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AbstractA new framework is presented, that was designed to be a uni�cation of two exist-ing biologically inspired paradigms: Evolutionary Computation (EC) and NeuralComputation (NC). In this thesis, the central goal is to untangle bio-inspiredmethods from their biological metaphors, so that issues like exploration, gener-alization, structural credit assignment, recombination, etcetera, can be studiedin a more general language, instead of being studied separately in di�erentmetaphors. It is hypothesized that mimicing nature's principles, and not itsepiphenomena, leads to better algorithms. The so-called Adaptive Samplingframework is used for analyzing the 3-SAT problem, which led to one neuralmethod and �ve mixed methods, that mix elements of EC and of NC in dif-ferent ways. These methods have been tested against the best currently knownincomplete 3-SAT algorithm, the SAW-ing EA. Perhaps contradicting conven-tional intuition, the Neural method needs less evaluations to reach a highersuccess rate than the SAW-ing EA, but its 
oating point representation con-sumes much more time. However, one of the mixed approaches, called LamarkianSEA-SAW, outperforms the SAW-ing EA in success rate, in number of evalua-tions and in runtime, on all test sets. This suggest that it is indeed bene�cial tostudy EC and NC in the unifying Adaptive Sampling framework.
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Chapter 1Introduction1.1 SubjectIt is widely realized that genetic evolution and neural learning have more incommon than is currently exploited in biocomputation [LON97]. This thesisinvestigates their similarities.For the maturation of bio-inspired computation, there is a need for a generaltheory, that focuses on the principles and not on the epiphenomena, and putsthe many individual experiments that have been performed through the yearsin one common context.Instead of trying to �nd proofs of convergence or capacity, which has beentried, but has turned out to be very di�cult, it might be useful to investigate thecommon principles of the studied methods. This would make them instantiationsof a common superclass, and would create a common context for the di�erentexperiments.The existence of common principles that are fundamental to the power be-hind both Neural Computation (NC) and Evolutionary Computation (EC),forms the central hypothesis of this thesis:CENTRAL HYPOTHESISAlthough Evolutionary and Neural Computation come from dif-ferent origins and are used for solving di�erent problems, theprinciples that make them work are the same, and the remainingdi�erences can be explained as problem dependent parameters.Concentrating on these common principles, and not on epiphe-nomenal features of either one, facilitates the design of betteralgorithms.1.2 GoalThe proof for the hypothesis will not be a logical deduction; there are too manyconcepts involved that are de�ned only in intuitive terms. It is especially hard togive a good de�nition of the di�erence between principles and problem-speci�cparameters.However, it is possible to give a speci�cation of a set of common features.These features then de�ne a class of methods, that can be described in a frame-1



2 Introductionwork. The goal of this thesis is to prove the hypothesis by developing such aframework. The methods used in Evolutionary Computation (EC) and NeuralComputation (NC) should be de�nable within this framework:INCLUSION REQUIREMENTThe framework should de�ne a class of methods, including atleast Evolutionary Algorithms and Neural Networks.Of course, any existing general purpose programming language (for instanceC++) would in principle satisfy this goal, because NNs and EAs can both beimplemented in C++. This is clearly not what is wanted, because any algorithmcan be implemented in a general purpose programming language. This rules outC++as a candidate: STRICTNESS REQUIREMENTThe framework should de�ne a relatively small family of al-gorithms, to assure that the common principles found are nottrivial properties of just any algorithm.Another family that contains both NNs and EAs is the family that containsnothing else. This would neither be a very interesting family, because it doesnot compare NNs and EAs in any way. The parameters of the framework wouldnot be used to tune for speci�c problems, but would work as a switch betweenthe two subclasses. LARGENESS REQUIREMENTOn the other hand, the framework should de�ne a large enoughfamily of algorithms, to assure that EC and NC are not simplyrepresented separately, with the parameters being only a switchbetween the two.The framework should be like a greatest common denominator. It shouldde�ne the largest set of features that are present in both, i.e. all the similaritiesbetween EC and NC, and not the di�erences.The hypothesis can be tested by trying to de�ne a framework satisfyingthese three requirements. This involves an intuitional judgement of whether thesimilarities found are really the principles that make the methods work, and notjust some trivial properties. Also, it should be judged whether the parametersof the framework are problem dependent, and do not represent the actual choicebetween two separately de�ned classes. Both these measures will be evaluatedin the Conclusions, in Section 8.1.The second part of the hypothesis will be investigated with two additionalgoals:1. Exploring what new methods are suggested by the framework:If the framework takes away the epiphenomena from the description ofbio-inspired methods, then this new, more fundamental description shouldopen opportunities for applying the fundamental principles to new prob-lem domains, by instantiating the framework in a way that is di�erentfrom the two speci�c instantiations we �nd in nature.2. Simulating di�erent instantiations of the framework:Wherever possible, empirical results should support a theory. The 3-SAT



1.3 Structure of this Thesis 3problem will test the usefulness of the framework for supporting the designof better algorithms.It is not the purpose to invent a new class of algorithms, but to supplyone model to support the design of methods within and in between the twoclasses, thus showing how closely related these are. The purpose of this thesisis closer to that of [Far90], which is a paper concerning connectionism, but isan example of a unifying framework, comparing terms used in di�erent disci-plines for the same concepts. Other work with a similar goal includes that ofDorigo et al. [DB94], who compared Q-learning to classi�er systems, Eiben etal. [EAvHN95], who formulated a general procedure for search methods, andRadcli�e and Surry [Rad91], who supplied a mathematical tool (\formae") forcomparing operators and assumptions of di�erent Evolutionary Algorithms. Allthese studies investigate similarities between di�erent methods.1.3 Structure of this ThesisThe 3-SAT problem forms a running example to illuminate concepts in this the-sis, wherever possible. In the following chapter, the Adaptive Sampling frame-work is introduced. Chapters 3 and 4 discuss Evolutionary and Neural Compu-tation.The central Chapters 5 and 6 then investigate Adaptive Sampling in moredepth, dividing issues into Sampling and Adaptation. Chapter 7 discusses theexperiments that have been performed to investigate to what extent the use ofthe Adaptive Sampling framework can increase performance, and is followed bythe conclusions.1.4 3-SAT: The Running ExampleAt the beginning of next chapter, an intuitive notion of adaptivity and samplingis developed. To give these intuitive concepts some context, we �rst introducethe running example of this thesis: 3-SAT.The Adaptive Sampling framework has been tested by applying it to the3-SAT problem class. An instance of the 3-SAT problem is uniquely de�nedby a Boolean expression, and any valuation that satis�es that expression is asolution of that instance. The expression has to be in conjunctive normal form(also known as a \product of sums"), in which each of the k clauses containsexactly three literals:(p11 _ p12 _ p13) ^ (p21 _ p22 _ p23) ^ : : : ^ (pk1 _ pk2 _ pk3):In this expression, each literal pij is either one of the m free variables of theexpression (fx1; x2; : : : ; xmg) or the negation of one of those (fx1; x2; : : : ; xmg).For every i, a clause contains at most one of xi and xi. A solution is a valuationV al : fx1; x2; : : : ; xmg ! ftrue; falseg, such that the expression yields true forthis valuation. An example of an instance of the 3-SAT problem, with k = 5clauses and m = 4 free variables, is:(x1 _ x2 _ x3) ^ (x1 _ x2 _ x4) ^ (x1 _ x3 _ x4) ^(x1 _ x2 _ x3) ^ (x2 _ x3 _ x4):



4 IntroductionThis problem instance has seven solutions (Val(x1), Val(x2), Val(x3), Val(x4)),for instance (true; true; true; false). The corresponding decision problem (\Doesa given expression admit a solution?") is one of the most extensively studiedNP-complete problems.Several heuristics have been developed for it, the most prominent one beingWG-SAT. It was introduced by Frank (see [Fra96, BEV96]) and is a variant ofG-SAT, developed by Gent and Walsh (see [GW95, BEV96]).It is possible to solve 3-SAT analytically, for instance using distributivity ofconjunction over disjunction:Solve((a _ b _ c) ^ (Rest : : :)) :=Solve(a ^ Rest : : :) or(Solve(b ^ Rest : : :) or Solve(c ^Rest : : :))This is the way ProLog would solve 3-SAT. However, even if solving a 20-clause formula this way takes at most 1 millisecond, then solving a 25-clauseformula would already take 243 milliseconds in the worst case, and a 70-clauseformula can already take up to a few million millenia (although a lot of bene�tfor the average case might be drawn from backtracking, Most-Constrained-Firstsearch and other speed-ups).



Chapter 2Adaptive SamplingIn this chapter, we will discuss a class of algorithms, some of which can solve70-clause and even 100-clause 3-SAT problems within one minute. The basicprinciple behind these algorithms is to sample isolated features from the problemand from candidate solutions, that are adapted iteratively. Evolutionary andNeural Computation are the two main sub�elds of this class. Methods obtainedby hybridization or cross-fertilization between the two, form the third mainsub�eld.This class of algorithms has been dubbed Adaptive Sampling, and it isdescribed by the Adaptive Sampling framework. The basic de�nitions of theframework, namely a general problem format and a general procedure, will beintroduced.2.1 De�ning what Adaptive Sampling isDe�ning the di�erence between adaptive sampling (e.g., neural network meth-ods, evolutionary algorithms, stochastic approximation) and conventional com-putation (e.g., complete algorithms, rule-based Arti�cial Intelligence, exhaustivesearch) is not a trivial matter. For instance, the fact that adaptive methods areadaptive, that the next step in the algorithm is determined by the informationgathered so far, is not discriminative, because this holds for any Turing Machine.The fact that they mostly have a stochastic component, is more discriminative,because conventional methods are usually deterministic. But it is not essential:if the random seed is constrained to a speci�c value in the de�nition of themethod, the method is deterministic (each run is predictable), but would stillbe called adaptive, because the underlying theoretical principles would be thesame.2.1.1 Iterative ImprovementWhat does seem an important intuitional di�erence is that the state of an adap-tive method in progress, during the run, always contains a candidate solution,and that this candidate solution is improved iteratively.11However, this also holds for some methods that are not biologically inspired, for instanceG-SAT [GW95, BEV96]. 5



6 Adaptive Sampling2.1.2 SamplingAnother characteristic is that this improvement is achieved by sampling. Thissampling can be determining the output of a �tness function, that is given inthe de�nition of the problem instance for a speci�c input, or considering one ele-ment of a training set. For 3-SAT, for instance, the ProLog-approach calculatesa tree of features of a problem instance. Sampling methods for 3-SAT wouldsample only the leafs of such a tree, without traversing its branch-structure.The di�erence is in the fact that sampling does not require understanding theactual structure of the problem class or the problem instance, as long as itsspeci�c isolated elements are accessible.2.1.3 GeneralizationA third characteristic is that the information from a sample is combined withthat from others, so that (hopefully) the more general information is conserved,while the other information (considered noise) is thrown away. In these vagueterms, that is what might be considered as the essential principle of adaptivecomputation: a lot of speci�c information is gathered, and this long stream ofdata is iteratively compressed into the much smaller representation of candidatesolutions, which would then hopefully convey the global information present inthis data, while the noise cancels out in the process of compression. For EC, thisstream of information consists of �tness evaluations that are to be improved;for NC, it contains the data that is to be learned. The useful thing about thisapproach is that the user does not need to specify exactly where this globalinformation can be found, and what information has to be considered noise; theglobal information that is looked for is simply de�ned as \that information thatis not canceled out when samples are combined".2.2 The FrameworkIn the rest of this chapter, the framework is described. The description con-tains a general problem format and a general procedure format. The procedurecan in principle be used for the implementation of a simulation environment inwhich an algorithm can solve a problem. Because practice shows that simula-tion environments are hardly ever useful (most simulations can be programmedin a general purpose language within 500 lines), this possibility has not beeninvestigated further within this project. The Adaptive Sampling framework wasdeveloped as a uni�cation of two paradigms, not as a generalized environment.It should be used for designing algorithms, not for programming them.However, a computational paradigm can best be explained in terms of com-putation, which is why the framework is presented here in terms of pseudo-Pascal.2.3 General Problem FormatA real world problem should �rst be modeled before it can be represented in acomputer. In this case, we assume that some computable error function existsthat can be used for evaluating candidate solutions. This function is called the



