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Abstract

A new framework is presented, that was designed to be a unification of two exist-
ing biologically inspired paradigms: Evolutionary Computation (EC) and Neural
Computation (NC). In this thesis, the central goal is to untangle bio-inspired
methods from their biological metaphors, so that issues like exploration, gener-
alization, structural credit assignment, recombination, etcetera, can be studied
in a more general language, instead of being studied separately in different
metaphors. It is hypothesized that mimicing nature’s principles, and not its
epiphenomena, leads to better algorithms. The so-called Adaptive Sampling
framework is used for analyzing the 3-SAT problem, which led to one neural
method and five mixed methods, that mix elements of EC and of NC in dif-
ferent ways. These methods have been tested against the best currently known
incomplete 3-SAT algorithm, the SAW-ing EA. Perhaps contradicting conven-
tional intuition, the Neural method needs less evaluations to reach a higher
success rate than the SAW-ing EA, but its floating point representation con-
sumes much more time. However, one of the mixed approaches, called Lamarkian
SEA-SAW, outperforms the SAW-ing EA in success rate, in number of evalua-
tions and in runtime, on all test sets. This suggest that it is indeed beneficial to
study EC and NC in the unifying Adaptive Sampling framework.
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Chapter 1

Introduction

1.1 Subject

It is widely realized that genetic evolution and neural learning have more in
common than is currently exploited in biocomputation [LON97]. This thesis
investigates their similarities.

For the maturation of bio-inspired computation, there is a need for a general
theory, that focuses on the principles and not on the epiphenomena, and puts
the many individual experiments that have been performed through the years
in one common context.

Instead of trying to find proofs of convergence or capacity, which has been
tried, but has turned out to be very difficult, it might be useful to investigate the
common principles of the studied methods. This would make them instantiations
of a common superclass, and would create a common context for the different
experiments.

The existence of common principles that are fundamental to the power be-
hind both Neural Computation (NC) and Evolutionary Computation (EC),
forms the central hypothesis of this thesis:

CENTRAL HYPOTHESIS

Although Evolutionary and Neural Computation come from dif-
ferent origins and are used for solving different problems, the
principles that make them work are the same, and the remaining
differences can be explained as problem dependent parameters.
Concentrating on these common principles, and not on epiphe-
nomenal features of either one, facilitates the design of better
algorithms.

1.2 Goal

The proof for the hypothesis will not be a logical deduction; there are too many
concepts involved that are defined only in intuitive terms. It is especially hard to
give a good definition of the difference between principles and problem-specific
parameters.

However, it is possible to give a specification of a set of common features.
These features then define a class of methods, that can be described in a frame-
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work. The goal of this thesis is to prove the hypothesis by developing such a
framework. The methods used in Evolutionary Computation (EC) and Neural
Computation (NC) should be definable within this framework:

INCLUSION REQUIREMENT
The framework should define a class of methods, including at
least Evolutionary Algorithms and Neural Networks.

Of course, any existing general purpose programming language (for instance
C++) would in principle satisfy this goal, because NNs and EAs can both be
implemented in C++. This is clearly not what is wanted, because any algorithm
can be implemented in a general purpose programming language. This rules out
C++as a candidate:

STRICTNESS REQUIREMENT
The framework should define a relatively small family of al-
gorithms, to assure that the common principles found are not
trivial properties of just any algorithm.

Another family that contains both NNs and EAs is the family that contains
nothing else. This would neither be a very interesting family, because it does
not compare NNs and EAs in any way. The parameters of the framework would
not be used to tune for specific problems, but would work as a switch between
the two subclasses.

LARGENESS REQUIREMENT
On the other hand, the framework should define a large enough
family of algorithms, to assure that EC and NC are not simply
represented separately, with the parameters being only a switch
between the two.

The framework should be like a greatest common denominator. It should
define the largest set of features that are present in both, i.e. all the similarities
between EC and NC, and not the differences.

The hypothesis can be tested by trying to define a framework satisfying
these three requirements. This involves an intuitional judgement of whether the
similarities found are really the principles that make the methods work, and not
just some trivial properties. Also, it should be judged whether the parameters
of the framework are problem dependent, and do not represent the actual choice
between two separately defined classes. Both these measures will be evaluated
in the Conclusions, in Section 8.1.

The second part of the hypothesis will be investigated with two additional
goals:

1. Exploring what new methods are suggested by the framework:

If the framework takes away the epiphenomena from the description of
bio-inspired methods, then this new, more fundamental description should
open opportunities for applying the fundamental principles to new prob-
lem domains, by instantiating the framework in a way that is different
from the two specific instantiations we find in nature.

2. Simulating different instantiations of the framework:
Wherever possible, empirical results should support a theory. The 3-SAT
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problem will test the usefulness of the framework for supporting the design
of better algorithms.

It is not the purpose to invent a new class of algorithms, but to supply
one model to support the design of methods within and in between the two
classes, thus showing how closely related these are. The purpose of this thesis
is closer to that of [Far90], which is a paper concerning connectionism, but is
an example of a unifying framework, comparing terms used in different disci-
plines for the same concepts. Other work with a similar goal includes that of
Dorigo et al. [DB94], who compared Q-learning to classifier systems, Eiben et
al. [EAVHNO5], who formulated a general procedure for search methods, and
Radcliffe and Surry [Rad91], who supplied a mathematical tool (“formae”) for
comparing operators and assumptions of different Evolutionary Algorithms. All
these studies investigate similarities between different methods.

1.3 Structure of this Thesis

The 3-SAT problem forms a running example to illuminate concepts in this the-
sis, wherever possible. In the following chapter, the Adaptive Sampling frame-
work is introduced. Chapters 3 and 4 discuss Evolutionary and Neural Compu-
tation.

The central Chapters 5 and 6 then investigate Adaptive Sampling in more
depth, dividing issues into Sampling and Adaptation. Chapter 7 discusses the
experiments that have been performed to investigate to what extent the use of
the Adaptive Sampling framework can increase performance, and is followed by
the conclusions.

1.4 3-SAT: The Running Example

At the beginning of next chapter, an intuitive notion of adaptivity and sampling
is developed. To give these intuitive concepts some context, we first introduce
the running example of this thesis: 3-SAT.

The Adaptive Sampling framework has been tested by applying it to the
3-SAT problem class. An instance of the 3-SAT problem is uniquely defined
by a Boolean expression, and any valuation that satisfies that expression is a
solution of that instance. The expression has to be in conjunctive normal form
(also known as a “product of sums”), in which each of the k clauses contains
exactly three literals:

(P11 V12 Vpi3) A (P21 Va2 Vp23) Ao A (Dr1 V Dr2 V Di3)-

In this expression, each literal p;; is either one of the m free variables of the
expression ({x1,Z2,...,&m}) or the negation of one of those ({Z1,T3,...,Tm}).
For every i, a clause contains at most one of x; and Z;. A solution is a valuation
Val : {x1,22,...,2m} — {true, false}, such that the expression yields true for
this valuation. An example of an instance of the 3-SAT problem, with £ = 5
clauses and m = 4 free variables, is:

(21 Vo Vas) A (TTVEVEDA (21 VI3V x4) A
(FTV 23V x3) A (T3 V 23 V 7).
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This problem instance has seven solutions (Val(z1), Val(zz), Val(zs), Val(z4)),
for instance (true, true, true, false). The corresponding decision problem (“Does
a given expression admit a solution?”) is one of the most extensively studied
NP-complete problems.

Several heuristics have been developed for it, the most prominent one being
WG-SAT. It was introduced by Frank (see [Fra96, BEV96]) and is a variant of
G-SAT, developed by Gent and Walsh (see [GW95, BEV96]).

It is possible to solve 3-SAT analytically, for instance using distributivity of
conjunction over disjunction:

Solve((aV bV e)A(Rest...)) :=
Solve(a A Rest .. .) or(Solve(b A Rest .. .) or Solve(c A Rest .. .))

This is the way ProLog would solve 3-SAT. However, even if solving a 20-
clause formula this way takes at most 1 millisecond, then solving a 25-clause
formula would already take 243 milliseconds in the worst case, and a 70-clause
formula can already take up to a few million millenia (although a lot of benefit
for the average case might be drawn from backtracking, Most-Constrained-First
search and other speed-ups).



Chapter 2
Adaptive Sampling

In this chapter, we will discuss a class of algorithms, some of which can solve
70-clause and even 100-clause 3-SAT problems within one minute. The basic
principle behind these algorithms is to sample isolated features from the problem
and from candidate solutions, that are adapted iteratively. Evolutionary and
Neural Computation are the two main subfields of this class. Methods obtained
by hybridization or cross-fertilization between the two, form the third main
subfield.

This class of algorithms has been dubbed Adaptive Sampling, and it is
described by the Adaptive Sampling framework. The basic definitions of the
framework, namely a general problem format and a general procedure, will be
introduced.

2.1 Defining what Adaptive Sampling is

Defining the difference between adaptive sampling (e.g., neural network meth-
ods, evolutionary algorithms, stochastic approximation) and conventional com-
putation (e.g., complete algorithms, rule-based Artificial Intelligence, exhaustive
search) is not a trivial matter. For instance, the fact that adaptive methods are
adaptive, that the next step in the algorithm is determined by the information
gathered so far, is not discriminative, because this holds for any Turing Machine.
The fact that they mostly have a stochastic component, is more discriminative,
because conventional methods are usually deterministic. But it is not essential:
if the random seed is constrained to a specific value in the definition of the
method, the method is deterministic (each run is predictable), but would still
be called adaptive, because the underlying theoretical principles would be the
same.

2.1.1 Iterative Improvement

What does seem an important intuitional difference is that the state of an adap-
tive method in progress, during the run, always contains a candidate solution,
and that this candidate solution is improved iteratively.!

However, this also holds for some methods that are not biologically inspired, for instance
G-SAT [GW95, BEVY96].
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2.1.2 Sampling

Another characteristic is that this improvement is achieved by sampling. This
sampling can be determining the output of a fitness function, that is given in
the definition of the problem instance for a specific input, or considering one ele-
ment of a training set. For 3-SAT, for instance, the ProLog-approach calculates
a tree of features of a problem instance. Sampling methods for 3-SAT would
sample only the leafs of such a tree, without traversing its branch-structure.
The difference is in the fact that sampling does not require understanding the
actual structure of the problem class or the problem instance, as long as its
specific isolated elements are accessible.

2.1.3 Generalization

A third characteristic is that the information from a sample is combined with
that from others, so that (hopefully) the more general information is conserved,
while the other information (considered noise) is thrown away. In these vague
terms, that is what might be considered as the essential principle of adaptive
computation: a lot of specific information is gathered, and this long stream of
data is iteratively compressed into the much smaller representation of candidate
solutions, which would then hopefully convey the global information present in
this data, while the noise cancels out in the process of compression. For EC, this
stream of information consists of fitness evaluations that are to be improved;
for NC, it contains the data that is to be learned. The useful thing about this
approach is that the user does not need to specify exactly where this global
information can be found, and what information has to be considered noise; the
global information that is looked for is simply defined as “that information that
is not canceled out when samples are combined”.

2.2 The Framework

In the rest of this chapter, the framework is described. The description con-
tains a general problem format and a general procedure format. The procedure
can in principle be used for the implementation of a simulation environment in
which an algorithm can solve a problem. Because practice shows that simula-
tion environments are hardly ever useful (most simulations can be programmed
in a general purpose language within 500 lines), this possibility has not been
investigated further within this project. The Adaptive Sampling framework was
developed as a unification of two paradigms, not as a generalized environment.
It should be used for designing algorithms, not for programming them.

However, a computational paradigm can best be explained in terms of com-
putation, which is why the framework is presented here in terms of pseudo-
Pascal.

2.3 General Problem Format

A real world problem should first be modeled before it can be represented in a
computer. In this case, we assume that some computable error function exists
that can be used for evaluating candidate solutions. This function is called the
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sampling function ®. The term sampling refers to the fact that in the Adaptive
Sampling paradigm, a problem is solved by generalizing from a set of specific
samples from some distribution. In Evolutionary Computation, this is the dis-
tribution of “fitness” in the space of candidates. In Neural Computation, this
is the distribution of the “data set” in the space of possible data set elements
(more on this in Chapter 5).

In [CLR90], a concrete problem is defined as a relation on concrete problem
instances and corresponding concrete solutions. Here, we take the problem in-
stance to be represented as a set of k objectives, each of which is a vector in R¢.
If suitable, the number of objectives k can be taken to be one. This is merely a
matter of how one wants to encode the problem.

