
SOFTWARE PROCESS MODELING in SOCCA

student : H.G.Brugman
studentnr : 9105506
version : 0.10
date : May 1998

Software Process Modeling
in SOCCA

page :
version : 0.10

ii

Brief contents

1. Introduction……………………………………………………………………………………………………… 1

2. Capabilit y Maturity Model ……………………………………………………………………………………… 2

3. SOCCA ……. 9
3.1 Introduction ………………………………………………………………………………………… 9
3.2 Methodology ………………………………………………………………………………………… 9
3.3 Constructs …………………………………………………………………………………………… 15
3.4 Views………………………………………………………………………………………………… 34
3.5 Integration of sub-models …………………………………………………………………………… 35

4. Key Process Area ‘Software Configuration Management’……………………………………………………… 40
4.1 Introduction ………………………………………………………………………………………… 40
4.2 CMM assessment …………………………………………………………………………………… 40
4.3 SOCCA model ……………………………………………………………………………………… 44

5. Key Process Area ‘Software Project Planning’ ………………………………………………………………… 128
5.1 Introduction ………………………………………………………………………………………… 128
5.2 CMM assessment …………………………………………………………………………………… 128
5.3 SOCCA model of process fragment ‘writing project management documents’ ……………………. 134

5.3.1 Class diagrams…………………………………………………………………………… 134
5.3.2 Import-export diagram - Phase 1 .……………………………………………………….. 139
5.3.3 Import-export diagram - Phase 2………………………………………………………… 141
5.3.4 Import-export diagram - Phase 3………………………………………………………… 143
5.3.5 Import-export diagram - Phase 4………………………………………………………… 145
5.3.6 State Transition Diagrams - Phase 1 . …………………………………………………… 147
5.3.7 State Transition Diagrams - Phase 2 ..…………………………………………………… 183
5.3.8 State Transition Diagrams - Phase 3 ……………………………………………………. 222
5.3.9 State Transition Diagrams - Phase 4 ……………………………………………………. 243

6. Integration of process fragment ‘writing project management documents’ ..……………………………………. 258
6.1 Introduction .………………………………………………………………………………………… 258
6.2 General principles …………………………………………………………………………………… 258
6.3 SOCCA model (integration).………………………………………………………………………… 260

7. Summary and Conclusions……………………………………………………………………………………… 377

8. References…………………………………………………………………………………………………….… 387

9. Abbreviations and Acronyms …………………………………………………………………………………… 388

Software Process Modeling
in SOCCA

page :
version : 0.10

iii

Contents

1. Introduction……………………………………………………………………………………………………… 1

2. Capabilit y Maturity Model………………………………………………………………………………………. 2
2.1 Introduction …………………………………………………………………………………………. 2
2.2 Description…………………………………………………………………………………………… 2

3. SOCCA…….. 9
3.1 Introduction …………………………………………………………………………………………. 9
3.2 Methodology ………………………………………………………………………………………… 9

3.2.1 Static structure……………………………………………………………………………. 9
3.2.2 Dynamic behavior ………………………………………………………………………. 10

3.2.2.1 External STD ….……………………………………………………………. 10
3.2.2.2 Internal STD …………………………………………………………………. 10

3.2.3 Communication …………………………………………………………………………. 11
3.2.3.1 Manager & Employee STD …………………………………………………. 12
3.2.3.2 Subprocess & Trap ………………………………………………………….. 12
3.2.3.3 Intersection of subprocesses………………………………………………….. 13

3.3 Constructs …………………………………………………………………………………………… 15
3.3.1 Activate-construct ………………………………………………………………………. 15
3.3.2 Caller_Callee-construct …………………………………………………………………. 16
3.3.3 Only internal action……………………………………………………………………… 18
3.3.4 No-operation (nop) ………………………………………………………………………. 19
3.3.5 Autonomous behavior …………………………………………………………………… 19
3.3.6 Consolidated Prescribed Subprocesses and Traps Logical Formula …………………….. 19
3.3.7 Subprocess and Trap-naming convention ………………………………………………. 20
3.3.8 Multiplicity of concurrent STDs …………………………………………………………. 20

3.3.8.1 Internal STDs………………………………………………………………… 20
3.3.8.2 External STDs ………………………………………………………………. 21

3.3.9 Simultaneous_call -construct ……………………………………………………………. 22
3.3.10 Discriminator-construct…………………………………………………………………. 27
3.3.11 Waiting_caller_proceed-construct………………………………………………………. 30
3.3.12 Caller_Callee-relation…………………………………………………………………… 31
3.3.13 Counting-construct……………………………………………………………………… 32
3.3.14 Finishing state-indicator / finishing state-construct ……………………………………. 32

3.4 Views…………………………………………………………………………………………………. 34
3.4.1 Homomorphic picture-construction………………………………………………………. 34
3.4.2 Aggregate state-construction ……………………………………………………………. 34

3.5 Integration of sub-models ……………………………………………………………………………. 35
3.5.1 Algorithm………………………………………………………………………………… 35
3.5.2 Sequential integration ……………………………………………………………………. 35

3.5.2.1 Total external STD…………………………………………………………… 35
3.5.2.2 Control class ………………………………………………………………… 36

3.5.3 Parallel integration ……………………………………………………………………… 38
3.5.4 Scaleabilit y ……………………………………………………………………………… 39

4. Key Process Area ‘Software Configuration Management’ ……………………………………………………… 40
4.1 Introduction …………………………………………………………………………………………. 40
4.2 CMM assessment ……………………………………………………………………………………. 40
4.3 SOCCA model ……………………………………………………………………………………… 44

4.3.1 Class diagrams…………………………………………………………………………… 44
4.3.2 State Transition Diagrams ………………………………………………………………. 52

4.3.2.1 Technical Project Manager ……….…………………………………………. 53
4.3.2.2 Configuration Manager……………………………………………………… 63
4.3.2.3 Configuration Item…………………………………………………………… 84
4.3.2.4 Problem and Change Report…………………………………………………. 98
4.3.2.5 Software Engineer……………………………………………………………. 106
4.3.2.6 Reviewer ……………………………………………………………………. 109
4.3.2.7 Software Configuration Board ………………………………………………. 112
4.3.2.8 Configuration Control Board………………………………………………… 115

Software Process Modeling
in SOCCA

page :
version : 0.10

iv

4.3.2.9 Test Engineer………………………………………………………………… 118
4.3.2.10 Customer…………………………………………………………………… 122
4.3.2.11 Release Note ………………………………………………………………. 126

5. Key Process Area ‘Software Project Planning’…………………………………………………………………. 128
5.1 Introduction ………………………………………………………………………………………… 128
5.2 CMM assessment …………………………………………………………………………………… 128
5.3 SOCCA model of process fragment ‘writing project management documents’ ……………………. 134

5.3.1 Class diagrams…………………………………………………………………………… 134
5.3.2 Import-export diagram - Phase 1………………………………………………………… 139
5.3.3 Import-export diagram - Phase 2………………………………………………………… 141
5.3.4 Import-export diagram - Phase 3………………………………………………………… 143
5.3.5 Import-export diagram - Phase 4………………………………………………………… 145
5.3.6 State Transition Diagrams - Phase 1 ……………………………………………………. 147

5.3.6.1 Customer …………………………………………………………………… 148
5.3.6.2 Requirements Document ……………………………………………………. 151
5.3.6.3 Account Manager …………………………………………………………… 155
5.3.6.4 Make or Buy-Meeting ……………………………………………………… 158
5.3.6.5 Chief Executive Off icer……………………………………………………… 162
5.3.6.6 Head Personnel Section……………………………………………………… 166
5.3.6.7 Project Form ………………………………………………………………… 172
5.3.6.8 Controller Section…………………………………………………………… 176
5.3.6.9 Technical Project Manager ………………………………………………… 179

5.3.7 State Transition Diagrams - Phase 2 ……………………………………………………. 183
5.3.7.1 Technical Project Manager …………………………………………………. 184
5.3.7.2 Customer …………………………………………………………………… 197
5.3.7.3 Account Manager …………………………………………………………… 201
5.3.7.4 Quality Assurance Adviser ………………………………………………… 205
5.3.7.5 Head Production Section ……………………………………………………. 208
5.3.7.6 Head Support Section ………………………………………………………. 213
5.3.7.7 Project Management Document ……………………………………………. 216
5.3.7.8 Project Meeting Minus ………………………………………………………. 219

5.3.8 State Transition Diagrams - Phase 3 ……………………………………………………. 222
5.3.8.1 Project Meeting Minus ………………………………………………………. 223
5.3.8.2 Chief Executive Off icer………………………………………………………. 225
5.3.8.3 Head Support Section ………………………………………………………. 228
5.3.8.4 Quality Assurance Adviser …………………………………………………. 231
5.3.8.5 Head Controller Section ……………………………………………………. 234
5.3.8.6 Account Manager ……………………………………………………………. 235
5.3.8.7 Customer ……………………………………………………………………. 237
5.3.8.8 Archive/documentation Administrator ………………………………………. 239
5.3.8.9 Technical Project Manager …………………………………………………. 241

5.3.9 State Transition Diagrams - Phase 4 ……………………………………………………. 243
5.3.9.1 Head Personnel Section ……………………………………………………. 244
5.3.9.2 Head Computer Support Section ……………………………………………. 246
5.3.9.3 Terms of Reference Document………………………………………………. 248
5.3.9.4 Project Form ………………………………………………………………… 249
5.3.9.5 Internal Memorandum ……………………………………………………… 250
5.3.9.6 Technical Project Manager ………………………………………………… 251
5.3.9.7 Head Production Section …………………………………………………… 253
5.3.9.8 Engineer……………………………………………………………………… 255
5.3.9.9 Head Controller Section……………………………………………………… 257

6. Integration of process fragment ‘writing project management documents’ ……………………………………. 258
6.1 Introduction ………………………………………………………………………………………… 258
6.2 General principles …………………………………………………………………………………… 258
6.3 SOCCA model (integration) ………………………………………………………………………… 260

6.3.1 Class diagrams (integration) …………………………………………………………… 263
6.3.2 State Transition Diagrams (integration) …………………………………………………. 267

6.3.2.1 Project (control class) ………………………………………………………. 268
6.3.2.2 Customer (phase 1, changed) ………………………………………………. 286

Software Process Modeling
in SOCCA

page :
version : 0.10

v

6.3.2.3 Customer (corporate) ……………………………………………………… 288
6.3.2.4 Customer (integration) ……………………………………………………… 291
6.3.2.5 Requirements Document (integration) ……………………………………… 301
6.3.2.6 Account Manager (integration)……………………………………………… 308
6.3.2.7 Make or Buy Meeting (integration) ………………………………………… 313
6.3.2.8 Chief Executive Off icer (integration) ……………………………………… 317
6.3.2.9 Head Personnel Section (integration) ……………………………….……… 321
6.3.2.10 Project Form (integration) ………………………………………………… 325
6.3.2.11 Head Controller Section (integration)……………………………………… 329
6.3.2.12 Technical Project Manager (integration) ………………………………… 333
6.3.2.13 Quality Assurance Adviser (integration)…………………………………… 337
6.3.2.14 Head Production Section (integration) ……………………………………. 341
6.3.2.15 Head Support Section (integration) ………………………………………. 345
6.3.2.16 Project Management Document (integration)……………………………… 349
6.3.2.17 Project Meeting Minus (integration) ……………………………………… 353
6.3.2.18 Archive/documentation Administrator (integration) ……………………… 357
6.3.2.19 Head Computer Support Section (integration) ……………………………. 361
6.3.2.20 Terms of Reference Document (integration) ………………………………. 365
6.3.2.21 Internal Memorandum (integration) …………………….………………… 369
6.3.2.22 Engineer (integration) ……………………………………………………… 373

7. Summary and Conclusions……………………………………………………………………………………… 377

8. References ……………………………………………………………………………………………………… 387

9. Abbreviations and Acronyms …………………………………………………………………………………… 388

SOFTWARE PROCESS MODELING in SOCCA

student : H.G.Brugman
studentnr : 9105506
version : 0.10

Software Process Modeling
in SOCCA

page :
version : 0.10

1

1. Introduction

This master thesis concludes the study of Computer Science at the University of Leiden. The mentor of this project is
dr. L.P.J. Groenewegen of the Software Engineering and Information Systems (SEIS) group of the Department of
Computer Science. The central theme of this thesis is ‘process modeling in SOCCA’.

The acronym SOCCA stands for ‘Specifications of Coordinated and Cooperative Activities’. SOCCA is a object-
oriented process modeling language. It has been developed by the Software Engineering and Information Systems
(SEIS) group of the Department of Computer Science of the University of Leiden. SOCCA is currently being refined
and extended by the SEIS group.

Already there is experience within the SEIS group with large SOCCA models. Certain ideas to accomplish still larger
SOCCA models are being contemplated by the SEIS group. This thesis looks into two of these ideas and gives a partly
quantitative assessment of their usefullness in the construction of very large SOCCA models. Another topic of interest
of the SEIS group is the use of a SOCCA model as a process description instead of the usual textual description. This
thesis will also look into this issue.

The three topics addressed in this thesis are :

- investigate the use of often recurring SOCCA ‘constructs’ to limit the size of the model

- investigate if the SOCCA modeling language can be scaled up (i.e. can a larger SOCCA model be
 constructed from indepently developed sub-models)

- investigate the usefullness of a SOCCA model as a process description

The first question was handled as follows. A very large SOCCA model was developed. The size of this model is 29
classes, 86 operations and 1041 state transition diagrams. During the modeling recurring ‘constructs’ were identified,
named and used. This resulted in the fact that only 310 state transition diagrams out of the 1041 had to be explicitily
shown in the model.

The modeled process is the software process of the software development organization ‘WBU’ of the Dutch Ministry
of Defense. Two processes of this organization were modeled using the SOCCA modeling language. These processes
are the ‘Software Configuration Management’-process and part of the ‘Software Project Planning’-process. The
SOCCA model of the ‘Software Configuration Management’-process is given in chapter 4. The SOCCA model of the
process fragment ‘writing project management documents’ (i.e. part of the ‘Software Project Planning’-process) is given
in chapters 5 and 6.

The identified SOCCA ‘constructs’ are discussed in chapter 3.

To look into the question of ‘scaleability’ of SOCCA, the modeling of the process fragment ‘writing project
management documents’ was done by splitting the process fragment into four smaller process fragments. These smaller
process fragments were modeled indepently of each other. Their SOCCA sub-models are described in chapter 5. Then
the sub-models of these four smaller process fragments were integrated into one SOCCA model of the process
fragment ‘writing project management documents’ . This integration is described in chapter 6.

The integration of sub-models introduced the concept of a ‘control-object’. The ‘integration’ algorithm and the
‘control-object’ concept are described in chapter 3.

Lastly the usefullness of a SOCCA model as a process description was investigated. This was done by checking if the
SOCCA models of the ‘Software Configuration Management’-process and the ‘Software Project Planning’-process
could be used as input for a process audit. As audit method was chosen the ‘Capability Maturity Model’-assessment.

The Capability Maturity Model is described (briefly) in chapter 2. Both chapter 4 (the SOCCA model of the ‘Software
Configuration Management’-process) and chapter 5 (the SOCCA model of part of the ‘Software Project Planning’-
process) include a CMM assessment checklist. The entries in this list are checked against the SOCCA process model.

SOFTWARE PROCESS MODELING in SOCCA

student : H.G.Brugman
studentnr : 9105506
version : 0.10

Software Process Modeling
in SOCCA

page :
version : 0.10

2

2. Capability Maturity Model

2.1 Introduction

To investigate the usefullness of a SOCCA model as a process description, a process audit is performed on the
SOCCA models of the ‘Software Configuration Management’-process and the ‘Software Project Planning’-process.
The audit method used is the ‘Capability Maturity Model’-assessment.

This chapter gives a brief description of the ‘Capability Maturity Model’. The CMM assessment checklists are
included in chapter 4 (the SOCCA model of the ‘Software Configuration Management’-process) and chapter 5 (the
SOCCA model of the ‘Software Project Planning’-process).

2.2 Description

Informally the total of software development and maintenance activities of an organization constitute its ‘software
process’. These activities include the traditional activities of the software project life cyle ‘requirements analysis’,
‘ system design’, ‘software design’, ‘coding’, ‘testing’ and ‘maintenance’. They also include ‘project management’,
‘ configuration management’, ‘software quality activities’ and ‘outsourcing’.

A more abstract definition is given in [LON] : ‘A software process is a set of partially ordered process steps, with sets
of related artifacts, human and computerized resources, organizational structures and constraints, intended to produce
and maintain the requested software deliverables’.

The measure in which an organization controls its software process is an indication for the ‘maturity’ of the
organization. A mature organization is more likely to deliver a software product according to the specifications, on
time and within budget.

The Capability Maturity Model (CMM) is a framework that will help organizations manage and improve their software
process. The CMM was developed by the Software Engineering Institute (SEI) of the Carnegie Mellon University. The
CMM evolved from a SEI-project to establish guidelines for the assessment of the capabilities of software contractors
of the American Air Force [HUM].

As such the CMM provides a set of generic rules for the software process. It prescribes regular measurement of the
software process. Against these measurements the implementation of the rules is verified. On the basis of this
feedback the software process can be better managed and improved.

The rules and guidelines of the CMM are generic. They form a famework. Organizations can choose their own
methods and procedures to comply with these rules.

Levels of maturity

The Capability Maturity Model distinguishes between five levels of maturity [CMM] :

- level 1, Initial :

the software process is characterized as ‘ad hoc’. Few processes are defined. Success depends on individual
effort of software engineers. (Every organization starts at level 1)

- level 2, Repeatable :

basic project management processes are established. The necessary process discipline is in place to repeat
earlier successes on projects with similar applications.

- level 3, Defined :

Software Process Modeling
in SOCCA

page :
version : 0.10

3

the software process for both management and engineering activities is documented, standardized and
integrated into a standard software process for the organization. All projects use an approved, tailored version
of the organization’s standard software process for developing and maintaining software.

- level 4, Managed :

detailed measures of the software process and product quality are collected. Both the software process and
products are quantitatively understood and controlled.

- level 5, Optimizing :

continuous process improvement is enabled by quantitative feedback from the process and from piloting
innovative ideas and technologies. (The number of organizations on this level is very small)

INITIAL (1)

REPEATABLE (2)

DEFINED (3)

MANAGED (4)

OPTIMIZING (5)

DISCIPLINED
PROCESS

STANDARD
PROCESS

PREDICTABLE
PROCESS

CONTINUOUSLY
IMPROVING
PROCESS

figure 2.1 progressing levels of software process maturity

An organization must progress from one maturity level to the next. Since each level is the foundation for the following
level is it not possible to ‘skip’ a maturity level.

Key Process Area

Each maturity level is decomposed into several Key Process Areas (KPA). An organization must focus on these areas
to improve its software process. Key Process Areas identify the issues that must be addressed to achieve a certain
maturity level.

Within the five maturity levels the following Key Process Areas are recognized :

Software Process Modeling
in SOCCA

page :
version : 0.10

4

- level 1, Initial :

- KPA : none

- level 2, Repeatable :

- KPA : Requirements Management
- KPA : Software Project Planning
- KPA : Software Project Tracking and Oversight
- KPA : Software Subcontract Management
- KPA : Software Quality Assurance
- KPA : Software Configuration Management

- level 3, Defined :

- KPA : Organization Process Focus
- KPA : Organization Process Definition
- KPA : Training Program
- KPA : Integrated Software Management
- KPA : Software Product Engineering
- KPA : Intergroup Coordination
- KPA : Peer Reviews

- level 4, Managed :

- KPA : Quantative Process Management
- KPA : Software Quality Management

- level 5, Optimizing :

- KPA : Defect Prevention
- KPA : Technology Change Management
- KPA : Process Change Management

For every KPA a general description (its purpose) will be given. From this description CMM distills the more specific
‘goals’ of each KPA. When the goals of a Key Process Area are accomplished on a continuing basis across projects, an
organization can be said to have institutionalized the process capability characterized by that KPA. When all KPAs of
a maturity level have been satisfied, an organization has reached that maturity level.

This thesis is concerned with the maturity level 2. For this reason, only the purpose and goals of the KPAs of level 2
are described below. For a description of the other KPAs the reader is referred to [CMM].

- KPA : Requirements Management :

the purpose of Requirements Management is to establish a common understanding between the customer and
the software project of the customer’s requirements that will be addressed by the software project.
This agreement with the customer is the basis for planning (as described in KPA ‘Software Project Planning’)
and managing (as described in KPA ‘Software Project Tracking and Oversight’) of the software project.
Control of the relationship with the customer depends on following an effective change control process (as
described in KPA ‘Software Configuration Management’).

- Goal 1 :
System requirements allocated to software are controlled to establish a baseline for software engineering and
management use.

- Goal 2 :
Software plans, products, and activities are kept consistent with the system requirements allocated to
software.

Software Process Modeling
in SOCCA

page :
version : 0.10

5

- KPA : Software Project Planning :

the purpose of Software Project Planning is to establish reasonable plans for performing the software
engineering and for managing the software project. These plans are the necessary foundation for managing
the software project (as described in the KPA ‘Software Project Tracking and Oversight’).

- Goal 1 :
Software estimates are documented for use in planning and tracking the software project.

- Goal 2 :
Software project activities and commitments are planned and documented.

- Goal 3 :
Affected groups and individuals agree to their commitment related to the software project.

- KPA : Software Project Tracking and Oversight :

the purpose of Software Project Tracking and Oversight is to establish adequate visibility into the actual
progress of a software project so that management can take corrective actions when the project’s
performance deviates significantly from the software plans.

- Goal 1 :
Actual results and performance are tracked against the software plans.

- Goal 2 :
Corrective actions are taken and managed to closure when actual results and performance deviate
significantly from the software plans.

- Goal 3 :
Changes to software commitments are agreed to by the affected groups and individuals. (This goal is strongly
related to the KPA ‘Software Project Planning’ as a change in the software commitments results in a change
in the planning.)

- KPA : Software Subcontract Management :

the purpose of Software Subcontract Management is to select qualified software subcontractors and manage
them effectively. It combines the concerns of Requirements Management, Software Project Planning and
Software Project Tracking and Oversight for basic management control, along with necessary coordination of
Software Quality Assurance and Software Configuration Management, and applies this control to the
subcontractor as appropriate.

 - Goal 1 :
The prime contractor selects qualified software subcontractors.

- Goal 2 :
The prime contractor and the software subcontractor agree to their commitment to each other.

- Goal 3 :
The prime contractor and the subcontractor maintain ongoing communications.

- Goal 4 :
The prime contractor tracks the software subcontractor’s actual results and performance against its
commitments.

- KPA : Software Quality Assurance :

Software Process Modeling
in SOCCA

page :
version : 0.10

6

the purpose of Software Quality Assurance is to provide management with appropriate visibility into the
process being used by the software project and of the products being build. Software Quality Assurance is an
integral part of most software engineering and management processes.

- Goal 1 :
Software quality assurance activities are planned.

- Goal 2 :
Adherence of software products and activities to the applicable standards, procedures, and requirements is
verified objectively.

- Goal 3 :
Affected groups and individuals are informed of software quality activities and results.

- Goal 4 :
Noncompliance issues that cannot be resolved within the software project are addressed by senior
management.

- KPA : Software Configuration Management :

the purpose of Software Configuration Management is to establish and maintain the integrity of the products
of the software project throughout the project’s software life cycle. Software Configuration Management is
an integral part of most software engineering and management processes.

- Goal 1 :
Software configuration management activities are planned.

- Goal 2 :
Selected software work products are identified, controlled, and available.

- Goal 3 :
Changes to identified software products are controlled.

- Goal 4 :
Affected groups and individuals are informed of the status and content of software baselines.

Key Practice

Because the ‘goals’ of a Key Process Area are still rather general, CMM indicates a way to asses if these goals are met.
CMM describes each Key Process Area in terms of the Key Practices that contribute to satisfying the goals of a KPA.
The Key Practices describe the infrastructure and activities that contribute most to the effective implementation of a
KPA.

A Key Practice describes at the lowest level ‘what’ has to be done, but not ‘how’ it should be done. For a correct
fulfill ment of the goals of the KPA all its Key Practices have to be satisfied by the software development organization.

Key Practices are organized into five groups (processes). A group (process) is called ‘common features’ in CMM. The five
groups are : ‘Commitment to perform’ , ‘Abilit y to perform’ , ‘Activities performed’ , ‘Measurement and analysis’ and
‘Verifying implementation’ .

1. ‘Commitment to perform’ describes the actions an organization must take to ensure that the process is established and
will endure. Typically this involves the codifying of organizational policies (in manuals) and senior management
commitment to this policies.

2. ‘Abilit y to perform’ describes the preconditions that must exists in an organization to implement the process correctly.
Typically this involves resources, organizational structures and training.

3. ‘Activities performed’ describes the roles and procedures necessary to implement the Key Process Area. Typically this
involves establishing plans and procedures, performing the work, tracking it and taking corrective actions as necessary.

Software Process Modeling
in SOCCA

page :
version : 0.10

7

4. ‘Measurement and analysis’ describes the need to measure the process and analyzes the measurements. Typically this
involves measurements that could be taken to determine the status and effectiveness of the ‘Activities performed’ .

5. ‘Verifying implementation’ describes the steps to ensure that the activities are performed in compliance with the
process that has been established. Typically this involves reviews and audits by management and software quality
assurance.

This thesis is concerned with the KPAs ‘Software Configuration Management’ and ‘Software Project Planning’ . For
this reason only the Key Practices of these KPAs are described below. For a description of the other Key Practices the
reader is referred to [CMM].

- Key Practices ‘Software Configuration Management (SCM)’ :

Commitment to perform

1. The project follows a written organizational policy for implementing software configuration management

Abilit y to perform

1. A board having the authority for managing the project’s software baselines exists
2. A group that is responsible for coordinating and implementing SCM for the project exists
3. Adequate resources and funding are provided for performing the SCM activities
4. Members of the SCM group are trained in the objectives, procedures, and methods for performing their

SCM activities
5. Members of the software engineering group are trained to perform their SCM activities

Activities performed

1. A SCM plan is prepared for each software project according to a documented procedure.
2. A documented and approved SCM plan is used as the basis for performing the SCM activities.
3. A configuration management library system is established as a repository for the software baselines
4. The software work products to be placed under configuration management are identified
5. Change requests and problem reports for all configuration items are initiated, recorded, reviewed,

approved, and tracked according to a documented procedure.
6. Changes to baselines are controlled according to a documented procedure
7. Products from the software baseline library are created and their release is controlled according to a

documented procedure
8. The status of configuration items is recorded according to a documented procedure
9. Standard reports documenting the SCM activities and the contents of the software baseline are developed

and made available to affected groups and individuals
10. Software baseline audits are conducted according to a documented procedure

Measurement and analysis

1. Measurements are made and used to determine the status of the SCM activities

Verifying implementation

1. The SCM activities are reviewed with senior management on a periodic basis
2. The SCM activities are reviewed with the project manager on a periodic and event-driven basis
3. The SCM group periodically audits software baselines to verify that they conform to the documentation

that defines them
4. The software quality assurance group reviews and/or audits the activities and work products for SCM and

reports the results

- Key Practices ‘Software Project Planning (SPP)’ :

Commitment to perform

Software Process Modeling
in SOCCA

page :
version : 0.10

8

1. A software manager is designated to be responsible for negotiating commitments and developing the
project’s software development plan

2. The project follows a written organizational policy for planning a software project

Abilit y to perform

1. A documented and approved statement of work exists for the software project
2. Responsibilities for developing the software development plan are assigned
3. Adequate resources and funding are provided for planning the software project
4. The software managers, software engineers, and other individuals involved in the software project

planning are trained in the software estimating and planning procedures applicable to their areas of
responsibility.

Activities performed

1. The software engineering group participate on the project proposal team
2. Software project planning is initiated in the early stages of, and in parallel with, the overall project

planning.
3. The software engineering group participates with other affected groups in the overall project planning

throughout the project’s life.
4. Software project commitments made to individual groups external to the organization are reviewed with

senior management according to a documented procedure.
5. A software life cycle with predefined stages of manageable size is identified or defined.
6. The project’s software development plan is developed according to a documented procedure
7. The plan for the software project is documented
8. Software work products that are needed to establish and maintain control of the software project are

identified.
9. Estimates for the size of the software work product (or change of the size of software work product) are

derived according to a documented procedure.
10. Estimates for the software project’s effort and costs are derived according to a documented procedure.
11. Estimates for the project’s critical computer resources are derived according to a documented procedure.
12. The project’s software schedule is derived according to a documented procedure.
13. The software risks associated with the cost, resource, schedule, and technical aspects of the project are

identified, assessed, and documented.
14. Plans for the project’s software engineering facilities and support tools are prepared
15. Software planning data are recorded

Measurement and analysis

1. Measurements are made and used to determine the status of the software planning activities

Verifying implementation

1. The activities for software project planning are reviewed with senior management on a periodic basis
2. The activities for software project planning are reviewed with the project manager on both a periodic and

event-driven basis
3. The software quality assurance group reviews and/or audits the activities and work products for software

project planning and reports the results

SOFTWARE PROCESS MODELING IN SOCCA

student : H.G.Brugman
studentnr : 9105506
version : 0.10

Software Process Modeling
in SOCCA

page :
version : 0.10

9

3. SOCCA

3.1 Introduction

SOCCA, Specifications of Coordinated and Cooperative Activities, is a object-oriented process modeling language. It
has been developed by the Software Engineering and Information Systems (SEIS) group of the Department of
Computer Science of the University of Leiden. SOCCA is currently being refined and extended by the SEIS group.

Paragraph 3.2 of this chapter describes the SOCCA methodology. In paragraph 3.3 some basic SOCCA concepts are
aggregated into higher level ‘constructs’ (3.3.1 until 3.3.5). Also in paragraph 3.3 some new ‘constructs’ are
introduced (3.3.6 until 3.3.14). By using these ‘constructs’ in a SOCCA model, the modeling process can be speeded
up.

Paragraph 3.4 describes two methods to construct a ‘view’ on a STD.

During the writing of this thesis, an ‘integration’ algorithm was developed. When using this algorithm SOCCA sub-
models can be integrated into one bigger SOCCA model. The integration algorithm is described in paragraph 3.5.

3.2 Methodology

SOCCA models the static and dynamic aspects of a process and includes the human agents as objects in the model.
SOCCA’s focus is primarily on the modeling of the dynamic behavior of the process, including the communication
between the different objects in the model.

The consecutive design steps in SOCCA are :

1. model the static structure
2. model the dynamic behavior
3. model the communication

3.2.1 Static structure

The static structure is modeled by a class diagram, using the Extended Entity Relationship technique (EER).
It is not unusual to construct four subdiagrams of the class diagram. The first one shows the classes, subclasses and
aggregation associations. The second one shows the general associations, the third one shows the classes with their
operations and attributes and the last one shows the ‘uses’ associations (the import-export diagram).

The first three subdiagrams are equivalent to the class diagrams as constructed by many other Object Oriented design
methodologies. Like for example the ‘Object Modeling Technique’ [RUM] or the ‘Unified Modeling Language’
[UML] or [FOW].

The import-export diagram is SOCCA specific. This diagram identifies which operations are imported by which classes.
Within the importing classes the importing operations are identified. This is done by the SOCCA specific binary
association ‘uses’ . This association has the attribute ‘ import_list’ that has as its domain a list of imported operations
together with the operations that import them. The style guideline for this association is a solid line with an arrow at one
end. The arrow indicates the exporting class.

A B
USES

figure 3.1 example : import-export diagram

In the example above, some operation(s) of the class B are importing some operation(s) of the class A. The specification
of the uses-association and its ‘ import-list’ attribute is :

uses : imported operation imported by

Software Process Modeling
in SOCCA

page :
version : 0.10

10

operation_x operation_y

The import-export diagram is showing the communication between the classes at the highest level and is constructed as a
step towards the constructing of the State Transition Diagrams in the next phase of the design process.

3.2.2 Dynamic behavior

The dynamic behavior is modeled by State Transition Diagrams, STD’s. An STD is a nondeterministic finite
automaton described by the 5-tuple (Q, Σ, δ, q0, F). Q is the set of states (nodes), Σ is the input alphabet (set of labels on
the transitions), δ is the set of transitions (edges), q0 is the starting state and F is the set of f inal states.

The behavior of the objects of a particular class is modeled by two kinds of STDs, ‘external’ STDs and ‘ internal’ STDs.
The external STDs model the visible behavior of the objects. The internal STDs model the functionality of the objects (i.e.
they model the operations of an object).

3.2.2.1 External STD

First an external STD is constructed. This STD shows the observable behavior of a class. It consists of a set of states (Q)
an object of a class can be in. It also shows the possible sequences in which the exported operations of a class, as shown in
the class diagram, can be started. I.e. it shows the possible sequences in which calls to the exported operations are
serviced. The starting-sequences appear as the consecutive transitions in the STD. The transitions are labeled with the
exported operations or are unlabeled. The transitions are the set δ. The exported operations are the input alphabet Σ. In
standard SOCCA there is one external STD per class and every object of the class shows this behavior. The use of an
STD to model the observable behavior of a class is done also by other Object Oriented design methodologies. Like for
example the use of ‘state charts’ for this purpose in the ‘Object Modeling Technique’ [RUM] or the ‘Unified
Modeling Language’ [UML] or [FOW].

CLASS_X

OPERATION_1
OPERATION_2
OPERATION_3

OPERATION_2

NEUTRAL
 STATE

OPERATION_1 OPERATION_3
A B

figure 3.2 example : External STD of class_x

Example : an object of the class_x (see figure) can service a call to operation_3 only when it is in state A. If the object
arrives in state A and a call has been made to operation_3 at some earlier time, the object can service this call . The object
can start operation_3 and can transit to state B. If the object arrives in state A and no call to operation_3 has been made
yet, the object must wait in state A until such a call i s made before it can proceed to state B.

3.2.2.2 Internal STD

Secondly the behavior of each operation of a class is shown in an internal STD. This amounts to one internal STD per
operation in standard SOCCA. Consequently a class has as many internal STDs as it has operations. (NB : An object can
have more internal STDs than the class it belongs to. This is caused by the fact that an object can execute multiple
instances of the same internal STD concurrently. This phenomenon will be explained later on.)

Software Process Modeling
in SOCCA

page :
version : 0.10

11

CLASS_X

OPERATION_1
OPERATION_2
OPERATION_3

ACT_
OPERATION_1

NON-
OPERATION_1

OPERATION_1
ENDED

OPERATION_1
STARTED CALL _

OPERATION_X

(OF OTHER OR
OWN CLASS)

INTERNAL
ACTION

figure 3.3 example int-operation_1 : Internal STD of operation_1 of class_x

The name of an internal behavior is the name of the operation prefixed by ‘ int-‘ . In the state ‘non-operation’ the internal
behavior is waiting to be started. The transition with label ‘act-operation name‘ indicates the start of the execution of the
STD. This transition is supposed to happen when the external STD of the class makes its transition labeled with ‘operation
name’ ; this will be enforced by the communication.

The behavior of an operation can be generally divided into two kinds of actions. It can call operations of other classes (or
of its own class), and it can perform some ‘ internal action’ .

The prefix ‘call -’ to an operation name ‘x’ means that the internal behavior calls the operation ‘x’ . This operation ‘x’ is
either exported by another class or exported by its own class. A label without a prefix means that the behavior executes
some internal action of its own without interaction with another object.

The meaning of the labels in SOCCA is the same as in UML. A transition-label in UML consists of an ‘event’ -part, a
‘condition’ -part and an ‘operation’ -part. Its syntax is ‘event [condition]/action’ . A label can be any combination of these
three parts. The notation of an automatic transaction is ‘ - [condition]/action’ or ‘[condition]/action’ . An automatic
transition takes place ‘automatically’ after the activity of the state it leaves, is finished.

A transition with an event-part, leaving the current state, takes place (fires) when the corresponding event occurs. If the
event occurs when the current state has no outgoing transition labeled with this event, the event is being ignored. If the
transition has a condition-part, then the transaction can only take place if the condition is satisfied. If the transition has an
action-part, then this action is performed when the transaction takes place.

The label ‘act_operation_1’ can be read as ‘[call to operation_1 has been made]/activate_operation_1’ : the transition can
take place (and eventually will t ake place) if the condition is satisfied. The action ‘activate_operation_1’ is performed
when the transition takes place. The label ‘call_operation_x’ can be read as ‘ -/call_operation_x’ : the action
‘call_operation_x’ is performed when the transition takes place. The label ‘ internal_operation’ can be read as ‘ -
/internal_operation’ : the action ‘ internal_operation’ is performed when the transaction takes place.

3.2.3 Communication

Communication between objects consists of calli ng exported internal operations of one class from within an internal
operation of another (or the same) class. The called operations are the ‘callees’ and the internal operations performing the
call are the ‘callers’ . The callers and the callees can be seen as threads of their respective objects.

This communication between objects is modeled using concepts of the ‘Paradigm’-formalism. The Paradigm-
formalism is used to describe parallel phenomena in general. A detailed description of this formalism can be found in
[GRO]. Of the Paradigm concepts that are incorporated in SOCCA, that of the ‘manager’ process (described by an
STD) and ‘employee’ process (also described by an STD) are described below. Employees are processes that
communicate which each other and a manager is a process that synchronizes the communication between these
employees.

In using the Paradigm-formalism all behavior STD’s, internal and external, are seen as parallel processes.
Conceptually this means that each internal and external STD is presumed to execute on its own dedicated processor.

Software Process Modeling
in SOCCA

page :
version : 0.10

12

3.2.3.1 Manager & Employee STD

Applying these concepts in a structured way to SOCCA, the external STD of a class becomes the manager STD of
that class and the internal STD’s become employee STD’s.

figure 3.4 example : Manager STD of class_x is the same as external STD of class_x

ACT_
OPERATION_1

NON-
OPERATION_1

OPERATION_1
ENDED

OPERATION_1
STARTED CALL _

OPERATION_X

(OF OTHER OR
OWN CLASS)

INTERNAL
ACTION

figure 3.5 example : Employee STD of operation_1 is the same as internal STD of operation_1

The manager STD synchronizes every two of its employees who need to communicate with each other (i.e. every caller-
callee pair). The manager STD does this by allowing these two employees only to execute specific parts of their internal
behavior STD at any one time. When at the end of this partial execution the two employees reach their respective
‘synchronization points’ the communication (call) takes places. Thereafter the manager STD allows both employees to
proceed with the execution of the next part of their internal behavior STD.

3.2.3.2 Subprocess & Trap

These partial internal STDs which the manager prescribes to its employees are called ‘subprocesses’ . Such a partial STD is
a temporary behavior restriction of that STD. A subprocess is decribed by at 3-tuple (Q’ , Σ’ , δ’). Q’ is a subset of the set Q
of the total internal behavior STD. Σ’ is a subset of the set Σ of the total internal STD. δ’ is a subset of set δ of the total
internal STD.

ACT_
OPERATION_1

NON-
OPERATION_1

OPERATION_1
STARTED CALL _

OPERATION_X

(OF OTHER OR
OWN CLASS)

figure 3.6 example : Subprocess S1 of employee STD of operation_1

The synchronization points are called ‘ traps’ . A trap is a subset of the set of states Q’ of a subprocess. The states in a trap
may not have transitions to states outside the trap. Once an employee enters a trap in a subprocess, it can not leave it as
long as this subprocess remains the current behavior restriction.

TRAP

ACT_
OPERATION_1

NON-
OPERATION_1

OPERATION_1
STARTED CALL _

OPERATION_X

(OF OTHER OR
OWN CLASS)

figure 3.7 example : Trap in subprocess S1 of employee STD of operation_1

Software Process Modeling
in SOCCA

page :
version : 0.10

13

Manager prescribes subprocesses

The manager STD prescribes in its states the subprocesses for all of its employees. The employees can only execute their
currently prescribed subprocess. I.e they can only execute a part of their total behavior. The manager can make the
transition to another state, where it prescribes other subprocesses, when the relevant employees have all entered their
relevant traps. The employees then can execute the next part of their behavior, i.e their next subprocess. The states of the
manager STD show the names of the prescribed subprocesses and the transitions are labeled with the names of the traps
which the employees have to enter to cause the transitions to happen. So the traps are the conditions for the manager
transitions.

S1 S2
TRAP-1

figure 3.8 example : manager STD prescibing subprocesses to its employee

The states in the trap of one subprocess must also be in the next subprocess for the switching from one subprocess to the
next to work.

A

TRAP-1

B

figure 3.9 example : employee in prescribed subprocess S1

B C

figure 3.10 example : employee in next prescribed subprocess S2

The number of employees that a manager STD of a class manages, varies. If every exported operation is called by a
different caller, it is two times the number of exported operations. It can be more if there are operations that are being
called by more than one caller. It can be less of some caller calls more than one exported operation.

An employee STD can have one or more managers. If an internal STD does not call any operations it has only one
manager, namely the manager STD of its own class. If an internal STD performs one or more calls, the number of
managers it has equals the number of different classes the called operations belong to plus one (the manager of its own
class).

3.2.3.3 Intersection of subprocesses

When an employees has more than one manager it has more than one subprocess prescribed to it at any point in time. The
actual subprocess (actual behavior restriction) the employee is executing is constructed by taking the intersection of all it s
prescribed subprocesses.

The trap(s) of the actual subprocess are constructed as follows. Suppose the number of prescribed subprocesses is n.
Determine every possible combination of n traps, where every trap in the combination belongs to a different subprocess.
The trivial traps of the subprocesses are also taken into account in this process. The trivial trap of a subprocess is the trap
wich encompasses all states of that subprocess. Then take for every combination that was found the intersection of the
traps in that combination. The intersection results are the traps of the actual subprocess.

The construction of the actual subprocess and its traps is ill ustrated by the next example.

Software Process Modeling
in SOCCA

page :
version : 0.10

14

A

T-2

B C D
b c

d

T-1

figure 3.11 example : prescribed subprocess S2 by manager 1

E

T-4

B C D
b c

f e

T-3

figure 3.12 example : prescribed subprocess S4 by manager 2

T-4

B C D
b c

T-5

figure 3.13 example : actual behavior restriction and traps

Example :

Prescribed subprocess S2 consists of the states A, B, C and D and the transitions b, c and d. It has the traps T-1 (trivial
trap) and T-2. Trap T-1 consists of the states A, B, C and D. Trap T-2 consists of the state A.

Prescribed subprocess S4 consists of the states B, C, D and E and the transitions b, c, e and f. It has the traps T-3 (trivial
trap) and T-4. Trap T-3 consists of the states B, C, D and E. Trap T-4 consists of the state D.

The states of the actual subprocess (actual behavior restriction) are found by taking the intersection of the states of
subprocess S2 and the states of subprocess S4. This results in the states B, C and D ({A,B,C,D} ∩{B,C,D,E}).
The transitions of the actual subprocess are found by taking the intersection of the transitions of subprocess S2 and the
transitions of subprocess S4. This results in the transitions b and c ({b,c,d} ∩{ b,c,e,f}).

The traps of the actual subprocess are found by first determining all possible combinations of traps from S2 and S4. This
yields the combinations {T-1,T-3} , {T-1,T-4} , {T-2,T-3} and {T-2,T-4} . Secondly the intersection of the traps of each
combination is determined.

For T-1 ∩ T-3 this results in T-5. T-1 has the states {A,B,C,D} . T-3 has the states {B,C,D,E} . The intersection of the
states of both traps results in {B,C,D} . So the result is the trap T-5, the trivial trap of the actual subprocess.

Software Process Modeling
in SOCCA

page :
version : 0.10

15

For T-1 ∩ T-4 this results in T-4. T-1 has the states {A,B,C,D} . T-4 has the state {D} . The intersection of the states of
both traps results in {D} . So the result is the trap T-4.

T-2 ∩ T-3 does not produce a trap. T-2 has the state {A} . T-3 has the states {B,C,D,E} . The intersection of the states of
both traps results in the empty set.

T-2 ∩ T-4 does not produce a trap. T-2 has the state {A} . T-4 has the state {D} . The intersection of the states of both
traps results in the empty set.

So the traps of the actual subprocess are T-4 and T-5.

3.3 Constructs

In SOCCA there are a certain number of often recurring combinations of syntactical elements. These are called
‘constructs’ . In a SOCCA model these constructs can either be modeled explicitly or alternatively they can be used on a
higher aggregation level (without showing the underlying details) or they can simply be only referred to.

3.3.1 Activate-construct

The activate-construct describes the starting of an internal behavior STD by its manager STD. If the internal operation is
called by another operation, then the act-construct is part of the caller_callee-construct. In case of autonomous behavior
(no external caller) the act-construct is used ‘stand-alone’ . The act-construct only covers the callee. The caller behavior
(e.g. whether the caller proceeds right after the call or waits for the result of the internal operation) is dealt with in the
caller_callee-construct description.

Initially the manager is in its state ‘neutral’ . Here it prescribes the subprocess S1 for its internal employee.

 S1

(NEUTRAL)

S2

T-1

T-2

figure 3.14 example : act-construct, manager STD

ACT_
OPERATION

OPERATION
NOT ACTIVE

OPERATION
ENDED

OPERATION
ACTIVATED

OPERATION
EXECUTES

figure 3.15 example : act-construct, employee STD

T-1

OPERATION
NOT ACTIVE

OPERATION
ACTIVATED

OPERATION
ENDED

OPERATION
EXECUTES

figure 3.16 example : act-construct, subprocess S1 of internal employee

When the employee has entered trap T-1 (is inactive, ready to be called) and the operation is called (i.e. the caller STD has
entered a trap, say T-x, expressing this call), the manager can make the transition to its next state. In this state it prescribes
the subprocess S2 for its internal employee.

Software Process Modeling
in SOCCA

page :
version : 0.10

16

ACT_
OPERATION

T-2 (BIG TRAP)

OPERATION
NOT ACTIVE

OPERATION
ACTIVATED

OPERATION
ENDED

OPERATION
EXECUTES

figure 3.17 example : act-construct, subprocess S2 of internal employee, big trap

The employee now can (and will) make the transition ‘act_operation’ , i.e. it starts executing. When the employee now
enters the trap T-2 (and also after the caller has entered some relevant trap, say T-y), the manager can make the transition
back to its initial state. In general it arrives there before the internal STD has finished executing. In the initial state the
manager prescribes again the subprocess S1 for its internal employee. The manager is ready to service a new call to the
internal operation (and also calls to its other internal operations).

If the called operation must perform (part of) its actions before any other internal operation may be started, the transition
of the manager back to the initial state must be delayed until these actions are performed. This is done by choosing the trap
T-2 accordingly smaller (excluding the actions which must be performed).

ACT_
OPERATION

T-2 (SMALL TRAP)

OPERATION
NOT ACTIVE

OPERATION
ACTIVATED

OPERATION
ENDED

OPERATION
EXECUTES

figure 3.18 example : act-construct, subprocess S2 of internal employee, small trap

When the trap T-2 is chosen smaller in subprocess S2, the subprocess S1 changes accordingly to reflect this. It has as
its states only the state ‘operation non active’ plus the states that are in trap T-2 of the subprocess S2. In the event that
the trap T-2 only encompasses the state ‘operation ended’, the matching subprocess S1 is shown in the next figure.

T-1

OPERATION
NOT ACTIVE

OPERATION
ENDED

figure 3.19 example : act-construct, subprocess S1 of internal employee, matching S2 with small trap

3.3.2 Caller_Callee-construct

The caller_callee-construct describes the calli ng mechanism. The callee part is the starting of the called operation and is
described by the act-construct. The caller part introduces two subprocesses and two traps in the calli ng employee.

 S3

(NEUTRAL)

S4

T-x, T-3

T-y, T-4

figure 3.20 example : caller_callee-construct, manager STD

The manager prescribes initially subprocess S3 for the calli ng employee, it is waiting for the call . When the caller enters its
trap T-3, i.e. executes the call (and the callee is ready in its trap T-x) the manager can make the transition to the next state.
Here it prescribes S4 for the caller, thereby allowing it to proceed in its next subprocess. This has the effect that the caller
does not wait for the result of the called operation but proceeds right away after the manager has started the called
operation.

Software Process Modeling
in SOCCA

page :
version : 0.10

17

ACT_
OP_1

NON-
OP_1

OP_1
ASKED

CALL_
OPERATION OPERATION

ASKED

T-3

figure 3.21 example : caller_callee-construct, caller subprocess S3

ACT_
OP_1

NON-
OP_1

OP_1
ASKED

OPERATION
ASKED

T-4

figure 3.22 example : caller_callee-construct, caller subprocess S4

The trap T-4 in the caller is chosen as big as possible to make the communication as asynchronous as possible. Also the
trap T-3 can chosen bigger than one state, so as to allow more asynchronism before (and during) the execution of the
called operation.

An important variant of the caller_callee-construct is the case when the caller has to wait for the return of a result of the
callee. This ‘caller waits’ -construct can be modeled in two ways. These are called 1e and 2e variant of the ‘caller waits-
construct.

The caller waits-construct as described here is the 1e variant of the caller waits-construct. The 2e variant of the caller waits-
construct is described in the paragraph ‘waiting_caller_proceed-construct’ of this chapter.

In the case of the 1e variant of the caller waits-construct, the manager and the traps of the callee are a littl e more
complicated then those of the normal caller_callee-construct (‘normal’ means that the caller does not wait).

 (S1 or S2),
 S3
(NEUTRAL)

S2, S3

 (A)

S1, S4

 (B)

T-3, T-b

T-4

T-1, T-3

T-2a

figure 3.23 example : caller_callee-construct, manager STD

T-1

OPERATION
NOT ACTIVE

OPERATION
ENDED

figure 3.24 example : caller_callee-construct, callee subprocess S1

ACT_
OPERATION

T-2b

OPERATION
NOT ACTIVE

OPERATION
ACTIVATED

OPERATION
ENDED

T-2a

figure 3.25 example : caller_callee-construct, callee subprocess S2

Software Process Modeling
in SOCCA

page :
version : 0.10

18

In its neutral state the manager prescribes initially subprocess S1 for the callee and S3 for the caller. When the caller enters
its trap T-3, i.e. executes the call (and the callee is ready in its trap T-1) the manager can make the transition to the state A.
Here it prescribes S2 for the callee and S3 for the caller (i.e the caller stays in subprocess S3). When the callee has entered
trap T-2a the manager can transit back to its neutral state. Now it prescribes S2 (instead of S1) for the callee and S3 for the
caller. If the callee has finished its action, i.e it has entered trap T2-b, the manager can transit to state B. Here it prescribes
S1 for the callee and S4 for the caller (i.e. the caller is allowed to proceed). When the caller enters T-4, the manager can
transit back to its neutral state. Here it prescribes S1 again for the callee.

So the manager prescibes in its neutral state either S1 or S2 for the callee, depending on which state it was in before
entering its neutral state.

The act-construct and the caller_callee-construct can be used in different combinations. The trap sizes of the caller and the
callee are chosen to suit the process that is modeled. Also the choice of the ‘caller wait’ -variant or the ‘caller does not
wait’ -variant depends on the actual process.

3.3.3 Only internal action

When an internal STD calls no other operation during its execution it is modeled by the ‘only-internal_action’ -construct.
The only_internal_action-construct STD is a generic STD, with the states ‘operation not active’ , ‘operation asked’ and
‘operation ended’ and the transition labels ‘act_operation’ and ‘execute internal action’ . When this construct is used
during actual modeling, the generic STD is shown in combination with a table that specifies the operation names and the
internal actions that they perform.

ACT_
OPERATION

OPERATION
NOT ACTIVE

OPERATION
ASK ED EXECUTE

INTERNAL
ACTION

OPERATION
ENDED

OPERATION INTERNAL ACTION

CH_ST_TO_SCB UPDATE STATUS ATTRIBUTE TO SCB
CH_ST_TO_CCB UPDATE STATUS ATTRIBUTE TO CCB
CH_ST_TO_REJECTED UPDATE STATUS ATTRIBUTE TO REJECTED

figure 3.26 only_internal_action-construct : generic STD with specifying table

The subprocesses and traps in the only_internal_action-construct are according to the normal act-construct. When the
internal action updates an attribute then the internal action has to be finished before the operation may be called again
thereby guaranteeing the correct sequential updating of this attribute. This forces a small trap in the second subprocess.

OPERATION
NOT ACTIVE

OPERATION
ASKED EXECUTE

INTERNAL
ACTION

OPERATION
ENDED

T-X

figure 3.27 only_internal_action-construct : subprocess SX

ACT_
OPERATION

OPERATION
NOT ACTIVE

OPERATION
ASK ED EXECUTE

INTERNAL
ACTION

OPERATION
ENDED

T-Y

figure 3.28 only_internal_action-construct : subprocess SY, large trap

Software Process Modeling
in SOCCA

page :
version : 0.10

19

ACT_
OPERATION

OPERATION
NOT ACTIVE

OPERATION
ASKED EXECUTE

INTERNAL
ACTION

OPERATION
ENDED

T-Z

figure 3.29 only_internal_action_construct : subprocess SZ, small trap

3.3.4 No-operation (nop)

When an operation has only an internal action which performs no function, the operation is called a ‘no-operation’ (nop).

ACT_
OPERATION

OPERATION
NOT ACTIVE NOP

(no-operation)

READYOPERATION
ASK ED

figure 3.30 no-operation : internal STD

The sole purpose of such an operation is to enable the corresponding transition of the external STD within the existing
SOCCA framework.

3.3.5 Autonomous behavior

When an internal behavior of a class is initiated by the object itself instead of being called from the outside, this is called
‘autonomous behavior’ by the class. This can be interpreted as a special case of the caller_callee-construct. The internal
STD is started with only the callee part of the caller_callee-construct (this being the act-construct). The caller part of the
caller_callee-construct is simply left out.

3.3.6 Consolidated Prescribed Subprocesses & Traps Logical Formula

The manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager STD are
labeled with a combination of traps.

When modeling a larger process, the convention to show all the prescribed subprocesses and all the traps in the actual
figure of the manager STD can no longer be followed. The reason is that there is simply not enough space in the figure.
Therefore a shorthand notation is used. The states of the manager STD are provided with the text CPS1, CPS2 etc. The
transitions of the manager STD get the labels TLF1, TLF2 etc.

The notation CPSx in the STD stands for Consolidated Prescribed Subprocesses and is a set of CCx’s. The notation CCx
in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-callee combination.
The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that enables the transition.

The CPSs, CCs, and TLFs are then defined in the text following the figure of the manager STD.

This idea can be taken one step further. Since the manager STD is always equal to the external STD, there is no need
to make a separate figure of the manager STD. The external STD now ‘doubles’ as the manager STD.

The CPSx’s now get the same name as the state for which they are valid. E.g. if ‘ disc_starting_pr_count_two_phase_
ended’ is the name of a state in some external STD, it will be also the name of the CPS for that state in the manager STD.
The TLF-x’s will get the same name as the operation that is started when the transition is taken. E.g. if
‘pr_count_two_phase_ ended’ is the name of the operation that is started (indicated in the external STD), it is also the
name of the TLF that is guarding the transition in the manager STD. Transitions with no TLF (with no name in the

Software Process Modeling
in SOCCA

page :
version : 0.10

20

external STD) are automatic transitions (unless otherwise indicated in the TLF-definitions). Traps that are not mentioned
in the TLF are don’ t cares.

The name of CCx’s will i nclude the full names of the caller and callee operations separated by a tilde (~) character. E.g.
the CC of the caller operation ‘cu_project_li fe_cycle’ and the callee ‘pr_project_li fe_cycle’ will be named
‘cu_project_li fe_cycle ~ pr_project_li fe_cycle’ .

3.3.7 Subprocess and Trap-naming conventions

Subprocesses and traps will be given as much of their full name as is necessary to avoid ambiguity. This full name is
constructed with the ‘dot’ -notation.

E.g. ‘cu_project_li fe_cycle.S1’ is subprocess S1 of the operation ‘cu_project_li fe_cycle’ . If there are more subprocesses
with the same name prescribed to an operation, the manager prescribing each subprocess will be added. E.g.
‘cu_project_li fe_cycle.S1_wrt_project’ . This is the subprocess S1 with respect to (wrt, prescribed by) the manager of the
class ‘project’ . In the same way the naming of the traps is handled. E.g. ‘cu_project_li fe_cycle.S1.T1_wrt_project’ is the
trap T-1 prescribed by the ‘project’ manager STD in the subprocess S1 (which is also prescribed by the ‘project’ manager
STD) of the operation ‘cu_project_li fe_ cycle’ . If the class of an operation is not clear, the class will be prefixed to the
operation name. E.g. ‘customer.cu_project_ li fe_cycle’ is the operation ‘cu_start_project_li fe_cycle’ of the class
‘customer’ .

3.3.8 Multiplicity of concurrent STDs

Each class has one external STD and one or more internal STDs. The external STD describes the sequence in which the
operations of the class can be started. The internal STDs describe the behavior of the operations of the class. These
external and internal STDs are on ‘class’ -level. They are ‘ templates’ that are used by the objects of that class.

An object has an external STD (equivalent to the class-external STD) and internal STDs (equivalent to the class-internal
STDs). These external and internal STDs are on ‘object’ -level.

As already mentioned in the paragraph ‘communication’ of this chapter, all behavior STD’s, internal and external, are
seen as parallel processes. Conceptually this means that each internal and external STD (on the ‘object’-level) is
presumed to execute on its own dedicated processor.

When an object is created, its external STD starts executing. When a call to an operation of an object is serviced (by the
external STD), the appropriate internal STD starts executing.

It is possible for an object to have multiple instances of the same internal STD executing concurrently. It is also possible
for an object to have multiple instances of its external STD executing concurrently.

3.3.8.1 Internal STDs

When an internal STD is executing, and another call (of the operation it represents) is about to be serviced (by the external
STD) then there are two possibiliti es. What happens depends on the ‘multiplicity of concurrent executing STD instances’
of that internal STD.

a. The ‘multiplicity of concurrent executing STD instances’ is zero or one. In this case the call i s not serviced.
 It will only be serviced when the current instance of the internal STD finishes its execution.

b. The ‘multiplicity of concurrent executing STD instances’ is zero or more. In this case the call i s serviced.
 Another instance of the internal STD starts executing. This instance will execute concurrently with the first
 instance.

The ‘multiplicity of concurrent executing STD instances’ is indicated in the ‘non-active’ state of the internal STD. A
multiplicity of zero or more is indicated by solid circle inside the non-active state. A multiplicity of zero or one is indicated
by hollow circle inside the non-active state. The multiplicity can also be a definite number. E.g. there can be at most 5
instances executing concurrently. In this case the number (5) is indicated next to the solid circle in the non-active state.

Software Process Modeling
in SOCCA

page :
version : 0.10

21

The default multiplicity of an internal STD is zero or more. An internal STD with no multiplicity indication in its starting
state has this default multiplicity.