2.3 General Problem Format 7sampling function �. The term sampling refers to the fact that in the AdaptiveSampling paradigm, a problem is solved by generalizing from a set of speci�csamples from some distribution. In Evolutionary Computation, this is the dis-tribution of \�tness" in the space of candidates. In Neural Computation, thisis the distribution of the \data set" in the space of possible data set elements(more on this in Chapter 5).In [CLR90], a concrete problem is de�ned as a relation on concrete probleminstances and corresponding concrete solutions. Here, we take the problem in-stance to be represented as a set of k objectives, each of which is a vector in R` .If suitable, the number of objectives k can be taken to be one. This is merely amatter of how one wants to encode the problem.A candidate solution (candidate, for short) is represented as a vector in Rm .The evaluation calculated by � is a scalar in R, and is an error value concerningone candidate and one objective. So � is a function from Rm�R` to R. The goalis to �nd a candidate for which the sum of errors on objectives is minimal. InChapter 5, which discusses di�erent types of problems, this goal is formulatedprecisely. For now, we can de�ne the relationship between the sampling function� and the goal of the problem as follows:DEFINITION 1 Given a sampling function � from Rm � R` to R for some` and m, and a set of k objectives I = fo1; o2; : : : ; okg, in which each oi 2R` (1 � i � k), and " > 0, an "-solution to the problem de�ned by � and I, isa candidate c 2 Rm such that8d 2 Rm : Error(c) � Error(d) + ";in which for x 2 Rm , Error(x) = X1�i�k�(x; oi):2.3.1 3-SAT in the general problem formatIn the general problem format, a problem class is represented by the samplingfunction �, and problem instances are represented by a set of objectives. In thissection, we will see how this format can be used for representing 3-SAT.Instances of the 3-SAT problem class are uniquely de�ned by a logical expres-sion in three conjunctive normal form (3-CNF). To represent such an expressionin a set of objectives, we choose to encode each clause as one objective. We takek to be the number of clauses, and ` and m both to be the number of variablesoccurring in the expression.For encoding the clauses, we use the following key:EncodeClause(p1 _ p2 _ p3) = v such that for 1 � i � ` :vi = 8<: 1 if 9j 2 f1; 2; 3g : pj = xi,�1 if 9j 2 f1; 2; 3g : pj = xi,0 otherwise.So for instance, the expression given in Section 1.1, would be representedwith the vectors (1; 1; 1; 0; 0); (�1;�1; 0;�1; 0); (1; 0;�1; 1; 0);



8 Adaptive Sampling(�1; 1; 1; 0; 0); and (0;�1; 1;�1; 0):We also need to de�ne how we encode candidate solutions. For this, we willuse a similar encoding. A valuation Val : fx1; x2; : : : ; xmg ! ftrue; falseg of thefree variables x1 to xm is encoded as a vector w in Rm , as follows:EncodeValuation(Val) = w such that for (1 � i � m) :wi = � 1 if Val(xi) = true,�1 if Val(xi) = false .Now, we have to de�ne the sampling function �. It should yield an errorvalue, given a speci�c objective (in this case a clause), and a speci�c candidate(in this case a valuation). We take the following speci�cation:�3�SAT(EncodeValuation(Val);EncodeClause(p1 _ p2 _ p3)) spec=� 0 if Val satis�es (p1 _ p2 _ p3),1 otherwise.The overall error, as speci�ed in de�nition 1, then equals the number of unsat-is�ed clauses, which is zero for solutions, and at least 1 for valuations that arenot solutions to the problem instance.In the Sampling chapter, we will give a Sampling function that satis�es thisspeci�cation.2.4 General Procedure FormatUsing this general problem format, we can de�ne a general procedure format.An Adaptive Sampling algorithm maintains a number � of candidate solutions,that are adapted for new sample-information in each cycle (this is called iterativeimprovement). Like the number of objectives k, the number of candidates � canbe one (this is considered default in Neural Computation: using only one neuralnetwork).To de�ne the general procedure format, we �rst declare the three main datastructures that are used by the simulation process:Instance: array[1..k, 1..`] of real;State: array[1..�, 1..m] of real;Samples: array[1..�, 1..k] of recordCandidate: array[1..m] of real;Objective: array[1..`] of real;Error: real;end frecordg;These data structures are used in the following general procedure, in which twofunctions are important. One is the sampling function � discussed above. Theother one is the adaptation function �, which adapts the candidates representedin data structure State to the information that is gathered using �. It takescare of both the exploitation of this information, and the necessary randomexploration. These issues will be discussed in Chapter 6.The function Init initializes the data structure State with random initialcandidates. The function Goal yields true if at least one of the candidates is



2.4 General Procedure Format 9
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ow of information for Adaptive Sampling.an "-solution (for a given "), and false otherwise. Figure 2.1 gives a graphicalrepresentation of the data 
ow for Adaptive Sampling. In pseudo-Pascal, thegeneral Adaptive Sampling procedure is as follows:Instance  the problem instance to be solved;Init(State, Random);repeatfor c  1 to �for o  1 to kSamples[c, o].Candidate  State[c];Samples[c, o].Objective  Instance[o];Samples[c, o].Error  �(State[c], Instance[o]);rofrofState  �(State, Samples, Random);until Goal(State, ");Let us have a look at what this procedure would do for our running example,the 3-SAT problem in the encoding given above. First, the problem instance tobe solved is stored in the data structure Instance. This means that Instancecomes to contain a set of vectors that each encode one clause from the expres-sion to be satis�ed. Then, State is initialized with random values. So this datastructure then contains � vectors, each encoding a random valuation. In therepeat-until loop, each of the � candidates is evaluated for each of the k ob-jectives, with the function �, that yields a 0 for satisfaction of a clause, and a1 for non-satisfaction. These samples are stored in the data structure Samples,which is input to the adaptation function �, along with State and a random realnumber between 0 and 1. This adaptation function then produces � updatedencoded valuations, that �ll the State data structure. This is repeated until theGoal function yields true. It is defendable here to choose " between 0 and 1, ifwe assume a solution (with error 0) to exist, and do not want the algorithm tostop when the number of unsatis�ed clauses is still 1 or more. We choose thegoal function such thatGoal(State; ") = (9i : Error(State[i; �]) � ");



10 Adaptive Samplingwith Error(c) = kXi=1 �(c; Instance[i; �]);in which for 1 � i � �,State[i; �] = (State[i; 1]; State[i; 2]; : : : ; State[i;m])is the i-th m-vector representing a candidate, and for 1 � i � k,Instance[i; �] = (Instance[i; 1]; Instance[i; 2]; : : : ; Instance[i; `])is the i-th `-vector representing an objective.The adaptation function should change the state in such a way that it canreasonably be expected to improve on the long run. How to achieve this will bediscussed several times in the sequel. First, in the next chapter, an evolutionaryalgorithm for 3-SAT will be described in terms of an adaptation function. Inthe Neural Computation chapter, a neural approach will be de�ned, and inChapter 6, which is devoted to adaptation in general, the issue will be discussedmore exhaustively, and more adaptation functions for 3-SAT will be proposed.Whereas the �rst two are partly defended by the fact that they are based ongenetic and neural processes from nature, respectively, the others will only beconstrained to be based on the common principles of these processes. It is part ofthe hypothesis of this thesis that this will enable the design of a more appropriateand therefore better adaptation function. This will be tested in the experiments.The general procedure given above will be the basis for de�ning what Adap-tive Sampling is, and in what way Evolutionary and Neural Computation aresub�elds of it. The sampling function � is discussed in Chapter 5. It yieldsthe error that is to be minimized, and is therefore important for de�ning theproblem. In the next two chapters, describing Evolutionary and Neural Compu-tation, we just regard the sampling function as an arbitrary error function, aswe discuss the adaptation function � in the following chapter.



Chapter 3Evolutionary Computation3.1 How EC Fits in Adaptive SamplingIn the Adaptive Sampling framework, Evolutionary Computation is character-ized by the following features:� There usually is more than one candidate solution (for Evolutionary Com-putation, the number of candidate solutions � is sometimes mapped to thepopulation size, and sometimes to the o�spring size | details follow whereappropriate).� Possibly, there is only one objective (there is not necessarily a data setinvolved in the problem format).� There is much exploration (new candidates are formed by random varia-tion).� The information from the samples is only used to decide whether a candi-date should be altered totally, partially or not; there is no structural errorassignment to decide which part of a candidate to alter.This last one is the most important characteristic, and might be both thestrength and the weakness of Evolutionary Computation in comparison withNeural Computation. On the one hand, it makes the approach applicable toproblem classes for which structural error assignment is not possible, or hardinstances, where structural error assignment might be misleading.On the other hand, if the problem is such that it is known which features ofthe candidate should be altered to improve the evaluation on a certain objective,it can be a waste of information to change a random feature, instead of the onesuggested. We will see examples of both in the experiments (Chapter 7).The terminology used in Evolutionary Computation can be mapped ontothe terms used in this description as follows:� candidates are called \individuals",� the State is called the \population before selection" (not to be confusedwith the population after selection, which is smaller, of course),11



12 Evolutionary Computation� the sampling function � calculates (the k components of) the \�tnessfunction",� the evaluation Error(State[c; �]), calculated by (k iterations of) �(c; o), iscalled the \�tness of individual c",� the adaptation function � is divided into \selection" (deleting un�t in-dividuals), \recombination" (exploration of new candidates that combinefeatures from old ones, with random in
uences) and \mutation" (explo-ration of new candidates that combine features from one old candidatewith slight random in
uences).In the general procedure, there are several variables and functions that canbe �lled in. For Evolutionary Computation, a lot of these can be derived fromthe �tness function used. The data structure Instance represents this �tnessfunction. Sometimes, for instance in the case of 3-SAT, the �tness calculated bythis �tness function can be said to represent several distinct objectives (clauses,for 3-SAT). If so, those objectives are represented by k vectors of length `. Ifnot, there is only k = 1 objective. This vector can then be decoded into a �tnessfunction, for instance with a C++-interpreter.Contrary to Neural Computation, there are several candidates. The popula-tion is represented in the data structure State, as � vectors of length m. Hereof course � is the population size before selection, and m is the length of eachvector that concretely represents an individual. Init initializes the population(usually this is entirely random), and Goal is the goal that at least one of thecandidates (individuals) reaches a certain �tness.In the general procedure, the sampling function � is calculated for everycombination of one objective and one candidate. If there is only one objective,calculating � for that objective and one candidate boils down to determiningthat candidate's �tness. If there are several objectives, then several error-valuesare calculated for each candidate. It is then the task of the adaptation function� to combine these di�erent error values into one overall evaluation. The adap-tation function does all the rest, too: deleting candidates that are less �t thanothers, and replacing them by new candidates, obtained by applying recombi-nation operators to �tter candidates.As mentioned above, there is one important tabu in Evolutionary Compu-tation, that separates it from other Adaptive Sampling methods:In Evolutionary Computation, which part of a candidate ischanged by recombination and/or mutation operators does notdepend on information gathered by sampling for that candidate.The samples in
uence which candidates are changed, and howmuch, but not in what way.The information that is used to guide the adaptation always concerns an en-tire candidate, and therefore there is no structural error assignment for di�erentfeatures of a candidate.3.2 Di�erent Evolutionary AlgorithmsBefore anything more speci�c can be said about EAs, it is necessary to chooseone of its speci�c subclasses. The EA class is usually considered to be the union



3.3 Example: A Genetic Algorithm 13of at least four subclasses:� Genetic Algorithms [Hol75, Mic96] (GA), which use bitstrings as individ-uals and crossover and mutation as operators,� Evolution Strategies [Rec73, Mic96] (ES), which use vectors of real valuesas individuals, and adapt the operators on-line,� Genetic Programming [Koz92, Mic96] (GP), which use expressions as indi-viduals and operations on the parse trees of these expressions as operators,� Evolutionary Programming [FOW66, Mic96] (EP),which use �nite statemachines as individuals.EAs that operate on other mathematical objects, like graphs, permutations ormatrices, do not have a speci�c name.3.3 Example: A Genetic AlgorithmAs an example, a speci�c algorithm from the GA subclass will now be described.In this example (taken from Michalewicz's textbook [Mic96]), an individual isa bitstring of length m = 33. Each of the 33 bits can either contain a 0 ora 1 at any given moment. The population consists of pop size = 20 individ-uals I1; I2; : : : ; Ipop size . The initial value of each bit in each individual in thepopulation is chosen randomly.After the initialization, the following cycle is executed repeatedly:1. Calculate the �tness of each individual,2. Roulette Wheel Selection,3. Crossover,4. Mutation.This cycle is repeated until no further signi�cant change is observed, orsimply for a �xed number of times. Each step, except the �rst one, changes thecontents of the population.The calculation of the �tness is done by a function f : f0; 1g33 ! R+ , thatis part of the problem instance. The goal is �nding the bitstring that has thehighest �tness. The �tness function has the m bits of an individual as input anda positive real valued scalar as its output.The procedure for the Roulette Wheel Selection is as follows:� Calculate the total �tness F , that is the sum of the �tness values of allindividuals,� Calculate the selection chance pi for each individual Ii, that is the �tnessof Ii divided by the total �tness F ,� Calculate the cumulative selection chances qi =P ij=1pj , and de�ne q0 tobe 0,� Select pop size individuals by doing the following pop size times:



14 Evolutionary Computation{ Generate a random scalar r from (0; 1],{ Select individual Ii if qi�1 < r � qi,� The selected individuals form the new population after selection.The next step is applying crossover to the new population. The chance for anindividual to undergo crossover is called pc, and has value 0:25 in this example.Determining to which individual this will happen, is done as follows. For eachindividual in the new population after selection:� Generate another random scalar r from (0; 1],� If r � pc, the individual is selected for crossover.The individuals that were selected for crossover in this procedure, are taken outof the population that was created after selection, and together form the matingpool.The individuals in the mating pool are coupled two-by-two randomly; ifthe number of individuals in the mating pool is odd, one individual remainsunchanged. For each couple formed, a random natural number pos (1 � pos �m � 1) is determined, and the crossover then proceeds as follows. First, bothindividuals are cut in two, at the point after bit pos :(b1b2:::bpos bpos+1:::bm)(c1c2:::cpos cpos+1:::cm)Then, the parts that come after the cut, are swapped from one individual to theother, which yields: (b1b2:::bpos cpos+1:::cm)(c1c2:::cpos bpos+1:::bm)The new individuals obtained by this crossover process are put back into thepopulation.The last step is mutation. For each bit in every individual in the populationjust obtained, mutation depends on mutation chance pm, which is the chanceon mutation per individual bit within each individual in the population. It hasvalue 0.01 in this example.� For each individual bit, a random scalar r from (0; 1] is generated again.� If r � pm, the bit is \
ipped" (from 0 to 1 or from 1 to 0); otherwise, thebit remains unchanged.In the general procedure, this would look as follows. We take k = 1, whichensures that each individual is evaluated only once in each cycle, and we take�(c; o) and I such that �(c; o1) = f(c), with f the �tness function. The numberof candidates can simply be taken � = pop size = 20, because then the samplingstep of the general procedure amounts to calculating f(ci) for 1 � i � 20. Thelength of each candidate is m = 33. The adaptation function � does the rest:selection, crossover and mutation.



