(Component, int) 
Change the current mode to a new mode. 

 setCurrentMode(int) 
Change the current mode to a new mode.

 MOVE_MODE  

 public static final int MOVE_MODE

The mode that allows the user to move, resize or select elements

 ADD_CLASS_MODE 

 public static final int ADD_CLASS_MODE

The mode that allows the user to add a new class to the model

 ADD_PACKAGE_MODE  

 public static final int ADD_PACKAGE_MODE

The mode that allows the user to add a new package to the model

- 154 -

11.33  Class view.ModeThe design and implementation of a Socca Editor



 ADD_ASSOCIATION_MODE  

 public static final int ADD_ASSOCIATION_MODE

The mode that allows the user to add a new association

 ADD_ASSOCIATIONROLE_MODE  

 public static final int ADD_ASSOCIATIONROLE_MODE

The mode that allows the user to add a new role to the model

 ADD_GENERALIZATION_MODE  

 public static final int ADD_GENERALIZATION_MODE

The mode that allows the user to add a new generalization

 actions 

 private MyAction actions[]

The actions of the mode menu and the mode toolbar.

 currentMode 

 private int currentMode

The mode the PackageWindow is currently in.

 menu 

 private JMenu menu

The mode menu

 toolbar 

 private JToolBar toolbar

The mode toolbar

 Mode 

 public Mode(PackageView packageView)

 createMenu 

- 155 -

11.33  Class view.ModeThe design and implementation of a Socca Editor



 public JMenu createMenu()

Create a mode menu and return it. 

 createToolbar 

 public JToolBar createToolbar()

Create a mode toolbar and return it. 

 setCurrentMode 

 public void setCurrentMode(int mode)

Change the current mode to a new mode. 

Parameters: 
mode - the new mode 

 setCurrentMode 

 public static void setCurrentMode(Component c,
                                   int mode)

Change the current mode to a new mode. 

 getCurrentMode 

 public int getCurrentMode()

Return the currently active mode. 

 getCurrentMode 

 public static int getCurrentMode(Component c)

Return the currently active mode. 

 isMove 

 public boolean isMove()

Return whether the current mode is the move mode. 

 isAddClass 

 public boolean isAddClass()

Return whether the current mode is the add class mode. 

 isAddPackage 

- 156 -

11.33  Class view.ModeThe design and implementation of a Socca Editor



 public boolean isAddPackage()

Return whether the current mode is the add package mode. 

 isAddAssociation 

 public boolean isAddAssociation()

Return whether the current mode is the add association mode. 

 isAddAssociationRole 

 public boolean isAddAssociationRole()

Return whether the current mode is the add association role mode. 

- 157 -

11.33  Class view.ModeThe design and implementation of a Socca Editor



11.34   Class view.ModelTree
java.lang.Object
   |
   +----java.awt.Component
           |
           +----java.awt.Container
                   |
                   +----com.sun.java.swing.JComponent
                           |
                           +----com.sun.java.swing.JPanel
                                   |
                                   +----view.ModelTree

public class ModelTree 
extends JPanel 
implements ModelChangeListener

This widget shows a package model and all it contents as a tree. The user can use this tree to
manipulate the model. 

 associationIcon 
An icon that represents a association 

 associationRoleIcon 
An icon that represents a association role 

 classIcon 
An icon that represents a class 

 modelToNodeMap 
A hashtable that maps a model to a node 

 packageIcon 
An icon that represents a package 

 tree 
The actual tree 

 treeModel 
The model of the tree

 ModelTree(PackageModel) 
Create a tree using the model packageModel 

- 158 -

11.34  Class view.ModelTreeThe design and implementation of a Socca Editor



 findFrame() 
 valueAdded(ModelChangeEvent) 

This method is called when something is added to a model. 
 valueChanged(ModelChangeEvent) 

This method is called when some value of a model has changed. 
 valueRemoved(ModelChangeEvent) 

This method is called when something is removed from a model.

 tree 

 private JTree tree

The actual tree

 treeModel 

 private DefaultTreeModel treeModel

The model of the tree

 modelToNodeMap 

 private Hashtable modelToNodeMap

A hashtable that maps a model to a node

 classIcon 

 private static ImageIcon classIcon

An icon that represents a class

 packageIcon 

 private static ImageIcon packageIcon

An icon that represents a package

 associationIcon 

 private static ImageIcon associationIcon

An icon that represents a association

- 159 -

11.34  Class view.ModelTreeThe design and implementation of a Socca Editor



 associationRoleIcon 

 private static ImageIcon associationRoleIcon

An icon that represents a association role

 ModelTree 

 public ModelTree(PackageModel packageModel)

Create a tree using the model packageModel 

 valueAdded 

 public void valueAdded(ModelChangeEvent e)

This method is called when something is added to a model. This method adds a node to
the tree to represent the new addition to the model. 

 valueRemoved 

 public void valueRemoved(ModelChangeEvent e)

This method is called when something is removed from a model. This method will
remove the corresponding node from the tree. 

 valueChanged 

 public void valueChanged(ModelChangeEvent e)

This method is called when some value of a model has changed. This method will reload
that part of the tree so that the tree show the up to date value. 

 findFrame 

 protected Frame findFrame()

- 160 -

11.34  Class view.ModelTreeThe design and implementation of a Socca Editor



11.35   Class view.Movable
java.lang.Object
   |
   +----java.awt.Component
           |
           +----java.awt.Container
                   |
                   +----com.sun.java.swing.JComponent
                           |
                           +----view.Movable

public class Movable 
extends JComponent 
implements MouseListener, MouseMotionListener

The class Movable contains the functionality that allows the user to move a component on the
screen to a new location. The user can use the mouse to drag a component (that is a subclass
of Movable) and this class will allow it to move. 

 locationName 
The name under which the location of the Movable will be stored in the model. 

 modelBase 
The model in which the location of this Movable will be stored. 

 mouseDownPoint 
The point at which the user first pressed a mouse button. 

 outlinePolygon 
A polygon with the shape of the outline of this Movable

 Movable(ModelBase, String) 
The constructor of the Movable 

 addNotify() 
 doMove(int, int) 

This method is called to move the component to a new location. 
 getPolygon() 

Return the outline polygon 

- 161 -

11.35  Class view.MovableThe design and implementation of a Socca Editor



 mouseClicked(MouseEvent) 
This method is public as an implementation detail and should not be called by a
programmer. 

 mouseDragged(MouseEvent) 
This method is public as an implementation detail and should not be called by a
programmer. 

 mouseEntered(MouseEvent) 
This method is public as an implementation detail and should not be called by a
programmer. 

 mouseExited(MouseEvent) 
This method is public as an implementation detail and should not be called by a
programmer. 

 mouseMoved(MouseEvent) 
This method is public as an implementation detail and should not be called by a
programmer. 

 mousePressed(MouseEvent) 
This method is called when the user presses a mouse button. 