ACT_
AM_REQUEST_
PROPOSAL_(X)

NON-
AM_REQUEST_
PROPOSAL_(X)

AM_REQUEST_
PROPOSAL_(X)
ASKED CALL_

MB_REQUEST_
DECISION_(X)

MB_REQUEST_
DECISION
ASKED

figure 3.31 example : internal STD, multiplicity of concurrency ‘zero or one’

ACT_
AM_REQUEST_
PROPOSAL_(X)

NON-
AM_REQUEST_
PROPOSAL_(X)

AM_REQUEST_
PROPOSAL_(X)
ASK ED CALL_

MB_REQUEST_
DECISION_(X)

MB_REQUEST_
DECISION
ASK ED

figure 3.32 example : internal STD, multiplicity of concurrency ‘zero or more’

3.3.8.2 External STDs

Normally only one instance of an external STD will be executing. This is indicated by the hollow littl e circle in the start
state of the external STD. Since the multiplicity of zero or one is the default multiplicity of an external STD, the hollow
circle-indication is normally not shown in an external STD. If the multiplicity of concurrency is zero or more, a solid littl e
circle is shown in the start state of the external STD.

The rule for concurrently executing external STDs is as follows. If no instance of the external STD is currently executing,
and the operation labeling the (a) transition leaving the start state is called, the external STD starts executing (and it starts
the called operation). If there is currently executing an instance of the external STD and the operation labeling the (a)
transition leaving the start state is called, two possibliti es exist.

a. The ‘multiplicity of concurrent executing STD instances’ is zero or one. In this case nothing will happen.

b. The ‘multiplicity of concurrent executing STD instances’ is zero or more. In this case another instance of
 the external STD starts executing (and the called operation is started (if possible)). This instance will execute

 concurrently with the first instance. Both external STDs are valid for the object at the same time.

ENDPHASE 2

CU_QUERY_REQUIREMENT_(X)

CU_AGREE_PROJ_MAN_DOC_(X)

START

figure 3.33 example : external STD, multiplicity of concurrency ‘zero or more’

3.3.9 Simultaneous_call-construct

It is possible to model one-to-many communication in SOCCA by introducing the ‘simultaneous_call ’ -construct. The
prefix for the transition label in the internal STD is ‘sim_’ . This indicates the simultaneous calli ng of the operation
‘operation’ of x objects of the same class (or of different classes).

Software Process Modeling
in SOCCA

page :
version : 0.10

22

ACT_
OPERATION

A B
SIM _CALL _
OPERATION_B

C

figure 3.34 simultaneous_call : internal STD of an operation that places a sim_call

The functioning of a sim_call will be explained in an example. In the example the internal operation of the above figure
places a sim_call . The sim_call will be to the operation ‘operation_b’ of three other objects. These objects are of the same
class and have the object-identification ‘obj9’ , ‘obj21’ and ‘obj137’ .

First the internal operation of the caller is shown with an ‘exploded’ view of the states ‘B’ and ‘C’ .

CALL ALL
OPERATIONS
OF COMBINATION 1 COMB 1

ASKED

 (C3)

ALL POSSIBLE COMBINATION OF CALLEES

A TRANSITION FOR EVERY POSSIBLE
COMBINATION OF CALLEES

 COMB 1
 TO BE CALLED

 (B3)

CALL ALL
OPERATIONS
OF COMBINATION 2

CALL ALL
OPERATIONS
OF COMBINATION 3

 COMB 2
 TO BE CALLED

 (B4)

COMB 2
ASKED

 (C4)

 COMB 3
 TO BE CALLED

 (B5)

COMB 3
ASKED

 (C5)

SELECTOR

 (B2)

B1A

figure 3.35 simultaneous_call : internal STD of an operation that places a sim_call (exploded view)

The state ‘B’ has the sub-states ‘B1’ , ‘B2’ (the ‘selector’ state) and ‘B3’ until ‘Bn’ (‘combination x to be called’ -states).
There are as many ‘combination x to be called’ -states as there are possible combinations of calls.

The state ‘C’ has the sub-states ‘C3’ until ‘Cn’ (‘combination x asked’-states). There are as many ‘combination x asked’-
states as there are possible combinations of calls.

When the internal STD arrives in state ‘B1’ it transits to state ‘B2’ , the selector state. Here it determines which
combination of calls it has to perform. It then goes to either ‘B3’ or ‘B4’ or .. or ‘Bn’ according to the combination to be
called. From there it transits to the corresponding ‘C3’ until ‘Cn’ state. When it makes the transition it calls all the
operations in the combination.

In this example it is assumed that ‘combination 3’ consists of ‘ obj9’ , ‘obj21’ and ‘obj137’ . So in the example the internal
STD of the caller goes from the selector state to the ‘B3’ state. It then makes the transition to the ‘C3’ state. While making
the transition it calls ‘obj9.operation_b’ and ‘obj21.operation_b’ and ‘obj137.operation_b’ .

Because of the fact that the internal STD of the caller can call the operation ‘operation_b’ of all possible objects that
export that ‘operation_b’ , the internal STD of the caller is an employee of all the manager STDs of the exporting objects.
All these manager STDs prescribe subprocesses to the internal STD of the caller. The actual subprocess of the internal
STD of the caller is (at any point in time) the intersection of all these prescribed subprocesses.

Software Process Modeling
in SOCCA

page :
version : 0.10

23

On a higher level this results in the ‘normal’ caller subprocesses S3 and S4 of the caller_callee-construct. Also the
‘normal’ traps T-3 and T-4 are the result of the intersection.

ACT_
OPERATION

A B
SIM_CALL_
OPERATION_B

C

T-3

figure 3.36 simultaneous_call : ‘normal’ subprocess S3 and trap T-3 for the caller operation

ACT_
OPERATION

A B C

T-4

figure 3.37 simultaneous_call : ‘normal’ subprocess S4 and trap T-4 for the caller operation

To see that this is indeed the case, the subprocesses S3 and S4 will be looked at with the states ‘B’ and ‘C’ in an exploded
view. The subprocesses prescibed by the manager STD of ‘ obj21’ will be looked at in detail . It was assumed that ‘obj21’
was part of combination 3. It is further assumed that ‘obj21 is part of combination 1. Also it is assumed that ‘obj21’ ,
‘obj9’ and ‘obj137’ are not part of combination 2. The other possible combinations (4 until n) are not part of the example.

When the sim_call has not yet been made, then the manager STD of object x prescribes the subprocess S3_wrt_objx.
In this subprocess S3_wrt_objx some of the states ‘combination asked’ are traps. Namely precisely those states
‘combination asked’ f or which ‘objx’ is part of that combination.

The subprocess S3_wrt_obj21 prescribed by the manager STD of ‘ obj21’ , which is part of combination 1 and combination
3, is shown in the next figure. It has two traps T-3_comb1_wrt_obj21 and T-3_comb3_wrt_obj21.

CALL ALL
OPERATIONS
OF COMBINATION 1 COMB 1

ASKED

 (C3)

ALL POSSIBLE COMBINATION OF CALLEES

A TRANSITION FOR EVERY POSSIBLE
COMBINATION OF CALLEES

 COMB 1
 TO BE CALLED

 (B3)

CALL ALL
OPERATIONS
OF COMBINATION 2

CALL ALL
OPERATIONS
OF COMBINATION 3

 COMB 2
 TO BE CALLED

 (B4)

COMB 2
ASKED

 (C4)

 COMB 3
 TO BE CALLED

 (B5)

COMB 3
ASKED

 (C5)

SELECTOR

 (B2)

B1A

T-3_COMB1_WRT_OBJ21

T-3_COMB3_WRT_OBJ21

figure 3.38 simultaneous_call : prescribed subprocess S3_wrt_obj21

Software Process Modeling
in SOCCA

page :
version : 0.10

24

The sim_call i n this example is a sim_call to ‘obj9’ , ‘obj21’ and ‘obj137’ . That is to say combination 3. After this
sim_call has been made, and after obj21 has serviced it, the manager STD of obj21 will prescribe S4_wrt_obj21.

The manager STD of obj21 knows that the sim_call was for combination 3, because the caller STD has entered the trap T-
3_comb3_wrt_obj21. The subprocess S4_wrt_obj21 that the manager STD of obj21 now prescribes contains the state
‘comb3 asked’ (‘C3’) plus the states ‘A’ , ‘B1’ until ‘Bn’ . It has the trap T4_wrt_obj21, which contains the states ‘A’ , ‘B1’
until ‘Bn’ .

N.B. if the caller would have entered ‘T-3_comb1_wrt_obj21 (if it made the sim_call to combination 1), then the manager
STD of obj21 would have prescribed another S4_wrt_obj21. Namely instead of the state ‘comb3 asked’ it would contain
the state ‘comb1 asked’ .

The next figure shows the prescibed subprocess S4_wrt_obj21 when the sim_call has been made to combination 3.

ALL POSSIBLE COMBINATION OF CALLEES

A TRANSITION FOR EVERY POSSIBLE
COMBINATION OF CALLEE S

 COMB 1
 TO BE CALLE D

 (B3)

 COMB 2
 TO BE CALLE D

 (B4)

 COMB 3
 TO BE CALLE D

 (B5)

COMB 3
ASKED

 (C5)

SELECTOR

 (B2)

B1A

T-4_WRT_OBJ21

figure 3.39 simultaneous_call : prescribed subprocess S4_wrt_obj21 after sim_call to combination 3

Now the prescribed subprocesses by the manager of one object (obj21) are known, the result of the intersection of all the
prescribed subprocess can be shown.

Going back to the point in the example where the sim_call has not been placed. The manager STD of obj21 prescribes
S3_wrt_obj21. All other manager STD (of all other objects) also prescribe an equivalent subprocess S4_wrt_objx. When
the intersection of all these subprocesses is taken, the actual subprocess as shown in the figure below is the result. All the
states ‘combination x asked’ are now traps. The sim_call can take place.

Software Process Modeling
in SOCCA

page :
version : 0.10

25

CALL ALL
OPERATIONS
OF COMBINATION 1 COMB 1

ASKED

 (C3)

ALL POSSIBLE COMBINATION OF CALLEES

A TRANSITION FOR EVERY POSSIBLE
COMBINATION OF CALL EES

 COMB 1
 TO BE CALLED

 (B3)

CALL ALL
OPERATIONS
OF COMBINATION 2

CALL ALL
OPERATIONS
OF COMBINATION 3

 COMB 2
 TO BE CALLED

 (B4)

COMB 2
ASKED

 (C4)

 COMB 3
 TO BE CALLED

 (B5)

COMB 3
ASKED

 (C5)

SELECTOR

 (B2)

B1A
T-3_COMB1

T-3_COMB2

T-3_COMB3

figure 3.40 simultaneous_call : actual subprocess S3

On a higher level this actual subprocess S3 is indeed the ‘normal’ caller subprocess S3 of the caller_callee-construct. The
traps T-3_comb1 until T-3_combn are, on a higher level, the ‘normal’ trap T-3 of the caller S3 subprocess.

Now the sim_call takes place. The sim_call i n this example is a sim_call to ‘obj9’ , ‘obj21’ and ‘obj137’ . That is to say
combination 3. The three managers STD (of ‘ obj9’ , ‘obj21’ and ‘obj137’) will not react all at the same time. For the
example it is assumed that the manger STD of obj21 reacts first. It will prescribed S4_wrt_obj21. The other two managers
still prescribe S3_wrt_obj9 and S3_wrt_obj137. All other manager STD, of objects not in combination 3, will still
prescribe their S3_wrt_objx.

The actual subprocess of the caller internal STD is again the result of the intersection of all these prescribed subprocesses.
It is shown in the next figure.

ALL POSSIBLE COMBINATION OF CALL EES

A TRANSITION FOR EVERY POSSIBLE
COMBINATION OF CALLEE S

 COMB 1
 TO BE CALLE D

 (B3)

 COMB 2
 TO BE CALLE D

 (B4)

 COMB 3
 TO BE CALLE D

 (B5)

COMB 3
ASKED

 (C5)

SELECTOR

 (B2)

B1A

T-3_COMB3_WRT_
THE_OTHER_
OBJECTS_IN_COMB3

T-4_WRT_OBJ21

Software Process Modeling
in SOCCA

page :
version : 0.10

26

figure 3.41 simultaneous_call : intermediate actual subprocess, after manager of obj21 has reacted

The actual subprocess is an ‘ intermediate’ one. The manager STD of obj21 prescribes S4_wrt_obj21, so trap T-
4_wrt_obj21 is in the actual subprocess. The managers of obj9 and obj137 still prescribe S3_wrt_obj9 and
S3_wrt_obj137, so trap T-3_comb3_wrt_other_objects_in_comb3’ is also in the actual subprocess. The internal STD of
the caller has placed the sim_call . It is in the state ‘comb3 asked’ . It can not leave this state (yet). It has to wait until the
managers of obj9 and obj137 have serviced the sim_call also.

This intermediate actual subprocess is valid until both the manager of obj9 and of obj137 have serviced the sim_call and
have prescribed S4_wrt_obj9 and S4_wrt_obj137.

When this has happened, the intersection of the then prescribed subprocesses will result in a new actual subprocess. This
(new) actual subprocess is shown in the next figure.

ALL POSSIBLE COMBINATION OF CALLEES

A TRANSITION FOR EVERY POSSIBLE
COMBINATION OF CALLEE S

 COMB 1
 TO BE CALLE D

 (B3)

 COMB 2
 TO BE CALLE D

 (B4)

 COMB 3
 TO BE CALLE D

 (B5)

COMB 3
ASKED

 (C5)

SELECTOR

 (B2)

B1A

T-4_COMB3

figure 3.42 simultaneous_call : actual subprocess 4

On a higher level this actual subprocess S4 is indeed the ‘normal’ caller subprocess S4 of the caller_callee-construct. The
trap T-4_comb3 is, on a higher level, the ‘normal’ trap T-4 of the caller S4 subprocess.

Now the internal STD of the caller can leave the state ‘comb3 asked’ . When it does so and enters the trap T-4_comb3, the
three manager STDs (of ‘ obj9’ , ‘obj21’ and ‘obj137’) will again prescribe the subprocesses S3_wrt_obj9, S3_wrt_obj21
and S3_wrt_obj137. All other managers (of objects not in combintion 3) are still prescribing their S4_wrt_objx
subprocesses. So, at this point the actual subprocess is again S3. The internal STD of the caller is ready again to place
another sim_call . The example has come full circle.

It can readily be seen that every ‘normal’ call i n an internal STD is a special case of a simultaneous call . In the selector
state the ‘combination’ consisting of only that one call i s chosen. Because a call to one object is the most frequent
occurence of the simultaneous call , the prefix ‘sim_’ is omitted in this case.

3.3.10 Discriminator-construct

It is possible that one internal operation can be called by more than one caller. This is handled in SOCCA by a
‘discriminator’ -construct in the external (and manager) STD. The prefix for the state name in the external STD is ‘disc_’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

27

This indicates that the state can discriminate between more than one caller object. The external STD can be described (at a
higher abstraction level) by the following figure.

A C
OPERATION DISC_

STARTING
OPERATION
 (B)

figure 3.43 discriminator_state : external STD

If there is only one caller of the operation ‘operation’ (see figure above) when the STD is in state A, then this caller is
serviced. When there is more than one caller, then only one of these callers is serviced. The other callers have to wait until
the STD returns again in state A.

The state A of the external STD (see figure below) can refined in the substates A1 and A2 (the ‘discriminator’ state). The
state B (‘disc_starting_operation’) can be refined in the substates B1 until Bn (‘starting operation’). There are as many
substates (B1, B2, .., Bn) as there are possible callers.

CA1

A TRANSITION FOR EVERY POSSIBLE
CALLE R

DISCRIMINATOR

 A2

STARTING
OPERATION

 B1

OPERATION

ALL POSSIBLE CALLE RS

STARTING
OPERATION

 B2

STARTING
OPERATION

 B3

STARTING
OPERATION

 B4

figure 3.44 discriminator_state : external STD, refined

The substates B1 until Bn are all ‘starting’ -states in which the internal operation ‘operation’ is started. The discriminator
state is a ‘switching’ state. From the discriminator state exits a transition to every substate B1 until Bn. Which transition is
taken depends on the caller. Every caller corresponds with one particular transition.

The manager STD containing a discriminator state is manager of all possible calli ng objects. In servicing a call the
manager will allow only one caller to proceed with its next behavior restriction. All other callers stay in their current
behavior restriction. The manager can be described (at a higher abstraction level) by the following figure (this is an
example of ‘ caller does not wait’).

Software Process Modeling
in SOCCA

page :
version : 0.10

28

Sx, Sp
T-x and T-p

Sy, Sq Sx, Sp
T-y and T-q

figure 3.45 discriminator_state : manager STD

The states of this manager STD can be refined in the same way as those of the external STD. Suppose that the callee has
two behavior restrictions. The first behavior restriction is Sx. When the callee is in trap T-x it can be started (again). The
second behavior restriction of the callee is Sy. Trap T-y indicates that the callee is started. Suppose that all callers also
have two behavior restrictions. The first behavior restriction of all callers is Sp. They enter the trap T-p after executing
their call to the operation ‘operation’ . The second behavior restriction of all callers is Sq. The entering of the trap T-q
indicates that a caller is proceeding with it second behavior restriction.

Sx,
obj1.Sp
obj2.Sp
obj3.Sp
objX.Sp
……

A TRANSITION FOR EVERY POSSIBLE
CALLE R

obj1.T-p

ALL POSSIBLE CALLE RS

T-x and (obj1.T-p or obj2.T-p or obj3.T-p or
 obj4.T-p or …. or objX.T-p or ….)

 FOR ALL POSSIBLE CALLE R OBJECTS

obj2.T-p

obj3.T-p

objX.T-p

T-y and obj1.T-q

T-y and obj2.T-q

T-y and obj3.T-q

T-y and objX.T-q

Sx,
obj1.Sp
obj2.Sp
obj3.Sp
objX.Sp
…… Sy,

obj1.Sq
obj2.Sp
obj3.Sp
objX.Sp
……

Sx,
obj1.Sp
obj2.Sp
obj3.Sp
objX.Sp
……

Sy,
obj1.Sp
obj2.Sq
obj3.Sp
objX.Sp
……

Sy,
obj1.Sp
obj2.Sp
obj3.Sq
objX.Sp
……

Sy,
obj1.Sp
obj2.Sp
obj3.Sp
objX.Sq
……

figure 3.46 discriminator_state : manager STD

Initially in state ‘A1’ the manager prescribes Sx for the internal operation and obj1.Sp, obj2.Sp, obj3.Sp, …, objxX.Sp
(call detection) for all the possible callers. The manager can make the transition to the discriminator state when the internal
operation has entered T-x and some object has made a call (i.e if [T-x and (obj1.T-p or obj2.T-p or obj3.T-p or obj4.T-p or
……)] is true). In the discriminator state the manager prescribes still Sx for the internal operation and obj1.Sp, obj2.Sp,
obj3.Sp, …, objxX.Sp for the callers. Suppose object 3 has made the call . The manager then transits out of the
discriminator state taking the transition labeled with the trap obj3.T-p. It arrives in the ‘starting’ -state B3. Here the
manager prescribes Sy for the internal operation thereby starting it. It further prescribes obj1.Sp, obj2.Sp, obj3.Sq,
obj4.Sp, …., objXSp for the calli ng objects. So it allows the calli ng object to proceed with its next subprocess while not
changing the prescribed subprocesses of the not-calli ng objects. When the internal operation has entered trap T-y and the
caller has entered its trap obj3.T-q the manager can transit to the state ‘C’ where the same subprocesses as in state ‘A1’ are
again prescribed.

It can readily be seen that every ‘normal’ starting state in an external STD is indeed a discriminator state. Because the
discriminating between different calli ng objects belonging to the same class is the most common occurrence of the
discriminator state, the prefix ‘disc_’ is omitted in this case. But when the calli ng objects belong to different classes the
prefix ‘disc_’ is applied to the state name. So a state named ‘disc_..’ discriminates explicitly between callers belonging to
different classes as wel as implicitly between calli ng objects belonging to the same class within those different classes.

Software Process Modeling
in SOCCA

page :
version : 0.10

29

NEUTRAL

OPERATION

DISCRIMINATOR

STARTING
OPERATION

STARTING
OPERATION

STARTING
OPERATION

STARTING
OPERATION

figure 3.47 example : manager STD discriminating between callers of 4 different classes

The figure above shows the explicit discriminating between callers of 4 different classes. There is a starting state per class.
Each starting state is in itself again an (implicit) discriminator state that discriminates between different callers of that
class.

3.3.11 Waiting_caller_proceed-construct

The situation that the caller has to wait (after it has placed the call) for the callee to return some result, can be modeled by
two variants of the caller_callee-construct. The 1e variant of the caller waits-construct is already described in the paragraph
‘caller_callee-construct’ of this chapter.

In this paragraph the 2e variant of the caller waits-construct will be described. In this 2e variant no extra trap is needed in
the subprocesses of the employees. Still some additional information is needed in this 2e variant. The manager has to know
if a caller has already placed a call to the callee. In general the manager has to know which caller has called which callee.
This information is called the ‘caller_callee-relation’ (see also the ‘caller_callee-relation’ paragraph).

The waiting_caller-proceed-construct (= 2e variant of caller waits) is described using an example in which the caller
‘operation_b’ places a call to the callee ‘operation_a’ and has to wait for a result. It is assumed that the callee is the only
operation of its class.

The external STD of the class of the callee will have a neutral state, a starting state in which the callee is started and a
‘waiting caller proceed’ state in which the caller is allowed to proceed.

OPERATION_A

NEUTRAL STARTING_
OPERATION_A

WAITING
CALLER
PROCEED

figure 3.48 example : external STD of the callee

The corresponding manager STD of the callee class reflects these states.

T-1 and T-3 and
not (caller-callee relation)

T-2T-4

S2, S3S1, S3S1, S4

T-1 and T-3 and
(caller-callee relation)

figure 3.49 example : manager STD of the callee

It can be seen from the figure of the manager STD that the ‘ trap information’ guarding the transition from ‘neutral’ to the
starting state is the same as that guarding the transition from ‘neutral’ to the state ‘waiting caller proceed’ . The manager
needs extra information to decide which transition to make. This extra information is the ‘caller_callee’ -relation. This
relation exists between a caller and a callee when the caller has already placed a call to the callee. When the caller has not
placed a call , the relation does not exist.

The subprocesses and traps in the caller and callee are just according to the normal caller_callee-construct. They are S1,
S2, S3 and S4 and T-1, T-2, T-3 and T-4. They are shown in the next four figures.

Software Process Modeling
in SOCCA

page :
version : 0.10

30

NON
OPERATION_A

OPERATION_A
ASKED EXECUTE

INTERNAL
ACTION

OPERATION_A
ENDED

T-1

figure 3.50 example : subprocess S1 of the callee (operation_a)

ACT_
OPERATION_A

NON-
OPERATION_A

OPERATION_A
ASK ED EXECUTE

INTERNAL
ACTION

OPERATION_A
ENDED

T-2

figure 3.51 example : subprocess S2 of the callee (operation_a)

ACT_
OPERATION_B

NON-
OPERATION_B READYOPERATION_B

ASKED CALL_
OPERATION_A

OPERATION_A
ASKED

T-3

figure 3.52 example : subprocess S3 of the caller (operation_b)

ACT_
OPERATION_B

NON-
OPERATION_B

READY
OPERATION_B
ASKED

OPERATION_A
ASKED

T-4

figure 3.53 example : subprocess S4 of the caller (operation_b)

Initially the manager is in its state ‘neutral’ . Here it prescribes S1 for the callee and S3 for the caller. When the callee is
ready in its trap T-1 and the caller enters in its trap T-3 (places the call), and there is no caller_calll ee-relation (the caller
has not yet called the callee), then the manager can (and eventually will) make the transition to its state ‘starting
operation_a’ . Here it prescribes S2 for the callee and still S3 for the caller (i.e. the caller has to wait in its trap T-3). When
the callee enters its trap T-2 (it starts executing) the manager can and will t ransit back to ‘neutral’ . Here it prescribes S1 for
he callee and S3 for the caller (i.e. the caller still has to wait in its trap T-3).

When the callee finishes executing (after having past some result to the waiting caller), it enters its trap T-1. Now the
callee is in T-1 and the caller is in T-3 and there exists a caller_callee-relation. The manager can and will make the
transition to its state ‘waiting caller proceed’ . Here it prescribes S1 for the callee and S4 for the caller (i.e. he caller is
allowed to proceed in its next subprocess). When the caller enters now its trap T-4, the manager can and will make the
transition back to ‘neutral’ .

discriminator_waiting_caller_proceed-construct

When there are more then one operation in a class for which the callers have to wait for a result, they all have a
corresponding ‘waiting caller proceed’-state in the manager STD of this class. These ‘waiting caller proceed’-states are
aggregated into one discriminator state ‘disc_waiting_caller_proceed’ . In this discriminator state the manager determines

Software Process Modeling
in SOCCA

page :
version : 0.10

31

which caller had called some terminated callee. This caller is then allowed to proceed. (Due to time limitations no
generalization of this construct can be given in this thesis. An example of the use of the ‘disc_waiting_caller_proceed’-
construct can be found in the SOCCA model of the KPA ‘Software Project Planning’ , phase 2 of the process fragment
‘writing project management documents’ , class ‘head production section’ .)

3.3.12 Caller_Callee-relation

The ‘waiting_caller_proceed-construct’ uses the caller_callee-relation (as explained in the paragraph ‘waiting_caller
_proceed-construct’).

This relation exists between a caller and a callee when the caller has placed a call to the callee. When the caller has not
placed a call , the relation does not exist. This information comes from some internal bookkeeping of the manager. If an
operation is started by the manager on behalf of a caller, a caller-callee relation is initiated. If both the callee and the caller
have terminated, the particular caller-callee relation is cancelled in the internal administration of the manager.

The caller_callee-relation includes information down to the STD-instance level. It keeps track which instance of a callee
internal STD is executing on behalf of which instance of the caller internal STD.

3.3.13 Counting-construct

A common situation in a real li fe process is ‘counting’ . To model this in SOCCA, the counting-construct can be used.

The counting-construct is incorporated in the external STD of a class. It works in conjunction with a ‘nop’ (no-operation)
internal operation. The example below shows a ‘ two counting’ -construct. The operation ‘pr_count_two _phase_ended’ is
a ‘nop’ .

STARTING
PR_PROJECT_
LIFE_CYCLE

NEUTRAL

PR_PHASE_ENDED

PR_COUNT_TWO_
PHASE_ENDED

DISC_
STARTING_PR_
PHASE_ENDED

DISC_
STARTING_PR
COUN_TWO_
PHASE_ENDED

PR_COUNT_
TWO_PHASE_
ENDED
AVA ILABLE
 AGAIN

AUTONOMOUS
PR_PHASE_ENDED

STARTING
PR_PHASE_
ENDED

COUNTING STATE

START
PR_PROJECT_
LIFE_CYCLE

PR_COUNT_TWO_
PHASE_ENDED STARTING_PR

COUNT_TWO_
PHASE_ENDED

figure 3.54 example : counting-construct in external STD

The counting state counts the number of events (modeled by calls to its (nop) operation ‘pr_count_two_phase_ended’)
that have to occur before the external STD has to take some action. The action it takes is modeled by the autonomous call
of the external STD to one of its own operations. In the example this is ‘autonomous pr_phase_ended’ .

(Due to time limitations no generalization of this construct can be given in this thesis. An example of the use of the
‘counting’ -construct can be found in the chapter ‘ Integration of process fragment ‘writing project management
documents’’ , class ‘project (control class)’ .)

Software Process Modeling
in SOCCA

page :
version : 0.10

32

3.3.14 Finishing state-indicator / finishing state-construct

The finishing state indicator is used in the integration of SOCCA sub-models into one big SOCCA model. It is applied to
the ‘f inishing’ state of the operation(s) of a sub-model. A ‘f inishing’ state is a state that indicates that a submodel has
progressed far enough in its execution and that it can be terminated (by the ‘control’ object). The notation convention for a
‘f inishing’ state-indicator is an asterix (*).

ACT_
HPRS_PMM_
REQUEST_
APPROVAL_(X)

NON-
HPRS_PMM_
REQUEST_
APPROVAL_(X)

HPRS_PMM_
REQUEST_
APPROVAL_(X)
ASKED

CALL
PMM _REQUEST_
APPROVAL_(X)

PMM _REQUEST_
APPROVAL_(X)
ASKED

figure 3.55 example : finishing state-indicator in internal STD

ACT_
HPRS_PM M_
REQUEST_
APPROVAL_(X)

NON-
HPRS_PM M_
REQUEST_
APPROVAL_(X)

CALL
PM M_REQUEST_
APPROVAL_(X)

PM M_REQUEST_
APPROVAL_(X)
ASKED

HPRS_PM M_
REQUEST_
APPROVAL_(X)
ASKED

CALL_
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED

FINISHING STATE

figure 3.56 example : finishing state-construct (internal STD-part)

The ‘f inishing’ state is in fact an aggregate state. In this state a signal is given to the ‘control’ object that the sub-model
can be terminated. This signal is modeled by a call to an operation of the ‘control’ class. In the example above ‘call pr_
phase_ended’ .

(Due to time limitations no generalization of this construct can be given in this thesis. An example of the use of the
‘f inishing state’ -construct can be found in the chapter ‘ Integration of process fragment ‘writing project management
documents’’ , class ‘project (control class)’ .)

Software Process Modeling
in SOCCA

page :
version : 0.10

33

3.4 Views

A view of an STD is itself also an STD. In this view-STD some parts of the original STD are shown and some parts are
not shown (are hidden). The parts that are shown are those that are of interest for a particular viewer (user of the STD).

So many views on an STD are possible depending on the needs of the user of the STD.

If, for example, in an external STD all the states and transitions are shown that are necesseray to model the communication
(between objects), this is called a ‘communicative view’ . This view is necessary to complete the SOCCA modeling of the
communication.

But when using this same external STD to present the SOCCA model to the ‘end-users’ of the modeled process, another
situation arises. These ‘end-users’ are not interested in the lower level communication details. They only want (need) a
clear picture of the modeled process. Also they are only interested in detail i n the model of their own workfield, if they are
specialists, or in a global model on a higher abstraction level, if they are managers.

For these ‘end-users’ the communication details are ‘f iltered’ out of the external STD and the abstraction level of the STD
is raised. Such an external STD is called an ‘organizational view’ .

Another example, on a more technical level, is the view that a manager STD has on its callee-employee STDs. All the
manager STD is interested in is the ‘act-transition’ in the callee employee. It ‘sees’ only two states in the callee, either it is
‘non-active’ or it is executing. So the ‘manager-STD’ view of a callee employee STD consists of only two states, ‘non-
active’ and ‘active’ and the ‘act-transition’ and ‘ return-transition’ between them.

Two construction methods are possible to construct a view STD from another STD. These are the ‘homomorphic picture’ -
construction and the ‘aggregate state’ -construction.

3.4.1 Homomorphic picture-construction

A homomorphic picture is a structure preserving mapping from one STD to another STD. The mapping function is called
a homomorphism ‘h’ .

When a homomorphic function ‘h’ can be found from one STD ‘A’ to an STD ‘B’ then STD ‘B’ is a view of STD ‘A’ .
This concept is given in [EBE]. The rules for constructing the function ‘h’ are also given in [EBE].

An example of the use of the ‘homomorphic picture’ -construction can be found in the chapter ‘KPA ‘Software
Configuration Management’ , class ‘configuration item’ .

3.4.2 Aggregate state-construction

This construction method has two steps :

- The first step in the aggregate state-construction consists of taking together certain states to form ‘aggregate’ states.

- The second step in the construction is to no longer show the states inside an aggregate state.

The inverse construction is also easily performed. To show more detail i n an STD, some states are ‘exploded’ . That is, the
sub-states within that state are shown again.

An example of the use of the ‘aggregate state’ -construction can be found in the chapter ‘KPA ‘Software Configuration
Management’ , class ‘configuration item’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

34

3.5 Integration of sub-models

The intention of the integration process is not to influence the sub-models that are being integrated. That is to say to make
the modeling of the constituent smaller process fragments independent of their integration. This allows for a separate
modeling of the sub-models (by separate engineers) in a big project. It also facilit ates the update of the total model if there
are any changes required during the li fe time of the model (maintainabilit y). This is according to the accepted software
engineering principle of low coupling between software modules.

In this paragraph the general principles involved in the integration will be discussed. A more detailed description and the
application of the principles to a specific case, can be found in the chapter ‘ Integration of process fragment ‘writing
project management documents’’ .

3.5.1 Algorithm

The algorithm involves the ‘ linking’ together of the external STDs of the classes participating in the sub-models into one
‘ total’ external STD for each class for the integrated model. The states of this ‘ total’ external STD are the states of the
separate external STDs plus intermediate states in between.

A control operation (of the control object) then ‘switches’ the total external STD from one (no longer separate) external
STD (of sub-model 1) to the next (no longer separate) external STD (of sub-model 2). The behavior of a class is thus first
according to the external STD of sub-model 1 and then according to the external STD of submodel 2.

The control operation ‘switches’ the total external STDs of all participating classes at the same time. It ‘switches’ f rom
sub-model to sub-model. The sub-models will execute sequentially.

The above ‘ linking’ of the external STDs takes place when the sub-models are sequential in the integrated model. When
the sub-models are parallel in the integrated model, the linking does not take place. The external STDs stay separate. The
control operation will t hen take care that the separate external STDs run concurrently (both external STDs will be valid at
the same time). The sub-models will now execute in parallel.

The separate steps of the algorithm are :

1. construct the total external STD for each class for :
- sequential integration or
- parallel integration or
- a combination of both

2. define a control class

3. define the control operation

These steps are ill ustrated using a simple example. The example involves just one class, class_a, that participates in two
sub-models, sub-model_1 and sub-model_2. The sub-models will be integrated first sequentially into one bigger model.
Thereafter the parallel integration of the two sub-models will be shown.

3.5.2 Sequential integration

3.5.2.1 Total external STD

Class_a has an external STD for sub_model_1 and an external STD for sub-model_2. These external STDs are shown in a
view that abstracts from all i rrelevant detail . They are shown as just one state.

EXT_STD
CLASS_A
SUB-MODEL_2

EXT_STD
CLASS_A
SUB-MODEL_1

Software Process Modeling
in SOCCA

page :
version : 0.10

35

figure 3.57 example : external STDs of class_a for sub-model_1 and for sub-model_2

As an intermediate step in the construction of the total external STD of class_a, the two external STDs are first ‘extented’
with a start state and a final state. The start state has a transition leaving it and entering the sub-model external STD. The
final state has a transition coming into it from the sub-model external STD. The transition leaving the start state gets the
label ‘change_to_sub-model_x’ . The transition entering the final state gets the label ‘sub-model_ended’ .

EXT_STD
CLASS_A
SUB-M ODEL_1

ENDSTART
CHANGE_
TO_
SUB-M ODEL_1

SUB-M ODEL
ENDED

EXT_STD
CLASS_A
SUB-M ODEL_2

ENDSTART
CHANGE_
TO_
SUB-M ODEL_2

SUB-M ODEL
ENDED

figure 3.58 example : extended external STDs of class_a for sub-model_1 and for sub-model_2

Since in this example the sub-models are sequential in the integrated model, the next step is to connect the two extended
external STDs with each other in such a way that the final state of one sub-model external STD coincides with the start
state of the next sub-model external STD. This ‘coinciding’ state between two phase-external STDs is called an
‘ intermediate’ state.

EXT_STD
CLASS_A
SUB-M ODEL_1

INTERMEDIATESTART
CHANGE_
TO_
SUB-M ODEL_1

SUB-M ODEL
ENDED

EXT_STD
CLASS_A
SUB-M ODEL_2

END
CHANGE_
TO_
SUB-M ODEL_2

SUB-M ODEL
ENDED

figure 3.59 example : total external STD of class_a for integrated model (sequential)

The operations ‘change_to_sub-model_1’ , ‘change_to_sub-model_2’ and ‘sub-model_ended’ are ‘nops’ (no-operations).
They are added to the operations of class_a.

This concludes the construction of the total external STDs of class_a for the integrated model.

Next a control class must be defined. This depends on the process that is being modeled. Sometimes a ‘natural’ candidate
can be found among the existing classes. At other times a control class will have to be specially defined.
For the sake of this example the existence of a control class is assumed.

Next the control operation has to be defined.

3.5.2.2 Control class

The control object models the (higher level) control flow of the integrated process (fragment). It does this by manipulating
the total external STD of the class_a that participates in the constituent (smaller) process fragments. For this purpose the
control object has an internal operation (control operation) which calls the ‘sub-model-changing’ -operations of a total
external STD in sequence.

Software Process Modeling
in SOCCA

page :
version : 0.10

36

SIM _CALL_
CHANGE_
TO_
SUB-MODEL_1

IN SUB-MODEL_1
ASKED

OUT

INTEGRATED MODEL CONTROL

 END

 NON-
CONTROL_
OPERATION

 ACT_
CONTROL_
OPERATION

 CONTROL_
OPERATION
ASKED SIM _CALL_

CHANGE_
TO_
SUB-MODEL_2

SUB-MODEL_2
ASKED

figure 3.60 example : control_operation, internal operation of control class

As can be seen from the figure, the control operation calls the ‘change_to_sub-model_1’ and ‘change_to_sub-model_2’ in
sequence. It uses for this purpose a simultaneous call . In this example there is only one participating class, class_a. Only
the operations of this class are called by the sim_call . When there are more participating classes, the sim_call i s placed to
all participating classes. So all classes will change to the next sub-model simultaneously.

The total external STD of the ‘class_a’ starts in its state ‘start’ . Now the control operation calls ‘change_to_sub-model_1’ .
The total external STD of ‘ class_a’ can and will t ransit to its state ‘ext_STD class_a sub-model_1’ . I.e. the ‘class_a’ will
perform its ‘sub-model_1’ -behavior. Sub-model_1 is executing.

The control operations will continue with its execution and calls ‘change_to_sub-model_2’ . This call i s not (yet) serviced
by the total external STD of ‘ class_a’ because it is not (yet) in a state to do so.

The responsibilit y of knowing when sub-model_1 is ready with all it s actions, rests with the sub-model itself. Only it can
know when it is ready. In the ‘f inishing state’ of its last operation, the ‘class_a’ calls the operation ‘control_sub-
model_ended’ of the control object. (The ‘f inishing state’ is explained in the paragraph ‘f inishing state’ -indicator /
‘f inishing state’ -construct of this chapter).

ACT_
CONTROL_
SUB-M ODEL_
ENDED

NON-
CONTROL_
SUB-M ODEL_
ENDED

CONTROL_
SUB-M ODEL_
ENDED
ASKED

SIM_CALL
SUB-M ODEL_
ENDED

ASKED

figure 3.61 example : control_sub-model_ended, internal operation of control class

This ‘control_sub-model_ended’ operation then ‘sim_calls’ the operation ‘sub-model_ended’ of the ‘class_a’ (and if there
are more participating classes, of all those classes). The total external manager of the ‘class_a’ can and will t ransit to its
state ‘ intermediate’ . I.e. its sub-model_1 behavior will end.

Now is the total external STD of ‘ class_a’ in a state where it can service the call to its operation ‘change_to_sub-model_2’
which the control operations has already placed.

The total external STD of ‘ class_a’ can and will t ransit to its state ‘ext_STD class_a sub-model_2’ . I.e. the ‘class_a’ will
perform its ‘sub-model_2’ -behavior. Sub-model_2 is executing.

Sub-model_2 is ended by a call to the operation ‘control_sub-model_ended’ of the control object. This call i s placed by
the sub-model itself in the ‘f inishing state’ of its last operation.

Software Process Modeling
in SOCCA

page :
version : 0.10

37

In this way are the two sub-models integrated sequentially into one bigger model. When they are to be integrated parallel
into one bigger model, the algorithm is as follows.

3.5.3 Parallel integration

The extended external STDs of ‘ class_a’ are constructed the same way as for the sequential integration. Also the
control_operation is the same as for the sequential integration. The difference lies in the total external STD and in the
control_sub-model_ended operation.

When constructing the total external STD of ‘ class_a’ the extended external STDs are not linked one after the other, but
they stay separately. The total external STD consists now of two ‘not-connected’ external STDs. Both are valid at the same
time.

EXT_STD
CLASS_A
SUB-MODEL_2

ENDSTART
CHANGE_
TO_
SUB-MODEL_2

SUB-MODEL
ENDED

EXT_STD
CLASS_A
SUB-MODEL_1

ENDSTART
CHANGE_
TO_
SUB-MODEL_1

SUB-MODEL
ENDED

figure 3.62 example : total external STD of class_a for integrated model (parallel)

The total external STD of the ‘class_a’ starts now in both ‘start’ states. Now the control operation calls ‘change_to_sub-
model_1’ . The one part of total external STD of ‘ class_a’ can and will t ransit to its state ‘ext_STD class_a sub-model_1’ .
I.e. the ‘class_a’ will perform its ‘sub-model_1’ -behavior. Sub-model_1 is executing.

The other part of total external STD of ‘ class_a’ still stays in its ‘start’ state.

The control operation will continue with its execution and calls ‘change_to_sub-model_2’ . The other part of total external
STD of ‘ class_a’ can and will t ransit to its state ‘ext_STD class_a sub-model_2’ . I.e. the ‘class_a’ will perform its ‘sub-
model_2’ -behavior. Sub-model_2 is executing.

Now both sub-models execute in parallel.

The terminating of either sub-model causes some changes in the ‘control_sub-model_ended’ operation of the control
class. The changes are also depending on the process that is being modeled. It can be that both sub-models have to finish
before they can be permitted to go to their ‘end’ state. This is conceivable when the integrated model itself is part of a still
larger model. In this case the ‘counting’ -construct can be used by the control class to ascertain that both sub-models have
called the ‘control_sub-model_ended’ operation in their ‘f inishing state’ .

It is also possible that when one sub-model finishes it can be terminated and that the other sub-model is allowed to
continue. In this case the ‘control_sub-model_ended’ operation has to be parameterized. The finishing sub-model calls the
operation with the appropriate parameter. The operation ‘control_sub-model_ended_(x)’ then knows which sub-model to
terminate and it calls the ‘sub-model_ended’ operation of total external STD of that sub-model.

Then again it may be the case that when one sub-model finishes, the other sub-model is no longer of interest and may also
be terminated. In this case it seems that the operation ‘control_sub-model_ended’ does not have to be changed. When it is
called it sim_calls ‘sub-model_ended’ of both sub-models. The total external STD of the sub-model that called
‘control_sub-model_ended’ , can and will t ransit to its ‘end’ state. But the total external STD of the other sub-model may
or may not transit to its ‘end’ state. If can not be forced to do so. It can just go on executing. Even up to the point where it
calls ‘control_sub-model_ended’ when it finishes. This is a problem. And when it does transit to its ‘end’ state before it is
finished, there is the possibilit y that it will l eave some objects in the sub-model in an incorrect state.

So in this case the control class must use a counting-construct and the second sub-model must be allowed to finish in a
normal way.

Software Process Modeling
in SOCCA

page :
version : 0.10

38

3.5.4 Scaleability

In the example above only one class participated in the two sub-models. This can be easily extended to more participating
classes. This is taken care of by the ‘simultaneous’ calls in the ‘control operation’ and in the ‘control_sub-model_ended
operation’ . The example showed only two sub-models. This can easily be extended to more sub-models. This is done by
just putting more (sequential) states in the ‘control operation’ and incorporating the external STDs of the extra sub-models
into the appropriate total external STDs (either sequentially or parallel).

So, three kinds of integration of SOCCA sub-models are possible :

- sequential integration of sub-models
- parallel integration of sub-models
- mixed sequential and parallel integration of sub-models

This constitutes the first step in the ‘scaling up’ of a SOCCA model. The next step involves the integration of sub-
models that are themselves integrated models. I.e. the sub-models to be integrated are the result of the first step. They
already incorporate a ‘control’ class. Now the integration algorithm is applied to the ‘control’ classes of the sub-
models. The ‘control’ classes are then managed by a ‘master’ control class.

So, also three kinds of integration of SOCCA integrated sub-models are possible :

- sequential integration of integrated sub-models
- parallel integration of integrated sub-models
- mixed sequential and parallel integration of integrated sub-models

In this way successive bigger models can be build. To prevent the bigger models to become to unwieldy (physically to
big), the external STDs must be aggregated to a higher level view before they are incorporated into their total external
STD. In this way, using the integration algorithm in combination with the view concept, the model can be scaled up in a
transparant manner.

SOFTWARE PROCESS MODELING in SOCCA

student : H.G.Brugman
studentnr : 9105506
version : 0.10

Software Process Modeling
in SOCCA

page :
version : 0.10

40

4. Key Process Area ‘Software Configuration Management’

4.1 Introduction

In this chapter the ‘Software Configuration Management’-process of the software development organization ‘Waco
Business Unit’ (WBU) of the Dutch Ministry of Defense is modeled using the SOCCA process modeling language.
The SOCCA model is described in paragraph 4.3. Paragraph 4.3.1 describes the ‘class diagrams’ of the model and
paragraph 4.3.2 describes the ‘state transition diagrams’ of the model.

Also the usefullness of a SOCCA model as a process description is investigated in this chapter. This is done by
checking if the SOCCA model of the ‘Software Configuration Management’-process can be used as input for a
process audit. As audit method is chosen the ‘Capability Maturity Model’-assessment. The process audit is described
in paragraph 4.2.

4.2 CMM Assessment

In this paragraph the usefullness of a SOCCA model as a process description is investigated This is done by checking
the implementation of the CMM ‘Key Practices’ by the WBU organization while using the SOCCA model of the
‘Software Configuration Management’-process as a reference instead of the real process.

The purpose of Software Configuration Mangement (SCM) is to establish and maintain the integrity of the products of
the software project throughout the project’s software lifecycle [CMM].

Software Configuration Management (SCM) involves identifying the configuration of the software, controlling the
changes to the configuration and maintaining the traceability of the configuration. The work products placed under
SCM include the software products to be delivered to the customer (e.g. requirements documents, software design
documents and the executable program(s)) and the items that are required to create these software products (e.g. source
code, compiler/linker and compile/link command-files).

A software baseline library is established containing the software baselines. Changes to baselines and the release of
software products built from the software baseline library are controlled via change control and configuration auditing
functions.

The Capability Maturity Model (CMM) states the following goals for this Key Process Area (KPA) :

Goal 1 : Software Configuration Management activities have to be planned
Goal 2 : Selected software work products have to be identified, controlled (e.g. via version numbering) and
 made available
Goal 3 : Changes to identified software products have to be controlled (e.g. via numbered problem and change
 reports)
Goal 4 : Affected groups and individuals have to be informed of the status and content of software baselines

Key Process Areas in CMM are divided into Key Practices. A Key Practice describes at the lowest level ‘what’ has to
be done, but not ‘how’ it should be done. For a correct fulfill ment of the goals of the KPA all it s Key Practices have to be
satisfied by the software development organization.

Key Practices are organized into five groups (processes). A group (process) is called ‘common features’ in CMM. The five
groups are : ‘Commitment to perform’ , ‘Abilit y to perform’ , ‘Activities performed’ , ‘Measurement and analysis’ and
‘Verifying implementation’ .

1. ‘Commitment to perform’ describes the actions an organization must take to ensure that the SCM process is
established and will endure. Typically this involves the codifying of organizational policies (in manuals) and senior
management commitment to this policies. This codifying process is not modeled in this thesis. The result of this process is
the ‘Manual for Technical Project Management’ now in use in the Waco Business Unit (WBU) organization.

2. ‘Abilit y to perform’ describes the preconditions that must exists in an organization to implement the SCM process
correctly. Typically this involves resources, organizational structures and training. The organizational structure as applied
to the SCM process is modeled by the class diagrams of the next chapter.

Software Process Modeling
in SOCCA

page :
version : 0.10

41

3. ‘Activities performed’ describes the roles and procedures necessary to implement the Key Process Area. Typically this
involves establishing plans and procedures, performing the work, tracking it and taking corrective actions as necessary.
The SCM process is modeled by the state transition diagrams of the next chapter.

4. ‘Measurement and analysis’ describes the need to measure the SCM process and analyzes the measurements. Typically
this involves measurements that could be taken to determine the status and effectiveness of the ‘Activities performed’ .
This process is not implemented in the Waco Business Unit (WBU).

5. ‘Verifying implementation’ describes the steps to ensure that the activities are performed in compliance with the
process that has been established. Typically this involves reviews and audits by management and software quality
assurance. This process takes only place at an ‘ad-hoc’ -basis in the Waco Business Unit (WBU). It is not modeled in this
thesis.

The SOCCA model of the Software Configuration Management-process as given in the next paragraph, models the
organizational structure with class diagrams. It models the implemented SCM-process with state transition diagrams.

The following table lists all the Key Practices of this KPA in the left column. In the right column is indicated if and how
the Waco Business Unit (WBU) has satisfied a particular Key Practice.

Commitment to perform

no Key Practice WBU implementation
1 The project follows a written organizational

policy for implementing software configuration
management

The SCM process is described in the ‘Manual for
Technical Project Management’

Abilit y to perform

no Key Practice WBU implementation
1 A board having the authority for managing the

project’s software baselines exists
See the class diagram of the SOCCA model of
this KPA. The board is modeled by the class
‘configuration control board’.

2 A group that is responsible for coordinating and
implementing SCM for the project exists

See the class diagram of the SOCCA model of
this KPA. The group is modeled by the class
‘software configuration board’.

3 Adequate resources and funding are provided for
performing the SCM activities

An automatic configuration management tool
(CMS) is available

4 Members of the SCM group are trained in the
objectives, procedures, and methods for
performing their SCM activities

not implemented. There exists no SCM group
within the WBU.

5 Members of the software engineering group are
trained to perform their SCM activities

Members of the software engineering group have
to follow the in-house SCM training course.

Activities performed

no Key Practice WBU implementation
1 A SCM plan is prepared for each software project

according to a documented procedure.
See the SOCCA model of the KPA ‘Software
Project Planning’, Key Practice ‘Activities
performed’ no 8.

2 A documented and approved SCM plan is used as
the basis for performing the SCM activities.

The Software Configuration Management plan is
part of the software development plan. See the
sub-attribute ‘SCM-plan’ of the class ‘software
development plan’ of the class diagram of the
SOCCA model of the KPA ‘Software Project
Planning’.

Software Process Modeling
in SOCCA

page :
version : 0.10

42

no Key Practice WBU implementation
As such the SCM is documented in the Software
Development Plan (SDP) and approved as part of
the SDP approval.

3 A configuration management library system is
established as a repository for the software
baselines

a configuration management-tool (CMS) is used
by the projects.

4 The software work products to be placed under
configuration management are identified

See the class diagram of the SOCCA model of
this KPA. The identification is modeled by the
attributes ‘id’ and ‘version’ of the class
‘configuration_item’

5 Change requests and problem reports for all
configuration items are initiated, recorded,
reviewed, approved, and tracked according to a
documented procedure.

The procedure is documented by the behavior part
(STDs) of the SOCCA model of this KPA. More
specifically by the operations of the class
‘problem_and_change_report’.

6 Changes to baselines are controlled according to a
documented procedure.

The procedure is documented by the behavior part
(STDs) of the SOCCA model of this KPA. More
specifically by the external STD of the class
‘configuration item’.

7 products from the software baseline library are
created and their release is controlled according
to a documented procedure

The procedure is documented by the behavior part
(STDs) of the SOCCA model of this KPA. More
specifically by the operation (internal) STD of the
class ‘release_note’.

8 The status of configuration items is recorded
according to a documented procedure

The procedure is documented by the behavior part
(STDs) of the SOCCA model of this KPA. More
specifically by the external STD of the class
‘configuration item’.

9 Standard reports documenting the SCM activities
and the contents of the software baseline are
developed and made available to affected groups
and individuals

not implemented

10 Software baseline audits are conducted according
to a documented procedure

The procedure is documented in the behavior part
(STDs) of the SOCCA model of the KPA
‘Software Quality Assurance’ (not part of this
thesis)

Measurement and analysis

no Key Practice WBU implementation
1 Measurements are made and used to determine

the status of the SCM activities
not implemented

Verifying implementation

no Key Practice WBU implementation
1 The SCM activities are reviewed with senior

management on a periodic basis
not implemented

2 The SCM activities are reviewed with the project
manager on a periodic and event-driven basis

only on a ‘ad-hoc’-basis (event-driven)

3 The SCM group periodically audits software
baselines to verify that they conform to the
documentation that defines them

not implemented

4 The software quality assurance group reviews
and/or audits the activities and work products for
SCM and reports the results

only on a ‘ad-hoc’-basis (event-driven)

Software Process Modeling
in SOCCA

page :
version : 0.10

43

4.3 SOCCA model

The SOCCA model depicts the Configuration Management-process that is in use within the Waco Business Unit (WBU).
This process is described in the ‘Manual for Technical Project Management’ , chapter 3 ‘Configuration management’ ,
sections 1 and 2, ‘Promotion Configuration Item’ , and ‘Procedure handling Problem and Change Report’ [MTP].

Paragraph 4.3.1 describes the ‘class diagrams’ of the model and paragraph 4.3.2 describes the ‘state transition
diagrams’ of the model.

4.3.1 Class Diagrams

The data perspective of CM-process is modeled by four class diagrams. The first one shows the classes, subclasses and
aggregation associations. The second one shows the general associations, the third one shows the classes with their
operations and attributes and the last one shows the ‘uses’ associations (the import-export diagram).

The figure below shows the classes and subclasses (via generalization/ specialization associations) and the aggregation
associations between them. The notation convention of ‘ superclass/subclass’ , ‘aggregation association’ and ‘ the
multiplicity of an association (cardinality ratio constraint)’ in SOCCA is the same as in UML [UML], [FOW].

SOFTWARE_
ENGINEER

REVIEWER

TECHNICAL
PROJECT
MANAGER

CUSTOMER

PROJECT

CONFIGURATION
MANAGER

CONFIGURATION
ITEM

DESIGN
DOCUMENT

COMPUTER
SOFTWARE
CONFIGURATION
ITEM (CSCI)

ENGINEER MANAGER

EMPLOYEE

TEST_
ENGINEER

PROJECT
PRODUCT

PROJECT
TEAM

CONFIGURATION
CONTROL
STRUCTURE

CONFIGURATION
CONTROL
BOARD

SOFTWARE
CONFIGURATION
BOARD

PROBLEM_AND_
CHANGE_REPORT

1+

RELEASE_NOTE

1+

1+

1+

figure 4.1 Class diagram : classes, subclasses and aggregation associations

This class diagram shows the employees involved : SOFTWARE_ENGINEER, TEST_ENGINEER, REVIEWER and
CONFIGURATION_MANAGER are overlapping subclasses of the superclass ENGINEER. TECHNICAL_PROJECT_
MANAGER is, among others, a subclass of MANAGER.

A PROJECT consists of one PROJECT_TEAM, zero or more PROJECT_PRODUCTs and one CONFIGURATION_
CONTROL_STRUCTURE.

Software Process Modeling
in SOCCA

page :
version : 0.10

44

The PROJECT_TEAM is an aggregation of the employees involved and consists of one TECHNICAL_PROJECT_
MANAGER, one or more SOFTWARE_ENGINEERs, one or more TEST_ENGINEERs, one or more REVIEWERs and
one CONFIGURATION_MANAGER.

The superclass PROJECT_PRODUCTs is specialized by the disjoint subclasses CONFIGURATION_ITEM (with its own
disjoint subclasses DESIGN_DOCUMENT and COMPUTER_SOFTWARE_CONFIGURATON_ITEM),
PROBLEM_AND_CHANGE_REPORT and RELEASE_NOTE.

The CONFIGURATION_CONTROL_STRUCTURE is specialized by the disjoint subclasses CONFIGURATION_
CONTROL_BOARD and SOFTWARE_CONFIGURATION_BOARD which have both the TECHNICAL_PROJECT_
MANAGER as a member. Also at least one CUSTOMER is a member of the CONFIGURATION_CONTROL_
BOARD.

CUSTOMER

CONFIGURATION
ITEM

DESIGN
DOCUMENT

COMPUTER
SOFTWARE
CONFIGURATION
ITEM (CSCI)

PROJECT
PRODUCT

PROBLEM_AND_
CHANGE_REPORT

SOFTWARE_
ENGINEER

TEST_
ENGINEER

REVIEWER

MODIFIES

REVIEWS

TESTS

TESTS

ORIGINATES

ORIGINATES

BELONGS_TO

RELEASE_NOTE
BASELINES

{XOR}

1+

1+

figure 4.2 Class diagram : classes, subclasses and general associations

The figure above shows the classes and subclasses with the general associations between them. The notation convention
of ‘ (general) association’ is the same in SOCCA as it is in UML. In the notation convention of ‘ constraint between
associations’ there is some difference between SOCCA and UML. In SOCCA the constraints are given in a list
accompanying the class diagram. In UML this is also allowed but alternatively a constraint can be shown in the diagram
itself. A dotted line is drawn between the associations involved. The constraint is then placed in braces near the dotted
line. In the figure this is done with the XOR-constraint. The deviation from SOCCA in using the dotted line-notation is
justified by the fact that there is only one simple constraint in the diagram. In this case the constraint can easily be
incorporated. When there are more or more complex constraints a seperate list of constraints is the better notation
convention.

The names and the multiplicity of the general associations are also given in the above figure. An association is inherently
bidirectional. I.e it can be traversed in both directions. The name of a binary association reads in a particular direction.
This direction is called the forward direction. The opposite direction is called the inverse direction [RUM]. When an
association is traversed in the inverse direction, the association name is ‘ inverted’ . E.g. MODIFIES becomes
IS_MODIFIED or BELONGS_TO becomes HAS_BELONGING_TO. The class diagram only shows one name per
association.

Software Process Modeling
in SOCCA

page :
version : 0.10

45

A software_engineer MODIFIES zero or more configuration_items. And a configuration_item IS_MODIFIED by zero or
one software_engineer.

A reviewer REVIEWS zero or more configuration_items. And a configuration_item IS_REVIEWED by zero or one
reviewer.

A test_engineer TESTS zero or more configuration_items. And a configuration_item IS_TESTED by zero or one
test_engineer. A test_engineer ORIGINATES zero or more problem_and_change_reports. And a
problem_and_change_report IS_ORIGINATED by either one test_engineer or by one customer, but not by both. This is
modeled by the XOR-constraint in the class diagram.

A customer ORIGINATES zero or more problem_and_change_reports. A customer TESTS zero or more
configuration_items. And a configuration_item IS_TESTED by zero or one customer.

A problem_and_change_report BELONGS_TO one or more configuration_item. (The problem/change can involve more
than one configuration_item.) And a configuration_item HAS_BELONGING_TO it zero or more
problem_and_change_reports.