A candidate solution (candidate, for short) is represented as a vector in R™.
The evaluation calculated by @ is a scalar in R, and is an error value concerning
one candidate and one objective. So ® is a function from R™ x R¢ to R. The goal
is to find a candidate for which the sum of errors on objectives is minimal. In
Chapter 5, which discusses different types of problems, this goal is formulated
precisely. For now, we can define the relationship between the sampling function
® and the goal of the problem as follows:

DEFINITION 1 Given a sampling function ® from R™ x R’ to R for some
¢ and m, and a set of k objectives Z = {o01,02,...,0r}, in which each o; €
Rf(1 < i < k), and € > 0, an e-solution to the problem defined by ® and Z, is
a candidate ¢ € R™ such that

VYd € R™ : Error(c) < Error(d) +e¢,

in which for x € R™, Error(z) = Z O (z,0;).
1<i<k

2.3.1 3-SAT in the general problem format

In the general problem format, a problem class is represented by the sampling
function ®, and problem instances are represented by a set of objectives. In this
section, we will see how this format can be used for representing 3-SAT.

Instances of the 3-SAT problem class are uniquely defined by a logical expres-
sion in three conjunctive normal form (3-CNF'). To represent such an expression
in a set of objectives, we choose to encode each clause as one objective. We take
k to be the number of clauses, and ¢ and m both to be the number of variables
occurring in the expression.

For encoding the clauses, we use the following key:

EncodeClause(p; V p2 V p3) = v such that for 1 <i < £:

1 if3je€{1,2,3}:p; =,
v;=<¢ —1 if35€{1,2,3}:p; =75,
0 otherwise.
So for instance, the expression given in Section 1.1, would be represented
with the vectors

(]-a ]-7 ]-a 070)5 (_17 _]-a 07 _170)7 (1,0, _]-7 170)7
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(-1,1,1,0,0), and (0,—1,1,—1,0).

We also need to define how we encode candidate solutions. For this, we will
use a similar encoding. A valuation Val : {1, z2,...,2m} — {true, false} of the
free variables z1 to x,, is encoded as a vector w in R™, as follows:

EncodeValuation(Val) = w such that for (1 <i <m):

Wi — 1 if Val(z;) = true,
" =1 if Val(x;) = false.

Now, we have to define the sampling function ®. It should yield an error
value, given a specific objective (in this case a clause), and a specific candidate
(in this case a valuation). We take the following specification:

pec

®3_gar(EncodeValuation(Val), EncodeClause(p; V ps V p3)) "=

0 if Val satisfies (p1 Vp2 V p3),
1 otherwise.

The overall error, as specified in definition 1, then equals the number of unsat-
isfied clauses, which is zero for solutions, and at least 1 for valuations that are
not, solutions to the problem instance.

In the Sampling chapter, we will give a Sampling function that satisfies this
specification.

2.4 General Procedure Format

Using this general problem format, we can define a general procedure format.
An Adaptive Sampling algorithm maintains a number y of candidate solutions,
that are adapted for new sample-information in each cycle (this is called iterative
improvement). Like the number of objectives k, the number of candidates y can
be one (this is considered default in Neural Computation: using only one neural
network).

To define the general procedure format, we first declare the three main data
structures that are used by the simulation process:

Instance: array|[l..k, 1..{] of real,

State: array[l..u, 1..m] of real;

Samples: array[l..u, 1..k] of record
Candidate: array[l..m] of real;
Objective: array[l../] of real;
Error: real;

end {record};

These data structures are used in the following general procedure, in which two
functions are important. One is the sampling function ® discussed above. The
other one is the adaptation function «, which adapts the candidates represented
in data structure State to the information that is gathered using ®. It takes
care of both the exploitation of this information, and the necessary random
exploration. These issues will be discussed in Chapter 6.

The function Init initializes the data structure State with random initial
candidates. The function Goal yields true if at least one of the candidates is
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INSTANCE
[ 1 obj. SAMPLING ADAPTATION
:I Function Function
! Objectives
! oLD
— f1 canc
STATE
GOAL =- - — [ 1]
1
| Candidates NEW
e

Figure 2.1: The flow of information for Adaptive Sampling.

an e-solution (for a given €), and false otherwise. Figure 2.1 gives a graphical
representation of the data flow for Adaptive Sampling. In pseudo-Pascal, the
general Adaptive Sampling procedure is as follows:

Instance < the problem instance to be solved;
Init(State, Random);
repeat
forc < 1topu
for o < 1to k
Samples|e, o].Candidate + State[c];
Samples|c, 0].Objective < Instance[o];
Samples|e, o].Error < ®(State[c], Instance[o]);
rof
rof
State < a(State, Samples, Random);
until Goal(State, €);

Let us have a look at what this procedure would do for our running example,
the 3-SAT problem in the encoding given above. First, the problem instance to
be solved is stored in the data structure Instance. This means that Instance
comes to contain a set of vectors that each encode one clause from the expres-
sion to be satisfied. Then, State is initialized with random values. So this data
structure then contains p vectors, each encoding a random valuation. In the
repeat-until loop, each of the p candidates is evaluated for each of the k ob-
jectives, with the function ®, that yields a 0 for satisfaction of a clause, and a
1 for non-satisfaction. These samples are stored in the data structure Samples,
which is input to the adaptation function «, along with State and a random real
number between 0 and 1. This adaptation function then produces p updated
encoded valuations, that fill the State data structure. This is repeated until the
Goal function yields true. It is defendable here to choose ¢ between 0 and 1, if
we assume a solution (with error 0) to exist, and do not want the algorithm to
stop when the number of unsatisfied clauses is still 1 or more. We choose the
goal function such that

Goal(State, e) = (3i : Error(State[i, ¥]) <€),
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with
k

Error(c) = Z ®(c, Instancels, *]),
i=1
in which for 1 < < p,

Statel[i, *] = (State[i, 1], State[i, 2], ..., State[i, m])
is the i-th m-vector representing a candidate, and for 1 <i < k,
Instance[i, x| = (Instance[i, 1], Instance[i, 2], . .., Instance][i, £])

is the i-th /-vector representing an objective.

The adaptation function should change the state in such a way that it can
reasonably be expected to improve on the long run. How to achieve this will be
discussed several times in the sequel. First, in the next chapter, an evolutionary
algorithm for 3-SAT will be described in terms of an adaptation function. In
the Neural Computation chapter, a neural approach will be defined, and in
Chapter 6, which is devoted to adaptation in general, the issue will be discussed
more exhaustively, and more adaptation functions for 3-SAT will be proposed.
Whereas the first two are partly defended by the fact that they are based on
genetic and neural processes from nature, respectively, the others will only be
constrained to be based on the common principles of these processes. It is part of
the hypothesis of this thesis that this will enable the design of a more appropriate
and therefore better adaptation function. This will be tested in the experiments.

The general procedure given above will be the basis for defining what Adap-
tive Sampling is, and in what way Evolutionary and Neural Computation are
subfields of it. The sampling function ® is discussed in Chapter 5. It yields
the error that is to be minimized, and is therefore important for defining the
problem. In the next two chapters, describing Evolutionary and Neural Compu-
tation, we just regard the sampling function as an arbitrary error function, as
we discuss the adaptation function « in the following chapter.



Chapter 3

Evolutionary Computation

3.1 How EC Fits in Adaptive Sampling

In the Adaptive Sampling framework, Evolutionary Computation is character-
ized by the following features:

e There usually is more than one candidate solution (for Evolutionary Com-
putation, the number of candidate solutions y is sometimes mapped to the
population size, and sometimes to the offspring size — details follow where
appropriate).

e Possibly, there is only one objective (there is not necessarily a data set
involved in the problem format).

e There is much exploration (new candidates are formed by random varia-
tion).

e The information from the samples is only used to decide whether a candi-
date should be altered totally, partially or not; there is no structural error
assignment to decide which part of a candidate to alter.

This last one is the most important characteristic, and might be both the
strength and the weakness of Evolutionary Computation in comparison with
Neural Computation. On the one hand, it makes the approach applicable to
problem classes for which structural error assignment is not possible, or hard
instances, where structural error assignment might be misleading.

On the other hand, if the problem is such that it is known which features of
the candidate should be altered to improve the evaluation on a certain objective,
it can be a waste of information to change a random feature, instead of the one
suggested. We will see examples of both in the experiments (Chapter 7).

The terminology used in Evolutionary Computation can be mapped onto
the terms used in this description as follows:

e candidates are called “individuals”,

e the State is called the “population before selection” (not to be confused
with the population after selection, which is smaller, of course),

11
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e the sampling function ® calculates (the k& components of) the “fitness
function”,

e the evaluation Error(State[c, x]), calculated by (k iterations of) ®(c, o), is
called the “fitness of individual ¢”,

e the adaptation function « is divided into “selection” (deleting unfit in-
dividuals), “recombination” (exploration of new candidates that combine
features from old ones, with random influences) and “mutation” (explo-
ration of new candidates that combine features from one old candidate
with slight random influences).

In the general procedure, there are several variables and functions that can
be filled in. For Evolutionary Computation, a lot of these can be derived from
the fitness function used. The data structure Instance represents this fitness
function. Sometimes, for instance in the case of 3-SAT, the fitness calculated by
this fitness function can be said to represent several distinct objectives (clauses,
for 3-SAT). If so, those objectives are represented by k vectors of length £. If
not, there is only £ = 1 objective. This vector can then be decoded into a fitness
function, for instance with a C++-interpreter.

Contrary to Neural Computation, there are several candidates. The popula-
tion is represented in the data structure State, as p vectors of length m. Here
of course p is the population size before selection, and m is the length of each
vector that concretely represents an individual. Init initializes the population
(usually this is entirely random), and Goal is the goal that at least one of the
candidates (individuals) reaches a certain fitness.

In the general procedure, the sampling function ® is calculated for every
combination of one objective and one candidate. If there is only one objective,
calculating ® for that objective and one candidate boils down to determining
that candidate’s fitness. If there are several objectives, then several error-values
are calculated for each candidate. It is then the task of the adaptation function
a to combine these different error values into one overall evaluation. The adap-
tation function does all the rest, too: deleting candidates that are less fit than
others, and replacing them by new candidates, obtained by applying recombi-
nation operators to fitter candidates.

As mentioned above, there is one important tabu in Evolutionary Compu-
tation, that separates it from other Adaptive Sampling methods:

In Evolutionary Computation, which part of a candidate is
changed by recombination and/or mutation operators does not
depend on information gathered by sampling for that candidate.
The samples influence which candidates are changed, and how
much, but not in what way.

The information that is used to guide the adaptation always concerns an en-
tire candidate, and therefore there is no structural error assignment for different
features of a candidate.

3.2 Different Evolutionary Algorithms

Before anything more specific can be said about EAs, it is necessary to choose
one of its specific subclasses. The EA class is usually considered to be the union
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of at least four subclasses:

e Genetic Algorithms [Hol75, Mic96] (GA), which use bitstrings as individ-
uals and crossover and mutation as operators,

e Evolution Strategies [Rec73, Mic96] (ES), which use vectors of real values
as individuals, and adapt the operators on-line,

e Genetic Programming [K0792, Mic96] (GP), which use expressions as indi-
viduals and operations on the parse trees of these expressions as operators,

e Evolutionary Programming [FOW66, Mic96] (EP),which use finite state
machines as individuals.

EAs that operate on other mathematical objects, like graphs, permutations or
matrices, do not have a specific name.

3.3 Example: A Genetic Algorithm

As an example, a specific algorithm from the GA subclass will now be described.
In this example (taken from Michalewicz’s textbook [Mic96]), an individual is
a bitstring of length m = 33. Each of the 33 bits can either contain a 0 or
a 1 at any given moment. The population consists of pop_size = 20 individ-
uals Iy, I, ..., Ipop_size- The initial value of each bit in each individual in the
population is chosen randomly.

After the initialization, the following cycle is executed repeatedly:

1. Calculate the fitness of each individual,
2. Roulette Wheel Selection,

3. Crossover,

4. Mutation.

This cycle is repeated until no further significant change is observed, or
simply for a fixed number of times. Each step, except the first one, changes the
contents of the population.

The calculation of the fitness is done by a function f : {0,1}?® — R*, that
is part of the problem instance. The goal is finding the bitstring that has the
highest fitness. The fitness function has the m bits of an individual as input and
a positive real valued scalar as its output.

The procedure for the Roulette Wheel Selection is as follows:

e Calculate the total fitness F', that is the sum of the fitness values of all
individuals,

e Calculate the selection chance p; for each individual I;, that is the fitness
of I; divided by the total fitness F,

e Calculate the cumulative selection chances ¢; = Zj.:lpj, and define ¢g to
be 0,

e Select pop_size individuals by doing the following pop_size times:
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— Generate a random scalar r from (0, 1],

— Select individual I; if ¢;_1 <7 < g;,
e The selected individuals form the new population after selection.

The next step is applying crossover to the new population. The chance for an
individual to undergo crossover is called p., and has value 0.25 in this example.
Determining to which individual this will happen, is done as follows. For each
individual in the new population after selection:

e Generate another random scalar r from (0, 1],
o If r < p., the individual is selected for crossover.

The individuals that were selected for crossover in this procedure, are taken out
of the population that was created after selection, and together form the mating
pool.