3.4 3-SAT with EC: \SAW-ing EA" 153.4 3-SAT with EC: \SAW-ing EA"In [BEV96] an Evolutionary Algorithm is presented, that was designed for the3-SAT problem. It uses Stepwise Adaptation of Weights.The algorithm starts with one randomly chosen valuation of the variables,and a vector of weights, one weight for each clause, initialized to 1. From thisinitial valuation, � candidates are generated1 by changing one of the Booleanvariables from true to false or vice versa.These � valuations are represented by � tuples of Boolean variables. These� candidates are evaluated with the �tness function. The �tness function addsthe weights of the satis�ed clauses, to obtain the �tness of a valuation. If allweights are 1, then this yields the number of satis�ed clauses; if for instance acertain clause has weight 2, then this clause counts double, etcetera.When all the �tness values have been calculated, the one2 valuation withthe highest �tness is picked out, and the rest is deleted. After this, we are backat one candidate, and the cycle can start anew by generating � new candidates.After each 250 cycles, the weights are adapted. For this, the valuation isused that has just been picked as the best one. If a clause is not satis�ed by thisvaluation, its weight is increased by 1. The rest of the weights stay the same.This way, clauses that are hard to satisfy, will get ever higher weights, whichmeans that they get a more important role in the �tness function.The SAW-ing mechanism was introduced in [EvdH97, BEV96]. It adapts theweights in the summation to distinguish between clauses that are rarely satis�edby the candidate solutions from clauses that have shown to be easy to satisfy.An optimized number � of candidates is produced in each cycle. For problemsizes 20, 40, 60, 80 and 100, � is 6, 8, 10, 11 and 12, respectively. Consistent withthe Adaptive Sampling model, each cycle consists of sampling and adaptation.The sampling is done by evaluating the � valuations. The adaptation of thestate does not depend on which clauses are satis�ed; the �tness values determinewhich candidate is picked out to generate the � new candidates from. Those aregenerated by applying the MutOne-operator, which changes exactly one variable(from true to false or vice versa), that is chosen at random. This does not dependon whether this particular variable has any connection to the evaluation. In thetradition of Evolutionary Computation, there is no structural error assignment(the outcome of the evaluation is not assigned to one speci�c variable in thevaluation).The results from the tests that were done with this algorithm, were betterthan that of any known heuristic method for 3-SAT. For more details on thisstudy, see [BEV96]. That paper served as a starting-point for testing whetherthe Adaptive Sampling model can provide a way of thinking about problemsand methods that leads to better algorithms.
1This time, the number of candidates � that is evaluated in one cycle is called the o�springsize, in EC-terminology.2In EC-terminology, the population size is 1 for this algorithm.



Chapter 4Neural Computation4.1 How NC Fits in Adaptive SamplingIn the Adaptive Sampling framework, Neural Computation (for an overview ofthe �eld, see Hertz et al. [HKP91]) is characterized by the following features:� There usually is only one candidate (one neural network).� There are a number of objectives (the data set).� There is usually little explicit exploration.� There is Structural Error Assignment.This last one is the most important characteristic, and might be both thestrength and the weakness of Neural Computation. It is the main di�erence withEvolutionary Computation.In the general procedure, there are several variables and functions that canbe �lled in. For Neural Computation, the data structure Instance represents thedata set. The data set has k elements, which are vectors of length ` (or tuples ofvectors, whose total length is `). The data structure State contains the weightvectors that represent the Neural Network. These are stored in � = 1 vector oflength m.Init initializes the concrete candidate vector (the weight vectors), usually tosmall values that are determined at random, and Goal is the goal that the sumof errors on data set elements drops beneath a certain level.In the general procedure, the sampling function � is calculated for everycombination of one objective and one candidate. For Neural Computation, thereis only one candidate, the neural network, so calculating � (for that candidateand one objective) boils down to determining the error of the network functionon one data set element.The adaptation function does all the rest: calculating which speci�c weightsthe error can be assigned to, and changing those weights in the direction thatdecreases the error. It operates on the parameters (weight vectors) of the net-work. The archtecture of the network, which de�nes the interpretation of theseweight vectors, is captured in the sampling function, as will become clear in theexample to come. 16



4.2 Example: A BackProp Neural Network 17As mentioned above, there is one important mechanism in Neural Compu-tation, that separates it from other Adaptive Sampling methods:In Neural Computation, the part of a candidate that is changedby the learning rule always depends on information gathered bysampling for a speci�c objective. The samples explicitly in
u-ence which parts of the candidate are changed, how much andin what direction.The information that is used to guide the adaptation always concerns onespeci�c objective, and therefore structural error assignment is possible for dif-ferent features of a candidate. This does bring the risk of early convergence,because always chosing the path that looks the most promising, might under-estimate other routes to even better optima. The French proverb \reculer pourmieux chauter" (stepping back to jump better) does not apply for Neural Com-putation, which separates it from other Adaptive Sampling methods.Before we introduce our example Neural Network, we will look at someterminology used in Neural Computation:� the single candidate is called the \neural network",� the Instance is called the \data set" | the objectives in it are \data setelements".� the sampling function � evaluates the \network outputs" which are ob-tained by applying the \network function" to the \network inputs".� the adaptation function � implements the \learning rule".4.2 Example: A BackProp Neural NetworkA neural network (NN) is a set of interconnected neural nodes. In this example,a feedforward NN with one hidden layer is considered. These have the additionalproperty that the neural nodes are organized in three layers. The input nodesform the input layer, the hidden nodes form the hidden layer, and the outputnodes form the output layer. Not every two nodes are directly interconnected.Each hidden node is connected with each input node and with each output node,and that are the only connections there are.A weight is associated with each connection. Some more speci�c terminology:� The number of input nodes is called nin,� The number of hidden nodes is called nhidden,� The number of output nodes is called nout,� The weight of a connection from input node i to hidden node h is calledwh i,� The weight of a connection from hidden node h to output node o is calledwh!o.



18 Neural Computation
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Figure 4.1: A feedforward neural network with one hidden layer.� The vector (wh 1; wh 2; : : : ; wh nin ; wh!1; wh!2; : : : ; wh!nout) is calledthe concatenated weight vector ~Wh associated with hidden node h.Given an architecture (nin; nout; nhidden) 2 N3 , the neural network paradigmde�nes a mapping NN BUILD(nin;nout) from concatenated weight vectors to hid-den node behaviors, and a mapping NN STRUCT(nin;nhidden;nout) from hiddennode behaviors to network behaviors. Those mappings are as follows; for an(input, output)-pattern � = (�; �), let� excitation Eh of hidden node h be Pnini=1 �i � wh i,� activation Ah of hidden node h be Sigmoid(Eh) for some prede�ned in-versible sigmoid-shaped function Sigmoid,� for o = 1; 2; : : : ; nout : [Xh]o = Sigmoid(wh!o � Ah).Now we can de�ne what each of the hidden nodes contributes to the behavior ofthe network as a whole. These contributions are called hidden node behaviors.The hidden node behavior Bh of hidden node h with weight vector ~Wh isBh = NN BUILD(nin;nout)( ~Wh), such thatBh(�1; �2; : : : ; �nin) = ([Xh]1; [Xh]2; : : : ; [Xh]nout );and the network behavior NN , given m hidden node behaviors B1; B2; : : : ; Bm,is: NN = NN STRUCT(nin;nhidden;nout)(B1; B2; : : : ; Bm), such thatNN(�1; �2; : : : ; �nin) = (N1; N2; : : : ; Nnout) ;where No = Sigmoid mXh=1 Sigmoid�1[Xh]o! :



4.3 3-SAT with NC: \Neural Satisfaction" 19Error Back Propagation [BH69, HKP91] was designed for neural networkcurve �tting. The curve �tting problem class will be discussed in Section 12.The neural network should \learn" the function speci�ed by a set of (input,output)-patterns �p = (�p; �p) (p = 1; 2; : : :)For a learning rate �, the procedure for error back propagation learning isas follows:1. Initialize the weights to small random values,2. Choose a pattern � = (��; ��),3. Calculate the output vector N of the network, given input ��:N� = NN (��) ;4. For each output node o, compare the output associated with the input bythe network to the desired output, which the network should learn:�outo = Sigmoid0(Sigmoid�1(N�o ))[��o �N�o ]:5. For each hidden node h, calculate a�hiddenh = Sigmoid0(E�h ) � noutXo=1[ ~Wh]nin+o � �outo ;in which E�h is the excitation of hidden node h, given input vector ��,6. For 1 � o � nout, use[ ~Wh]nin+o := [ ~Wh]nin+o +�[ ~Wh]nin+oto update output weight wh!o, in which�[ ~Wh]nin+o = � � �outo �Ah ;and for 1 � i � nin, use [ ~Wh]i := [ ~Wh]i +�[ ~Wh]ito update input weight wh i, in which�[ ~Wh]i = � � �hiddenh � ��i :4.3 3-SAT with NC: \Neural Satisfaction"The representation of 3-SAT as a Cloud Fitting problem, which will be presentedin the next chapter, suggests that the Evolutionary Algorithm described earlier|though it is better than any heuristic method| uses a suboptimal choice of
ow of information. The Evolutionary Algorithm uses only one scalar �tnessvalue into which the information about the satisfaction of all the clauses hasto be compressed. In this section, we will present a Neural Network that uses



20 Neural Computationthe speci�c information from each clause to update its state (Structural ErrorAssignment).Neural networks are usually applied to data mining or prediction. The ap-plication of a Neural Network to the 3-SAT problem might not seem an obviouschoice. However, the challenge of the results from the EC approach was takenon, because the Adaptive Sampling model suggests that it is a waste of infor-mation to use a �tness function when there is more than just a scalar evaluationavailable from the problem instance.In every cycle, a clause was selected at random and presented at the inputs ofa neural network with no hidden layer. Because neural networks take vectors ofreal values as their input (and not logical disjunctions), we de�ne each objectiveas the vector of length `, whose elements are as follows: If variable i does notoccur in the clause, input i is 0. If variable i occurs positively (`: : : _ xi _ : : :'),then input i is 1. And if variable i occurs negatively in the clause (`: : :_xi_ : : :'),then input i is set to �1.There is one output node in the neural network used. Each input node iis connected to this output node with a connection value1 wi. This connectionvalue can be any real number between �1 and 1. The vector of all these values,(w1; w2; : : : ; wm), is the vector of connection values, which represents a valuationof variables x1; : : : ; xm: excitatory connections (positive values) represent trueand inhibitory connections (negative values) represent false.The network output can be calculated using an activation function that isspecialized for 3-SAT; it is 1 if the connection vector corresponds to a valuationthat satis�es the clause, and 0 if not. Therefore, we can transform the problemof satisfying each clause into a supervised learning problem with this strictspecial activation function: the target output associated with each clause is 1.So learning a clause with this model means satisfying it with the connectionvector.The learning rule was chosen as follows. If a clause is satis�ed by the connec-tion vector, then the network output is 1, like the target output, so the outputerror is zero. In this case, at least one of the three variables in the clause wassatis�ed, which means that at least one of the three connection values that re-ceived a non-zero input had the correct sign (+ or �). The connections thatcontribute to the satisfaction of a clause are strengthened (changed toward thecorrect +1 or �1). This can apply to either one, two or three connections. Ifnone of the three values involved has the right sign the output activation iszero, which means the clause that was represented at the inputs is not satis�ed.Note that in this case it would su�ce to invert one of the three values (changeits sign). However, there is no information available on which one this shouldbe. Therefore, the penalty for not satisfying a clause goes to all three valuesinvolved: they are all weakened (changed toward the correct +1 or �1). If atleast one of the three values passes 0 in this change, the new connection vectorwill satisfy the clause next time, so the clause has been \learned". Letting A(c)be the output activation (network output) for a given clause c, the learning rulethus becomes, for learning rate �,� If the output activation A(c) is 1 for input vector c (indicating satisfaction1In the description of this algorithm, we use the word `connection value' instead of `weight'to avoid confusion with the weights used by the Stepwise Adaptation of Weights mechanism.