A release_note BASELINES one or more configuration_items. And a configuration_item IS_BASELINED by zero or one
release_note.

CONFIGURATION_
ITEM

ID
VERSION
STATUS
CONTENT
RELEASED

CREATE
UPDATE_VERSION
RELEASE
MODIFY
REVIEW
DT_TEST
ACCEPTANCE_TEST
CH_ST_TO_CONTROL
CH_ST_TO_SE_READY
CH_ST_TO_DT_READY
CH_ST_TO_BASELINE
CH_ST_TO_MAINT
CH_ST_TO_ARCHIVE

PROBLEM _AND_
CHANGE_REPORT

ID
STATUS
PRIORITY
CATEGORY
PROBLEM /CHANGE
ORIGINATOR
WORK_CODE_NO
DESCRIPTION

PCR_CREATE
CH_ST_TO_SCB
CH_ST_TO_CCB
CH_ST_TO_REJECTED
CH_ST_TO_CARRY_OUT
CH_ST_TO_MAINT
CH_ST_TO_CLOSED

CONFIGURATION
MANAGER

CM_UPDATE_VERSION
CM_CH_ST_CI_TO_(X)
CM_CH_ST_PCR_TO_(X)
CM_CREATE_CI
CM_RELEASE
CM_RELEASE_NOTE

SOFTWARE ENGINEER

SE_MODIFY

TECHNICAL PROJECT
MANAGER

TPM _MODIFY
TPM _REVIEW
TPM _DT_TEST
TPM _AC_TEST
TPM _CLUSTER_PCR
TPM _CH_ST_CI_TO_(X)

REVIEWER

RE_REVIEW

SOFTWARE_
CONFIGURATION_
BOARD

SCB_CONSIDER_PCR

CONFIGURATION_
CONTROL_BOARD

CCB_CONSIDER_PCR

TEST_ENGINEER

TE_DT_TEST

CUSTOM ER

CU_ACCEPTANCE_TEST
CU_ISSUE_PCR

RELEASE_NOTE

RN_CREATE_(X)

DATE
BASELINE
CONTENT

figure 4.3 Class diagram : classes, operations and attributes

The figure above shows the classes with their operations and attributes. The notation convention is the same in SOCCA as
in UML. A class is depicted as a rectangle with three compartments. The top compartment holds the class name. The
middle compartment shows the attributes. The bottom compartment shows the operations.

The operations will be explained in the ‘ internal behavior STDs’-subparagraphs of the ‘State Transition Diagrams’-
paragraph of this chapter. The meaning of most attributes can be readily deduced from their name. The following
attributes warrant an explanation.

The attribute STATUS in configuration_item has the following domain : (control, se_ready, dt_ready, baseline, maint,
archive).

The attribute RELEASED in configuration_item has the following domain : (yes, no). It indicates whether a
configuration_item is under configuration management or is released for handling.

Software Process Modeling
in SOCCA

page :
version : 0.10

46

The attribute BASELINE in release_note indicates the baseline-type the release_note represents. This attribute has the
following domain : (Functional, Allocated, Technical, Product, Operational). These baseline_types are defined in the
‘Manual for Technical Project Management’ [MTP].

The attribute CATEGORY in problem_and_change_report has the following domain : (A,B,C). Category A means that
the problem_and_change_report belongs to a configuration_item with the status ‘se_ready’ or ‘dt_ready’ . Category B
means that it belongs to a configuration_item which is part of a functional, allocated or operational baseline. Category C
means that the configuration_item is part of a technical or a product baseline.

The figure below is the import-export diagram. This diagram identifies which operations are imported by which classes.
Within the importing classes the importing operations are identified. This is done by the SOCCA specific binary
association ‘uses’ . This association has the attribute ‘ import_list’ that has as its domain a list of imported operations
together with the operations that import them. The style guideline for this association is a solid line with an arrow at one
end. The arrow indicates the exporting class.

UML uses the ‘ interface’ -notation to describe the import-export relation between classes. In it a ‘ type’ is connected to the
exporting class. The importing class connects via a dashed arrow to this ‘ type’ . A ‘ type’ is a descriptor for objects with an
abstract state, with concrete external operation specifications but no concrete operation implementations. A ‘ type’ can be
shown either as a small circle or as a class symbol. If the class symbol is used, then the exported operations are shown in
the operations-compartment of the class symbol. This is equivalent to showing these operations in the ‘ import_list’
attribute of the SOCCA uses-association.

The import-export diagram is showing the communication between the classes at the highest level and is constructed as a
step towards the constructing of the state transition diagrams in the next paragraph.

CUSTOMER

CONFIGURATION
ITEM

PROBLEM_AND_
CHANGE_REPORT

SOFTWARE_
ENGINEER

TEST_
ENGINEER

REVIEWER

RELEASE_NOTE

TECHNICAL
PROJECT
MANAGER

CONFIGURATION
CONTROL
BOARD

SOFTWARE
CONFIGURATION
BOARD

CONFIGURATION
MANAGER

USES5

USES4

USES3

USES2

USES1

USES6

USES7

USES8

USES9

USES10

USES11

USES12

USES13

USES14

USES15

USES16 USES17

USES18

USES19

USES20

USES22

USES21

USES23

USES24

USES25

USES26

figure 4.4 Class diagram : classes and uses associations

Software Process Modeling
in SOCCA

page :
version : 0.10

47

The technical_project_manager is the one who initiates and guides the whole Configuration Management (CM) process by
his autonomous behavior. The autonomous operations of the technical_project_manager, which he ‘ invokes’ himself are :
tpm_modify, tpm_review, tpm_dt_test, tpm_ac_test, tpm_cluster_pcr and tpm_ch_st_ci_to_(x).

He can direct the software_engineer to start work. The technical_project_manager will direct the configuration_manager
to create the configuration_item first if it does not exists yet. Otherwise he will direct the configuration_manager to release
the configuration_item.

The technical_project_manager can direct the reviewer to start reviewing on some released configuration_item. He can
direct the test_engineer to start testing on some released configuration_item.

The technical_project_manager can decide to bypass the review or dt-test, or both, of some configuration_item. This is
done when only minor adjustments are applied to the configuration_item. The technical_project_manager uses his
operation tpm_ch_st_ci_to_(x) to direct the configuration_manager to change the status of a configuration_item directly
from ‘control’ to ‘se_ready’ or ‘dt_ready’ .

The technical_project_manager informs the customer that the acceptance test can start on a released configuration_item.

Depending on the positive result of the ac_test the technical_project_manager gets informed by the customer that
the status of the configuration_item can be changed to ‘baseline’ . The technical_project_manager directs the
configuration_manager to do so. And if all the configuration_items of a particular baseline have reached the status
‘baseline’ , he directs the configuration_manager to write up the release_note of that baseline.

Periodically the technical_project_manager clusters the problem_and_change_reports into one logical group to be solved
together. He directs the configuration_manager to change the status of the affected configuration_items to ‘maintenance’
if they are not part of a baseline. If they are part of a baseline, then their status becomes ‘archive’ and the
technical_project_manager will direct the configuration_manager to create new configuration_items and copy the contents
of the old items into the new items.

The software_engineer modifies a configuration_item and when he is finished, he asks the configuration_manager to put it
under configuration management (i.e. to change its status to ‘control’) and to update the version of the
configuration_item.

The reviewer reviews a configuration_item and when he is finished he asks the configuration_manager to update the status
of the configuration_item according to the result of the review. To ‘maintenance’ if the review was not ok and to
‘se_ready’ if the review was ok.

The test_engineer tests a configuration_item and when he detects a defect he writes a problem_and_change_report which
he gives to the configuration_manager for further dispatch. If the test is concluded ok, i.e. their are no defects detected, the
test_engineer asks the configuration_manager to change the status of the configuration_item to ‘dt_ready’ . If the test is
concluded not ok, the test_engineer takes no ‘status changing’ -action. The status of the configuration_item will be
changed to ‘maintenance’ later on as a result of the tpm_cluster_pcr operation of the technical_project_manager.

The ‘Manual for Technical Project Management’ states that a problem_and_change_report becomes closed when the
configuration_item it belongs to again gets the status it had when the problem_and_change_report was originated.
This procedure can not work. For example if the old status was ‘se_ready’ and the problem_and_change_report was
originated in the dt-test, the configuration_item failed to get the status ‘dt_ready’ . When the software_engineer repairs the
problem_and_change_report and the configuration_item again gets the status ‘se_ready’ (its old status) the tester still has
to perform (part of) the dt-test to check whether this problem_and_change_report is correctly solved.

A solution to this problem is to let the test_engineer perform a check during the dt-test on all the problems_and_
change_reports on this configuration_item to see if they are correctly solved or not. The test_engineer must check all
problem_and_change_reports. Also the ones which are originated by the customer in the acceptance-test and during the
operational li fe of the system. If these are not solved, the configuration_item can never be offered to the customer for a
(new) acceptance-test.

The customer tests a configuration_item and when he detects a defect he writes a problem_and_change_report which he
gives to the configuration_manager for further dispatch. If the test is concluded ok, i.e. their are no defects detected, the
customer informs the technical_project_manager that the status of configuration_item can be changed to ‘baseline’ . If the
test is concluded not ok, the customer takes no ‘status changing’ -action. The status of the configuration_item will be
changed to ‘maintenance’ later on as a result of the tpm_cluster_pcr operation of the technical_project_manager.

Software Process Modeling
in SOCCA

page :
version : 0.10

48

The customer also has some autonomous behavior. The operation cu_issue_pcr is an operation which the customer
‘ invokes’ himself. The customer does this when he detects a problem during the operational use of a system or when he
wants a functional change in system in operational use.

The configuration_manager creates the new (instances of) configuration_items, including copying the contents from the
old item into the new item if directed so by the technical_project_manager. He performs all version- and status-changes of
a configuration_item and the release of a configuration_item for review or test. The configuration_manager creates and
writes the release_note for a baseline.

He also handles the status-changes of the problem_and_change_reports. If an problem_and_change_report is of the
category A or C, he will offer it to the software_configuration_board. If it is of category B he will offer it to the
configuration_control_board.

The software_configuration_board decides how to handle the problem_and_change_reports it is offered and directs the
configuration_manager to change the status of the problem_and_change_reports according to its decision.

The configuration_control_board decides how to handle the problem_and_change_reports it is offered and directs the
configuration_manager to change the status of the problem_and_change_reports according to its decision.

In terms of the values of the ‘ import-list’ -attributes of the uses associations this amounts to the following :

uses1 : imported operation imported by
cm_ch_st_ci_to_(x) tpm_ch_st_ci_to_(x)
cm_ch_st_pcr_to(x) tpm_cluster_pcr
cm_release tpm_modify, tpm_review, tpm_dt_test, tpm_ac_test
cm_release_note tpm_ch_st_ci_to_(x)
cm_create_ci tpm_modify, tpm_ch_st_ci_to_(x)

uses2 : imported operation imported by
se_modify tpm_modify

uses3 : imported operation imported by
re_review tpm_review

uses4 : imported operation imported by
te_dt_test tpm_dt_test

uses5 : imported operation imported by
cu_acceptance_test tpm_ac_test

uses6 : imported operation imported by
cm_update_version se_modify
cm_ch_st_ci_to_(x) se_modify

uses7 : imported operation imported by
cm_ch_st_ci_to_(x) re_review

uses8 : imported operation imported by
cm_ch_st_ci_to_(x) te_dt_test
cm_ch_st_prc_to_(x) te_dt_test

uses9 : imported operation imported by
cm_ch_st_prc_to_(x) cu_acceptance_test, cu_issue_pcr

uses10 : imported operation imported by
modify se_modify

uses11 : imported operation imported by
review re_review

Software Process Modeling
in SOCCA

page :
version : 0.10

49

uses12 : imported operation imported by
dt_test te_dt_test

uses13 : imported operation imported by
acceptance_test cu_acceptance_test

uses14 : imported operation imported by
pcr_create te_dt_test

uses15 : imported operation imported by
pcr_create cu_acceptance_test, cu_issue_pcr

uses16 : imported operation imported by
create cm_create
update_version cm_update_version
release cm_release
ch_st_to_control cm_ch_st_ci_to_(x)
ch_st_to_se_ready cm_ch_st_ci_to_(x)
ch_st_to_dt_ready cm_ch_st_ci_to_(x)
ch_st_to_baseline cm_ch_st_ci_to_(x)
ch_st_to_maint cm_ch_st_ci_to_(x)
ch_st_to_archive cm_ch_st_ci_to_(x)

uses17 : imported operation imported by
ch_st_to_scb cm_ch_st_pcr_to_(x)
ch_st_to_ccb cm_ch_st_pcr_to_(x)
ch_st_to_rejected cm_ch_st_pcr_to_(x)
ch_st_to_carry_out cm_ch_st_pcr_to_(x)
ch_st_to_maint cm_ch_st_pcr_to_(x)
ch_st_to_closed cm_ch_st_pcr_to_(x)

uses18 : imported operation imported by
rn_create_(x) cm_release_note

uses19 : imported operation imported by
ccb_consider_pcr cm_ch_st_pcr_to_(x)

uses20 : imported operation imported by
cm_ch_st_pcr_to_(x) ccb_consider_pcr

uses21 : imported operation imported by
scb_consider_pcr cm_ch_st_pcr_to_(x)

uses22 : imported operation imported by
cm_ch_st_pcr_to_(x) scb_consider_pcr

uses23 : imported operation imported by
tpm_ch_st_ci_to_(x) cu_acceptance_test

uses24 : imported operation imported by
pcr_read_status tpm_cluster_pcr

uses25 : imported operation imported by
tpm_modify autonomous operation
tpm_review autonomous operation
tpm_dt_test autonomous operation
tpm_ac_test autonomous operation
tpm_cluster_pcr autonomous operation
tpm_ch_st_ci_to_(x) autonomous operation, tpm_cluster_pcr

uses26 : imported operation imported by

Software Process Modeling
in SOCCA

page :
version : 0.10

50

cu_issue_pcr autonomous operation

Software Process Modeling
in SOCCA

page :
version : 0.10

51

4.3.2 State Transition Diagrams

The behavior perspective of CM-process is modeled in SOCCA by STDs (State Transition Diagrams). The behavior
perspective comprises both the visible behavior of classes (and thus of objects of that classes) and the behavior of
operations (methods) of the classes.

The visible behavior of a class is modeled by an external STD. This STD shows the possible sequences of starting the
execution of the class’ (object’s) operations. Usually there is one external STD per class. The UML equivalent of an
external STD is a statechart describing the states an object can be in and the transitions it can make in response to received
stimuli ..

The behavior of an operation is modeled by an internal STD. It describes the functionality of the operation. This comprises
the operation’s start and end, the calli ng of other operations by this operation, and ‘ local steps’ (local functionality). In
UML methods are also described by statecharts.

The communication between objects (calli ng of exported operations) is modeled by manager STDs and employee STDs.
External STDs become manager STDs and internal STDs become employee STDs. This mechanism is explained in the
SOCCA chapter of this document. This way of modeling communication is unique for SOCCA.

STD’s can show different views of the same process. An STD is called a ‘communicative view’ if it models any
communication details between one or more caller and its callee(s). An STD is called an ‘organizational view’ otherwise.

The behavior of the following classes is modeled for this Key Process Area ‘Software Configuration Management’ :

- technical project manager
- configuration manager
- configuration item
- problem and change report
- software engineer
- reviewer
- software configuration board
- configuration control board
- test engineer
- customer
- release note

Software Process Modeling
in SOCCA

page :
version : 0.10

52

4.3.2.1 Technical_Project_Manager

4.3.2.1.1 Technical_Project_Manager : external behavior-STD

The STD of the external behavior consists of a neutral state in which the technical_project_manager waits for a call to one
of its operations and of several states in which he starts his operations after they are called. Typically the
technical_project_manager does not wait in this states until the called operation is finished, but returns as soon as possible
to its neutral state to allow further calls to its operations. I.e. its operations can execute concurrently.

The technical_project_manager exihibits autonomous behavior by starting all his own operations without their being
called from another object. When the operation ‘ tpm_ch_st_ci_to_(x)’ is used autonomously, the state ‘starting
tpm_ch_st_ci_to_(x) (autonomous)’ is used to start the operation. The operation ‘ tpm_ch_st_ci_to_(x)’ can also be called
by the operation ‘cu_acceptance_test’ of the customer or by the operation ‘ tpm_cluster_pcr’ of the
technical_project_manager itself. This is modeled by the ‘disc_starting tpm_ch_st_ci_to_(x)’ state that is entered after an
external call from either one of these callers. The state ‘disc_starting_tpm_ch_st_ci_to_(x)’ is a ‘discriminator’ state.
In it the external STD determines from which operation the call i s coming and will start the operation on behalf of that
caller.

NEUTRAL

STARTING
TPM_MODIFY

TPM_DT_
TEST

STARTING
TPM_DT_TEST

TPM_AC_
TEST

STARTING
TPM_AC_TEST

TPM_CLUSTER_PCR

STARTING
TPM_
CLUSTER_PCR

TPM_REVIEW

STARTING
TPM_REVIEW

STARTING
TPM_CH_ST_
CI_TO_(X)TPM_MODIFY

TPM_CH_ST_
CI_TO_(X)

TPM_CH_ST_
CI_TO_(X)

DISC_
STARTING
TPM_CH_ST_
CI_TO_(X)

(AUTONOMOUS)

(NON-AUTONOMOUS)

figure 4.5 technical_project_manager : external behavior STD

4.3.2.1.2 Technical_Project_Manager : internal behavior-STDs

The 6 operations of the technical_project_manager have the following internal behavior STDs.

ACT_
TPM_MODIFY

NON-
TPM_MODIFY

SE_
MODIFY
ASKED

TPM_MODIFY
ASKED

CALL _
CM_RELEASE

CALL _SE_
MODIFYCM_

RELEASE
ASKED

CM_
CREATE
ASKED

CALL _
CM_CREATE CALL _SE_

MODIFY

CALL _SE_MODIFY

figure 4.6 int-tpm_modify : internal behavior STD

Software Process Modeling
in SOCCA

page :
version : 0.10

53

With the operation ‘ tpm_modify’ the technical_project_manager (TPM) directs the software_engineer to start modifying a
configuration_item (CI). The formal parameter of the operation is the id of the configuration_item that has to be modified.
The status of a configuration_item that has to be modified, can be ‘maintenance’ . In this case the TPM directs the
configuration_manager (CM) to release the CI from configuration management. The configuration_item can also not yet
exists. In this case the TPM directs the CM to create the configuration_item. The configuration_item can also exists, but
not have a status yet. This is the case after a new CI is created when some (old) CI goes to the status ‘archive’ . The
software_engineer can start directly to work on such a configuration_item.

ACT_
TPM_REVIEW

NON-
TPM_REVIEW

RE_
REVIEW
ASKED

TPM_REVIEW
ASKED

CALL _
CM_RELEASE

CALL _RE_
REVIEWCM_

RELEASE
ASKED

figure 4.7 int-tpm_review : internal behavior STD

With the operation ‘ tpm_review’ the technical_project_manager directs the configuration_manager to release the
configuration_item. Then the technical_project_manager directs the reviewer to start reviewing the configuration_item.
The formal parameter of the operation is the id of the configuration_item that has to be reviewed.

ACT_
TPM_DT_TEST

NON-
TPM_DT_TEST

DT_
TEST
ASKED

TPM_DT_TEST
ASKED

CALL _
CM_RELEASE

CALL _DT_
TESTCM_

RELEASE
ASKED

figure 4.8 int-tpm_dt_test : internal behavior STD

With the operation ‘ tpm_dt_test’ the technical_project_manager directs the configuration_manager to release the
configuration_item. Then the technical_project_manager directs the test_engineer to start testing the configuration_item.
The formal parameter of the operation is the id of the configuration_item that has to be tested.

ACT_
TPM_AC_TEST

NON-
TPM_AC_TEST

CU_ACCEP-
TANCE_TEST
ASKED

TPM_AC_TEST
ASKED

CALL _
CM_RELEASE

CALL _CU_
ACCEP-
TANCE_TEST

CM_
RELEASE
ASKED

figure 4.9 int-tpm_ac_test : internal behavior STD

With the operation ‘ tpm_ac_test’ the technical_project_manager directs the configuration_manager to release the
configuration_item. Then the technical_project_manager informs the customer that he can start the acceptance test on the
configuration_item. The formal parameter of the operation is the id of the configuration_item that has to undergo the
acceptance test.

Software Process Modeling
in SOCCA

page :
version : 0.10

54

ACT_
TPM_CLUSTER_
PCR

NON-
TPM_CLUSTER
_PCR

TPM_CLUSTER
PCR
ASKED

PREPARE
ASKING CM
CHANGE
STATUS PCR

SIM_CALL _
PCR_READ_
STATUS

[PCRs TO
BE HANDLED]

PCR_
READ_
STATUS
ASKED

READY

CALL_
CM_CH_ST_
PCR_TO_
(MAINT)

CM_CH_ST_
PCR_TO_(X)
ASKED

PREPARE
ASKING TPM
CHANGE
STATUS CI

[NO PCRs TO BE HANDLED]

TPM_CH_ST_
CI_TO_(X)
ASKED

CALL_
TPM_CH_ST_
CI_TO_(X)

figure 4.10 int-tpm_cluster_pcr : internal behavior STD

With the operation ‘ tpm_cluster_pcr’ the technical_project_manager (TPM) clusters the problem_and_change_reports
(PCR) that have to be worked on in logical groups. The TPM performs this operation autonomously from time to time. He
first reads the status of a number of PCRs. The reading (at the same time) of the status of a number of PCRs is modeled
with the ‘simultaneous_call ’ -construct. All calls to the same operation of objects of the same (or different) class are
executed concurrently by this construct.

If there are no PCRs to be handled, the TPM goes to the state ‘ ready’ . If there are PCRs to be handled (i.e. PCRs with the
status ‘carry_out’ or ‘ rejected’) the TPM take the following actions. For each PCR with the status ‘carry_out’ the TPM
instructs the configuration_manager (CM) the change the status of that PCR to ‘maintenance’ (repetitive calls to
cm_ch_st_pcr_to_(maint)). The TPM then transists to its next state. Here he instructs the CM to change the status of each
configuration_item that has now PCRs belonging to it, to CI-status ‘maintenance’ or to ‘archive’ if it is a CI that has the
status ‘baseline’ . The TPM instructs the CM (indirectly) via repetitive calls to the TPM’s own operation
tpm_ch_st_ci_to_(x).

For all the PCRs with the status ‘ rejected’ , the TPM checks the CIs that belong to those PCRs. If there are no other PCRs
open on this CI, the TPM instructs the configuration_manager (again via repetitive calls to tpm_ch_st_ci_to_(x)) to their
next status. This can be the status ‘dt_ready’ if the PCR was found during ‘dt-test’ , ‘baseline’ if the PCR was found during
‘acceptance-test’ . If the PCR was found during the operational use of the system, the status of the CI just stays ‘baseline’
and is not changed.

ACT_
TPM _CH_ST_
CI_TO_(X)

NON-TPM
CH_ST_CI_TO
_(X)

TPM _CH_ST_
CI_TO_(X)
ASK ED

CALL _
CM_CH_ST_
CI_TO_(X) CM_CH_

ST_CI_TO_(X)
ASK ED

CM_CREATE_
CI
ASK EDCALL _CM_

CREATE_CI

CM_RELEASE_
NOTE
ASK EDCALL _CM_

RELEASE_NOTE

READY

figure 4.11 int-tpm_ch_st_ci_to_(x) : internal behavior STD

With the operation ‘ tpm_ch_st_ci_to_(x)’ the technical_project_manager directs the configuration_manager to change the
status of the configuration_item. After the call ‘cm_ch_st_ci_to_(x)’ the technical_project_manager has the choice out of
three actions. The choice depends on the status change that was asked.

If the status change was to ‘archive’ then the technical_project_manager directs the configuration_manager to create a new
configuration_item object. The configuration_manager create a new configuration_item and copies the contents of the
archived configuration_item to the new object. (The configuration_manager does this by calli ng the operation ‘create’ of
the configuration_item with the appropriate parameters. The operation ‘create’ will create a new object and optionally
copy the contents of an old configuration_item to a new configuration_item.)

Software Process Modeling
in SOCCA

page :
version : 0.10

55

If the status changes was to ‘baseline’ then the technical_project_manager checks if all configuration_items for a
particular baseline have reached the status ‘baseline’ (not modeled here) and directs the configuration_manager to issue a
release_note. In the case of other status changes, the technical_project_manager will go directly to its state ‘ ready’ .

4.3.2.1.3 Technical_Project_Manager : manager-STD

The communication between the technical_project_manager’s operations (callees) and their callers is managed by a
manager STD. The manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager
STD are labeled with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the
transition. I.e. the transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant
employee(s) has/have entered the trap(s), the transition can and will (eventually) take place.

TL F-5

TL F-7

TL F-9

TL F-3

TL F-1TL F-2

TL F-12

TL F-14

TL F-10

TL F-8 TL F-6

TL F-4

CPS2

(TPM_CH_ST_CI_TO_(X), AUTONOMOUS)

TL F-13

TL F-11

(TPM_CH_ST_CI_TO_(X), NON-AUTONOMOUS)

CPS1

CPS3

CPS6

CPS5 CPS4

CPS8

CPS7

figure 4.12 technical_project_manager : manager STD

The notation CPSx in the STD stands for Consolidated Prescribed Subprocesses and is a set of CCx’s. The notation CCx
in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-callee combination.
The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that enables the transition.
The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

In the state ‘neutral’ the CPS and the TLFs for the transitions leaving the state are :

CPS1 = {CC1-1, CC2-1, CC3-1, CC4-1, CC5-1, CC6-1}
TLF-1 = T-1 (corresponds with ‘ tpm_modify’ transition in extern STD)
TLF-3 = T-3 (corresponds with ‘ tpm_review’ transition in extern STD)
TLF-5 = T-5 (corresponds with ‘ tpm_dt_test’ transition in extern STD)
TLF-7 = T-7 (corresponds with ‘ tpm_ac_test’ transition in extern STD)
TLF-9 = T-9 (corresponds with ‘ tpm_modify’ transition in extern STD)
TLF-11= T-11 (corresponds with ‘ tpm_ch_st_ci_to_(x)’ transition, autonomous)
TLF-13= T-11 and (T-13 or T-15) (corresponds with ‘ tpm_ch_st_ci_to_(x)’ transition, non-autonomous)

In the state ‘starting tpm_modify’ the CPS and the TLF’s for the transitions leaving the state are :

CPS2 = {CC1-2, CC2-1, CC3-1, CC4-1, CC5-1, CC6-1}
TLF-2 = T-2

In the state ‘starting tpm_review’ the CPS and the TLF’s for the transitions leaving the state are :

CPS3 = {CC1-1, CC2-2, CC3-1, CC4-1, CC5-1, CC6-1}
TLF-4 = T-4

Software Process Modeling
in SOCCA

page :
version : 0.10

56

In the state ‘starting tpm_dt_test’ the CPS and the TLF’s for the transitions leaving the state are :

CPS4 = {CC1-1, CC2-1, CC3-2, CC4-1, CC5-1, CC6-1}
TLF-6 = T-6

In the state ‘starting tpm_ac_test’ the CPS and the TLF’s for the transitions leaving the state are :

CPS5 = {CC1-1, CC2-1, CC3-1, CC4-2, CC5-1, CC6-1}
TLF-7 = T-7

In the state ‘starting tpm_cluster_pcr’ the CPS and the TLF’s for the transitions leaving the state are :

CPS6 = {CC1-1, CC2-1, CC3-1, CC4-1, CC5-2, CC6-1}
TLF-10= T-10

In the state ‘starting tpm_ch_st_ci_to_(x)’ (autonomous) the CPS and the TLF’s for the transitions leaving the state are :

CPS7 = {CC1-1, CC2-1, CC3-1, CC4-1, CC5-1, CC6-2}
TLF-12= T-12

The state ‘disc_starting tpm_ch_st_ci_to_(x)’ (non-autonomous) is a discriminator state. The possible callers are
‘cu_acceptance_test’ and ‘ tpm_cluster_pcr’ . In the discriminator state the manager STD will determine which caller has
placed the call and will prescribe the required subprocesses for his caller and the callee. The prescribed subprocess of the
other caller does not change. The CPS and the TLF’s for the transitions leaving the state are :

CPS8 = {CC1-1, CC2-1, CC3-1, CC4-1, CC5-1, CC6-3}
TLF-14= T-12 and (T-14 or T-16)

The caller-callee combinations for ‘ tpm_modify’ consist only of prescribed subprocesses of the callee ‘ tpm_modify’ .
This is because ‘ tpm_modify’ is an autonomous operation.

CC1-1 = {S1}
CC1-2 = {S2}

The caller-callee combinations for ‘ tpm_review’ consist only of prescribed subprocesses of the callee ‘ tpm_review’ .
This is because ‘ tpm_review’ is an autonomous operation.

CC2-1 = {S3}
CC2-2 = {S4}

The caller-callee combinations for ‘ tpm_dt_test’ consist only of prescribed subprocesses of the callee ‘ tpm_dt_test’ .
This is because ‘ tpm_dt_test’ is an autonomous operation.

CC3-1 = {S5}
CC3-2 = {S6}

The caller-callee combinations for ‘ tpm_ac_test’ consist only of prescribed subprocesses of the callee ‘ tpm_ac_test’ .
This is because ‘ tpm_ac_test’ is an autonomous operation.

CC4-1 = {S7}
CC4-2 = {S8}

The caller-callee combinations for ‘ tpm_cluster_pcr’ consist only of prescribed subprocesses of the callee
‘ tpm_cluster_pcr’ . This is because ‘ tpm_cluster_pcr’ is an autonomous operation.

CC5-1 = {S9}
CC5-2 = {S10}

The operation ‘ tpm_ch_st_ci_to_(x)’ can be started autonomously and it can be called by ‘cu_acceptance_test’ or
‘ tpm_cluster_pcr’ . The CCs are therefore :

Software Process Modeling
in SOCCA

page :
version : 0.10

57

CC6-1 = {S11, S13, S15}
CC6-2 = {S12, S13, S15}
CC6-3 = {S12, S14, S15} or

 {S12, S13, S16}

4.3.2.1.4 Technical_Project_Manager : employee-STDs

Internal operations are normally started with the caller_callee-construct. In the case of autonomous operations the
caller_callee-construct consists only of the callee-part (i.e. the act-construct). The caller_callee-construct, the act-construct
and autonomous behavior are described in more detail i n the chapter explaining the SOCCA concepts.

This manager STD has 8 employees. The operations ‘ tpm_modify’ , ‘ tpm_review’ , ‘ tpm_cluster_pcr’ , ‘ tpm_ac_test’ and
‘ tpm_dt_test’ are autonomous operations. They are started with the act-construct. The operation ‘ tpm_ch_st_ci_ to_(x)’
can be autonomous, in which case it is started with the act-construct. It can can also be called by ‘cu_acceptance_test’ and
‘ tpm_cluster_pcr’ . In that case the act-construct which starts the callee ‘ tpm_ch_st_ci_to_(x)’ is part of a caller_callee-
construct. The caller ‘cu_acceptance_test’ or ‘ tpm_cluster_pcr’ is the caller-part of this caller_callee-construct.

NON-
TPM_MODIFY

TPM_MODIFY
ASKED

SE_
MODIFY
ASKED

T-1

CALL _
CM_RELEASE

CALL _SE_
MODIFYCM_

RELEASE
ASKED

CM_
CREATE
ASKED

CALL _
CM_CREATE CALL _SE_

MODIFY

CALL _SE_MODIFY

figure 4.13 employee int-tpm_modify : subprocess S1

T-2

ACT_
TPM_MODIFY

NON-
TPM_MODIFY

TPM_MODIFY
ASKED

SE_
MODIFY
ASKED

CALL _
CM_RELEASE

CALL _SE_
MODIFYCM_

RELEASE
ASKED

CM_
CREATE
ASKED

CALL _
CM_CREATE CALL _SE_

MODIFY

CALL _SE_MODIFY

figure 4.14 employee int-tpm_modify : subprocess S2

When the act-construct is applied to the first employee, the autonomous operation ‘ tpm_modify’ , the result is the
following. This employee has two subprocesses S1 and S2, and two traps T-1 and T-2. In its neutral state the manager
prescribes the subprocess S1 for this employee. The manager can transit to the state ‘starting tpm_modify’ when the
subprocess S1is in trap T-1 and the technical_project_manager decides autonomously to perform the operation
‘ tpm_modify’ . In the state ‘starting tpm_modify’ the manager prescribes the subprocess S2. This means that the employee
can make its transition ‘act_tpm_modify’ (activate_tpm_modify) which means that the operation can start executing. As
soon as the subprocess S2 enters in trap T-2, the manager can transit back to the neutral state. The manager can be back in
the neutral state before the operation ‘ tpm_modify’ has finished executing. In the neutral state another operation can be
started to run concurrently with ‘ tpm_modify’ . Or another instance of ‘ tpm_modify’ can be started because the internal
STD of ‘ tpm_modify’ has the default muliplicity of concurrency of zero or more.

Software Process Modeling
in SOCCA

page :
version : 0.10

58

NON-
TPM_REVIEW

TPM_REVIEW
ASKED

RE_
REVIEW
ASKED

T-3

CALL _
CM_RELEASE

CALL _RE_
REVIEWCM_

RELEASE
ASKED

figure 4.15 employee int-tpm_review : subprocess S3

T-4

ACT_
TPM_REVIEW

NON-
TPM_REVIEW

TPM_REVIEW
ASKED

RE_
REVIEW
ASKED

CALL _
CM_RELEASE

CALL _RE_
REVIEWCM_

RELEASE
ASKED

figure 4.16 employee int-tpm_review : subprocess S4

The application of the act-construct to the second employee, the autonomous operation ‘ tpm_review’ , results in the same
structure as that of ‘ tpm_modify’ . The employee ‘ tpm_review’ has two subprocesses S3 and S4, and two traps T-3 and T-
4. In its neutral state the manager prescribes the subprocess S3 for this employee. The manager can transit to the state
‘starting tpm_review’ when the subprocess S3 is in trap T-3 and the technical_project_manager decides autonomously to
perform the operation ‘ tpm_review’ . In the state ‘starting tpm_modify’ the manager prescribes the subprocess S4. This
means that the employee can make its transition ‘act_tpm_review’ which means that the operation can start executing. As
soon as the subprocess S4 enters in trap T-4, the manager can transit back to the neutral state. It is then ready to service
another call .

The application of the act-construct to the third employee, the autonomous operation ‘ tpm_dt_test’ , results in the same
structure as that of ‘ tpm_modify’ . The employee ‘ tpm_dt_test’ has two subprocesses S5 and S6 and two traps T-5 and T-
6.

The application of the act-construct to the fourth employee, the autonomous operation ‘ tpm_ac_test’ , results in the same
structure as that of ‘ tpm_modify’ . The employee ‘ tpm_ac_test’ has two subprocesses S7 and S8 and two traps T-7 and T-
8.

NON-
TPM _CLUSTER
_PCR

TPM _CLUSTER
PCR
ASKED

PREPARE
ASKING CM
CHANGE
STATUS PCR

SIM _CALL_
PCR_READ_
STATUS

[PCRs TO
BE HANDLED]

PCR_
READ_
STATUS
ASKED

READY

CALL _
CM_CH_ST_
PCR_TO_
(MAINT)

CM_CH_ST_
PCR_TO_(X)
ASKED

PREPARE
ASKING TPM
CHANGE
STATUS CI

[NO PCRs TO BE HANDLED]

TPM _CH_ST_
CI_TO_(X)
ASKED

CALL _
TPM _CH_ST_
CI_TO_(X)

T-9

figure 4.17 employee int-tpm_cluster_pcr : subprocess S9

Software Process Modeling
in SOCCA

page :
version : 0.10

59

ACT_
TPM _CLUSTER_
PCR

NON-
TPM _CLUSTER
_PCR

TPM _CLUSTER
PCR
ASK ED

PREPARE
ASK ING CM
CHANGE
STATUS PCR

SIM_CALL_
PCR_READ_
STATUS

[PCRs TO
BE HANDLED]

PCR_
READ_
STATUS
ASK ED

READY

CALL_
CM_CH_ST_
PCR_TO_
(MAINT)

CM_CH_ST_
PCR_TO_(X)
ASK ED

PREPARE
ASK ING TPM
CHANGE
STATUS CI

[NO PCRs TO BE HANDLED]

TPM _CH_ST_
CI_TO_(X)
ASK ED

CALL_
TPM _CH_ST_
CI_TO_(X)

T-10

figure 4.18 employee int-tpm_cluster_pcr : subprocess S10

The application of the act-construct to the fifth employee, the autonomous operation ‘ tpm_cluster_pcr’ , results in the same
structure as that of ‘ tpm_modify’ . The employee ‘ tpm_cluster_pcr’ has two subprocesses S9 and S10 and two traps T-9
and T-10.

T-11

NON-TPM
CH_ST_CI_TO
_(X)

TPM_CH_ST_
CI_TO_(X)
ASKED

CALL_
CM_CH_ST_
CI_TO_(X) CM_CH_

ST_CI_TO_(X)
ASKED

CM_CREATE_
CI
ASKEDCALL_CM_

CREATE_CI

CM_RELEASE_
NOTE
ASKEDCALL_CM_

RELEASE_NOTE

READY

figure 4.19 employee int-tpm_ch_st_ci_to_(x) : subprocess S11

T-12

ACT_
TPM _CH_ST_
CI_TO_(X)

NON-TPM
CH_ST_CI_TO
_(X)

TPM _CH_ST_
CI_TO_(X)
ASK ED

CALL_
CM_CH_ST_
CI_TO_(X) CM_CH_

ST_CI_TO_(X)
ASK ED

CM_CREATE_
CI
ASK EDCALL_CM_

CREATE_CI

CM_RELEASE_
NOTE
ASK EDCALL_CM_

RELEASE_NOTE

READY

figure 4.20 employee int-tpm_ch_st_ci_to_(x) : subprocess S12

The sixth employee of the manager STD is the ‘ tpm_ch_st_ci_to_(x)’ operation. This operation can be called
autonomously by the technical_project_manager or by the ‘cu_acceptance_test’ operation of the customer or by the
‘ tpm_cluster_pcr’ operation of the technical_project_manager itself. In all cases it is started with the act-construct. When
the operation ‘ tpm_ch_st_ci_to_(x)’ is used autonomously, the act-construct is ‘stand-alone’ . When the operation is called
by ‘cu_acceptance_test’ or ‘ tpm_cluster_pcr’ the act-construct is part of the caller_callee-construct.

The application of the act-construct to the employee, the autonomous operation ‘ tpm_ch_st_ci_to_(x)’ , results in the same
structure as that of ‘ tpm_modify’ . The employee ‘ tpm_ch_st_ci_to_(x)’ has two subprocesses S11 and S12 and two traps
T-11 and T-12. In its neutral state the manager prescribes the subprocess S11 for this employee. The manager can transit to
the state ‘starting tpm_ch_st_ci_to_(x) (autonomous)’ when the subprocess S11 is in trap T-11 and the
technical_project_manager decides autonomously to perform the operation ‘ tpm_ch_st_ci_to_(x)’ . In the state ‘starting

Software Process Modeling
in SOCCA

page :
version : 0.10

60

tpm_ch_st_to_ci_(x) (autonomous)’ the manager prescribes the subprocess S12. This means that the employee can make
its transition ‘act_tpm_ch_st_ci_to_(x)’ which means that the operation can start executing. As soon as the subprocess S12
enters in trap T-12, the manager can transit back to the neutral state.

T-13

ACCEPTANCE
_TEST ASKED

SIM_CALL _
ACCEPTANCE_
TEST

CALL _TPM_CH_
ST_CI_TO_
(BASELINE)

TPM_CH_ST_
CI_TO_(X)
ASKED

CALL _PCR_
CREATE

PCR_
CREATE
ASKED

CM_CH_ST_
PCR_TO_(X)
ASKEDACT_

CU_ACCEP-
TANCE_TEST

NON-
CU_ACCEP-
TANCE_TEST

CU_ACCEP-
TANCE_TEST
ASKED CALL _

CM_CH_ST_
PCR_TO_(CCB)

CENTRAL

figure 4.21 employee int-cu_acceptance_test : subprocess S13

ACCEPTANCE
_TEST ASKED

SIM_CALL _
ACCEPTANCE_
TEST

TPM_CH_ST_
CI_TO_(X)
ASKED

CALL_PCR_
CREATE

PCR_
CREATE
ASKED

CM_CH_ST_
PCR_TO_(X)
ASKEDACT_

CU_ACCEP-
TANCE_TEST

NON-
CU_ACCEP-
TANCE_TEST

CU_ACCEP-
TANCE_TEST
ASKED CALL_

CM_CH_ST_
PCR_TO_(CCB)

CENTRAL

T-14

figure 4.22 employee int-cu_acceptance_test : subprocess S14

The seventh employee is the operation ‘cu_acceptance_test’ of the customer as part of the caller-callee pair
‘cu_acceptance_test’ and ‘ tpm_ch_st_ci_to_(x)’ . The callee ‘ tpm_ch_st_to_(x)’ is started with the act-construct which is
part of the caller_callee construct. It is identical with the sixth employee and has the same has two subprocesses S11 and
S12 and two traps T-11 and T-12. The application of the caller_callee-construct to the caller ‘cu_acceptance_test’ results
in the subprocesses S13 and S14 and two traps T-13 and T-14 for this caller.

In its neutral state the manager prescribes the subprocess S13 for ‘cu_acceptance_test’ and the subprocess S11 for
‘ tpm_ch_st_ci_to(x)’ (This is the same as for the autonomous use ‘ tpm_ch_st_ci_to_(x)’). The manager can transit to the
state ‘disc_starting tpm_ch_st_ci_to_(x) (non_autonomous)’ when the subprocess S13 is in trap T-13 and the subprocess
S11 is in trap T-11. In the state ‘disc_starting tpm_ch_st_to_ci_(x) (non_autonomous)’ the manager prescribes the
subprocess S14 for ‘cu_acceptance_test’ and subprocess S12 for ‘ tpm_ch_st_ci_to_(x)’ . This means that the operation
‘cu_acceptance_test’ can proceed executing its next partial behavior. And ‘ tpm_ch_st_ci_to_(x)’ can make its transition

Software Process Modeling
in SOCCA

page :
version : 0.10

61

‘act_tpm_ch_st_ci_to_(x)’ which means that the operation can start executing. As soon as the subprocess S12 enters in
trap T-12 and subprocess S14 enters in trap T-14, the manager can transit back to the neutral state.

By calli ng the operation ‘ tpm_ch_st_ci_to_(x)’ the customer in fact informs the technical_project_manager that the
acceptance test was ok and that the status of the configuration_item that was tested can be changed to ‘baseline’ . The
customer does not expect a response from the technical_project_manager. After the customer has placed the call and the
technical_project_manager has started the internal operation ‘ tpm_ch_st_ci_to_(x)’ , the customer can proceed with its
own behavior without waiting for any result from ‘ tpm_ch_st_ci_to_(x)’ . The ‘non waiting’ -variant of the caller_callee-
construct is used to model this.

ACT_
TPM_CLUSTER_
PCR

NON-
TPM_CLUSTER
_PCR

TPM_CLUSTER
PCR
ASKED

PREPARE
ASKING CM
CHANGE
STATUS PCR

SIM_CALL _
PCR_READ_
STATUS

[PCRs TO
BE HANDLED]

PCR_
READ_
STATUS
ASKED

READY

CALL _
CM_CH_ST_
PCR_TO_
(MAINT)

CM_CH_ST_
PCR_TO_(X)
ASKED

PREPARE
ASKING TPM
CHANGE
STATUS CI

[NO PCRs TO BE HANDLED]

TPM_CH_ST_
CI_TO_(X)
ASKED

CALL _
TPM_CH_ST_
CI_TO_(X)

T-15

figure 4.23 employee int-tpm_cluster_pcr : subprocess S15

ACT_
TPM _CLUSTER_
PCR

NON-
TPM _CLUSTER
_PCR

TPM _CLUSTER
PCR
ASK ED

PREPARE
ASK ING CM
CHANGE
STATUS PCR

SIM_CALL _
PCR_READ_
STATUS

[PCRs TO
BE HANDLED]

PCR_
READ_
STATUS
ASK ED

READY

CALL _
CM_CH_ST_
PCR_TO_
(MAINT)

CM_CH_ST_
PCR_TO_(X)
ASK ED

PREPARE
ASK ING TPM
CHANGE
STATUS CI

[NO PCRs TO BE HANDLED]

TPM _CH_ST_
CI_TO_(X)
ASK ED

T-16

figure 4.24 employee int-pcr_cluster_pcr : subprocess S16

The 8th is the operation ‘ tpm_cluster_pcr’ of the technical_project_manager as part of the caller-callee pair ‘ tpm_cluster
_pcr’ and ‘ tpm_ch_st_ci_to_(x)’ . The callee ‘ tpm_ch_st_to_(x)’ is started with the act-construct which is part of the
caller_callee construct. It is identical with the sixth employee and has the same has two subprocesses S11 and S12 and two
traps T-11 and T-12. The application of the caller_callee-construct to the caller ‘ tpm_cluster_pcr’ results in the
subprocesses S15 and S16 and two traps T-15 and T-16 for this caller.

After the operation ‘ tpm_cluster_pcr’ has placed the call and the callee operation is started, the operation ‘ tpm_cluster_
pcr’ can proceed with its own behavior without waiting for the result from ‘ tpm_ch_st_ci_to_(x)’ . The ‘non waiting’ -
variant of the caller_callee-construct is used to model this.

Software Process Modeling
in SOCCA

page :
version : 0.10

62

4.3.2.2 Configuration_Manager

4.3.2.2.1 Configuration_Manager : external behavior-STD

The STD of the external behavior consists of a neutral state in which the configuration_manager waits for a call to one of
its operations, starting states in which he starts his operations after they are called, and discriminator states. If an operation
that can be called by more than one operation, is called, the STD transits to a discriminator state. Here he determines from
which operation the call i s coming and transits to the corresponding starting state. The discriminator state concept is
described in more detail i n the chapter explaining the SOCCA concepts. The callers of the operations of this class can be
found in the import-export diagram. They are given in the the ‘ import_list’ attribute of the ‘uses association’ .

There are four discriminator states, indicated by the prefix ‘disc_’ in the state name. The first discriminator state
‘disc_starting_cm_ch_st_ci_to_(x)’ is given in more detail . This shows the handling of a call to the ‘cm_ch_st_ci_to_(x)’
operation. The operation ‘cm_ch_st_ci_to_(x)’ can be called by 4 different callers. They are the operation
‘ tpm_ch_st_ci_to_(x)’ of the class ‘ technical_project_manager’ , the operation ‘se_modify’ of the class
‘software_engineer’ , the operation ‘ re_review’ of the class ‘ reviewer’ and the operation ‘ te_dt_test’ of the class
‘ test_engineer’ .

The second discriminator state is ‘disc_starting_cm_release’ handling calls from 4 different callers. These callers are the
operations ‘ tpm_modify’ , ‘ tpm_review’ , ‘ tpm_dt_test’ and ‘ tpm_ac_test’ all from the class ‘ technical_project_manager’ .

The third discriminator state is ‘disc_starting_cm_ch_st_pcr_to_(x)’ handling calls from 6 different callers. These callers
are the operation ‘ tpm_cluster_pcr’ of the class ‘ technical_project_manager’ , the operation ‘ te_dt_test’ of the class
‘ test_engineer’ , the operations ‘cu_acceptance_test’ and ‘cu_issue_pcr’ of the class ‘customer’ , the operation
‘scb_consider_pcr’ of the class ‘software_configuration_board’ and the operation ‘ccb_consider_pcr’ of the class
‘configuration_control_board’ .

The fourth discriminator state is ‘disc_starting_cm_create_ci’ handling calls from 2 different callers. These callers are the
operation ‘ tpm_modify’ and the operation ‘ tpm_ch_st_ci_to_(x)’ both from the class ‘ technical_project_manager’ .

NEUTRAL

CM_CH_ST_
CI_TO_(X)

DISCRIMINATOR

CM_CH_ST_
PCR_TO_(X)

CM_RELEASE

DISC_
STARTING
CM_RELEASE

CM_UPDATE_
VERSION

STARTING
CM_UPDATE_
VERSION

CM_CREATE_CI

DISC_
STARTING
CM_CREATE_
CI

CM_
RELEASE_NOTE

STARTING
CM_
RELEASE_
NOTE

STARTING
CM_CH_ST_
CI_TO_(X)_4

STARTING
CM_CH_ST_
CI_TO_(X)_3

STARTING
CM_CH_ST_
CI_TO_(X)_2

STARTING
CM_CH_ST_
CI_TO_(X)_1

DISC_
STARTING
CM_CH_ST_
PCR_TO_(X)

DISC_
WAITING_
CALLER_
PROCEED

figure 4.25 configuration_manager : external behavior STD

The STD has also the state ‘disc_waiting_caller_proceed’ . Some of the callers of the operations of the
configuration_manager have to wait for a result returned to them by these operations. Or they have to wait until these
called operations have reached some specific point in their execution. The state ‘disc_waiting_caller_proceed’ is an
aggregate state. When a callee has produced a result (or is far enough in its execution), the manager transits to the state
‘disc_waiting_ caller_proceed’ . Here the manager determines which waiting caller had called this callee. This caller is
then allowed to proceed.

Software Process Modeling
in SOCCA

page :
version : 0.10

63

The callers of ‘ cm_release’ are ‘ tpm_modify’ , ‘ tpm_review’ , ‘ tpm_dt_test’ and ‘ tpm_ac_test’ . These callers must wait
after their call until ‘cm_release’ has progressed far enough in its execution. I.e. until the configuration_item is released.

The callers of ‘ cm_create_ci’ are ‘ tpm_modify’ and ‘ tpm_ch_st_ci_to_(x)’ . These callers must wait after their call until
‘cm_create_ci’ has progressed far enough in its execution. I.e. until the configuration_item is created.

The caller of ‘ cm_update_version’ is ‘se_modify’ . This caller must wait after its call until ‘cm_update_version’ has
progressed far enough in its execution. I.e. until the version of the configuration_item is updated.

The caller of ‘ cm_release_note’ is ‘ tpm_ch_st_ci_to_(x). It does not have to wait on some result of ‘ cm_release_note’ , but
can continue right after its call to ‘cm_release_note’ .

The callers of ‘cm_ch_st_ci_to_(x)’ are ‘ tpm_ch_st_ci_to_(x)’ , ‘se_modify’ , ‘ re_review’ and ‘ te_dt_test’ . These callers
don’ t have to wait for a result of ‘ cm_ch_st_ci_to_(x)’ . Firstly, they don’ t have to work themself on the CI anymore, so
they are not interested if the status change has been performed on the CI. Secondly, the next person to work on a particular
CI does so only after this CI that has been ‘ released’ f rom configuration management. A CI can only be ‘ released’ when it
has the correct status. This is enforced by the external STD of the configuration item (which specifies the sequence in
which calls to the configuration item are serviced). So either the status change is already applied to the CI, and then it can
be released and worked on, or the status change has not yet been applied to the CI and then it can not yet be released (the
call to the operation ‘cm_release’ is not yet serviced).

The callers of ‘ cm_ch_st_pcr_to_(x)’ are ‘ tpm_cluster_pcr’ , ‘ te_dt_test’ , ‘cu_acceptance_test’ , ‘cu_issue_pcr’ ,
‘scb_consider_pcr’ and ‘ccb_consider_pcr’ . These callers don’ t have to wait for a result of ‘ cm_ch_st_pcr_to_(x)’ .
Firstly, they don’ t have any dealings with the PCR anymore, so they are not interested if the status change has been
performed on the PCR. Secondly, for the persons going to perform some action on a PCR there are two possibiliti es. In
one case they check the status of a PCR before they are using it. This is the case with the technical_project_manager when
he clusters the PCRs. He will only cluster those PCRs that have the correct status. In the second case, the
software_configuration_board and the configuration_control_board, the PCRs are given to these boards by the
configuration_manager. He will do so only after the PCRs have gotten their correct status. The configuration manager
indeed has to wait when he calls the status changing operation of the class ‘problem_and_change_report’ .

4.3.2.2.2 Configuration_Manager : internal behavior-STDs

The 6 operations of the configuration_manager have the following internal behavior STDs.

STATUS
SE_READY
ASK ED

ACT_
CM_CH_ST_
CI_TO_(X)

NON-
CM_CH_ST_
CI_TO_(X)

CM_CH_ST_
CI_TO_(X)
ASK ED

CALL_
CH_ST_TO_
CONTROL

STATUS
CONTROL
ASK ED

CALL_
CH_ST_TO_
SE_READY

CALL_
CH_ST_TO_
DT_READY

CALL_
CH_ST_TO_
BASELINE

CALL_
CH_ST_TO_
MAINT

STATUS
DT_READY
ASK ED

STATUS
BASELINE
ASK ED

CALL_
CH_ST_TO_
ARCHIVE

STATUS
MAINT
ASK ED

STATUS
ARCHIVE
ASK ED

figure 4.26 int-cm_ch_st_ci_to_(x) : internal behavior STD

The formal parameters of the operation ‘cm_ch_st_ci_to_(x)’ are the id of the configuration_item whose status has to be
changed and the new status. The STD calls the relevant configuration_item’s operation ‘ch_st_to_x’ according to the
value of the parameter with which it is called.

Software Process Modeling
in SOCCA

page :
version : 0.10

64

STATUS
SCB
ASKED

ACT_
CM_CH_ST_
PCR_TO_(X)

NON-
CM_CH_ST_
PCR_TO_(X)

CM_CH_ST_
PCR_TO_(X)
ASKED

CALL _
CH_ST_TO_
CCB

STATUS
CCB
ASKED

CALL _
CH_ST_TO_
SCB

CALL _
CH_ST_TO_
REJECTED

CALL _
CH_ST_TO_
CARRY_OUT

CALL _
CH_ST_TO_
MAINT

STATUS
REJECTED
ASKED

STATUS
CARRY_OUT
ASKED

CALL _
CH_ST_TO_
SOLVED

STATUS
MAINT
ASKED

STATUS
SOLVED
ASKED

CALL _CCB_CONSIDER_PCR

CCB_
CONSIDER_PCR
ASKED

SCB_
CONSIDER_PCR
ASKED

CALL _SCB_CONSIDER_PCR

figure 4.27 int-cm_ch_st_pcr_to_(x) : internal behavior STD

The formal parameters of the operation ‘cm_ch_st_pcr_to_(x)’ are the id of the problem_and_change_report whose status
has to be changed and the new status. The STD calls the relevant problem_and_change_report’s operation ‘ch_st_to_x’
according to the value of the parameter with which it is called. After a status change to ‘ccb’ the configuration_manager
offers the pcr to the configuration_control_board and and after a status change to ‘scb’ he offers the pcr to the
software_configuration_board.

ACT_
CM_RELEASE

NON-
CM_RELEASE

CM_RELEASE
ASKED

CALL _
RELEASE RELEASE

ASKED

figure 4.28 int-cm_release : internal behavior STD

The operation ‘cm_release’ is calli ng the configuration_item’s operation ‘ release’ on behalf of its callers.

ACT_
CM_UPDATE_
VERSION

NON-
CM_UPDATE_
VERSION

CM_UPDATE_
VERSION
ASKED CALL _

UPDATE_
VERSION

UPDATE_
VERSION
ASKED

figure 4.29 int-cm_update_version : internal behavior STD

The operation ‘cm_update_version’ is calli ng the configuration_item’s operation ‘update_version’ on behalf of its callers.

ACT_
CM_RELEASE_
NOTE

NON-
CM_RELEASE_
NOTE

CM_RELEASE_
NOTE
ASKED

DETERMINE
CONTENT CALL _

RN_CREATE
(CONTENT)

RN_CREATE
ASKED

figure 4.30 int-cm_release_note : internal behavior STD

The operation ‘cm_release_note’ is calli ng the release_note’s operation ‘ rn_create_(x)’ on behalf of its callers. When a
release_note is created its attribute ‘content’ is initiated with the actual value of the patameter ‘x’ . This models the writing
of the release_note by the configuration_manager.

Software Process Modeling
in SOCCA

page :
version : 0.10

65

ACT_
CM_CREATE_
CI

NON-
CM_CREATE_
CI

CM_CREATE_
CI
ASKED CALL _

CREATE

CREATE
ASKED

figure 4.31 int-cm_create_ci : internal behavior STD

With the operation ‘cm_create_ci’ the configuration_manager creates a new configuration_item. The configuration_
manager does this by calli ng the operation ‘create’ of the class ‘configuration_item’ . If needed the configuration-manager
can let the operation ‘create’ initialize the content of the new configuration_item with the content of some already existing
configuration_item. The configuration_manager has then to call the operation ‘create’ with the appropriate parameters.

4.3.2.2.3 Configuration_Manager : manager-STD

The communication between the configuration_manager’s operations (callees) and their callers is managed by a manager
STD. The manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager STD are
labeled with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the
transition. I.e. the transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant
employee(s) has/have entered the trap(s), the transition can and will (eventually) take place.

CPS4

TLF-9

TLF-10

TLF-11

TLF-5

TLF-6

TLF-12
TLF-7

TLF-8
TLF-3

TLF-4

TLF-1

TLF-14 TLF-16 TLF-18 TLF-20

CPS1

CPS6

CPS7

CPS5 CPS3

CPS2

CPS8 CPS9 CPS10 CPS11

TLF-13

TLF-15
TLF-17 TLF-19

CPS12

TLF-21 TLF-22

figure 4.32 configuration_manager : manager STD

The notation CPSx in the STD stands for Consolidated Prescribed Subprocesses and is a set of CCx’s. The notation CCx
in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-callee combination.
The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that enables the transition.
The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

The caller-waits construct is modeled by the 2e variant of this construct (i.e. the ‘waiting_caller_proceed’-construct). This
means that the TLF-3, TLF-7, TLF-11 and TLF-22 have to have some additional information for the manager STD to
decide which transition to take. This information comes from the internal bookkeeping of the manager STD. If an
operation is started by the manager STD on behalf of a caller, a caller-callee relation is initiated. In this way the manager
STD can check whether a non-active employee still has some caller waiting to be allowed to proceed. If both the callee
and the caller have terminated, the particular caller-callee relation is cancelled in the internal administration of the manager
STD.