The individuals in the mating pool are coupled two-by-two randomly; if
the number of individuals in the mating pool is odd, one individual remains
unchanged. For each couple formed, a random natural number pos (1 < pos <
m — 1) is determined, and the crossover then proceeds as follows. First, both
individuals are cut in two, at the point after bit pos:

(byby..bpos

(c1€2.--Cpos

bpos+1---Dm)
Cpos+1---Cm,)

Then, the parts that come after the cut, are swapped from one individual to the
other, which yields:

(b1ba...bpos
(0102...Cp03

Cpos+1 Cm)
bpos+1 bm)

The new individuals obtained by this crossover process are put back into the
population.

The last step is mutation. For each bit in every individual in the population
just obtained, mutation depends on mutation chance p,,, which is the chance
on mutation per individual bit within each individual in the population. It has
value 0.01 in this example.

e For each individual bit, a random scalar r from (0, 1] is generated again.

o If r < py,, the bit is “flipped” (from 0 to 1 or from 1 to 0); otherwise, the
bit remains unchanged.

In the general procedure, this would look as follows. We take k = 1, which
ensures that each individual is evaluated only once in each cycle, and we take
®(c,0) and 7 such that ®(c,01) = f(c), with f the fitness function. The number
of candidates can simply be taken p = pop_size = 20, because then the sampling
step of the general procedure amounts to calculating f(¢;) for 1 < i < 20. The
length of each candidate is m = 33. The adaptation function o does the rest:
selection, crossover and mutation.
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3.4 3-SAT with EC: “SAW-ing EA”

In [BEV96] an Evolutionary Algorithm is presented, that was designed for the
3-SAT problem. It uses Stepwise Adaptation of Weights.

The algorithm starts with one randomly chosen valuation of the variables,
and a vector of weights, one weight for each clause, initialized to 1. From this
initial valuation, u candidates are generated' by changing one of the Boolean
variables from true to false or vice versa.

These u valuations are represented by u tuples of Boolean variables. These
i candidates are evaluated with the fitness function. The fitness function adds
the weights of the satisfied clauses, to obtain the fitness of a valuation. If all
weights are 1, then this yields the number of satisfied clauses; if for instance a
certain clause has weight 2, then this clause counts double, etcetera.

When all the fitness values have been calculated, the one? valuation with
the highest fitness is picked out, and the rest is deleted. After this, we are back
at one candidate, and the cycle can start anew by generating p new candidates.

After each 250 cycles, the weights are adapted. For this, the valuation is
used that has just been picked as the best one. If a clause is not satisfied by this
valuation, its weight is increased by 1. The rest of the weights stay the same.
This way, clauses that are hard to satisfy, will get ever higher weights, which
means that they get a more important role in the fitness function.

The SAW-ing mechanism was introduced in [EvdH97, BEV96]. Tt adapts the
weights in the summation to distinguish between clauses that are rarely satisfied
by the candidate solutions from clauses that have shown to be easy to satisfy.

An optimized number p of candidates is produced in each cycle. For problem
sizes 20, 40, 60, 80 and 100, u is 6, 8, 10, 11 and 12, respectively. Consistent with
the Adaptive Sampling model, each cycle consists of sampling and adaptation.
The sampling is done by evaluating the p valuations. The adaptation of the
state does not depend on which clauses are satisfied; the fitness values determine
which candidate is picked out to generate the p new candidates from. Those are
generated by applying the MutOne-operator, which changes exactly one variable
(from true to false or vice versa), that is chosen at random. This does not depend
on whether this particular variable has any connection to the evaluation. In the
tradition of Evolutionary Computation, there is no structural error assignment
(the outcome of the evaluation is not assigned to one specific variable in the
valuation).

The results from the tests that were done with this algorithm, were better
than that of any known heuristic method for 3-SAT. For more details on this
study, see [BEV96]. That paper served as a starting-point for testing whether
the Adaptive Sampling model can provide a way of thinking about problems
and methods that leads to better algorithms.

I This time, the number of candidates p that is evaluated in one cycle is called the offspring
size, in EC-terminology.
2In EC-terminology, the population size is 1 for this algorithm.



Chapter 4

Neural Computation

4.1 How NC Fits in Adaptive Sampling

In the Adaptive Sampling framework, Neural Computation (for an overview of
the field, see Hertz et al. [HKP91]) is characterized by the following features:

e There usually is only one candidate (one neural network).
e There are a number of objectives (the data set).

e There is usually little explicit exploration.

e There is Structural Error Assignment.

This last one is the most important characteristic, and might be both the
strength and the weakness of Neural Computation. It is the main difference with
Evolutionary Computation.

In the general procedure, there are several variables and functions that can
be filled in. For Neural Computation, the data structure Instance represents the
data set. The data set has k elements, which are vectors of length £ (or tuples of
vectors, whose total length is £). The data structure State contains the weight
vectors that represent the Neural Network. These are stored in p = 1 vector of
length m.

Init initializes the concrete candidate vector (the weight vectors), usually to
small values that are determined at random, and Goal is the goal that the sum
of errors on data set elements drops beneath a certain level.

In the general procedure, the sampling function ® is calculated for every
combination of one objective and one candidate. For Neural Computation, there
is only one candidate, the neural network, so calculating ® (for that candidate
and one objective) boils down to determining the error of the network function
on one data set element.

The adaptation function does all the rest: calculating which specific weights
the error can be assigned to, and changing those weights in the direction that
decreases the error. It operates on the parameters (weight vectors) of the net-
work. The archtecture of the network, which defines the interpretation of these
weight vectors, is captured in the sampling function, as will become clear in the
example to come.

16
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As mentioned above, there is one important mechanism in Neural Compu-
tation, that separates it from other Adaptive Sampling methods:

In Neural Computation, the part of a candidate that is changed
by the learning rule always depends on information gathered by
sampling for a specific objective. The samples explicitly influ-
ence which parts of the candidate are changed, how much and
in what direction.

The information that is used to guide the adaptation always concerns one
specific objective, and therefore structural error assignment is possible for dif-
ferent features of a candidate. This does bring the risk of early convergence,
because always chosing the path that looks the most promising, might under-
estimate other routes to even better optima. The French proverb “reculer pour
mieux chauter” (stepping back to jump better) does not apply for Neural Com-
putation, which separates it from other Adaptive Sampling methods.

Before we introduce our example Neural Network, we will look at some
terminology used in Neural Computation:

e the single candidate is called the “neural network”,

e the Instance is called the “data set” — the objectives in it are “data set
elements”.

e the sampling function ® evaluates the “network outputs” which are ob-
tained by applying the “network function” to the “network inputs”.

e the adaptation function a implements the “learning rule”.

4.2 Example: A BackProp Neural Network

A neural network (NN) is a set of interconnected neural nodes. In this example,
a feedforward NN with one hidden layer is considered. These have the additional
property that the neural nodes are organized in three layers. The input nodes
form the input layer, the hidden nodes form the hidden layer, and the output
nodes form the output layer. Not every two nodes are directly interconnected.
Each hidden node is connected with each input node and with each output node,
and that are the only connections there are.

A weight is associated with each connection. Some more specific terminology:

e The number of input nodes is called n;y,
e The number of hidden nodes is called nniaden,
e The number of output nodes is called ngys,

e The weight of a connection from input node i to hidden node h is called
Whei,

e The weight of a connection from hidden node h to output node o is called
Wh—o-



18 Neural Computation

@ @ @ @ Nyt = 4 output nodes

Wh _so (h=1,2,3,0=1,23,4)

Midden = 3 hidden nodes
Whe (h=1,2,3i=1,2,3,4)

M= 4 input nodes

Figure 4.1: A feedforward neural network with one hidden layer.

e The vector (Wh1,Whe2, -+, Whionins Whes1, Whes2, - - -, Wh—sn.,, ) 18 called
the concatenated weight vector Wj, associated with hidden node h.

Given an architecture (nin, nout, Mhidden) € N, the neural network paradigm
defines a mapping NN_BUILD,,, ... from concatenated weight vectors to hid-
den node behaviors, and a mapping NN_.STRUCT (., n;ua0m,n00:) from hidden
node behaviors to network behaviors. Those mappings are as follows; for an
(input, output)-pattern u = (&, (), let

e excitation Ej of hidden node h be Z:L:“l i Whei,

e activation Ap of hidden node h be Sigmoid(E}) for some predefined in-
versible sigmoid-shaped function Sigmoid,

e foro=1,2,...,n0ut : [Xn]o = Sigmoid(wp—, - Ap).

Now we can define what each of the hidden nodes contributes to the behavior of
the network as a whole. These contributions are called hidden node _Igehaviors.
The hidden node behavior By, of hidden node h with weight vector W}, is

Bj, = NN_BUILD, ) (W4), such that

Min,Nout

Bh(£17€27 s 7€nin) = ([Xh]h [Xh]Q’ Tt [Xh]nout)7

and the network behavior NN, given m hidden node behaviors By, Bs, ..., By,
is:

NN = NN—STRUCT(n;n,nmdden,ngut)(
NN(€17§27 s 7§n;n) = (N17N27 s 7Nnout) ;

By, Bs,...,By), such that

where

N, = Sigmoid (Z Sigmoidl[xh]o> )

h=1



4.3 3-SAT with NC: “Neural Satisfaction” 19

Error Back Propagation [BH69, HKP91] was designed for neural network
curve fitting. The curve fitting problem class will be discussed in Section 12.
The neural network should “learn” the function specified by a set of (input,
output)-patterns u? = (£¢,(P) (p=1,2,...)

For a learning rate n, the procedure for error back propagation learning is
as follows:

1. Initialize the weights to small random values,
2. Choose a pattern u = (£#, (*),

3. Calculate the output vector NV of the network, given input &*:

4. For each output node o, compare the output associated with the input by
the network to the desired output, which the network should learn:
60Ut = Sigmoid' (Sigmoid ™' (N#))[C* — N¥].

5. For each hidden node h, calculate a

6Zidden — Sigmoid'(E;:) . Z[Wh]n;n+o ’ 521“:
o=1

in which E}' is the excitation of hidden node h, given input vector &,

6. For 1 <o < ngyt, use
Whlninto = Walninto + AlWalnito
to update output weight wp,—,,, in which
AWilnyto =1 - 53" - An,
and for 1 < i < nyy, use
[Wali == [Wh]i + A[Wal;
to update input weight wp.;, in which

AWiLs = - 8jidden - .

4.3 3-SAT with NC: “Neural Satisfaction”

The representation of 3-SAT as a Cloud Fitting problem, which will be presented
in the next chapter, suggests that the Evolutionary Algorithm described earlier
—though it is better than any heuristic method— uses a suboptimal choice of
flow of information. The Evolutionary Algorithm uses only one scalar fitness
value into which the information about the satisfaction of all the clauses has
to be compressed. In this section, we will present a Neural Network that uses
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the specific information from each clause to update its state (Structural Error
Assignment).

Neural networks are usually applied to data mining or prediction. The ap-
plication of a Neural Network to the 3-SAT problem might not seem an obvious
choice. However, the challenge of the results from the EC approach was taken
on, because the Adaptive Sampling model suggests that it is a waste of infor-
mation to use a fitness function when there is more than just a scalar evaluation
available from the problem instance.

In every cycle, a clause was selected at random and presented at the inputs of
a neural network with no hidden layer. Because neural networks take vectors of
real values as their input (and not logical disjunctions), we define each objective
as the vector of length £, whose elements are as follows: If variable ¢ does not
occur in the clause, input ¢ is 0. If variable ¢ occurs positively (‘... V z; V..."),
then input ¢ is 1. And if variable ¢ occurs negatively in the clause (‘...VZ;V..."),
then input 4 is set to —1.

There is one output node in the neural network used. Each input node i
is connected to this output node with a connection value! w;. This connection
value can be any real number between —1 and 1. The vector of all these values,
(w1, w2, ..,wn), is the vector of connection values, which represents a valuation
of variables z1, ..., T, excitatory connections (positive values) represent true
and inhibitory connections (negative values) represent false.

The network output can be calculated using an activation function that is
specialized for 3-SAT; it is 1 if the connection vector corresponds to a valuation
that satisfies the clause, and 0 if not. Therefore, we can transform the problem
of satisfying each clause into a supervised learning problem with this strict
special activation function: the target output associated with each clause is 1.
So learning a clause with this model means satisfying it with the connection
vector.