4.3 3-SAT with NC: \Neural Satisfaction" 21of the clause represented by c), each value wi is updated usingwi  � (1� �) � wi + � � ci if ci; wi are 6= 0 and have the same signwi otherwise� If the output activation A(c) is 0 (indicating non-satisfaction of the clauserepresented by c), each value wi is updated usingwi  � (1� �) � wi + � � ci if ci 6= 0wi otherwiseThe algorithm, with learning rate � = 0:3, will be referred to as \NeuralSatisfaction" in the chapter on the experiments. For the experiments, we used aslight variation of it. In the General Procedure Format (Section 2.4), the imple-mentation is de�ned to be epoch-wise. This means that all samples are gathered�rst, and then all adaptations are made. In Neural Computation, epoch-wiselearning is used for theory and proofs of convergence, but implementations arehardly ever epoch-wise: they execute the applicable part of the adaptation-stepafter each sample (immediate adaptation).For the general procedure format, this possibility was not included, becauseit would make the procedure unnecessarily complex. However, we did want tocopy the use of immediate adaptation from the tradition of Neural Computationin the implementation of the \Neural Satisfaction"-method, because this is usualin Neural Computation, and has showed to increase performance in most cases.So although its de�nition is in an epoch-wise format, the tests were done withits immediate adaptation variant.In connection with this, the order in which the clauses are sampled is chosenat random. Note that this does not matter for an epoch-wise implementation,but it does here: a random sampling order can take away biases in the inter-actions between adaptations for di�erent clauses, that might be caused by theorder in which they appear in the original problem instance. A �xed samplingorder might cause the adaptations made for clause i+ 1 to overwrite the adap-tations for clause i, which could make it impossible to satisfy clause i, if thismakes it harder to satisfy clause i+1. In the implementation used for the exper-iments, it is even possible that certain clauses are investigated more than once,and others are not investigated at all during that cycle.



Chapter 5SamplingThis chapter discusses the general problem format in further detail. Bear in mindthat wherever a function is given in a problem instance, this does not imply thatthere also is an explicit expression available for this function. Functions as suchcan be seen as black boxes that return a function value when given an inputvalue.Because the interval [�1; 1] will be used often in the de�nitions to come, itwill be denoted using L:� L(1) stands for [�1; 1],- for instance, (0:87) 2 L(1) (in this case the parenthesis are oftenomitted),� L(n) stands for [�1; 1]n, for n = 1; 2; : : :,- for instance, (�0:5; 0:3; 0:87) 2 L(3),� For a 2 L(n) and 1 � i � n, ai is the i-th element of a,- for instance, (�0:5; 0:3; 0:87)2 = 0:3,� L(m! n) stands for ff : L(m)! L(n)g,� Given two vectors x 2 L(m) and y 2 L(n), their concatenation x � y isde�ned as (x1; x2; : : : ; xm; y1; y2; : : : ; yn), which is an element of L(m+n),- for instance, (�0:5; 0:3) � (0:87) = (�0:5; 0:3; 0:87),� Likewise for tuples in general, given a tuple x of length m and a tuple yof length n, their concatenation x � y = (x1; x2; : : : ; xm; y1; y2; : : : ; yn).5.1 Cloud FittingCloud Fitting is a new problem class. Its power is in the fact that it includesfour existing problem classes: optimization, curve �tting, tesselation and simplereinforcement learning. It is de�ned in terms of a new mathematical conceptcalled cloud, that is a generalization from three existing mathematical concepts:vectors, schemata and functions. 22



5.1 Cloud Fitting 23A cloud is a tuple de�ning a set. Before introducing its de�nition, we will�rst de�ne how schemata, as used in the analysis of Genetic Algorithms, canbe seen as tuples de�ning sets. After that, we will de�ne four types of clouds:vectors, functions, and two combinations of those, obtained by concatenation.5.1.1 Schemata as tuples de�ning setsA schema (plural: schemata) is a tuple (s1; s2; : : : ; sn), where si should be either0 or 1 or e, so for instance (0; 1; e; 1) is a schema. Such a schema de�nes a setof bitstrings that agree with it. Intuitively, the don't care-symbol e means thateither a 0 or a 1 can be chosen to replace it. This is how it it possible thatdi�erent bitstrings agree with the same schema. We de�ne the function Schema ,that takes a length n, and a tuple of this length containing only 0's, 1's and e's,and yields the set of agreeing bitstrings (i.e., the set of all bitstrings that agreewith the schema).DEFINITION 2 Given a schema (s1; s2; : : : ; sn) of length n, where for all i(1 � i � n), si 2 f0; 1; eg, we de�ne Schema(n; (s1; s2; : : : ; sn)) to be the set ofall vectors v such that:� vi = 0 if si = 0,� vi = 1 if si = 1,� vi 2 f0; 1g if si = e.So for instance Schema(0; 1; e; 1) is the set f(0; 1; 0; 1); (0; 1; 1; 1)g. In thisexample, there is one don't care symbol (in the third position), that can bereplaced with either a 0 or a 1. This de�nition of schemata is an example of thebasic setup for a tuple de�ning a set of vectors (here bitstrings).5.1.2 Functions as tuples de�ning sets: (r; s)-cloudsNow we will de�ne how we can see function as tuples de�ning sets. In thiscontext, we denote functions with a concatenation of two tuples. The �rst tuplerepresents the inputs of the function, and contains only don't care symbols. Thesecond tuple represents the outputs of the function, and contains mathematicalexpressions. We concatenate these two tuples to obtain one tuple, that de�nesthe function. So for instance (e; e; e; [x12 + x22 + x32]) is a function, becauseit is the concatenation of (e; e; e), which is a tuple of don't care symbols, and[x12 + x22 + x32], which is an expression.The yield of this expression is the output of the function (it has a one-dimensional output), and its free variables x1, x2, and x3, are the inputs of thefunction. Here, x1 in the expression corresponds to the position of the �rst don'tcare symbol e, x2 to the second, and x3 to the third.To de�ne what this function does, we will de�ne a set of vectors that agreewith the function. A vector that agrees with a function, is the concatenationx � y of an input vector x and an output vector y (� denotes concatenation).For this vector to agree with the function, the output vector y should be theexpression's output for input vector x. We will now formalize this, with theFun-function, that takes an input vector length r, an output vector length s,



24 Samplingand a de�ning tuple f , such that for 1 � i � r, fi = e, and for r+1 � i � r+s,fi is a mathematical expression with free variables x1; x2; : : : xr, each of whichcorresponds to one input dimension. Taking these arguments, Fun yields the setof all agreeing vectors:DEFINITION 3 Given a tuple (f1; f2; : : : ; fr; fr+1; : : : ; fr+s) of length r+ s,where for all i (1 � i � r), fi = e, and for all i (r + 1 � i � r + s), fi is amathematical expression, we de�ne Fun(r; s; (f1; f2; : : : ; fr; fr+1; : : : ; fr+s)) tobe the set of all vectors x � y such that:� x 2 L(r), and� y 2 L(s), such that yi = fr+i holds, when x1; x2; : : : ; xr are �lled in.So to give an example, Fun(2; 2; (e; e; [�x12]; [�x22])) is the set of all vectors(x1; x2; y1; y2) such that y1 = �x12 and y2 = �x22. So this set contains forinstance (0:5; 0:5;�0:25;�0:25) and (�0:6; 0:3;�0:36;�0:09). For an arbitrarytuple a of length n, Fun(r; s; a) is not always de�ned; only if r + s = n andfor every i : 1 � i � r, ai = e, and for every i : r + 1 � i � r + s, ai isa mathematical expression containing at most x1; x2; : : : ; xr as free variables,that yields a value in L(1) if x 2 L(r). From now on, we will refer to functionde�ned in this way as (r; s)-clouds : for r; s 2 N, tuple a is an (r; s)-cloud, ifFun(r; s; a) is de�ned.5.1.3 Vectors as tuples de�ning sets: (t)-cloudsBecause we will want to de�ne the more general clouds as tuples de�ning setsof vectors shortly, we will need to de�ne a trivial function Vec, that translatesa vector to the singleton set containing that vector. The only thing it does, isputting the vector in a set with nothing else in it. Ranges are con�ned to [�1; 1]:DEFINITION 4 Given a vector v of length t in L(t), we de�ne Vec(t; v) tobe the set fvg.To show that this function really does nothing important, we give an exam-ple: Vec(3; (0; 1;�0:4)) = f(0; 1;�0:4)g. For an arbitrary tuple a, Vec(t; a) isonly de�ned if a 2 L(t), otherwise it is unde�ned. From now on, we will referto vectors de�ned in this way as (t)-clouds : for t 2 N, tuple a is an (r; s)-cloud,if Vec(t; a) is de�ned.5.1.4 Concatenating vectors with functions and vice versaUsing (r; s)-clouds for functions and (t)-clouds for vectors, we can now de�netwo combinations: (r; s; t)-clouds and (t; r; s)-clouds.An (r; s; t)-cloud is obtained by concatenating an (r; s)-cloud and a (t)-cloud.It is interpreted with the FunVec-function:DEFINITION 5 Given r; s; t 2 N, an (r; s)-cloud f and a (t)-cloud v, wede�ne FunVec(r; s; t; f � v) to be the set containing all vectors w = p � q suchthat� p 2 Fun(r; s; f) and



5.1 Cloud Fitting 25� q 2 Vec(t; v).The FunVec-function is unde�ned in all cases not de�ned by this de�nition.As an example, (0:25; 0:5; 0:23) 2 FunVec(1; 1; 1; (e;px1; 0:23)).A (t; r; s)-cloud is simply obtained by concatenating an (r; s)-cloud and a(t)-cloud in the opposite order. It is interpreted with the VecFun-function:DEFINITION 6 Given t; r; s 2 N, a (t)-cloud v, and an (r; s)-cloud f , wede�ne VecFun(t; r; s; v � f) to be the set containing all vectors w = p � q suchthat� p 2 Vec(t; v) and� q 2 Fun(r; s; f).The VecFun-function is unde�ned in all cases not de�ned by this de�nition.As an example, (0:23; 0:25; 0:5) 2 VecFun(1; 1; 1; (0:23; e;px1)).5.1.5 The General De�nition of CloudsAt this point, we have de�ned four interpretation functions: Fun for (r; s)-clouds,Vec for (t)-clouds, FunVec for (r; s; t)-clouds, and VecFun for (t; r; s)-clouds.We will now de�ne clouds in general, using these de�nitions:DEFINITION 7 Given a tuple C of length n, we de�ne Cloud(C) as follows:� If 9t : Vec(t; C) is de�ned, then Cloud(C) = Vec(t; C);� otherwise, if 9r; s : Fun(r; s; C) is de�ned, then Cloud(C) = Fun(r; s; C);� otherwise, if 9r; s; t : FunVec(r; s; t; C) is de�ned, then we de�ne Cloud (C)to be FunVec(r; s; t; C);� otherwise, if 9t; r; s : VecFun(t; r; s; C) is de�ned, then we de�ne Cloud (C)to be VecFun(t; r; s; C).� If none of these four are de�ned, Cloud (C) is ;.5.1.6 Cloud ApplicationClouds can be \applied" to another cloud, just as a function can be appliedto a vector. Cloud application can be de�ned syntactically, but this involvesextra renumbering of indices, which is not very enlightening. Instead, we givethe semantical de�nition here:DEFINITION 8 Given two arbitrary clouds C and D of the same length,Cloud (C AppliedToD) =fvjv 2 Cloud (C) ^ 9w 2 Cloud (D) : (Ci = e ) vi = wi)g:



26 SamplingNote that this set might be empty. Intuitively, this de�nition says that thefree elements in C should be �lled in with corresponding elements from somevector w in D, which corresponds to applying the function to the values neededfrom this vector w.With this, we can de�ne observation, which is the operator that is used in thede�nition of Cloud Fitting. It uses the AppliedTo-operator twice. If this yields asingleton set, the unique vector in this set, is the result of the Observes-operator:DEFINITION 9 Given two arbitrary clouds C and D of the same length,CObservesD = c, such thatCloud (C AppliedTo(DAppliedToC)) = fcg:Note that CObservesD does not necessarily exist. However, it does exist inall the cases that we will meet in the sections to come. For optimization, whereobjectives represent objective functions and candidates represent vectors, it isequivalent to applying the objective function to a candidate. For supervised andunsupervised learning, where objectives are dataset elements and candidates arenetwork functions, it is equivalent to calculating network outputs.For reinforcement learning, the case is somewhat more complex, becauseboth objectives and candidates represent functions. This is the only case forwhich it is necessary that the AppliedTo-operator occurs twice in the de�nitionof the Observes-operator. We will see that the use of clouds for de�ning samplingfunctions is simpler than it might look at �rst glance.5.1.7 Sampling in terms of cloudsWe now rede�ne the sampling function � using two models: an objective model,that converts the concrete objectives stored in the Instance data structure tocorresponding objective clouds O, and a candidate model, that converts the con-crete candidates stored in the State data structure to corresponding candidateclouds C. With these, the sampling function determines the Euclidean distancebetween the vector that is obtained by letting C observe O, and the vector thatis obtained by letting O observe C:�(c; o) = jjOObserves C � C ObservesOjj;where O = ObjectiveModel(o) and C = ObjectiveModel(c). Furthermore, jj � jjdenotes the Euclidean norm. Substituting this de�nition of � in the de�nition ofthe general problem format given in Section 5.1.7, brings us the Cloud Fittingproblem class.In sections to come, it will become clear how this problem class can beused, with the correct objective model and candidate model, to represent opti-mization, tesselation, curve �tting or reinforcement learning. The next sectiondescribes how the two models can be instantiated for the running example 3-SAT.5.2 Sampling for 3-SATThe 3-SAT problem is a constraint satisfaction problem: a number of constraints(clauses in this case) are given, and a solution is any valuation of the free
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Figure 5.1: The relations between the di�erent clouds and the correspondingconcrete representations.variables that satis�es all constraints at the same time. Note that such a solutiondoes not necessarily exist. However, the methods discussed in this thesis areincomplete methods, that are not guaranteed to �nd a solution, and that cannotdistinguish whether a solution exists. If they try to solve an instance with nosolution, they will never halt. Therefore, we only used solvable instances in thesimulations that will be discussed in Chapter 7, and in the discussion of 3-SAT methods, we will only consider instances of the problem class for which asolution exists.Before constraint satisfaction problems can be represented in the AdaptiveSampling framework, they should be transformed to Cloud Fitting problems.Recall that in Section 2.3.1, we gave a speci�cation for �3�SAT:�3�SAT(EncodeValuation(Val);EncodeClause(p1 _ p2 _ p3)) spec=� 0 if Val satis�es (p1 _ p2 _ p3),1 otherwise.There are two easy ways to satisfy this speci�cation. One is to let the objec-tive model translate objectives into (t)-clouds representing clauses and to let thecandidate model translate candidates into (r; s)-clouds representing a functionthat yields 1 for a clause that is satis�ed by the candidate, and 0 for any otherclause.The other way is to let the candidate cloud be a (t)-cloud representing avaluation, and let the objective cloud be an (r; s)-cloud, representing a functionthat yields 1 for a valuation that satis�es the objective, and 0 for any othervaluation.In Neural Computation, objectives are traditionally seen as vectors (data setelements) and the candidate(s) as (network) functions. In Evolutionary Compu-tation, at least for Genetic Algorithms, this is the other way around: objectivesare represented with (�tness) functions, and candidates are represented withvectors (chromosomes).As desired, the Adaptive Sampling framework is not biased towards eitherrepresentation. We will give them both:In the habit of Neural Computation, for an objective o 2 L(m) and a can-didate c 2 L(m), ObjectiveModel(o) = (o1; o2; : : : ; om; 1) and



28 SamplingCandidateModel(c) = (e; e; : : : ; e| {z }m ; ( mYi=1min(xi � ci + 1; 1)):The 1 concatenated at the end of ObjectiveModel(o) indicates that 1 is thetarget value for the output of the \network function" CandidateModel(c).In the habit of Evolutionary Computation,CandidateModel(c) = (c1; c2; : : : ; cm; 1), andObjectiveModel(o) = (e; e; : : : ; e| {z }` ; ( mYi=1min(oi � xi + 1; 1)):The 1 concatenated at the end of CandidateModel(c) indicates that 1 is thetarget value for the output of the \�tness function" ObjectiveModel(o). Notethat this representation amounts to the same sampling function � as the NC-representation of the problem. In both cases, �(c; o) indicates whether the val-uation represented as candidate c satis�es the clause represented as objectiveo.5.3 OptimizationIn Evolutionary Computation, problems are formulated as (or translated to) op-timization problems. Optimization is simply the problem of �nding an optimumof a given objective function, but the notation can vary. Sometimes, \optimum"means \minimum" (in the metaphor of error values), and sometimes it means\maximum" (in the metaphor of evolutionary �tness). The number of inputsand their range can vary, as well as the range of the output. Although these areonly questions of representation, they need to be answered.In this scope, the inputs and the output are assumed to be real-valued scalarsin between �1 and +1. From now on, \optimal" means \minimal", and not max-imal. A problem instance should specify an objective function F . We supposethat F yields an error value between 0 and 1, so an "-solution v of such aninstance, is a vector for which the objective function yields an error value of atmost ". The problem class then becomes the following:DEFINITION 10 An "-solution to an instance of an optimization problem(n 2 N; F : L(n)! [0; 1]) is a vector v 2 L(n) such that8w 2 L(n) : F (v) � F (w) + " :Optimization can be de�ned as a subclass of cloud �tting as follows. Thereis only one objective. It encodes the mathematical expression [EXPF ] for theobjective function F . The ObjectiveModel should be chosen such that it decodesthe objective to the (r; s)-cloud with r = n and s = 1, corresponding to F :ObjectiveModel(o) = (e; e; : : : ; e| {z }n ; [EXPF ])Here, [EXPF ] is the expression for objective function F from the de�nition ofoptimization, with free variables x1 : : : xn.



5.4 Unsupervised Learning 29The candidate model should be chosen such that it yields the (t)-cloud(v1; v2; : : : ; vn; 0), which has t = n + 1. The concatenated 0 indicates that thegoal is to minimize the distance between F (v) and 0 for a candidate solution v,i.e. to minimize F (v). There is only one objective, so the de�nition of the gen-eral problem format reduces to the de�nition of optimization, with � instead ofF . As described above, � is de�ned with the \Observes"-operator on clouds. Inthis case, this is relatively easy:OObserves C = (v1; v2; : : : ; vn; F (v))and CObservesO = (v1; v2; : : : ; vn; 0);and thus with k = 1, for a candidate v 2 L(n),Error(v) = 1Xi=1 �(v; oi) = �(v; o1) =p(0 + 0 + : : :+ 0 + (F (v)� 0))2 = jF (v)j = F (v):5.4 Unsupervised LearningNeural Networks are said to learn a data set, instead of to optimize an objectivefunction. However, learning can be described as a subclass of cloud �tting byseeing the elements of the data set as objectives. Apart from reinforcementlearning, which is discussed in Section 5.6, two kinds of learning have beenstudied more extensively: supervised and unsupervised learning. The di�erencebetween the two is that for supervised learning, each objective represents avalue x and a value f(x), thus de�ning a feature of the function f that hasto be learned. For unsupervised learning, each objective represents simply onevalue x from a distribution, thus de�ning a feature of the distribution that hasto be learned.In terms of cloud �tting, it does not matter much whether the candidatesolutions represent distributions or functions | in a way, distributions can beseen as functions too, and likewise functions can be seen as simultaneous distri-butions. Both distributions and functions can be described as clouds, so in bothcases we consider the goal of the problem to minimize a cloud �tting error.In a tesselation problem, a set of prototype vectors is wanted, that identifyclusters in a data set. The number of prototypes wanted has to be speci�edin advance, to de�ne the amount of generalization desired. If the number ofvectors in the solution is at least the number of vectors in the data set, theoptimal solution has the dataset as a subset, so the tesselation is optimal in atrivial way. If the number of prototypes is smaller than the number of vectors inthe dataset, the information in the dataset will have to be compressed in orderto obtain an optimal solution; some form of general information will have to beextracted from the speci�c information from each sample.A problem instance should specify a number n of elements in a dataset D,and the number e of prototypes wanted:DEFINITION 11 An "-solution to an instance of a tesselation problem (n 2N; e 2 N; D � L(n)) is a set S = fS1; S2; : : : ; Seg of e vectors in L(n) such that
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Figure 5.2: A Voronoi diagram; the optimal solution of a tesselation problemwith 3 prototypes. Crosses are prototypes, and circles are data set elements.8T = fT1; T2; : : : ; Teg with Ti 2 L(n) for i = 1; 2; : : : ; e:Xd2DError(S; d) �Xd2DError(T; d) + " :where Error(S; d) is the distance between d and the closest prototype in S:Error(S; d) = mini=1;2;:::;e jjSi � djjThis is also known as Voronoi tesselation, and the result is known as a Voronoidiagram [HKP91] (see �gure 5.2 for an example).In the tesselation problem, the minimum-function makes that the error of aset of prototypes on each sample is in
uenced only by the one prototype that isclosest to that sample. Now we will de�ne � for this problem class.For de�ning tesselation as a subclass of Cloud Fitting, we take the data setD as our Instance. So each data set element corresponds to an objective. Interms of the de�nition of tesselation, k is the number of elements in D and thelength of each objective is that of each data set element: ` = n. A candidatesolution is uniquely de�ned by a set S = fS1; S2; : : : Seg. We represent it withc = S1 � S2 � : : : � Se. The total length of this concatenation is m = e � n.The sampling function should yield an error value for a given candidate on onespeci�c objective (data set element). The sum of these errors over the dataset, for a candidate c = S1 � S2 � : : : � Se, should be equal to the error of thecorresponding set of prototypes fS1; S2; : : : ; Seg, as de�ned in Section 11:nXi=1 �(c; oi)spec= minj=1;2;:::;e jjSj � oijj:Because each candidate vector is a concatenation of multiple vectors, thecandidate model is not as simple as it was with optimization. We cannot just



5.5 Supervised Learning 31use the candidate vector as a (t)-cloud. Therefore, we �rst transcribe the setof prototypes that de�ne the tesselation into a prototyping function, and thenwe use an (r; s)-cloud for the candidate instead. Given a set of prototypes, aprototyping function yields the closest prototype from this set. For instance,if we have a set S of three prototypes in one dimension f0:5;�0:8; 0:1g, theprototyping function PS would bePS(x) = 8<: 0:5 if 0:3 < x � 1,0:1 if �0:35 < x � 0:3,�0:8 if �1 � x � �0:35. :Intuitively, we need the objective cloud to supply both the inputs and thetarget outputs for this function. Because we want to �nd a set of prototypes Ssuch that the distance between prototypes yielded by the prototyping function,PS(x), have minimal distance to the original x, we can simply take input x itselfas the target output for PS(x). So for each objective o:ObjectiveModel(o) = (o1; o2; : : : ; on; o1; o2; : : : ; on):Then CandidateModel(S1 � S2 � : : : � Se) = (e; e; : : : ; e| {z }n ; [EXPP ]);where given the prototypes S1; S2; : : : ; Se 2 L(n), for an input vector x of lengthn, [EXPP ] = Si;such that 8j1 � j � e : jjSj � xjj � jjSi � xjj:Then as desired, with o = (x1; x2; : : : ; xn), and c = (S1 � S2 � : : : � Se) suchthat fS1; S2; : : : ; Seg = S, and Error(S; d) as de�ned in Section 11,�(c; o) =jj(x1; x2; : : : ; xn; x1; x2; : : : ; xn)�(x1; x2; : : : ; xn; [PS(x)]1; [PS(x)]2; : : : ; [PS(x)]n)jj =jj(x1; x2; : : : ; xn)� ([PS(x)]1; [PS(x)]2; : : : ; [PS(x)]n)jj =Error(S; d):5.5 Supervised LearningSupervised learning is the NC-name for Curve Fitting. The goal in a CurveFitting problem is �nding a function within a certain class, that is as closeas possible to a function of which (input, output)-samples are given. Despitethe name of the class, the object to be approximated is a function, not justany curve. Furthermore, the solution function can not just be any function,it should have certain predetermined properties. If just any function would besatisfactory, the optimal solution would be the problem function itself, whichmight not be desired. The solution function should be as simple as possible. This