Software Process Modeling
in SOCCA

page :
version : 0.10

66

In the state ‘neutral’ the CPS and the TLFs for the transitions leaving the state are :

CPS1 = {CC1-1, CC2-1, CC3-1, CC4-1, CC5-1, CC6-1}
TLF-1 = T-1 and (T-3 or T-5 or T-7 or T-9)
TLF-3 = (T-11 and ((T-13 and not(caller-callee relation) or

 (T-15 and not(caller-callee relation) or
 (T-17 and not(caller-callee relation) or
 (T-19 and not(caller-callee relation)))

TLF-5 = T-21 and (T-23 or T-25 or T-27 or T-29 or T-31 or T47)
TLF-7 = T-33 and (T-35 and not(caller-callee relation))
TLF-9 = T-37 and T-39
TLF-11= (T-24 and ((T-43 and not(caller-callee relation) or

 (T-45) and not caller-callee relation)))
TLF-22 = (T-11 and ((T-13 and (caller-callee relation) or

 (T-15 and (caller-callee relation) or
 (T-17 and (caller-callee relation) or
 (T-19 and (caller-callee relation)))

 or (T-33 and (T-35 and (caller-callee-relation)))
 or (T-24 and ((T-43 and not(caller-callee relation) or

 (T-45) and not caller-callee relation)))

The discriminator state ‘disc_starting_cm_ch_st_ci_to_(x)’ is shown in more detail . It consists of the states
‘discriminator’ , ‘starting_cm_ch_st_ci_to_(x)_1’ , ‘starting_cm_ch_st_ci_to_(x)_2’ , ‘starting_cm_ch_ch_st_ci_to_(x)_3’
and ‘starting_cm_ch_st_ci_to_(x)_4’ .

The STD starts in its neutral state. When the TLF-1 becomes true the STD can transit to the state ‘discriminator’ . From
here it can transit to the state ‘starting_cm_ch_st_ci_to_(x)_1’ when trap T-3 has been entered, to ‘starting_cm_ch_st_ci_
to_(x)_2’ when trap T-5 has been entered, to ‘starting_cm_ch_ch_st_ci_to_(x)_3’ when trap T-7 has been entered or to
‘starting_cm_ch_st_ci_to_(x)_4’ when trap T-9 has been entered. In these states the operation ‘cm_ch_st_ci_to_(x)’ is
started and the caller is set to its ‘continue’ -subprocess while the non-callers stay in their subprocesses as prescribed in
‘neutral’ state. If the internal operation has started, i.e. entered T-2 and the caller has entered its ‘continue’ -trap, T-4 or T-6
or T-8 or T10, the manager STD can transit back to the state ‘neutral’ .

In the state ‘discriminator’ the CPS and the TLFs for the transitions leaving the state are :

CPS2 = {CC1-1, CC2-1, CC3-1, CC4-1, CC5-1, CC6-1}
TLF-13 = T-3
TLF-15 = T-5
TLF-17 = T-7
TLF-19 = T-9

In the state ‘starting_cm_ch_st_ci_to_(x)_1’ the CPS and the TLFs for the transitions leaving the state are :

CPS8 = {CC1-2, CC2-1, CC3-1, CC4-1, CC5-1, CC6-1}
TLF-14 = T-2 and T-4

In the state ‘starting_cm_ch_st_ci_to_(x)_2’ the CPS and the TLFs for the transitions leaving the state are :

CPS9 = {CC1-3, CC2-1, CC3-1, CC4-1, CC5-1, CC6-1}
TLF-16 = T-2 and T-6

In the state ‘starting_cm_ch_st_ci_to_(x)_3’ the CPS and the TLFs for the transitions leaving the state are :

CPS10 = {CC1-4, CC2-1, CC3-1, CC4-1, CC5-1, CC6-1}
TLF-18 = T-2 and T-8

In the state ‘starting_cm_ch_st_ci_to_(x)_4’ the CPS and the TLFs for the transitions leaving the state are :

CPS11 = {CC1-5, CC2-1, CC3-1, CC4-1, CC5-1, CC6-1}
TLF-20 = T-2 and T-10

Software Process Modeling
in SOCCA

page :
version : 0.10

67

In the discriminator state ‘disc_starting_cm_release’ the CPS and the TLFs for the transitions leaving the state are :

CPS3 = {CC1-1, CC2-2, CC3-1, CC4-1, CC5-1, CC6-1}
TLF-4 = T-12

In the discriminator state ‘disc_starting_cm_ch_st_pcr_to_(x)’ the CPS and the TLFs for the transitions leaving the state
are :

CPS4 = {CC1-1, CC2-1, CC3-2, CC4-1, CC5-1, CC6-1}
TLF-6 = T-22 and (T-24 or T-26 or T-28 or T-30 or T-32 or T48)

In the state ‘starting_cm_update_version’ the CPS and the TLFs for the transitions leaving the state are :

CPS5 = {CC1-1, CC2-1, CC3-1, CC4-2, CC5-1, CC6-1}
TLF-8 = T-34

In the state ‘starting_cm_release_note’ the CPS and the TLFs for the transitions leaving the state are :

CPS6 = {CC1-1, CC2-1, CC3-1, CC4-1, CC5-2, CC6-1}
TLF-10 = T-38 and T-40

In the discriminator state ‘disc_starting_cm_create_ci’ the CPS and the TLFs for the transitions leaving the state are :

CPS7 = {CC1-1, CC2-1, CC3-1, CC4-1, CC5-1, CC6-2}
TLF-12 = T-42

The discriminator state ‘disc_waiting_caller_proceed’ is entered by the manager STD after it detects that some employee
has returned some result (or has progressed far enough in its execution). The manager STD decides in this state which
caller is allowed to proceed. The CPS and the TLFs for the transitions leaving the state are :

CPS12 = {CC1-1, CC2-3, CC3-1, CC4-1, CC5-1, CC6-2} or
 {CC1-1, CC2-1, CC3-1, CC4-3, CC5-1, CC6-2} or

 {CC1-1, CC2-1, CC3-1, CC4-1, CC5-1, CC6-3}
TLF-12 = (T-14 or T-16 or T-18 or T-20) or T-36 or (T-44 or T-46)

The caller-callee combinations for ‘cm_ch_st_ci_to_(x)’ and its 4 callers ‘ tpm_ch_st_ci_to_(x)’ , ‘se_modify’ , ‘ re_review’
and ‘ te_dt_test’ are :

CC1-1 = {S1, S3, S5, S7, S9}
CC1-2 = {S2, S4, S5, S7, S9}
CC1-3 = {S2, S3, S6, S7, S9}
CC1-4 = {S2, S3, S5, S8, S9}
CC1-5 = {S2, S3, S5, S7, S10}

The caller-callee combinations for ‘cm_release’ and its 4 callers ‘ tpm_modify’ , ‘ tpm_review’ , ‘ tpm_dt_test’ and
‘ te_ac_test’ are :

CC2-1 = {S11, S13, S15, S17, S19}
CC2-2 = {S12, S13, S15, S17, S19} (either one of the callers has to wait)
CC2-3 = {S11, S14, S15, S17, S19}or (letting caller ‘ tpm-modify’ proceed)
 {S11, S13, S16, S17, S19}or (letting caller ‘ tpm_review’ proceed)
 {S11, S13, S15, S18, S19}or (letting caller ‘ tpm_dt_test’ proceed)
 {S11, S13, S15, S17, S20} (letting caller ‘ tpm_ac_test’ proceed)

The caller-callee combinations for ‘cm_ch_st_pcr_to_(x)’ and its 6 callers ‘ tpm_cluster_pcr’ , ‘ te_dt_test’ ,
‘cu_acceptance_test’ , ‘scb_consider_pcr’ , ‘ccb_consider_pcr’ and ‘cu_issue_pcr’ are :

CC3-1 = {S21, S23, S25, S27, S29, S31, S47}
CC3-2 = {S22, S24, S25, S27, S29, S31, S47}or
 {S22, S23, S26, S27, S29, S31, S47}or

Software Process Modeling
in SOCCA

page :
version : 0.10

68

 {S22, S23, S25, S28, S29, S31, S47}or
 {S22, S23, S25, S27, S30, S31, S47}or
 {S22, S23, S25, S27, S29, S32, S47}or
 {S22, S23, S25, S27, S29, S31, S48}

The caller-callee combinations for ‘cm_update_version’ and its caller ‘se_modify’ are :

CC4-1 = {S33, S35}
CC4-2 = {S34, S35} (caller has to wait)
CC4-3 = {S33, S36} (letting caller ‘se_modify’ proceed)

The caller-callee combinations for ‘cm_release_note’ and its caller ‘ tpm_ch_st_ci_to_(x)’ are :

CC5-1 = {S37, S39}
CC5-2 = {S38, S40}

The caller-callee combinations for ‘cm_create_ci’ and its 2 callers ‘ tpm_modify’ and ‘ tpm_ch_st_ci_to_(x)’ are :

CC6-1 = {S41, S43, S45}
CC6-1 = {S42, S43, S45} (either one of the callers has to wait)
CC6-3 = {S41, S44, S45}or} (letting caller ‘ tpm_modify’ proceed)
 {S41, S43, S46}} (letting caller ‘ tpm_ch_st_ci_to_(x)’ proceed)

4.3.2.2.4 Configuration_Manager : employee-STDs

The manager STD has the following 24 employee STDs.

The first five employees are the callee ‘cm_ch_st_ci_to_(x)’ and its 4 callers ‘ tpm_ch_st_ci_to_(x)’ , ‘se_modify’ ,
‘ re_review’ and ‘ te_dt_test’ . Which caller has executed the call i s determined in the discriminator state
‘disc_starting_cm_ch_st_ci_to_(x)’ of the manager STD.

STATUS
SE_READY
ASK ED

NON-
CM_CH_ST_
CI_TO_(X)

CM_CH_ST_
CI_TO_(X)
ASK ED

CALL_
CH_ST_TO_
CONTROL

STATUS
CONTROL
ASK ED

CALL_
CH_ST_TO_
SE_READY

CALL_
CH_ST_TO_
DT_READY

CALL_
CH_ST_TO_
BASELINE

CALL_
CH_ST_TO_
MAINT

STATUS
DT_READY
ASK ED

STATUS
BASELINE
ASK ED

CALL_
CH_ST_TO_
ARCHIVE

STATUS
MAINT
ASK ED

STATUS
ARCHIVE
ASK ED

T-1

figure 4.33 employee int-cm_ch_st_ci_to_(x) : subprocess S1

Software Process Modeling
in SOCCA

page :
version : 0.10

69

STATUS
SE_READY
ASKED

ACT_
CM_CH_ST_
CI_TO_(X)

NON-
CM_CH_ST_
CI_TO_(X)

CM_CH_ST_
CI_TO_(X)
ASKED

CALL _
CH_ST_TO_
CONTROL

STATUS
CONTROL
ASKED

CALL _
CH_ST_TO_
SE_READY

CALL _
CH_ST_TO_
DT_READY

CALL _
CH_ST_TO_
BASELINE

CALL _
CH_ST_TO_
MAINT

STATUS
DT_READY
ASKED

STATUS
BASELINE
ASKED

CALL _
CH_ST_TO_
ARCHIVE

STATUS
MAINT
ASKED

STATUS
ARCHIVE
ASKED

T-2

figure 4.34 employee int-cm_ch_st_ci_to_(x) : subprocess S2

The first employee is the own internal operation ‘cm_ch_st_ci_to_(x)’ . This employee has two subprocesses S1 and S2
and two traps T-1 and T-2. The operation ‘cm_ch_st_ci_to_(x)’ is started after it has been determined which of its
potential callers has executed the call .

ACT_
TPM _CH_ST_
CI_TO_(X)

NON-TPM
CH_ST_CI_TO
_(X)

TPM _CH_ST_
CI_TO_(X)
ASK ED

CALL_
CM_CH_ST_
CI_TO_(X)

T-3

CM_CH_
ST_CI_TO_(X)
ASK ED

CM_CREATE_
CI
ASK ED

CM_RELEASE_
NOTE
ASK ED

READY

figure 4.35 employee int-tpm_ch_st_ci_to_(x) : subprocess S3

ACT_
TPM _CH_ST_
CI_TO_(X)

NON-TPM
CH_ST_CI_TO
_(X)

TPM _CH_ST_
CI_TO_(X)
ASKED

CM_CH_
ST_CI_TO_(X)
ASKED

CM_CREATE_
CI
ASKEDCALL_CM_

CREATE_CI

CM_RELEASE_
NOTE
ASKEDCALL_CM_

RELEASE_NOTE

T-4

READY

figure 4.36 employee int-tpm_ch_st_ci_to_(x) : subprocess S4

The second employee is the caller operation ‘ tpm_ch_st_ci_to_(x)’ . This employee has two subprocesses S3 and S4 and
two traps T-3 and T-4. This caller does not have to wait after the call on some result from the callee (see the explanation in
the external STD-subparagraph).

Software Process Modeling
in SOCCA

page :
version : 0.10

70

ACT_
SE_MODIFY

NON-
SE_MODIFY

SE_MODIFY
ASKED

CALL_
CM_UPDATE_
VERSION CM_CH_ST_

CI_TO_(X)
ASKED

T-5

CALL_CM_
CH_ST_CI_
TO_(CONTROL)

CM_UPDATE
_VERSION
ASKED

MODIFY
ASKED

CALL_MODIFY

figure 4.37 employee int-se_modify : subprocess S5

ACT_
SE_MODIFY

NON-
SE_MODIFY

CM_CH_ST_
CI_TO_(X)
ASK ED

SE_MODIFY
ASK ED

CALL_
CM_UPDATE_
VERSION CM_UPDATE

_VERSION
ASK ED

MODIFY
ASK ED

CALL_M ODIFY

T-6

figure 4.38 employee int-se_modify : subprocess S6

The third employee is the caller operation ‘se_modify’ . This employee has two subprocesses S5 and S6 and two traps T-5
and T-6. This caller does not have to wait after the call on some result from the callee (see the explanation in the external
STD-subparagraph).

REVIEW
ASKED

CALL_REVIEW

ACT_
RE_REVIEW

NON-
RE_REVIEW

RE_REVIEW
ASKED

CALL_CM_
CH_ST_CI_
TO_(X)

CM_CH_ST_
CI_TO_(X)
ASKED

T-7

figure 4.39 employee int-re_review : subprocess S7

Software Process Modeling
in SOCCA

page :
version : 0.10

71

ACT_
RE_REVIEW

NON-
RE_REVIEW

RE_REVIEW
ASKED

CM_CH_ST_
CI_TO_(X)
ASKED

REVIEW
ASKED

CALL _REVIEW

T-8

figure 4.40 employee int-re_review : subprocess S8

The 4th employee is the caller operation ‘ re_review’ . This employee has two subprocesses S7 and S8 and two traps T-7
and T-8. This caller does not have to wait after the call on some result from the callee (see the explanation in the external
STD-subparagraph).

T-9

DT_TEST
ASK ED

SIM _CALL_
DT_TEST

CALL_CM_CH_
ST_CI_TO_
(DT_READY)

CM_CH_ST_
CI_TO_(X)
ASK ED

CALL_PCR_
CREATE

PCR_
CREATE
ASK ED

CM_CH_ST_
PCR_TO_(X)
ASK EDACT_

TE_DT_TEST

NON-
TE_DT_TEST

TE_DT_TEST
ASK ED CALL_

CM_CH_ST_
PCR_TO_(SCB/CCB)

CALL_CM_CH_ST_PCR_TO_(X)

CENTRAL

figure 4.41 employee int-te_dt_test : subprocess S9

Software Process Modeling
in SOCCA

page :
version : 0.10

72

T-10

DT_TEST
ASKED

SIM_CALL_
DT_TEST

CM_CH_ST_
CI_TO_(X)
ASKED

CALL_PCR_
CREATE

PCR_
CREATE
ASKED

CM_CH_ST_
PCR_TO_(X)
ASKEDACT_

TE_DT_TEST

NON-
TE_DT_TEST

TE_DT_TEST
ASKED CALL_

CM_CH_ST_
PCR_TO_(SCB/CCB)

CALL_CM_CH_ST_PCR_TO_(X)

CENTRAL

figure 4.42 employee int-te_dt_test : subprocess S10

The 5th employee is the caller operation ‘ te_dt_test’ . This employee has two subprocesses S9 and S10 and two traps T-9
and T-10. This caller does not have to wait after the call on some result from the callee (see the explanation in the external
STD-subparagraph).

The sixth until tenth employees are the callee ‘cm_release’ and its 4 callers ‘ tpm_modify’ , ‘ tpm_review’ , ‘ tpm_dt_test’
and ‘ tpm_ac_test’ . Which caller has executed the call i s determined in the discriminator state ‘disc_starting_cm_release’
of the manager STD.

NON-
CM_RELEASE

CM_RELEASE
ASKED

CALL_
RELEASE RELEASE

ASKED

T-11

figure 4.43 employee int-cm_release : subprocess S11

NON-
CM_RELEASE

CM_RELEASE
ASKED

CALL_
RELEASE RELEASE

ASKED
ACT_
CM_RELEASE

T-12

figure 4.44 employee int-cm_release : subprocess S12

The 6th employee is the own internal operation ‘cm_release’ . This employee has two subprocesses S11 and S12 and two
traps T-11 and T-12. The operation ‘cm_release’ is started after it has been determined which of its potential callers has
performed the call .

Software Process Modeling
in SOCCA

page :
version : 0.10

73

ACT_
TPM_MODIFY

NON-
TPM_MODIFY

SE_
MODIFY
ASKED

TPM_MODIFY
ASKED

CALL_
CM_RELEASE CM_

RELEASE
ASKED

CM_
CREATE
ASKED

CALL_
CM_CREATE CALL_SE_

MODIFY

T-13

CALL_SE_MODIFY

figure 4.45 employee int-tpm_modify : subprocess S13

ACT_
TPM_MODIFY

NON-
TPM_MODIFY

SE_
MODIFY
ASKED

TPM_MODIFY
ASKED

CALL _SE_
MODIFYCM_

RELEASE
ASKED

CM_
CREATE
ASKED

CALL _
CM_CREATE CALL _SE_

MODIFY

T-14

CALL _SE_MODIFY

figure 4.46 employee int-tpm_modify : subprocess S14

The 7th employee is the caller operation ‘ tpm_modify’ . This employee has two subprocesses S13 and S14 and two traps
T-13 and T-14. This caller does have to wait after the call on some result from the callee (see the explanation in the
external STD-subparagraph). This is modeled by the ‘waiting_caller_proceed’-construct in the external/manager STD.
This construct uses the same trap structure as the non-waiting caller_callee-construct.

ACT_
TPM_REVIEW

NON-
TPM_REVIEW

RE_
REVIEW
ASKED

TPM_REVIEW
ASKED

CALL _
CM_RELEASE CM_

RELEASE
ASKED

T-15

figure 4.47 employee int-tpm_review : subprocess S15

ACT_
TPM_REVIEW

NON-
TPM_REVIEW

RE_
REVIEW
ASKED

TPM_REVIEW
ASKED

CALL_RE_
REVIEWCM_

RELEASE
ASKED

T-16

figure 4.48 employee int-tpm_review : subprocess S16

The 8th employee is the caller operation ‘ tpm_modify’ . This employee has two subprocesses S15 and S16 and two traps
T-15 and T-16. This caller does have to wait after the call on some result from the callee (see the explanation in the
external STD-subparagraph). This is modeled by the ‘waiting_caller_proceed’-construct in the external/manager STD.
This construct uses the same trap structure as the non-waiting caller_callee-construct.

Software Process Modeling
in SOCCA

page :
version : 0.10

74

The 9th employee is the caller operation ‘ tpm_dt_test’ . This employee has two subprocesses S17 and S18 and two traps T-
17 and T-18. This caller does have to wait after the call on some result from the callee (see the explanation in the external
STD-subparagraph). This is modeled by the ‘waiting_caller_proceed’-construct in the external/manager STD. This
construct uses the same trap structure as the non-waiting caller_callee-construct.

The 10th employee is the caller operation ‘ tpm_ac_test’ . This employee has two subprocesses S19 and S20 and two traps
T-19 and T-20. This caller does have to wait after the call on some result from the callee (see the explanation in the
external STD-subparagraph). This is modeled by the ‘waiting_caller_proceed’-construct in the external/manager STD.
This construct uses the same trap structure as the non-waiting caller_callee-construct.

The eleventh until the 16th employees plus the 24th employee are the callee ‘cm_ch_st_pcr_to_(x)’ and its 6 callers
‘ tpm_cluster_pcr’ , ‘ te_dt_test’ , ‘cu_acceptance_test’ , ‘scb_consider_pcr’ , ‘ccb_consider_pcr’ and ‘cu_issue_pcr’ . Which
caller has executed the call i s determined in the discriminator state ‘disc_starting_cm_ch_st_pcr_to_(x)’ of the manager
STD.

STATUS
SCB
ASKED

NON-
CM_CH_ST_
PCR_TO_(X)

CM_CH_ST_
PCR_TO_(X)
ASKED

CALL_
CH_ST_TO_
CCB

STATUS
CCB
ASKED

CALL_
CH_ST_TO_
SCB

CALL_
CH_ST_TO_
REJECTED

CALL_
CH_ST_TO_
CARRY_OUT

CALL_
CH_ST_TO_
MAINT

STATUS
REJECTED
ASKED

STATUS
CARRY_OUT
ASKED

CALL_
CH_ST_TO_
SOLVED

STATUS
MAINT
ASKED

STATUS
SOLVED
ASKED

T-21

CCB_
CONSIDER_PCR
ASKED

SCB_
CONSIDER_PCR
ASKED

CALL_CCB_CONSIDER_PCR

CALL_SCB_CONSIDER_PCR

figure 4.49 employee int-cm_ch_st_pcr_to_(x) : subprocess S21

STATUS
SCB
ASK ED

ACT_
CM_CH_ST_
PCR_TO_(X)

NON-
CM_CH_ST_
PCR_TO_(X)

CM_CH_ST_
PCR_TO_(X)
ASK ED

CALL_
CH_ST_TO_
CCB

STATUS
CCB
ASK ED

CALL_
CH_ST_TO_
SCB

CALL_
CH_ST_TO_
REJECTED

CALL_
CH_ST_TO_
CARRY_OUT

CALL_
CH_ST_TO_
MAINT

STATUS
REJECTED
ASK ED

STATUS
CARRY_OUT
ASK ED

CALL_
CH_ST_TO_
SOLVED

STATUS
MAINT
ASK ED

STATUS
SOLVED
ASK ED

T-22

CCB_
CONSIDER_PCR
ASK ED

SCB_
CONSIDER_PCR
ASK ED

CALL_CCB_CONSIDER_PCR

CALL_SCB_CONSIDER_PCR

figure 4.50 employee int-cm_ch_st_pcr_to_(x) : subprocess S22

The eleventh employee is the own internal operation ‘cm_ch_st_pcr_to_(x)’ . This employee has two subprocesses S21
and S22 and two traps T-21 and T-22. The operation ‘cm_ch_st_pcr_to_(x)’ is started after it has been determined which
of its potential callers has executed the call .

Software Process Modeling
in SOCCA

page :
version : 0.10

75

ACT_
TPM _CLUSTER_
PCR

NON-
TPM _CLUSTER
_PCR

TPM _CLUSTER
PCR
ASKED

PREPARE
ASKING CM
CHANGE
STATUS PCR

SIM_CALL _
PCR_READ_
STATUS

[PCRs TO
BE HANDLED]

PCR_
READ_
STATUS
ASKED

READY

CALL _
CM_CH_ST_
PCR_TO_
(MAINT)

CM_CH_ST_
PCR_TO_(X)
ASKED

PREPARE
ASKING TPM
CHANGE
STATUS CI

[NO PCRs TO BE HANDLED]

TPM _CH_ST_
CI_TO_(X)
ASKED

CALL _
TPM _CH_ST_
CI_TO_(X)

T-23

figure 4.51 employee int-tpm_cluster : subprocess S23

ACT_
TPM_CLUSTER_
PCR

NON-
TPM_CLUSTER
_PCR

TPM_CLUSTER
PCR
ASKED

PREPARE
ASKING CM
CHANGE
STATUS PCR

SIM_CALL_
PCR_READ_
STATUS

[PCRs TO
BE HANDLED]

PCR_
READ_
STATUS
ASKED

READY

CM_CH_ST_
PCR_TO_(X)
ASKED

PREPARE
ASKING TPM
CHANGE
STATUS CI

[NO PCRs TO BE HANDLED]

TPM_CH_ST_
CI_TO_(X)
ASKED

CALL_
TPM_CH_ST_
CI_TO_(X)

T-24

figure 4.52 employee int-tpm_cluster : subprocess S24

The 12th employee is the caller operation ‘ tpm_cluster_pcr’ . This employee has two subprocesses S23 and S24 and two
traps T-23 and T-24. This caller does not have to wait after the call on some result from the callee (see the explanation in
the external STD-subparagraph).

T-25

DT_TEST
ASK ED

SIM _CALL_
DT_TEST

CALL_CM_CH_
ST_CI_TO_
(DT_READY)

CM_CH_ST_
CI_TO_(X)
ASK ED

CALL_PCR_
CREATE

PCR_
CREATE
ASK ED

CM_CH_ST_
PCR_TO_(X)
ASK EDACT_

TE_DT_TEST

NON-
TE_DT_TEST

TE_DT_TEST
ASK ED CALL_

CM_CH_ST_
PCR_TO_(SCB/CCB)

CALL_CM_CH_ST_PCR_TO_(X)

CENTRAL

figure 4.53 employee int-te_dt_test : subprocess S25

Software Process Modeling
in SOCCA

page :
version : 0.10

76

T-26

DT_TEST
ASKED

SIM_CALL_
DT_TEST

CALL_CM_CH_
ST_CI_TO_
(DT_READY)

CM_CH_ST_
CI_TO_(X)
ASKED

CALL_PCR_
CREATE

PCR_
CREATE
ASKED

CM_CH_ST_
PCR_TO_(X)
ASKEDACT_

TE_DT_TEST

NON-
TE_DT_TEST

TE_DT_TEST
ASKED CENTRAL

figure 4.54 employee int-te_dt_test : subprocess S26

The 13th employee is the caller operation ‘ te_dt_test’ . This employee has two subprocesses S25 and S26 and two traps T-
25 and T-26. This caller does not have to wait after the call on some result from the callee (see the explanation in the
external STD-subparagraph).

ACCEPTANCE
_TEST ASKED

SIM _CALL_
ACCEPTANCE_
TEST

CALL_TPM_CH_
ST_CI_TO_
(BASELINE)

TPM _CH_ST_
CI_TO_(X)
ASK ED

CALL_PCR_
CREATE

PCR_
CREATE
ASK ED

CM_CH_ST_
PCR_TO_(X)
ASK EDACT_

CU_ACCEP-
TANCE_TEST

NON-
CU_ACCEP-
TANCE_TEST

CU_ACCEP-
TANCE_TEST
ASK ED CALL_

CM_CH_ST_
PCR_TO_(CCB)

CENTRAL

T-27

figure 4.55 employee int-cu_acceptance_test : subprocess S27

Software Process Modeling
in SOCCA

page :
version : 0.10

77

ACCEPTANCE
_TEST ASKED

SIM_CALL _
ACCEPTANCE_
TEST

CALL_TPM_CH_
ST_CI_TO_
(BASELINE)

TPM_CH_ST_
CI_TO_(X)
ASKED

CALL_PCR_
CREATE

PCR_
CREATE
ASKED

CM_CH_ST_
PCR_TO_(X)
ASKEDACT_

CU_ACCEP-
TANCE_TEST

NON-
CU_ACCEP-
TANCE_TEST

CU_ACCEP-
TANCE_TEST
ASKED

CENTRAL

T-28

figure 4.56 employee int-cu_acceptance_test : subprocess S28

The 14th employee is the caller operation ‘cu_acceptance_test’ . This employee has two subprocesses S27 and S28 and
two traps T-27 and T-28. This caller does not have to wait after the call on some result from the callee (see the explanation
in the external STD-subparagraph).

ACT_
SCB_CONSIDER
_PCR

NON-
SCB_CONSIDER
_PCR

CM_CH_ST_
PCR_TO_(X)
ASK ED

SCB-CONSIDER
_PCR
ASK ED

ESTIMATE_
WORKLOAD

CALL_CM_
CH_ST_PCR_
TO_(X)

T-29

ESTIMATED

figure 4.57 employee int-scb_consider_pcr : subprocess S29

ACT_
SCB_CONSIDER
_PCR

NON-
SCB_CONSIDER
_PCR

CM_CH_ST_
PCR_TO_(X)
ASKED

SCB-CONSIDER
_PCR
ASKED

ESTIMATE_
WORKLOAD

T-30

ESTIMATED

figure 4.58 employee int-scb_consider_pcr : subprocess S30

The 15th employee is the caller operation ‘scb_consider_pcr’ . This employee has two subprocesses S29 and S30 and two
traps T-29 and T-30. This caller does not have to wait after the call on some result from the callee (see the explanation in
the external STD-subparagraph).

ACT_
CCB_CONSIDER
_PCR

NON-
CCB_CONSIDER
_PCR

CM_CH_ST_
PCR_TO_(X)
ASK ED

CCB-CONSIDER
_PCR
ASK ED CONSIDER_

IAP-BUDGET_
CONSTRAINTS

CALL_CM_
CH_ST_PCR_
TO_(X)

T-31

BUDGET
CONSTRAINTS
CONSIDERED

figure 4.59 employee int-ccb_consider_pcr : subprocess S31

Software Process Modeling
in SOCCA

page :
version : 0.10

78

ACT_
CCB_CONSIDER
_PCR

NON-
CCB_CONSIDER
_PCR

CM_CH_ST_
PCR_TO_(X)
ASKED

CCB-CONSIDER
_PCR
ASKED

T-32

CONSIDER_
IAP-BUDGET_
CONSTRAINTS

BUDGET
CONSTRAINTS
CONSIDERED

figure 4.60 employee int-ccb_consider_pcr : subprocess S32

The 16th employee is the caller operation ‘ccb_consider_pcr’ . This employee has two subprocesses S31 and S32 and two
traps T-31 and T-32. This caller does not have to wait after the call on some result from the callee (see the explanation in
the external STD-subparagraph).

ACT_
CU_ISSUE_PCR

NON-
CU_ISSUE_PCR

CM_CH_ST_
PCR_TO_(X)
ASKED

CU_ISSUE_PCR
ASKED CALL_CM_

CH_ST_PCR_
TO_(CCB)

CALL_PCR_
CREATE

PCR_CREATE
ASKED

T-47

figure 4.61 employee int-cu_issue_pcr : subprocess S47

T-48

ACT_
CU_ISSUE_PCR

NON-
CU_ISSUE_PCR

CM_CH_ST_
PCR_TO_(X)
ASKED

CU_ISSUE_PCR
ASKED CALL_PCR_

CREATE

PCR_CREATE
ASKED

figure 4.62 employee int-cu_issue_pcr : subprocess S48

The 24th employee is the caller operation ‘cu_issue_pcr’ . This employee has two subprocesses S47 and S48 and two traps
T-47 and T-48. This caller does not have to wait after the call on some result from the callee (see the explanation in the
external STD-subparagraph).

The 17th and 18th employees are the callee-caller pair ‘cm_update_version’ and ‘se_modify’ .

CM_UPDATE_
VERSION
ASKED CALL_

UPDATE_
VERSION

UPDATE_
VERSION
ASKED

NON-
CM_UPDATE_
VERSION

T-33

figure 4.63 employee int-cm_update_version : subprocess S33

NON-
CM_UPDATE_
VERSION

CM_UPDATE_
VERSION
ASKED CALL_

UPDATE_
VERSION

UPDATE_
VERSION
ASKEDACT_

CM_UPDATE_
VERSION

T-34

figure 4.64 employee int-cm_update_version : subprocess S34

Software Process Modeling
in SOCCA

page :
version : 0.10

79

The 17th employee is the own internal operation ‘cm_update_version’ . This employee has two subprocesses S33 and S34
and two traps T-33 and T-34.

ACT_
SE_MODIFY

NON-
SE_MODIFY

CM_CH_ST_
CI_TO_(X)
ASKED

SE_MODIFY
ASKED

CALL _
CM_UPDATE_
VERSION CM_UPDATE

_VERSION
ASKED

MODIFY
ASKED

CALL _MODIFY

T-35

figure 4.65 employee int-ccb_consider_pcr : subprocess S35

ACT_
SE_MODIFY

NON-
SE_MODIFY

CM_CH_ST_
CI_TO_(X)
ASKED

SE_MODIFY
ASKED CALL _CM_

CH_ST_CI_
TO_(CONTROL)

CM_UPDATE
_VERSION
ASKED

MODIFY
ASKED

CALL _MODIFY

T-36

figure 4.66 employee int-ccb_consider_pcr : subprocess S36

The 18th employee is the caller operation ‘se_modify’ . This employee has two subprocesses S35 and S36 and two traps T-
35 and T-36. This caller does have to wait after the call on some result from the callee (see the explanation in the external
STD-subparagraph). This is modeled by the ‘waiting_caller_proceed’-construct in the external/manager STD. This
construct uses the same trap structure as the non-waiting caller_callee-construct.

The 19th and 20th employees are the callee-caller pair ‘cm_release_note’ and ‘ tpm_ch_st_ci_to_(x)’

CM_RELEASE_
NOTE
ASKED

NON-
CM_RELEASE_
NOTE

T-37

DETERM INE
CONTENT CALL_

RN_CREATE
(CONTENT)

RN_CREATE
ASKED

figure 4.67 employee int-cm_release_note : subprocess S37

NON-
CM_RELEASE_
NOTE

CM_RELEASE_
NOTE
ASK EDACT_

CM_RELEASE_
NOTE

T-38

DETERMINE
CONTENT CALL _

RN_CREATE
(CONTENT)

RN_CREATE
ASK ED

Software Process Modeling
in SOCCA

page :
version : 0.10

80

figure 4.68 employee int-cm_release_note : subprocess S38

The 19th employee is the own internal operation ‘cm_release_note’ . This employee has two subprocesses S37 and S38
and two traps T-37 and T-38.

ACT_
TPM_CH_ST_
CI_TO_(X)

NON-TPM
CH_ST_CI_TO
_(X)

TPM_CH_ST_
CI_TO_(X)
ASKED

CALL _
CM_CH_ST_
CI_TO_(X) CM_CH_

ST_CI_TO_(X)
ASKED

CM_CREATE_
CI
ASKEDCALL _CM_

CREATE_CI

CM_RELEASE_
NOTE
ASKEDCALL _CM_

RELEASE_NOTE

T-39

READY

figure 4.69 employee int-tpm_ch_st_ci_to_(x) : subprocess S39

ACT_
TPM_CH_ST_
CI_TO_(X)

NON-TPM
CH_ST_CI_TO
_(X)

TPM_CH_ST_
CI_TO_(X)
ASKED

CALL _
CM_CH_ST_
CI_TO_(X) CM_CH_

ST_CI_TO_(X)
ASKED

CM_CREATE_
CI
ASKEDCALL _CM_

CREATE_CI

CM_RELEASE_
NOTE
ASKED

T-40

READY

figure 4.70 employee int-tpm_ch_st_ci_to_(x) : subprocess S40

The 20th employee is the caller operation ‘ tpm_ch_st_ci_to_(x)’ . This employee has two subprocesses S39 and S40 and
two traps T-39 and T-40. This caller does not have to wait after the call on some result from the callee (see the explanation
in the external STD-subparagraph).

The 21st until the 23rd employees are the callee ‘cm_create_ci’ and its 2 callers ‘ tpm_modify’ and ‘ tpm_ch_st_ci
to(x)’ . Which caller has executed the call i s determined in the discriminator state ‘disc_starting_cm_create_ci’ of the
manager STD.

CM_CREATE_
CI
ASKED CALL_

CREATE

CREATE
ASKED

NON-
CM_CREATE_
CI

T-41

figure 4.71 employee int-cm_create_ci : subprocess S41

NON-
CM_CREATE_
CI

CM_CREATE_
CI
ASKED CALL_

CREATE

CREATE
ASKEDACT_

CM_CREATE_
CI

T-42

Software Process Modeling
in SOCCA

page :
version : 0.10

81

figure 4.72 employee int-cm_create_ci : subprocess S42

The 21st employee is the own internal operation ‘cm_create_ci’ . This employee has two subprocesses S41 and S42 and
two traps T-41 and T-42.

ACT_
TPM_MODIFY

NON-
TPM_MODIFY

SE_
MODIFY
ASKED

TPM_MODIFY
ASKED

CALL_
CM_RELEASE

CALL_SE_
MODIFYCM_

RELEASE
ASKED

CM_
CREATE
ASKED

CALL_
CM_CREATE

T-43

CALL_SE_MODIFY

figure 4.73 employee int-tpm_modify : subprocess S43

ACT_
TPM_MODIFY

NON-
TPM_MODIFY

SE_
MODIFY
ASKED

TPM_MODIFY
ASKED

CALL _
CM_RELEASE

CALL _SE_
MODIFYCM_

RELEASE
ASKED

CM_
CREATE
ASKED

CALL _SE_
MODIFY

T-44

CALL _SE_MODIFY

figure 4.74 employee int-tpm_modify : subprocess S44

The 22nd employee is the caller operation ‘ tpm_modify’ . This employee has two subprocesses S43 and S44 and two traps
T-43 and T-44. This caller does have to wait after the call on some result from the callee (see the explanation in the
external STD-subparagraph). This is modeled by the ‘waiting_caller_proceed’-construct in the external/manager STD.
This construct uses the same trap structure as the non-waiting caller_callee-construct.

ACT_
TPM _CH_ST_
CI_TO_(X)

NON-TPM
CH_ST_CI_TO
_(X)

TPM _CH_ST_
CI_TO_(X)
ASK ED

CALL_
CM_CH_ST_
CI_TO_(X) CM_CH_

ST_CI_TO_(X)
ASK ED

CM_CREATE_
CI
ASK ED

CM_RELEASE_
NOTE
ASK EDCALL_CM_

RELEASE_NOTE

T-45

CALL_CM_
CREATE_CI

READY

figure 4.75 employee int-tpm_ch_st_ci_to_(x) : subprocess S45

Software Process Modeling
in SOCCA

page :
version : 0.10

82

ACT_
TPM_CH_ST_
CI_TO_(X)

NON-TPM
CH_ST_CI_TO
_(X)

TPM_CH_ST_
CI_TO_(X)
ASKED

CALL_
CM_CH_ST_
CI_TO_(X) CM_CH_

ST_CI_TO_(X)
ASKED

CM_CREATE_
CI
ASKED

CM_RELEASE_
NOTE
ASKEDCALL_CM_

RELEASE_NOTE

T-46

READY

figure 4.76 employee int-tpm_ch_st_ci_to_(x) : subprocess S46

The 23rd employee is the caller operation ‘ tpm_ch_st_ci_to_(x)’ . This employee has two subprocesses S45 and S46 and
two traps T-45 and T-46. This caller does have to wait after the call on some result from the callee (see the explanation in
the external STD-subparagraph). This is modeled by the ‘waiting_caller_proceed’-construct in the external/manager STD.
This construct uses the same trap structure as the non-waiting caller_callee-construct.

The 24th employee is the operation ‘cu_issue_pcr’ . This operation calls the operation ‘cm_ch_st_pcr_to_(x)’ . Its
subprocesses and traps are described earlier in this subparagraph together with the descriptions of the other callers (11th
until 16th employee) of ‘ cm_ch_st_pcr_to_(x)’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

83

4.3.2.3 Configuration_Item

4.3.2.3.1 Configuration_Item : external behavior-STD, organizational view

The external behavior STD shows the possible sequences in which the exported operation(s) can be started. The
organizational view of the external STD does not show any communication details.

An organizational view of an external STD is given when there is a need to depict the core activity of a class more clearly.
The core activity of the class ‘configuration_item’ is the administration of the status of a configuration_item (CI). To get a
clear picture of the possible status changes of a CI an organizational view of external STD of the configuration_item is
given. Only the transitions and states relevant for the status(changes) of the CI are shown.

CONTROL SE-READY

BASELINEARCHIVE

MAINTENANCE

DT-READY

CH_ST_TO_
MAINT

CH_ST_TO_
DT-READY

CH_ST_TO_
DT-READY

CH_ST_ TO_
MAINT

CH_ST_TO_
BASELINECH_ST_TO_ARCHIVE

CH_ST_TO_
MAINTENACE

CH_ST_TO_
CONTROL

CH_ST_TO_
SE-READY

figure 4.77 configuration_item : external behavior STD, organizational view

This external STD, organizational view, can be constructed from the external STD, communicative view. Two
construction methods are possible. These are the ‘homomorphic picture’ -construction and the ‘aggregate state’ -
construction. Both construction methods are demonstrated below.

Homomorphic picture-construction of a (organizational) view

The external STD, communicative view is a homomorphic picture of the external STD, communicative view. (For an
explanation of homomorphism, see [EBE].) To construct the organizational view from the communicative view, a
homomorphism ‘h’ (a mapping function ‘h’) is needed. This mapping function ‘h’ maps the states from the
communicative view STD onto the states of the organizational view STD in such a way that the resulting organizational
view STD only contains those states and transitions that are relevant for the status(changes) of the CI.

The external STD, communicative view, as given in the next paragraph is used here in the construction of the external
STD, organizational view.

The mapping function ‘h’ is given in the next figure. This figure shows in the upper righthand corner the external STD,
communicative view. In the lower lefthand corner the figure shows the external STD, organizational view. The mapping
function ‘h’ f rom the states of the communicative view STD to the states of the organizational view STD is shown by the
‘dashed’ lines.

The mapping function ‘h’ is then given explicitly by the table that follows the figure.

Software Process Modeling
in SOCCA

page :
version : 0.10

84

NON-
EXISTING

M ODIFIABLE
VERSION
UPDATED

CONTROL

STARTING
M ODIFY

SE-READY

ACCEPTANCE
TESTABLE

ACCEPTANCE
TEST
STARTED

BASELINEARCHIVE

M AINTENANCE

DT-TEST
STARTED

REVIEWABLE REVIEW
STARTED

DT-TESTABLE

DT-READY

CREATE

M ODIFY

UPDATE_
VERSION

CH_ST_TO_
CONTROL

CH_ST_TO_
SE_READY

REVIEW

CH_ST_TO_
SE_READY

CH_ST_TO_
M AINT

CH_ST_TO_
DT-READY

CH_ST_TO_
DT-READY

DT_TEST

CH_ST_ TO_
M AINT

CH_ST_TO_
BASELINE

CH_ST_TO_
DT-READY

ACCEPTANCE_TEST

CH_ST_TO_ARCHIVE

CH_ST_TO_
M AINTENACE

RELEASE

RELEASE

RELEASE

RELEASE

CONTROL SE-READY

BASELINEARCHIVE

M AINTENANCE

DT-READY

CH_ST_TO_
CONTROL

CH_ST_TO_
M AINT

CH_ST_TO_
DT-READY

CH_ST_TO_
DT-READY

CH_ST_ TO_
M AINT

CH_ST_TO_
BASELINECH_ST_TO_ARCHIVE

CH_ST_TO_
M AINTENACE

CH_ST_TO_
CONTROL

CH_ST_TO_
SE-READY

figure 4.78 mapping function ‘h’ (dashed lines)

from state (external STD, communicative view) to state (external STD, organizational view)
maintenance maintenance
non-existing maintenance
modifiable maintenance
starting modify maintenance
version update maintenance
control control
reviewable control
review started control
se_ready se_ready
dt_testable se_ready
dt_test started se_ready
dt_ready dt_ready
acceptance testable dt-ready
acceptance test started dt_ready
baseline baseline
archive archive

table 4.1 mapping function ‘h’

Software Process Modeling
in SOCCA

page :
version : 0.10

85

Aggregate state-construction of a (organizational) view

NON-
EXISTING

MODIFIABLE
VERSION
UPDATED

CONTROL

STARTING
MODIFY

SE-READY

ACCEPTANCE
TESTABLE

ACCEPTANCE
TEST
STARTED

BASELINEARCHIVE

MAINTENANCE

DT-TEST
STARTED

REVIEWABLE REVIEW
STARTED

DT-TESTABLE

DT-READY

CREATE

MODIFY

UPDATE_
VERSION

CH_ST_TO_
CONTROL

CH_ST_TO_
SE_READY

REVIEW

CH_ST_TO_
SE_READY

CH_ST_TO_
MAINT

CH_ST_TO_
DT-READY

CH_ST_TO_
DT-READY

DT_TEST

CH_ST_ TO_
MAINT

CH_ST_TO_
BASELINE

CH_ST_TO_
DT-READY

ACCEPTANCE_TEST

CH_ST_TO_ARCHIVE

CH_ST_TO_
MAINTENACE

RELEASE

RELEASE

RELEASE

RELEASE

AGGREGATE STATE : MAINTENACE

AGGREGATE STATE :
CONTROL

AGGREGATE
STATE :
SE_READY

AGGREGATE
STATE :
DT_READY

figure 4.79 external STD, communicative view, with aggregate states

Again the external STD, communicative view, as given in the next paragraph is used here in the construction of the
external STD, organizational view. The aggregate state-construction consists of taking together certain states to form
‘aggregate’ states. These aggregate states constitute a certain (higher level) view of a STD. The construction is performed
in the figure above. The aggregate states are shown as ‘ rounded rectangulars’ that are imposed upon the original external
STD, communicative view.

The states ‘maintenance’ , ‘non-existing’ , ‘modifiable’ , ‘starting modify’ and ‘version update’ are grouped together in the
aggregate state ‘maintenace’ .

The states ‘control’ , ‘ reviewable’ and ‘ review started’ are grouped together in the aggregate state ‘control’ .

The states ‘se_ready’ , ‘dt_testable’ and ‘dt_test started’ are grouped together in the aggregate state ‘se_ready’ .

The states ‘dt_ready’ , ‘acceptance testable’ and ‘acceptance test started’ are grouped together in the aggregate state
‘dt_ready’ .

The states ‘baseline’ and ‘archive’ stay single as ‘baseline’ and ‘archive’ .

The next step in the construction is to no longer show the states inside an aggregate state. When this step is performed, the
external STD, organizational view, is found which only contains those states and transitions that are relevant for the
status(changes) of the CI.

Software Process Modeling
in SOCCA

page :
version : 0.10

86

4.3.2.3.2 Configuration_Item : external behavior-STD, communicative view

NON-
EXISTING

MODIFIABLE
VERSION
UPDATED

CONTROL

STARTING
MODIFY

SE-READY

ACCEPTANCE
TESTABLE

ACCEPTANCE
TEST
STARTED

BASELINEARCHIVE

MAINTENANCE

DT-TEST
STARTED

REVIEWABLE REVIEW
STARTED

DT-TESTABLE

DT-READY

CREATE

MODIFY

UPDATE_
VERSION

CH_ST_TO_
CONTROL

CH_ST_TO_
SE_READY

REVIEW

CH_ST_TO_
SE_READY

CH_ST_TO_
MAINT

CH_ST_TO_
DT-READY

CH_ST_TO_
DT-READY

DT_TEST

CH_ST_ TO_
MAINT

CH_ST_TO_
BASELINE

CH_ST_TO_
DT-READY

ACCEPTANCE_TEST

CH_ST_TO_ARCHIVE

CH_ST_TO_
MAINT

RELEASE

RELEASE

RELEASE

RELEASE

figure 4.80 configuration_item : external behavior STD, communicative view

This external behavior STD shows the states an object of the class ‘configuration_item’ (CI) can be in during its li fe cycle.
It also shows when the transitions from one state to another are made as a response to calls being made to its operations.

The object starts by being created. It can then be modified. After being modified, its version is updated and it is brought
under configuration management (CM) with the status ‘control’ . Then it can be released from configuration management
for review. Or the technical_project_manager can decide to bypass the review, in which case the status of the CI becomes
‘se_ready’ (software_engineer_ready) . Or the technical_project_manager can decide to bypass both the review and the dt-
test. The status of the CI then becomes ‘dt_ready’ (development team_ready) .

If the result of the review is positive, the status of the CI becomes ‘se_ready’ . If the result of the review is negative the
status of the CI becomes ‘maintenance’ .

From the status ‘se_ready’ the CI can be released from configuration management for the dt-test. Or the
technical_project_manager can decide to bypass the dt-test. This results in the CI status ‘dt_ready’ . Also if the result of the
dt-test is positive, the CI status becomes ‘dt_ready’ . If the result of the dt-test is negative, the CI gets the status
‘maintenance’ .

From the status ‘dt_ready’ the CI can be released from configuration management for the acceptance-test by the customer.
If it is accepted by the customer the CI gets the status ‘baseline’ else ‘maintenance’ .

A CI of a system that is in operational use has the status ‘baseline’ . If a problem_and_change_report (PCR) is issued on
this CI the following will happen. The CI gets the status ‘archive’ . A new CI is created. The new CI gets, when it is
created, the same contents as the old CI. The software_engineer solves the problem in the new CI. The old CI is in fact
‘archived’ .

4.3.2.3.3 Configuration_Item : internal behavior-STDs

Software Process Modeling
in SOCCA

page :
version : 0.10

87

The configuration_item has 13 operations : ‘create’ , ‘update_version’ , ‘ release’ , ‘modify’ , ‘ review’ , ‘dt_test’ ,
‘acceptance_test’ , ‘ch_st_to_control’ , ‘ch_st_to_se_ready’ , ‘ch_st_to_dt_ready’ , ‘ch_st_to_baseline’ , ‘ch_st_to_maint’
and ‘ch_st_to_archive’ . These operations have the following internal behavior STDs.

ACT_
OPERATION

OPERATION
NOT ACTIVE

OPERATION
ASK ED EXECUTE

INTERNAL
ACTION

OPERATION
ENDED

figure 4.81 only_internal_action_construct : internal behavior STD

All operations can be modeled by the ‘only_internal_action’ -construct since they don’ t execute any calls to other objects.
They all follow the construct’s template and their actions are explained in the following table.

OPERATION INTERNAL ACTION

CH_ST_TO_CONTROL UPDATE STATUS ATTRIBUTE TO CONTROL AND RELEASE ATTRIBUTE TO NO
CH_ST_TO_SE_READY UPDATE STATUS ATTRIBUTE TO SE_READY AND RELEASE ATTRIBUTE TO NO
CH_ST_TO_DT_READY UPDATE STATUS ATTRIBUTE TO DT_READY AND RELEASE ATTRIBUTE TO NO
CH_ST_TO_BASELINE UPDATE STATUS ATTRIBUTE TO BASELINE AND RELEASE ATTRIBUTE TO NO
CH_ST_TO_MAINT UPDATE STATUS ATTRIBUTE TO MAINT AND RELEASE ATTRIBUTE TO NO
CH_ST_TO_ARCHIVE UPDATE STATUS ATTRIBUTE TO ARCHIVE
UPDATE_VERSION INCREMENT VERSION ATTRIBUTE
RELEASE UPDATE RELEASE ATTRIBUTE TO YES
CREATE CREATE NEW OBJECT AND INITIAL IZE IT. THE INITIALIZATION CAN BE DONE WITH
 THE CONTENT OF ANOTHER EXISTING OBJECT
MODIFY MODIFY (READ/WRITE/DELETE) THE CONTENT ATTRIBUTE
REVIEW READ THE CONTENT ATTRIBUTE + UPDATE RESULT
DT_TEST EXECUTE (PART OF) THE CONTENT ATTRIBUTE + UPDATE RESULT
ACCEPTANCE_TEST EXECUTE (PART OF) THE CONTENT ATTRIBUTE + UPDATE RESULT

table 4.2 only_internal_action_construct : operations and actions

The ‘create’ operation has in fact not only an internal action but also interaction with another object when it has to read its
contents to initialize the newly created object. But because this interaction is not further detailed here, the ‘create’
operation can be described by the ‘only_iternal_action’ -construct.

The operations ‘dt_test’ and ‘acceptance_test’ execute (part of) the content attribute of the ci. These are ‘virtual’
operations in the sense that they model the property of the CI to be able to be executed after it has been compiled and
linked into an executable. When a CI is tested individually, the CI runs in a test-harness. Every testcase executes part of
this CI. In case of a system-level test the CI is linked with other CI’s into one executable which is tested by performing
testcases on one or more CI’s.

The operations ‘ch_st_to_control’ , ‘ch_st_to_se_ready’ , ‘ch_st_to_dt_ready’ , ‘ch_st_to_maint’ , ‘ch_st_to_baseline’ ,
’ch_st_to_archive’ , ‘ release’ and ‘ review’ have no formal parameter. The operation ‘create’ has two parameters. The first
indicating if it has to initialize the newly created CI with the contents of an existing object and the second parameter gives
the id of that object. The parameter of ‘ update_version’ is the new version number. The operation ‘modify’ has as its
parameter the updated (part of the) content of the CI.

4.3.2.3.4 Configuration_Item : manager-STD

The communication between the configuration_item’s operations (callees) and their callers is managed by a manager STD.
The manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager STD are
labeled with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the
transition. I.e. the transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant
employee(s) has/have entered the trap(s), the transition can and will (eventually) take place.

Software Process Modeling
in SOCCA

page :
version : 0.10

88

TL F-1A

TL F-3

TL F-2A TL F-5A TL F-8A

TL F-11

TL F-10A

TL F-7A

TL F-13A

TL F-14A

TL F-16

TL F-18A

TL F-20A

TL F-15A

TL F-22

TL F-25A

TL F-21A

CPS1

TL F-4A

CPS2

CPS3

CPS4 CPS5

TL F-6A

TL F-9A

CPS6

TL F-12A

CPS7

CPS8

CPS9
TL F
-17A

CPS11

TL F-19ACPS12

CPS10

CPS13

CPS15

CPS16

TL F-24B

TL F-23A

CPS14

TL F-1B

CPS2A

CPS2C

TL F-4B

CPS4A
TL F-2B

CPS5A
TL F-5B

CPS6A

TL F-6B
TL F-12B CPS6B

CPS8B

TL F-10B

TL F-8B
CPS8A

CPS9A

TL F-13B

CPS11A

CPS11B
TL F-9B

TL F-14B

CPS11C

CPS9B
TL F-17B

CPS12A
TL F-19B

CPS12B

TL F-23B

TL F-20B
CPS14ACPS16A

TL F-25B

CPS15A

CPS15B

CPS15C

TL F-21B

TL F-18B

TL F-7B
TL F-24A

CPS2D

TL F-15B

CPS2B

TL F-1C

figure 4.82 configuration_item : manager STD

Every caller of every operation of the class configuration_item has to wait after the call , for the callee to reach some point
in its execution. The status has to be updated before the caller may proceed. The configuration_item has to be created
before the caller may proceed. The version of the CI has to be updated before the caller may proceed. The CI has to be
released before the caller may proceed. The operations ‘modify’ , ‘ review’ , ‘dt_test’ and ‘acceptance_test’ must perform
their action and give some feedback to the caller. Only after the caller receives this feedback may he proceed.

To model this, every state of the external STD is given in the manager STD in an ‘exploded view’ . Every state consists of
several substates. In the above figure the exploded states are shown as a combination of a main substate and several,
smaller ‘caller_waits’ -substates. In these ‘caller_waits’ -substates the callee is started and the caller must wait. Every callee
is modeled with the ‘act-construct, small trap’ . After the callee has reached some point in its execution (i.e enters its small
trap) the transition out of the ‘caller_waits-substate is taken. In the next state the caller is then allowed to proceed. Also the
second trap of the callee has to be small , because it has to finish performing its function before the manager STD may start
the next operation (be it the same operation or another one). E.g. the status change to ‘control’ must be applied to the CI,
before the operation ‘ch_st_to_se_ready’ may start its execution. If not, the operation ‘ch_st_to_se_ready’ could update
the status attribute before the operation ‘ch_st_to_control’ does so, and an incorrect status would be the result (the ‘ lost
update’ problem [ELM]).

The notation CPSx in the STD stands for Consolidated Prescribed Subprocesses and is a set of CCx’s. The notation CCx
in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-callee combination.
The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that enables the transition.
The numbering of the subprocesses and traps corresponds to the numbering used in the next paragraph.