The learning rule was chosen as follows. If a clause is satisfied by the connec-
tion vector, then the network output is 1, like the target output, so the output
error is zero. In this case, at least one of the three variables in the clause was
satisfied, which means that at least one of the three connection values that re-
ceived a non-zero input had the correct sign (+ or —). The connections that
contribute to the satisfaction of a clause are strengthened (changed toward the
correct +1 or —1). This can apply to either one, two or three connections. If
none of the three values involved has the right sign the output activation is
zero, which means the clause that was represented at the inputs is not satisfied.
Note that in this case it would suffice to invert one of the three values (change
its sign). However, there is no information available on which one this should
be. Therefore, the penalty for not satisfying a clause goes to all three values
involved: they are all weakened (changed toward the correct +1 or —1). If at
least one of the three values passes 0 in this change, the new connection vector
will satisfy the clause next time, so the clause has been “learned”. Letting A(c)
be the output activation (network output) for a given clause ¢, the learning rule
thus becomes, for learning rate 7,

e If the output activation A(c) is 1 for input vector ¢ (indicating satisfaction

n the description of this algorithm, we use the word ‘connection value’ instead of ‘weight’
to avoid confusion with the weights used by the Stepwise Adaptation of Weights mechanism.
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of the clause represented by c), each value w; is updated using

(1—-n)-w;+n-¢ if ¢;,w; are # 0 and have the same sign
w; .
w; otherwise

e If the output activation A(c) is 0 (indicating non-satisfaction of the clause
represented by ¢), each value w; is updated using

w; (I1—=n) wi+n-c¢ 1fci7ép
w; otherwise

The algorithm, with learning rate n = 0.3, will be referred to as “Neural
Satisfaction” in the chapter on the experiments. For the experiments, we used a
slight variation of it. In the General Procedure Format (Section 2.4), the imple-
mentation is defined to be epoch-wise. This means that all samples are gathered
first, and then all adaptations are made. In Neural Computation, epoch-wise
learning is used for theory and proofs of convergence, but implementations are
hardly ever epoch-wise: they execute the applicable part of the adaptation-step
after each sample (immediate adaptation).

For the general procedure format, this possibility was not included, because
it would make the procedure unnecessarily complex. However, we did want to
copy the use of immediate adaptation from the tradition of Neural Computation
in the implementation of the “Neural Satisfaction”-method, because this is usual
in Neural Computation, and has showed to increase performance in most cases.
So although its definition is in an epoch-wise format, the tests were done with
its immediate adaptation variant.

In connection with this, the order in which the clauses are sampled is chosen
at random. Note that this does not matter for an epoch-wise implementation,
but it does here: a random sampling order can take away biases in the inter-
actions between adaptations for different clauses, that might be caused by the
order in which they appear in the original problem instance. A fixed sampling
order might cause the adaptations made for clause i + 1 to overwrite the adap-
tations for clause ¢, which could make it impossible to satisfy clause 7, if this
makes it harder to satisfy clause ¢+ 1. In the implementation used for the exper-
iments, it is even possible that certain clauses are investigated more than once,
and others are not investigated at all during that cycle.



Chapter 5
Sampling

This chapter discusses the general problem format in further detail. Bear in mind
that wherever a function is given in a problem instance, this does not imply that
there also is an explicit expression available for this function. Functions as such
can be seen as black boxes that return a function value when given an input
value.

Because the interval [—1,1] will be used often in the definitions to come, it

will be denoted using L:
e £(1) stands for [—1,1],

- for instance, (0.87) € L(1) (in this case the parenthesis are often
omitted),

e L(n) stands for [-1,1]", forn =1,2,...,
- for instance, (—0.5,0.3,0.87) € £L(3),

For a € L(n) and 1 < i < n, q; is the i-th element of a,
- for instance, (—0.5,0.3,0.87), = 0.3,
e L(m — n) stands for {f : L(m) — L(n)},

e Given two vectors x € L(m) and y € L(n), their concatenation z e y is
defined as (z1,22,-- -, Tm, Y1, Y2, - - -, Yn), which is an element of L(m +n),

~ for instance, (—0.5,0.3) e (0.87) = (—0.5,0.3,0.87),

Likewise for tuples in general, given a tuple z of length m and a tuple y
of length n, their concatenation z ey = (z1,Z2,...,Tm,Y1,Y2,---,Yn)-

5.1 Cloud Fitting

Cloud Fitting is a new problem class. Its power is in the fact that it includes
four existing problem classes: optimization, curve fitting, tesselation and simple
reinforcement learning. It is defined in terms of a new mathematical concept
called cloud, that is a generalization from three existing mathematical concepts:
vectors, schemata and functions.

22
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A cloud is a tuple defining a set. Before introducing its definition, we will
first define how schemata, as used in the analysis of Genetic Algorithms, can
be seen as tuples defining sets. After that, we will define four types of clouds:
vectors, functions, and two combinations of those, obtained by concatenation.

5.1.1 Schemata as tuples defining sets

A schema (plural: schemata) is a tuple (s, S2, ..., S,), where s; should be either
0 or 1 or ~, so for instance (0,1, ~,1) is a schema. Such a schema defines a set
of bitstrings that agree with it. Intuitively, the don’t care-symbol ~ means that
either a 0 or a 1 can be chosen to replace it. This is how it it possible that
different bitstrings agree with the same schema. We define the function Schema,
that takes a length n, and a tuple of this length containing only 0’s, 1’s and ~’s,
and yields the set of agreeing bitstrings (i.e., the set of all bitstrings that agree
with the schema).

DEFINITION 2 Given a schema (si,s2,...,s,) of length n, where for all i
(1<i<n),s; €{0,1,~}, we define Schema(n, (s1,S2,...,5,)) to be the set of
all vectors v such that:

e v, =0if 5;, =0,
ovizlifsizl,
o v; €{0,1}if 5, = ~.

So for instance Schema(0,1,~,1) is the set {(0,1,0,1),(0,1,1,1)}. In this
example, there is one don’t care symbol (in the third position), that can be
replaced with either a 0 or a 1. This definition of schemata is an example of the
basic setup for a tuple defining a set of vectors (here bitstrings).

5.1.2 Functions as tuples defining sets: (r, s)-clouds

Now we will define how we can see function as tuples defining sets. In this
context, we denote functions with a concatenation of two tuples. The first tuple
represents the inputs of the function, and contains only don’t care symbols. The
second tuple represents the outputs of the function, and contains mathematical
expressions. We concatenate these two tuples to obtain one tuple, that defines
the function. So for instance (~, ~,~,[z12 + 22 + x3?]) is a function, because
it is the concatenation of (~,~, ~), which is a tuple of don’t care symbols, and
[712 + 2% + 232], which is an expression.

The yield of this expression is the output of the function (it has a one-
dimensional output), and its free variables x;, z2, and z3, are the inputs of the
function. Here, x; in the expression corresponds to the position of the first don’t
care symbol ~, x5 to the second, and z3 to the third.

To define what this function does, we will define a set of vectors that agree
with the function. A vector that agrees with a function, is the concatenation
x o y of an input vector x and an output vector y (e denotes concatenation).
For this vector to agree with the function, the output vector y should be the
expression’s output for input vector z. We will now formalize this, with the
Fun-function, that takes an input vector length r, an output vector length s,
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and a defining tuple f, such that for 1 <i<r, f; = ~,and forr+1 <i <r+s,
fi is a mathematical expression with free variables x1, x», ...z, each of which
corresponds to one input dimension. Taking these arguments, Fun yields the set
of all agreeing vectors:

DEFINITION 3 Given a tuple (f1, fo,---, fry fra1,- -, fres) of length r + s,
where for all i (1 <i<7r), fi=~,andforalli (r+1<i<r+s), fiisa
mathematical expression, we define Fun(r,s, (f1, fo,-- - frs frats---y frrs)) tO
be the set of all vectors x e y such that:

e z € L(r), and

e y € L(s), such that y; = f.4; holds, when z1,zs,...,z, are filled in.

So to give an example, Fun(2,2, (~, ~, [—z1%],[—72?])) is the set of all vectors
(z1,%2,y1,¥y2) such that y; = —x12 and y» = —x52. So this set contains for
instance (0.5,0.5,—0.25,—0.25) and (—0.6,0.3, —0.36, —0.09). For an arbitrary
tuple a of length n, Fun(r,s,a) is not always defined; only if » + s = n and
foreveryi: 1 <i<r,a; =~,and foreveryi :r+1<i<r+s,a;is
a mathematical expression containing at most x1,z2,..., 2, as free variables,
that yields a value in £(1) if z € £(r). From now on, we will refer to function
defined in this way as (r, s)-clouds: for r,s € N, tuple a is an (r,s)-cloud, if
Fun(r,s,a) is defined.

5.1.3 Vectors as tuples defining sets: (¢)-clouds

Because we will want to define the more general clouds as tuples defining sets
of vectors shortly, we will need to define a trivial function Vec, that translates
a vector to the singleton set containing that vector. The only thing it does, is
putting the vector in a set with nothing else in it. Ranges are confined to [—1, 1]:

DEFINITION 4 Given a vector v of length ¢ in £(¢), we define Vec(t,v) to
be the set {v}.

To show that this function really does nothing important, we give an exam-
ple: Vec(3,(0,1,—0.4)) = {(0,1,—0.4)}. For an arbitrary tuple a, Vec(t,a) is
only defined if a € L(t), otherwise it is undefined. From now on, we will refer
to vectors defined in this way as (t)-clouds: for t € N, tuple a is an (r, s)-cloud,
if Vec(t,a) is defined.

5.1.4 Concatenating vectors with functions and vice versa

Using (r, s)-clouds for functions and (t)-clouds for vectors, we can now define
two combinations: (r, s, t)-clouds and (¢, r, s)-clouds.

An (r, s,t)-cloud is obtained by concatenating an (r, s)-cloud and a (t)-cloud.
It is interpreted with the Fun Vec-function:

DEFINITION 5 Given r,s,t € N, an (r,s)-cloud f and a (¢)-cloud v, we
define FunVec(r,s,t, f e v) to be the set containing all vectors w = p e ¢ such
that

e p € Fun(r,s, f) and
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o g€ Vec(t,v).

The FunVec-function is undefined in all cases not defined by this definition.
As an example, (0.25,0.5,0.23) € FunVec(1,1,1, (~,/z1,0.23)).

A (t,r,s)-cloud is simply obtained by concatenating an (r,s)-cloud and a
(t)-cloud in the opposite order. It is interpreted with the VecFun-function:

DEFINITION 6 Given t,r,s € N, a (t)-cloud v, and an (r,s)-cloud f, we
define VecFun(t,r,s,v e f) to be the set containing all vectors w = p e ¢ such
that

e p € Vece(t,v) and
e q € Fun(r,s, f).

The VecFun-function is undefined in all cases not defined by this definition.
As an example, (0.23,0.25,0.5) € VecFun(1,1,1,(0.23,~,/71)).

5.1.5 The General Definition of Clouds

At this point, we have defined four interpretation functions: Fun for (r, s)-clouds,
Vec for (t)-clouds, FunVec for (r, s, t)-clouds, and VecFun for (t,r, s)-clouds.
We will now define clouds in general, using these definitions:

DEFINITION 7 Given a tuple C of length n, we define Cloud(C) as follows:
o If 3¢ : Vec(t,C) is defined, then Cloud(C) = Vec(t,C);
e otherwise, if 3r,s : Fun(r,s,C) is defined, then Cloud(C) = Fun(r,s,C);

e otherwise, if 3r, s,t : FunVec(r,s,t,C) is defined, then we define Cloud(C)
to be FunVec(r,s,t,C);

e otherwise, if 3¢, 7,5 : VecFun(t,r,s,C) is defined, then we define Cloud(C)
to be VecFun(t,r,s,C).

e If none of these four are defined, Cloud(C) is 0.

5.1.6 Cloud Application

Clouds can be “applied” to another cloud, just as a function can be applied
to a vector. Cloud application can be defined syntactically, but this involves
extra renumbering of indices, which is not very enlightening. Instead, we give
the semantical definition here:

DEFINITION 8 Given two arbitrary clouds C and D of the same length,

Cloud (C AppliedToD) =

{v|v € Cloud(C) A 3w € Cloud(D) : (C; = ~ = v; = w;) }.
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Note that this set might be empty. Intuitively, this definition says that the
free elements in C should be filled in with corresponding elements from some
vector w in D, which corresponds to applying the function to the values needed
from this vector w.

With this, we can define observation, which is the operator that is used in the
definition of Cloud Fitting. It uses the AppliedT o-operator twice. If this yields a
singleton set, the unique vector in this set, is the result of the Observes-operator:

DEFINITION 9 Given two arbitrary clouds C and D of the same length,
C Observes D = ¢, such that
Cloud (C AppliedT o(D AppliedToC)) = {c}.

Note that C Observes D does not necessarily exist. However, it does exist in
all the cases that we will meet in the sections to come. For optimization, where
objectives represent objective functions and candidates represent vectors, it is
equivalent to applying the objective function to a candidate. For supervised and
unsupervised learning, where objectives are dataset elements and candidates are
network functions, it is equivalent to calculating network outputs.

For reinforcement learning, the case is somewhat more complex, because
both objectives and candidates represent functions. This is the only case for
which it is necessary that the Applied To-operator occurs twice in the definition
of the Observes-operator. We will see that the use of clouds for defining sampling
functions is simpler than it might look at first glance.