 mouseReleased(MouseEvent) 
This method is called when the user releases a mouse button. 

 raise() 
Bring this movable to the front. 

 setLocation(Point) 

 mouseDownPoint 

 protected Point mouseDownPoint

The point at which the user first pressed a mouse button.

 modelBase 

 protected ModelBase modelBase

The model in which the location of this Movable will be stored.

 locationName 

 protected String locationName

The name under which the location of the Movable will be stored in the model.

 outlinePolygon 

 protected Polygon outlinePolygon

- 162 -

11.35  Class view.MovableThe design and implementation of a Socca Editor



A polygon with the shape of the outline of this Movable

 Movable 

 public Movable(ModelBase modelBase,
                String locationName)

The constructor of the Movable 

Parameters: 
modelBase - the model in which the location of the Movable will be stored 
locationName - the name under which the location of the Movable will be stored in
the model. 

 addNotify 

 public void addNotify()

Overrides: 
addNotify in class JComponent 

 raise 

 public void raise()

Bring this movable to the front. 

 mousePressed 

 public void mousePressed(MouseEvent e)

This method is called when the user presses a mouse button. This movable is raised to
the front and this method registers the point at which the button was pressed. This
method is public as an implementation detail and should not be called by a programmer. 

 mouseReleased 

 public void mouseReleased(MouseEvent e)

This method is called when the user releases a mouse button. This method is public as an
implementation detail and should not be called by a programmer. 

 mouseDragged 

 public void mouseDragged(MouseEvent e)

- 163 -

11.35  Class view.MovableThe design and implementation of a Socca Editor



This method is public as an implementation detail and should not be called by a
programmer. 

 mouseClicked 

 public void mouseClicked(MouseEvent e)

This method is public as an implementation detail and should not be called by a
programmer. 

 mouseEntered 

 public void mouseEntered(MouseEvent e)

This method is public as an implementation detail and should not be called by a
programmer. 

 mouseExited 

 public void mouseExited(MouseEvent e)

This method is public as an implementation detail and should not be called by a
programmer. 

 mouseMoved 

 public void mouseMoved(MouseEvent e)

This method is public as an implementation detail and should not be called by a
programmer. 

 doMove 

 protected void doMove(int deltaX,
                       int deltaY)

This method is called to move the component to a new location. 

Parameters: 
deltaX - the amount to move in the X direction 
deltaY - the amount to move in the Y direction 

 setLocation 

 public void setLocation(Point newLocation)

Overrides: 
setLocation in class Component 

 getPolygon 

- 164 -

11.35  Class view.MovableThe design and implementation of a Socca Editor



 public Polygon getPolygon()

Return the outline polygon 

- 165 -

11.35  Class view.MovableThe design and implementation of a Socca Editor



11.36   Class view.MyAction
java.lang.Object
   |
   +----com.sun.java.swing.AbstractAction
           |
           +----view.MyAction

public abstract class MyAction  
extends AbstractAction

This is an abstraction of the action that results from a menu selection or a button click on a
toolbar. 

 accelerator 
The key the user key use to activate the action without using the menu. 

 label 
The label that will be shown in a menu. 

 mnemonic 
One character of the label in the menu that is underlined. 

 resources 
 tooltip 

The tooltip that will be shown when the mouse is over a button in the toolbar.

 MyAction (String) 

 () 
 getAccelerator() 

Return the accelerator of the action. 
 getIcon() 

Return the icon of the action. 
 getLabel() 

Return the label of the action. 
 getMnemonic() 

Return the mnemonic of the action. 

- 166 -

11.36  Class view.MyActionThe design and implementation of a Socca Editor



 getName() 
Return the name of the action. 

 getResource(String) 
Load the resource (image, ...) with name s from the resource file or return null if it was
not found. 

 getResourceString(String) 
Load string with the name s from the resource file or return null if it was not found. 

 getTooltip() 
Return the tooltip of the action. 

 loadInfo() 
Load the information for this action from the resource file. 

 setLocale(Locale) 
Change to a different locale.

 label 

 private String label

The label that will be shown in a menu.

 tooltip 

 private String tooltip

The tooltip that will be shown when the mouse is over a button in the toolbar.

 mnemonic 

 private char mnemonic

One character of the label in the menu that is underlined. If the user presses this
character on the keyboard while the menu if open the action is activated.

 accelerator 

 private char accelerator

The key the user key use to activate the action without using the menu. The value in this
variable is combined with the Control key to create the actual accelerator.

 resources 

 private static ResourceBundle resources

 MyAction  

- 167 -

11.36  Class view.MyActionThe design and implementation of a Socca Editor



 public MyAction(String name)

 loadInfo 

 public void loadInfo()

Load the information for this action from the resource file. 

 getName 

 public String getName()

Return the name of the action. 

 getLabel 

 public String getLabel()

Return the label of the action. 

 getTooltip 

 public String getTooltip()

Return the tooltip of the action. 

 getMnemonic 

 public char getMnemonic()

Return the mnemonic of the action. 

 getAccelerator 

 public char getAccelerator()

Return the accelerator of the action. 

 getIcon 

 public Icon getIcon()

Return the icon of the action. 

 getResourceString 

 private String getResourceString(String s)

Load string with the name s from the resource file or return null if it was not found. 

- 168 -

11.36  Class view.MyActionThe design and implementation of a Socca Editor



 getResource 

 private URL getResource(String key)

Load the resource (image, ...) with name s from the resource file or return null if it was
not found. 

 setLocale 

 public static void setLocale(Locale locale)

Change to a different locale. The caller is responsible to call loadInfo() for each action
that should be changed to the new locale. 

 static void ()

- 169 -

11.36  Class view.MyActionThe design and implementation of a Socca Editor



11.37   Class view.OperationDialog
java.lang.Object
   |
   +----java.awt.Component
           |
           +----java.awt.Container
                   |
                   +----java.awt.Window
                           |
                           +----java.awt.Dialog
                                   |
                                   +----com.sun.java.swing.JDialog
                                           |
                                           +----view.OperationDialog

public class OperationDialog 
extends JDialog 
implements ActionListener, DocumentListener, ModelChangeListener

This is a dialog box that allows the user to edit an operation. 

 abstractOperation 
A checkbox that show whether the operation is abstract or not. 

 classMember 
A checkbox that shows whether the attribute is a normal member or a class member
(static) 

 closeButton 
The close button, when the user click on it, the dialog disappears 

 model 
The model of which this is a view 

 name 
A text-field that shows the name of the operation 

 returnType 
A text-field that shows the return type of the operation 

 tm 
 visibility  

A combobox that shows the visibility of the attribute

- 170 -

11.37  Class view.OperationDialogThe design and implementation of a Socca Editor



 OperationDialog(Frame, OperationModel) 
Constructor; creates the dialog box for OperationModel model 

 actionPerformed(ActionEvent) 
This method is called when the user has pushed a button or pressed the enter-key in a
text field. 