32 Samplingnotion is often referred to as Occam's razor [Rus79]. For instance, a restrictioncould be that the third and higher derivatives of the solution function must bezero. A curve �tting problem is de�ned with a number of input dimensions nin,a number of output dimensions nout, the length of concrete candidate vectorsm, a set of inputs V , a function F that is to be �tted, at least for the inputs inV , and a model Model, that decodes a concrete candidate vector into a function:DEFINITION 12 An "-solution to an instance of a Curve Fitting problem(nin 2 N; nout 2 N;m 2 N; V � L(nin); F : L(nin ! nout);Model : L(m)! L(nin ! nout))is a vector c in L(m), such that Model(c) is a function G 2 L(nin ! nout), suchthat for all H in L(nin ! nout):Xv2V (F (v) �G(v))2 �Xv2V �(F (v)�H(v))2�+ ":In this case, we take k to be the cardinality of V , and the concrete objectivesto be k vectors, each corresponding to one element of V . Suppose x 2 V and xcorresponds to objective oi. Then, oi = x � F (x), where F is the function to be�tted. This means that ` = nin + nout. The objective model transcribed such avector into the corresponding (t)-cloud. So for x 2 V a test set element, F 2L(nin ! nout) the target function, and oi the speci�c objective correspondingto test set element x,ObjectiveModel(oi) = (x1; x2; : : : ; xnin ; [F (x)]1; [F (x)]2; : : : ; [F (x)]nout ):For instance, if F (x) = x12 + x22 and x = (0:3; 0:4) 2 V , then one ofthe concrete objectives (the one corresponding to x), is oi = (0:3; 0:4; 0:25)and the objective cloud for oi is ObjectiveModel(oi) = Vec(3; (0:3; 0:4; 0:25)) =f(0:3; 0:4; 0:25)g.The candidate model converts concrete candidate vectors of length m intofunctions. For instance, if the model is a Neural Network, then the concretecandidate is a set of weight vectors (that is what is stored in the computer'smemory), and the model converts these vectors into the corresponding networkfunction. As the reader might have expected, we derive the candidate modelfrom the model given in the problem de�nition:CandidateModel(c) = (e; e; : : : ; e| {z }nin ; [EXP1]; [EXP2]; : : : ; [EXPnout ]);such that [Model(c)](x) = ([EXP1]; [EXP2]; : : : ; [EXPnout ]) holds.Then, as was speci�ed, jjC ObservesO � OObserves Cjj yields the Euclid-ean distance between the target output F (x) and the approximating output[Model(c)](x), which is produced by the �tting function [Model(c)].



5.6 Simple Reinforcement Learning 335.6 Simple Reinforcement LearningSimple Reinforcement Learning means Reinforcement Learning (RL) in a sta-tionary environment, with a non-stochastic reinforcement signal, that repre-sents a direct-reward evaluation of the last action. The environment is assumedto have no hidden state and to be deterministic. This means that any (state,action)-combination yields the same reinforcement signal under any circum-stance.RL is like optimization in many ways, but now the input of the functionthat is to be optimized, is not a vector, but is itself a function (possibly even afunction with multiple outputs), called a \policy". The ranges are constrained tobe [�1; 1] again. Advanced versions of this class have also been studied [Sut88],in which stochastic values play a role [BBS91], or the iterative closure of thesolution [Wat89, RN95]. These are not considered here. A candidate (policy) hasnin inputs and nout outputs. The output of the objective function is a scalar, thereinforcement signal. If the reinforcement signal has a positive value, this canbe interpreted as a reward; a negative reinforcement signal can be interpretedas a penalty. The average reinforcement should therefore be maximized.Whereas the error of candidate solutions for the optimization problem andthe tesselation problem could be measured exactly, this is not true for RL. Theerror depends on the reinforcement received for every possible (input, output)-tuple of the policy. The policy is a total function, so there are in�nitely manypossible inputs. This is why the introduction of a test set V is needed. It is aset of random points in the input space of the policy, and the error is measuredonly in those points.DEFINITION 13 An "-solution to an instance of a reinforcement learningproblem (nin 2 N; nout 2 N; V � L(nin);R : L(nin)! L(nout ! 1) )is a policy P 2 L(nin ! nout) such that8Q 2 L(nin ! nout) : Xv2V [R(v)](P (v)) �Xv2V ([R(v)](Q(v))) � ":The term \reinforcement learning" is usually meant to de�ne a bigger class ofproblems than reinforcement learning with a speci�c model. Finding an appro-priate model is considered part of the problem. The CandidateModel-functionshould however be de�ned before the general procedure of Adaptive Samplingcan be started. So before that, the researcher has an extra important parameterto tune: choosing the model.In real world curve �tting, the model should in most cases be a speci�c one(often polynomes of a certain order). In real world reinforcement learning prob-lems, this is usually not the case. Although the distinction is quite arbitrary,the di�erence is kept visible here, to re
ect the existence of such issues. So thechoice of model is up to the researcher, instead of being prede�ned in each prob-lem instance. Of course, choosing a model is not a simple question, and with thecurrent state of science, it is still mainly a matter of intuition. Examples of mod-els are normal distributions, neural networks, logical expressions, etcetera. Onlyafter a speci�c model has been chosen, the reinforcement learning problem can



34 Samplingbe de�ned as a Cloud Fitting problem (by instantiating the CandidateModel)and can it be solved by a method from the Adaptive Sampling family.Each of the k concrete objectives oi = v � BinEnc([R(v)]) (for 1 � i �k) speci�es an input vector v 2 L(nin), which is an element from V , and acorresponding reinforcement function [R(v)] 2 L(nout ! 1), which is encodedin binary with BinEnc (any function must be encoded into a vector before it canbe stored in computer memory). The vector o obtained by the concatenation isconverted to a (t; r; s)-cloud by the objective model:ObjectiveModel(o) = (v1; v2; : : : ; vnin ; e; e; : : : ; e| {z }nout ; [EXPR])such that for any x = (x1; x2; : : : ; xr), [EXPR] = [R(v)](x) holds.The candidate model should be chosen by the researcher, as mentionedabove. However, it should decode a concrete candidate vector into an (r; s; t)-cloud with r = nin, s = nout and t = 1. This last, �xed element should be 1, toindicate that the error is the distance between the reinforcement value and 1.We can show what happens then, with the concatenation operator � on tuples:Vec(nin + nout + 1; (CObservesO)) = Cloud (CAppliedTo(OAppliedToC)) =Cloud (C AppliedTo(O)) =f(v1; v2; : : : ; vnin) � [CandidateModel(c)](v) � (1)gis compared withVec(nin + nout + 1; (OObserves C)) = Cloud (OAppliedTo(C AppliedToO)) =Cloud(OAppliedTo(f(v1; v2; : : : ; vnin) � [CandidateModel(c)](v) � (1)g)) =f(v1; v2; : : : ; vnin) � [CandidateModel(c)](v) � [R(v)]([CandidateModel(c)](v))g;to compute �(c; o) = j1� [R(v)]([CandidateModel(c)](v))j:This meets the speci�cation if 8v; x : 0 � [R(v)](x) � 1.



Chapter 6AdaptationThis chapter discusses the adaptation function � from the general proceduregiven in Chapter 2. It is a function that takes the old state, containing � can-didates, a list of samples, and a random number, and yields a new updatedstate.6.1 Ingredients of �: Delete, Store, Explore.The � function takes three arguments. This format was chosen carefully, be-cause each argument corresponds to one of the three main issues in adaptationdistinguished here:1. State | Determining which parts of it to maintain (and thus which todelete),2. Instance |Determining which new information to store (and thus �lteringthe useful information from the massive stream of samples),3. Random | Determining what randomly chosen new directions to explore(and thus preventing early convergence and, with luck, provoking unex-pected improvements).6.1.1 Determining what to DeleteThe candidates that have high errors, should in general be (partially) deletedto make room for new information. In Evolutionary Computation, this is calledselection.In Neural Computation, there is only one candidate, so totally deleting itwould simply equal restarting the algorithm. Therefore, the candidate is deletedonly partially. This does not necessarily mean that some of the m elements ofthe vector representing the candidate have to be changed more than others. Thevector is only a representation of the candidate, and the part of a candidate thatis changed does not have to be recognizable in it. Changing a candidate partiallymeans that the new candidate resembles the old one, in one way or another.Back Propagation [BH69, HKP91] is a good example of a scheme for decidingwhere (in which weights) to store the new information from a sample.35



36 AdaptationThe way in which a candidate solution is divided into di�erent features,that are kept together, must be based on assumptions that one makes aboutthe structure of the problem. If the error values are expected to depend on thepresence of a speci�c type of features, these features should be kept together. Forinstance, Genetic Algorithms are sometimes said to assume the Building BlockHypothesis [Gol89, Mic96]. This hypothesis can be used to defend the use ofcrossover operators that keep substrings together. As another example, neuralnetworks often use some form of gradient descent for adjusting the weights,which assumes a smooth change of errors with a change of weight values, forwhich a gradient exists.Such assumptions are very important in the choice of an adaptation function,because if an adaptation mechanism is used that is based on a false assump-tion, the mechanism will simply not be appropriate. The analysis of a problemin terms of assumptions is often hard, but it is the only basis for choosing anadaptation mechanism, so it deserves careful examination. For 3-SAT, we as-sume that errors can be decreased by satisfying one individual clauses, and thaterrors will not dramatically increase if the valuation of one individual variableis changed.6.1.2 Determining what to StoreIf the sampling function � is easy to understand, the reason why a speci�cobjective leads to a high error for a given candidate can be �gured out. In thatcase, the adaptation function can replace the deleted information by new valuesthat will probably reduce the error. For instance, in supervised learning, eachobjective represents an input and a corresponding desired output.The extent to which the samples inform the adaptation function on thestate, can di�er. We distinguish the following three levels of informedness,each indicated with the question the information answers:1. \How bad is it?": Only an error value is given.2. \Which part is bad?": The error value speci�cally concerns a certain fea-ture of a candidate.3. \Why is it bad?": An adequate correction is also derivable from the sample.Evolutionary algorithms operate on the �rst level of informedness: only anerror value (a �tness value) is given, indicating how bad (or good) a candidateis. Sometimes, this is all the information available. In other cases, for instancewhen using an EA for classi�cation or in fact 3-SAT, this is a deliberate choice.The second level of informedness is used in reinforcement learning: a rein-forcement signal does tell how good or bad a certain feature of the policy is(namely, its output for a speci�c input), but it does not tell why it is bad, sothe samples do not tell how to repair this error.If an objective can be interpreted as a simple target value, and the candidatemodel is understandable, we have the third level of informedness. We know howbad it is, we know what part is bad, and we know why it is bad. This is thelevel on which error back propagation for neural networks operates.These three levels of informedness should not be confused with the distinc-tion between unsupervised, reinforcement and supervised learning. These three



6.2 How to Adapt, Given the Samples 37types of learning di�er in the problem format; the problem might contain aset of vectors, a reinforcement function or a target function. Although reinforce-ment learning problems have second level informedness, and supervised learningproblems have third level informedness, the parallel does not hold for unsuper-vised learning. In the tesselation problem class we discussed in the samplingchapter the �rst level of informedness (\How bad is it?") is provided by the er-ror value, that is de�ned as the Euclidean distance between an objective vectorand the closest prototype. The second level is also available, because we knowwhich prototype was closest, so that speci�c prototype is the bad part of thecandidate, which is a set of prototypes. Moreover, third level informedness ispresent, because we know that moving the appropriate prototype towards theobjective at hand will decrease the distance between the two, and thus the error.This is what makes unsupervised learning very close to supervised learningwithin the Adaptive Sampling framework. The distinction between supervised(associative) and unsupervised (non-associative) that is made in Neural Com-putation refers to problem formats. Since we use clouds to represent any problemin the sampling function, the di�erence between learning a set of vectors andlearning a function is almost trivial here. Both are represented as clouds, andthe goal is simply �nding another cloud that �ts it.6.1.3 Random ExplorationAt the �rst and second level of informedness, no information can be extractedfrom the sample, to determine what to store. The sample only tells which candi-dates to delete (�rst level), or at most which parts of these candidates to delete(second level). Suppose the samples show that the evaluations of one or morecandidates are suboptimal for one or more objectives, but it is not known whatshould be done to improve these evaluations. In that case, the only possibilityis to delete the suggested parts of the current State (i.e., the suggested candi-dates or the suggested features of those candidates) and replace it with randomvalues.Apart from lack of information, there is another reason for using randomexploration, even on the third level of informedness. It might be that there isinformation available on how to repair an error on a certain objective. However,using this information, will lead to the suggested optimum, which might not bethe global optimum. To prevent early convergence to a local optimum, it can beuseful to make a change that cannot be justi�ed from the available information,but might unexpectedly lead to new possibilities.6.2 How to Adapt, Given the SamplesOf course, an adaptation function should always be designed so that it tries tominimize the error values calculated by the sampling function. The three basicingredients of adaptation described above (delete, store, explore), can be a ruleof thumb in this design. Also, the three levels of informedness can be used toinvestigate what is possible and what is not.We already discussed the name of the framework a little in previous chapters.Here, we will see more accurately what the core of Adaptive Sampling is. As