5.1.7 Sampling in terms of clouds

We now redefine the sampling function ® using two models: an objective model,
that converts the concrete objectives stored in the Instance data structure to
corresponding objective clouds O, and a candidate model, that converts the con-
crete candidates stored in the State data structure to corresponding candidate
clouds C. With these, the sampling function determines the Euclidean distance
between the vector that is obtained by letting C observe O, and the vector that
is obtained by letting O observe C:

®(c,0) = ||O Observes C — C Observes O,

where O = ObjectiveModel(0) and C = ObjectiveModel(c). Furthermore, || - ||
denotes the Euclidean norm. Substituting this definition of ® in the definition of
the general problem format given in Section 5.1.7, brings us the Cloud Fitting
problem class.

In sections to come, it will become clear how this problem class can be
used, with the correct objective model and candidate model, to represent opti-
mization, tesselation, curve fitting or reinforcement learning. The next section

describes how the two models can be instantiated for the running example 3-
SAT.

5.2 Sampling for 3-SAT

The 3-SAT problem is a constraint satisfaction problem: a number of constraints
(clauses in this case) are given, and a solution is any valuation of the free
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Figure 5.1: The relations between the different clouds and the corresponding
concrete representations.

variables that satisfies all constraints at the same time. Note that such a solution
does not necessarily exist. However, the methods discussed in this thesis are
incomplete methods, that are not guaranteed to find a solution, and that cannot
distinguish whether a solution exists. If they try to solve an instance with no
solution, they will never halt. Therefore, we only used solvable instances in the
simulations that will be discussed in Chapter 7, and in the discussion of 3-
SAT methods, we will only consider instances of the problem class for which a
solution exists.

Before constraint satisfaction problems can be represented in the Adaptive
Sampling framework, they should be transformed to Cloud Fitting problems.
Recall that in Section 2.3.1, we gave a specification for ®3_gaT:

pec

®3_gar(EncodeValuation(Val), EncodeClause(p; V p2 V ps)) "=

0 if Val satisfies (p1 V p2 V p3),
1 otherwise.

There are two easy ways to satisfy this specification. One is to let the objec-
tive model translate objectives into (t)-clouds representing clauses and to let the
candidate model translate candidates into (r, s)-clouds representing a function
that yields 1 for a clause that is satisfied by the candidate, and 0 for any other
clause.

The other way is to let the candidate cloud be a (t)-cloud representing a
valuation, and let the objective cloud be an (r, s)-cloud, representing a function
that yields 1 for a valuation that satisfies the objective, and 0 for any other
valuation.

In Neural Computation, objectives are traditionally seen as vectors (data set
elements) and the candidate(s) as (network) functions. In Evolutionary Compu-
tation, at least for Genetic Algorithms, this is the other way around: objectives
are represented with (fitness) functions, and candidates are represented with
vectors (chromosomes).

As desired, the Adaptive Sampling framework is not biased towards either
representation. We will give them both:

In the habit of Neural Computation, for an objective o € £L(m) and a can-
didate ¢ € £(m),

ObjectiveModel(o) = (01,02, ...,0m,1) and
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m
CandidateModel(c) = (~, ~, ..., ~, (H min(z; - ¢; + 1,1)).
The 1 concatenated at the end of ObjectiveModel(o) indicates that 1 is the
target value for the output of the “network function” CandidateModel(c).
In the habit of Evolutionary Computation,

CandidateModel(c) = (¢1,¢2,-.-,¢m, 1), and

ObjectiveModel(0) = (~, ~, ..., ~, (H min(o; - x; + 1,1)).
N—— =1
¢

The 1 concatenated at the end of CandidateModel(c) indicates that 1 is the
target value for the output of the “fitness function” ObjectiveModel(0). Note
that this representation amounts to the same sampling function ® as the NC-
representation of the problem. In both cases, ®(c, 0) indicates whether the val-
uation represented as candidate c¢ satisfies the clause represented as objective
0.

5.3 Optimization

In Evolutionary Computation, problems are formulated as (or translated to) op-
timization problems. Optimization is simply the problem of finding an optimum
of a given objective function, but the notation can vary. Sometimes, “optimum”
means “minimum” (in the metaphor of error values), and sometimes it means
“maximum” (in the metaphor of evolutionary fitness). The number of inputs
and their range can vary, as well as the range of the output. Although these are
only questions of representation, they need to be answered.

In this scope, the inputs and the output are assumed to be real-valued scalars
in between —1 and +1. From now on, “optimal” means “minimal”, and not max-
imal. A problem instance should specify an objective function F. We suppose
that F' yields an error value between 0 and 1, so an e-solution v of such an
instance, is a vector for which the objective function yields an error value of at
most €. The problem class then becomes the following:

DEFINITION 10 An e-solution to an instance of an optimization problem
(neN,F : L(n) — [0,1]) is a vector v € L(n) such that

Yw e L(n) : F(v) < F(w) +¢.

Optimization can be defined as a subclass of cloud fitting as follows. There
is only one objective. It encodes the mathematical expression [EXPp]| for the
objective function F'. The ObjectiveModel should be chosen such that it decodes
the objective to the (r, s)-cloud with r = n and s = 1, corresponding to F':

ObjectiveModel(0) = (~, ~, ..., ~, [EXPF])
—_———

n

Here, [EXPF] is the expression for objective function F' from the definition of
optimization, with free variables z1 ...x,.
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The candidate model should be chosen such that it yields the (¢)-cloud
(v1,v2,...,0,,0), which has t = n + 1. The concatenated 0 indicates that the
goal is to minimize the distance between F'(v) and 0 for a candidate solution v,
i.e. to minimize F'(v). There is only one objective, so the definition of the gen-
eral problem format reduces to the definition of optimization, with ® instead of
F. As described above, ® is defined with the “Observes”-operator on clouds. In
this case, this is relatively easy:

O ObservesC = (v1,V2, - -, U, F(v))

and C Observes O = (vy,va, ..., Uy, 0),

and thus with k = 1, for a candidate v € L(n),

Error(v) = Z ®(v,0;) = ®(v,01) =

i=1

VO+0+...40+ (F(v) —0)2 = |F(v)| = F(v).

5.4 Unsupervised Learning

Neural Networks are said to learn a data set, instead of to optimize an objective
function. However, learning can be described as a subclass of cloud fitting by
seeing the elements of the data set as objectives. Apart from reinforcement
learning, which is discussed in Section 5.6, two kinds of learning have been
studied more extensively: supervised and unsupervised learning. The difference
between the two is that for supervised learning, each objective represents a
value z and a value f(z), thus defining a feature of the function f that has
to be learned. For unsupervised learning, each objective represents simply one
value z from a distribution, thus defining a feature of the distribution that has
to be learned.

In terms of cloud fitting, it does not matter much whether the candidate
solutions represent distributions or functions — in a way, distributions can be
seen as functions too, and likewise functions can be seen as simultaneous distri-
butions. Both distributions and functions can be described as clouds, so in both
cases we consider the goal of the problem to minimize a cloud fitting error.

In a tesselation problem, a set of prototype vectors is wanted, that identify
clusters in a data set. The number of prototypes wanted has to be specified
in advance, to define the amount of generalization desired. If the number of
vectors in the solution is at least the number of vectors in the data set, the
optimal solution has the dataset as a subset, so the tesselation is optimal in a
trivial way. If the number of prototypes is smaller than the number of vectors in
the dataset, the information in the dataset will have to be compressed in order
to obtain an optimal solution; some form of general information will have to be
extracted from the specific information from each sample.

A problem instance should specify a number n of elements in a dataset D,
and the number e of prototypes wanted:

DEFINITION 11 An e-solution to an instance of a tesselation problem (n €
N,e e NJD C L(n)) is aset S = {S1,53,...,5e} of e vectors in L£(n) such that
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Figure 5.2: A Voronoi diagram; the optimal solution of a tesselation problem
with 3 prototypes. Crosses are prototypes, and circles are data set elements.

VT ={Ty,T>,...,T.} with T; € L(n) fori=1,2,...,e:

Z Error(S,d) < Z Error(T,d) + <.
deD deD

where Error(S, d) is the distance between d and the closest prototype in S:
Error(S,d) = min ||S; —d||
i=1,2,....

This is also known as Voronoi tesselation, and the result is known as a Voronoi
diagram [HKP91] (see figure 5.2 for an example).

In the tesselation problem, the minimum-function makes that the error of a
set, of prototypes on each sample is influenced only by the one prototype that is
closest to that sample. Now we will define ® for this problem class.

For defining tesselation as a subclass of Cloud Fitting, we take the data set
D as our Instance. So each data set element corresponds to an objective. In
terms of the definition of tesselation, k is the number of elements in D and the
length of each objective is that of each data set element: £ = n. A candidate
solution is uniquely defined by a set S = {Si, S2,...S.}. We represent it with
c =505 e...05,. The total length of this concatenation is m = e - n.
The sampling function should yield an error value for a given candidate on one
specific objective (data set element). The sum of these errors over the data
set, for a candidate ¢ = S; @ Sy ... e S, should be equal to the error of the
corresponding set of prototypes {S1,Sa,...,Se}, as defined in Section 11:

n
> 0(c,0)™=" _min |I1S; — oyl
i=1 .

j=1,2,..

Because each candidate vector is a concatenation of multiple vectors, the
candidate model is not as simple as it was with optimization. We cannot just
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use the candidate vector as a (t)-cloud. Therefore, we first transcribe the set
of prototypes that define the tesselation into a prototyping function, and then
we use an (r, s)-cloud for the candidate instead. Given a set of prototypes, a
prototyping function yields the closest prototype from this set. For instance,
if we have a set S of three prototypes in one dimension {0.5,—0.8,0.1}, the
prototyping function Ps would be

05 if03<a2<1,
Ps(z)=4 01 if —0.35<2<0.3,
0.8 if —1<z < —0.35.

Intuitively, we need the objective cloud to supply both the inputs and the
target outputs for this function. Because we want to find a set of prototypes S
such that the distance between prototypes yielded by the prototyping function,
Ps(z), have minimal distance to the original z, we can simply take input z itself
as the target output for Ps(x). So for each objective o:

ObjectiveModel(o) = (01,02, ...,0p,01,02,...,05,).
Then

CandidateModel(S; Sz e...05.) = (~,~,...,~,[EXPp]),
—_———

n

where given the prototypes S1,S2,...,Se € L(n), for an input vector = of length
n,

[EXPp] = S;,
such that Vjl < j <e:|[S; —z|| > ||S; — z]|.
Then as desired, with o0 = (x1,22,...,2,), and ¢ = (S; ¢ Sz e ... S,.) such
that {S1,S2,...,S.} =S, and Error(S,d) as defined in Section 11,
®(c,0) =

||(l’1,l’2,. ey Ty L1y, T2y s s 7xn)_
(1,22, ., 20, [Ps(2)]1, [Ps(2)]2, - ., [Ps(2)]n) ]| =
||(£L"1,£L”2,. .- 73771) - ([PS(ZE)]1, [PS(:E)]?" R [Ps(w)]n)H =
Error(S,d).

5.5 Supervised Learning

Supervised learning is the NC-name for Curve Fitting. The goal in a Curve
Fitting problem is finding a function within a certain class, that is as close
as possible to a function of which (input, output)-samples are given. Despite
the name of the class, the object to be approximated is a function, not just
any curve. Furthermore, the solution function can not just be any function,
it should have certain predetermined properties. If just any function would be
satisfactory, the optimal solution would be the problem function itself, which
might not be desired. The solution function should be as simple as possible. This
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notion is often referred to as Occam’s razor [Rus79]. For instance, a restriction
could be that the third and higher derivatives of the solution function must be
zero. A curve fitting problem is defined with a number of input dimensions njy,
a number of output dimensions m,y, the length of concrete candidate vectors
m, a set of inputs V', a function F' that is to be fitted, at least for the inputs in
V', and a model Model, that decodes a concrete candidate vector into a function:

DEFINITION 12 An g-solution to an instance of a Curve Fitting problem
(nin € Nyngy € Nym € N,V C L(nin), F 1 L(Nin = Nout )5

Model : £(m) = L(nin — Nout))

is a vector ¢ in £(m), such that Model(c) is a function G € L(nin — Nout), such
that for all H in L(nin = Nout):

Y (F(v) =G©)* < Y [(Fv) = H(v)*] +e.

veV veV

In this case, we take k to be the cardinality of V', and the concrete objectives
to be k vectors, each corresponding to one element of V. Suppose x € V and =
corresponds to objective 0;. Then, o; = x e F(x), where F' is the function to be
fitted. This means that £ = n;n + nout. The objective model transcribed such a
vector into the corresponding (t)-cloud. So for z € V a test set element, F' €
L(nin = Nout) the target function, and o; the specific objective corresponding
to test set element zx,

ObjectiveModel(0;) = (21, Z2, .. ., Ty, [F(2)]1, [F(2)]2s - [F(2)]ngwe)-

For instance, if F(z) = z12 4+ 222 and = = (0.3,0.4) € V, then one of
the concrete objectives (the one corresponding to z), is o; = (0.3,0.4,0.25)
and the objective cloud for o; is ObjectiveModel(o;) = Vee(3,(0.3,0.4,0.25)) =
{(0.3,0.4,0.25)}.