 changedUpdate(DocumentEvent) 
This method is called when the user has changed something in a text-field that is neither
an insert nor a remove. 

 handleDocumentEvent(DocumentEvent) 
This method is called when the value in the name, type or initial value text-fields has
changed. 

 insertUpdate(DocumentEvent) 
This method is called when the user has entered something in a text-field. 

 removeUpdate(DocumentEvent) 
This method is called when the user has removed something from a text-field. 

 valueAdded(ModelChangeEvent) 
 valueChanged(ModelChangeEvent) 

This method is called when a value in the model has changed. 
 valueRemoved(ModelChangeEvent) 

 model 

 private OperationModel model

The model of which this is a view

 name 

 private JTextField name

A text-field that shows the name of the operation

 returnType 

 private JTextField returnType

A text-field that shows the return type of the operation

 visibility  

 private JComboBox visibility

- 171 -

11.37  Class view.OperationDialogThe design and implementation of a Socca Editor



A combobox that shows the visibility of the attribute

 classMember 

 private JCheckBox classMember

A checkbox that shows whether the attribute is a normal member or a class member 
(static)

 abstractOperation 

 private JCheckBox abstractOperation

A checkbox that show whether the operation is abstract or not.

 closeButton 

 private JButton closeButton

The close button, when the user click on it, the dialog disappears

 tm 

 private ParameterTableModel tm

 OperationDialog 

 public OperationDialog(Frame parent,
                        OperationModel model)

Constructor; creates the dialog box for OperationModel model 

Parameters: 
parent - the window this dialog belongs to. 
model - the model of which this is a view. 

 actionPerformed 

 public void actionPerformed(ActionEvent e)

This method is called when the user has pushed a button or pressed the enter-key in a
text field. This method is public as an implementation detail and should not be called by
a programmer. 

 insertUpdate 

- 172 -

11.37  Class view.OperationDialogThe design and implementation of a Socca Editor



 public void insertUpdate(DocumentEvent e)

This method is called when the user has entered something in a text-field. This method is
public as an implementation detail and should not be called by a programmer. 

 removeUpdate 

 public void removeUpdate(DocumentEvent e)

This method is called when the user has removed something from a text-field. This
method is public as an implementation detail and should not be called by a programmer. 

 changedUpdate 

 public void changedUpdate(DocumentEvent e)

This method is called when the user has changed something in a text-field that is neither
an insert nor a remove. This method is public as an implementation detail and should not
be called by a programmer. 

 handleDocumentEvent 

 private void handleDocumentEvent(DocumentEvent e)

This method is called when the value in the name, type or initial value text-fields has
changed. This method will call the setName or setReturnType methods of the model to
propagate the change. 

 valueAdded 

 public void valueAdded(ModelChangeEvent e)

 valueRemoved 

 public void valueRemoved(ModelChangeEvent e)

 valueChanged 

 public void valueChanged(ModelChangeEvent e)

This method is called when a value in the model has changed. This method will update
the values in the text-fields. This method is public as an implementation detail and
should not be called by a programmer. 

- 173 -

11.37  Class view.OperationDialogThe design and implementation of a Socca Editor



11.38   Class view.OperationView
java.lang.Object
   |
   +----java.awt.Component
           |
           +----java.awt.Container
                   |
                   +----com.sun.java.swing.JComponent
                           |
                           +----com.sun.java.swing.JLabel
                                   |
                                   +----view.OperationView

public class OperationView 
extends JLabel 
implements ModelChangeListener

This class shows one operation on the screen. The operation is shown as a trafic light icon
showing the visibility, followed by the name, parameters and optional return type of the
operation. 

 model 
The model of which this class is a view

 OperationView(OperationModel) 
Constructor; create an OperationView for OperationModel model 

 deselected() 
This method is called when the attribute is deselected. 

 getModel() 
Return the model of which this class is a view. 

 selected() 
This method is called when the attribute is selected. 

 valueAdded(ModelChangeEvent) 
This method is called when a value was added to the model. 

- 174 -

11.38  Class view.OperationViewThe design and implementation of a Socca Editor



 valueChanged(ModelChangeEvent) 
This method is called when a value in the model has changed. 

 valueRemoved(ModelChangeEvent) 
This method is called when a value was removed from the model.

 model 

 private OperationModel model

The model of which this class is a view

 OperationView 

 public OperationView(OperationModel model)

Constructor; create an OperationView for OperationModel model 

 valueChanged 

 public void valueChanged(ModelChangeEvent e)

This method is called when a value in the model has changed. This method will update
the label and the icon. This method is public as an implementation detail and should not
be called by a programmer. 

 valueAdded 

 public void valueAdded(ModelChangeEvent e)

This method is called when a value was added to the model. This method will update the
label. This method is public as an implementation detail and should not be called by a
programmer. 

 valueRemoved 

 public void valueRemoved(ModelChangeEvent e)

This method is called when a value was removed from the model. This method will
update the label. This method is public as an implementation detail and should not be
called by a programmer. 

- 175 -

11.38  Class view.OperationViewThe design and implementation of a Socca Editor



 selected 

 public void selected()

This method is called when the attribute is selected. 

 deselected 

 public void deselected()

This method is called when the attribute is deselected. 

 getModel 

 public OperationModel getModel()

Return the model of which this class is a view. 

- 176 -

11.38  Class view.OperationViewThe design and implementation of a Socca Editor



11.39   Class view.OperationsView
java.lang.Object
   |
   +----java.awt.Component
           |
           +----java.awt.Container
                   |
                   +----com.sun.java.swing.JComponent
                           |
                           +----com.sun.java.swing.JPanel
                                   |
                                   +----view.OperationsView

public class OperationsView 
extends JPanel 
implements ModelChangeListener

This class show a list of operations; all the operations of a class. 

 box 
 model 

The class model that owns the operations that are shown by thic class 
 modelToViewMap 

A hashtable that maps and attribute model to a view 
 mouseListener 

if this is not null than all mouse events that occur on the attribute views will be send to
this listener.

 OperationsView(ClassModel, MouseListener) 
The OperationsView constructor; show a list of the operations of ClassModel model.

 addOperation(OperationModel) 
Add a new operation to the list. 

 removeOperation(OperationModel) 
Remove an operation from the list. 

- 177 -

11.39  Class view.OperationsViewThe design and implementation of a Socca Editor



 valueAdded(ModelChangeEvent) 
This method is called when an operation was added to the model. 

 valueChanged(ModelChangeEvent) 
 valueRemoved(ModelChangeEvent) 

This method is called when an operation was removed from the model.

 model 

 private ClassModel model

The class model that owns the operations that are shown by thic class

 modelToViewMap 

 private Hashtable modelToViewMap

A hashtable that maps and attribute model to a view

 box 

 private Box box

 mouseListener 

 private MouseListener mouseListener

if this is not null than all mouse events that occur on the attribute views will be send to
this listener.