38 Adaptationmentioned earlier, sampling stands for solving a problem by isolating speci�cfeatures and then generalizing over them. Whereas conventional computationoften uses formal derivations to obtain global features of a problem, AdaptiveSampling uses a large amount of speci�c features and puts them together to letnoise cancel out and obtain global information (which might for instance be acompromise or a maximum of all those speci�c features).Gathering all those speci�c features is Sampling. Extracting the more globalinformation is Adaptation. This global information can either concern a candi-date (for instance a candidate compromising between di�erent objectives), oran objective (for instance an optimum of a �tness function). This makes us alsodistinguish between two kinds of sampling, discussed in the following two sec-tions. The �rst one is the extraction of isolated features from a candidate. Thesecond one is the extraction of isolated features from objectives.6.2.1 Sampling a candidate with objectivesIf there are many objectives, it is often a trivial matter to come up with a can-didate that has a lower error on one speci�c objective. By adjusting weightsin that direction, the error on the speci�c objective will decrease. For the nextobjective, the weights will probably be changed in another direction. The com-bined e�ect of all these little changes will then hopefully decrease the overallerror. This is an example of generalization over objectives: for every objective,a little change is made, and the combined e�ect will be a compromise for all theobjectives. Isolating di�erent features of a candidate iteratively is what we call\sampling the candidate with objectives". It is what makes Neural Computationa subclass of Adaptive Sampling.6.2.2 Sampling an objective with candidatesIn Evolutionary Computation, things are the other way around. It is easy tocalculate the �tness function for one speci�c input. However, it is hard to un-derstand it in such a way that a global optimum can be derived. Therefore,a huge number of candidates is \proposed", and evaluated. The evaluation ofone candidate isolates one speci�c feature of the objective function. This is anexample of generalization over candidates: every evaluation of a candidate hasits in
uence on the population, and the combined e�ect will be a generaliza-tion over all these isolated features of the objective function. Isolating di�erentfeatures of an objective iteratively, is what we call \sampling the objective withcandidates". It is what makes Evolutionary Computation a subclass of AdaptiveSampling.6.2.3 Combining the twoIf a method uses the �rst kind of sampling, this will result in at least secondlevel informedness, because speci�c features of a candidate are examined. Thismeans that Structural Error Assignment is possible, and if there is third levelinformedness too, even approximation of the optimum with some variation onNewton's method. The second kind of sampling does not automatically lead tosecond level informedness. The asymmetry here is caused by a simple circum-stance:



6.2 How to Adapt, Given the Samples 39Although both objectives and candidates can be sampled, onlycandidates can be adapted.Therefore, when sampling an objective, adaptation should be towards moreinteresting features of this objective, and when sampling a candidate, adaptationshould be towards a candidate with more interesting features. In both cases,\more interesting" is de�ned as \such that errors are minimized".We can de�ne a classi�cation of di�erent Adaptive Sampling methods, basedon how they sample. We can use Sc to denote the average number of di�erentcandidates for which an objective is sampled in one cycle. Likewise, So denotesthe number of di�erent objectives for which a candidate is sampled in one cycle.Samples that occur more than once (for instance, if two candidates are exactlythe same), count only once. Furthermore, if two or more samples are takentogether without each sample having its individual e�ect (for instance if one�tness value is generated from several outputs of sampling function �), we countthis �tness value as one sample. Roulette Wheel Selection can cause Sc to besmaller than �, because individuals can occur more than once in the population.Evolutionary Algorithms always use So = 1, even if k > 1. Therefore, Sc � �and So � k, but not necessarily Sc = � or So = k. The de�nition of Sc and Somight become more intuitional, as we see how they are used:� Adaptive Sampling methods in general can be denoted with AS[Sc; So].� Evolutionary Algorithms are Adaptive Sampling methods that do not sam-ple the candidates with objectives; they do use multiple candidates to sam-ple the objective(s) in each step, so they can be denoted with AS[Sc; 1].� Neural Network methods are Adaptive Sampling methods that do notsample the objectives with candidates; they do use multiple objectivesto sample the candidate(s) in each step, so they can be denoted withAS[1; So].� Hybridizations of Neural Network methods and Evolutionary Algorithmsare Adaptive Sampling methods in AS[Sc; So], that are neither in AS[Sc; 1],nor in AS[1; So].� AS[Sc; 1] 6= AS[1; So], AS[Sc; 1] � AS[Sc; So] and AS[1; So] � AS[Sc; So].In the Adaptive Sampling framework, there is room for both kinds of sam-pling. It should be noted that, in a way, the second kind of sampling is done byany Adaptive Sampling method. After each adaptation of the state, the candi-date(s) have changed, so a di�erent part of the search space is examined, that isin
uenced by di�erent features of the problem instance. However, generalizationover these features requires bookkeeping of the method's history. 1 There havebeen experiments with combining the two kinds into one method. For instance,neural network architectures can be evolved with an evolutionary algorithm, bytesting each architecture on a simple problem in each step (see [SCE90] for anexample). This is a combination of the two, where the training process of theneural network is included entirely in each cycle of the evolutionary adaptation.This is the way in which evolution and learning relate in nature, and maybe this1TABU search [Glo89, RN95] uses such bookkeeping, and can be said to sample objectiveswith only one (changing) candidate.



40 Adaptationsetup can best be studied within Moshe Sipper's Philogeny-Ontogeny-Epigenesismodel [SSM+97]. This model de�nes a three dimensional space for classifyingbio-inspired systems as points in this space. One axis represents the amount ofphilogeny (evolution). The ontogeny axis indicates whether physical hardware isimproved within a system. The epigenesis axis indicates if this hardware learnsafter the physical development. This model includes physical adaptation, andclassi�es the rest in terms of \before ontogeny" (development of a species) and\after ontogeny" (development of an individual). In this context however, weare not interested in the role an adaptation process plays, but in how it works.It is just as well possible to invert the relation between neural and evolutionaryprocesses (i.e., including an entire evolutionary process in one learning step).The fact that the Adaptive Sampling framework puts EC and NC methodsin one common notation, also makes it suitable for supporting the study ofdi�erent kinds of hybridization and cross-fertilization. For instance, Lamarckianevolution is created easily by letting the adaptation function alternate betweenan �learn and an �evolve. We will refer to methods that are obtained from NCand EC by hybridization or by cross-fertilization asmixed methods. They are thethird sub�eld of biocomputation that �ts in the Adaptive Sampling framework.The following section shows how the Adaptive Sampling model can be usefulfor exploring possible EC-, NC- and mixed methods for 3-SAT.6.3 Adaptation for 3-SATIn previous chapters, two algorithms for 3-SAT were already described: onebased on the tradition of Evolutionary Computation, and one in the spirit ofNeural Computation.The Adaptive Sampling framework can be used for classifying and comparingEvolutionary and Neural Methods. This was for instance done to design theneural 3-SAT method. Although the 3-SAT problem is not a learning problemin the canonical sense used in Neural Computation, the general problem formatmade it easy to derive a network function which makes it a learning problem.In this section, we will show how Adaptive Sampling can be put to work tosupport the design of EC-methods, NC-methods and mixed methods, combiningwell-chosen features of both EC and NC. First, we will determine the level ofinformedness. They are described in Table 6.3.Although we know that any change that does only one or two of the threesign-
ips in the direction of the target will be enough to correct a wrong val-uation, we can still call this direction the target direction. For real-valued rep-resentation, it makes sense to move all three variables toward this target overa certain distance � 1. For Boolean representation, the only possible changeto a variable is an entire 
ip to the opposite value. Admittedly, this makes thepresence of an explicit target somewhat questionable. Unless we want to invertall three variables (which might be unnecessarily destructive), we will still haveto choose which variable to change. This is why a Boolean representation ofcandidates makes the use of this third level informedness partially impossible,although it is present. However, for problem instances with mo 3 variables,this e�ect might not be as severe as it looks, because the information from aspeci�c sample still reduces the choice of which variable to change from m to3, of course. Using this information is still classi�ed as structural error assign-



6.3 Adaptation for 3-SAT 41Level of informedness1. The �rst level of informedness (\How bad is it?") can beobtained from the samples generated with �3�SAT, for in-stance by counting the number of unsatis�ed clauses for acertain candidate.2. The second level (\Which part is bad?") is also available,because the samples tell us exactly which clauses were un-satis�ed for a certain candidate. Since each clause involvesexactly 3 of the m variables that make up a candidate, weknow that those 3 can be blaimed for not satisfying thatspeci�c clause.3. The third level is also present, which is best seen forthe real-valued representation of the Neural method. Notethat there are eight di�erent ways to valuate three Booleanvariables. Only one is wrong (i.e., makes the clause yieldfalse), the other seven have at least one of the three signsright. Of these seven, there is one which has all three signsright. We take this valuation as the target value.Table 6.1: Levels of Informedness for 3-SAT.ment (delete+store) in this context, to distinguish it from random adaptation(delete+explore) used by Evolutionary Algorithms.Since we have third level informedness, we can choose to use this informationfor de�ning the \Store"-ingredient, or to ingore it. If we ignore it, we must focuson the \Explore"-ingredient instead, because we must determine something toput in the empty spaces left by the \Delete"-ingredient.2 However, this doesnot hold in the other direction: if we use the \Explore"-ingredient, this doesnot imply that we cannot use the \Store"-ingredient. So for third-level informedproblems, there are three basic designs for the Delete-Store-Explore mechanism.If we use the \Store"-ingredient to change candidates in way that depends onthe samples, then we have Structural Error Assignment | we only delete whatis overwritten by what we store. If we use only the 'Explore'-ingredient, we treatthe problem as if it had �rst-level informedness. We only determine how badcandidates are, and replace the bad ones by new ones, obtained from the goodcandidates with random exploration | in other words, selection. The optionsare shown in table 6.3.Each option leads to one main subclass of Adaptive Sampling: the Evo-lutionary Computation approach, the Neural Computation approach, and themixed approach (hybridizations), respectively. Besides these three options forthe general setup, there is more to choose. Neural and Evolutionary Compu-tation might bene�t from collaboration not only by developing hybridizations2Leaving out the \Delete"-ingredient is no option, because this would lead to an algorithmthat does nothing at all.



42 AdaptationDelete-Store-Explore1. Delete + Store: Structural Error Assignment,2. Delete + Explore: Selection,3. Delete + Store + Explore: Mixtures.Table 6.2: Options for the Ingredients of Adaptation.Additional Bookkeeping1. No additional bookkeeping,2. Additional importance-measure per objective: SAW-ing,3. Additional importance-measure per variable: real-valuedrepresentation.Table 6.3: An extra choice out of three, created by cross-fertilization betweenNC an EC.of the ideas from both, but also by importing ideas from each other (cross-fertilization). In the case of 3-SAT, solutions have been found for additionalinformation storage. An additional mechanism that works for EA's might wellwork for the other approaches too.Recall that the adaptation function of the SAW-ing EA from Chapter 3 usesadditional bookkeeping per objective. It keeps one natural number per objectivein a static data structure throughout the run, to keep track of how important thecontent of that objective is. This information can support the choice of whichcandidate is better than another, if they satisfy an equal number of clauses3.Likewise, the neural approach from Chapter 4 uses additional bookkeeping pervariable. It keeps one real number per variable, instead of just a Boolean variable.The sign of this real number corresponds to the Boolean value of that variable inthe valuation, and its absolute value keeps track of how important the contentof that variable is. This information can support the choice of which variablesshould be changed, out of three variables involved in a clause.The combination of those two extra mechanisms seems super
uous, and hasnot been tested (although this might deserve some further research). Leavingthis option out, we have three possibilities for the additional bookkeeping, asshown in table 6.3.Combining the three options for Delete-Store-Explore with the three op-tions for additional bookkeeping, yields a total of nine suggested designs for the3It is even possible that a candidate satisfying less clauses is selected over a candidate thatsatis�es more.