The CPS’s and the TLF’s for this manager are :

CPS1 = {CC1-1, CC2-1, CC3-1, CC4-3, CC5-1, CC6-1, CC7-1, CC8-1}
TLF-1A = (T-19 and T-21)

Software Process Modeling
in SOCCA

page :
version : 0.10

89

CPS2A = {CC1-1, CC2-2, CC3-1, CC4-3, CC5-1, CC6-1, CC7-1, CC8-1}
TLF-1B = T-20

CPS2B = {CC1-1, CC2-3, CC3-1, CC4-3, CC5-1, CC6-1, CC7-1, CC8-1}
TLF-1B = T-22

CPS2C = {CC1-1, CC2-1, CC3-1, CC4-3, CC5-3, CC6-1, CC7-1, CC8-1}
TLF-4B = T-34

CPS2D = {CC1-1, CC2-1, CC3-1, CC4-2, CC5-1, CC6-1, CC7-1, CC8-1}
TLF-24B= T-28

CPS2 = {CC1-1, CC2-1, CC3-1, CC4-3, CC5-1, CC6-1, CC7-1, CC8-1}
TLF-2A = T-30 and (T-23 and T-25)
TLF-3 = T-30 and (T-31 and T-33)

CPS3 = {CC1-1, CC2-1, CC3-1, CC4-3, CC5-2, CC6-1, CC7-1, CC8-1}
TLF-4A = T-32

CPS4A = {CC1-1, CC2-1, CC3-2, CC4-1, CC5-1, CC6-1, CC7-1, CC8-1}
TLF-2B = T-24

CPS4 = {CC1-1, CC2-1, CC3-3, CC4-1, CC5-1, CC6-1, CC7-1, CC8-1}
TLF-5A = T-26 and (T-1 and T-13)

CPS5A = {CC1-2, CC2-1, CC3-1, CC4-1, CC5-1, CC6-1, CC7-1, CC8-1}
TLF-5B = T-2

CPS5 = {CC1-3, CC2-1, CC3-1, CC4-1, CC5-1, CC6-1, CC7-1, CC8-1}
TLF-6A = (T-27 and T-29)
TLF-8A = (T-3 and T-14a)
TLF-9A = (T-5 and T-14b)

CPS6A = {CC1-3, CC2-1, CC3-1, CC4-2, CC5-1, CC6-1, CC7-1, CC8-1}
TLF-6B = T-28

CPS6B = {CC1-3, CC2-1, CC3-1, CC4-3, CC5-1, CC6-3, CC7-1, CC8-1}
TLF-12B= T-38

CPS6 = {CC1-3, CC2-1, CC3-1, CC4-3, CC5-1, CC6-1, CC7-1, CC8-1}
TLF-7A = T-30 and (T-7 and T14c)
TLF-10A= T-30 and (T-3 and T14a)
TLF-11 = T-30 and (T-35 and T-37)

CPS7 = {CC1-3, CC2-1, CC3-1, CC4-3, CC5-1, CC6-2, CC7-1, CC8-1}
TLF-12A= T-36

CPS8A = {CC1-4, CC2-1, CC3-1, CC4-1, CC5-1, CC6-1, CC7-1, CC8-1}
TLF-8B = T-4

CPS8B = {CC1-4, CC2-1, CC3-1, CC4-1, CC5-1, CC6-1, CC7-1, CC8-1}
TLF-10B= T-4

CPS8 = {CC1-5, CC2-1, CC3-1, CC4-1, CC5-1, CC6-1, CC7-1, CC8-1}
TLF-13A= (T-27 and T-29)
TLF-14A= (T-5 and T-15a)

CPS9A = {CC1-5, CC2-1, CC3-1, CC4-2, CC5-1, CC6-1, CC7-1, CC8-1}
TLF-13A= T-28

CPS9B = {CC1-5, CC2-1, CC3-1, CC4-3, CC5-1, CC6-1, CC7-3, CC8-1}

Software Process Modeling
in SOCCA

page :
version : 0.10

90

TLF-17B= T-42

CPS9 = {CC1-5, CC2-1, CC3-1, CC4-3, CC5-1, CC6-1, CC7-1, CC8-1}
TLF-15A= T-30 and (T-5 and T-15a)
TLF-16 = T-30 and (T-39 and T-41)
TLF-18A= T-30 and (T-7 and T-15b)

CPS10 = {CC1-5, CC2-1, CC3-1, CC4-3, CC5-1, CC6-1, CC7-2, CC8-1}
TLF-17A= T-40

CPS11A = {CC1-6, CC2-1, CC3-1, CC4-1, CC5-1, CC6-1, CC7-1, CC8-1}
TLF-9B = T-6

CPS11B = {CC1-8, CC2-1, CC3-1, CC4-1, CC5-1, CC6-1, CC7-1, CC8-1}
TLF-14B= T-6

CPS11C = {CC1-8, CC2-1, CC3-1, CC4-1, CC5-1, CC6-1, CC7-1, CC8-1}
TLF-15B= T-6

CPS11 = {CC1-7, CC2-1, CC3-1, CC4-1, CC5-1, CC6-1, CC7-1, CC8-1}
TLF-19A= (T-27 and T-29)

CPS12A = {CC1-7, CC2-1, CC3-1, CC4-2, CC5-1, CC6-1, CC7-1, CC8-1}
TLF-19B= T-28

CPS12B = {CC1-7, CC2-1, CC3-1, CC4-3, CC5-1, CC6-1, CC7-1, CC8-3}
TLF-23B= T-46

CPS12 = {CC1-7, CC2-1, CC3-1, CC4-3, CC5-1, CC6-1, CC7-1, CC8-1}
TLF-20A= T-30 and (T-9 and T-16a)
TLF-21A= T-30 and (T-7 and T-16b)
TLF-22 = T-30 and (T-43 and T-45)

CPS13 = {CC1-7, CC2-1, CC3-1, CC4-3, CC5-1, CC6-1, CC7-1, CC8-2}
TLF-23A= T-44

CPS14A = {CC1-9, CC2-1, CC3-1, CC4-1, CC5-1, CC6-1, CC7-1, CC8-1}
TLF-20B= T-10

CPS14 = {CC1-10, CC2-1, CC3-1, CC4-1, CC5-1, CC6-1, CC7-1, CC8-1}
TLF-25A= (T-11 and T-17)

CPS15A = {CC1-13, CC2-1, CC3-1, CC4-1, CC5-1, CC6-1, CC7-1, CC8-1}
TLF-7B = T-8

CPS15B = {CC1-14, CC2-1, CC3-1, CC4-1, CC5-1, CC6-1, CC7-1, CC8-1}
TLF-18A= T-8

CPS15C = {CC1-15, CC2-1, CC3-1, CC4-1, CC5-1, CC6-1, CC7-1, CC8-1}
TLF-21A= T-8

CPS15 = {CC1-1, CC2-1, CC3-1, CC4-1, CC5-1, CC6-1, CC7-1, CC8-1}
TLF-24A= (T-27 and T-29)

CPS16A = {CC1-11, CC2-1, CC3-1, CC4-1, CC5-1, CC6-1, CC7-1, CC8-1}
TLF-25B= T-12

CPS16 = {CC1-12, CC2-1, CC3-1, CC4-1, CC5-1, CC6-1, CC7-1, CC8-1}

The caller-callee combinations for ‘ch_st_to_x’ and ‘cm_ch_st_ci_to_(x)’ are :

Software Process Modeling
in SOCCA

page :
version : 0.10

91

CC1-1 = {S1, S3, S5, S7, S9 , S11, S13}
CC1-2 = {S2, S3, S5, S7, S9 , S11, S13}
CC1-3 = {S1, S3, S5, S7, S9 , S11, S14}
CC1-4 = {S1, S4, S5, S7, S9 , S11, S14}
CC1-5 = {S1, S3, S5, S7, S9 , S11, S15}
CC1-6 = {S1, S3, S6, S7, S9 , S11, S14}
CC1-7 = {S1, S3, S5, S7, S9 , S11, S16}
CC1-8 = {S1, S3, S6, S7, S9 , S11, S15}
CC1-9 = {S1, S3, S5, S7, S10, S11, S16}
CC1-10= {S1, S3, S5, S7, S9 , S11, S17}
CC1-11= {S1, S3, S5, S7, S9 , S12, S17}
CC1-12= {S1, S3, S5, S7, S9 , S11, S18}
CC1-13= {S1, S3, S5, S8, S9 , S11, S14}
CC1-14= {S1, S3, S5, S8, S9 , S11, S15}
CC1-15= {S1, S3, S5, S8, S9 , S11, S16}

The caller-callee combinations for ‘create’ and ‘cm_create_ci’ are :

CC2-1 = {S19, S21}
CC2-2 = {S20, S21}
CC2-3 = {S19, S22}

The caller-callee combinations for ‘update_version’ and ‘cm_update_version’ are :

CC3-1 = {S23, S25}
CC3-2 = {S24, S25}
CC3-3 = {S23, S26}

The caller-callee combinations for ‘ release’ and ‘cm_release’ are :

CC4-1 = {S27, S29}
CC4-2 = {S28, S29}
CC4-3 = {S27, S30}

The caller-callee combinations for ‘modify’ and ‘se_modify’ are :

CC5-1 = {S31, S33}
CC5-2 = {S32, S33}
CC5-3 = {S31, S34}

The caller-callee combinations for ‘ review’ and ‘ re_review’ are :

CC6-1 = {S35, S37}
CC6-2 = {S36, S37}
CC6-2 = {S35, S38}

The caller-callee combinations for ‘dt_test’ and ‘ te_dt_test’ are :

CC7-1 = {S39, S41}
CC7-2 = {S40, S41}
CC7-3 = {S39, S42}

The caller-callee combinations for ‘acceptance_test’ and ‘cu_acceptance_test’ are :

CC8-1 = {S43, S45}
CC8-2 = {S44, S45}
CC8-3 = {S43, S46}

4.3.2.3.5 Configuration_Item : employee-STDs

Software Process Modeling
in SOCCA

page :
version : 0.10

92

The manager STD has the following 21 employee STDs. The employees are the own internal callees ‘ch_st_to_control’ ,
‘ch_st_to_se_ready’ , ‘ch_st_to_dt_ready’ , ‘ch_st_to_baseline’ , ‘ch_st_to_maint’ , ‘ch_st_to_archive’ and their caller
‘cm_ch_st_ci_to_(x)’ of the class configuration_manager. These 6 operations are called in turn by the
configuration_manager. The callee ‘create’ and its caller ‘cm_create’ of the class configuration_manager. The callee
‘update_version’ and its caller ‘cm_update_version’ of the configuration_manager. The callee ‘ release’ and its caller
‘cm_release’ of the configuration_manager. The callee ‘modify’ and its caller ‘se_modify’ of the class software_engineer.
The callee ‘ review’ and its caller ‘ re_review’ of the class reviewer. The callee ‘dt_test’ and its caller ‘ te_dt_test’ of the
test_engineer. And the callee ‘acceptance_test’ and its caller ‘cu_acceptance_test’ of the class customer.

The first 7 employees are the callees ‘ch_st_to_control’ , ‘ch_st_to_se_ready’ , ‘ch_st_to_dt_ready’ , ‘ch_st_to_baseline’ ,
‘ch_st_to_maint’ , ‘ch_st_to_archive’ and their caller ‘cm_ch_st_ci_to_(x)’ .

Normally when using the act-construct in the caller_callee-construct, the first trap T-X of the callee is small , the one state
‘operation not active’ , and the second trap T-Y is large, the rest of the states. This allows the manager to proceed as soon
as possible after the start of the callee (depending also on the trap structure of the caller). All the state-changing callees of
the configuration_item require however that the internal operation to be finished before the next operation may start. This
ensures that the state-attribute is correctly updated. The second trap of the act-construct has to be placed after the internal
operation has ended, T-Z. So the manager can only proceed to its next ‘starting’ state after the state-attribute has been
updated. The second reason for the small trap is the fact that the caller is waiting after its call , and has to be notified that it
can proceed because the requested state change has been applied to the CI.

OPERATION
NOT ACTIVE

OPERATION
ASKED EXECUTE

INTERNAL
ACTION

OPERATION
ENDED

T-X

figure 4.83 act-construct : subprocess SX

ACT_
OPERATION

OPERATION
NOT ACTIVE

OPERATION
ASK ED EXECUTE

INTERNAL
ACTION

OPERATION
ENDED

T-Y

figure 4.84 act-construct : subprocess SY, large trap

ACT_
OPERATION

OPERATION
NOT ACTIVE

OPERATION
ASKED EXECUTE

INTERNAL
ACTION

OPERATION
ENDED

T-Z

figure 4.85 act-construct : subprocess SZ, small trap

The first employee is the callee operation ‘ch_st_to_control’ . This employee has two subprocesses S1 and S2 and two
traps T1 and T2 according to the ‘act-construct, small second trap’ .

The second employee is the callee operation ‘ch_st_to_se_ready’ . This employee has two subprocesses S3 and S4 and two
traps T3 and T4 according to the ‘act-construct, small second trap’ .

The third employee is the callee operation ‘ch_st_to_dt_ready’ . This employee has two subprocesses S5 and S6 and two
traps T5 and T6 according to the ‘act-construct’ , small second trap.

Software Process Modeling
in SOCCA

page :
version : 0.10

93

The fourth employee is the callee operation ‘ch_st_to_maint’ . This employee has two subprocesses S7 and S8 and two
traps T7 and T8 according to the ‘act-construct, small second trap’ .

The 5th employee is the callee operation ‘ch_st_to_baseline’ . This employee has two subprocesses S9 and S10 and two
traps T9 and T10 according to the ‘act-construct, small second trap’ .

The 6th employee is the callee operation ‘ch_st_to_archive’ . This employee has two subprocesses S11 and S12 and two
traps T11 and T12 according to the ‘act-construct, small second trap’ .

The 7th employee is the caller operation ‘cm_ch_st_ci_to_(x)’ . This employee has the subprocesses S13 until S18 and the
traps T13, T14a, T14b, T14c, T15a, T15b, T16a, T16b, T17 and T18. The employee’s subprocesses are modeled
according to the caller_callee-construct. The following figures show these subprocesses. The first figure is that of
subprocess S18 showing the total internal STD. T18 is the so-called trivial trap which encompasses the whole internal
STD of the operation.

T-18

STATUS
SE_READY
ASKED

ACT_
CM_CH_ST_
CI_TO_(X)

NON-
CM_CH_ST_
CI_TO_(X)

CM_CH_ST_
CI_TO_(X)
ASKED

CALL _
CH_ST_TO_
CONTROL

STATUS
CONTROL
ASKED

CALL _
CH_ST_TO_
SE_READY

CALL _
CH_ST_TO_
DT_READY

CALL _
CH_ST_TO_
BASELINE

CALL _
CH_ST_TO_
MAINT

STATUS
DT_READY
ASKED

STATUS
BASELINE
ASKED

CALL _
CH_ST_TO_
ARCHIVE

STATUS
MAINT
ASKED

STATUS
ARCHIVE
ASKED

figure 4.86 employee int-cm_ch_st_ci_to_(x) : subprocess S18

T-13

ACT_
CM_CH_ST_
CI_TO_(X)

NON-
CM_CH_ST_
CI_TO_(X)

CM_CH_ST_
CI_TO_(X)
ASKED

CALL_
CH_ST_TO_
CONTROL

STATUS
CONTROL
ASKED

STATUS
MAINT
ASKED

figure 4.87 employee int-cm_ch_st_ci_to_(x) : subprocess S13

Software Process Modeling
in SOCCA

page :
version : 0.10

94

T-14cT-14b

T-14a

STATUS
SE_READY
ASKED

ACT_
CM_CH_ST_
CI_TO_(X)

NON-
CM_CH_ST_
CI_TO_(X)

CM_CH_ST_
CI_TO_(X)
ASKED

STATUS
CONTROL
ASKED

CALL_
CH_ST_TO_
SE_READY

CALL_
CH_ST_TO_
DT_READY

CALL_
CH_ST_TO_
MAINT

STATUS
DT_READY
ASKED

STATUS
MAINT
ASKED

figure 4.88 employee int-cm_ch_st_ci_to_(x) : subprocess S14
T-15bT-15a

STATUS
SE_READY
ASK ED

ACT_
CM_CH_ST_
CI_TO_(X)

NON-
CM_CH_ST_
CI_TO_(X)

CM_CH_ST_
CI_TO_(X)
ASK ED

CALL_
CH_ST_TO_
DT_READY

CALL_
CH_ST_TO_
MAINT

STATUS
DT_READY
ASK ED

STATUS
MAINT
ASK ED

figure 4.89 employee int-cm_ch_st_ci_to_(x) : subprocess S15
T-16b

T-16a

ACT_
CM_CH_ST_
CI_TO_(X)

NON-
CM_CH_ST_
CI_TO_(X)

CM_CH_ST_
CI_TO_(X)
ASKED

CALL_
CH_ST_TO_
BASELINE

CALL_
CH_ST_TO_
MAINT

STATUS
DT_READY
ASKED

STATUS
BASELINE
ASKED

STATUS
MAINT
ASKED

figure 4.90 employee int-cm_ch_st_ci_to_(x) : subprocess S16

T-17

ACT_
CM_CH_ST_
CI_TO_(X)

NON-
CM_CH_ST_
CI_TO_(X)

CM_CH_ST_
CI_TO_(X)
ASKED

STATUS
BASELINE
ASKED

CALL_
CH_ST_TO_
ARCHIVE

STATUS
ARCHIVE
ASKED

figure 4.91 employee int-cm_ch_st_ci_to_(x) : subprocess S17

Software Process Modeling
in SOCCA

page :
version : 0.10

95

The 8th and 9th employee are the callee operation ‘create’ and its caller ‘cm_create’ . These are modeled according to the
‘caller-callee’ -construct. The employee ‘create’ has two subprocesses S19 and S20 and two traps T19 and T20. Its internal
operation has to be finished before the next operation may be started, so it is modeled with the ‘act-construct, small trap’ .
The second reason for the small trap is to notify the waiting caller ‘cm_create_ci’ that it can proceed. The employee
‘cm_create_ci’ has two subprocesses S21 and S22 and two traps T21 and T22.

The 10th and 11th employee are the callee operation ‘update_version’ and its caller ‘cm_update_version’ . These are
modeled according to the ‘caller-callee’ -construct. The employee ‘update_version’ has two subprocesses S23 and S24 and
two traps T23 and T24. Its internal operation has to be finished before the next operation may be started, so it is modeled
with the ‘act-construct, small trap’ . The second reason for the small trap is to notify the waiting caller
‘cm_update_version’ that it can proceed. The employee ‘cm_update_version’ has two subprocesses S25 and S26 and two
traps T25 and T26.

The 12th and 13th employee are the callee operation ‘ release’ and its caller ‘cm_release’ . These are modeled according to
the ‘caller-callee’ -construct. The employee ‘ release’ has two subprocesses S27 and S28 and two traps T27 and T28. Its
internal operation has to be finished before the next operation may be started, so it is modeled with the ‘act-construct,
small trap’ . The second reason for the small trap is to notify the waiting caller ‘cm_release’ that it can proceed. The
employee ‘cm_release’ has two subprocesses S29 and S30 and two traps T29 and T30.

The 14th and 15th employee are the callee operation ‘modify’ and its caller ‘se_modify’ . These are modeled according to
the ‘caller-callee’ -construct. The employee ‘modify’ has two subprocesses S31 and S32 and two traps T31 and T32. Its
internal operation has to be finished before the next operation may be started, so it is modeled with the ‘act-construct,
small trap’ . The second reason for the small trap is to notify the waiting caller ‘se_modify’ that it can proceed.The
employee ‘se_modify’ has two subprocesses S33 and S34 and two traps T33 and T34.

The 16th and 17th employee are the callee operation ‘ review’ and its caller ‘ re_review’ . These are modeled according to
the ‘caller-callee’ -construct. The employee ‘ review’ has two subprocesses S35 and S36 and two traps T35 and T36. Its
internal operation has to be finished before the next operation may be started, so it is modeled with the ‘act-construct,
small trap’ . The second reason for the small trap is to notify the waiting caller ‘ re_review’ that it can proceed. The
employee ‘ re_review’ has two subprocesses S37 and S38 and two traps T37 and T38.

The 18th and 19th employee are the callee operation ‘dt_test’ and its caller ‘ te_dt_test’ . These are modeled according to
the ‘caller-callee’ -construct. The employee ‘dt_test’ has two subprocesses S39 and S40 and two traps T39 and T40. Its
internal operation has to be finished before the next operation may be started so it is modeled with the ‘act-construct, small
trap’ . The second reason for the small trap is to notify the waiting caller ‘ te_dt_test’ that it can proceed. The employee
‘ te_dt_test’ has two subprocesses S41 and S42 and two traps T41 and T42.

The 20th and 21th employee are the callee operation ‘acceptance_test’ and its caller ‘cu_acceptance_test’ . These are
modeled according to the ‘caller-callee’ -construct. The employee ‘acceptance_test’ has two subprocesses S43 and S44 and
two traps T43 and T44. Its internal operation has to be finished before the next operation may be started, so it is modeled
with the ‘act-construct, small trap’ . The second reason for the small trap is to notify the waiting caller
‘cu_acceptance_test’ that it can proceed.

Software Process Modeling
in SOCCA

page :
version : 0.10

96

ACCEPTANCE
_TEST ASKED

SIM_CALL _
ACCEPTANCE_
TEST

CALL _TPM_CH_
ST_CI_TO_
(BASELINE)

TPM_CH_ST_
CI_TO_(X)
ASKED

CALL _PCR_
CREATE

PCR_
CREATE
ASKED

CM_CH_ST_
PCR_TO_(X)
ASKEDACT_

CU_ACCEP-
TANCE_TEST

NON-
CU_ACCEP-
TANCE_TEST

CU_ACCEP-
TANCE_TEST
ASKED CALL _

CM_CH_ST_
PCR_TO_(CCB)

CENTRAL

T-45

figure 4.92 employee int-cu_acceptance_test : subprocess S45

ACCEPTANCE
_TEST ASKED

CALL_TPM_CH_
ST_CI_TO_
(BASEL INE)

TPM _CH_ST_
CI_TO_(X)
ASK ED

CALL_PCR_
CREATE

PCR_
CREATE
ASK ED

CM_CH_ST_
PCR_TO_(X)
ASK EDACT_

CU_ACCEP-
TANCE_TEST

NON-
CU_ACCEP-
TANCE_TEST

CU_ACCEP-
TANCE_TEST
ASK ED CALL_

CM_CH_ST_
PCR_TO_(CCB)

CENTRAL

T-46

figure 4.93 employee int-cu_acceptance_test : subprocess S46

The employee ‘cu_acceptance_test’ has two subprocesses S45 and S46 and two traps T45 and T46.

Software Process Modeling
in SOCCA

page :
version : 0.10

97

4.3.2.4 Problem_and_Change_Report

4.3.2.4.1 Problem_and_Change_Report : external behavior-STD

CREATE
NON-
EXISTING

SCBDISC_
CREATED

SOLVED

CARRY_OUT MAINTENACE

REJECTED

CH_ST_TO_
SCB

CH_ST_TO_
CARRY_OUT

CH_ST_TO_
MAINT

CH_ST_TO_
SOLVED

CH_ST_TO_
REJECTED

CH_ST_TO_
REJECTEDCCB

CH_ST_TO_
CCB

CH_ST_TO_
SCB

PCR STATUS
READ

PCR_READ_STATUS

H

figure 4.94 problem_and_change_report: external behavior STD

This external behavior STD shows the states an object of the class ‘problem_and_change_report’ (PCR) can be in during
its li fe cycle. Its also shows when the transitions from one state to another are made as a response to calls being made to its
operations.

When the object is being created by the test-engineer or the customer it is also fill ed in by them. These filli ng in-
interactions between test_engineer or customer and the problem_and_change_report object are not shown here. Because
of the fact that the operation ‘pcr-create’ can be called by three different callers, ‘ te_dt_test’ , ‘cu_acceptance_test’ and
‘cu_issue_pcr’ , the state ‘disc_created’ is a discriminator state which handles the three callers.

Aftter creation the PCR can then offered to the software_configuration_board, if it is of category A or C. The PCR status
then becomes ‘SCB’ . If it is of category B it will be offered to the configuration_control_board. The PCR status is then
changed to ‘CCB’ .

If the configuration_control_board decides that the problem_and_change_report has to be solved, it gives it to the
software_configuration_board. The status of the PCR becomes ‘SCB’ . If the configuration_control_board decides to reject
the PCR, the new status will be ‘ rejected’ .

The software_configuration_board decides on the PCRs it receives, including the ones coming from the configuration_
control_board, and decides what to do with them. The ones to be carried out get the status ‘carry_out’ . Or the
software_configuration_board can reject them. In that case the PCR status becomes ‘ rejected’ .

When the project_manager clusters the problem_and_change_reports into logical groups to be worked upon, they get the
status ‘maintenance’ .

When the test_engineer has checked a PCR during the dt-test and found it to be ok, the problem_and_change_report’s
status changes to ‘solved’ .

In all states of the STD (excluding the state ‘non-existing’) the operation ‘pcr_read_status’ can be called. The PCR goes to
the state ‘pcr status read’ . Here the internal operation ‘pcr_read_status’ is started and the PCR transits back to the state it
was in before it was called. Before it does so it returns the PCR status to the caller. The fact that the operation

Software Process Modeling
in SOCCA

page :
version : 0.10

98

‘pcr_read_status’ can be called in (almost) every state of the external STD, is modeled by the transition from the XOR-
superstate (the big rectangle with the rounded corners) to the state ‘pcr status read’ . The fact that it remembers the state it
was in when it was called and transits back to that state is modeled by the transition to the ‘history state indicator’ , the
small circle containing the letter ‘H’ . Superstate and history indicator are part of the UML notation for state diagrams,
which is essentially the Harel statechart notation [HAR].

4.3.2.4.2 Problem_and_Change_Report : internal behavior-STDs

The problem_and_change_report has 8 operations : ‘pcr_create’ , ‘pcr_read_status’ , ‘ch_st_to_scb’ , ‘ch_st_to_ccb’ ,
‘ch_st_to_rejected’ , ‘ch_st_to_carry_out’ , ‘ch_st_to_maint’ and ‘ch_st_to_closed’ . These operations have the following
internal behavior STDs.

ACT_
OPERATION

OPERATION
NOT ACTIVE

OPERATION
ASK ED EXECUTE

INTERNAL
ACTION

OPERATION
ENDED

figure 4.95 only_internal_action-construct : internal behavior STD

All operations can be modeled by the ‘only_internal_action-construct’ since they don’ t execute any calls to other objects.
They all follow the construct’s template and their actions are explained in the following table.

OPERATION INTERNAL ACTION

CH_ST_TO_SCB UPDATE STATUS ATTRIBUTE TO SCB
CH_ST_TO_CCB UPDATE STATUS ATTRIBUTE TO CCB
CH_ST_TO_REJECTED UPDATE STATUS ATTRIBUTE TO REJECTED
CH_ST_TO_CARRY_OUT UPDATE STATUS ATTRIBUTE TO CARRY_OUT
CH_ST_TO_MAINT UPDATE STATUS ATTRIBUTE TO MAINT
CH_ST_TO_CLOSED UPDATE STATUS ATTRIBUTE TO CLOSED
PCR_CREATE CREATE NEW OBJECT AND FILL IT IN (=MODIFY THE DESCRIPTION ATTRIBUTE)
PCR_READ_STATUS RETURN VALUE OF STATUS ATTRIBUTE

table 4.3 only_internal_action-construct : operations and actions

Although the ‘pcr_create’ has an interaction with other objects, the filli ng in of the report, it can be modeled by the
‘only_internal_action-construct’ because the filli ng in of the pcr is not further detailed. The formal parameter of
‘pcr_create’ is the updated (part of the) description of the pcr.

The operation ‘pcr_read_status’ has no formal parameters, but it returns a status value to the caller. The operations
‘ch_st_to_scb’ , ‘ch_st_to_ccb’ , ‘ch_st_to_rejected’ , ‘ch_st_to_carry_out’ , ‘ch_st_to_maint’ and ‘ch_st_to_closed’ have
no formal parameters.

4.3.2.4.3 Problem_and_Change_Report : manager-STD

The communication between the problem_and_change_report’s operations (callees) and their callers is managed by a
manager STD. The manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager
STD are labeled with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the
transition. I.e. the transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant
employee(s) has/have entered the trap(s), the transition can and will (eventually) take place.

Software Process Modeling
in SOCCA

page :
version : 0.10

99

DISCRIMINATOR
 CPS11

H

TLF-12TLF-14

TLF-1
CPS1 CPS2

TLF-2

CPS3

TLF-3 TLF-4

CPS4

TLF-5

TLF-6

TLF-7
CPS5

TLF-8
CPS6

TLF-9

CPS7

CPS8

H

CPS9

TLF-10TLF-11

DISC_ WAI -
TING_CALLER
_PROCEED
 CPS10

TLF-13

WAITING_CALL ER_PROCEED

figure 4.96 problem_and_change_report : manager STD

Every caller of every operation of the class problem_and_change_report has to wait after the call , for the callee to reach
some point in its execution. The status has to be updated before the caller may proceed. The problem_and_change_ report
has to be created before the caller may proceed. The operation ‘pcr_read_status’ must return the status to the caller, before
the caller may proceed.

To model this, an AND-superstate is created in the external STD and an extra state ‘waiting_caller_proceed’ is added to it.
The state ‘waiting_caller_proceed’ consists of the substates ‘disc_waiting_caller_proceed’ and ‘discriminator’ . From
every state inside the AND-superstate the external STD can go to the state ‘waiting_caller_proceed’ . From the state
‘waiting_caller_proceed’ the external STD transits back to to state it was in before it entered the state ‘waiting _caller_
proceed’ . This is modeled by the ‘ recursive history state’ ‘ H’ . ‘Recursive’ means that the STD returns to the correct level
of depth (i.e the level shown in the STD) inside some aggregate state inside the AND-superstate. The recursion is
indicated by the asterix (*) next to the ‘history’ state [HAR].

Every callee is modeled by the ‘act-construct, small second trap’ . When some callee has progressed far enough in its
execution (i.e. has entered its small trap), the external STD transits to ‘disc_waiting_caller_proceed’ . Here it decides
which callee has ended, and it allows its caller to proceed (i.e prescribes the next subprocess for the caller). When the
caller has indeed proceeded (i.e. has entered the trap of its next subprocess), the external STD transits to the
‘discriminator’ state. Here it decides which caller it was that was allowed to proceed. For this caller it then prescribes its
next subprocess. Then the external STD transits to the state it was in before it entered ‘waiting_caller_proceed’ .

Also the second trap of the callee has to be small , because it has to finish performing its function before the manager STD
may start the next operation (be it the same operation or another one).

An precaution is needed to ensure that when an callee is executing, the next operation can only be started after the first
callee has ended. This takes the form of an extra ‘guard’ on the ‘operation-starting’ -transition from one state to the next.
This transition is guarded with the trap encompassing the ‘non-active’ state of the previous (possibly still executing)
operation. So this transition can only be taken when the the previous operation has been prescribed it next (=first)
subprocess in which it can reach its trap ‘non-active’ (it finishes its execution). The the previous operation is prescibed its
next (=first) subprocess in the state ‘waiting_caller_ proceed’ . So the external STD must first go to its state

Software Process Modeling
in SOCCA

page :
version : 0.10

100

‘waiting_caller_proceed’ before the next operation can be started. For example, in the state ‘carry_out’ , the external STD
must first take the transition from ‘carry_out’ to ‘waiting_caller_ proceed’ before it can take the transition from
‘carry_out’ to ‘maintenance’ (on which transition the next operation is started).

The notation CPSx in the STD stands for Consolidated Prescribed Subprocesses and is a set of CCx’s. The notation CCx
in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-callee combination.
The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that enables the transition.
The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

The CPS’s and the TLF’s for this manager are :

CPS1 = {CC1-1, CC2-1, CC3-1}
TLF-1 = T-19 and (T-21 or T-23 or T29)

CPS2 = {CC1-1, CC2-2 or CC2-1, CC3-1}
TLF-2 = T-19 and (T-1 and T-13b)
TLF-3 = T-19 and (T-3 and T-13a)

CPS3 = {CC1-4 or CC1-5, CC2-1, CC3-1}
TLF-4 = T-3 and (T-1 and T-14b)
TLF-5 = T-3 and (T-5 and T-14a)

CPS4 = { (CC1-2 or CC1-6) or CC1-3, CC2-1, CC3-1}
TLF-6 = T-1 and (T-5 and T-15a)
TLF-7 = T-1 and (T-7 and T-15b)

CPS5 = {CC1-10 or CC1-11, CC2-1, CC3-1}
TLF-8 = T-7 and (T-9 and T-16a)

CPS6 = {CC1-12 or CC1-13, CC2-1, CC3-1}
TLF-9 = T-9 and (T-11 and T-17a)

CPS7 = {CC1-14 or CC1-8, CC2-1, CC3-1}

CPS8 = { (CC1-7 or CC1-9) or CC1-8, CC2-1, CC3-1}

The state ‘pcr status read’ consists of 6 substates which are entered depending on the state the STD was in when the call to
‘pcr_ready’ occurred. This is reflected in the CPS9 and the TLF-10. Also reflected in TLF-10 is the fact that writing of the
status attribute has to be finished before it may be read.

CPS9 = {CC1-1, CC2-1, CC3-2} or
 {CC1-3, CC2-1, CC3-2} or
 {CC1-5, CC2-1, CC3-2} or
 {CC1-8, CC2-1, CC3-2} or
 {CC1-11, CC2-1, CC3-1} or
 {CC1-13, CC2-1, CC3-1}

TLF-10 = (T-25 and T-27) and (T-19 or T-1 or T-3 or T-5 or T-7 or T-9 or T-11)
TLF-11 = T-25

The state ‘disc_waiting_caller_proceed’ consists of 7 substates which are entered depending on the state the STD was in
when one of the callees entered its small trap. This is reflected in CPS10 and TLF-12 and TLF-13.

CPS10 = {CC1-1, CC2-3, CC3-1} or
 {CC1-3, CC2-1, CC3-1} or
 {CC1-5, CC2-1, CC3-1} or
 {CC1-8, CC2-1, CC3-1} or
 {CC1-11, CC2-1, CC3-1} or
 {CC1-13, CC2-1, CC3-1} or
 {CC1-x as prescribed in CPS10, CC2-x as prescribed in CPS10, CC3-3}

TLF-12 = T-20 or T-2 or T-4 or T-6 or T-8 or T-10 or T-12 or T-26
TLF-13 = (T-22 or T-24 or T-30) or T-15c or T-14c or T-18 or T-16b or T-17b or T-28

Software Process Modeling
in SOCCA

page :
version : 0.10

101

The state ‘discriminator’ consists of 7 substates which are entered depending on the state the STD was in when one of the
callees entered its small trap. This is reflected in CPS11. The transition TLF-14 is automatic, so no traps are guarding it.

CPS11 = {CC1-1, CC2-1, CC3-1} or
 {CC1-3, CC2-1, CC3-1} or
 {CC1-5, CC2-1, CC3-1} or
 {CC1-8, CC2-1, CC3-1} or
 {CC1-11, CC2-1, CC3-1} or
 {CC1-13, CC2-1, CC3-1} or
 {CC1-x as prescribed in CPS10, CC2-x as prescribed in CPS10, CC3-1}

TLF-14 = (-) (automatic transition)

The caller-callee combinations for ‘ch_st_to_x’ and ‘cm_ch_st_pcr_to_(x)’ are :

CC1-1 = {S1, S3, S5, S7, S9 , S11, S13}
CC1-2 = {S2, S3, S5, S7, S9 , S11, S13}
CC1-3 = {S1, S3, S5, S7, S9 , S11, S15}
CC1-4 = {S1, S4, S5, S7, S9 , S11, S13}
CC1-5 = {S1, S3, S5, S7, S9 , S11, S14}
CC1-6 = {S2, S3, S5, S7, S9 , S11, S14}
CC1-7 = {S1, S3, S6, S7, S9 , S11, S14}
CC1-8 = {S1, S3, S5, S7, S9 , S11, S18}
CC1-9 = {S1, S3, S6, S7, S9 , S11, S15}
CC1-10= {S1, S3, S5, S8, S9 , S11, S15}
CC1-11= {S1, S3, S5, S7, S9 , S11, S16}
CC1-12= {S1, S3, S5, S7, S10, S11, S16}
CC1-13= {S1, S3, S5, S7, S9 , S11, S17}
CC1-14= {S1, S3, S5, S7, S9 , S12, S17}

The caller-callee combinations for ‘pcr_create’ and ‘ te_dt_test’ , ‘cu_acceptance_test’ and ‘cu_issue_pcr’ are the
following. The state ‘disc_create’ is a discriminator state and this is reflected in CC2-2.

CC2-1 = {S19, S21, S23, S29}
CC2-2 = {S20, S21, S23, S29}
CC2-3 = {S19, S22, S23, S29} or
 {S19, S21, S24, S29} or
 {S19, S21, S23, S30}

The caller-callee combinations for ‘pcr_read_status’ and ‘ tpm_cluster_pcr’ are :

CC3-1 = {S25, S27}
CC3-2 = {S26, S27}
CC3-3 = {S25, S28}

4.3.2.4.4 Problem_and_Change_Report : employee-STDs

The manager STD has the following 13 employee STDs. The employees are the own internal callees ‘ch_st_to_scb’ ,
‘ch_st_to_ccb’ , ‘ch_st_to_rejected’ , ‘ch_st_carry_out’ , ‘ch_st_to_maint’ , ‘ch_st_to_solved’ and their caller
‘cm_ch_st_pcr_to_(x)’ of the class configuration_manager. These 6 operations are called in turn by the
configuration_manager. The callee ‘pcr_create’ and its 3 callers ‘ te_dt_test’ of the class test_engineer,
‘cu_acceptance_test’ and ‘cu_issue_pcr’ of the class customer. The callee ‘pcr_read_status’ and its caller
‘ tpm_cluster_pcr’ of the technical_project_manager.

The first 7 employees are the callees ‘ch_st_to_scb’ , ‘ch_st_to_ccb’ , ‘ch_st_to_rejected’ , ‘ch_st_to_carry_out’ ,
‘ch_st_to_maint’ , ‘ch_st_to_solved’ and their caller ‘cm_ch_st_pcr_to_(x)’ . The status changing operations must be
completed before the next operation may be called, therefore they are modeled by the ‘small trap’ -variant of the act-
construct. The second reason for the small trap is the fact that the caller is waiting after its call , and has to be notified that
it can proceed because the requested state change has been applied to the PCR.

Software Process Modeling
in SOCCA

page :
version : 0.10

102

ACT_
OPERATION

OPERATION
NOT ACTIVE

OPERATION
ASKED EXECUTE

INTERNAL
ACTION

OPERATION
ENDED

T-Z

figure 4.97 act-construct : subprocess SZ, small trap

The first employee is the callee operation ‘ch_st_to_scb’ . This employee has two subprocesses S1 and S2 and two traps
T1 and T2 according to the ‘act-construct, small second trap’ .

The second employee is the callee operation ‘ch_st_to_ccb’ . This employee has two subprocesses S3 and S4 and two traps
T3 and T4 according to the ‘act-construct, small second trap’ .

The third employee is the callee operation ‘ch_st_to_rejected’ . This employee has two subprocesses S5 and S6 and two
traps T5 and T6 according to the ‘act-construct’ , small second trap.

The fourth employee is the callee operation ‘ch_st_to_carry_out’ . This employee has two subprocesses S7 and S8 and two
traps T7 and T8 according to the ‘act-construct, small second trap’ .

The 5th employee is the callee operation ‘ch_st_to_maint’ . This employee has two subprocesses S9 and S10 and two traps
T9 and T10 according to the ‘act-construct, small second trap’ .

The 6th employee is the callee operation ‘ch_st_to_solved’ . This employee has two subprocesses S11 and S12 and two
traps T11 and T12 according to the ‘act-construct, small second trap’ .

The 7th employee is the caller operation ‘cm_ch_st_pcr_to_(x)’ . This employee has the subprocesses S13 until S18 and
the traps T13a, T13b, T14a, T14b, T14c, T15a, T15b, T15c, T16a, T16b, T17a, T17b and T18. The employee’s
subprocesses are modeled according to the caller_callee-construct. The following figures show these subprocesses. The
first figure is that of subprocess S18 showing the total internal STD. T18 is the so-called trivial trap which encompasses
the whole internal STD of the operation.

STATUS
SCB
ASKED

ACT_
CM_CH_ST_
PCR_TO_(X)

NON-
CM_CH_ST_
PCR_TO_(X)

CM_CH_ST_
PCR_TO_(X)
ASKED

CALL _
CH_ST_TO_
CCB

STATUS
CCB
ASKED

CALL _
CH_ST_TO_
SCB

CALL _
CH_ST_TO_
REJECTED

CALL _
CH_ST_TO_
CARRY_OUT

CALL _
CH_ST_TO_
MAINT

STATUS
REJECTED
ASKED

STATUS
CARRY_OUT
ASKED

CALL _
CH_ST_TO_
SOLVED

STATUS
MAINT
ASKED

STATUS
SOLVED
ASKED

T-18

CALL _CCB_CONSIDER_PCR

CCB_
CONSIDER_PCR
ASKED

SCB_
CONSIDER_PCR
ASKED

CALL _SCB_CONSIDER_PCR

figure 4.98 employee int-cm_ch_st_pcr_to_(x) : subprocess S18

Software Process Modeling
in SOCCA

page :
version : 0.10

103

STATUS
SCB
ASKED

ACT_
CM_CH_ST_
PCR_TO_(X)

NON-
CM_CH_ST_
PCR_TO_(X)

CM_CH_ST_
PCR_TO_(X)
ASKED

CALL_
CH_ST_TO_
CCB

STATUS
CCB
ASKED

CALL_
CH_ST_TO_
SCB

T-13a

T-13b

figure 4.99 employee int-cm_ch_st_pcr_to_(x) : subprocess S13

STATUS
SCB
ASKED

ACT_
CM_CH_ST_
PCR_TO_(X)

NON-
CM_CH_ST_
PCR_TO_(X)

CM_CH_ST_
PCR_TO_(X)
ASKED

STATUS
CCB
ASKED

CALL_
CH_ST_TO_
SCB

CALL_
CH_ST_TO_
REJECTED

STATUS
REJECTED
ASKED

T-14a

T-14b

CALL_CCB_CONSIDER_PCR

CCB_
CONSIDER_PCR
ASKED

T-14c

figure 4.100 employee int-cm_ch_st_pcr_to_(x) : subprocess S14

STATUS
SCB
ASK ED

ACT_
CM_CH_ST_
PCR_TO_(X)

NON-
CM_CH_ST_
PCR_TO_(X)

CM_CH_ST_
PCR_TO_(X)
ASK ED

CALL_
CH_ST_TO_
REJECTED

CALL_
CH_ST_TO_
CARRY_OUT

STATUS
REJECTED
ASK ED

STATUS
CARRY_OUT
ASK ED

T-15b

T-15a

SCB_
CONSIDER_PCR
ASK ED

CALL_SCB_CONSIDER_PCR

T-15c

figure 4.101 employee int-cm_ch_st_pcr_to_(x) : subprocess S15

Software Process Modeling
in SOCCA

page :
version : 0.10

104

ACT_
CM_CH_ST_
PCR_TO_(X)

NON-
CM_CH_ST_
PCR_TO_(X)

CM_CH_ST_
PCR_TO_(X)
ASK ED

CALL _
CH_ST_TO_
SCB

CALL _
CH_ST_TO_
MAINT

STATUS
CARRY_OUT
ASK ED

STATUS
MAINT
ASK ED

T-16aT-16b

figure 4.102 employee int-cm_ch_st_pcr_to_(x) : subprocess S16

ACT_
CM_CH_ST_
PCR_TO_(X)

NON-
CM_CH_ST_
PCR_TO_(X)

CM_CH_ST_
PCR_TO_(X)
ASKED

CALL _
CH_ST_TO_
SOLVED

STATUS
MAINT
ASKED

STATUS
SOLVED
ASKED

T-17a

T-17b

figure 4.103 employee int-cm_ch_st_pcr_to_(x) : subprocess S17

The eighth, nineth, tenth and 13th employee are the callee operation ‘pcr_create’ and its 3 callers ‘ te_dt_test’ ,
‘cu_acceptance_test’ and ‘cu_issue_pcr’ . These are modeled according to the ‘caller-callee’ -construct. The employee
‘create’ has two subprocesses S19 and S20 and two traps T19 and T20. Its internal operation has to be finished before
another operation may be started, so it is modeled with the ‘act-construct, small trap’ . The second reason for the small trap
is to notify the waiting that it can proceed. The employee ‘ te_dt_test’ has two subprocesses S21 and S22 and two traps
T21 and T22. The employee ‘cu_acceptance_test’ has two subprocesses S23 and S24 and two traps T23 and T24. The
employee ‘cu_issue_pcr’ has two subprocesses S29 and S30 and two traps T29 and T30. The state ‘disc-created’ is a
discriminator state which establishes which caller has executed the call and it prescribes the subprocesses accordingly.

The 11th and 12th employee are the callee operation ‘pcr_read_status’ and its caller ‘ tpm_cluster_pcr’ . These are modeled
according to the ‘caller-callee’ -construct. The employee ‘pcr_read_status’ has two subprocesses S25 and S26 and two
traps T25 and T26. The status has to be read and returned to the caller before a new operation may be started, so it is
modeled with the ‘act-construct, small trap’ . The second reason for the small trap is to notify the waiting that it can
proceed. The employee ‘ tpm_cluster_pcr’ has two subprocesses S27and S28 and two traps T27 and T28. The operation
‘ tpm_cluster_pcr’ uses the ‘simultaneous_call ’ -construct to read the status of a number of pcr’s simultaneously.

Software Process Modeling
in SOCCA

page :
version : 0.10

105

4.3.2.5 Software_Engineer

4.3.2.5.1 Software_Engineer : external behavior STD

The STD of the external behavior consists of a neutral state in which the software_engineer waits for a call to the only
operation it makes available to other objects and of an activation state in which the internal ‘se_modify’ operation is
started.

SE_MODIFY_(X)

NEUTRAL STARTING_
SE_MODFY

figure 4.104 software_engineer : external behavior STD

The operation takes the id of the configuration_item that has to be modified as its only formal parameter. The
software_engineer does not wait until the ‘se_modify’ operation is finished, but returns as soon as possible to its neutral
state. This increases the level of concurrency. Because the ‘se_modify’ operation can be called as well as activated again
while the current execution of ‘ se_modify’ is not yet finished. (So this is multi -threaded : simultaneous execution of
different method invocations.)

4.3.2.5.2 Software_Engineer : internal behavior-STDs

The 1 operation ‘se_modify’ of the software_engineer has the following internal behavior STD.

ACT_
SE_MODIFY

NON-
SE_MODIFY

CM_CH_ST_
CI_TO_(X)
ASKED

SE_MODIFY
ASKED

CALL_
CM_UPDATE_
VERSION

CALL_CM_
CH_ST_CI_
TO_(CONTROL)

CM_UPDATE
_VERSION
ASKED

MODIFY
ASKED

CALL_MODIFY

figure 4.105 int-se_modify : internal behavior STD

After the operation ‘se_modify’ has started, the software_engineer modifies the configuration_item (CI) one piece at the
time (seperate calls to modify). If he is finished he asks the configuration_manager to update the version of the CI.

Next the software_engineer calls the operation ‘cm_ch_st_ci_to_(x)’ to ask the configuration_manager to change the
status of the configuration_item to ‘control’ (i.e. put the CI under configuration management).

4.3.2.5.3 Software_Engineer : manager-STD

The communication between the software_engineer’s operation (callee) and its caller is managed by a manager STD.
The manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager STD are
labeled with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the
transition. I.e. the transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant
employee(s) has/have entered the trap(s), the transition can and will (eventually) take place.

Software Process Modeling
in SOCCA

page :
version : 0.10

106

CC1-1 CC1-2

TLF-1

TLF-2

figure 4.106 software_engineer : manager STD

The notation CCx in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-
callee combination. The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that
enables the transition. The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

The CC’s and the TLF’s for this manager are the combinations for ‘se_modify’ and ‘ tpm_modify’ :

CC1-1 = {S1, S3}
TLF-1 = T-1 and T-3

CC1-2 = {S2, S4}
TLF-2 = T-2 and T-4

4.3.2.5.4 Software_Engineer : employee-STDs

The manager STD has the following 2 employee STDs : the own internal callee ‘se_modify’ and its caller ‘ tpm_modify’
of the class ‘ technical_project_manager’ .

The first employee is the callee operation ‘se_modify’ . This employee has two subprocesses S1 and S2 and two traps T1
and T2 according to the ‘act-construct, big second trap’ .

SE_MODIFY
ASKED

NON-
SE_MODIFY

T-1

CALL _
CM_UPDATE_
VERSION CM_UPDATE

_VERSION
ASKED

CALL _CM_
CH_ST_CI_
TO_(CONTROL)

CM_CH_ST_
CI_TO_(X)
ASKED

MODIFY
ASKED

CALL _MODIFY

figure 4.107 employee int-se_modify : subprocess S1
T-2

ACT_
SE_MODIFY

NON-
SE_MODIFY

SE_MODIFY
ASK ED

CALL _
CM_UPDATE_
VERSION CM_UPDATE

_VERSION
ASK ED CALL _CM_

CH_ST_CI_
TO_(CONTROL)

CM_CH_ST_
CI_TO_(X)
ASK ED

MODIFY
ASK ED

CALL _M ODIFY

figure 4.108 employee int-se_modify : subprocess S2, big trap

The second employee is the caller operation ‘ tpm_modify’ . This employee has two subprocesses S3 and S4 and two traps
T3 and T4 according to the caller_callee-construct.

Software Process Modeling
in SOCCA

page :
version : 0.10

107

ACT_
TPM_MODIFY

NON-
TPM_MODIFY

SE_
MODIFY
ASKED

TPM_MODIFY
ASKED

CALL _
CM_RELEASE

CALL _SE_
MODIFYCM_

RELEASE
ASKED

CM_
CREATE
ASKED

CALL _
CM_CREATE CALL _SE_

MODIFY

T-3
CALL _SE_M ODIFY

figure 4.109 employee int-tpm_modify : subprocess S3

T-4

ACT_
TPM_MODIFY

NON-
TPM_MODIFY

SE_
MODIFY
ASKED

TPM_MODIFY
ASKED

CALL _
CM_RELEASE CM_

RELEASE
ASKED

CM_
CREATE
ASKED

CALL _
CM_CREATE

figure 4.110 employee int-tpm_modify : subprocess S4

Software Process Modeling
in SOCCA

page :
version : 0.10

108

4.3.2.6 Reviewer

4.3.2.6.1 Reviewer : external behavior-STD

The STD of the external behavior consists of a neutral state in which the reviewer waits for a call to the only operation it
makes available to other objects and of an activation in which the internal ‘ re_review’ operation is started.

RE_REVIEW_(X)

NEUTRAL STARTING_
RE_REVIEW

figure 4.111 reviewer : external behavior STD

The formal parameter of the operation is the id of the configuration_item that has to be reviewed. The reviewer does not
wait until the ‘ re_review’ operation is finished, but returns as soon as possible to its neutral state. This increases the level
of concurrency. Because the ‘ re_review’ operation can be called again as well as activated while the current execution has
not yet terminated.

4.3.2.6.2 Reviewer : internal behavior-STDs

The 1 operation of the reviewer has the following internal behavior STD.

ACT_
RE_REVIEW

NON-
RE_REVIEW

RE_REVIEW
ASK ED

CM_CH_ST_
CI_TO_(X)
ASK ED

CALL_CM_
CH_ST_CI_
TO_(X)

REVIEW
ASK ED

CALL_REVIEW

figure 4.112 int-re_review : internal behavior STD

After the operation ‘ re_review’ has started, the reviewer reviews the configuration_item (CI) one piece at the time
(seperate calls to the ‘ review’ operation of the configuration_item). When the review is finished , the reviewer asks the
configuration_manager to change the status of the CI. If the review is ok, then the status change is to ‘se_ready’
(call_cm_ch_st_ci_to_(se_ready)). If the review is not ok, then the the status change is to ‘maintenance’
(call_cm_ch_st_ci_to_(maint)).

4.3.2.6.3 Reviewer : manager-STD

The communication between the reviewer’s operation (callee) and its caller is managed by a manager STD.
The manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager STD are
labeled with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the
transition. I.e. the transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant
employee(s) has/have entered the trap(s), the transition can and will (eventually) take place.

Software Process Modeling
in SOCCA

page :
version : 0.10

109

CC1-1 CC1-2

TLF-1

TLF-2

figure 4.113 reviewer : manager STD

The notation CCx in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-
callee combination. The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that
enables the transition. The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

The CC’s and the TLF’s for this manager are the combinations for ‘ re_review’ and ‘ tpm_review’ :

CC1-1 = {S1, S3}
TLF-1 = T-1 and T-3

CC1-2 = {S2, S4}
TLF-2 = T-2 and T-4

4.3.2.6.4 Reviewer : employee-STDs

The manager STD has the following 2 employee STDs : the own internal callee ‘ re_review’ and its caller ‘ tpm_review’ of
the class ‘ technical_project_manager’ .

The first employee is the callee operation ‘ re_review’ . This employee has two subprocesses S1 and S2 and two traps T1
and T2 according to the ‘act-construct, big second trap’ .

RE_REVIEW
ASKED

CM_CH_ST_
CI_TO_(X)
ASKED

CALL _CM_
CH_ST_CI_
TO_(X)

REVIEW
ASKED

CALL _REVIEW

NON-
RE_REVIEW

T-1

figure 4.114 employee int-re_review : subprocess S1

ACT_
RE_REVIEW

NON-
RE_REVIEW

RE_REVIEW
ASKED

CM_CH_ST_
CI_TO_(X)
ASKED

CALL_CM_
CH_ST_CI_
TO_(X)

REVIEW
ASKED

CALL_REVIEW

T-2

figure 4.115 employee int-re_review : subprocess S2, big trap

The second employee is the caller operation ‘ tpm_review’ . This employee has two subprocesses S3 and S4 and two traps
T3 and T4 according to the caller_callee-construct.

Software Process Modeling
in SOCCA

page :
version : 0.10

110

ACT_
TPM _REVIEW

NON-
TPM _REVIEW

RE_
REVIEW
ASK ED

TPM _REVIEW
ASK ED

CALL_
CM_RELEASE

CALL_RE_
REVIEWCM_

RELEASE
ASK ED

T-3

figure 4.116 employee int-tpm_review : subprocess S3

T-4

ACT_
TPM_REVIEW

NON-
TPM_REVIEW

RE_
REVIEW
ASKED

TPM_REVIEW
ASKED

CALL _
CM_RELEASE CM_

RELEASE
ASKED

figure 4.117 employee int-tpm_review : subprocess S4

Software Process Modeling
in SOCCA

page :
version : 0.10

111

4.3.2.7 Software_Configuration_Board

4.3.2.7.1 Software_Configuration_Board : external behavior-STD

The STD of the external behavior consists of a neutral state in which the software_configuration_board waits for a call to
the internal operation and of an activation state in which the internal ‘scb_consider_(x)’ operation is started.

SCB_CONSIDER_PCR_(X)

NEUTRAL
STARTING_
SCB_CON-
SIDER_PCR_(X)

figure 4.118 software_configuration_board : external behavior STD

The formal parameter of the operation is the id of the problem_and_change_report that has to be considered. The
software_configuration_board does not wait for the ‘scb_consider’ operation to finish, but returns as soon as possible to
its neutral state. This increases the level of concurrency. The operation can be called again as well as activated while the
current execution is stil taking place.

4.3.2.7.2 Software_Configuration_Board : internal behavior-STDs

The 1 operation ‘csb_consider_pcr’ of the software_configuration_board has the following internal behavior STD.

ACT_
SCB_CONSIDER
_PCR

NON-
SCB_CONSIDER
_PCR

CM_CH_ST_
PCR_TO_(X)
ASKED

SCB-CONSIDER
_PCR
ASKED

ESTIM ATE_
WORKLOAD

CALL_CM_
CH_ST_PCR_
TO_(X)

ESTIM ATED

figure 4.119 int-scb_consider_pcr : internal behavior STD

After the operation ‘scb_consider_pcr’ has started, the scb makes an estimate of the work needed to solve the
problem_and_change_report. It then decides to either reject the pcr (call_cm_ch_st_pcr_to_(rejected)) or not
(call_cm_ch_st_pcr_to_(carry_out)). All status changes of the pcr are done via the configuration_manager.

4.3.2.7.3 Software_Configuration_Board : manager-STD

The communication between the software_configuration_board’s operation (callee) and its caller is managed by a manager
STD. The manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager STD are
labeled with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the
transition. I.e. the transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant
employee(s) has/have entered the trap(s), the transition can and will (eventually) take place.

CC1-1 CC1-2

TLF-1

TLF-2

figure 4.120 software_configuration_board : manager STD

The notation CCx in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-
callee combination. The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that
enables the transition. The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

Software Process Modeling
in SOCCA

page :
version : 0.10

112

The CC’s and the TLF’s for this manager are the combinations for ‘scb_consider_pcr’ and ‘cm_ch_st_pcr_to_(x)’ :

CC1-1 = {S1, S3}
TLF-1 = T-1 and T-3

CC1-2 = {S2, S4}
TLF-2 = T-2 and T-4

4.3.2.7.4 Software_Configuration_Board : employee-STDs

The manager STD has the following 2 employee STDs : the own internal callee ‘scb_consider_pcr’ and its caller
‘cm_ch_st_pcr_to_(x)’ of the class configuration_manager.

The first employee is the callee operation ‘scb_consider_pcr’ . This employee has two subprocesses S1 and S2 and two
traps T1 and T2 according to the ‘act-construct, big second trap’ .

NON-
SCB_CONSIDER
-PCR

CM_CH_ST_
PCR_TO_(X)
ASKED

SCB_CONSIDER
_PCR
ASKED

ESTIMATE_
WORKLOAD

CALL _CM_
CH_ST_PCR_
TO_(X)

T-1

ESTIMATED

figure 4.121 employee int-scb_consider_pcr : subprocess S1

ACT_
SCB_CONSIDER
_PCR

NON-
SCB_CONSIDER
_PCR

CM_CH_ST_
PCR_TO_(X)
ASKED

SCB_CONSIDER
_PCR
ASKED

ESTIMATE_
WORKLOAD

CALL_CM_
CH_ST_PCR_
TO_(X)

T-2

ESTIMATED

figure 4.122 employee int-scb_consider_pcr : subprocess S2, big trap

The second employee is the caller operation ‘cm_ch_st_pcr_to_(x)’ . This employee has two subprocesses S3 and S4 and
two traps T3 and T4 according to the caller_callee-construct.

STATUS
SCB
ASKED

ACT_
CM_CH_ST_
PCR_TO_(X)

NON-
CM_CH_ST_
PCR_TO_(X)

CM_CH_ST_
PCR_TO_(X)
ASKED

CALL_
CH_ST_TO_
CCB

STATUS
CCB
ASKED

CALL_
CH_ST_TO_
SCB

CALL_
CH_ST_TO_
REJECTED

CALL_
CH_ST_TO_
CARRY_OUT

CALL_
CH_ST_TO_
MAINT

STATUS
REJECTED
ASKED

STATUS
CARRY_OUT
ASKED

CALL_
CH_ST_TO_
SOLVED

STATUS
MAINT
ASKED

STATUS
SOLVED
ASKED

CALL_CCB_CONSIDER_PCR

CCB_
CONSIDER_PCR
ASKED

SCB_
CONSIDER_PCR
ASKED

CALL_SCB_CONSIDER_PCR

T-3

figure 4.123 employee int-cm_ch_st_pcr_to_(x) : subprocess S3

Software Process Modeling
in SOCCA

page :
version : 0.10

113

T-4

STATUS
SCB
ASKED

ACT_
CM_CH_ST_
PCR_TO_(X)

NON-
CM_CH_ST_
PCR_TO_(X)

CM_CH_ST_
PCR_TO_(X)
ASKED

CALL _
CH_ST_TO_
CCB

STATUS
CCB
ASKED

CALL _
CH_ST_TO_
SCB

CALL _
CH_ST_TO_
REJECTED

CALL _
CH_ST_TO_
CARRY_OUT

CALL _
CH_ST_TO_
MAINT

STATUS
REJECTED
ASKED

STATUS
CARRY_OUT
ASKED

CALL _
CH_ST_TO_
SOLVED

STATUS
MAINT
ASKED

STATUS
SOLVED
ASKED

CALL _CCB_CONSIDER_PCR

CCB_
CONSIDER_PCR
ASKED

SCB_
CONSIDER_PCR
ASKED

figure 4.124 employee int-cm_ch_st_pcr_to_(x) : subprocess S4

Software Process Modeling
in SOCCA

page :
version : 0.10

114

4.3.2.8 Configuration_Control_Board

4.3.2.8.1 Configuration_Control_Board : external behavior-STD

The STD of the external behavior consists of a neutral state in which the configuration_control_board waits for a call to
the internal operation and of an activation state in which the internal ‘ccb_consider_(x)’ operation is started.

CCB_CONSIDER_PCR_(X)

NEUTRAL
STARTING_
CCB_CON-
SIDER_PCR_(X)

figure 4.125 configuration_control_board : external behavior STD

The formal parameter of the operation is the id of the problem_and_change_report that has to be considered. The
configuration_control_board does not wait for the ‘ccb_consider’ operation to finish, but returns as soon as possible to its
neutral state. This increases the level of concurrency. The operation can be called again as well as activated while the
current execution is stil taking place.

4.3.2.8.2 Configuration_Control_Board : internal behavior-STDs

The 1 operation of the configuration_control_board has the following internal behavior STD.