 OperationsView 

 public OperationsView(ClassModel model,
                       MouseListener mouseListener)

The OperationsView constructor; show a list of the operations of ClassModel model. 

Parameters: 
model - the classmodel that owns the operations that are to be shown by this class. 
mouseListener - if this is not null than all mouse events that occur on the operation
views will be send to this listener. 

 addOperation 

- 178 -

11.39  Class view.OperationsViewThe design and implementation of a Socca Editor



 private void addOperation(OperationModel oper)

Add a new operation to the list. 

 removeOperation 

 private void removeOperation(OperationModel oper)

Remove an operation from the list. 

 valueAdded 

 public void valueAdded(ModelChangeEvent e)

This method is called when an operation was added to the model. This method is public
as an implementation detail and should not be called by a programmer. 

 valueRemoved 

 public void valueRemoved(ModelChangeEvent e)

This method is called when an operation was removed from the model. This method is
public as an implementation detail and should not be called by a programmer. 

 valueChanged 

 public void valueChanged(ModelChangeEvent e)

- 179 -

11.39  Class view.OperationsViewThe design and implementation of a Socca Editor



11.40   Class view.PackageDialog
java.lang.Object
   |
   +----java.awt.Component
           |
           +----java.awt.Container
                   |
                   +----java.awt.Window
                           |
                           +----java.awt.Dialog
                                   |
                                   +----com.sun.java.swing.JDialog
                                           |
                                           +----view.PackageDialog

public class PackageDialog 
extends JDialog 
implements ActionListener, DocumentListener, ModelChangeListener

This is a dialog box that allows the user to edit a PackageDialog 

 closeButton 
The close button, when the user click on it, the dialog disappears 

 model 
The package model can be edited by this dialog. 

 name 
The text-field that shows the name of the class 

 stereotype 
The text-field that shows the stereotype of the class 

 visibility  
The combobox that shows the visibility of the class

 PackageDialog(Frame, PackageModel) 
Constructor; creates the dialog box for PackageModel model.

- 180 -

11.40  Class view.PackageDialogThe design and implementation of a Socca Editor



 actionPerformed(ActionEvent) 
This method is called when the user has pushed a button or pressed the enter-key in a
text field. 

 changedUpdate(DocumentEvent) 
This method is called when the user has changed something in a text-field that is neither
an insert nor a remove. 

 handleDocumentEvent(DocumentEvent) 
This method is called when the value in the name or stereotype text-fields has changed. 

 insertUpdate(DocumentEvent) 
This method is called when the user has entered something in a text-field. 

 removeUpdate(DocumentEvent) 
This method is called when the user has removed something from a text-field. 

 valueAdded(ModelChangeEvent) 
 valueChanged(ModelChangeEvent) 

This method is called when a value in the model has changed. 
 valueRemoved(ModelChangeEvent) 

 model 

 private PackageModel model

The package model can be edited by this dialog.

 name 

 private JTextField name

The text-field that shows the name of the class

 stereotype 

 private JTextField stereotype

The text-field that shows the stereotype of the class

 visibility  

 private JComboBox visibility

The combobox that shows the visibility of the class

 closeButton 

 private JButton closeButton

The close button, when the user click on it, the dialog disappears

- 181 -

11.40  Class view.PackageDialogThe design and implementation of a Socca Editor



 PackageDialog 

 public PackageDialog(Frame frame,
                      PackageModel model)

Constructor; creates the dialog box for PackageModel model. 

Parameters: 
frame - the window this dialog belongs to. 
model - the model of which this is a view 

 actionPerformed 

 public void actionPerformed(ActionEvent e)

This method is called when the user has pushed a button or pressed the enter-key in a
text field. This method is public as an implementation detail and should not be called by
a programmer. 

 insertUpdate 

 public void insertUpdate(DocumentEvent e)

This method is called when the user has entered something in a text-field. This method is
public as an implementation detail and should not be called by a programmer. 

 removeUpdate 

 public void removeUpdate(DocumentEvent e)

This method is called when the user has removed something from a text-field. This
method is public as an implementation detail and should not be called by a programmer. 

 changedUpdate 

 public void changedUpdate(DocumentEvent e)

This method is called when the user has changed something in a text-field that is neither
an insert nor a remove. This method is public as an implementation detail and should not
be called by a programmer. 

 handleDocumentEvent 

 private void handleDocumentEvent(DocumentEvent e)

- 182 -

11.40  Class view.PackageDialogThe design and implementation of a Socca Editor



This method is called when the value in the name or stereotype text-fields has changed.
This method will call the setName or setStereotype methods of the model to propagate
the change. 

 valueChanged 

 public void valueChanged(ModelChangeEvent e)

This method is called when a value in the model has changed. This method will update
the values in the text-fields. This method is public as an implementation detail and
should not be called by a programmer. 

 valueAdded 

 public void valueAdded(ModelChangeEvent e)

 valueRemoved 

 public void valueRemoved(ModelChangeEvent e)

- 183 -

11.40  Class view.PackageDialogThe design and implementation of a Socca Editor



11.41   Class view.PackageLayout
java.lang.Object
   |
   +----view.PackageLayout

class PackageLayout 
extends Object 
implements LayoutManager

This is a layout manager that is used to layout the package views. 

This class is not public and therefore cannot be used outside this package. 

- 184 -

11.41  Class view.PackageLayoutThe design and implementation of a Socca Editor



11.42   Class view.PackageView
java.lang.Object
   |
   +----java.awt.Component
           |
           +----java.awt.Container
                   |
                   +----com.sun.java.swing.JComponent
                           |
                           +----view.Movable
                                   |
                                   +----view.Resizable
                                           |
                                           +----view.ElementView
                                                   |
                                                   +----view.PackageView

public class PackageView 
extends ElementView

This class shows one package element on the screen. At the top of the package there are the
stereotype and name labels and the visibility icon. The visibility icon uses the colors of a
traffic light to show public visibility (green), protected visibility (yellow) and private
visibility (red). Below the labels and icon the content of the package is shown. 

 elementLayer 
The layer in which the elements are shown 

 model 
The package model that this class is a view of 

 modelToViewMap 
This hashtable that maps element models to their views. 

 packagePopup 
The menu that pops up when the user presses the right mouse button on the package
view 

 relationLayer 
The layer in which the relation are shown, this layer lies on top of the element layer. 

 topLevel 
Is this a top level package (direct child of a PackageWindow).