The candidate model converts concrete candidate vectors of length m into
functions. For instance, if the model is a Neural Network, then the concrete
candidate is a set of weight vectors (that is what is stored in the computer’s
memory), and the model converts these vectors into the corresponding network
function. As the reader might have expected, we derive the candidate model
from the model given in the problem definition:

CandidateModel(¢) = (~, ~, ..., ~,[EXPy], [EXPs], ..., [EXP,_.]),
—_————

Nin

such that [Model(c)](z) = ([EXP,], [EXPs],...,[EXP,, . ]) holds.

Then, as was specified, ||C Observes O — O ObservesC|| yields the Euclid-
ean distance between the target output F'(z) and the approximating output
[Model(¢)](z), which is produced by the fitting function [Model(c)].
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5.6 Simple Reinforcement Learning

Simple Reinforcement Learning means Reinforcement Learning (RL) in a sta-
tionary environment, with a non-stochastic reinforcement signal, that repre-
sents a direct-reward evaluation of the last action. The environment, is assumed
to have no hidden state and to be deterministic. This means that any (state,
action)-combination yields the same reinforcement signal under any circum-
stance.

RL is like optimization in many ways, but now the input of the function
that is to be optimized, is not a vector, but is itself a function (possibly even a
function with multiple outputs), called a “policy”. The ranges are constrained to
be [—1, 1] again. Advanced versions of this class have also been studied [Sut88],
in which stochastic values play a role [BBS91], or the iterative closure of the
solution [Wat89, RN95]. These are not considered here. A candidate (policy) has
Nin inputs and neye outputs. The output of the objective function is a scalar, the
reinforcement signal. If the reinforcement signal has a positive value, this can
be interpreted as a reward; a negative reinforcement signal can be interpreted
as a penalty. The average reinforcement should therefore be maximized.

Whereas the error of candidate solutions for the optimization problem and
the tesselation problem could be measured exactly, this is not true for RL. The
error depends on the reinforcement received for every possible (input, output)-
tuple of the policy. The policy is a total function, so there are infinitely many
possible inputs. This is why the introduction of a test set V is needed. It is a
set of random points in the input space of the policy, and the error is measured
only in those points.

DEFINITION 13 An e-solution to an instance of a reinforcement learning
problem

(nin € Nynguy € N,V C L(0in), R 2 L(Min) = L(Nous — 1))

is a policy P € L(nin — nout) such that

VQ € L(nin = nows) : Y_[ROI(P(©) 2 Y (R®)IQ))) .

veV veV

The term “reinforcement learning” is usually meant to define a bigger class of
problems than reinforcement learning with a specific model. Finding an appro-
priate model is considered part of the problem. The CandidateModel-function
should however be defined before the general procedure of Adaptive Sampling
can be started. So before that, the researcher has an extra important parameter
to tune: choosing the model.

In real world curve fitting, the model should in most cases be a specific one
(often polynomes of a certain order). In real world reinforcement learning prob-
lems, this is usually not the case. Although the distinction is quite arbitrary,
the difference is kept visible here, to reflect the existence of such issues. So the
choice of model is up to the researcher, instead of being predefined in each prob-
lem instance. Of course, choosing a model is not a simple question, and with the
current state of science, it is still mainly a matter of intuition. Examples of mod-
els are normal distributions, neural networks, logical expressions, etcetera. Only
after a specific model has been chosen, the reinforcement learning problem can
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be defined as a Cloud Fitting problem (by instantiating the CandidateModel)
and can it be solved by a method from the Adaptive Sampling family.

Each of the k concrete objectives 0o; = v @ BinEnc([R(v)]) (for 1 < i <
k) specifies an input vector v € L(nin), which is an element from V, and a
corresponding reinforcement function [R(v)] € L(newt — 1), which is encoded
in binary with BinEnc (any function must be encoded into a vector before it can
be stored in computer memory). The vector o obtained by the concatenation is
converted to a (¢,7, s)-cloud by the objective model:

ObjectiveModel(0) = (v1,V2, ..., Un;y ~y~, ..., ~, [EXPR])
—_———

Nout

such that for any x = (21,22, ...,2,), [EXPr] = [R(v)](z) holds.

The candidate model should be chosen by the researcher, as mentioned
above. However, it should decode a concrete candidate vector into an (r, s, t)-
cloud with r = nj,, s = neus and ¢t = 1. This last, fixed element should be 1, to
indicate that the error is the distance between the reinforcement value and 1.
We can show what happens then, with the concatenation operator e on tuples:

Vec(Nin + nout + 1, (C Observes O)) = Cloud(C AppliedT o(O AppliedToC)) =
Cloud (C AppliedT o(O)) =
{(v1,v2,...,vp,,) ® [CandidateModel(c)](v) o (1)}
is compared with
Vec(nin + nous + 1, (O ObservesC)) = Cloud (O AppliedT o(C AppliedT o O)) =

Cloud(O AppliedTo({(v1,v2,...,vp,, ) ® [CandidateModel(c)](v) e (1)})) =
{(v1,v2,...,vp,,) e [CandidateModel(c)](v) o [R(v)]([CandidateModel(c)](v))},

to compute
®(c,0) = |1 — [R(v)]([CandidateModel(c)](v))].

This meets the specification if Vv, 2 : 0 < [R(v)](z) < 1.



Chapter 6

Adaptation

This chapter discusses the adaptation function a from the general procedure
given in Chapter 2. It is a function that takes the old state, containing p can-
didates, a list of samples, and a random number, and yields a new updated
state.

6.1 Ingredients of a: Delete, Store, Explore.

The « function takes three arguments. This format was chosen carefully, be-
cause each argument corresponds to one of the three main issues in adaptation
distinguished here:

1. State — Determining which parts of it to maintain (and thus which to
delete),

2. Instance — Determining which new information to store (and thus filtering
the useful information from the massive stream of samples),

3. Random — Determining what randomly chosen new directions to ezplore
(and thus preventing early convergence and, with luck, provoking unex-
pected improvements).

6.1.1 Determining what to Delete

The candidates that have high errors, should in general be (partially) deleted
to make room for new information. In Evolutionary Computation, this is called
selection.

In Neural Computation, there is only one candidate, so totally deleting it
would simply equal restarting the algorithm. Therefore, the candidate is deleted
only partially. This does not necessarily mean that some of the m elements of
the vector representing the candidate have to be changed more than others. The
vector is only a representation of the candidate, and the part of a candidate that
is changed does not have to be recognizable in it. Changing a candidate partially
means that the new candidate resembles the old one, in one way or another.
Back Propagation [BH69, HKP91] is a good example of a scheme for deciding
where (in which weights) to store the new information from a sample.

35
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The way in which a candidate solution is divided into different features,
that are kept together, must be based on assumptions that one makes about
the structure of the problem. If the error values are expected to depend on the
presence of a specific type of features, these features should be kept together. For
instance, Genetic Algorithms are sometimes said to assume the Building Block
Hypothesis [Gol89, Mic96]. This hypothesis can be used to defend the use of
crossover operators that keep substrings together. As another example, neural
networks often use some form of gradient descent for adjusting the weights,
which assumes a smooth change of errors with a change of weight values, for
which a gradient exists.

Such assumptions are very important in the choice of an adaptation function,
because if an adaptation mechanism is used that is based on a false assump-
tion, the mechanism will simply not be appropriate. The analysis of a problem
in terms of assumptions is often hard, but it is the only basis for choosing an
adaptation mechanism, so it deserves careful examination. For 3-SAT, we as-
sume that errors can be decreased by satisfying one individual clauses, and that
errors will not dramatically increase if the valuation of one individual variable
is changed.

6.1.2 Determining what to Store

If the sampling function ® is easy to understand, the reason why a specific
objective leads to a high error for a given candidate can be figured out. In that
case, the adaptation function can replace the deleted information by new values
that will probably reduce the error. For instance, in supervised learning, each
objective represents an input and a corresponding desired output.

The extent to which the samples inform the adaptation function on the
state, can differ. We distinguish the following three levels of informedness,
each indicated with the question the information answers:

1. “How bad is it?”: Only an error value is given.

2. “Which part is bad?”: The error value specifically concerns a certain fea-
ture of a candidate.

3. “Why isit bad?”: An adequate correction is also derivable from the sample.

Evolutionary algorithms operate on the first level of informedness: only an
error value (a fitness value) is given, indicating how bad (or good) a candidate
is. Sometimes, this is all the information available. In other cases, for instance
when using an EA for classification or in fact 3-SAT, this is a deliberate choice.

The second level of informedness is used in reinforcement learning: a rein-
forcement signal does tell how good or bad a certain feature of the policy is
(namely, its output for a specific input), but it does not tell why it is bad, so
the samples do not tell how to repair this error.

If an objective can be interpreted as a simple target value, and the candidate
model is understandable, we have the third level of informedness. We know how
bad it is, we know what part is bad, and we know why it is bad. This is the
level on which error back propagation for neural networks operates.

These three levels of informedness should not be confused with the distinc-
tion between unsupervised, reinforcement and supervised learning. These three
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types of learning differ in the problem format; the problem might contain a
set of vectors, a reinforcement, function or a target function. Although reinforce-
ment learning problems have second level informedness, and supervised learning
problems have third level informedness, the parallel does not hold for unsuper-
vised learning. In the tesselation problem class we discussed in the sampling
chapter the first level of informedness (“How bad is it?”) is provided by the er-
ror value, that is defined as the Euclidean distance between an objective vector
and the closest prototype. The second level is also available, because we know
which prototype was closest, so that specific prototype is the bad part of the
candidate, which is a set of prototypes. Moreover, third level informedness is
present, because we know that moving the appropriate prototype towards the
objective at hand will decrease the distance between the two, and thus the error.

This is what makes unsupervised learning very close to supervised learning
within the Adaptive Sampling framework. The distinction between supervised
(associative) and unsupervised (non-associative) that is made in Neural Com-
putation refers to problem formats. Since we use clouds to represent any problem
in the sampling function, the difference between learning a set of vectors and
learning a function is almost trivial here. Both are represented as clouds, and
the goal is simply finding another cloud that fits it.

6.1.3 Random Exploration

At the first and second level of informedness, no information can be extracted
from the sample, to determine what to store. The sample only tells which candi-
dates to delete (first level), or at most which parts of these candidates to delete
(second level). Suppose the samples show that the evaluations of one or more
candidates are suboptimal for one or more objectives, but it is not known what
should be done to improve these evaluations. In that case, the only possibility
is to delete the suggested parts of the current State (i.e., the suggested candi-
dates or the suggested features of those candidates) and replace it with random
values.

Apart from lack of information, there is another reason for using random
exploration, even on the third level of informedness. It might be that there is
information available on how to repair an error on a certain objective. However,
using this information, will lead to the suggested optimum, which might not be
the global optimum. To prevent early convergence to a local optimum, it can be
useful to make a change that cannot be justified from the available information,
but might unexpectedly lead to new possibilities.

6.2 How to Adapt, Given the Samples

Of course, an adaptation function should always be designed so that it tries to
minimize the error values calculated by the sampling function. The three basic
ingredients of adaptation described above (delete, store, explore), can be a rule
of thumb in this design. Also, the three levels of informedness can be used to
investigate what is possible and what is not.

We already discussed the name of the framework a little in previous chapters.
Here, we will see more accurately what the core of Adaptive Sampling is. As
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mentioned earlier, sampling stands for solving a problem by isolating specific
features and then generalizing over them. Whereas conventional computation
often uses formal derivations to obtain global features of a problem, Adaptive
Sampling uses a large amount of specific features and puts them together to let
noise cancel out and obtain global information (which might for instance be a
compromise or a maximum of all those specific features).

Gathering all those specific features is Sampling. Extracting the more global
information is Adaptation. This global information can either concern a candi-
date (for instance a candidate compromising between different objectives), or
an objective (for instance an optimum of a fitness function). This makes us also
distinguish between two kinds of sampling, discussed in the following two sec-
tions. The first one is the extraction of isolated features from a candidate. The
second one is the extraction of isolated features from objectives.

6.2.1 Sampling a candidate with objectives

If there are many objectives, it is often a trivial matter to come up with a can-
didate that has a lower error on one specific objective. By adjusting weights
in that direction, the error on the specific objective will decrease. For the next
objective, the weights will probably be changed in another direction. The com-
bined effect of all these little changes will then hopefully decrease the overall
error. This is an example of generalization over objectives: for every objective,
a little change is made, and the combined effect will be a compromise for all the
objectives. Isolating different features of a candidate iteratively is what we call
“sampling the candidate with objectives”. It is what makes Neural Computation
a subclass of Adaptive Sampling,.