ACT_
CCB_CONSIDER
_PCR

NON-
CCB_CONSIDER
_PCR

CM_CH_ST_
PCR_TO_(X)
ASKED

CCB-CONSIDER
_PCR
ASKED CONSIDER_

IAP-BUDGET_
CONSTRAINTS

CALL_CM_
CH_ST_PCR_
TO_(X)

BUDGET
CONSTRAINTS
CONSIDERED

figure 4.126 int-ccb_consider_pcr : internal behavior STD

With the operation ‘ccb_consider_pcr’ , the configuration-control_board checks if the IAP-budget (Internal Automation
Projects-budget of the Dutch MoD) is suff icient to handle the problem_and_change_report. If it is, it directs the
configuration_manager to present the pcr to the software_configuration_board for further handling
(call_cm_ch_st_pcr_to_(scb)). If not, it rejects the pcr (call_cm_ch_st_pcr_to_(rejected)).

4.3.2.8.3 Configuration_Control_Board : manager-STD

The communication between the configuration_control_board’s operation (callee) and its caller is managed by a manager
STD. The manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager STD are
labeled with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the
transition. I.e. the transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant
employee(s) has/have entered the trap(s), the transition can and will (eventually) take place.

CC1-1 CC1-2

TLF-1

TLF-2

figure 4.127 configuration_control__board : manager STD

The notation CCx in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-
callee combination. The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that
enables the transition. The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

Software Process Modeling
in SOCCA

page :
version : 0.10

115

The CC’s and the TLF’s for this manager are the combinations for ‘ccb_consider_pcr’ and ‘cm_ch_st_pcr_to_(x)’ :

CC1-1 = {S1, S3}
TLF-1 = T-1 and T-3

CC1-2 = {S2, S4}
TLF-2 = T-2 and T-4

4.3.2.8.4 Configuration_Control_Board : employee-STDs

The manager STD has the following 2 employee STDs : the own internal callee ‘ccb_consider_pcr’ and its caller
‘cm_ch_st_pcr_to_(x)’ of the class ‘configuration_manager’ .

The first employee is the callee operation ‘ccb_consider_pcr’ . This employee has two subprocesses S1 and S2 and two
traps T1 and T2 according to the ‘act-construct, big second trap’ .

NON-
CCB_CONSIDER
-PCR

CM_CH_ST_
PCR_TO_(X)
ASKED

CCB_CONSIDER
_PCR
ASKED

CALL _CM_
CH_ST_PCR_
TO_(X)

T-1

CONSIDER_
IAP-BUDGET_
CONSTRAINTS

BUDGET
CONSTRAINTS
CONSIDERED

figure 4.128 employee int-ccb_consider_pcr : subprocess S1

ACT_
CCB_CONSIDER
_PCR

NON-
CCB_CONSIDER
_PCR

CM_CH_ST_
PCR_TO_(X)
ASKED

CCB_CONSIDER
_PCR
ASKED CALL_CM_

CH_ST_PCR_
TO_(X)

T-2

CONSIDER_
IAP-BUDGET_
CONSTRAINTS

BUDGET
CONSTRAINTS
CONSIDERED

figure 4.129 employee int-ccb_consider_pcr : subprocess S2, big trap

The second employee is the caller operation ‘cm_ch_st_pcr_to_(x)’ . This employee has two subprocesses S3 and S4 and
two traps T3 and T4 according to the caller_callee-construct.

STATUS
SCB
ASKED

ACT_
CM_CH_ST_
PCR_TO_(X)

NON-
CM_CH_ST_
PCR_TO_(X)

CM_CH_ST_
PCR_TO_(X)
ASKED

CALL_
CH_ST_TO_
CCB

STATUS
CCB
ASKED

CALL_
CH_ST_TO_
SCB

CALL_
CH_ST_TO_
REJECTED

CALL_
CH_ST_TO_
CARRY_OUT

CALL_
CH_ST_TO_
MAINT

STATUS
REJECTED
ASKED

STATUS
CARRY_OUT
ASKED

CALL_
CH_ST_TO_
SOLVED

STATUS
MAINT
ASKED

STATUS
SOLVED
ASKED

CALL_CCB_CONSIDER_PCR

CCB_
CONSIDER_PCR
ASKED

SCB_
CONSIDER_PCR
ASKED

CALL_SCB_CONSIDER_PCR

T-3

figure 4.130 employee int-cm_ch_st_pcr_to_(x) : subprocess S3

Software Process Modeling
in SOCCA

page :
version : 0.10

116

STATUS
SCB
ASKED

ACT_
CM_CH_ST_
PCR_TO_(X)

NON-
CM_CH_ST_
PCR_TO_(X)

CM_CH_ST_
PCR_TO_(X)
ASKED

CALL_
CH_ST_TO_
CCB

STATUS
CCB
ASKED

CALL_
CH_ST_TO_
SCB

CALL_
CH_ST_TO_
REJECTED

CALL_
CH_ST_TO_
CARRY_OUT

CALL_
CH_ST_TO_
MAINT

STATUS
REJECTED
ASKED

STATUS
CARRY_OUT
ASKED

CALL_
CH_ST_TO_
SOLVED

STATUS
MAINT
ASKED

STATUS
SOLVED
ASKED

INCORRECT
STATUS

CCB_
CONSIDER_PCR
ASKED

SCB_
CONSIDER_PCR
ASKED

CALL_SCB_CONSIDER_PCR

T-4

figure 4.131 employee int-cm_ch_st_pcr_to_(x) : subprocess S4

Software Process Modeling
in SOCCA

page :
version : 0.10

117

4.3.2.9 Test_Engineer

4.3.2.9.1 Test_Engineer : external behavior-STD

The STD of the external behavior consists of a neutral state in which the test_engineer waits for a call to the only operation
it makes available to other objects and of an activation state in which the internal ‘ te_dt_test’ operation is started.

DT_TEST_(X)

NEUTRAL STARTING_
DT_TEST

figure 4.132 test_engineer : external behavior STD

The operation takes the id of the configuration_item that has to be tested as its only formal parameter. The test_engineer
does not wait until the ‘ te_dt_test’ operation is finished, but returns as soon as possible to its neutral state. The ‘ te_dt_test’
operation can be called again as well as activated while the current execution of ‘ te_dt_test’ is not yet finished.

4.3.2.9.2 Test_Engineer : internal behavior-STDs

The one operation ‘ te_dt_test’ of the test_engineer has the following internal behavior STD.

DT_TEST
ASKED

SIM _CALL _
DT_TEST

CALL _CM_CH_
ST_CI_TO_
(DT_READY)

CM_CH_ST_
CI_TO_(X)
ASKED

CALL _PCR_
CREATE

PCR_
CREATE
ASKED

CM_CH_ST_
PCR_TO_(X)
ASKEDACT_

TE_DT_TEST

NON-
TE_DT_TEST

TE_DT_TEST
ASKED CALL _

CM_CH_ST_
PCR_TO_(SCB/CCB)

CALL _CM_CH_ST_PCR_TO_(X)

CENTRAL

figure 4.133 int-te_dt_test : internal behavior STD

After the operation ‘ te_dt_test’ has started, the test_engineer tests the configuration_item (CI) by executing test_cases. If
the test-engineer tests one configuration_item during a test, he executes one call per test_case to the ‘dt_test’ operation of
the CI at the time. If he performs a system level test, he tests many configuration_items at the same time. He must call
‘dt_test’ simultaneously for all the CIs in the program under test. Both situations are modeled with the
‘simultaneous_call ’ -construct.

If he finds an error he writes a problem_and_change_report (call_pcr_create) which he gives to the configuration manager
(call_cm_ch_st_pcr_to_(SCB/CCB)) who will update the status of the problem_and_change_report (PCR). (The
configuration_manager will give this PCR either to the software_configuration_board (SCB) or to the
configuration_control_board (CCB) for further handling.)

Software Process Modeling
in SOCCA

page :
version : 0.10

118

Also during testing the test_engineer checks the (existing) corrected PCRs that apply to the CI(s) under test (if there are
any). If a test_case result shows that such a PCR is correctly solved, the test_engineer tells the configuration_manager to
change the status of this pcr to ‘solved’ (call_cm_ch_st_pcr_to_(x)).

At the end of the test there are two possibiliti es. It may be that there are no problems found (no new PCRs were written
and all the existing PCRs were solved correctly). The test_engineer then tells the configuration_manager to change the
status of the configuration_item to ‘dt_ready’ . The test_engineer is now ready with his job and goes to the state ‘non-
te_dt_test’ .

If the test was not succesfull (PCRs were written or not correctly solved), then the test_engineer takes no status-changing
action on the CI. The status of the configuration_item will be changed to ‘maintenance’ later on by the
technical_project_manager after he has clustered the pcr’s on this CI. The test_engineer is now ready with his job and goes
to the state ‘non-te_dt_test’ .

4.3.2.9.3 Test_Engineer : manager-STD

The communication between the test_engineer’s operation (callee) and its caller is managed by a manager STD. The
manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager STD are labeled
with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the transition. I.e. the
transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant employee(s)
has/have entered the trap(s), the transition can and will (eventually) take place.

CC1-1 CC1-2

TLF-1

TLF-2

figure 4.134 test_engineer : manager STD

The notation CCx in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-
callee combination. The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that
enables the transition. The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

The CC’s and the TLF’s for this manager are the combinations for ‘ te_dt_test’ and ‘ tpm_dt_test’ :

CC1-1 = {S1, S3}
TLF-1 = T-1 and T-3

CC1-2 = {S2, S4}
TLF-2 = T-2 and T-4

4.3.2.9.4 Test_Engineer : employee-STDs

The manager STD has the following 2 employee STDs : the own internal callee ‘ te_dt_test’ and its caller ‘ tpm_dt_test’ of
the class ‘ technical_project_manager’ .

The first employee is the callee operation ‘ te_dt_test’ . This employee has two subprocesses S1 and S2 and two traps T1
and T2 according to the caller_callee-construct.

Software Process Modeling
in SOCCA

page :
version : 0.10

119

DT_TEST
ASKED

SIM_CALL_
DT_TEST

CALL_CM_CH_
ST_CI_TO_
(DT_READY)

CM_CH_ST_
CI_TO_(X)
ASKED

CALL_PCR_
CREATE

PCR_
CREATE
ASKED

CM_CH_ST_
PCR_TO_(X)
ASKED

NON-
TE_DT_TEST

TE_DT_TEST
ASKED CALL_

CM_CH_ST_
PCR_TO_(SCB/CCB)

CALL_CM_CH_ST_PCR_TO_(X)

CENTRAL

T-1

figure 4.135 employee int-te_dt_test : subprocess S1

DT_TEST
ASKED

SIM_CALL_
DT_TEST

CALL_CM_CH_
ST_CI_TO_
(DT_READY)

CM_CH_ST_
CI_TO_(X)
ASKED

CALL_PCR_
CREATE

PCR_
CREATE
ASKED

CM_CH_ST_
PCR_TO_(X)
ASKEDACT_

TE_DT_TEST

NON-
TE_DT_TEST

TE_DT_TEST
ASKED CALL_

CM_CH_ST_
PCR_TO_(SCB/CCB)

CALL_CM_CH_ST_PCR_TO_(X)

CENTRAL

T-2

figure 4.136 employee int-te_dt_test : subprocess S2

The second employee is the caller operation ‘ tpm_dt_test’ . This employee has two subprocesses S3 and S4 and two traps
T3 and T4 according to the caller_callee-construct.

ACT_
TPM_DT_TEST

NON-
TPM_DT_TEST

DT_
TEST
ASKED

TPM_DT_TEST
ASKED

CALL_
CM_RELEASE

CALL_DT_
TESTCM_

RELEASE
ASKED

T-3

figure 4.137 employee int-dt_test : subprocess S3

Software Process Modeling
in SOCCA

page :
version : 0.10

120

ACT_
TPM_DT_TEST

NON-
TPM_DT_TEST

DT_
TEST
ASKED

TPM_DT_TEST
ASKED

CALL_
CM_RELEASE CM_

RELEASE
ASKED

T-4

figure 4.138 employee int-dt_test : subprocess S4

Software Process Modeling
in SOCCA

page :
version : 0.10

121

4.3.2.10 Customer

4.3.2.10.1 Customer : external behavior-STD

The STD of the external behavior consists of three states. One neutral state in which the customer waits for a call to one of
its operations and two activation states in which the internal operations are started.

CU_ISSUE_PCR

NEUTRAL
STARTING_
CU_ISSUE_
PCR

STARTING_
CU_ACCEP-
TANCE_TEST

CU_ACCEPTANCE_TEST_(X)

figure 4.139 customer : external behavior STD

As soon as it has started one of its internal operations, the customer returns to the neutral state ready to service another call
to its operations. The formal parameter of the operation ‘cu_acceptance_test’ is the id of the configuration_item under test.
The customer shows some autonomous behavior by starting his own operation ‘cu_issue_pcr’ without it being called from
another object. The customer performs this autonomous behavior when he detects a problem in, or wants a change of, a
configuration_item with the status ‘baseline’ . (That is a CI of a system that is in operational use.)

4.3.2.10.2 Customer : internal behavior-STD

The 2 operations ‘cu_acceptance_test’ and ‘cu_issue_pcr’ of the customer have the following internal behavior STDs.

ACCEPTANCE
_TEST ASKED

SIM_CALL _
ACCEPTANCE_
TEST

CALL _TPM_CH_
ST_CI_TO_
(BASELINE)

TPM_CH_ST_
CI_TO_(X)
ASKED

CALL _PCR_
CREATE

PCR_
CREATE
ASKED

CM_CH_ST_
PCR_TO_(X)
ASKEDACT_

CU_ACCEP-
TANCE_TEST

NON-
CU_ACCEP-
TANCE_TEST

CU_ACCEP-
TANCE_TEST
ASKED CALL _

CM_CH_ST_
PCR_TO_(CCB)

CENTRAL

figure 4.140 int-cu_acceptance_test : internal behavior STD

After the operation ‘cu_acceptance_test’ has started, the customer tests the configuration_item by executing test_cases.
The customer performs a system level test, he tests many configuration_items at the same time. He must call
‘acceptance_test’ simultaneously for all the ci’s in the program under test. This is modeled with the ‘simultaneous_call ’ -
construct.

If he finds an error he writes an problem_and_change_report which he gives to the configuration_manager. The
configuration_manager offers this pcr to the configuration_control_board. If the test has ended and there are no problems
found, the customer informs the technical_project_manager of this result by letting him change the status of the
configuration_item to ‘baseline’ . If the test is not succesfull the customer takes no further action. The status of the
configuration_item will be changed to ‘maintenance’ later on by the technical_project_manager after he has clustered the
pcr’s on this CI(s).

Software Process Modeling
in SOCCA

page :
version : 0.10

122

ACT_
CU_ISSUE_PCR

NON-
CU_ISSUE_PCR

CM_CH_ST_
PCR_TO_(X)
ASKED

CU_ISSUE_PCR
ASKED CALL _CM_

CH_ST_PCR_
TO_(CCB)

CALL _PCR_
CREATE

PCR_CREATE
ASKED

figure 4.141 int-cu_issue_pcr : internal behavior STD

The operation ‘cu_issue_pcr’ is an autonomous operation of the customer. After a system is delivered to the customer, it is
in ‘operational’ use. It is now at the location of the customer. The customer uses it. The customer can still find some
‘bugs’ in the system that were not detected during the acceptance test. The customer will i ssue a problem_and_change_
report on any error he detects. He gives this problem_and_change_report to the configuration_manager. The
configuration_manager gives this pcr to the configuration_control_board for evaluation.

Also the customer may find, during operational use of the system, that he wants some changes done. Most of the time a
customer finds out only during operational use, if the system really fits his operational or ‘user-interface’ needs. The
customer then issues a problem_and_change_report to request the implementation of these changes. He gives this
problem_and_change_report to the configuration_manager. The configuration_manager gives this pcr to the
configuration_control_board for evaluation.

In both cases (‘errors’ and ‘changes’ during operational use of the system) the customer uses his autonomous operation
‘cu_issue_pcr’ .

4.3.2.10.3 Customer : manager-STD

The communication between the customer’s operations (callees) and its callers is managed by a manager STD. The
manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager STD are labeled
with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the transition. I.e. the
transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant employee(s)
has/have entered the trap(s), the transition can and will (eventually) take place.

CC1-1,
CC2-1

CC1-2,
CC2-1

CC1-1,
CC2-2

TLF_3

TLF_4

TLF_1

TLF_2

figure 4.142 customer : manager STD

The notation CCx in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-
callee combination. The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that
enables the transition. The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

The CC’s and the TLF’s for this manager are the combinations for ‘cu_acceptance_test’ and ‘ tpm_ac_test’ and the
autonomous operation ‘cu_issue_pcr’ :

CC1-1 = {S1, S3}
TLF-1 = T-1 and T-3

CC1-2 = {S2, S4}
TLF-2 = T-2 and T-4

CC2-1 = {S5}
TLF-3 = T-5

CC2-2 = {S6}
TLF-4 = T-6

Software Process Modeling
in SOCCA

page :
version : 0.10

123

4.3.2.10.4 Customer : employee-STDs

The manager STD has the following 3 employee STDs : the own internal callee ‘cu_acceptance_test’ and its caller
‘ tpm_ac_test’ of the class ‘ technical_project_manager’ . And the autonomous operation ‘cu_issue_pcr’ .

The first employee is the callee operation ‘cu_acceptance_test’ . This employee has two subprocesses S1 and S2 and two
traps T1 and T2 according to the caller_callee-construct.

ACCEPTANCE
_TEST ASKED

SIM_CALL _
ACCEPTANCE_
TEST

CALL_TPM_CH_
ST_CI_TO_
(BASELINE)

TPM_CH_ST_
CI_TO_(X)
ASKED

CALL_PCR_
CREATE

PCR_
CREATE
ASKED

CM_CH_ST_
PCR_TO_(X)
ASKED

NON-
CU_ACCEP-
TANCE_TEST

CU_ACCEP-
TANCE_TEST
ASKED CALL_

CM_CH_ST_
PCR_TO_(CCB)

CENTRAL

T-1

figure 4.143 employee int-cu_acceptance_test : subprocess S1

ACCEPTANCE
_TEST ASKED

SIM_CALL_
ACCEPTANCE_
TEST

CALL_TPM_CH_
ST_CI_TO_
(BASELINE)

TPM_CH_ST_
CI_TO_(X)
ASKED

CALL_PCR_
CREATE

PCR_
CREATE
ASKED

CM_CH_ST_
PCR_TO_(X)
ASKEDACT_

CU_ACCEP-
TANCE_TEST

NON-
CU_ACCEP-
TANCE_TEST

CU_ACCEP-
TANCE_TEST
ASKED CALL_

CM_CH_ST_
PCR_TO_(CCB)

CENTRAL

T-2

figure 4.144 employee int-cu_acceptance_test : subprocess S2

The second employee is the caller operation ‘ tpm_ac_test’ . This employee has two subprocesses S3 and S4 and two traps
T3 and T4 according to the caller_callee-construct.

Software Process Modeling
in SOCCA

page :
version : 0.10

124

ACT_
TPM_AC_TEST

NON-
TPM_AC_TEST

CU_ACCEP-
TANCE_TEST
ASKED

TPM_AC_TEST
ASKED

CALL_
CM_RELEASE

CALL_CU_
ACCEP-
TANCE_TEST

CM_
RELEASE
ASKED

T-3

figure 4.145 employee int-tpm_ac_test : subprocess S3

ACT_
TPM_AC_TEST

NON-
TPM_AC_TEST

CU_ACCEP-
TANCE_TEST
ASKED

TPM_AC_TEST
ASKED

CALL_
CM_RELEASE CM_

RELEASE
ASKED

T-4

figure 4.146 employee int-tpm_ac_test : subprocess S4

The third employee is the autonomous operation ‘cu_issue_pcr’ . This employee has two subprocesses S5 and S6 and two
traps T5 and T6 according to the act-construct.

CM_CH_ST_
PCR_TO_(X)
ASKEDCALL _CM_

CH_ST_PCR_
TO_(CCB)

T-5

NON-
CU_ISSUE_PCR

CU_ISSUE_PCR
ASKED CALL _PCR_

CREATE

PCR_CREATE
ASKED

figure 4.147 employee int-cu_issue_pcr : subprocess S5

ACT_
CU_ISSUE_PCR

CM_CH_ST_
PCR_TO_(X)
ASKEDCALL_CM_

CH_ST_PCR_
TO_(CCB)

T-6

NON-
CU_ISSUE_PCR

CU_ISSUE_PCR
ASKED CALL_PCR_

CREATE

PCR_CREATE
ASKED

figure 4.148 employee int-cu_issue_pcr : subprocess S6

Software Process Modeling
in SOCCA

page :
version : 0.10

125

4.3.2.11 Release_Note

4.3.2.11.1 Release_Note : external behavior-STD

The STD of the external behavior consists of a neutral state in which the release_note waits for a call to the only operation
it makes available to other objects and of an activation state in which the internal ‘ rn_create_(x)’ operation is started.

RN_CREATE_(X)

NEUTRAL STARTING_
RN_CREATE

figure 4.149 release_note : external behavior STD

The release_note does not wait until the ‘ rn_create_(x)’ operation is finished, but returns as soon as possible to its neutral
state.

4.3.2.11.2 Release_Note : internal behavior-STDs

The release_note has 1 operation : ‘ rn_create_(x)’ with the following internal behavior STDs.

ACT_
OPERATION

OPERATION
NOT ACTIVE

OPERATION
ASK ED EXECUTE

INTERNAL
ACTION

OPERATION
ENDED

figure 4.150 only_internal_action-construct : internal behavior STD

The operation can be modeled by the ‘only_internal_action-construct’ since its interaction with other objects is not shown.
The internal action consists of creating the release_note object and modifying its ‘date’ and ‘baseline’ attributes thereby
instantiating the ‘baselines’ -association, which indicates the CI(s) covered by this release_note.
The operation has one formal parameter. The value of this parameter is put in the ‘content’ -attribute of the created
release_note object.

4.3.2.11.3 Release_Note : manager-STD

The communication between the release_note’s operation (callee) and its caller is managed by a manager STD. The
manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager STD are labeled
with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the transition. I.e. the
transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant employee(s)
has/have entered the trap(s), the transition can and will (eventually) take place.

CC1-1 CC1-2

TLF-1

TLF-2

figure 4.151 release_note : manager STD

The notation CCx in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-
callee combination. The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that
enables the transition. The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

Software Process Modeling
in SOCCA

page :
version : 0.10

126

The CC’s and the TLF’s for this manager are the combinations for ‘ rn_create_(x)’ and ‘cm_release_note’ :

CC1-1 = {S1, S3}
TLF-1 = T-1 and T-3

CC1-2 = {S2, S4}
TLF-2 = T-2 and T-4

4.3.2.11.4 Release_Note : employee-STDs

The manager STD has the following 2 employee STDs : the own internal callee ‘ rn_create_(x)’ and its caller
‘cm_release_note’ of the class ‘configuration_manager’ .

The first employee is the callee operation ‘ rn_create_(x)’ (shown as an ‘only_internal_action’ -template STD). This
employee has two subprocesses S1 and S2 and two traps T1 and T2 according to the caller_callee-construct.

OPERATION
NOT ACTIVE

OPERATION
ASKED EXECUTE

INTERNAL
ACTION

OPERATION
ENDED

T-1

figure 4.152 employee int-rn_create_(x) : subprocess S1

ACT_
OPERATION

OPERATION
NOT ACTIVE

OPERATION
ASK ED EXECUTE

INTERNAL
ACTION

OPERATION
ENDED

T-2

figure 4.153 employee int-rn_create_(x) : subprocess S2

The second employee is the caller operation ‘cm_release_note’ . This employee has two subprocesses S3 and S4 and two
traps T3 and T4 according to the caller_callee-construct.

ACT_
CM_RELEASE_
NOTE

NON-
CM_RELEASE_
NOTE

CM_RELEASE_
NOTE
ASKED

DETERMINE
CONTENT CALL_

RN_CREATE
(CONTENT)

RN_CREATE
ASKED

T-3

figure 4.154 employee int-cm_release_note : subprocess S3

T-4

ACT_
CM_RELEASE_
NOTE

NON-
CM_RELEASE_
NOTE

CM_RELEASE_
NOTE
ASK ED

DETERM INE
CONTENT

RN_CREATE
ASK ED

figure 4.155 employee int-cm_release_note : subprocess S4

SOFTWARE PROCESS MODELING in SOCCA

student : H.G.Brugman
studentnr : 9105506
version : 0.10

Software Process Modeling
in SOCCA

page :
version : 0.10

128

5. Key Process Area ‘Software Project Planning’

5.1 Introduction

In this chapter part of the ‘Software Project Planning’-process of the software development organization ‘Waco
Business Unit’ (WBU) of the Dutch Ministry of Defense is modeled using the SOCCA process modeling language.

The ‘Software Project Planning’ -process consists of three process fragments : ‘writing project management documents’ ,
‘closing project’ and ‘changing project mangement documents’ .

Due to time limitations only the SOCCA model of the process fragment ‘writing project management documents’ will be
given in this thesis.

To look into the question of the ‘scaleability’ of SOCCA (i.e can a larger SOCCA model be constructed from separate
smaller sub-models), the modeling of the process fragment ‘writing project management documents’ is done by splitting
the process fragment into four smaller process fragments. These smaller process fragments are modeled indepently of
each other. Next the sub-models of the four smaller process fragments are integrated into one SOCCA model of the
process fragment ‘writing project management documents’ .

The four smaller process fragments (phases) are : ‘phase 1, recognizing customer requirements’ , ‘phase 2, writing and
consultation’ , ‘phase 3, approval’ and ‘phase 4, resource allocation’ . The SOCCA sub-models of these four ‘phases’ are
described in paragraph 5.3. First the class diagrams are given and then the state transition diagrams.

Paragraph 5.3.1 describes the ‘class diagrams’ that are valid for all four ‘phases’. Paragraph 5.3.2 describes the
‘import-export’-diagram of phase 1. Paragraph 5.3.3 describes the ‘import-export’-diagram of phase 2. Paragraph
5.3.4 describes the ‘import-export’-diagram of phase 3. Paragraph 5.3.5 describes the ‘import-export’-diagram of
phase 4.

Paragraph 5.3.6 describes the ‘state transition diagrams’ of phase 1. Paragraph 5.3.7 describes the ‘state transition
diagrams’ of phase 2. Paragraph 5.3.8 describes the ‘state transition diagrams’ of phase 3. Paragraph 5.3.9 describes
the ‘state transition diagrams’ of phase 4.

The integration of the four sub-models into one SOCCA model of the process fragment ‘writing project management
documents’ is described in chapter 6.

Also the usefullness of a SOCCA model as a process description is investigated in this chapter. This is done by
checking if the SOCCA model of the process fragment ‘writing project management documents’ of the ‘Software
Project Planning’-process can be used as input for a process audit. As audit method is chosen the ‘Capability Maturity
Model’-assessment. The process audit is described in paragraph 5.2.

5.2 CMM Assessment

In this paragraph the usefullness of a SOCCA model as a process description is investigated. This is done by checking
the implementation of the CMM ‘Key Practices’ by the WBU organization while using the SOCCA model of the
process fragment ‘writing project management documents’ of the ‘Software Project Planning’-process as a reference
instead of the real process.

The purpose of Software Project Planning (SPP) is to establish reasonable plans for performing the software
engineering and for managing the software project [CMM].

Software Project Planning involves developing estimates for the work to be performed, establishing the necessary
commitments, and defining the plan to perform the work.

The software planning begins with a statement of the work to be performed and other constraints and goals that define
and bound the software project. The software planning process includes steps to estimate the size of the software work
products and the resources needed, produce a schedule, identify and assess software risks, and negotiate commitments.

Software Process Modeling
in SOCCA

page :
version : 0.10

129

Iterating through these steps may be necessary to establish the plan for the software project (i.e., the software
development plan). This plan provides the basis for performing and managing the software project’s activities and
addresses the commitments to the software project’s customer according to the resources, constraints, and capabilities
of the software project.

The Capability Maturity Model (CMM) states the following goals for this Key Process Area (KPA) :

Goal 1 : Software estimates are documented for use in planning and tracking the software project
Goal 2 : Software project activities and commitments are planned and documented
Goal 3 : Affected groups and individuals agree to their commitments related to the software project

Key Process Areas in CMM are divided into Key Practices (KP). A Key Practice describes at the lowest level ‘what’
has to be done, but not ‘how’ it should be done. For a correct fulfill ment of the goals of the KPA all it s Key Practices
have to be satisfied by the software development organization.

Key Practices are organized into five groups (processes). A group (process) is called ‘common features’ in CMM. The five
groups are : ‘Commitment to perform’ , ‘Abilit y to perform’ , ‘Activities performed’ , ‘Measurement and analysis’ and
‘Verifying implementation’ .

1. ‘Commitment to perform’ describes the actions an organization must take to ensure that the SPP process is established
and will endure. Typically this involves the codifying of organizational policies (in manuals) and senior management
commitment to this policies. This codifying process is not modeled in this thesis. The result of this process is the ‘Manual
for Technical Project Management’ now in use in the Waco Business Unit (WBU) organization.

2. ‘Abilit y to perform’ describes the preconditions that must exists in an organization to implement the SPP process
correctly. Typically this involves resources, organizational structures and training. The organizational structure as applied
to the SPP process is modeled by the class diagrams of the next chapter.

3. ‘Activities performed’ describes the roles and procedures necessary to implement the Key Process Area. Typically this
involves establishing plans and procedures, performing the work, tracking it and taking corrective actions as necessary.
The SPP process is modeled by the state transition diagrams of the next chapter.

4. ‘Measurement and analysis’ describes the need to measure the SPP process and analyzes the measurements. Typically
this involves measurements that could be taken to determine the status and effectiveness of the ‘Activities performed’ .
This process is not implemented in the Waco Business Unit (WBU).

5. ‘Verifying implementation’ describes the steps to ensure that the activities are performed in compliance with the
process that has been established. Typically this involves reviews and audits by management and software quality
assurance. The reviewing and auditing of the software project planning is modeled by the state transition diagrams of the
next chapter.

The SOCCA model of the process fragment ‘writing project management documents’ of the Software Project Planning-
process as given in the next paragraph, models the organizational structure with class diagrams. It models the implemented
SPP-process with state transition diagrams.

The following table lists all the Key Practices of this KPA in the left column. In the right column is indicated if and how
the Waco Business Unit (WBU) has satisfied a particular Key Practice.

Commitment to perform

no Key Practice WBU implementation
1 A software manager is designated to be

responsible for negotiating commitments and
developing the project’s software development
plan

The procedure is documented by the behavior part
(STDs) of the SOCCA model of this KPA.
In phase 1 a ‘technical project manager’ is tasked
by the ‘make or buy meeting’ to write a proposal,
which includes writing the software development
plan.

2 The project follows a written organizational
policy for planning a software project

The SPP process is described in the ‘Manual for
Technical Project Management’

Software Process Modeling
in SOCCA

page :
version : 0.10

130

Abilit y to perform

no Key Practice WBU implementation
1 A documented and approved statement of work

exists for the software project
See the class diagram of the SOCCA model of
this KPA. The class ‘project contract’ together
with the class ‘software development plan’
constitute the ‘statement of work’. Both
documents are agreed on by the WBU
management and the customer.

2 Responsibilities for developing the software
development plan are assigned

The procedure is documented by the behavior part
(STDs) of the SOCCA model of this KPA.
In phase 1 a ‘technical project manager’ is tasked
by the ‘make or buy meeting’ to write a proposal,
which includes writing the software development
plan

3 Adequate resources and funding are provided for
planning the software project

Refer to the class diagram and the STDs of the
SOCCA model of this KPA.
- time for writing a proposal is allocated. See
attribute ‘allocated hours’ of the class ‘project
form’.
- the responsible technical project manager is
aided by a second estimator
- an automated project planning tool is available
for the technical project manager

4 The software managers, software engineers, and
other individuals involved in the software project
planning are trained in the software estimating
and planning procedures applicable to their areas
of responsibility.

- Technical project managers can follow the in-
house training course ‘Function Point Analysis’
- Technical project managers can follow the in-
house trainig course ‘project planning-tool’

Activities performed

no Key Practice WBU implementation
1 The software engineering group participate on the

project proposal team
Not implemented. There exists no software
engineering group within the WBU organization.
Consequently it does not appear in the SOCCA
model of this KPA.

2 Software project planning is initiated in the early
stages of, and in parallel with, the overall project
planning.

Software project planning is an integral part of
the overall project planning. They come into
being at the same time.

3 The software engineering group participates with
other affected groups in the overall project
planning throughout the project’s life.

Not implemented. There exists no software
engineering group within the WBU organization.

4 Software project commitments made to individual
groups external to the organization are reviewed
with senior management according to a documen-
ted procedure.

All ‘project contracts’ are reviewed by senior
management in the ‘project meeting minus’.
This procedure is documented by the STDs of the
SOCCA model of this KPA.

5 A software life cycle with predefined stages of
manageable size is identified or defined.

See the sub-models of phase 1 until 4 of the
SOCCA model of this KPA. A project has a life
cycle consisting of the stages ‘writing project
management documents’, ‘changing project
management documents’ and closing project’.
The stage ‘writing project management
documents’ is subdivided in the phases
‘recognizing customer requirements’, ‘writing
and consultation’, ‘approval’ and ‘resource
allocation’.

6 The project’s software development plan is The procedure is documented by the behavior part

Software Process Modeling
in SOCCA

page :
version : 0.10

131

no Key Practice WBU implementation
developed according to a documented procedure.(STDs) of the SOCCA model of this KPA.

- This procedure is documented by the operation
‘tpm_write_proposal_(x)’ of the class ‘technical
project manager’
- the software development plan itself is written
by tailoring a template document

7 The plan for the software project is documentedRefer to the class diagram of the SOCCA model
of this KPA. A particular software development
plan is an object of the class ‘software
development plan’. This class has an attribute
‘content’, the value of which is the text of the
plan.

8 Software work products that are needed to
establish and maintain control of the software
project are identified.

The Software Configuration Management plan is
part of the software development plan. See the
sub-attribute ‘SCM-plan’ of the class ‘software
development plan’ of the SOCCA model of this
KPA. (This is also the implementation of Key
Practice ‘Activities performed’ no 1 and 2, of the
KPA ‘Software Configuration Management’.)

9 Estimates for the size of the software work
product (or change of the size of software work
product) are derived according to a documented
procedure.

The procedure is documented by the behavior part
(STDs) of the SOCCA model of this KPA.

-The method ‘tpm-write_proposal_(x)’ of the
class ‘technical project manager’ in phase 2
documents the procedure which is followed in
estimating the size of a work product. This
includes the use of a second estimator.

- The estimating technique that is used is ‘Func-
tion Point Analysis’

10 Estimates for the software project’s effort and
costs are derived according to a documented
procedure.

- Their is no historical database (yet) within the
WBU to relate the size of the software work
product in ‘Function Points’ to the required effort
in ‘person-hours’.

- Also their is no procedure within the WBU to
allocate ‘overhead’ to a project.

- The WBU is an internal software department of
the Dutch MoD and it is allocated a yearly budget
in ‘person-hours’.

11 Estimates for the project’s critical computer
resources are derived according to a documented
procedure

Not implemented

12 The project’s software schedule is derived
according to a documented procedure.

The ‘Planning’ (in the form of a Gantt chart =
network planning) is part of the software develop-
ment plan. See the sub-attribute ‘Planning’ of the
class ‘software development plan’ of the SOCCA
model of this KPA.

As such, the ‘Planning’ of a project is derived and
reviewed along with the ‘software development
plan’ via the procedure as documented by the
behavior part (STDs) of the SOCCA model of
this KPA.

The ‘Planning’ is derived with an automated
‘project planning’-tool.

13 The software risks associated with the cost, The ‘Risk Analysis’-result is part of the software

Software Process Modeling
in SOCCA

page :
version : 0.10

132

no Key Practice WBU implementation
resource, schedule, and technical aspects of the
project are identified, assessed, and documented.

development plan. See the sub-sub-attribute ‘Risk
Analysis’ of the class ‘software development
plan’ of the class diagram of the SOCCA model
of this KPA.

- an automated ‘Risk Analysis’-tool is used by the
technical project manager to assess the risk of the
project.

14 Plans for the project’s software engineering
facilities and support tools are prepared

The software engineering facilities and support
tools for the project are planned for via the
‘Internal Resources Allocation’-document. See
the class diagram of the SOCCA model of this
KPA. The preparation of this ‘IRA”-document is
modeled in phase 2 with the operation ‘tpm_write
_proj_man_doc_(x)’ of the class ‘technical
project manager’.

15 Software planning data are recorded The ‘Planning’ (in the form of a Gantt chart =
network planning) is part of the software
development plan. See the sub-attribute
‘Planning’ of the class ‘software development
plan’ of the SOCCA model of this KPA.

Measurement and analysis

no Key Practice WBU implementation
1 Measurements are made and used to determine

the status of the software planning activities
not implemented

Verifying implementation

no Key Practice WBU implementation
1 The activities for software project planning are

reviewed with senior management on a periodic
basis

not implemented

2 The activities for software project planning are
reviewed with the project manager on both a
periodic and event-driven basis

The ‘Planning’ is part of the ‘software develop-
ment plan (SDP)’. See the sub-attribute
‘Planning’ of the class ‘software development
plan’ of the class diagram of the SOCCA model
of this KPA.

As such, the ‘Planning’ activities of a project are
reviewed by the ‘head production section’ of the
‘technical project manager’. This review
procedure is documented by the behavior part
(STDs) of the SOCCA model of this KPA (see
operation ‘tpm_write_proposal_(x)’) of Phase 2.

3 The software quality assurance group reviews and
/or audits the activities and work products for
software project planning and reports the results

The ‘Planning’ is part of the ‘software develop-
ment plan (SDP)’. See the sub-attribute
‘Planning’ of the class ‘software development
plan’ of the class diagram of the SOCCA model
of this KPA.

As such, the ‘Planning’ work product of a project
is audited by the ‘quality assurance adviser
(QAA)’. This auditing by the QAA is documen-
ted by the behavior part (STDs) of the SOCCA
model of this KPA (see operation ‘tpm_write

Software Process Modeling
in SOCCA

page :
version : 0.10

133

no Key Practice WBU implementation
proposal(x)’) of Phase 2.

Software Process Modeling
in SOCCA

page :
version : 0.10

134

5.3 SOCCA model of process fragment ‘writing project management documents’

The SOCCA model depicts the process fragment ‘writing project management documents’ of the ‘Software Project
Planning (SPP)’ -process that is in use within the Waco Business Unit (WBU). This process is described in the ‘Manual for
Technical Project Management’ , chapter 1 ‘Project management’ , section 1 : ‘Procedure writing project management
documents’ [MTP].

To look into the question of the ‘scaleability’ of SOCCA (i.e can a larger SOCCA model be constructed from separate
smaller sub-models), the modeling of the process fragment ‘writing project management documents’ is done by splitting
the process fragment into four smaller process fragments. These smaller process fragments are modeled indepently of
each other. In chapter 6 these sub-models of the four smaller process fragments are then integrated into one SOCCA
model of the process fragment ‘writing project management documents’ .

The four smaller process fragments (phases) are : ‘phase 1, recognizing customer requirements’ , ‘phase 2, writing and
consultation’ , ‘phase 3, approval’ and ‘phase 4, resource allocation’ . First the class diagrams are given and then the state
transition diagrams.

Paragraph 5.3.1 describes the ‘class diagrams’ that are valid for all four ‘phases’. Paragraph 5.3.2 describes the
‘import-export’-diagram of phase 1. Paragraph 5.3.3 describes the ‘import-export’-diagram of phase 2. Paragraph
5.3.4 describes the ‘import-export’-diagram of phase 3. Paragraph 5.3.5 describes the ‘import-export’-diagram of
phase 4.

Paragraph 5.3.6 describes the ‘state transition diagrams’ of phase 1. Paragraph 5.3.7 describes the ‘state transition
diagrams’ of phase 2. Paragraph 5.3.8 describes the ‘state transition diagrams’ of phase 3. Paragraph 5.3.9 describes
the ‘state transition diagrams’ of phase 4.

5.3.1 Class Diagrams

This paragraph describes the ‘class diagrams’ that are valid for all four ‘phases’. That is to say all the SOCCA class
diagrams minus the import-export diagrams. The import-export diagrams are given seperately, per phase, in the
paragraphs following this paragraph.

The data perspective of the four phases of the process fragment ‘writing project management documents’ is modeled with
class diagrams. The class diagrams in this paragraph show the classes and subclasses with their operations, attributes
and associations (aggregation associations and the general associations) as they pertain to all four phases.

The figures below show the classes and subclasses (via generalization/ specialization associations) and the aggregation
associations between them. The notation convention of ‘ superclass/subclass’ , ‘aggregation association’ and ‘ the
multiplicity of an association (cardinality ratio constraint)’ in SOCCA is the same as in UML [UML], [FOW].

Software Process Modeling
in SOCCA

page :
version : 0.10

135

CHIEF
EXECUTIVE
OFFICER

EMPLOYEE

ACCOUNT
MANAGER

MEETING
TECHNICAL
PROJECT
MANAGER

MANAGER
QUALITY
ASSURANCE
ADVISER

ARCHIVE /
DOCUMENTATION
ADMINISTRATOR

PROJECT
MEETING
MINUS

MAKE OR
BUY
MEETING

SECTION
HEAD

HEAD INFRA-
STRUCTURE
SECTION

HEAD
COMPUTER SUPPORT
SECTION

HEAD EXTERNAL
PROJECTS SECTION

HEAD INTERNAL
PROJECTS SECTION

HEAD CONTROLLER
SECTION

HEAD PERSONNEL
SECTION

HEAD PRODUCTION
SECTION

HEAD SUPPORT
SECTION

6

1+

CUSTOMER

ENGINEER

figure 5.1 Class diagram: classes, subclasses and aggregation associations (part 1)

The class diagram showing the classes, subclasses and aggregation associations is divided into two parts. The first part
(figure above) shows the employees, meetings and customer involved in the software project planning process. The class
EMPLOYEE has the disjoint subclasses MANAGER, QUALITY ASSURANCE ADVISER, ARCHIVE /
DOCUMENTATION ADMINISTRATOR and ENGINEER (among others, i.e. these other subclasses are not relevant for
the SPP process. They are indicated by the ‘elli psis’ , the double dot).

The classes CHIEF EXECUTIVE OFFICER, ACCOUNT MANAGER, TECHNICAL_PROJECT_MANAGER and
SECTION HEAD are overlapping subclasses of the superclass MANAGER. The class SECTION HEAD is specialized
into two disjoint subclasses HEAD PRODUCTION SECTION and HEAD SUPPORT SECTION.

A HEAD PRODUCTION SECTION is either a HEAD EXTERNAL PROJECTS SECTION or a HEAD INTERNAL
PROJECTS SECTION.

A HEAD SUPPORT SECTION is either a HEAD COMPUTER SUPPORT SECTION, a HEAD CONTROLLER
SECTION, a HEAD INFRASTRUCTURE SECTION or a HEAD PERSONNEL SECTION.

The class MEETING is has the classes PROJECT MEETING MINUS and MAKE OR BUY MEETING as its subclasses
(among others, i.e. these other subclasses are not relevant for the SPP process. They are indicated by the ‘elli psis’ , the
double dot).

The MAKE OR BUY MEETING is an aggregation af the employees involved and consists of the (1) CHIEF
EXECUTIVE OFFICER, one ACCOUNT MANAGER and the (1) HEAD PERSONNEL SECTION.

Software Process Modeling
in SOCCA

page :
version : 0.10

136

The PROJECT MEETING MINUS is an aggregation af the employees involved and consists of the (1) CHIEF
EXECUTIVE OFFICER, one or more ACCOUNT MANAGERs, the (1) QUALITY ASSURANCE ADVISER and all
(6) SECTION HEADs.

PROJECT

PROPOSAL

PROJECT
FILE

PROJECT
TEAM

PROJECT
FORM

PROJECT
MANAGEMENT
DOCUMENT

SOFTWARE
DEVELOPMENT
PLAN

PROJECT
CONTRACT

INTERNAL
RESOURCES
ALL OCATION
DOCUMENT

3

REQUIREMENTS
DOCUMENT

TERMS OF
REFERENCE
DOCUMENT

ENGINEER

IS_APPENDIX

IS_ALL OCATED

ALL OCATES

INTERNAL
MEMORANDUM

figure 5.2 Class diagram : classes, subclasses and aggregation associations (part 2)

As already mentioned, the class diagram showing the classes, subclasses and aggregation associations is divided into two
parts. The second part (figure above) shows the class PROJECT. The class PROJECT is an aggregation of the classes
PROJECT FILE and PROJECT TEAM (among others, i.e. these other subclasses are not relevant for the SPP process.
They are indicated by the ‘elli psis’ , the double dot).

The class PROJECT TEAM consists of ENGINEERs who are allocated to the project via a TERMS OF REFERENCE
DOCUMENT. N.B. the association IS_ALLOCATED is modeled here as a class. This is indicated in the diagram by the
semi-circle symbol connecting the class TERMS OF REFERENCE DOCUMENT with the association IS_ALLOCATED.

The class PROJECT FILE is an aggregation of classes REQUIREMENTS DOCUMENT (1x), PROPOSAL (1x) and
PROJECT MANAGEMENT DOCUMENT (3x).

A PROPOSAL consists of a SOFTWARE DEVELOPMENT PLAN (1x) and a PROJECT CONTRACT (1x). In fact the
preliminary (unsigned) version of the PROJECT CONTRACT with the SOFTWARE DEVELOPMENT PLAN as
appendix is called a PROPOSAL.

 A PROJECT MANAGEMENT DOCUMENT is either a SOFTWARE DEVELOPMENT PLAN, a PROJECT
CONTRACT or an INTERNAL RESOURCES ALLOCATION DOCUMENT.

The INTERNAL RESOURCES ALLOCATION DOCUMENT has a PROJECT FORM as an appendix.

Software Process Modeling
in SOCCA

page :
version : 0.10

137

REQUIREMENTS
DOCUMENT

CUSTOMER
PROJECT
CONTRACT

TECHNICAL
PROJECT
MANAGER

PROJECT
MANAGEMENT
DOCUMENT

MODIFIES

READS

HEAD PRODUCTION
SECTION

REVIEWS

QUALITY
ASSURANCE
ADVISER

CHIEF
EXECUTIVE
OFFICER

AUDITS

SIGNS

SIGNS HEAD SUPPORT
SECTION 4

SOFTWARE
DEVELOPMENT
PLAN

INTERNAL
RESOURCES
ALL OCATION
DOCUMENT

ORIGINATES

SIGNS

SIGNS

figure 5.3 Class diagram : classes, subclasses and general associations

The figure above shows with the general associations between the classes and subclasses. The notation convention of
‘ (general) association’ is the same in SOCCA as it is in UML with the exception of the notation convention of ‘ constraint
between associations’ (see the explanation in the ‘class diagrams’-paragraphs of the chapter ‘Key Process Area ‘Software
Configuration Management’).

The names and the multiplicity of the general associations are also given in the diagram. An association is inherently
bidirectional. I.e it can be traversed in both directions. The name of a binary association reads in a particular direction.
This direction is called the forward direction. The opposite direction is called the inverse direction. When an association is
traversed in the inverse direction, the association name is ‘ inverted’ . E.g. MODIFIES becomes IS_MODIFIED. The class
diagram only shows one name per association.

A customer ORIGINATES zero or more requirements documents. An requirements document IS_ORIGINATED by one
customer. A technical project manager READS zero or more requirements documents. An requirements document
IS_READ by one technical project manager.

A technical project manager MODIFIES zero or more project management documents. A project management document
IS_MODIFIED by one technical project manager. A head of a production section REVIEWS zero or more project
management documents. A project management document IS_REVIEWED by one production section head.

A customer SIGNS zero or more project contracts. The chief executive off icer SIGNS zero or more project contracts. A
projects contract IS_SIGNED by one customer and by one (the) chief executive off icer.

A head of a support section SIGNS zero or more ‘ internal resources allocation’ documents. The quality assurance adviser
SIGNS zero or more ‘ internal resouces allocation’ documents. An ‘ internal resources allocation’ document IS_SIGNED
by 4 support section heads (there are 4 support sections) and one (the) quality assurance adviser.

The quality assurance adviser AUDITS zero or more project management documents. A project management document
IS_AUDITED by one (the) quality assurance adviser.

Software Process Modeling
in SOCCA

page :
version : 0.10

138

ACCOUNT MANAGER

AM_REQUEST_PROPOSAL_(X)
AM_QUERY_REQUIREMENT_(X)
AM_INQUIRE_CU_BUDGET_(X)
AM_CU_SIGN_PC_(X)

HEAD PERSONNELSECTION

HPS_MB_DECISION_(X)
HPS_INITIATE_PROJECT_FORM_(X)
HPS_ALLOCATE_RESOURCE

CHIEF EXECUTIVE
OFFICER

CEO_MB_DECISION_(X)
CEO_SIGN_PC_(X)

TECHNICAL PROJECT
MANAGER

TPM_WRITE_PROPOSAL_(X)
TPM_WRITE_PROJ_MAN_DOC_(X)
TPM_PERFORM_ESTIMATE_(X)
TPM_CONFER_ESTIMATE_(X)
TPM_ENTER_IN_PROJ_FILE_(X)
TPM_INFORM_(X)

HEAD CONTROLL ER
SECTION

HCS_ENTER_IN_MIS_(X)

CUSTOMER

CU_REQUEST_PROPOSAL
CU_QUERY_REQUIREMENT_(X)
CU_AGREE_PROJ_MAN_DOC_(X)
CU_SIGN_PC_(X)

REQUIREMENTS
DOCUMENT

RD_INITIATE_(X)

CONTENT

SOFTWARE
DEVELOPMENT PLAN

CONTENT :
 INTRODUCTION
 PROJECT DESCRIPTION
 RISK ANALYSIS
 QUALITY-PLAN
 SOFTWARE-CONFIGURA-
 TION-MANAGEMENT-PLAN
 PLANNING

PROJECT CONTRACT

CONTENT

INTERNAL RESOURCES
ALLOCATION
DOCUMENT

CONTENT

PROJECT FORM

PF_INITIATE_(X)
PF_UPDATE_(X)

PROJECT NAME
PROJECT CODE
CUSTOMER
SECTION HEAD
TPM
PROPOSAL :
 ALLOCATED HOURS
 BEGIN DATE
 END DATE

QUALITY ASSURANCE
ADVISER

QAA_INQUIRE_RESOURCE_(X)
QAA_AUDIT_(X)
QAA_SIGN_IRA_DOC_(X)

ARCHIVE /
DOCUMENTATION
ADMINISTRATOR

ADA_ARCHIVE_(X)

PROJECT MANAGEMENT
DOCUMENT

PMD_WRITE_(X)
PMD_COPY
PMD_SIGN

SIGNATURES

HEAD COMPUTER
SUPPORT SECTION

HCSS_ALL OCATE_RESOURCE

MAKE OR BUY MEETING

MB_REQUEST_DECISION_(X)

HEAD PRODUCTION SECTION

HPRS_SECOND_ESTIMATE_(X)
HPRS_CONSULT _(X)
HPRS_FINAL_REVIEW_(X)
HPRS_PMM_REQUEST_APPROVAL_(X)
HPRS_INFORM_(X)

HEAD SUPPORT SECTION

HSS_INQUIRE_RESOURCE_(X)
HSS_SIGN_IRA_DOC_(X)

PROJECT MEETING MINUS

PMM _REQUEST_APPROVAL_(X)

SCHEDULED DATE & TIME

ENGINEER

ENG_INFORM_(X)

TERMS OF REFERENCE-
DOCUMENT

TOR_WRITE_(X)

CONTENT

INTERNAL MEMORANDUM

IM_WRITE_(X)

CONTENT

figure 5.4 Class diagram : classes, operations and attributes

The figure above shows the classes with their operations and attributes. The notation convention is the same in SOCCA as
in UML. A class is depicted as a rectangle with three compartments. The top compartment holds the class name. The
middle compartment shows the attributes. The bottom compartment shows the operations.

(The classes EMPLOYEE, MANAGER, SECTION HEAD, HEAD EXTERNAL PROJECTS SECTION, HEAD
INTERNAL PROJECTS SECTION, HEAD INFRASTRUCTURE SECTION, MEETING, PROJECT TEAM, PROJECT
FILE and PROPOSAL have no operations or attributes that are relevant for the SPP process. So these classes are not
shown in the above class diagram. The class PROJECT is used during the integration of the four phases. The then relevant
operations will be given in chapter 6 ‘ Integration of process fragment ‘writing project management documents’’ .)

The operations will be explained in the ‘ internal behavior STDs’-subparagraphs of the ‘State Transition Diagrams’-
paragraph of this chapter. The meaning of the attributes can be readily deduced from their name.

The next paragraphs give the import-export diagrams seperately for each phase. These diagrams identify which operations
are imported by which classes. Within the importing classes the importing operations are identified. This is done by the
SOCCA specific binary association ‘uses’ . This association has the attribute ‘ import_list’ that has as its domain a list of
imported operations together with the operations that import them. The style guideline for this association is a solid line
with an arrow at one and. The arrow indicates the exporting class. For a comparison between the SOCCA notation and the
UML notation : see the ‘class diagrams’-chapter of the KPA ‘Software Configuration Management’ .

The import-export diagrams are showing the communication between the classes at the highest level and are constructed
as a step towards the constructing of the state transition diagrams (STDs).

Software Process Modeling
in SOCCA

page :
version : 0.10

139

5.3.2 Import-export diagram - Phase 1

The first import-exports diagram is the diagram of phase 1, ‘ recognizing customer requirements’ , of the process fragment
‘writing project management documents’ .

CUSTOMER

CHIEF
EXECUTIVE
OFFICER

ACCOUNT
MANAGER

MAKE OR
BUY
MEETING

REQUIREMENTS
DOCUM ENT

HEAD PERSONNEL
SECTION

HEAD CONTROLLE R
SECTION

PROJECT
FORM

USES3

USES1USES2

USES4

USES5

USES7

USES8

TECHNICAL
PROJECT
MANAGER

TECHNICAL
PROJECT
MANAGER

USES6

USES9

figure 5.5 Class diagram : classes and uses associations of phase 1 of process fragment ‘writing project management documents’

The customer is the one who initiates phase 1 of the process fragment by his autonomous behavior. Since the phases of the
process fragment take place sequentially, the customer therefore initiates the whole process fragment.

The customer perceives a need to automate (part of) his business process. He may possibly be guided in this perception by
the account manager, but this is not part of the model. The customer invokes his own operation cu_request_proposal. With
this operation he writes a requirements document. He then aks the account manager to give him a proposal based on this
requirements document.

The account manager then discusses this request for proposal in a ‘make or buy’ meeting with the chief executive off icer
and the head of the personnel section of the Waco Business Unit (WBU).

Depending on the estimated project size and the projection of the available (manpower) resources, a decision is reached
either to do the project in-house (make) or to procure it from an outside vendor (buy). A combination of these two is also
possible. For example to do the information analysis phase of the project in-house and outsource the system design and
coding.

If the decision is to ‘buy’ , the ‘Software Subcontract Management’ process is initiated. This process also includes the
writing of project management documents. This process however is not modeled further here. The model depicts the
process when the decision is to ‘make’ .

If the decision is to ‘make’ , the head of the personnel section initiates a project form for the project. He enters on the
project form : the customer, the project code, the technical project manager responsible for the project, the section head of
the tpm, the allocated hours for making the proposal and the time frame for making the proposal. This form is given to the
head of the controller section. The data of this form is then entered by the controller section in the Management
Information System (MIS) of the Waco Business Unit (WBU).

Software Process Modeling
in SOCCA

page :
version : 0.10

140

Finally the assigned technical project manager tasked with writing the proposal (the tpm’s operation ‘ tpm_write_
proposal_(x)’ is called). He does this by writing (a preliminary version of) a software development plan, a ‘ internal
resources allocation’ -document and a project contract. The calli ng of the tpm’s operation ‘ tpm_write_proposal_(x)’ starts
phase 2,‘writing and consultation’ , of the process fragment ‘writing project management documents’ .

In terms of the values of the ‘ import-list’ -attributes of the uses associations this amounts to the following :

uses1 : imported operation imported by
rd_initiate_(x) cu_request_proposal

uses2 : imported operation imported by
am_request_proposal_(x) cu_request_proposal

uses3 : imported operation imported by
mb_request_decision_(x) am_request_proposal_(x)

uses4 : imported operation imported by
ceo_mb_decision_(x) mb_request_decision_(x)

uses5 : imported operation imported by
hps_mb_decision_(x) mb_request_decision_(x)
hps_initiate_project_form_(x) mb_request_decision_(x)

uses6 : imported operation imported by
tpm_write_proposal_(x) mb_request_decision_(x)

uses7 : imported operation imported by
pf_initiate_(x) hps_initiate_project_form_(x)

uses8 : imported operation imported by
hcs_enter_in _mis_(x) hps_initiate_project_form_(x)

uses9 : imported operation imported by
cu_request_proposal autonomous operation

Software Process Modeling
in SOCCA

page :
version : 0.10

141

5.3.3 Import-export diagram - Phase 2

The second import-exports diagram is the diagram of phase 2, ‘writing and consultation’ , of the process fragment ‘writing
project management documents’ . This phase 2 is started by the calli ng of the tpm’s operation ‘ tpm_write_proposal_(x)’ in
phase 1.

QUALITY
ASSURANCE
ADVISER

HEAD
PRODUCTION
SECTION

PROJECT
MANAGEMENT
DOCUMENT

PROJECT
MEETING
MINUS

HEAD
SUPPORT
SECTION

USES2

USES3

USES1
CUSTOMERACCOUNT

MANAGER

TECHNICAL
PROJECT
MANAGER

TECHNICAL
PROJECT
MANAGER

USES4

USES7 USES8

USES5

USES9

USES10

USES6

figure 5.6 Class diagram : classes and uses associations of phase 2 of process fragment ‘writing project management documents’

Before the technical project manager actually starts writing he first checks the requirements document on consistency and
completeness. If he has any questions in this respect, he queries the customer via the account manager. He then performs
a risk analysis and estimates the necessary person-hours for the project.

Then the technical project manager informs his section head (head production section) to inform him that he needs a
second estimate. The head production section tasks another technical project manager (tpm) to perform the second
estimate. This second estimate is returned to the first tpm. The first tpm then confers with the second tpm to match both
their estimates.

When consensus is reached by the technical project managers about a final estimate, the first manager proceeds by writing
a software development plan, a ‘ internal resources allocation’ -document and a project contract. During this process he
consults (informs) his section head regularly. When writing the software development plan and the project contract the
tpm has to check with the account manager if the budget of the customer is suff icient for the project. The tpm also
determines regularly if the customer agrees with the software development plan and the project contract. This applies both
for the intermediate versions and the final version of the software development plan and the project contract.