- 185 -

11.42  Class view.PackageViewThe design and implementation of a Socca Editor



 PackageView(PackageModel, PackageView, boolean) 
Constructor; create a view of the package model.

 addAssociation(AssociationModel) 
This method is called in response to an event to add a new association to the package. 

 addElement(ElementModel) 
This method is called in response to an event to add a new element to the package. 

 addNewAssociation(int, int) 
This method is called when the user wants to adds a new association to the package. 

 addNewClass(int, int) 
This method is called when the user wants to adds a new class to the package. 

 addNewPackage(int, int) 
This method is called when the user wants to adds a new package to the package. 

 doMove(int, int) 
This method is called to move the component to a new location. 

 doResize(int, int) 
This method is called to resize the component. 

 findClassView(ClassModel) 
 findComponentAt(int, int) 
 getElementLayer() 

Return the layer that contains the elements. 
 getModel() 

Return the model of this view. 
 getRelationLayer() 

Return the layer that contains the relations. 
 mouseClicked(MouseEvent) 

This method is called when the user clicks a mouse button. 
 mousePressed(MouseEvent) 

This method is called when the user presses a mouse button. 
 removeAssociation(AssociationModel) 

This method is called in response to an event to remove an association from the package. 
 removeElement(ElementModel) 

This method is called in response to an event to remove an element from the package. 
 valueAdded(ModelChangeEvent) 

This method is called when an element or association is added to the package model. 
 valueRemoved(ModelChangeEvent) 

This method is called when an element or association is removed from the package 
model.

 model 

- 186 -

11.42  Class view.PackageViewThe design and implementation of a Socca Editor



 private PackageModel model

The package model that this class is a view of

 packagePopup 

 private JPopupMenu packagePopup

The menu that pops up when the user presses the right mouse button on the package 
view

 elementLayer 

 private JPanel elementLayer

The layer in which the elements are shown

 relationLayer 

 private JPanel relationLayer

The layer in which the relation are shown, this layer lies on top of the element layer.

 modelToViewMap 

 private Hashtable modelToViewMap

This hashtable that maps element models to their views.

 topLevel 

 private boolean topLevel

Is this a top level package (direct child of a PackageWindow).

 PackageView 

 public PackageView(PackageModel model,
                    PackageView parentPackage,
                    boolean topLevel)

Constructor; create a view of the package model. 

Parameters: 
model - the model that will be shown with this view 
parentPackage - the package that owns this class 
topLevel - whether this is a top level package; that is, a direct child of a
PackageWindow. 

- 187 -

11.42  Class view.PackageViewThe design and implementation of a Socca Editor



 getModel 

 public PackageModel getModel()

Return the model of this view. 

 getElementLayer 

 public JPanel getElementLayer()

Return the layer that contains the elements. 

 getRelationLayer 

 public JPanel getRelationLayer()

Return the layer that contains the relations. 

 mousePressed 

 public void mousePressed(MouseEvent e)

This method is called when the user presses a mouse button. If the mouse button is the
right mouse button, the popup menu is shown. If the mouse button is the left mouse
button and the current mode is ADD_CLASS_MODE, ADD_PACKAGE_MODE, or
ADD_ASSOCIATION_MODE a new class/package/association is created. 

Overrides: 
mousePressed in class ElementView 

 mouseClicked 

 public void mouseClicked(MouseEvent e)

This method is called when the user clicks a mouse button. If the user double-clicks, then
a dialog box is shown allowing the user to edit the package. This method is public as an
implementation detail and should not be called by a programmer. 

Overrides: 
mouseClicked in class Movable 

 doMove 

 public void doMove(int deltaX,
                    int deltaY)

This method is called to move the component to a new location. 

- 188 -

11.42  Class view.PackageViewThe design and implementation of a Socca Editor



Overrides: 
doMove in class Movable 

 doResize 

 protected void doResize(int x,
                         int y)

This method is called to resize the component. 

Overrides: 
doResize in class ElementView 

 valueAdded 

 public void valueAdded(ModelChangeEvent event)

This method is called when an element or association is added to the package model.
This method is public as an implementation detail and should not be called by a
programmer. 

Overrides: 
valueAdded in class ElementView 

 valueRemoved 

 public void valueRemoved(ModelChangeEvent event)

This method is called when an element or association is removed from the package
model. This method is public as an implementation detail and should not be called by a
programmer. 

Overrides: 
valueRemoved in class ElementView 

 addElement 

 private void addElement(ElementModel e)

This method is called in response to an event to add a new element to the package. 

 removeElement 

 private void removeElement(ElementModel model)

This method is called in response to an event to remove an element from the package. 

 addAssociation 

 private void addAssociation(AssociationModel associationModel)

- 189 -

11.42  Class view.PackageViewThe design and implementation of a Socca Editor



This method is called in response to an event to add a new association to the package. 

 removeAssociation 

 private void removeAssociation(AssociationModel model)

This method is called in response to an event to remove an association from the package. 

 addNewClass 

 private void addNewClass(int x,
                          int y)

This method is called when the user wants to adds a new class to the package. 

 addNewPackage 

 private void addNewPackage(int x,
                            int y)

This method is called when the user wants to adds a new package to the package. 

 addNewAssociation 

 private void addNewAssociation(int x,
                                int y)

This method is called when the user wants to adds a new association to the package. 

 findComponentAt 

 public Component findComponentAt(int x,
                                  int y)

 findClassView 

 public ClassView findClassView(ClassModel model)

- 190 -

11.42  Class view.PackageViewThe design and implementation of a Socca Editor



11.43   Class view.PackageWindow
java.lang.Object
   |
   +----java.awt.Component
           |
           +----java.awt.Container
                   |
                   +----java.awt.Window
                           |
                           +----java.awt.Frame
                                   |
                                   +----com.sun.java.swing.JFrame
                                           |
                                           +----view.PackageWindow

public class PackageWindow 
extends JFrame 
implements ModelChangeListener

The package window is a window that shows one package and all it contents. It has a
menubar and toolbar at the top, at ModelTree at the left and a PackageView at the right. 

See Also: 
ModelTree, PackageView, Mode, Selection

 mode 
 model 
 modelTree 
 selection 

 PackageWindow(PackageModel) 

 getMode() 
Return the Mode object that keeps track of the current mode. 

 getModelTree() 
Return the model tree 

- 191 -

11.43  Class view.PackageWindowThe design and implementation of a Socca Editor



 getSelection() 
Return the selection of this window 

 valueAdded(ModelChangeEvent) 
 valueChanged(ModelChangeEvent) 

This method is called when the name, stereotype or owner of the package changes. 
 valueRemoved(ModelChangeEvent) 

 model 

 private PackageModel model

 selection 

 private Selection selection

 mode 

 private Mode mode

 modelTree 

 private ModelTree modelTree

 PackageWindow 

 public PackageWindow(PackageModel model)

 getSelection 

 public Selection getSelection()

Return the selection of this window 

 getMode 

 public Mode getMode()

Return the Mode object that keeps track of the current mode. 

 getModelTree 

 public ModelTree getModelTree()

- 192 -

11.43  Class view.PackageWindowThe design and implementation of a Socca Editor



Return the model tree 

 valueAdded 

 public void valueAdded(ModelChangeEvent event)

 valueRemoved 

 public void valueRemoved(ModelChangeEvent event)

 valueChanged 

 public void valueChanged(ModelChangeEvent e)

This method is called when the name, stereotype or owner of the package changes. 