6.2.2 Sampling an objective with candidates

In Evolutionary Computation, things are the other way around. It is easy to
calculate the fitness function for one specific input. However, it is hard to un-
derstand it in such a way that a global optimum can be derived. Therefore,
a huge number of candidates is “proposed”, and evaluated. The evaluation of
one candidate isolates one specific feature of the objective function. This is an
example of generalization over candidates: every evaluation of a candidate has
its influence on the population, and the combined effect will be a generaliza-
tion over all these isolated features of the objective function. Isolating different
features of an objective iteratively, is what we call “sampling the objective with
candidates” . It is what makes Evolutionary Computation a subclass of Adaptive
Sampling.

6.2.3 Combining the two

If a method uses the first kind of sampling, this will result in at least second
level informedness, because specific features of a candidate are examined. This
means that Structural Error Assignment is possible, and if there is third level
informedness too, even approximation of the optimum with some variation on
Newton’s method. The second kind of sampling does not automatically lead to
second level informedness. The asymmetry here is caused by a simple circum-
stance:
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Although both objectives and candidates can be sampled, only
candidates can be adapted.

Therefore, when sampling an objective, adaptation should be towards more
interesting features of this objective, and when sampling a candidate, adaptation
should be towards a candidate with more interesting features. In both cases,
“more interesting” is defined as “such that errors are minimized”.

We can define a classification of different Adaptive Sampling methods, based
on how they sample. We can use S. to denote the average number of different
candidates for which an objective is sampled in one cycle. Likewise, S, denotes
the number of different objectives for which a candidate is sampled in one cycle.
Samples that occur more than once (for instance, if two candidates are exactly
the same), count only once. Furthermore, if two or more samples are taken
together without each sample having its individual effect (for instance if one
fitness value is generated from several outputs of sampling function ®), we count
this fitness value as one sample. Roulette Wheel Selection can cause S. to be
smaller than p, because individuals can occur more than once in the population.
Evolutionary Algorithms always use S, = 1, even if & > 1. Therefore, S. < u
and S, < k, but not necessarily S, = u or S, = k. The definition of S. and S,
might become more intuitional, as we see how they are used:

e Adaptive Sampling methods in general can be denoted with AS[S,, S,].

e Evolutionary Algorithms are Adaptive Sampling methods that do not sam-
ple the candidates with objectives; they do use multiple candidates to sam-
ple the objective(s) in each step, so they can be denoted with AS[S., 1].

e Neural Network methods are Adaptive Sampling methods that do not
sample the objectives with candidates; they do use multiple objectives
to sample the candidate(s) in each step, so they can be denoted with
AS[1, S,].

e Hybridizations of Neural Network methods and Evolutionary Algorithms
are Adaptive Sampling methods in AS[S,, S,], that are neither in AS[S,, 1],
nor in AS[1,S,].

e AS[S,,1] # AS[1,S,], AS[S., 1] C AS[S., S,] and AS[1, S,] C AS[S., S,]-

In the Adaptive Sampling framework, there is room for both kinds of sam-
pling. It should be noted that, in a way, the second kind of sampling is done by
any Adaptive Sampling method. After each adaptation of the state, the candi-
date(s) have changed, so a different part of the search space is examined, that is
influenced by different features of the problem instance. However, generalization
over these features requires bookkeeping of the method’s history. ! There have
been experiments with combining the two kinds into one method. For instance,
neural network architectures can be evolved with an evolutionary algorithm, by
testing each architecture on a simple problem in each step (see [SCE90] for an
example). This is a combination of the two, where the training process of the
neural network is included entirely in each cycle of the evolutionary adaptation.
This is the way in which evolution and learning relate in nature, and maybe this

LITABU search [Glo89, RN95] uses such bookkeeping, and can be said to sample objectives
with only one (changing) candidate.
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setup can best be studied within Moshe Sipper’s Philogeny-Ontogeny-Epigenesis
model [SSMT97]. This model defines a three dimensional space for classifying
bio-inspired systems as points in this space. One axis represents the amount of
philogeny (evolution). The ontogeny axis indicates whether physical hardware is
improved within a system. The epigenesis axis indicates if this hardware learns
after the physical development. This model includes physical adaptation, and
classifies the rest in terms of “before ontogeny” (development of a species) and
“after ontogeny” (development of an individual). In this context however, we
are not interested in the role an adaptation process plays, but in how it works.
It is just as well possible to invert the relation between neural and evolutionary
processes (i.e., including an entire evolutionary process in one learning step).

The fact that the Adaptive Sampling framework puts EC and NC methods
in one common notation, also makes it suitable for supporting the study of
different kinds of hybridization and cross-fertilization. For instance, Lamarckian
evolution is created easily by letting the adaptation function alternate between
an Oearn and an Qeyorve. We will refer to methods that are obtained from NC
and EC by hybridization or by cross-fertilization as mized methods. They are the
third subfield of biocomputation that fits in the Adaptive Sampling framework.
The following section shows how the Adaptive Sampling model can be useful
for exploring possible EC-, NC- and mixed methods for 3-SAT.

6.3 Adaptation for 3-SAT

In previous chapters, two algorithms for 3-SAT were already described: one
based on the tradition of Evolutionary Computation, and one in the spirit of
Neural Computation.

The Adaptive Sampling framework can be used for classifying and comparing
Evolutionary and Neural Methods. This was for instance done to design the
neural 3-SAT method. Although the 3-SAT problem is not a learning problem
in the canonical sense used in Neural Computation, the general problem format
made it easy to derive a network function which makes it a learning problem.

In this section, we will show how Adaptive Sampling can be put to work to
support the design of EC-methods, NC-methods and mixed methods, combining
well-chosen features of both EC and NC. First, we will determine the level of
informedness. They are described in Table 6.3.

Although we know that any change that does only one or two of the three
sign-flips in the direction of the target will be enough to correct a wrong val-
uation, we can still call this direction the target direction. For real-valued rep-
resentation, it makes sense to move all three variables toward this target over
a certain distance < 1. For Boolean representation, the only possible change
to a variable is an entire flip to the opposite value. Admittedly, this makes the
presence of an explicit target somewhat questionable. Unless we want to invert
all three variables (which might be unnecessarily destructive), we will still have
to choose which variable to change. This is why a Boolean representation of
candidates makes the use of this third level informedness partially impossible,
although it is present. However, for problem instances with m >> 3 variables,
this effect might not be as severe as it looks, because the information from a
specific sample still reduces the choice of which variable to change from m to
3, of course. Using this information is still classified as structural error assign-
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Level of informedness

1. The first level of informedness (“How bad is it?”) can be
obtained from the samples generated with ®3_gaT, for in-
stance by counting the number of unsatisfied clauses for a
certain candidate.

2. The second level (“Which part is bad?”) is also available,
because the samples tell us exactly which clauses were un-
satisfied for a certain candidate. Since each clause involves
exactly 3 of the m variables that make up a candidate, we
know that those 3 can be blaimed for not satisfying that
specific clause.

3. The third level is also present, which is best seen for
the real-valued representation of the Neural method. Note
that there are eight different ways to valuate three Boolean
variables. Only one is wrong (i.e., makes the clause yield
false), the other seven have at least one of the three signs
right. Of these seven, there is one which has all three signs
right. We take this valuation as the target value.

Table 6.1: Levels of Informedness for 3-SAT.

ment (delete+store) in this context, to distinguish it from random adaptation
(delete+-explore) used by Evolutionary Algorithms.

Since we have third level informedness, we can choose to use this information
for defining the “Store”-ingredient, or to ingore it. If we ignore it, we must focus
on the “Explore”-ingredient instead, because we must determine something to
put in the empty spaces left by the “Delete’-ingredient.? However, this does
not hold in the other direction: if we use the “Explore”-ingredient, this does
not imply that we cannot use the “Store”-ingredient. So for third-level informed
problems, there are three basic designs for the Delete-Store-Explore mechanism.
If we use the “Store”-ingredient to change candidates in way that depends on
the samples, then we have Structural Error Assignment — we only delete what
is overwritten by what we store. If we use only the "Explore’-ingredient, we treat
the problem as if it had first-level informedness. We only determine how bad
candidates are, and replace the bad ones by new ones, obtained from the good
candidates with random exploration — in other words, selection. The options
are shown in table 6.3.

Each option leads to one main subclass of Adaptive Sampling: the Evo-
lutionary Computation approach, the Neural Computation approach, and the
mixed approach (hybridizations), respectively. Besides these three options for
the general setup, there is more to choose. Neural and Evolutionary Compu-
tation might benefit from collaboration not only by developing hybridizations

2Teaving out the “Delete”-ingredient is no option, because this would lead to an algorithm
that does nothing at all.
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Delete-Store-Explore

1. Delete + Store: Structural Error Assignment,
2. Delete + Explore: Selection,

3. Delete + Store + Explore: Mixtures.

Table 6.2: Options for the Ingredients of Adaptation.

Additional Bookkeeping

1. No additional bookkeeping,
2. Additional importance-measure per objective: SAW-ing,

3. Additional importance-measure per variable: real-valued
representation.

Table 6.3: An extra choice out of three, created by cross-fertilization between
NC an EC.

of the ideas from both, but also by importing ideas from each other (cross-
fertilization). In the case of 3-SAT, solutions have been found for additional
information storage. An additional mechanism that works for EA’s might well
work for the other approaches too.

Recall that the adaptation function of the SAW-ing EA from Chapter 3 uses
additional bookkeeping per objective. It keeps one natural number per objective
in a static data structure throughout the run, to keep track of how important the
content of that objective is. This information can support the choice of which
candidate is better than another, if they satisfy an equal number of clauses?.
Likewise, the neural approach from Chapter 4 uses additional bookkeeping per
variable. It keeps one real number per variable, instead of just a Boolean variable.
The sign of this real number corresponds to the Boolean value of that variable in
the valuation, and its absolute value keeps track of how important the content
of that variable is. This information can support the choice of which variables
should be changed, out of three variables involved in a clause.

The combination of those two extra mechanisms seems superfluous, and has
not been tested (although this might deserve some further research). Leaving
this option out, we have three possibilities for the additional bookkeeping, as
shown in table 6.3.

Combining the three options for Delete-Store-Explore with the three op-
tions for additional bookkeeping, yields a total of nine suggested designs for the

3Tt is even possible that a candidate satisfying less clauses is selected over a candidate that
satisfies more.
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| || Del.+Exp. | Del.+Sto. | Del.+Sto.+Exp. |
plain (G-SAT) Simple SEA Plain Ensemble
+ reals (ES) Neural Satisfaction Neural Ensemble
+ SAW || SAW-ing EA | Lonesome SEA-SAW | Lamarkian SEA-SAW

Table 6.4: Nine method designs for 3-SAT, and names of methods of those
designs.

adaptation function, as shown in table 6.4

For each design, a name of an algorithm with that design has been filled in.
The implementations of the nine designs used here, are of course not unique.
Other examples are also possible, and their performance might differ with other
methods classified as being of the same design. However, the way in which these
methods differ from each other can be described as differences in their design.

We have seen two of them already: The SAW-ing EA discussed in Chapter 3
is at the bottom left, and the Neural approach from Chapter 4 is in the center.

Methods between braces have not been investigated in the experiments, be-
cause they already existed before the SAW-ing EA, and have already proven
less powerful (the SAW-ing EA is the best currently known incomplete 3-SAT
algorithm [BEV96]).

G-SAT (see [GW95, BEV96]) is a local search technique that takes one
valuation, and generates all its neighbors. A neighbor of valuation Val; is a
valuation Val, such that there exists a unique ¢ with 1 < 4 < m such that
Val; (z;) # Vala(z;). The neighbor that satisfies the highest number of clauses
is chosen to generate a new set of neighbors from.

ES is an evolution strategy that uses a real-valued representation, and eval-
uates a candidate with a function of these real values. It adapts not only the
valuations, but also the parameters of the adaptation mechanism. It was de-
scribed in [BEV96], but showed not to perform as good as the SAW-ing EA.
The other five methods are discussed in the rest of this chapter. Like “Neural
Satisfaction”, they all use structural error assignment, as indicated with “SEA”
in some of the names. Each of them was implemented with immediate instead of
epoch-wise adaptation, and a randomized sampling-order, for the same reasons
as mentioned in Section 4.3.

6.3.1 “Simple SEA”

The “Simple SEA”-method uses no selection, no real-valued representation and
no SAW-ing mechanism. It maintains one candidate valuation ¢, and every sam-
ple (¢,0;, ®(c,0;)) indicates the error on one specific clause o;. If this error is
®(c,0;) = 1, indicating non-satisfaction of that clause, one of the three variables
involved in the clause (chosen at random) is inverted.