When writing the ‘ internal resources allocation’ -document the technical project manager checks with the heads of all the
support sections and with the quality assurance adviser to detemine if the needed internal resources are available within
the time frame of the project. Internal resources consist of : (software)engineers, computer equipment, support software,
person-hours of the computer support section, work locations, off ice equipment, person-hours of the controller section and
person-hours of the quality assurance adviser.

The technical project manager presents the final version of all three project management documents to his section head
(head production section) for review. If the section head has still some comments at this stage, the tpm updates the
documents accordingly and consults again (when necesary) with account manager, customer or support section heads.

Software Process Modeling
in SOCCA

page :
version : 0.10

142

If the section head of the tpm approves of the documents, the technical project manager presents them for a quality audit
to the quality assurance adviser. The technical project manager updates the documents according to the comments of the
quality assurance adviser (if any). He then gives the project management documents to his section head for their approval
by the management (call hprs_request_approval_(x)).

The section head of the tpm then requests the approval of the documents in the next ‘project meeting minus’ (the
opeartion ‘pmm_request_approval_(x)’ of the ‘project meeting minus’ -class is called by the section head). The calli ng of
the operation ‘pmm_ request_approval_(x)’ starts phase 3, ‘approval’ , of the process fragment ‘writing project
management documents’ .

In terms of the values of the ‘ import-list’ -attributes of the uses associations this amounts to the following :

uses1 : imported operation imported by
cu_query_requirement_(x) am_query_requirement_(x)

uses2 : imported operation imported by
am_query_requirement_(x) tpm_write_proposal_(x)
am_inquire_cu_budget_(x) tpm_write_proj_man_doc_(x,y)

uses3 : imported operation imported by
cu_agree_proj_man_doc_(x) tpm_write_proj_man_doc_(x,y)

uses4 : imported operation imported by
tpm_perform_estimate_(x) tpm_write_proposal_(x)
tpm_confer_estimate_(x) tpm_write_proposal_(x)
tpm_write_proj_man_doc_(x,y) tpm_write_proposal_(x)

uses5 : imported operation imported by
qaa_inquire_resource_(x) tpm_write_proj_man_doc_(x,y)
qaa_audit_(x) tpm_write_proposal_(x)

uses6 : imported operation imported by
tpm_perform_estimate_(x) hprs_second_estimate_(x)

uses7 : imported operation imported by
hprs_second_estimate_(x) tpm_write_proposal_(x)
hprs_consult_(x) tpm_write_proj_man_doc_(x,y)
hprs_final_review_(x) tpm_write_proposal_(x)
hprs_pmm_request_approval_(x) tpm_write_proposal_(x)

uses8 : imported operation imported by
hss_inquire_resource_(x) tpm_write_proj_man_doc_(x,y)

uses9 : imported operation imported by
pmd_write_(x) tpm_write_proj_man_doc_(x,y)

uses10 : imported operation imported by
pmm_request_approval_(x) hprs_pmm_request_approval_(x)

Software Process Modeling
in SOCCA

page :
version : 0.10

143

5.3.4 Import-export diagram - Phase 3

The third import-exports diagram is the diagram of phase 3, ‘approval’ , of the process fragment ‘writing project
management documents’ . This phase 3 is started by the calli ng of the ‘project meeting minus’’ s operation
‘pmm_request_approval_(x)’ in phase 2.

TECHNICAL
PROJECT
MANAGER

PROJECT
MEETING
MINUS

TECHNICAL
PROJECT
MANAGER

ACCOUNT
MANAGER

USES1

QUALITY
ASSURANCE
ADVISER

CHIEF
EXECUTIVE
OFFICER

HEAD
CONTROLLE R
SECTION

HEAD
SUPPORT
SECTION

ARCHIVE/
DOCUMENTATION
ADMINISTRATOR

CUSTOMER

USES2

USES3

USES4

USES5 USES6

USES7

USES8 USES9

figure 5.7 Class diagram : classes and uses associations of phase 3 of process fragment ‘writing project management documents’

The project management documents that are handled by the ‘project meeting minus’ are a project contract, a software
development plan and a ‘ internal resources allocation’ -document (ira-document). The ira-document contains the project
form as an appendix.

The functionality of this phase is as follows. First 2 copies of the project contract are presented to the chief executive
off icer (ceo). He signs both copies of the contract document. Since the contract consists of a tailored template and is
already reviewed by the ‘head of the production section’ during the writing of the document, the signing does takes place
without the chief executive off icer commenting on it.

Then the ‘ internal resources allocation’ -document is presented to the heads of the support section (hss’s) and also to the
quality assurance adviser (qaa). They all sign the ‘ ira’ -document. Again the ‘ ira’ -document is already reviewed by the
heads of the support sections and the quality assurance adviser during the writing of the document. In this stage the
document is signed without commenting on it. By signing of the ‘ ira’ -document the hss’s and the qaa give their
commitment that the resources stipulated in the ‘ ira’ -document will be delivered by them and/or their sections.

Next the head of the controller section receives the updated project form. The project form is an appendix to te ‘ ira’ -
document and has been updated by the technical project manager during the writing of the ‘ ira’ - document. The updated
data in the project form is entered by the (personnel of the) controller section into the Management Information System
(MIS) of the Waco Business Unit (WBU).

Then the ‘project meeting minus’ gives the two copies of the project contract to the account manager. Appended to each
copy of the project contract is the software development plan. At this stage the project contract contains the signature of
the ceo and needs to be signed by the customer.

The signed ‘ ira’ -document is given to the technical project manager. He files this in ‘ the project file’ of the project.

Software Process Modeling
in SOCCA

page :
version : 0.10

144

The account manager presents the two copies of the project contract (plus appended software development plan) to the
customer for his signature. The customer signs both copies. He keeps one copy for himself and returns the other. Since the
customer has already reviewed the project contract and the software development plan during the writing stage of these
documents, the documents are signed without comment.

The returned copy is now duplicated. The original is filed by ‘archive/documentation administrator’ in the central archive.
The duplicate is filed by the technical project manager in the ‘project file’ of the project.

In terms of the values of the ‘ import-list’ -attributes of the uses associations this amounts to the following :

uses1 : imported operation imported by
qaa_sign_ira_doc_(x) pmm_request_approval_(x)

uses2 : imported operation imported by
ceo_sign_pc_(x) pmm_request_approval_(x)

uses3 : imported operation imported by
hss_sign_ira_doc_(x) pmm_request_approval_(x)

uses4 : imported operation imported by
hcs_enter_in_mis_(x) pmm_request_approval_(x)

uses5 : imported operation imported by
tpm_enter_in_proj_file_(x) pmm_request_approval_(x)

uses6 : imported operation imported by
am_cu_sign_pc_(x) pmm_request_approval_(x)

uses7 : imported operation imported by
tpm_enter_in_proj_file_(x) am_cu_sign_pc_(x)

uses8 : imported operation imported by
cu_sign_pc_(x) am_cu_sign_pc_(x)

uses9 : imported operation imported by
ada_archive_(x) am_cu_sign_pc_(x)

Software Process Modeling
in SOCCA

page :
version : 0.10

145

5.3.5 Import-export diagram - Phase 4

The fourth import-export diagram is the diagram of phase 4, ‘ resources allocation’ , of the process fragment ‘writing
project management documents’ . In this phase 4 the ‘head of the personnel section’ and the ‘head of the computer support
section’ allocate resources to a project as specified in the ‘ internal resources allocation’ -document of that project.

HEAD
PERSONNEL
SECTION

INTERNAL
MEM ORANDUM

USES1

ENGINEER

TECHNICAL
PROJECT
MANAGER

PROJECT
FORM

HEAD
CONTROLLE R
SECTION

TERMS OF
REFERENCE
DOCUM ENT

HEAD
PRODUCTION
SECTION

USES2

USES3

USES5

USES6 USES7

USES8

USES9 HEAD COMPUTER
SUPPORT SECTION

USES10

USES12

USES4

USES11

figure 5.8 Class diagram : classes and uses associations of phase 4 of process fragment ‘writing project management documents’

The ‘head of the personnel section’ (hps) allocates manpower to the project. He writes a ‘ terms of reference’ -document
(tor-document). This document specifies for an engineer to which project he is allocated and for how many hours per year.

The hps also updates the project form accordingly. The updated data in the project form is entered by the (personnel of
the) controller section into the Management Information System (MIS) of the Waco Business Unit (WBU).

The technical project manager, his head production section, and the engineer involved, and his head production
section, are given the tor-document (plus an internal memorandum). In this way they are informed of the allocation of
the engineer to the project.

The ‘head of the computer support section’ writes an internal memorandum to indicate the allocation of computer
support personnel to a project. This memorandum is then communicated to the technical project manager and his head
of production section.

In terms of the values of the ‘ import-list’ -attributes of the uses associations this amounts to the following :

uses1 : imported operation imported by
eng_inform_(x) hps_allocate_resource

uses2 : imported operation imported by
pf_update_(x) hps_allocate_resource

uses3 : imported operation imported by
tor_write_(x) hps_allocate_resource

Software Process Modeling
in SOCCA

page :
version : 0.10

146

uses4 : imported operation imported by
hps_allocate_resource autonomous operation

uses5 : imported operation imported by
hcs_enter_in_mis_(x) hps_allocate_resource

uses6 : imported operation imported by
im_write_(x) hps_allocate_resource

uses7 : imported operation imported by
tpm_inform_(x) hps_allocate_resource

uses8 : imported operation imported by
hprs_inform_(x) hps_allocate_resource

uses9 : imported operation imported by
im_write_(x) hcss_allocate_resource

uses10 : imported operation imported by
tpm_inform_(x) hcss_allocate_resource

uses11 : imported operation imported by
hcss_allocate_resource autonomous operation

uses12 : imported operation imported by
hprs_inform_(x) hcss_allocate_resource

Software Process Modeling
in SOCCA

page :
version : 0.10

147

5.3.6 State Transition Diagrams - Phase 1

The behavior perspective of ‘ phase 1’ of the process fragment ‘writing project management documents’ is modeled in
SOCCA by STDs (State Transition Diagrams). The behavior perspective comprises both the visible behavior of classes
(and thus of objects of that classes) and the behavior of operations (methods) of the classes.

The visible behavior of a class is modeled by an external STD. This STD shows the possible sequences of starting the
execution of the class’ (object’s) operations. Usually there is one external STD per class. The UML equivalent of an
external STD is a statechart describing the states an object can be in and the transitions it can make in response to received
stimuli .

The behavior of an operation is modeled by an internal STD. It describes the functionality of the operation. This comprises
the operation’s start and end, the calli ng of other operations by this operation, and ‘ local steps’ (local functionality). In
UML methods are also described by statecharts.

The communication between objects (calli ng of exported operations) is modeled by manager STDs and employee STDs.
External STDs become manager STDs and internal STDs become employee STDs. This mechanism is explained in the
SOCCA chapter of this document. This way of modeling communication is unique for SOCCA.

STD’s can show different views of the same process. An STD is called a ‘communicative view’ if it models any
communication details between one or more caller and its callee(s). An STD is called an ‘organizational view’ otherwise.

Phase 1, ‘ recognizing customer requirements’ , of the process fragment ‘writing project management documents’ (partly)
models the behavior of the following classes :

- customer
- requirements document
- account manager
- make or buy-meeting
- chief executive off icer
- head personnel section
- project form
- head controller section
- technical project manager

Software Process Modeling
in SOCCA

page :
version : 0.10

148

5.3.6.1 Customer

5.3.6.1.1 Customer : external behavior-STD, organizational view

The external behavior STD shows the possible sequences in which the exported operation(s) can be started. The class
‘customer’ has only one operation relevant for the process fragment ‘writing project management documents’ , phase1.
The organizational view of the external STD does not show any communication details. Consequently the STD consists of
one state ‘neutral’ in which the customer waits for a call to its exported operation ‘cu_request_proposal’ . If the call has
taken place, the customer can make the transition labeled ‘cu_request_proposal’ . The customer then comes again in the
state ‘neutral’ . The possible starting sequence specified by this STD is thus ‘cu_request_proposal’ , ‘cu_request_
proposal’ , etc.

NEUTRAL

CU_REQUEST_PROPOSAL

figure 5.9 customer : external behavior STD, organizational view

5.3.6.1.2 Customer : external behavior-STD, communicative view

The communicative view of the external behavior STD shows the communication details between the external STD and
the called operation(s). It consists of a neutral state in which the customer waits for a call to its operation ‘cu_request_
proposal’ and of a state in which he starts this operations. Typically the customer does not wait in this ‘starting’ state until
the called operation is finished, but returns as soon as possible to its neutral state to allow handling of its other operations.
These other operations are not shown here because they are not relevant to the process fragment ‘writing project
management documents’ , phase 1.

The customer exihibits autonomous behavior by starting his own operation without being called from another object.

NEUTRAL
STARTING_
CU_REQUEST_
PROPOSAL

CU_REQUEST_PROPOSAL

(AUTONOMOUS)

figure 5.10 customer : external behavior STD, communicative view

5.3.6.1.3 Customer : internal behavior-STDs

The 1 operation ‘cu_request_proposal’ of the customer has the following internal behavior STD.

ACT_
CU_REQUEST_
PROPOSAL

NON
CU_REQUEST_
PROPOSAL

CU_REQUEST_
PROPOSAL
ASKED

DETERMINE
CONTENT CALL _

RD_INITIATE_
(CONTENT)

RD_INITIATE
ASKED CALL _

AM_REQUEST_
PROPOSAL_
(REQUIREMENTS
DOCUMENT)

AM_REQUEST_
PROPOSAL
ASKED

figure 5.11 int-cu_request_proposal : internal behavior STD

With the operation ‘cu_request_proposal’ the customer considers his requirements (= determines the contents of the
requirements document). Then he creates a requirements document and initiates it with his requirements (call_

Software Process Modeling
in SOCCA

page :
version : 0.10

149

rd_initiate_(content)). With this requirements document he approaches the account manager with a request for a proposal
based on the requirements (call_am_request_proposal_(requirements document)).

5.3.6.1.4 Customer : manager-STD

The communication between the customer’s operation (callee) and its caller is managed by a manager STD. The manager
STD prescribes in its states the subprocesses for its employees. The transitions of the manager STD are labeled with a
combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the transition. I.e. the
transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant employee(s)
has/have entered the trap(s), the transition can and will (eventually) take place.

CC1-1 CC1-2

TL F-1

TL F-2

(AUTONOMOUS)

figure 5.12 customer : manager STD

The notation CCx in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-
callee combination. The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that
enables the transition. The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

The caller-callee combination for ‘cu_request_proposal’ consist only of prescribed subprocesses of the callee ‘cu_
request_proposal’ . This is because ‘cu_request_proposal’ is an automous operation.

In the state ‘neutral’ the CC and the TLF for the transition leaving the state are :

CC1-1 = {S1}
TLF-1 = T-1 (corresponds with ‘cu_request_proposal’ transition in extern STD)

In the state ‘starting_cu_request_proposal’ the CC and the TLF for the transition leaving the state are :

CC1-2 = {S2}
TLF-2 = T-2

5.3.6.1.5 Customer : employee-STDs

Internal operations are normally started with the caller_callee-construct. In the case of autonomous operations the
caller_callee-construct consists only of the callee-part (i.e. the act-construct). The caller_callee-construct, the act-construct
and autonomous behavior are described in more detail i n the chapter explaining the SOCCA concepts.

This manager STD has 1 employee, the autonomous operation ‘cu_request_proposal’ . This operation is started with the
act-construct.

T-1

RD_INITIATE
ASKED CALL _

AM_REQUEST_
PROPOSAL_
(REQUIREMENTS
DOCUMENT)

AM_REQUEST_
PROPOSAL
ASKED

NON
CU_REQUEST_
PROPOSAL

CU_REQUEST_
PROPOSAL
ASKED

DETERMINE
CONTENT CALL _

RD_INITIATE_
(CONTENT)

figure 5.13 employee int-cu_request_proposal : subprocess S1

Software Process Modeling
in SOCCA

page :
version : 0.10

150

T-2

NON
CU_REQUEST_
PROPOSAL ACT_

CU_REQUEST_
PROPOSAL

CU_REQUEST_
PROPOSAL
ASKED

DETERMINE
CONTENT

RD_INITIATE
ASKED CALL _

AM_REQUEST_
PROPOSAL_
(REQUIREMENTS
DOCUM ENT)

AM_REQUEST_
PROPOSAL
ASKEDCALL _

RD_INITIATE_
(CONTENT)

figure 5.14 employee int-cu_request_proposal : subprocess S2

When the act-construct is applied to the employee, the result is the following. The employee has two subprocesses S1 and
S2, and two traps T-1 and T-2. In its neutral state the manager prescribes the subprocess S1 for the employee. The
manager can transit to the state ‘starting_cu_request_proposal’ when the subprocess S1 is in trap T-1 and the customer
decides autonomously to perform the operation ‘cu_request_proposal’ . In the state ‘starting_cu_request_proposal’ the
manager prescribes the subprocess S2. This means that the employee can make its transition ‘act_cu_request_proposal’
which means that the operation can start executing. As soon as the subprocess S2 enters in trap T-2, the manager can
transit back to the neutral state.

Software Process Modeling
in SOCCA

page :
version : 0.10

151

5.3.6.2 Requirements document

5.3.6.2.1 Requirements document : external behavior-STD, organizational view

The external behavior STD shows the possible sequences in which the exported operation(s) can be started. The class
‘ requirements document’ has only one operation relevant for the process fragment ‘writing project management
documents’ , phase1. The organizational view of the external STD does not show any communication details.
Consequently the STD consists of one state ‘neutral’ in which the requirements document waits for a call to its exported
operation ‘ rd_initiate_(x)’ . If the call has taken place, the requirements document can make the transition labeled
‘ rd_initiate_(x)’ . The requirements document then comes again in the state ‘neutral’ . The possible starting sequence
specified by this STD is thus ‘ rd_initiate_(x)’ , ‘ rd_initiate_(x)’ , etc.

NEUTRAL

RD_INITIATE_(X)

figure 5.15 requirements document : external behavior STD, organizational view

5.3.6.2.2 Requirements document : external behavior-STD, communicative view

The communicative view of the external behavior STD shows the communication details between the external STD and
the called operation(s). It consists of a neutral state in which the requirements document waits for a call to its operation
‘ rd_initiate_(x)’ and of a state in which he starts this operation. Typically the requirements document does not wait in this
‘starting’ state until the called operation is finished, but returns as soon as possible to its neutral state. It can then handle
another call to the operation ‘ rd_initiate_(x)’ before the current execution of the operation has finished.

The external STD still has another state, ‘ requirements document created’ . The reason for this state is explained in the
‘ requirements document : manager-STD’ chapter.

The callers of the operations of this class can be found in the import-export diagram. They are given in the the
‘ import_list’ attribute of the ‘uses association’ .

.

NEUTRAL
STARTING_
RD_INITIATE_
(X)

RD_INITIATE_(X)REQUIRE-
MENTS
DOCUMENT
CREATED

figure 5.16 requirements document : external behavior STD, communicative view

5.3.6.2.3 Requirements document : internal behavior-STDs

The 1 operation ‘ rd_initiate_(x)’ of the requirements document has the following internal behavior STD.

INITIATE
CONTENT
ATTRIBUTE
WITH X

ACT_
RD_INITIATE_(X)

NON-
RD_INITIATE_
(X)

RD_INITIATE_
(X) ASKED CREATE

REQUIREMENTS
DOCUMENT

figure 5.17 int-rd_initiate_(x) : internal behavior STD

Software Process Modeling
in SOCCA

page :
version : 0.10

152

The operation ‘ rd_inititate_(x)’ has one formal parameter ‘x’ . The multiplicity of concurrent executing STD instances is
zero or more. This is indicated by the solid circle inside the state ‘non rd_initiate_(x)’ . A multiplicity of zero or more
means that the manager STD can start another instance of the internal STD to execute concurrently with an already
executing instance of the internal STD.

The formal parameter of the operation ‘ rd_initiate_(x)’ is the content with which the newly created requirements
document is initialized. The operation first creates a new requirements document object and then initializes its attribute
‘content’ with the actual parameter value of ‘ x’ .

5.3.6.2.4 Requirements document : manager-STD

The communication between the requirements document’s operations (callees) and their callers is managed by a manager
STD. The manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager STD are
labeled with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the
transition. I.e. the transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant
employee(s) has/have entered the trap(s), the transition can and will (eventually) take place.

The caller of the operation ‘ rd_initiate_(x)’ has to wait until the operation ‘ rd_initiate_(x)’ has progressed far enough for
the new requirements document object to be in existence . This is because the caller (the customer operation
‘cu_request_proposal’) needs the requirements document object (id) in its next action. It uses it as a parameter value in its
‘call_am_request_proposal_(x)’ . For this reason the manager STD has the state CC1-3. This state also appears in the
external STD as the state ‘ requirements document created’ .

CC1-1 CC1-2

TL F-1

TL F-2

CC1-3

TL F-3

TL F-4

figure 5.18 requirements document : manager STD

The notation CCx in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-
callee combination. The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that
enables the transition. The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

There is only one caller-callee combination, the callee ‘ rd_initiate_(x)’ and its caller ‘cu_request_proposal’ of the class
customer. Because the caller has to wait for the result produced by the callee, the call i s modeled by the ‘caller waits’ -
variant of the caller-callee construct (see SOCCA chapter for this construct). This results in the extra state in the manager
STD and the fact that in the state ‘neutral’ either S1 or S2 is prescribed depending on the state the STD was in before it
entered the state ‘neutral’ .

In the state ‘neutral’ CC and the TLF for the transition leaving the state are :

CC1-1 = {S1 or S2, S3}
TLF-1 = T-1 and T-3 (corresponds with ‘ rd_initiate_(x)’ transition in extern STD)
TLF-3 = T-2b

In the state ‘starting_rd_inititate_(x)’ the CC and the TLF for the transition leaving the state are :

CC1-2 = {S2, S3}
TLF-2 = T-2a

In the state ‘ requirements document created’ the CC and the TLF for the transition leaving the state are :

CC1-3 = {S1, S4}
TLF-4 = T-4

Software Process Modeling
in SOCCA

page :
version : 0.10

153

5.3.6.2.5 Requirements document : employee-STDs

The manager STD has 2 employee STDs. These are the callee ‘ rd_initiate_(x)’ and its caller ‘cu_request_proposal’ of the
class customer. The calli ng of ‘ rd_initiate_(x)’ is modeled by the ‘caller waits’ -variant of the caller-callee construct.

T-1

NON-
RD_INITIATE_
(X)

RD_INITIATE_
(X) ASKED CREATE

REQUIREMENTS
DOCUMENT

INITIATE
CONTENT
ATTRIBUTE
WITH X

figure 5.19 employee int-rd_initiate_(x) : subprocess S1

T-2a

NON-
RD_INITIATE_
(X) ACT_

RD_INITIATE_(X)

RD_INITIATE_
(X) ASKED CREATE

REQUIREMENTS
DOCUMENT

INITIATE
CONTENT
ATTRIBUTE
WITH X

T-2b

figure 5.20 employee int-rd_initiate_(x) : subprocess S2

The first employee is the own internal operation ‘ rd_initiate_(x)’ . This employee has two subprocesses S1 and S1 and
three traps T-1, T-2a and T-2b. The trap T-2b is to determine that in fact the operation ‘ rd_initiate_(x)’ has created and
initialized a new requirements document.

ACT_
CU_REQUEST_
PROPOSAL

NON
CU_REQUEST_
PROPOSAL

CU_REQUEST_
PROPOSAL
ASKED

DETERMINE
CONTENT CALL _

RD_INITIATE_
(CONTENT)

RD_INITIATE
ASKED

AM_REQUEST_
PROPOSAL
ASKED

figure 5.21 employee int-cu_request_proposal : subprocess S3

ACT_
CU_REQUEST_
PROPOSAL

NON
CU_REQUEST_
PROPOSAL

CU_REQUEST_
PROPOSAL
ASK ED

DETERMINE
CONTENT

RD_INITIATE
ASK ED CALL _

AM_REQUEST_
PROPOSAL_
(REQUIREMENTS
DOCUM ENT)

AM_REQUEST_
PROPOSAL
ASK ED

T-4

figure 5.22 employee int-cu_request_proposal : subprocess S4

The second employee is the caller operation ‘cu_request_proposal’ . This employee has two subprocesses S3 and S4 and
two traps T-3 and T-4.

In its neutral state the manager prescribes initially subprocess S1 for the callee and S3 for the caller. When the caller enters
its trap T-3, i.e. excutes the call (and the callee is ready in its trap T-1) the manager can make the transition to the state

Software Process Modeling
in SOCCA

page :
version : 0.10

154

‘starting_rd_initiate_(x). Here it prescribes S2 for the callee and S3 for the caller (i.e the caller stays in subprocess S3).
When the callee has entered trap T-2a the manager can transit back to its neutral state. Now it prescribes S2 (instead of S1)
for the callee and S3 for the caller. If the callee has finished its action, i.e it has entered trap T2-b, the manager can transit
to state ‘ requirements document created’ . Here it prescribes S1 for the callee and S4 for the caller (i.e. the caller is allowed
to proceed). When the caller enters T-4, the manager can transit back to its neutral state. Here it prescribes S1 again for the
callee.

Software Process Modeling
in SOCCA

page :
version : 0.10

155

5.3.6.3 Account manager

5.3.6.3.1 Account manager : external behavior-STD, organizational view

The external behavior STD shows the possible sequences in which the exported operation(s) can be started. The class
‘account manager’ has only one operation relevant for the process fragment ‘writing project management documents’ ,
phase1. The organizational view of the external STD does not show any communication details. Consequently the STD
consists of one state ‘neutral’ in which the account manager waits for a call to its exported operation
‘am_request_proposal_(x)’ . If the call has taken place, the account manager can make the transition labeled
‘am_request_proposal_(x)’ . The account manager then comes again in the state ‘neutral’ . The possible starting sequence
specified by this STD is thus ‘am_request_proposal_(x)’ , ‘am_request_proposal_(x)’ , etc.

NEUTRAL

AM_REQUEST_PROPOSAL_(X)

figure 5.23 account manager : external behavior STD, organizational view

5.3.6.3.2 Account manager : external behavior-STD, communicative view

The communicative view of the external behavior STD shows the communication details between the external STD and
the called operation(s).

NEUTRAL
STARTING_
AM_REQUEST_
PROPOSAL_(X)

AM_REQUEST_PROPOSAL_(X)

figure 5.24 account manager : external behavior STD, communicative view

This external behavior STD has two states. In the state neutral the account manager waits until a call has been placed to its
operation ‘am_request_proposal_(x). If a call has been made, the manager STD can (and eventually will) transit to the
state ‘starting_am _request_proposal_(x)’ . If the operation has been started the manager can transit back to the state
neutral.

The callers of the operations of this class can be found in the import-export diagram. They are given in the the
‘ import_list’ attribute of the ‘uses association’ .

5.3.6.3.3 Account manager : internal behavior-STDs

The account manager has 1 operation : ‘am_request_proposal_(x)’ . This operation has the following internal behavior
STD.

ACT_
AM_REQUEST_
PROPOSAL_(X)

NON-
AM_REQUEST_
PROPOSAL_(X)

AM_REQUEST_
PROPOSAL_(X)
ASKED CALL _

MB_REQUEST_
DECISION_(X)

MB_REQUEST_
DECISION
ASKED

figure 5.25 int-am_request_proposal_(x) : internal behavior STD

Software Process Modeling
in SOCCA

page :
version : 0.10

156

The operation ‘am_request_proposal_(x)’ has one formal parameter ‘x’ . The multiplicity of concurrent executing STD
instances is zero or more. This is indicated by the solid circle inside the state ‘non am_request_proposal_(x)’ . A
multiplicity of zero or more means that the manager STD can start another instance of the internal STD to execute
concurrently with an already executing instance of the internal STD.

The formal parameter of the operation ‘am_request_proposal_(x)’ is the requirements document on the basis of which the
requested proposal has to be made. The account manager presents this requirements document to the ‘make or buy’
meeting’ . This meeting will come to a decision to either do the project in-house (make) or to subcontract it to an outside
vendor (buy). If the decision is to ‘make’ then the meeting (i.e. the participants in the meeting) will t ake care that a
proposal is made based on the requirements document.

5.3.6.3.4 Account manager : manager-STD

The communication between the account manager’s operations (callees) and their callers is managed by a manager STD.
The manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager STD are
labeled with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the
transition. I.e. the transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant
employee(s) has/have entered the trap(s), the transition can and will (eventually) take place.

CC1-1 CC1-2

TL F-1

TL F-2

figure 5.26 account manager : manager STD

The notation CCx in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-
callee combination. The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that
enables the transition. The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

There is only one caller-callee combination, the callee ‘am_request_proposal_(x)’ and its caller ‘cu_request_proposal’ of
the class customer. The calli ng is modeled by the ‘caller does not wait’ -variant of the caller-callee construct (see SOCCA
chapter for this construct). In the state ‘neutral’ CC and the TLF for the transition leaving the state are :

CC1-1 = {S1, S3}
TLF-1 = T-1 and T-3 (corresponds with ‘am_request_proposal_(x)’ transition in extern STD)

In the state ‘starting_am_request_proposal_(x)’ the CC and the TLF for the transition leaving the state are :

CC1-2 = {S2, S4}
TLF-2 = T-2 and T-4

5.3.6.3.5 Account manager : employee-STDs

The manager STD has 2 employee STDs. These are the callee ‘am_request_proposal_(x)’ and its caller
‘cu_request_proposal’ of the class customer.

CALL _
MB_REQUEST_
DECISION_(X)

MB_REQUEST_
DECISION
ASKED

T-1

NON-
AM_REQUEST_
PROPOSAL_(X)

AM_REQUEST_
PROPOSAL_(X)
ASKED

figure 5.27 employee int-am_request_proposal_(x) : subprocess S1

Software Process Modeling
in SOCCA

page :
version : 0.10

157

T-2

NON-
AM_REQUEST_
PROPOSAL_(X) ACT_

AM_REQUEST_
PROPOSAL_(X)

AM_REQUEST_
PROPOSAL_(X)
ASKED CALL _

MB_REQUEST_
DECISION_(X)

MB_REQUEST_
DECISION
ASKED

figure 5.28 employee int-am_request_proposal_(x) : subprocess S2

The first employee is the own internal operation ‘am_request_proposal_(x)’ . This employee has two subprocesses S1 and
S1 and two traps T-1 and T-2.

ACT_
CU_REQUEST_
PROPOSAL

NON
CU_REQUEST_
PROPOSAL

CU_REQUEST_
PROPOSAL
ASKED

DETERMINE
CONTENT CALL _

RD_INITIATE_
(CONTENT)

RD_INITIATE
ASKED CALL _

AM_REQUEST_
PROPOSAL_
(REQUIREMENTS
DOCUMENT)

AM_REQUEST_
PROPOSAL
ASKED

T-3

figure 5.29 employee int-cu_request_proposal : subprocess S3

ACT_
CU_REQUEST_
PROPOSAL

NON
CU_REQUEST_
PROPOSAL

CU_REQUEST_
PROPOSAL
ASKED

DETERMINE
CONTENT CALL_

RD_INITIATE_
(CONTENT)

RD_INITIATE
ASKED

AM_REQUEST_
PROPOSAL
ASKED

T-4

figure 5.30 employee int-cu_request_proposal : subprocess S4

The second employee is the caller operation ‘cu_request_proposal’ . This employee has two subprocesses S3 and S4 and
two traps T-3 and T-4.

The manager prescribes initially subprocess S3 for the calli ng employee, it is waiting for the call . When the caller enters its
trap T-3, i.e. excutes the call (and the callee is ready in its trap T-1) the manager can make the transition to the next state.
Here it prescribes S4 for the caller, thereby allowing it to proceed in its next subprocess. This has the effect that the caller
does not wait for the result of the called operation but proceeds right away after the manager has started the called
operation.

When the callee has entered its trap T-2 and the caller has entered his trap T-4, the manager can transit back to the state
‘neutral’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

158

5.3.6.4 Make or buy-meeting

5.3.6.4.1 Make or buy-meeting : external behavior-STD, organizational view

The external behavior STD shows the possible sequences in which the exported operation(s) can be started. The class
‘make or buy-meeting’ has only one operation relevant for the process fragment ‘writing project management documents’ ,
phase1. The organizational view of the external STD does not show any communication details. Consequently the STD
consists of one state ‘neutral’ in which the make or buy-meeting waits for a call to its exported operation
‘mb_request_decision_(x)’ . If the call has taken place, the make or buy-meeting can make the transition labeled
‘mb_request_decision_(x)’ . The make or buy-meeting then comes again in the state ‘neutral’ . The possible starting
sequence specified by this STD is thus ‘mb_request_decision_(x)’ , ‘mb_request_decision_(x)’ , etc.

NEUTRAL

MB_REQUEST_DECISION_(X)

figure 5.31 make or buy-meeting : external behavior STD, organizational view

5.3.6.4.2 Make or buy-meeting : external behavior-STD, communicative view

The communicative view of the external behavior STD shows the communication details between the external STD and
the called operation(s).

NEUTRAL
STARTING_
MB_REQUEST_
DECISION_(X)

MB_REQUEST_DECISION_(X)

figure 5.32 make or buy-meeting : external behavior STD, communicative view

This external behavior STD has two states. In the state neutral the make or buy-meeting waits until a call has been placed
to its operation ‘mb_request_decision_(x). If a call has been made, the manager STD can (and eventually will) transit to
the state ‘starting_mb_request_decision_(x)’ . If the operation has been started the manager can transit back to the state
neutral. It can then start another instance of the operation ‘mb_request_decision_(x)’ if there has been another call to this
operation. This instance can excute concurrently with the one(s) already excuting.

The callers of the operations of this class can be found in the import-export diagram. They are given in the the
‘ import_list’ attribute of the ‘uses association’ .

5.3.6.4.3 Make or buy-meeting : internal behavior-STDs

The make or buy-meeting has 1 operation : ‘mb-request_decision_(x)’ . This operation has the following internal behavior
STD.

Software Process Modeling
in SOCCA

page :
version : 0.10

159

NON-
MB_REQUEST_
DECISION_(X)

MB_REQUEST_
DECISION_(X)
ASKED

CALL _
HPS_M B_
DECISION_(X)

CALL _
CEO_MB_
DECISION_(X)

HPS_M B_
DECISION_
(X)
ASKED

SEE KPA
SOFTWARE
SUBCONTRACT
MANAGEMENT

[BUY]

ACT-
MB_REQUEST_
DECISION_(X)

CEO_MB_
DECISION_
(X)
ASKED

[MAKE]

CALL _
HPS_INITIATE_
PROJECT_
FORM _(X)

HPS_INITIATE_
PROJECT_
FORM _(X)
ASKED

CALL _
TPM_WRITE_
PROPOSAL_(X)

TPM_WRITE_
PROPOSAL_(X)
ASKED

DETERM INE
PROJECT_
FORM
CONTENT

figure 5.33 mb_request_decision_(x) : internal behavior STD

The operation ‘mb_request_decision_(x)’ has one formal parameter ‘x’ . The multiplicity of concurrent executing STD
instances is zero or more. This is indicated by the solid circle inside the state ‘non mb_request_decision_(x)’ . A
multiplicity of zero or more means that the manager STD can start another instance of the internal STD to execute
concurrently with an already executing instance of the internal STD.

The formal parameter of the operation ‘mb_request_decision_(x)’ is the requirements document on the basis of which the
‘make’ or ‘buy’ decision has to be made by the make or buy-meeting. The make or buy-meeting first asks the head of the
personnel section for his decision. Then it asks the chief executive off icer for his decision. If both decisions are different,
the head of the personnel section is asked to reconsider his decision. Then the chief executive off icer is asked again for his
decision. This process repeats itself until both decisions are the same, or until the chief executive off icer makes his
decision final. If the decision is to buy from an outside vendor, the STD transits to the state ‘see KPA Software
Subcontract Management’ . This part of the process belongs to the Key Process Area (KPA) Software Subcontract
Management and is not modeled further here.

If the decision is to develop the system in house, the project is give a name and a project code. A technical project
manager is chosen to do the proposal. A time budget for this proposal writing task is allocated together with a start date
and a due date. This infomation constitutes the initial content of the project form. The head of the personnel section
initiates a project form and thereby starts the project. The chosen technical project manager is then tasked to write the
proposal based on the requirements document.

5.3.6.4.4 Make or buy-meeting : manager-STD

The communication between the ‘make or buy-meeting’‘ s operations (callees) and their callers is managed by a manager
STD. The manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager STD are
labeled with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the
transition. I.e. the transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant
employee(s) has/have entered the trap(s), the transition can and will (eventually) take place.

CC1-1 CC1-2

TL F-1

TL F-2

figure 5.34 make or buy-meeting : manager STD

The notation CCx in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-
callee combination. The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that
enables the transition. The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

Software Process Modeling
in SOCCA

page :
version : 0.10

160

There is only one caller-callee combination, the callee ‘mb_request_decision_(x)’ and its caller ‘am_request_proposal
_(x)’ of the class account manager. The call i s modeled by the ‘caller does not wait’ -variant of the caller-callee construct
(see SOCCA chapter for this construct).

In the state ‘neutral’ CC and the TLF for the transition leaving the state are :

CC1-1 = {S1, S3}
TLF-1 = T-1 and T-3 (corresponds with ‘mb_request_decision_(x)’ transition in extern STD)

In the state ‘starting_mb_request_decision_(x)’ the CC and the TLF for the transition leaving the state are :

CC1-2 = {S2, S4}
TLF-2 = T-2 and T-4

5.3.6.4.5 Make or buy-meeting : employee-STDs

The manager STD has the following 2 employee STDs. The first is its own internal operation the callee ‘mb_request_
decision_(x)’ . The second is the caller ‘am_request_proposal_(x)’ f rom the class account manager.

NON-
MB_REQUEST_
DECISION_(X)

MB_REQUEST_
DECISION_(X)
ASKED

CALL _
HPS_M B_
DECISION_(X)

CALL _
CEO_MB_
DECISION_(X)

HPS_M B_
DECISION_
(X)
ASKED

SEE KPA
SOFTWARE
SUBCONTRACT
MANAGEMENT

[BUY]
CEO_MB_
DECISION_
(X)
ASKED

[MAKE]

CALL _
HPS_INITIATE_
PROJECT_
FORM _(X)

HPS_INITIATE_
PROJECT_
FORM _(X)
ASKED

CALL _
TPM_WRITE_
PROPOSAL_(X)

TPM_WRITE_
PROPOSAL_(X)
ASKED

T-1

DETERM INE
PROJECT_
FORM
CONTENT

figure 5.35 employee int-mb_request_decision_(x) : subprocess S1

NON-
MB_REQUEST_
DECISION_(X)

MB_REQUEST_
DECISION_(X)
ASKED

CALL _
HPS_MB_
DECISION_(X)

CALL _
CEO_MB_
DECISION_(X)

HPS_MB_
DECISION_
(X)
ASKED

SEE KPA
SOFTWARE
SUBCONTRACT
MANAGEMENT

[BUY]

ACT-
MB_REQUEST_
DECISION_(X)

CEO_MB_
DECISION_
(X)
ASKED

[MAKE]

CALL _
HPS_INITIATE_
PROJECT_
FORM_(X)

HPS_INITIATE_
PROJECT_
FORM_(X)
ASKED

CALL _
TPM _WRITE_
PROPOSAL_(X)

TPM _WRITE_
PROPOSAL_(X)
ASKED

T-2

DETERMINE
PROJECT_
FORM
CONTENT

figure 5.36 employee int-mb_request_decision_(x) : subprocess S2

The first employee is the own internal operation ‘mb_request_decision_(x)’ . This employee has two subprocesses S1 and
S1 and two traps T-1 and T-2.

Software Process Modeling
in SOCCA

page :
version : 0.10

161

ACT_
AM_REQUEST_
PROPOSAL_(X)

NON-
AM_REQUEST_
PROPOSAL_(X)

AM_REQUEST_
PROPOSAL_(X)
ASKED CALL _

MB_REQUEST_
DECISION_(X)

MB_REQUEST_
DECISION
ASKED

T-3

figure 5.37 employee int-am_request_proposal_(x) : subprocess S3

ACT_
AM_REQUEST_
PROPOSAL_(X)

NON-
AM_REQUEST_
PROPOSAL_(X)

AM_REQUEST_
PROPOSAL_(X)
ASKED

MB_REQUEST_
DECISION
ASKED

T-4

figure 5.38 employee int-am_request_proposal_(x) : subprocess S4

The second employee is the caller operation ‘am_request_proposal_(x)’ . This employee has two subprocesses S3 and S4
and two traps T-3 and T-4.

The manager prescribes initially subprocess S3 for the calli ng employee, it is waiting for the call . When the caller enters its
trap T-3, i.e. excutes the call (and the callee is ready in its trap T-1) the manager can make the transition to the next state.
Here it prescribes S4 for the caller, thereby allowing it to proceed in its next subprocess. This has the effect that the caller
does not wait for the result of the called operation but proceeds right away after the manager has started the called
operation.

When the callee has entered its trap T-2 and the caller has entered his trap T-4, the manager can transit back to the state
‘neutral’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

162

5.3.6.5 Chief Executive Officer

5.3.6.5.1 Chief Executive Officer : external behavior-STD, organizational view

The external behavior STD shows the possible sequences in which the exported operation(s) can be started. The class
‘chief executive off icer’ has only one operation relevant for the process fragment ‘writing project management
documents’ , phase1. The organizational view of the external STD does not show any communication details.
Consequently the STD consists of one state ‘neutral’ in which the chief executive off icer waits for a call to its exported
operation ‘ceo_mb_decision_(x)’ . If the call has taken place, the chief executive off icer can make the transition labeled
‘ceo_mb_decision_(x)’ . The chief executive off icer then comes again in the state ‘neutral’ . The possible starting sequence
specified by this STD is thus ‘ceo_mb_decision_(x)’ , ‘ceo_mb_decision_(x)’ , etc.

NEUTRAL

CEO_MB_DECISION_(X)

figure 5.39 chief executive off icer : external behavior STD, organizational view

5.3.6.5.2 Chief Executive Officer : external behavior STD, communicative view

The communicative view of the external behavior STD shows the communication details between the external STD and
the called operation(s).

NEUTRAL
STARTING_
CEO_MB_
DECISION_(X)

CEO_MB_DECISION_(X)
MAKE OR BUY
DECISION
TAKEN

figure 5.40 chief executive off icer : external behavior STD, communicative view

It consists of a neutral state in which the chief executive off icer waits for a call to its operation ‘ceo_mb_decision_(x)’ and
of a state in which he starts this operations. Typically the chief executive off icer does not wait in this ‘starting’ state until
the called operation is finished, but returns as soon as possible to its neutral state. It can then handle another call to the
operation ‘ceo_mb_decision_(x)’ before the current execution of the operation has finished.

The external STD still has another state, ‘make or buy decision taken’ . The reason for this state is explained in the ‘chief
executive off icer : manager-STD’ paragraph.

The callers of the operations of this class can be found in the import-export diagram. They are given in the the
‘ import_list’ attribute of the ‘uses association’ .

5.3.6.5.3 Chief Executive Officer : internal behavior-STDs

The 1 operation ‘ceo_mb_decision’ of the chief executive off icer has the following internal behavior STD.

ACT_
CEO_MB_
DECISION_(X)

NON-
CEO_MB_
DECISION_(X)

CEO_MB_
DECISION_(X)
ASKED TAKE

DECISION

figure 5.41 int-ceo_mb_decision_(x) : internal behavior STD

Software Process Modeling
in SOCCA

page :
version : 0.10

163

The operation has one formal parameter ‘x’ . The multiplicity of concurrent executing STD instances is zero or more. This
is indicated by the solid circle inside the state ‘non ceo_mb_decision_(x)’ . A multiplicity of zero or more means that the
manager STD can start another instance of the internal STD to execute concurrently with an already executing instance of
the internal STD.

The formal parameter of the operation ‘ceo_mb_decision_(x)’ is the requirements document on the basis of which the
‘make’ or ‘buy’ decision has to be made by the chief executive off icer. After being started the operation (=chief executive
off icer) takes this decision as an ‘ internal action’ . The decision is then communicated back to the caller of this operation.
This means that the caller has to wait for the decision after he has placed the call .

5.3.6.5.4 Chief Executive Officer : manager-STD

The communication between the chief executive off icer’s operation (callee) and its caller is managed by a manager STD.
The manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager STD are
labeled with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the
transition. I.e. the transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant
employee(s) has/have entered the trap(s), the transition can and will (eventually) take place.

The caller of the operation ‘ceo_mb_decision_(x)’ has to wait until the operation ‘ceo_mb_decision_(x)’ has progressed to
the point where the decision has been taken. For this reason the manager STD has the state CC1-3. This state also appears
in the external STD as the state ‘make or buy decision taken’ .

CC1-1 CC1-2

TL F-1

TL F-2

CC1-3

TL F-3

TL F-4

figure 5.42 chief executive off icer : manager STD

The notation CCx in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-
callee combination. The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that
enables the transition. The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

There is only one caller-callee combination, the callee ‘ceo_mb_decision_(x)’ and its caller ‘mb_request_decision_(x)’ of
the class ‘make or buy-meeting’ . Because the caller has to wait for the result produced by the callee, the call i s modeled by
the ‘caller waits’ -variant of the caller-callee construct (see SOCCA chapter for this construct). This results in the extra
state in the manager STD and the fact that in the state ‘neutral’ either S1 or S2 is prescribed depending on the state the
STD was in before it entered the state ‘neutral’ .

In the state ‘neutral’ CC and the TLF for the transition leaving the state are :

CC1-1 = {S1 or S2, S3}
TLF-1 = T-1 and T-3 (corresponds with ‘ceo_mb_decision_(x)’ transition in extern STD)
TLF-3 = T-2b

In the state ‘starting_ceo_mb_decision_(x)’ the CC and the TLF for the transition leaving the state are :

CC1-2 = {S2, S3}
TLF-2 = T-2a

In the state ‘make or buy decision taken’ the CC and the TLF for the transition leaving the state are :

CC1-3 = {S1, S4}
TLF-4 = T-4

Software Process Modeling
in SOCCA

page :
version : 0.10

164

5.3.6.5.5 Chief Executive Officer : employee-STDs

The manager STD has the following 2 employee STDs. The first is its own internal operation the callee ‘ceo_mb_
decision_(x)’ . The second is the caller ‘mb_request_decision_(x)’ f rom the class make or buy-meeting.

TAKE
DECISION

T-1

NON-
CEO_MB_
DECISION_(X)

CEO_MB_
DECISION_(X)
ASKED

figure 5.43 employee int-ceo_mb_decision_(x) : subprocess S1

T-2a

NON-
CEO_MB_
DECISION_(X) ACT_

CEO_MB_
DECISION_(X)

CEO_MB_
DECISION_(X)
ASKED TAKE

DECISION

T-2b

figure 5.44 employee int-ceo_mb_decision_(x) : subprocess S2

The first employee is the own internal operation ‘ceo_mb_decision_(x)’ . This employee has two subprocesses S1 and S1
and three traps T-1, T-2a and T-2b. The trap T-2b is to determine that in fact the operation ‘ceo_mb_decision_(x)’ has
progressed to the point where a decision has been taken.

NON-
MB_REQUEST_
DECISION_(X)

MB_REQUEST_
DECISION_(X)
ASKED

CALL _
HPS_MB_
DECISION_(X)

CALL _
CEO_MB_
DECISION_(X)

HPS_MB_
DECISION_
(X)
ASKED

SEE KPA
SOFTWARE
SUBCONTRACT
MANAGEMENT

ACT-
MB_REQUEST_
DECISION_(X)

CEO_MB_
DECISION_
(X)
ASKED

CALL _
HPS_INITIATE_
PROJECT_
FORM_(X)

HPS_INITIATE_
PROJECT_
FORM_(X)
ASKED

CALL _
TPM_WRITE_
PROPOSAL_(X)

TPM_WRITE_
PROPOSAL_(X)
ASKED

T-3

DETERMINE
PROJECT_
FORM
CONTENT

figure 5.45 employee int-mb_request_decision_(x) : subprocess S3

Software Process Modeling
in SOCCA

page :
version : 0.10

165

T-4

NON-
MB_REQUEST_
DECISION_(X)

MB_REQUEST_
DECISION_(X)
ASKED

CALL _
HPS_MB_
DECISION_(X)

HPS_MB_
DECISION_
(X)
ASKED

SEE KPA
SOFTWARE
SUBCONTRACT
MANAGEMENT

[BUY]

ACT-
MB_REQUEST_
DECISION_(X)

CEO_MB_
DECISION_
(X)
ASKED

[MAKE]

CALL _
HPS_INITIATE_
PROJECT_
FORM_(X)

HPS_INITIATE_
PROJECT_
FORM_(X)
ASKED

CALL _
TPM _WRITE_
PROPOSAL_(X)

TPM _WRITE_
PROPOSAL_(X)
ASKED

DETERMINE
PROJECT_
FORM
CONTENT

figure 5.46 employee int-mb_request_decision_(x) : subprocess S4

The second employee is the caller operation ‘mb_request_decision_(x)’ . This employee has two subprocesses S3 and S4
and two traps T-3 and T-4, according to the caller_callee-construct.

In its neutral state the manager prescribes initially subprocess S1 for the callee and S3 for the caller. When the caller enters
its trap T-3, i.e. excutes the call (and the callee is ready in its trap T-1) the manager can make the transition to the state
‘starting_ceo_mb_decision_(x)’ . Here it prescribes S2 for the callee and S3 for the caller (i.e the caller stays in subprocess
S3). When the callee has entered trap T-2a the manager can transit back to its neutral state. Now it prescribes S2 (instead
of S1) for the callee and S3 for the caller. If the callee has finished its action, i.e it has entered trap T2-b, the manager can
transit to state ‘make or buy decision taken’ . Here it prescribes S1 for the callee and S4 for the caller (i.e. the caller is
allowed to proceed). When the caller enters T-4, the manager can transit back to its neutral state. Here it prescribes S1
again for the callee.

Software Process Modeling
in SOCCA

page :
version : 0.10

166

5.3.6.6 Head Personnel Section

5.3.6.6.1 Head Personnel Section : external behavior-STD, organizational view

The external behavior STD shows the possible sequences in which the exported operation(s) can be started. The class
‘head personnel section’ has two operation relevant for the process fragment ‘writing project management documents’ ,
phase1. The organizational view of the external STD does not show any communication details. Consequently the STD
consists of one state ‘neutral’ in which the head personnel section waits for a call to its operation ‘hps_mb_decision_(x)’
or a call to its operation ‘hps_initiate_project_form_(x) ‘ If a call has taken place, the head personnel section can make the
relevant transition. The head personnel section then comes again in the state ‘neutral’ . The possible starting sequence
specified by this STD is thus any combination of ‘ hps_mb_decision_(x)’ -operations and ‘hps_initiate_project_form(x)-
operations.

NEUTRAL

HPS_INITIATE_PROJECT_
FORM _(X)

HPS_M B_DECISION_(X)

figure 5.47 head personnel section : external behavior STD, organizational view

5.3.6.6.2 Head Personnel Section : external behavior STD, communicative view

The communicative view of the external behavior STD shows the communication details between the external STD and
the called operation(s).

NEUTRAL

STARTING_
HPS_MB_
DECISION_(X)

HPS_MB_DECISION_(X)

MAKE OR BUY
DECISION
TAKEN

STARTING_
HPS_INITIATE_
PROJECT_
FORM_(X)

MAKE OR BUY
DECISION
TAKEN

HPS_INITIATE_PROJECT_
FORM_(X)

figure 5.48 head personnel section : external behavior STD, communicative view

The STD consists of a neutral state in which the head personnel section waits for a call to one of its two operations
‘hps_mb_decision_(x)’ and ‘hpd_initiate_project_form_(x)’ . Furthermore it has two states in which an operation is
started. Typically the head personnel section does not wait in a ‘starting’ state until the called operation is finished, but
returns as soon as possible to its neutral state. It can then handle another call , either to its other operation or to the same
operation.

The external STD still has another state, ‘make or buy decision taken’ . The reason for this state is explained in the ‘head
personnel section off icer : manager-STD’ paragraph.

The callers of the operations of this class can be found in the import-export diagram. They are given in the the
‘ import_list’ attribute of the ‘uses association’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

167

5.3.6.6.3 Head Personnel Section : internal behavior-STDs

The 2 operations ‘hps_mb_decision’ and ‘hps_initiate_project_form_(x)’ of the head personnel section have the following
internal behavior STDs.

ACT_
HPS_MB_
DECISION_(X)

NON-
HPS_MB_
DECISION_(X)

HPS_MB_
DECISION_(X)
ASKED TAKE

DECISION

figure 5.49 int-hps_mb_decision_(x) : internal behavior STD

The operation ‘hps_mb_decision_(x)’ has one formal parameter ‘x’ . The multiplicity of concurrent executing STD
instances is zero or more. This is indicated by the solid circle inside the state ‘non hps_mb_decision_(x)’ . A multiplicity of
zero or more means that the manager STD can start another instance of the internal STD to execute concurrently with an
already executing instance of the internal STD.

The formal parameter of the operation ‘hps_mb_decision_(x)’ is the requirements document on the basis of which the
‘make’ or ‘buy’ decision has to be made by the head presonnel section. After being started the operation (=chief executive
off icer) takes this decision as an ‘ internal action’ . The decision is then communicated back to the caller of this operation.
This means that the caller has to wait for the decision after he has placed the call .

ACT_
HPS_INITIATE_
PROJECT_
FORM_(X)

NON-
HPS_INITIATE_
PROJECT_
FORM_(X)

HCS_ENTER_
IN_MIS_(X)
ASKED

HPS_INITIATE_
PROJECT_
FORM_(X)
ASKED

CALL _
PF_INITIATE_(X)

CALL _HCS_
ENTER_IN_
MIS_(PROJECT_
FORM)

PF_INITIATE_
(X)
ASKED

figure 5.50 int-hps_initiate_project_form_(x) : internal behavior STD

The operation ‘hps_initiate_project_form_(x)’ has one formal parameter ‘x’ . The multiplicity of concurrent executing
STD instances is zero or more.

The formal parameter of the operation ‘hps_initiate_project_form_(x)’ is the content with which the project form is to be
initialized. The caller operation has to wait until the project form is created and initialized. The created project form is then
given to the head controller section (call_hcs_enter_in_mis(project_form)). The head controller section enters (has it
entered by one of its subordinates) the data on the project form in the Management Information System (MIS) of the Waco
Business Unit (WBU).

5.3.6.6.4 Head Personnel Section : manager-STD

The communication between the head personnel section’s operation (callee) and its caller is managed by a manager STD.
The manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager STD are
labeled with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the
transition. I.e. the transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant
employee(s) has/have entered the trap(s), the transition can and will (eventually) take place.

The caller of the operation ‘hps_mb_decision_(x)’ has to wait until the operation ‘hps_mb_decision_(x)’ has progressed
to the point where the decision has been taken. For this reason the manager STD has the state CPS4. This state also
appears in the external STD as the state ‘make or buy decision taken’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

168

CPS1

MAKE OR BUY
DECISION
TAKEN

CPS2CPS3

CPS4

TL F-2

TL F-1TL F-3

TL F-4

TL F-5TL F-6

figure 5.51 head personnel section : manager STD

The notation CPSx in the STD stands for Consolidated Prescribed Subprocesses and is a set of CCx’s. The notation CCx
in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-callee combination.
The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that enables the transition.
The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

In the state ‘neutral’ the CPS and the TLFs for the transitions leaving the state are :

CPS1 = {CC1-1, CC2-1}
TLF-1 = T-1 and T-3 (corresponds with ‘hps_mb_decision_(x)’ transition)
TLF-3 = T-5 and T-7 (corresponds with ‘hps_initiate_project_form_x)’ transition)
TLF-5 = T-2b

In the state ‘starting_hps_mb_decision_(x)’ the CPS and the TLFs for the transitions leaving the state are :

CPS2 = {CC1-2, CC2-1}
TLF-2 = T-2a

In the state ‘starting_hps_initiate_project_form_(x)_1’ the CPS and the TLFs for the transitions leaving the state are :

CPS3 = {CC1-1, CC2-2}
TLF-4 = T-6 and T-8

In the state ‘make or buy decision taken’ the CPS and the TLFs for the transitions leaving the state are :

CPS4 = {CC1-3, CC2-1}
TLF-6 = T-4

Because the caller ‘mb_request_decision’ has to wait for the result produced by the callee ‘hps_mb_decision_(x)’ , the call
is modeled by the ‘caller waits’ -variant of the caller-callee construct (see SOCCA chapter for this construct). This results
in the fact that in CC1-1 either S1 or S2 is prescribed depending on the state the STD was in before it entered the state
‘neutral’ .

CC1-1 = {S1 or S2, S3}
CC1-2 = {S2, S3}
CC1-3 = {S1, S4}

In its neutral state the manager prescribes initially subprocess S1 for the callee and S3 for the caller. When the caller enters
its trap T-3, i.e. excutes the call (and the callee is ready in its trap T-1) the manager can make the transition to the state
‘starting_hps_mb_decision_(x)’ . Here it prescribes S2 for the callee and S3 for the caller (i.e the caller stays in subprocess
S3). When the callee has entered trap T-2a the manager can transit back to its neutral state. Now it prescribes S2 (instead
of S1) for the callee and S3 for the caller. If the callee has finished its action, i.e it has entered trap T2-b, the manager can
transit to state ‘make or buy decision taken’ . Here it prescribes S1 for the callee and S4 for the caller (i.e. the caller is

Software Process Modeling
in SOCCA

page :
version : 0.10

169

allowed to proceed). When the caller enters T-4, the manager can transit back to its neutral state. Here it prescribes S1
again for the callee.

The caller-callee combinations for ‘hps_initiate_project_form_(x)’ and its caller ‘mb_request_decision_(x)’ of the class
make or buy-meeting are :

CC2-1 = {S5, S7}
CC2-2 = {S6, S8}

At any one time the manager STD of class ‘head personnel section’ will prescribe for its employee ‘mb_request_
decision_(x)’ 2 subprocesses, (S3 or S4) and (S7 or S8). This is because both the callees belong to the same class and are
being called by one caller. The actual prescribed subprocess is the intersection of (S3 or S4) and (S7 or S8) (see
explanation of intersection of prescribed subprocesses in SOCCA chapter).

5.3.6.6.5 Head Personnel Section : employee-STDs

The manager STD has the following 3 employee STDs. The first is its own internal operation the callee ‘hps_mb_
decision_(x)’ . The second is the caller ‘mb_request_decision_(x)’ f rom the class make or buy-meeting. The third is the
own internal operation ‘hps_initiate_project_form_(x). This operation is called by ‘mb_request_decision’ . This is the
same operation that calls the first employee. So there are only 3 employees. Two callees and one caller.