- 193 -

11.43  Class view.PackageWindowThe design and implementation of a Socca Editor



11.44   Class view.ParameterTableModel
java.lang.Object
   |
   +----com.sun.java.swing.table.AbstractTableModel
           |
           +----view.ParameterTableModel

class ParameterTableModel 
extends AbstractTableModel

This class is used to control the table that shows the parameters of an operation. 

This class is not public and therefore cannot be used outside this package. 

- 194 -

11.44  Class view.ParameterTableModelThe design and implementation of a Socca Editor



11.45   Class view.RelativeMovable
java.lang.Object
   |
   +----java.awt.Component
           |
           +----java.awt.Container
                   |
                   +----com.sun.java.swing.JComponent
                           |
                           +----view.Movable
                                   |
                                   +----view.RelativeMovable

public class RelativeMovable 
extends Movable 
implements ComponentListener

The class Movable contains the functionality that allows the user to move a component on the
screen to a new location. The user can use the mouse to drag a component (that is a subclass
of Movable) and this class will allow it to move. 

RelativeMovable inherits from Movable and allows a component on the screen to be moved
relative to another component. For example, A is a Movable and B is a RelativeMovable that
moves relative to A. The user can move B around and the RelativeMovable will keep track of
the relative offset to A. If the user moves A around, B will move as well to keep the offset the
same. 

 movable 
The RelativeMovable moves relative to this Movable. 

 offsetX 
The offset in the X direction 

 offsetY 
The offset in the Y direction

 RelativeMovable(Movable, ModelBase, String) 
The constructor the RelativeMovable 

- 195 -

11.45  Class view.RelativeMovableThe design and implementation of a Socca Editor



 addNotify() 
 componentHidden(ComponentEvent) 
 componentMoved(ComponentEvent) 

This method is called when the Movable moves to a new location. 
 componentResized(ComponentEvent) 

This method is called when the Movable changes size. 
 componentShown(ComponentEvent) 
 doMove(int, int) 

This method is called to move the component to a new location. 
 setLocation(Point) 

Override the setLocation method of the superclass to update the offsetX and offsetY
variables when the RelativeMovable moves. 

 updateLocation() 

 movable 

 protected Movable movable

The RelativeMovable moves relative to this Movable.

 offsetX 

 protected int offsetX

The offset in the X direction

 offsetY 

 protected int offsetY

The offset in the Y direction

 RelativeMovable 

 public RelativeMovable(Movable movable,
                        ModelBase modelBase,
                        String locationName)

The constructor the RelativeMovable 

Parameters: 
movable - the RelativeMovable will move relative to this Movable. 
modelBase - the model in which the location of the RelativeMovable will be stored 
locationName - the name under which the location of the RelativeMovable will be
stored in the model. 

- 196 -

11.45  Class view.RelativeMovableThe design and implementation of a Socca Editor



 addNotify 

 public void addNotify()

Overrides: 
addNotify in class Movable 

 setLocation 

 public void setLocation(Point newLocation)

Override the setLocation method of the superclass to update the offsetX and offsetY
variables when the RelativeMovable moves. 

Overrides: 
setLocation in class Movable 

 doMove 

 protected void doMove(int deltaX,
                       int deltaY)

This method is called to move the component to a new location. 

Overrides: 
doMove in class Movable 

 updateLocation 

 protected void updateLocation()

 componentResized 

 public void componentResized(ComponentEvent e)

This method is called when the Movable changes size. 

 componentMoved 

 public void componentMoved(ComponentEvent e)

This method is called when the Movable moves to a new location. 

 componentShown 

 public void componentShown(ComponentEvent e)

 componentHidden 

- 197 -

11.45  Class view.RelativeMovableThe design and implementation of a Socca Editor



 public void componentHidden(ComponentEvent e)

- 198 -

11.45  Class view.RelativeMovableThe design and implementation of a Socca Editor



11.46   Class view.Resizable
java.lang.Object
   |
   +----java.awt.Component
           |
           +----java.awt.Container
                   |
                   +----com.sun.java.swing.JComponent
                           |
                           +----view.Movable
                                   |
                                   +----view.Resizable

public class Resizable 
extends Movable

The class Resizable contains the functionality that allows the user to resize a component. The
user can use the mouse to drag a border of the component (that is a subclass of Resizable) and
this class will allow it to change its size. 

 E_Cursor 
The east resize cursor 

 mouseDownSide 
The side of the component where the mouse was pressed down. 

 N_Cursor 
The north resize cursor 

 NE_Cursor 
The north east resize cursor 

 NW_Cursor 
The north west resize cursor 

 S_Cursor 
The south resize cursor 

 SE_Cursor 
The south east resize cursor 

 SIDE_E 
The east (right) side of the component 

 SIDE_N 
The north (top) side of the component 

 SIDE_NE 
The north east (top right) corner of the component 

 SIDE_NW 
The north west (top left) corner of the component 

- 199 -

11.46  Class view.ResizableThe design and implementation of a Socca Editor



 SIDE_S 
The south (bottom) side of the component 

 SIDE_SE 
The south east (bottom right) corner of the component 

 SIDE_SW 
The south west (bottom left) corner of the component 

 SIDE_W 
The west (left) side of the component 

 sizeName 
The name of the property under which the size of the component is stored in the model. 

 SW_Cursor 
The south west resize cursor 

 W_Cursor 
The west resize cursor

 Resizable(ModelBase, String, String) 

 doResize(int, int) 
This method is called to resize the component. 

 getSide(MouseEvent) 
Determin if the mouse pointer is currently over a corner or size of the component. 

 mouseDragged(MouseEvent) 
This method is called when the user drags the mouse. 

 mouseMoved(MouseEvent) 
This method is called when the user moves the mouse without pressing a mouse button. 

 mousePressed(MouseEvent) 
This method is called when the user pressed a mouse button. 

 mouseReleased(MouseEvent) 
This method is called when the user release the mouse button.

 mouseDownSide 

 protected int mouseDownSide

The side of the component where the mouse was pressed down.

- 200 -

11.46  Class view.ResizableThe design and implementation of a Socca Editor



 sizeName 

 protected String sizeName

The name of the property under which the size of the component is stored in the model.