6.3.2 “Plain Ensemble”

The “Plain Ensemble”-method does the same as the Simple SEA method, but
it deals with several valuations in parallel, with an additional selection scheme.
The number of candidates p is 6, 8, 10, 11 and 12, for problem sizes 20, 40,



44 Adaptation

60, 80 and 100, respectively. In each cycle, there is a chance for each valuation
to be “killed”. This chance depends on the number of clauses it satisfies, so
this implements a selection mechanism. The selection mechanism is based on
incidental extinction: each time a candidate solution does not satisfy a clause,
it has a chance p. = 0.0025 to be replaced by a new vector, that is created by
global uniform crossover: for each variable a parent is selected at random, and
the new value is copied from that parent.

6.3.3 “Neural Ensemble”

Recall that the Neural Satisfaction method uses a real-valued representation,
where 1 and —1 are used for true and false, and values in between are used
to indicate uncertainty about the valuation of that variable. The values are
strengthened (i.e., moved away from zero) for a satisfied clause, and the variables
involved are weakened or inverted if a clause is not satisfied.

The “Neural Ensemble” is based on the Neural Satisfaction method, but
with the same selection scheme added that distinguishes the Plain Ensemble
from the Simple SEA method. The learning rule for penalty is also adapted a
little. It is replaced by a restricted version of the MutOne-operator from the
EC approach (Section 3.4): if a clause is not satisfied, exactly one of the three
weights involved is inverted (i.e., multiplied by —1). Which one of the three
weights is inverted is determined at random, like in the Plain SEA and the
Plain Ensemble. Note that only weights that are involved in clauses that are
unsatisfied, can be inverted by this scheme, whereas the EC approach did not
make this distinction.

6.3.4 “Lonesome SEA-SAW?”

The Lonesome SEA-SAW method is derived from the Plain SEA method, by
adding a Stepwise Adaptation of Weights-mechanism. Because each clause has
its own effect, and no overall fitness is calculated (there is only one candidate
and no selection, hence the adverb “lonesome”), the SAW-ing mechanism cannot
be directly copied from the SAW-ing EA. Instead, the following mechanism is
used:

e Fach 250 cycles, a SAW-ing tuple Hard is generated, containing Boolean
variables. Each of these corresponds to a clause, and is set to false if that
particular clause is satisfied by the candidate valuation, and to true if it
is not.

e For each sample, if the error is ®(c, 0;) = 1, indicating non-satisfaction of
that clause, n; of the three variables involved in the clause are inverted.
The number of variables to invert is derived from the SAW-ing tuple: if
clause 1 is listed as hard (Hard[i] = true), then n; = 3, if not (Hard[i] =
false), then n; = 1.

6.3.5 “Lamarkian SEA-SAW?”

“Lamarkian SEA-SAW” combines Structural Error Assignment, selection and
SAW-ing. Its implementation is derived from the the Plain SEA (for the Struc-
tural Error Assignment) and the SAW-ing EA (for selection and SAW-ing). It
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starts with a random valuation. From this, u neighbors are derived with the
SAW-ing EA’s MutOne-operator. Again, y is 6, 8, 10, 11 and 12, for problem
sizes 20, 40, 60, 80 and 100, respectively.

From this point, we alternate the Plain SEA and the SAW-ing EA:

1. Execute one cycle of the Plain SEA, for one of the candidates. The other
candidates are not changed in this step.

2. Execute one cycle of the SAW-ing EA (selection of the best candidate
and regeneration of a new set of neighbors). Either the candidate that
was changed by the Plain SEA, or one of the others, might be selected to
generate of a new set of neighboring valuations from.

3. If none of the candidates solve the expression, return to Step 1.
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Experiments

In the experiments, implementations of the seven methods from Section 6.3 were
each run 1500 times in total. The test problem was 3-SAT, as described in Sec-
tion 1.4. Five different problem sizes were used: 20, 40, 60, 80, and 100 variables,
with a number of clauses that was 4.3 times the number of variables, i.e., 86,
172, 258, 344 and 430 respectively. For each problem size, 100 satisfiable problem
instances were generated with the mkenf formula generator from [vG93], with
randomseeds generated by mkenf . sh (with start = 1). Each method was tested
three times on each of the 500 problem instances. The results are presented in
this chapter.

7.1 Swuccess Rates

Figure 7.1 shows the success rates. They were calculated by counting the number
of instances for which a method reached a solution within 300,000 candidate
evaluations. Four of the methods drop to a success rate of around 30% for larger
problems. The three that have a better success rate are Neural Satisfaction, the
Lamarkian SEA-SAW and the SAW-ing EA. On average, Neural Satisfaction’s
Success Rate is 0.008 above that of the Lamarckian SEA-SAW, and 0.04 above
that of the SAW-ing EA.

7.2 Average Number of Evaluations to Solution

Figure 7.2 shows the average number of evaluations that a method does in
one run, if it is successful in that run. The evaluations done in runs that did
not reach a solution, were not counted. One evaluation always concerns one
candidate, and all the objectives. So the number of evaluations can be calculated
by counting the number of cycles in the general procedure, and multiplying this
by u, the number of candidates used. The same three methods that had a better
success rate (the SAW-ing EA, Neural Satisfaction and the Lamarkian SEA-
SAW), have an almost flat curve between problem sizes 60 and 100. The others
have a very steep increase on that trajectory. On average, Neural Satisfaction
needs about half the number of evaluations the Lamarkian SEA-SAW needs,
and just over one third of the evaluations needed by the SAW-ing EA.
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7.3 Average Time to Solution

Besides the average number of evaluations to reach a solution, we measured
how much time the calculation took on a Pentium 233 computer. As we partly
expected, this changed the picture entirely. When looking only at the success
rate and the number of evaluations needed, Neural Satisfaction would be the
winner.

There are real world problems, for which evaluations are very expensive,
for instance if the sampling function ® is implemented in a physical object.
However, for 3-SAT evaluations are not more expensive than the other steps in
the cycle. Therefore, it is fairer to compare the time it takes for the different
methods on a standard computer.

Figure 7.3 shows that the real-valued representation used by Neural Sat-
isfaction and Ensemble has a devastating effect on their time consumption, in
comparison with the other five, that use a Boolean representation of candidates,
with or without SAW-ing. Neural Satisfaction is out of the race now, and we
may conclude that the Lamarkian SEA-SAW is the best one, of the methods
tested. It has almost the same Success Rate as Neural Satisfaction, but it is
much faster. The SAW-ing EA is second best, being about a factor 4/3 slower
than the Lamarkian SEA-SAW, with a success rate that is about 0.032 lower
than that of the Lamarkian SEA-SAW.

The use of the Adaptive Sampling model inspired a classification of nine
designs, of which three had already been used before. It is of course hard to
prove that the other six could not have been developed without it, but we
conjecture that the use of the model was at least partially responsible for the
development of the Lamarkian SEA-SAW | which showed to perform better than
any other known method.



Chapter 8

Conclusions

8.1 Did we Succeed?

In the chapters so far, we have seen, among others, a general problem format,
a general procedure format, a discussion of Evolutionary and Neural Computa-
tion, the cloud fitting problem class, with some of its relevant subclasses, and a
discussion of different adaptation mechanisms and how to design them. In the
last few pages, the usefulness of the Adaptive Sampling was tested, by applying
different Adaptive Sampling methods to 3-SAT. In this last chapter, we will
investigate whether the goals of this project were reached.

The Adaptive Sampling framework meets all three requirements we formu-
lated. We will repeat them here:

INCLUSION REQUIREMENT
The framework should define a class of methods, including at
least Evolutionary Algorithms and Neural Networks.

In Chapters 3 and 4, we saw how EC and NC fit in the framework.

STRICTNESS REQUIREMENT
The framework should define a relatively small family of al-
gorithms, to assure that the common principles found are not
trivial properties of just any algorithm.

The framework is certainly not as general as to include any algorithm. For
instance, the ProLog-approach to 3-SAT that was mentioned in Section 1.4,
cannot like the other methods we saw, be described in objectives, candidates,
samples and adaptation.

LARGENESS REQUIREMENT
On the other hand, the framework should define a large enough
family of algorithms, to assure that EC and NC are not simply
represented separately, with the parameters being only a switch
between the two.

The framework can be seen as describing something like a greatest common
denominator of Neural and Evolutionary methods. Other methods, like G-SAT,
which stems from a local search approach, or the five mixed methods, which can
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be classified in terms of hybridization and cross-fertilization between EC and
NC, can also be described in the framework, which shows that the framework
is not restricted to two distinct subclasses.

In Section 1.2, we formulated two additional goals, not directly involved in
the development of the framework itself:

1. Exploring what new methods are suggested by the framework:

If the framework takes away the epiphenomena from the description of
bio-inspired methods, then this new, more fundamental description should
open opportunities for applying the fundamental principles to new prob-
lem domains, by instantiating the framework in a way that is different
from the two specific instantiations we find in nature.

2. Simulating different instantiations of the framework:
Wherever possible, empirical results should support any theory. The 3-
SAT problem will test the usefulness of the framework for supporting the
design of better algorithms.

The first was done in the Chapter 4, when we saw how the principles of neural
learning can be applied to (as far as we could find out) a new problem domain
(constraint satisfaction), In Chapter 6 we saw that, although EC and NC have
been combined before, the Adaptive Sampling framework can be useful to sup-
port the design of such combinations. They instantiate the common principles
of learning and evolving in ways that are different from the two specific instan-
tiations we find in nature (being Darwinian evolution and neural learning).

Beforehand, we stated that satisfying these requirements would test the cen-
tral hypothesis:

CENTRAL HYPOTHESIS

Although Evolutionary and Neural Computation come from dif-
ferent origins and are used for solving different problems, the
principles that make them work are the same, and the remaining
differences can be explained as problem dependent parameters.
Concentrating on these common principles, and not on epiphe-
nomenal features of either one, facilitates the design of better
algorithms.

We conclude that sampling and adaptation, in the way that they have been
described in this thesis, can indeed be seen as these common principles that make
EC and NC work. The remaining difference, Structural Error Assignment, can
be seen as a problem dependent parameter: either it is or it is not possible to use
SEA, and if it is possible, it depends on the problem whether SEA will lead to
faster convergence to the global optimum (as desired) or to a local optimum (not
desired). In the case of 3-SAT, the winning method turned out to be somewhere
in between NC and EC. The framework, with its emphasis on the principles,
and not on the epiphenomena, led to the design of this winning algorithm, as
was predicted by the hypothesis.

Combining these results, we may say that both the central hypothesis of
this thesis, and the Adaptive Sampling framework, were tested with a positive
result.
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8.2 Further Research

Further improvements of the “Lamarckian SEA-SAW” might be possible, for in-
stance if a third component (besides structural error assignment and SAW-ing
evolution) is added, from a complete 3-SAT algorithm. If this is done, it should
also be possible to construct a complete method, that is only a bit slower than
the “Lamarckian SEA-SAW” on the easier instances, but is still guaranteed to
find a solution for the harder instances. For an improved incomplete variant,
it might also be profitable to actively influence the sampling order, on the ba-
sis of relations between clauses: after adapting for clause i, there is an added
importance for the clauses that have variables conflicting with clause .

One mechanism that might be added as a third component would thus be
some kind of “chain weaving”, which would be the following principle. Suppose
variable z; has just been changed from false to true by either an evolution
step or a structural error assignment step. On the basis of this, a “chain” of
adaptations can be started by picking out a clause that contains the literal T,
and inverting the valuation of one of the other two variables involved in this
clause. The same can be done after that adaptation, etcetera, for instance for a
predetermined number of times.

Also, some extra fine-tuning of parameters (e.g., further optimizing the num-
ber of candidates, or dividing candidates into separate evolutionary “tribes”),
might result in some minor improvements. The proportions in which evolution
and structural error assignment are mixed, can also be tuned (e.g., multiple
evolution steps between each structural error assignment step, or vice versa).

The Adaptive Sampling framework can be enhanced to cover recurrent neural
networks explicitly. Also, more advanced versions of Reinforcement Learning
could be included in the Cloud Fitting problem class. Both would probably
require the introduction of a recurrent notion of clouds: tuples that do not define
sets of vectors, but sets of clouds. The Observes-operator should then probably
be defined as the iterative closure of an (altered) AppliedTo-operator, instead
of its current definition, in which the (current) AppliedTo-operator occurs only
twice.

Earlier versions of this thesis used the fact that, in the general procedure,
the instance and the state are sets of vectors (objectives and candidates, re-
spectively). This makes that they can also be defined as clouds, and picking out
one candidate or one objective can be defined as sampling. This takes place on
a higher level than the sampling of one candidate or one objective. This part
was taken out because it needed the concept of superposition (as used in the
theory of quantum physics), which turned out to be too complex for this scope.
However, it might be desirable for future versions of the model, to undo this
simplification.

The “Lamarckian SEA-SAW” should be tested against other existing meth-
ods, to see if it really is the best one (here, we assumed that no other existing
incomplete method performs than the “SAW-ing EA”). The algorithm will be
submitted for the SATLIB-database®, and additional publications on the Adap-
tive Sampling framework have already been planned.

'http://www.informatik.tu-darmstadt.de/AT/SATLIB.
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