6.3 Adaptation for 3-SAT 43Del.+Exp. Del.+Sto. Del.+Sto.+Exp.plain (G-SAT) Simple SEA Plain Ensemble+ reals (ES) Neural Satisfaction Neural Ensemble+ SAW SAW-ing EA Lonesome SEA-SAW Lamarkian SEA-SAWTable 6.4: Nine method designs for 3-SAT, and names of methods of thosedesigns.adaptation function, as shown in table 6.4For each design, a name of an algorithm with that design has been �lled in.The implementations of the nine designs used here, are of course not unique.Other examples are also possible, and their performance might di�er with othermethods classi�ed as being of the same design. However, the way in which thesemethods di�er from each other can be described as di�erences in their design.We have seen two of them already: The SAW-ing EA discussed in Chapter 3is at the bottom left, and the Neural approach from Chapter 4 is in the center.Methods between braces have not been investigated in the experiments, be-cause they already existed before the SAW-ing EA, and have already provenless powerful (the SAW-ing EA is the best currently known incomplete 3-SATalgorithm [BEV96]).G-SAT (see [GW95, BEV96]) is a local search technique that takes onevaluation, and generates all its neighbors. A neighbor of valuation Val1 is avaluation Val2 such that there exists a unique i with 1 � i � m such thatVal1(xi) 6= Val2(xi). The neighbor that satis�es the highest number of clausesis chosen to generate a new set of neighbors from.ES is an evolution strategy that uses a real-valued representation, and eval-uates a candidate with a function of these real values. It adapts not only thevaluations, but also the parameters of the adaptation mechanism. It was de-scribed in [BEV96], but showed not to perform as good as the SAW-ing EA.The other �ve methods are discussed in the rest of this chapter. Like \NeuralSatisfaction", they all use structural error assignment, as indicated with \SEA"in some of the names. Each of them was implemented with immediate instead ofepoch-wise adaptation, and a randomized sampling-order, for the same reasonsas mentioned in Section 4.3.6.3.1 \Simple SEA"The \Simple SEA"-method uses no selection, no real-valued representation andno SAW-ing mechanism. It maintains one candidate valuation c, and every sam-ple (c; oi;�(c; oi)) indicates the error on one speci�c clause oi. If this error is�(c; oi) = 1, indicating non-satisfaction of that clause, one of the three variablesinvolved in the clause (chosen at random) is inverted.6.3.2 \Plain Ensemble"The \Plain Ensemble"-method does the same as the Simple SEA method, butit deals with several valuations in parallel, with an additional selection scheme.The number of candidates � is 6, 8, 10, 11 and 12, for problem sizes 20, 40,



44 Adaptation60, 80 and 100, respectively. In each cycle, there is a chance for each valuationto be \killed". This chance depends on the number of clauses it satis�es, sothis implements a selection mechanism. The selection mechanism is based onincidental extinction: each time a candidate solution does not satisfy a clause,it has a chance pc = 0:0025 to be replaced by a new vector, that is created byglobal uniform crossover: for each variable a parent is selected at random, andthe new value is copied from that parent.6.3.3 \Neural Ensemble"Recall that the Neural Satisfaction method uses a real-valued representation,where 1 and �1 are used for true and false, and values in between are usedto indicate uncertainty about the valuation of that variable. The values arestrengthened (i.e., moved away from zero) for a satis�ed clause, and the variablesinvolved are weakened or inverted if a clause is not satis�ed.The \Neural Ensemble" is based on the Neural Satisfaction method, butwith the same selection scheme added that distinguishes the Plain Ensemblefrom the Simple SEA method. The learning rule for penalty is also adapted alittle. It is replaced by a restricted version of the MutOne-operator from theEC approach (Section 3.4): if a clause is not satis�ed, exactly one of the threeweights involved is inverted (i.e., multiplied by �1). Which one of the threeweights is inverted is determined at random, like in the Plain SEA and thePlain Ensemble. Note that only weights that are involved in clauses that areunsatis�ed, can be inverted by this scheme, whereas the EC approach did notmake this distinction.6.3.4 \Lonesome SEA-SAW"The Lonesome SEA-SAW method is derived from the Plain SEA method, byadding a Stepwise Adaptation of Weights-mechanism. Because each clause hasits own e�ect, and no overall �tness is calculated (there is only one candidateand no selection, hence the adverb \lonesome"), the SAW-ing mechanism cannotbe directly copied from the SAW-ing EA. Instead, the following mechanism isused:� Each 250 cycles, a SAW-ing tuple Hard is generated, containing Booleanvariables. Each of these corresponds to a clause, and is set to false if thatparticular clause is satis�ed by the candidate valuation, and to true if itis not.� For each sample, if the error is �(c; oi) = 1, indicating non-satisfaction ofthat clause, ni of the three variables involved in the clause are inverted.The number of variables to invert is derived from the SAW-ing tuple: ifclause i is listed as hard (Hard[i] = true), then ni = 3, if not (Hard[i] =false), then ni = 1.6.3.5 \Lamarkian SEA-SAW"\Lamarkian SEA-SAW" combines Structural Error Assignment, selection andSAW-ing. Its implementation is derived from the the Plain SEA (for the Struc-tural Error Assignment) and the SAW-ing EA (for selection and SAW-ing). It



6.3 Adaptation for 3-SAT 45starts with a random valuation. From this, � neighbors are derived with theSAW-ing EA's MutOne-operator. Again, � is 6, 8, 10, 11 and 12, for problemsizes 20, 40, 60, 80 and 100, respectively.From this point, we alternate the Plain SEA and the SAW-ing EA:1. Execute one cycle of the Plain SEA, for one of the candidates. The othercandidates are not changed in this step.2. Execute one cycle of the SAW-ing EA (selection of the best candidateand regeneration of a new set of neighbors). Either the candidate thatwas changed by the Plain SEA, or one of the others, might be selected togenerate of a new set of neighboring valuations from.3. If none of the candidates solve the expression, return to Step 1.



Chapter 7ExperimentsIn the experiments, implementations of the seven methods from Section 6.3 wereeach run 1500 times in total. The test problem was 3-SAT, as described in Sec-tion 1.4. Five di�erent problem sizes were used: 20, 40, 60, 80, and 100 variables,with a number of clauses that was 4:3 times the number of variables, i.e., 86,172, 258, 344 and 430 respectively. For each problem size, 100 satis�able probleminstances were generated with the mkcnf formula generator from [vG93], withrandomseeds generated by mkcnf.sh (with start = 1). Each method was testedthree times on each of the 500 problem instances. The results are presented inthis chapter.7.1 Success RatesFigure 7.1 shows the success rates. They were calculated by counting the numberof instances for which a method reached a solution within 300,000 candidateevaluations. Four of the methods drop to a success rate of around 30% for largerproblems. The three that have a better success rate are Neural Satisfaction, theLamarkian SEA-SAW and the SAW-ing EA. On average, Neural Satisfaction'sSuccess Rate is 0:008 above that of the Lamarckian SEA-SAW, and 0:04 abovethat of the SAW-ing EA.7.2 Average Number of Evaluations to SolutionFigure 7.2 shows the average number of evaluations that a method does inone run, if it is successful in that run. The evaluations done in runs that didnot reach a solution, were not counted. One evaluation always concerns onecandidate, and all the objectives. So the number of evaluations can be calculatedby counting the number of cycles in the general procedure, and multiplying thisby �, the number of candidates used. The same three methods that had a bettersuccess rate (the SAW-ing EA, Neural Satisfaction and the Lamarkian SEA-SAW), have an almost 
at curve between problem sizes 60 and 100. The othershave a very steep increase on that trajectory. On average, Neural Satisfactionneeds about half the number of evaluations the Lamarkian SEA-SAW needs,and just over one third of the evaluations needed by the SAW-ing EA.46
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Figure 7.1: Success rates for the seven methods tested on 3-SAT Problems.
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Chapter 8Conclusions8.1 Did we Succeed?In the chapters so far, we have seen, among others, a general problem format,a general procedure format, a discussion of Evolutionary and Neural Computa-tion, the cloud �tting problem class, with some of its relevant subclasses, and adiscussion of di�erent adaptation mechanisms and how to design them. In thelast few pages, the usefulness of the Adaptive Sampling was tested, by applyingdi�erent Adaptive Sampling methods to 3-SAT. In this last chapter, we willinvestigate whether the goals of this project were reached.The Adaptive Sampling framework meets all three requirements we formu-lated. We will repeat them here:INCLUSION REQUIREMENTThe framework should de�ne a class of methods, including atleast Evolutionary Algorithms and Neural Networks.In Chapters 3 and 4, we saw how EC and NC �t in the framework.STRICTNESS REQUIREMENTThe framework should de�ne a relatively small family of al-gorithms, to assure that the common principles found are nottrivial properties of just any algorithm.The framework is certainly not as general as to include any algorithm. Forinstance, the ProLog-approach to 3-SAT that was mentioned in Section 1.4,cannot like the other methods we saw, be described in objectives, candidates,samples and adaptation.LARGENESS REQUIREMENTOn the other hand, the framework should de�ne a large enoughfamily of algorithms, to assure that EC and NC are not simplyrepresented separately, with the parameters being only a switchbetween the two.The framework can be seen as describing something like a greatest commondenominator of Neural and Evolutionary methods. Other methods, like G-SAT,which stems from a local search approach, or the �ve mixed methods, which can49



50 Conclusionsbe classi�ed in terms of hybridization and cross-fertilization between EC andNC, can also be described in the framework, which shows that the frameworkis not restricted to two distinct subclasses.In Section 1.2, we formulated two additional goals, not directly involved inthe development of the framework itself:1. Exploring what new methods are suggested by the framework:If the framework takes away the epiphenomena from the description ofbio-inspired methods, then this new, more fundamental description shouldopen opportunities for applying the fundamental principles to new prob-lem domains, by instantiating the framework in a way that is di�erentfrom the two speci�c instantiations we �nd in nature.2. Simulating di�erent instantiations of the framework:Wherever possible, empirical results should support any theory. The 3-SAT problem will test the usefulness of the framework for supporting thedesign of better algorithms.The �rst was done in the Chapter 4, when we saw how the principles of neurallearning can be applied to (as far as we could �nd out) a new problem domain(constraint satisfaction), In Chapter 6 we saw that, although EC and NC havebeen combined before, the Adaptive Sampling framework can be useful to sup-port the design of such combinations. They instantiate the common principlesof learning and evolving in ways that are di�erent from the two speci�c instan-tiations we �nd in nature (being Darwinian evolution and neural learning).Beforehand, we stated that satisfying these requirements would test the cen-tral hypothesis: CENTRAL HYPOTHESISAlthough Evolutionary and Neural Computation come from dif-ferent origins and are used for solving di�erent problems, theprinciples that make them work are the same, and the remainingdi�erences can be explained as problem dependent parameters.Concentrating on these common principles, and not on epiphe-nomenal features of either one, facilitates the design of betteralgorithms.We conclude that sampling and adaptation, in the way that they have beendescribed in this thesis, can indeed be seen as these common principles that makeEC and NC work. The remaining di�erence, Structural Error Assignment, canbe seen as a problem dependent parameter: either it is or it is not possible to useSEA, and if it is possible, it depends on the problem whether SEA will lead tofaster convergence to the global optimum (as desired) or to a local optimum (notdesired). In the case of 3-SAT, the winning method turned out to be somewherein between NC and EC. The framework, with its emphasis on the principles,and not on the epiphenomena, led to the design of this winning algorithm, aswas predicted by the hypothesis.Combining these results, we may say that both the central hypothesis ofthis thesis, and the Adaptive Sampling framework, were tested with a positiveresult.



8.2 Further Research 518.2 Further ResearchFurther improvements of the \Lamarckian SEA-SAW" might be possible, for in-stance if a third component (besides structural error assignment and SAW-ingevolution) is added, from a complete 3-SAT algorithm. If this is done, it shouldalso be possible to construct a complete method, that is only a bit slower thanthe \Lamarckian SEA-SAW" on the easier instances, but is still guaranteed to�nd a solution for the harder instances. For an improved incomplete variant,it might also be pro�table to actively in
uence the sampling order, on the ba-sis of relations between clauses: after adapting for clause i, there is an addedimportance for the clauses that have variables con
icting with clause i.One mechanism that might be added as a third component would thus besome kind of \chain weaving", which would be the following principle. Supposevariable xi has just been changed from false to true by either an evolutionstep or a structural error assignment step. On the basis of this, a \chain" ofadaptations can be started by picking out a clause that contains the literal xi,and inverting the valuation of one of the other two variables involved in thisclause. The same can be done after that adaptation, etcetera, for instance for apredetermined number of times.Also, some extra �ne-tuning of parameters (e.g., further optimizing the num-ber of candidates, or dividing candidates into separate evolutionary \tribes"),might result in some minor improvements. The proportions in which evolutionand structural error assignment are mixed, can also be tuned (e.g., multipleevolution steps between each structural error assignment step, or vice versa).The Adaptive Sampling framework can be enhanced to cover recurrent neuralnetworks explicitly. Also, more advanced versions of Reinforcement Learningcould be included in the Cloud Fitting problem class. Both would probablyrequire the introduction of a recurrent notion of clouds: tuples that do not de�nesets of vectors, but sets of clouds. The Observes-operator should then probablybe de�ned as the iterative closure of an (altered) AppliedTo-operator, insteadof its current de�nition, in which the (current) AppliedTo-operator occurs onlytwice.Earlier versions of this thesis used the fact that, in the general procedure,the instance and the state are sets of vectors (objectives and candidates, re-spectively). This makes that they can also be de�ned as clouds, and picking outone candidate or one objective can be de�ned as sampling. This takes place ona higher level than the sampling of one candidate or one objective. This partwas taken out because it needed the concept of superposition (as used in thetheory of quantum physics), which turned out to be too complex for this scope.However, it might be desirable for future versions of the model, to undo thissimpli�cation.The \Lamarckian SEA-SAW" should be tested against other existing meth-ods, to see if it really is the best one (here, we assumed that no other existingincomplete method performs than the \SAW-ing EA"). The algorithm will besubmitted for the SATLIB-database1, and additional publications on the Adap-tive Sampling framework have already been planned.1http://www.informatik.tu-darmstadt.de/AI/SATLIB.
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