 SIDE_N 

 private static final int SIDE_N

The north (top) side of the component

 SIDE_NE 

 private static final int SIDE_NE

The north east (top right) corner of the component

 SIDE_E 

 private static final int SIDE_E

The east (right) side of the component

 SIDE_SE 

 private static final int SIDE_SE

The south east (bottom right) corner of the component

 SIDE_S 

 private static final int SIDE_S

The south (bottom) side of the component

 SIDE_SW 

 private static final int SIDE_SW

The south west (bottom left) corner of the component

 SIDE_W 

 private static final int SIDE_W

The west (left) side of the component

 SIDE_NW 

 private static final int SIDE_NW

- 201 -

11.46  Class view.ResizableThe design and implementation of a Socca Editor



The north west (top left) corner of the component

 NW_Cursor 

 private static final Cursor NW_Cursor

The north west resize cursor

 N_Cursor 

 private static final Cursor N_Cursor

The north resize cursor

 NE_Cursor 

 private static final Cursor NE_Cursor

The north east resize cursor

 E_Cursor 

 private static final Cursor E_Cursor

The east resize cursor

 SE_Cursor 

 private static final Cursor SE_Cursor

The south east resize cursor

 S_Cursor 

 private static final Cursor S_Cursor

The south resize cursor

 SW_Cursor 

 private static final Cursor SW_Cursor

The south west resize cursor

 W_Cursor 

 private static final Cursor W_Cursor

The west resize cursor

 Resizable 

- 202 -

11.46  Class view.ResizableThe design and implementation of a Socca Editor



 public Resizable(ModelBase modelBase,
                  String locationName,
                  String sizeName)

 mousePressed 

 public void mousePressed(MouseEvent e)

This method is called when the user pressed a mouse button. If the current mode is
MOVE_MODE then the user may change the size of the component. 

Overrides: 
mousePressed in class Movable 

 mouseDragged 

 public void mouseDragged(MouseEvent e)

This method is called when the user drags the mouse. If the user started the drag at a side
of the component that call doResize() to resize the component. 

Overrides: 
mouseDragged in class Movable 

See Also: 
doResize 

 mouseReleased 

 public void mouseReleased(MouseEvent e)

This method is called when the user release the mouse button. 

Overrides: 
mouseReleased in class Movable 

 mouseMoved 

 public void mouseMoved(MouseEvent e)

This method is called when the user moves the mouse without pressing a mouse button.
When the mouse pointer is positioned above a side or a corner of the component the
mouse pointer changes shape to reflect the ability to resize the component. 

Overrides: 
mouseMoved in class Movable 

 doResize 

- 203 -

11.46  Class view.ResizableThe design and implementation of a Socca Editor



 protected void doResize(int x,
                         int y)

This method is called to resize the component. The parameters x and y represent the
increase or decrease in width/height. 

 getSide 

 protected int getSide(MouseEvent e)

Determin if the mouse pointer is currently over a corner or size of the component. 

- 204 -

11.46  Class view.ResizableThe design and implementation of a Socca Editor



11.47   Class view.RolePanel
java.lang.Object
   |
   +----java.awt.Component
           |
           +----java.awt.Container
                   |
                   +----com.sun.java.swing.JComponent
                           |
                           +----com.sun.java.swing.JPanel
                                   |
                                   +----view.RolePanel

class RolePanel 
extends JPanel 
implements ActionListener, DocumentListener, ModelChangeListener

class RolePanel is used to display a AssociationRoleModel in a AssociationDialog. 

See Also: 
AssociationRoleModel, AssociationDialog

This class is not public and therefore cannot be used outside this package. 

- 205 -

11.47  Class view.RolePanelThe design and implementation of a Socca Editor



11.48   Class view.Selection
java.lang.Object
   |
   +----view.Selection

public class Selection 
extends Object

This class keeps track of the selected components within a PackageWindow. There are two
types of methods: normal methods that set, add to or remove from the selection and static
methods that first find a PackageWindow, request the selection of that PackageWindow and
call the normal methods of that selection. 

 selection 
The selected components

 Selection() 

 add(Component) 
Add component c to the selection, the previous selection is not deselected. 

 addToSelection(Component) 
Add component c to the selection, the previous selection is not deselected. 

 clear(Component) 
Clear the selection, deselect all components in the current selection. 

 clearSelection(Component) 
Clear the selection, deselect all components in the current selection. 

 findWindow (Component) 
Find the PackagWindow that is the ancestor of component c 

 remove(Component) 
Remove component c from the selection, the previous selection (except component c) is
not deselected. 

 removeFromSelection(Component) 
Remove component c from the selection, the previous selection (except component c) is
not deselected. 

- 206 -

11.48  Class view.SelectionThe design and implementation of a Socca Editor



 set(Component) 
Set the selection to component c, the previous selection is deselected 

 setSelection(Component) 
Set the selection to component c, the previous selection is deselected 

 selection 

 private Vector selection

The selected components

 Selection 

 public Selection()

 findWindow  

 private static PackageWindow findWindow(Component c)

Find the PackagWindow that is the ancestor of component c 

 setSelection 

 public static void setSelection(Component c)

Set the selection to component c, the previous selection is deselected 

 set 

 public void set(Component c)

Set the selection to component c, the previous selection is deselected 

 addToSelection 

 public static void addToSelection(Component c)

Add component c to the selection, the previous selection is not deselected. 

 add 

 public void add(Component c)

- 207 -

11.48  Class view.SelectionThe design and implementation of a Socca Editor



Add component c to the selection, the previous selection is not deselected. 

 removeFromSelection 

 public static void removeFromSelection(Component c)

Remove component c from the selection, the previous selection (except component c) is
not deselected. 

 remove 

 public void remove(Component c)

Remove component c from the selection, the previous selection (except component c) is
not deselected. 

 clearSelection 

 public static void clearSelection(Component c)

Clear the selection, deselect all components in the current selection. 

 clear 

 public void clear(Component c)

Clear the selection, deselect all components in the current selection. 

- 208 -

11.48  Class view.SelectionThe design and implementation of a Socca Editor



11.49   Interface view.SelectionListener
public interface SelectionListener 
extends EventListener

All componentes that can be selected by the user should implement this interface. When the
user selects the component the method selected() is called. When the user selects another
component the method deselected() is called. 

 deselected() 
This method is called when the user has selected another component. 

 selected() 
This method is called when the user has selected the component.

 selected 

 public abstract void selected()

This method is called when the user has selected the component. 

 deselected 

 public abstract void deselected()

This method is called when the user has selected another component. 

- 209 -

11.49  Interface view.SelectionListenerThe design and implementation of a Socca Editor



11.50   Class Hierarchy
class java.lang.Object 

class com.sun.java.swing.AbstractAction (implements com.sun.java.swing.Action,
java.lang.Cloneable, java.io.Serializable) 

class view.MyAction 
class com.sun.java.swing.table.AbstractTableModel (implements
com.sun.java.swing.table.TableModel, java.io.Serializable) 

class view.ParameterTableModel 
class java.awt.Component (implements java.awt.image.ImageObserver,
java.awt.MenuContainer, java.io.Serializable) 

class java.awt.Container 
class com.sun.java.swing.JComponent (implements java.io.Serializable) 

class com.sun.java.swing.JLabel (implements
com.sun.java.swing.SwingConstants,
com.sun.java.accessibility.Accessible) 

class view.AttributeView (implements ModelChangeListener) 
class view.OperationView (implements ModelChangeListener) 
class Renderer (implements
com.sun.java.swing.ListCellRenderer) 

class com.sun.java.swing.JPanel (implements
com.sun.java.accessibility.Accessible) 

class view.AttributesView (implements ModelChangeListener) 
class view.ModelTree (implements ModelChangeListener) 
class view.OperationsView (implements ModelChangeListener) 
class view.RolePanel (implements
java.awt.event.ActionListener,
com.sun.java.swing.event.DocumentListener, 
ModelChangeListener) 

class view.LineSegment (implements
java.awt.event.ComponentListener,
com.sun.java.swing.event.ChangeListener) 
class view.Movable (implements java.awt.event.MouseListener,
java.awt.event.MouseMotionListener) 

class view.RelativeMovable (implements
java.awt.event.ComponentListener) 

class view.BoundedMovable 
class view.Handle 

class view.AssociationRoleView (implements 
ModelChangeListener) 

class view.Resizable 
class view.AssociationView (implements 
ModelChangeListener) 
class view.ElementView (implements 

- 210 -

11.50  Class HierarchyThe design and implementation of a Socca Editor



ModelChangeListener, view.SelectionListener) 
class view.ClassView 
class view.PackageView 

class java.awt.Panel 
class java.applet.Applet 

class com.sun.java.swing.JApplet (implements
com.sun.java.accessibility.Accessible,
com.sun.java.swing.RootPaneContainer) 

class SoccaEditor 
class java.awt.Window 

class java.awt.Dialog 
class com.sun.java.swing.JDialog (implements
com.sun.java.swing.WindowConstants,
com.sun.java.accessibility.Accessible,
com.sun.java.swing.RootPaneContainer) 

class view.AssociationDialog (implements
java.awt.event.ActionListener,
com.sun.java.swing.event.DocumentListener, 
ModelChangeListener) 
class view.AttributeDialog (implements
java.awt.event.ActionListener,
com.sun.java.swing.event.DocumentListener, 
ModelChangeListener) 
class view.ClassDialog (implements
java.awt.event.ActionListener,
com.sun.java.swing.event.DocumentListener,
java.awt.event.MouseListener, ModelChangeListener) 
class view.OperationDialog (implements
java.awt.event.ActionListener,
com.sun.java.swing.event.DocumentListener, 
ModelChangeListener) 
class view.PackageDialog (implements
java.awt.event.ActionListener,
com.sun.java.swing.event.DocumentListener, 
ModelChangeListener) 

class java.awt.Frame (implements java.awt.MenuContainer) 
class com.sun.java.swing.JFrame (implements
com.sun.java.swing.WindowConstants,
com.sun.java.accessibility.Accessible,
com.sun.java.swing.RootPaneContainer) 

class view.MainWindow (implements
java.awt.event.ActionListener) 
class view.PackageWindow (implements 
ModelChangeListener) 

class view.Line (implements java.awt.event.MouseListener,

- 211 -

11.50  Class HierarchyThe design and implementation of a Socca Editor



java.awt.event.MouseMotionListener, view.SelectionListener) 
class java.util.EventObject (implements java.io.Serializable) 

class ModelChangeEvent 
class view.MenuFactory 
class view.Mode 
class model.ModelBase (implements java.io.Serializable) 

class model.AssociationModel 
class model.AssociationRoleModel 
class model.ElementModel 

class model.ClassModel 
class model.PackageModel 

class model.GeneralizationModel 
class model.MemberModel 

class model.AttributeModel 
class model.OperationModel 

class model.NoteModel 
class model.UsesRelationModel 

interface ModelChangeListener (extends java.util.EventListener) 
class view.PackageLayout (implements java.awt.LayoutManager) 
class model.ParameterModel (implements java.io.Serializable) 
class view.Selection 
interface view.SelectionListener (extends java.util.EventListener) 
class Visibility (implements java.io.Serializable) 

- 212 -

11.50  Class HierarchyThe design and implementation of a Socca Editor


	1€€Abstract
	2€€Introduction
	3€€Problem description
	4€€The implementation
	4.1€€The architecture
	4.1.1€€The model package
	4.1.2€€The view package


	5€€Problems encountered
	5.1€€Event handling on Lines
	5.2€€Text-fields in dialogs
	5.3€€Inter package associations

	6€€An example of the use of the editor
	6.1€€Introduction
	6.2€€Step by step walk-thru

	7€€Advantages and disadvantages of Java
	7.1€€Advantages of Java
	7.2€€Disadvantages

	8€€Future Work
	9€€Conclusion
	10€€References
	11€€Appendix A: The documentation of the classes
	11.1€€Class SoccaEditor
	11.2€€Class ModelChangeEvent
	11.3€€Interface ModelChangeListener
	11.4€€Class Visibility
	11.5€€Class model.AssociationModel
	11.6€€Class model.AssociationRoleModel
	11.7€€Class model.AttributeModel
	11.8€€Class model.ClassModel
	11.9€€Class model.ElementModel
	11.10€€Class model.GeneralizationModel
	11.11€€Class model.MemberModel
	11.12€€Class model.ModelBase
	11.13€€Class model.NoteModel
	11.14€€Class model.OperationModel
	11.15€€Class model.PackageModel
	11.16€€Class model.ParameterModel
	11.17€€Class model.UsesRelationModel
	11.18€€Class view.AssociationDialog
	11.19€€Class view.AssociationRoleView
	11.20€€Class view.AssociationView
	11.21€€Class view.AttributeDialog
	11.22€€Class view.AttributeView
	11.23€€Class view.AttributesView
	11.24€€Class view.BoundedMovable
	11.25€€Class view.ClassDialog
	11.26€€Class view.ClassView
	11.27€€Class view.ElementView
	11.28€€Class view.Handle
	11.29€€Class view.Line
	11.30€€Class view.LineSegment
	11.31€€Class view.MainWindow
	11.32€€Class view.MenuFactory
	11.33€€Class view.Mode
	11.34€€Class view.ModelTree
	11.35€€Class view.Movable
	11.36€€Class view.MyAction
	11.37€€Class view.OperationDialog
	11.38€€Class view.OperationView
	11.39€€Class view.OperationsView
	11.40€€Class view.PackageDialog
	11.41€€Class view.PackageLayout
	11.42€€Class view.PackageView
	11.43€€Class view.PackageWindow
	11.44€€Class view.ParameterTableModel
	11.45€€Class view.RelativeMovable
	11.46€€Class view.Resizable
	11.47€€Class view.RolePanel
	11.48€€Class view.Selection
	11.49€€Interface view.SelectionListener
	11.50€€Class Hierarchy