TAKE
DECISION

T-1

NON-
HPS_M B_
DECISION_(X)

HPS_M B_
DECISION_(X)
ASKED

figure 5.52 employee int-hps_mb_decision_(x) : subprocess S1

T-2a

NON-
HPS_MB_
DECISION_(X) ACT_

CEO_MB_
DECISION_(X)

HPS_MB_
DECISION_(X)
ASKED TAKE

DECISION

T-2b

figure 5.53 employee int-hps_mb_decision_(x) : subprocess S2

The first employee is the own internal operation ‘hps_mb_decision_(x)’ . This employee has two subprocesses S1 and S1
and three traps T-1, T-2a and T-2b. The trap T-2b is to determine that in fact the operation ‘hps_mb_decision_(x)’ has
progressed to the point where a decision has been taken.

Software Process Modeling
in SOCCA

page :
version : 0.10

170

NON-
MB_REQUEST_
DECISION_(X)

MB_REQUEST_
DECISION_(X)
ASKED

CALL _
HPS_MB_
DECISION_(X)

HPS_MB_
DECISION_
(X)
ASKED

SEE KPA
SOFTWARE
SUBCONTRACT
MANAGEMENT

[BUY]

ACT-
MB_REQUEST_
DECISION_(X)

CEO_MB_
DECISION_
(X)
ASKED

[MAKE]

CALL _
HPS_INITIATE_
PROJECT_
FORM_(X)

HPS_INITIATE_
PROJECT_
FORM_(X)
ASKED

CALL _
TPM_WRITE_
PROPOSAL_(X)

TPM_WRITE_
PROPOSAL_(X)
ASKED

DETERMINE
PROJECT_
FORM
CONTENT

T-3

figure 5.54 employee int-mb_request_decision_(x) : subprocess S3

T-4

NON-
MB_REQUEST_
DECISION_(X)

MB_REQUEST_
DECISION_(X)
ASKED

CALL _
CEO_MB_
DECISION_(X)

HPS_MB_
DECISION_
(X)
ASKED

SEE KPA
SOFTWARE
SUBCONTRACT
MANAGEMENT

[BUY]

ACT-
MB_REQUEST_
DECISION_(X)

CEO_MB_
DECISION_
(X)
ASKED

[MAKE]

CALL _
HPS_INITIATE_
PROJECT_
FORM_(X)

HPS_INITIATE_
PROJECT_
FORM_(X)
ASKED

CALL _
TPM_WRITE_
PROPOSAL_(X)

TPM_WRITE_
PROPOSAL_(X)
ASKED

DETERMINE
PROJECT_
FORM
CONTENT

figure 5.55 employee int-mb_request_decision_(x) : subprocess S4

NON-
MB_REQUEST_
DECISION_(X)

MB_REQUEST_
DECISION_(X)
ASKED

CALL _
HPS_MB_
DECISION_(X)

CALL _
CEO_MB_
DECISION_(X)

HPS_MB_
DECISION_
(X)
ASKED

SEE KPA
SOFTWARE
SUBCONTRACT
MANAGEMENT

[BUY]

ACT-
MB_REQUEST_
DECISION_(X)

CEO_MB_
DECISION_
(X)
ASKED

[MAKE]

CALL _
HPS_INITIATE_
PROJECT_
FORM_(X)

HPS_INITIATE_
PROJECT_
FORM_(X)
ASKED

TPM_WRITE_
PROPOSAL_(X)
ASKED

DETERMINE
PROJECT_
FORM
CONTENT

T-7

figure 5.56 employee int-mb_request_decision_(x) : subprocess S7

Software Process Modeling
in SOCCA

page :
version : 0.10

171

T-8

NON-
MB_REQUEST_
DECISION_(X)

MB_REQUEST_
DECISION_(X)
ASKED

CALL _
HPS_MB_
DECISION_(X)

CALL _
CEO_MB_
DECISION_(X)

HPS_MB_
DECISION_
(X)
ASKED

SEE KPA
SOFTWARE
SUBCONTRACT
MANAGEMENT

[BUY]

ACT-
MB_REQUEST_
DECISION_(X)

CEO_MB_
DECISION_
(X)
ASKED

[MAKE]

HPS_INITIATE_
PROJECT_
FORM_(X)
ASKED

CALL _
TPM_WRITE_
PROPOSAL_(X)

TPM_WRITE_
PROPOSAL_(X)
ASKED

DETERMINE
PROJECT_
FORM
CONTENT

figure 5.57 employee int-mb_request_decision_(x) : subprocess S8

The second employee is the caller operation ‘mb_request_decision_(x)’ . This employee has four subprocesses and four
traps. The two subprocesses S3 and S4 and the two traps T-3 and T-4 are according to the caller_callee-construct. The
callee is in this case ‘hps_mb_decision_(x)’ .

The two subprocesses S7 and S8 and the two traps T-7 and T-8 are also according to the caller_callee-construct. The callee
is in this case ‘hps_initiate_project_form_(x)’ .

T-5

NON-
HPS_INITIATE_
PROJECT_
FORM_(X)

HPS_INITIATE_
PROJECT_
FORM_(X)
ASKED

CALL _
PF_INITIATE_(X)

PF_INITIATE_
(X)
ASKED CALL _HCS_

ENTER_IN_
MIS_(PROJECT_
FORM)

HCS_ENTER_
IN_M IS_(X)
ASKED

figure 5.58 employee int-hps_initiate_project_form_(x) : subprocess S5

T-6

ACT_
HPS_INITIATE_
PROJECT_
FORM_(X)

NON-
HPS_INITIATE_
PROJECT_
FORM_(X)

HPS_INITIATE_
PROJECT_
FORM_(X)
ASKED

CALL _
PF_INITIATE_(X)

PF_INITIATE_
(X)
ASKED CALL _HCS_

ENTER_IN_
MIS_(PROJECT_
FORM)

HCS_ENTER_
IN_MIS_(X)
ASKED

figure 5.59 employee int-hps_initiate_project_form_(x) : subprocess S6

The third employee is the internal callee operation ‘hps_initiate_project_form_(x)’ . This employee has two subprocesses
S5 and S6 and two traps T-5 and T-6, according to the caller_callee-construct.

Software Process Modeling
in SOCCA

page :
version : 0.10

172

5.3.6.7 Project form

5.3.6.7.1 Project form : external behavior-STD, organizational view

The external behavior STD shows the possible sequences in which the exported operation(s) can be started. The class
‘project from’ has only one operation relevant for the process fragment ‘writing project management documents’ , phase1.
The organizational view of the external STD does not show any communication details. Consequently the STD consists of
one state ‘neutral’ in which the project form waits for a call to its exported operation ‘pf_initiate_(x)’ . If the call has taken
place, the project form can make the transition labeled ‘pf_initiate_(x)’ . The project form then comes again in the state
‘neutral’ . The possible starting sequence specified by this STD is thus ‘pf_initiate_(x)’ , ‘pf_initiate_(x)’ , etc.

NEUTRAL

PF_INITIATE_(X)

figure 5.60 project form : external behavior STD, organizational view

5.3.6.7.2 Project form : external behavior-STD, communicative view

The communicative view of the external behavior STD shows the communication details between the external STD and
the called operation(s). It consists of a neutral state in which the project form waits for a call to its operation
‘pf_initiate_(x)’ and of a state in which he starts this operation. Typically the project form does not wait in this ‘starting’
state until the called operation is finished, but returns as soon as possible to its neutral state. It can then handle another call
to the operation ‘pf_initiate_(x)’ before the current execution of the operation has finished.

The external STD still has another state, ‘project form initiated’ . The reason for this state is explained in the ‘project form :
manager-STD’ chapter.

The callers of the operations of this class can be found in the import-export diagram. They are given in the the
‘ import_list’ attribute of the ‘uses association’ .
.

NEUTRAL
STARTING_
PF_INITIATE_
(X)

PF_INITIATE_(X)
PROJECT
FORM
INITIATED

figure 5.61 project form : external behavior STD, communicative view

5.3.6.7.3 Project form : internal behavior-STDs

The 1 operation ‘pf_initiate_(x)’ of the project form has the following internal behavior STD.

INITIATE
ATTRIBUTES
WITH X

ACT_
PF_INITIATE_(X)

NON-
PF_INITIATE_
(X)

PF_INITIATE_
(X) ASKED CREATE

PROJECT FORM

figure 5.62 int-pf_initiate_(x) : internal behavior STD

The operation ‘pf_inititate_(x)’ has one formal parameter ‘x’ . The multiplicity of concurrent executing STD instances is
zero or more. This is indicated by the solid circle inside the state ‘non pf_initiate_(x)’ . A multiplicity of zero or more

Software Process Modeling
in SOCCA

page :
version : 0.10

173

means that the manager STD can start another instance of the internal STD to execute concurrently with an already
executing instance of the internal STD.

The formal parameter of the operation ‘pf_inititate_(x)’ is the content with which the newly created project form is
initialized. The operation first creates a new project form object and then initializes its attributes with the actual parameter
value of ‘ x’ .

5.3.6.7.4 Project form : manager-STD

The communication between the project form’s operations (callees) and their callers is managed by a manager STD. The
manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager STD are labeled
with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the transition. I.e. the
transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant employee(s)
has/have entered the trap(s), the transition can and will (eventually) take place.

The caller of the operation ‘pf_initiate_(x)’ has to wait until the operation ‘pf_initiate_(x)’ has progressed far enough for
an initiated project form objrct to be in existance. This is because the caller (the head personnel section operation
‘hps_initiate_project_form_(x)’) needs the project form object (id) in its next action. It uses it as a parameter value in its
‘call_hcs_enter_in_mis_(x)’ . For this reason the manager STD has the state CC1-3. This state also appears in the external
STD as the state ‘project form initiated’ .

CC1-1 CC1-2

TL F-1

TL F-2

CC1-3

TL F-3

TL F-4

figure 5.63 project form : manager STD

The notation CCx in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-
callee combination. The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that
enables the transition. The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

There is only one caller-callee combination, the callee ‘pf_initiate_(x)’ and its caller ‘hps_initiate_project_form_(x)’ of the
class head personnel section. Because the caller has to wait for the result produced by the callee, the call i s modeled by the
‘caller waits’ -variant of the caller-callee construct (see SOCCA chapter for this construct). This results in the extra state in
the manager STD and the fact that in the state ‘neutral’ either S1 or S2 is prescribed depending on the state the STD was in
before it entered the state ‘neutral’ .

In the state ‘neutral’ CC and the TLF for the transition leaving the state are :

CC1-1 = {S1 or S2, S3}
TLF-1 = T-1 and T-3 (corresponds with ‘ rd_initiate_(x)’ transition in extern STD)
TLF-3 = T-2b

In the state ‘starting_pf_inititate_(x)’ the CC and the TLF for the transition leaving the state are :

CC1-2 = {S2, S3}
TLF-2 = T-2a

In the state ‘project form initiated’ the CC and the TLF for the transition leaving the state are :

CC1-3 = {S1, S4}
TLF-4 = T-4

5.3.6.7.5 Project form : employee-STDs

Software Process Modeling
in SOCCA

page :
version : 0.10

174

The manager STD has 2 employee STDs. These are the callee ‘pf_initiate_(x)’ and its caller ‘hps_initiated_
project_form_(x)’ of the class customer. The calli ng of ‘ pf_initiate_(x)’ is modeled by the ‘caller waits’ -variant of the
caller-callee construct.

T-1

NON-
PF_INITIATE_
(X)

PF_INITIATE_
(X) ASKED CREATE

PROJECT FORM
INITIATE
ATTRIBUTES
WITH X

figure 5.64 employee int-pf_initiate_(x) : subprocess S1

T-2a

NON-
PF_INITIATE_
(X) ACT_

PF_INITIATE_(X)

PF_INITIATE_
(X) ASKED CREATE

PROJECT FORM
INITIATE
ATTRIBUTES
WITH X

T-2b

figure 5.65 employee int-pf_initiate_(x) : subprocess S2

The first employee is the own internal operation ‘pf_initiate_(x)’ . This employee has two subprocesses S1 and S1 and
three traps T-1, T-2a and T-2b. The trap T-2b is to determine that in fact the operation ‘pf_initiate_(x)’ has created and
initialized a new project form.

ACT_
HPS_INITIATE_
PROJECT_
FORM_(X)

NON-
HPS_INITIATE_
PROJECT_
FORM_(X)

HCS_ENTER_
IN_MIS_(X)
ASKED

HPS_INITIATE_
PROJECT_
FORM_(X)
ASKED

CALL _
PF_INITIATE_(X)

PF_INITIATE_
(X)
ASKED

T-3

figure 5.66 employee int-hps_initiate_project_form_(x) : subprocess S3

ACT_
HPS_INITIATE_
PROJECT_
FORM_(X)

NON-
HPS_INITIATE_
PROJECT_
FORM_(X)

HCS_ENTER_
IN_MIS_(X)
ASKED

HPS_INITIATE_
PROJECT_
FORM_(X)
ASKED

CALL _HCS_
ENTER_IN_
MIS_(PROJECT_
FORM)

PF_INITIATE_
(X)
ASKED

T-4

figure 5.67 employee int-hps_initiate_project_form_(x) : subprocess S4

The second employee is the caller operation ‘hps_initiate_project_form_(x)’ . This employee has two subprocesses S3 and
S4 and two traps T-3 and T-4 according to the caller_callee-construct.

In its neutral state the manager prescribes initially subprocess S1 for the callee and S3 for the caller. When the caller enters
its trap T-3, i.e. excutes the call (and the callee is ready in its trap T-1) the manager can make the transition to the state
‘starting_pf_initiate_(x). Here it prescribes S2 for the callee and S3 for the caller (i.e the caller stays in subprocess S3).
When the callee has entered trap T-2a the manager can transit back to its neutral state. Now it prescribes S2 (instead of S1)
for the callee and S3 for the caller. If the callee has finished its action, i.e it has entered trap T2-b, the manager can transit

Software Process Modeling
in SOCCA

page :
version : 0.10

175

to state ‘project form initiated’ . Here it prescribes S1 for the callee and S4 for the caller (i.e. the caller is allowed to
proceed). When the caller enters T-4, the manager can transit back to its neutral state. Here it prescribes S1 again for the
callee.

Software Process Modeling
in SOCCA

page :
version : 0.10

176

5.3.6.8 Head controller section

5.3.6.8.1 Head controller section : external behavior-STD, organizational view

The external behavior STD shows the possible sequences in which the exported operation(s) can be started. The class
‘head controller section’ has only one operation relevant for the process fragment ‘writing project management
documents’ , phase1. The organizational view of the external STD does not show any communication details.
Consequently the STD consists of one state ‘neutral’ in which the head controller section waits for a call to its exported
operation ‘hcs_enter_ in_mis_(x)’ . If the call has taken place, the head controller section can make the transition labeled
‘hcs_enter_in_mis _(x)’ . The head controller section then comes again in the state ‘neutral’ . The possible starting
sequence specified by this STD is thus ‘hcs_enter_in_mis_(x)’ , ‘hcs_enter_in_mis_(x)’ , etc.

NEUTRAL

HCS_ENTER_IN_MIS_(X)

figure 5.68 head controller section : external behavior STD, organizational view

5.3.6.8.2 Head controller section : external behavior-STD, communicative view

The communicative view of the external behavior STD shows the communication details between the external STD and
the called operation(s).

NEUTRAL
STARTING_
HCS_ENTER_
IN_MIS_(X)

HCS_ENTER_IN_MIS_(X)

figure 5.69 head controller section : external behavior STD, communicative view

This external behavior STD has two states. In the state neutral the head controller section waits until a call has been placed
to its operation ‘hcs_enter_in_mis_(x). If a call has been made, the manager STD can (and eventually will) transit to the
state ‘starting_hcs_enter_in_mis_(x)’ . If the operation has been started the manager can transit back to the state neutral.

The callers of the operations of this class can be found in the import-export diagram. They are given in the the
‘ import_list’ attribute of the ‘uses association’ .

5.3.6.8.3 Head controller section : internal behavior-STDs

The head controller section has 1 operation : ‘hcs_enter_in_mis_(x)’ . This operation has the following internal behavior
STD.

ACT_
HCS_ENTER_
IN_MIS_(X)

NON-
HCS_ENTER_
IN_MIS_(X)

HCS_ENTER_
IN_MIS_(X)
ASKED ENTER ‘X’ IN

MANAGEMENT
INFORMATION
SYSTEM

figure 5.70 int-hcs_enter_in_mis_(x) : internal behavior STD

The operation ‘hcs_enter_in_mis_(x)’ has one formal parameter ‘x’ . The multiplicity of concurrent executing STD
instances is zero or more. This is indicated by the solid circle inside the state ‘non hcs_enter_in_mis_(x)’ . A multiplicity of

Software Process Modeling
in SOCCA

page :
version : 0.10

177

zero or more means that the manager STD can start another instance of the internal STD to execute concurrently with an
already executing instance of the internal STD.

The formal parameter of the operation ‘hcs_enter_in_mis_(x)’ is any information that needs to be entered in the
Management Information System (MIS) of the Waco Business Unit (WBU). With this operation the head controller
section enters the data in the MIS (or let one of his subordinates do it).

5.3.6.8.4 Head controller section : manager-STD

The communication between the head controller’s operations (callees) and their callers is managed by a manager STD.
The manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager STD are
labeled with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the
transition. I.e. the transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant
employee(s) has/have entered the trap(s), the transition can and will (eventually) take place.

CC1-1 CC1-2

TL F-1

TL F-2

figure 5.71 head controller section : manager STD

The notation CCx in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-
callee combination. The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that
enables the transition. The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

There is only one caller-callee combination, the callee ‘hcs_enter_in_mis_(x)’ and its caller ‘hps_initiate_project
form(x)’ of the class head personnel section. The calli ng is modeled by the ‘caller does not wait’ -variant of the caller-
callee construct (see SOCCA chapter for this construct).

In the state ‘neutral’ CC and the TLF for the transition leaving the state are :

CC1-1 = {S1, S3}
TLF-1 = T-1 and T-3 (corresponds with ‘hcs_enter_in_mis_(x)’ transition in extern STD)

In the state ‘starting_hcs_enter_in_mis_(x)’ the CC and the TLF for the transition leaving the state are :

CC1-2 = {S2, S4}
TLF-2 = T-2 and T-4

5.3.6.8.5 Head controller section : employee-STDs

The manager STD has 2 employee STDs. These are the callee ‘hcs_enter_in_mis_(x)’ and its caller ‘hps_initiate_
project_form_(x)’ of the class head personnel section.

T-1

NON-
HCS_ENTER_
IN_MIS_(X)

HCS_ENTER_
IN_MIS_(X)
ASKED ENTER ‘X’ IN

MANAGEMENT
INFORMATION
SYSTEM

figure 5.72 employee int-hcs_enter_in_mis_(x) : subprocess S1

Software Process Modeling
in SOCCA

page :
version : 0.10

178

T-2

NON-
HCS_ENTER_
IN_MIS_(X) ACT_

HCS_ENTER_
IN_MIS_(X)

HCS_ENTER_
IN_MIS_(X)
ASKED ENTER ‘X’ IN

MANAGEMENT
INFORMATION
SYSTEM

figure 5.73 employee int-hcs_enter_in_mis_(x) : subprocess S2

The first employee is the own internal operation ‘hcs_enter_in_mis_(x)’ . This employee has two subprocesses S1 and S1
and two traps T-1 and T-2 according to the caller_callee-construct.

ACT_
HPS_INITIATE_
PROJECT_
FORM_(X)

NON-
HPS_INITIATE_
PROJECT_
FORM_(X)

HCS_ENTER_
IN_MIS_(X)
ASKED

HPS_INITIATE_
PROJECT_
FORM_(X)
ASKED

CALL _
PF_INITIATE_(X)

CALL _HCS_
ENTER_IN_
MIS_(PROJECT_
FORM)

PF_INITIATE_
(X)
ASKED

T-3

figure 5.74 employee int-hps_initiate_project_form_(x) : subprocess S3

ACT_
HPS_INITIATE_
PROJECT_
FORM_(X)

NON-
HPS_INITIATE_
PROJECT_
FORM_(X)

HCS_ENTER_
IN_M IS_(X)
ASKED

HPS_INITIATE_
PROJECT_
FORM_(X)
ASKED

CALL _
PF_INITIATE_(X)

PF_INITIATE_
(X)
ASKED

T-4

figure 5.75 employee int-hps_initiate_project_form_(x) : subprocess S4

The second employee is the caller operation ‘hps_initiate_project_form_(x)’ . This employee has two subprocesses S3 and
S4 and two traps T-3 and T-4.

The manager prescribes initially subprocess S3 for the calli ng employee, it is waiting for the call . When the caller enters its
trap T-3, i.e. excutes the call (and the callee is ready in its trap T-1) the manager can make the transition to the next state.
Here it prescribes S4 for the caller, thereby allowing it to proceed in its next subprocess. This has the effect that the caller
does not wait for the result of the called operation but proceeds right away after the manager has started the called
operation.

When the callee has entered its trap T-2 and the caller has entered his trap T-4, the manager can transit back to the state
‘neutral’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

179

5.3.6.9 Technical_Project_Manager

5.3.6.9.1 Technical_Project_Manager : external behavior-STD, organizational view

The external behavior STD shows the possible sequences in which the exported operation(s) can be started. The class
‘ technical project manager’ has only one operation relevant for the process fragment ‘writing project management
documents’ , phase 1. The organizational view of the external STD does not show any communication details.
Consequently the STD consists of one state ‘neutral’ in which the technical project manager waits for a call to its exported
operation ‘ tpm_write_proposal_(x)’ . If the call has taken place, the technical project manager can make the transition
labeled ‘ tpm_write_proposal_(x)’ . The technical project manager then comes again in the state ‘neutral’ . The possible
starting sequence specified by this STD is thus ‘ tpm_write_proposal_(x)’ , ‘ tpm_write_proposal_(x)’ , etc.

NEUTRAL

TPM_WRITE_PROPOSAL_(X)

figure 5.76 technical_project_manager : external behavior STD, organizational view

5.3.6.9.2 Technical_Project_Manager : external behavior-STD, communicative view

The communicative view of the external behavior STD shows the communication details between the external STD and
the called operation(s).

NEUTRAL
STARTING_
TPM_WRITE_
PROPOSAL_(X)

TPM_WRITE_PROPOSAL_(X)

figure 5.77 technical_project_manager : external behavior STD, communicative view

This external behavior STD has two states. In the state neutral the technical project manager waits until a call has been
placed to its operation ‘ tpm_write_proposal_(x)’ . If a call has been made, the manager STD can (and eventually will)
transit to the state ‘starting_tpm_write_proposal_(x)’ . If the operation has been started the manager can transit back to the
state neutral.

The callers of the operations of this class can be found in the import-export diagram. They are given in the the
‘ import_list’ attribute of the relevant ‘uses association’ .

5.3.6.9.3 Technical_Project_Manager : internal behavior-STDs

The technical project manager has 1 operation relevant for phase 1 of the process fragment ‘writing project management
documents’ : ‘ tpm_write_proposal_(x)’ . Only a ‘view’ of the internal STD is shown. The full STD is described in the
modeling of phase 2. A ‘view’ on an STD shows only the transitions and (aggregated) states that are important for a
certain ‘user’ of that STD. (See also the explanation on ‘views’ in the SOCCA chapter). The view shown here is the view
of the external STD on this internal STD. Only the one transition ‘act_tpm_write_proposal_(x)’ is relevant to the external
STD. And only two states are seen by the external STD. Either the STD is non-active or the STD is executing.

ACT_
TPM_WRITE_
PROPOSAL_(X)

NON-
TPM_WRITE_
PROPOSAL_(X)

WRITE
PROPOSAL

Software Process Modeling
in SOCCA

page :
version : 0.10

180

figure 5.78 int-tpm_write_proposal_(x) : internal behavior STD, view

The operation ‘ tpm_write_proposal_(x)’ has one formal parameter ‘x’ . The multiplicity of concurrent executing STD
instances is zero or more. This is indicated by the solid circle inside the state ‘non tpm_write_proposal_(x)’ . A multiplicity
of zero or more means that the manager STD can start another instance of the internal STD to execute concurrently with
an already executing instance of the internal STD.

The formal parameter of the operation ‘ tpm_write_proposal_(x)’ is the requirements document. Based on this
requirements document the technical project manager writes a (preliminary version of) a Software Development Plan
(SDP), a Project Contract (PC) and an Internal Resources Allocation document (IRA document). The writing of the SDP,
PC and IRA document is modeled in phase 2 of the process fragment ‘writing project management documents’ .

The preliminary version of the SDP and PC constitute the proposal.

5.3.6.9.4 Technical_Project_Manager : manager-STD

The communication between the technical project manager’s operations (callees) and their callers is managed by a
manager STD. The manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager
STD are labeled with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the
transition. I.e. the transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant
employee(s) has/have entered the trap(s), the transition can and will (eventually) take place.

CC1-1 CC1-2

TL F-1

TL F-2

figure 5.79 technical_project_manager : manager STD

The notation CCx in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-
callee combination. The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that
enables the transition. The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

There is only one caller-callee combination, the callee ‘ tpm_write_proposal_(x)’ and its caller ‘mb_request_ decision_(x)’
of the class ‘make or buy-meeting’ . The calli ng is modeled by the ‘caller does not wait’ -variant of the caller-callee
construct (see SOCCA chapter for this construct).

In the state ‘neutral’ the CC and the TLF for the transition leaving the state are :

CC1-1 = {S1, S3}
TLF-1 = T-1 and T-3 (corresponds with ‘ tpm_write_proposal_(x)’ transition in extern STD)

In the state ‘starting_tpm_write_proposal_(x)’ the CC and the TLF for the transition leaving the state are :

CC1-2 = {S2, S4}
TLF-2 = T-2 and T-4

5.3.6.9.5 Technical_Project_Manager : employee-STDs

The manager STD has 2 employee STDs. These are the callee ‘ tpm_write_proposal_(x)’ and its caller ‘mb_request_
decision_(x)’ of the class make or buy-meeting.

Software Process Modeling
in SOCCA

page :
version : 0.10

181

T-1

NON-
TPM_WRITE_
PROPOSAL_(X)

WRITE
PROPOSAL

figure 5.80 employee int-tpm_write_proposal_(x) : subprocess S1

T-2

NON-
TPM_WRITE_
PROPOSAL_(X) ACT_

TPM_WRITE_
PROPOSAL_(X)

WRITE
PROPOSAL

figure 5.81 employee int-tpm_write_proposal_(x) : subprocess S2

The first employee is the own internal operation ‘ tpm_write_proposal_(x)’ . This employee has two subprocesses S1 and
S2 and two traps T-1 and T-2 according to the caller_callee-construct. The internal STD can be a long time in its
subprocess S2. This is the actual ‘writing’ of the proposal by the technical project manager.

T-3

NON-
MB_REQUEST_
DECISION_(X)

MB_REQUEST_
DECISION_(X)
ASKED

CALL _
HPS_MB_
DECISION_(X)

CALL _
CEO_MB_
DECISION_(X)

HPS_MB_
DECISION_
(X)
ASKED

SEE KPA
SOFTWARE
SUBCONTRACT
MANAGEMENT

[BUY]

ACT-
MB_REQUEST_
DECISION_(X)

CEO_MB_
DECISION_
(X)
ASKED

[MAKE]

CALL _
HPS_INITIATE_
PROJECT_
FORM_(X)

HPS_INITIATE_
PROJECT_
FORM_(X)
ASKED

CALL _
TPM_WRITE_
PROPOSAL_(X)

TPM_WRITE_
PROPOSAL_(X)
ASKED

DETERMINE
PROJECT_
FORM
CONTENT

figure 5.82 employee int-mb_request_decision_(x) : subprocess S3

Software Process Modeling
in SOCCA

page :
version : 0.10

182

T-4

NON-
MB_REQUEST_
DECISION_(X)

MB_REQUEST_
DECISION_(X)
ASKED

CALL _
HPS_MB_
DECISION_(X)

CALL _
CEO_MB_
DECISION_(X)

HPS_MB_
DECISION_
(X)
ASKED

SEE KPA
SOFTWARE
SUBCONTRACT
MANAGEMENT

[BUY]

ACT-
MB_REQUEST_
DECISION_(X)

CEO_MB_
DECISION_
(X)
ASKED

[MAKE]

CALL _
HPS_INITIATE_
PROJECT_
FORM_(X)

HPS_INITIATE_
PROJECT_
FORM_(X)
ASKED

TPM_WRITE_
PROPOSAL_(X)
ASKED

DETERMINE
PROJECT_
FORM
CONTENT

figure 5.83 employee int-mb_request_decision_(x) : subprocess S4

The second employee is the caller operation ‘mb_request_decision_(x)’ . This employee has two subprocesses S3 and S4
and two traps T-3 and T-4 according to the caller_callee-construct.

The manager prescribes initially subprocess S3 for the calli ng employee, it is waiting for the call . When the caller enters its
trap T-3, i.e. excutes the call (and the callee is ready in its trap T-1) the manager can make the transition to the next state.
Here it prescribes S4 for the caller, thereby allowing it to proceed in its next subprocess. This has the effect that the caller
does not wait for the result of the called operation but proceeds right away after the manager has started the called
operation.

When the callee has entered its trap T-2 and the caller has entered his trap T-4, the manager can transit back to the state
‘neutral’ .

SOFTWARE PROCESS MODELING in SOCCA

student : H.G.Brugman
studentnr : 9105506
version : 0.10

Software Process Modeling
in SOCCA

page :
version : 0.10

182

5. Key Process Area ‘Software Project Planning’
figure 5.1figure 5.2 figure 5.3figure 5.4 figure 5.5figure 5.6 figure 5.7figure 5.8 figure 5.9figure 5.10
figure 5.11figure 5.12 figure 5.13figure 5.14 figure 5.15figure 5.16 figure 5.17figure 5.18 figure 5.19figure 5.20
figure 5.21figure 5.22 figure 5.23figure 5.24 figure 5.25figure 5.26 figure 5.27figure 5.28 figure 5.29figure 5.30
figure 5.31figure 5.32 figure 5.33figure 5.34 figure 5.35figure 5.36 figure 5.37figure 5.38 figure 5.39figure 5.40
figure 5.41figure 5.42 figure 5.43figure 5.44 figure 5.45figure 5.46 figure 5.47figure 5.48 figure 5.49figure 5.50
figure 5.51figure 5.52 figure 5.53figure 5.54 figure 5.55figure 5.56 figure 5.57figure 5.58 figure 5.59figure 5.60
figure 5.61figure 5.62 figure 5.63figure 5.64 figure 5.65figure 5.66 figure 5.67figure 5.68 figure 5.69figure 5.70
figure 5.71figure 5.72 figure 5.73figure 5.74 figure 5.75figure 5.76 figure 5.77figure 5.78 figure 5.79figure 5.80
figure 5.81figure 5.82 figure 5.83

Software Process Modeling
in SOCCA

page :
version : 0.10

183

5.3.7 State Transition Diagrams - Phase 2

Phase 2, ‘writing and consultation’ , of the process fragment ‘writing project management documents’ (partly) models the
behavior of the following classes :

- technical project manager
- customer
- account manager
- quality assurance adviser
- head production section
- head support section
- project management document
- project meeting minus

Software Process Modeling
in SOCCA

page :
version : 0.10

184

5.3.7.1 Technical_Project_Manager

5.3.7.1.1 Technical_Project_Manager : external behavior-STD, organizational view

The external behavior STD shows the possible sequences in which the exported operation(s) can be started. The class
‘ technical project manager’ has four operations relevant for the process fragment ‘writing project management
documents’ , phase 2. The first is the operation ‘ tpm_write_proposal_(x)’ . The calli ng of this operation is described in
phase 1 and will not be duplicated here. The other three operations are ‘ tpm_write_proj_man_doc_(x,y)’ ,
‘ tpm_perform_estimate_(x)’ and ‘ tpm_confer_estimate_(x)’ . The organizational view of the external STD does not show
any communication details. Consequently the STD consists of one state ‘neutral’ in which the technical project manager
waits for a call to its exported operations The possible starting sequence specified by this STD is any combination of
‘ tpm_write_proj_man_doc_(x)’ -operations, ‘ tpm_perform_ estimate_(x)’ -operations and ‘ tpm_confer_estimate_(x)-
operations.

NEUTRAL

TPM_WRITE_PROJ_MAN_
DOC_(X,Y)

TPM_PERFORM_ESTIMATE_(X)

TPM_CONFER_ESTIMATE_(X)

figure 5.84 technical_project_manager : external behavior STD, organizational view

5.3.7.1.2 Technical_Project_Manager : external behavior-STD, communicative view

The communicative view of the external behavior STD shows the communication details between the external STD and
the called operation(s).

NEUTRAL

DISC_
STARTING_
TPM_PERFORM
ESTIMATE_(X)

STARTING_
TPM_WRITE_
PROJ_MAN_
DOC_(X,Y)

STARTING_
TPM_CONFER_
ESTIMATE_(X)

TPM_PERFORM_ESTIMATE_(X)
TPM_WRITE_PROJ_MAN_
DOC_(X,Y)

TPM_CONFER_ESTIMATE_(X)

DISC_
WAITING_
CALLE R_
PROCEED

figure 5.85 technical_project_manager : external behavior STD, communicative view

The STD consists of a neutral state in which the technical project manager waits for a call to one of its three operations
‘ tpm_write_proj_man_doc_(x,y)’ , ‘ tpm_perform_estimate_(x)’ and ‘ tpm_confer_estimate_(x)’ . Furthermore it has three
states in which an operation is started. Typically the technical project manager does not wait in a ‘starting’ state until the
called operation is finished, but returns as soon as possible to its neutral state. It can then handle another call , either to its
other operations or to the same operation.

The operation ‘ tpm_perform_estimate_(x)’ can be called by two callers, ‘hprs_second_estimate_(x)’ and ‘ tpm_write_
proposal_(x)’ . To distinguish between those callers, the starting state for the operation ‘ tpm_perform_ estimate_(x)’ is a
‘discriminator’ state, ‘disc_starting_ tpm_perform_estimate_(x)’ . (See the SOCCA chapter for an explanation af the
discriminator construct.)

Software Process Modeling
in SOCCA

page :
version : 0.10

185

The fifth state is ‘disc_waiting_caller_proceed’ . This is an aggregate state in which the manager determines which waiting
caller may proceed.

There are four callers for the three callee operations. The operation ‘ tpm_perform_estimate_(x)’ has two callers. Both
callers have to wait for a result after they have called ‘ tpm_perform_estimate_(x)’ . If the manager detects that the
execution of ‘ tpm_perform_estimate_(x)’ has progressed far enough (i.e. it as produced a return result), it can transit to
‘disc_waiting_caller_proceed’ . In this state it is determined for wich of the two callers the result is intended. This caller
will t hen be allowed to proceed and the manager transits back to ‘neutral’ .

The operation ‘ tpm_confer_estimate_(x)’ has one caller, namely the operation ‘ tpm_write_proposal_(x)’ of the same tpm-
object. After the call the caller may proceed a littl e further (one state to be precise) and then has to wait until the callee
returns a result (i.e the required estimate). If the manager detects that the callee has progressed far enough in its execution,
it can and will t ransit to the state ‘disc_waiting_caller_proceed’ and it will allow the caller to proceed.

The operation ‘ tpm_write_proj_man_doc_(x,y)’ can be called up to three times by the same caller ‘ tpm_write_
proposal_(x)’ . The caller has to wait for the result of all (max 3) concurrently running instances. Initialy the tpm has to
write all three project management documents. Then there will be three instances of the operation ‘ tpm_write_proj_man
doc(x,y)’ running concurrently. Later on it may be that the tpm has to correct one or more of the documents. Then 1, 2
or 3 instances of the operation ‘ tpm_write_proj_man_doc_(x,y)’ will run concurrently.

There is only one physical external STD and consequently only one manager STD. The manager STD prescribes in its
states subprocesses for the internal STDs. These subprocesses apply to only one instance of an internal STD and its caller.
Nevertheless the manager can prescribe a different behavior restriction for every instance of a callee and also for its caller.
This phenomenon, which is not readily expressed in the current notation conventions of SOCCA, is called the ‘ role’ of a
manager STD. A manager STD can play different ‘ roles’ with respect to different instances of the same internal STD
which are called by the same caller. In every role it prescribes a subprocess to its employees. The actual subprocess of the
caller employee is then the intersection of the subprocesses prescribed by the different roles of the manager. In fact just if
there were more than one manager for this employee.

If there are for example 3 concurrent executing instances of the operation ‘ tpm_write_proj_man_doc_(x,y)’ , the manager
has three roles. If the manager detects that one of the instances has produced a result, it will t ransit to the state
‘disc_waiting_caller_proceed’ . Then it decides for which ‘ role’ of the manager a change in precribed subprocesses is in
order. It will aplly this change. Thus in one role of the manager the caller is allowed to proceed and in the two other roles it
still has to wait. Consequently the caller does not proceed. Only after all three ‘ roles’ of the manager allow the caller to
proceed, it can actually do so.

5.3.7.1.3 Technical_Project_Manager : internal behavior-STDs

The technical project manager has 4 operations relevant for phase 2 of the process fragment ‘writing project management
documents’ : ‘ tpm_write_proposal_(x)’ , ‘ tpm_write_proj_man_doc_(x,y)’ , ‘ tpm_perform_estimate_(x)’ and ‘ tpm_
confer_estimate_(x)’ . These operation have the following internal behavior STDs.

ACT_
TPM_WRITE_
PROPOSAL_(X)

NON-
TPM_WRITE_
PROPOSAL_(X)

WRITE
PROPOSAL

figure 5.86 int-tpm_write_proposal_(x) : internal behavior STD, view

In the description of the operation ‘ tpm_write_proposal_(x)’ in phase 1, only a view of its internal STD was given (see
figure above). Here the complete STD is given. To indicate how the view corresponds to the full STD, the aggregated state
‘write proposal’ is shown in the full STD (see figure below).

Software Process Modeling
in SOCCA

page :
version : 0.10

186

ACT_
TPM_WRITE_
PROPOSAL_(X)

NON
TPM_WRITE_
PROPOSAL_(X)

TPM_WRITE_
PROPOSAL_(X)
ASKED [REQUIRE-

MENTS ARE
CLEAR]

ANALYSE
REQUIRE-
MENTS DOC X

CALL_
QAA_AUDIT_(X)

CALL_
HPRS_PMM_
REQUEST_
APPROVAL(X)

CALL_
HPRS_FINAL_
REVIEW_(X)

CALL_AM_QUERY_
REQUIREMENT_(X)

AM_QUERY_
REQUIREMENT
_(X) ASKED

PERFORM
RISC ANALYSIS CALL_TPM_

PERFORM_
ESTIMATE_(X)

TPM_PERFORM_
ESTIMATE_(X)
ASKED CALL_HPRS_

SECOND_
ESTIMATE_(X)

HPRS_SECOND_
ESTIMATE_(X)
ASKED

CALL_TPM_
CONFER_
ESTIMATE_(X)

TPM_CONFER_
ESTIMATE_(X)
ASKED

[CONSENSUS
ON ESTIMATE]

CALL_TPM_
WRITE_PROJ_
MAN_DOC_(X,Y)

HPRS_FINAL_
REVIEW_(X)
ASKED

[NOT OK]

QAA_AUDIT_(X)
ASKED

[NOT OK]

HPRS_PMM_
REQUEST_
APPROVAL(X)
ASKED

WRITE
PROPOSAL

BEGIN
WRITING

WRITING
FINISHED

TPM_WRITE_
PROJ_MAN_
DOC_(X,Y)
ASKED

CALL_TPM_
WRITE_PROJ_
MAN_DOC_(X,Y)

CALL_TPM_
WRITE_PROJ_
MAN_DOC_(X,Y)

1st AND 2nd
ESTIMATE
ARE KNOWN

TPM_WRITE_
PROJ_MAN_
DOC_(X,Y)
ASKED

TPM_WRITE_
PROJ_MAN_
DOC_(X,Y)
ASKED

PREPARATIONPREPARATION

figure 5.87 int-tpm_write_proposal_(x) : internal behavior STD

The operation ‘ tpm_write_proposal_(x)’ has one formal parameter ‘x’ . The multiplicity of concurrently executing STD
instances is zero or more. This is indicated by the solid circle inside the state ‘non tpm_write_proposal_(x)’ .

The formal parameter of the operation ‘ tpm_write_proposal_(x)’ is the requirements document. Before the technical
project manager actually starts writing he first analyses the requirements document on consistency and completeness. If he
has any questions in this respect, he queries the customer via the account manager (call_am_query_requirement_(x)). If
the requirements are clear to him, he takes the guarded transition ’[requirements are clear]’ . He then performs a risk
analysis. After that he estimates the necessary person-hours for the project. To do this he calls his own operation ‘ tpm_
perform_estimate_(x)’ . Immediately thereafter he informs his section head that he needs a second estimate (call_hprs_
second_estimate). The tpm then has to wait for the the result of his own estimate and the result of the second estimate,
which is returned to him via his section head.

If the estimates are significantly different, the tpm confers with the second estimator (he calls the operation ‘ tpm_
confer_estimate_(x)’ of another tpm-object). When a consensus is reached about a final estimate, the tpm proceeds by
writing a software development plan, a ‘ internal resources allocation’ -document and a project contract. He does this by
calli ng his own internal operation ‘ tpm_write_proj_man_doc_(x,y) three times. The parameter ‘x’ is in those three calls
the same, the requirements document. The parameter ‘y’ is different for the three calls. ‘y’ signifies the type of project
management document that has to be written. ‘y’ is ‘sdp’ , ‘ ira’ and ‘pc’ respectively. The three instances of the operation
‘ tpm_write_proj_man_doc_(x,y)’ run concurrently.

The tpm has to wait until all three instances of the operation ‘ tpm_write_proj_man_doc_(x)’ have progressed to a point in
their execution where the writing of the respective project management document is finished.

Software Process Modeling
in SOCCA

page :
version : 0.10

187

The technical project manager then presents the final version of all three project management documents to his section
head for review (call_hprs_final_review_(x)). If the section head has still some comments at this stage (the transition [not
ok]), the tpm updates the documents accordingly and presents them again for final review,

If the section head of the tpm approves of the documents, the technical project manager presents them for a quality audit
to the quality assurance adviser (call_qaa_audit_(x)). If the quality assurance adviser has any comments (the transition [not
ok]), the technical project manager updates the documents accordingly and presents them again for final review to his
section head and then again to the quality assurance adviser for a quality audit.

If the audit is ok, then the tpm presents the project management documents to his section head for subsequent approval in
the next ‘project meeting minus’ (call_hprs_pmm_request_approval_(x)). Because all participants in the ‘project meeting
minus’ are already (intensively) consulted by the technical project manager during the writing of the documents, the
‘project meeting minus’ will always give an OK on these documents.

[SDP or PC]

CALL_
CU_AGREE_
PROJ_M AN_
DOC_(X)

NON-
TPM _WRITE_
PROJ_M AN_(X) ACT-

TPM _WRITE_
PROJ_M AN_(X)

TPM _WRITE_
PROJ_M AN_(X)
ASKED

[IRA]

[DOCUM ENT FINISHED]

CU_AGREE_
PROJ_M AN_
DOC_(X)
ASKED

CALL_
HPRS_CONSULT _(X)

HPRS_
CONSULT_(X)
ASKED

HPRS_
CONSULT_(X)
ASKED

CALL_
HPRS_
CONSULT_(X)

CALL_
AM_INQUIRE_
CU_
BUDGET_(X)

AM_INQUIRE_
CU_BUDGET_
_(X) ASKED

CALL_
PM D_WRITE
_(X)

PM D_WRITE
_(X)
ASKED

CALL_
PM D_WRITE_(X)

PM D_WRITE
_(X)
ASKED

CALL_
HSS_INQUIRE_
RESOURCE_
(X)

HSS_INQUIRE_
RESOURCE_
(X)
ASKED

QAA_INQUIRE_
RESOURCE_
(X)
ASKED

CALL_
QAA_
INQUIRE_
RESOURCE_
(X)

[DOCUM ENT FINISHED]

figure 5.88 int-tpm_write_proj_man_doc_(x) : internal behavior STD

The operation ‘ tpm_write_proj_man_doc_(x,y)’ has two formal parameters. The parameter ‘x’ is the requirements
document on which the project management document is to be based. The parameter ‘y’ indicates which project
management document must be produced. If ‘ y’ is ‘sdp’ then a software development plan must be written. If ‘ y’ is ‘pc’
then a project contract must be written. If ‘ y’ is ‘ ira’ then an internal resources allocation-document must be made. The
multiplicity of concurrent executing STD instances is zero or more. This is indicated by the solid circle inside the state
‘non tpm_write_proposal_(x)’ .

The STD has two distinct parts. One is for writing a software development plan (SDP) or a project contract (PC). The
other part deals with the making of an internal resources allocation-document (IRA-document). The guarded transitions
‘[SDP or PC]’ and ‘[IRA]’ model this ‘split ’ in the STD. The production of a project management document is an iterative
process of writing (call_pmd_write_(x)) and consulting.

When producing an SDP or PC the technical project manager consults with his section head, the customer and the account
manager. His section head is informed on the progress of the writing and consulted on technical matters (call_
hprs_consult_(x)). The budget of the customer is checked with the account manager (call_am_inquire_cu_budget_(x)).
The tpm also determines regularly if the customer agrees with the software development plan and the project contract
(call_cu_agree_proj_man_doc_(x)). This applies both for the intermediate versions and the final version of the software
development plan and the project contract.

Software Process Modeling
in SOCCA

page :
version : 0.10

188

When producing an IRA-document the technical project manager consults his section head, the heads of the production
section and the quality assurance adviser. The technical project manager checks with the heads of all the support sections
and with the quality assurance adviser to detemine if the needed internal resources are available within the time frame of
the project (call_hss_inquire_resource_(x) and call_qaa_inquire_resource_(x)). Internal resources consist of :
(software)engineers, computer equipment, support software, person-hours of the computer support section, work
locations, off ice equipment, person-hours of the controller section and person-hours of the quality assurance adviser.

ESTIMATE
NECESSARY
PERSON-HOURS
ON BASIS OF
REQUIREMENT
DOC ‘X’

ACT_
TPM_PERFORM_
ESTIMATE_(X)

NON-
TPM_PERFORM_
ESTIMATE_(X)

TPM_PERFORM_
ESTIMATE_(X)
ASKED

figure 5.89 int-tpm_perform_estimate_(x) : internal behavior STD

The operation ‘ tpm_perform_estimate_(x)’ has one formal parameter ‘x’ . This is the requirement document on the basis of
wich the estimate must be made. The multiplicity of concurrent executing STD instances is zero or more. This is indicated
by the solid circle inside the first state.

ACT_
TPM_CONFER_
ESTIMATE_(X)

NON-
TPM_CONFER_
ESTIMATE_(X)

TPM_CONFER_
ESTIMATE_(X)
ASKED CONSIDER

THE REMARK
‘X’ AND RESPOND

figure 5.90 int-tpm_confer_estimate_(x) : internal behavior STD

The operation ‘ tpm_confer_estimate_(x)’ has one formal parameter ‘x’ . This models a question or a remark that one party
in the dialogue is making. The second party (who executes this STD after it has been called by the first party), considers
this question or remark and responds to it. The conference is thus modeled by a ‘question-and-answer’ session. The first
party quizzes the second party repetitively until he is satisfied.

The multiplicity of concurrent executing STD instances is zero or more.

5.3.7.1.4 Technical_Project_Manager : manager-STD

The communication between the technical project manager’s operations (callees) and their callers is managed by a
manager STD. The manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager
STD are labeled with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the
transition. I.e. the transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant
employee(s) has/have entered the trap(s), the transition can and will (eventually) take place.

Software Process Modeling
in SOCCA

page :
version : 0.10

189

CPS1

CPS2CPS3

CPS4

TL F-1TL F-3

TL F-5

CPS5

TL F-2

TL F-6

TL F-4

TL F-7

TL F-8

figure 5.91 technical_project_manager : manager STD

The notation CPSx in the STD stands for Consolidated Prescribed Subprocesses and is a set of CCx’s. The notation CCx
in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-callee combination.
The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that enables the transition.
The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

The caller-waits construct is modeled conform the second (2nd) variant. This means that the TLF-1, TLF-3, TLF-5 and
TLF-7 have to have some additional information for the manager to decide which transition to take. This information
comes from the internal bookkeeping of the manager. If an operation is started by the manager on behalf of a caller, a
caller-callee relation is initiated. In this way the manager can check whether a non-active employee still has some caller
waiting to be allowed to proceed. If both the callee and the caller have terminated, the particular caller-callee relation is
cancelled in the internal administration of the manager.

In the state ‘neutral’ the CPS and the TLFs for the transitions leaving the state are :

CPS1 = {CC1-1, CC2-1, CC3-1}
TLF-1 = T-1 and ((T-3 and not(caller-callee relation)) or (T-5 and not(caller-callee relation)))
TLF-3 = T-11 and (((T-13a and not(caller-callee relation)) or ((T-13b and not(caller-callee relation)) or

 ((T-13c and not(caller-callee relation)))
TLF-5 = (T-7 and T-9) and not(caller-callee relation)
TLF-7 = (T-1 and ((T-3 and (caller-callee relation)) or (T-5 and (caller-callee relation)))) or

 ((T-7 and T-9) and (caller-callee relation)) or
 (T-11 and (((T-13a and (caller-callee relation)) or ((T-13b and (caller-callee relation)) or

 ((T-13c and (caller-callee relation)))) or
 (T-11 and (T-15a or T-15b)

In the state ‘disc_starting_tpm_perform_estimate_(x)’ the CPS and the TLFs for the transitions leaving the state are :

CPS2 = {CC1-2, CC2-1, CC3-1}
TLF-2 = T-2

In the state ‘starting_tpm_write_proj_man_doc_(x,y)’ the CPS and the TLFs for the transitions leaving the state are :

CPS3 = {CC1-1, CC2-1, CC3-2}
TLF-4 = T-12

In the state ‘starting_tpm_confer_estimate_(x)’ the CPS and the TLFs for the transitions leaving the state are :

CPS4 = {CC1-1, CC2-2, CC3-1}
TLF-6 = T-8

The state ‘disc_waiting_caller_proceed’ is entered by the manager after it detects that some employee has returned a result.
The manager decides in this state which caller is allowed to proceed. The CPS and the TLFs for the transitions leaving the
state are :

Software Process Modeling
in SOCCA

page :
version : 0.10

190

CPS5 = {CC1-3, CC2-1, CC3-1} or
{CC1-1, CC2-3, CC3-1} or
{CC1-1, CC2-1, CC3-3}

TLF-8 = (T-4 or T-6) or T-10 or (T-14a or T-14b or T14c)

The caller-callee combinations for ‘ tpm_perform_estimate_(x)’ and its two callers ‘hprs_second_estimate_(x)’ and
‘ tpm_write_proposal_(x)’ are :

CC1-1 = {S1, S3, S5}
CC1-2 = {S2, S3, S5} (either caller has to wait)
CC1-3 = {S1, S4, S5} or (letting the caller ‘hprs_second_estimate_(x)’ proceed)

{S1, S3, S6} (letting the caller ‘ tpm_write_proposal_(x)’ proceed)

The caller-callee combinations for ‘ tpm_confer_estimate_(x)’ and its caller ‘ tpm_write_proposal_(x)’ are :

CC2-1 = {S7, S9}
CC2-2 = {S8, S9} (caller has to wait)
CC2-3 = {S7, S10} (letting the caller proceed)

The caller-callee combinations for ‘ tpm_write_proj_man_doc_(x,y)’ and its caller ‘ tpm_write_proposal_(x)’ are :

CC3-1 = {S11, S13 or S15}
CC3-2 = {S12, S13}
CC3-3 = {S11, S14}

5.3.7.1.5 Technical_Project_Manager : employee-STDs

The manager STD has 5 employees relevant for this phase. These are the callee ‘ tpm_perform_estimate_(x)’ and its two
callers ‘hprs_second_estimate_(x)’ and ‘ tpm_write_proposal_(x)’ , the callee ‘ tpm_confer_estimate_(x)’ and its caller
‘ tpm_write_proposal_(x)’ and the callee ‘ tpm_write_proj_man_doc_(x,y)’ and its caller ‘ tpm_write_proposal_(x)’ .

T-1

NON-
TPM_PERFORM_
ESTIMATE_(X)

TPM_PERFORM_
ESTIMATE_(X)
ASKED

ESTIMATE
NECESSARY
PERSON-HOURS
ON BASIS OF
REQUIREMENT
DOC ‘X’

figure 5.92 employee int-tpm_perform_estimate_(x) : subprocess S1

T-2

NON-
TPM_PERFORM_
ESTIMATE_(X) ACT_

TPM_PERFORM_
ESTIMATE_(X)

TPM_PERFORM_
ESTIMATE_(X)
ASKED ESTIMATE

NECESSARY
PERSON-HOURS
ON BASIS OF
REQUIREMENT
DOC ‘X’

figure 5.93 employee int-tpm_perform_estimate_(x) : subprocess S2

The first employee is the own internal operation ‘ tpm_perform_estimate_(x)’ . This employee has two subprocesses S1 and
S1 and two traps T-1 and T-2 according to the caller_callee-construct. The caller has to wait for the result. This is modeled
by the second variant of the caller-waits construct. That is to say, the manager detects that the employee
‘ tpm_perform_estimate_(x)’ has entered trap T1 after its execution has finished. The manager will t hen transit to its state
‘disc_waiting_ caller_proceed’ and it will allow the caller to proceed. To be able to do this, the manager has an internal
administration in which the caller-callee relations are recorded. A caller-callee relation connects a caller (i.e. the specific
call of an instance of an operation of an object) with a callee (i.e. specific instance of the called operation) that has been

Software Process Modeling
in SOCCA

page :
version : 0.10

191

started by the manager on behalf of that caller. This way the manager can check if the operation
‘ tpm_perform_estimate_(x)’ when it is in trap T1, still has a waiting caller associated with it.

CALL
TPM_PERFORM_
ESTIMATE_(X)

ACT_
HPRS_SECOND_
ESTIMATE_(X)

NON-
HPRS_SECOND_
ESTIMATE_(X)

HPRS_SECOND_
ESTIMATE_(X)
ASKED

T-3

figure 5.94 employee int-hprs_second_estimate_(x) : subprocess S3

ACT_
HPRS_SECOND_
ESTIMATE_(X)

NON-
HPRS_SECOND_
ESTIMATE_(X)

HPRS_SECOND_
ESTIMATE_(X)
ASKED

T-4

figure 5.95 employee int-hprs_second_estimate_(x) : subprocess S4

The second employee is the caller operation ‘hprs_second_estimate_(x)’ . This employee has two subprocesses S3 and S4
and two traps T-3 and T-4 according to the caller_callee-construct. This caller of the operation ‘ tpm_perform_
estimate_(x) has to wait for the the result produced by the callee. This is taken care of conform the second variant of the
caller-callee construct.

ACT_
TPM_WRITE_
PROPOSAL_(X)

NON
TPM_WRITE_
PROPOSAL_(X)

TPM_WRITE_
PROPOSAL_(X)
ASKED [REQUIRE-

MENTS ARE
CLEAR]

ANALYSE
REQUIRE-
MENTS DOC X

CALL _
QAA_AUDIT_(X)

CALL _
HPRS_PMM_
REQUEST_
APPROVAL(X)

CALL _
HPRS_FINAL_
REVIEW_(X)

CALL _AM_QUERY_
REQUIREMENT_(X)

AM_QUERY_
REQUIREMENT
_(X) ASKED

PERFORM
RISC ANALYSIS CALL _TPM_

PERFORM_
ESTIMATE_(X)

TPM_PERFORM_
ESTIMATE_(X)
ASKED CALL _HPRS_

SECOND_
ESTIMATE_(X)

HPRS_SECOND_
ESTIMATE_(X)
ASKED

CALL _TPM_
CONFER_
ESTIMATE_(X)

TPM_CONFER_
ESTIMATE_(X)
ASKED

[CONSENSUS
ON ESTIMATE]

CALL _TPM_
WRITE_PROJ_
MAN_DOC_(X,Y)

HPRS_FINAL_
REVIEW_(X)
ASKED

[NOT OK]

QAA_AUDIT_(X)
ASKED

[NOT OK]

HPRS_PMM_
REQUEST_
APPROVAL(X)
ASKED

BEGIN
WRITING

WRITING
FINISHED

TPM_WRITE_
PROJ_MAN_
DOC_(X,Y)
ASKED

CALL _TPM_
WRITE_PROJ_
MAN_DOC_(X,Y)

CALL _TPM_
WRITE_PROJ_
MAN_DOC_(X,Y)

1st AND 2nd
ESTIMATE
ARE KNOWN

TPM_WRITE_
PROJ_MAN_
DOC_(X,Y)
ASKED

TPM_WRITE_
PROJ_MAN_
DOC_(X,Y)
ASKED

PREPARATIONPREPARATION

T-5

figure 5.96 employee int-tpm_write_proposal_(x) : subprocess S5

Software Process Modeling
in SOCCA

page :
version : 0.10

192

ACT_
TPM_WRITE_
PROPOSAL_(X)

NON
TPM_WRITE_
PROPOSAL_(X)

TPM_WRITE_
PROPOSAL_(X)
ASKED [REQUIRE-

MENTS ARE
CLEAR]

ANALYSE
REQUIRE-
MENTS DOC X

CALL _
QAA_AUDIT_(X)

CALL _
HPRS_PMM_
REQUEST_
APPROVAL(X)

CALL _
HPRS_FINAL_
REVIEW_(X)

CALL _AM_QUERY_
REQUIREMENT_(X)

AM_QUERY_
REQUIREMENT
_(X) ASKED

PERFORM
RISC ANALYSIS

TPM_PERFORM_
ESTIMATE_(X)
ASKED CALL _HPRS_

SECOND_
ESTIMATE_(X)

HPRS_SECOND_
ESTIMATE_(X)
ASKED

CALL _TPM_
CONFER_
ESTIMATE_(X)

TPM_CONFER_
ESTIMATE_(X)
ASKED

[CONSENSUS
ON ESTIMATE]

CALL _TPM_
WRITE_PROJ_
MAN_DOC_(X,Y)

HPRS_FINAL_
REVIEW_(X)
ASKED

[NOT OK]

QAA_AUDIT_(X)
ASKED

[NOT OK]

HPRS_PMM_
REQUEST_
APPROVAL(X)
ASKED

BEGIN
WRITING

WRITING
FINISHED

TPM_WRITE_
PROJ_MAN_
DOC_(X,Y)
ASKED

CALL _TPM_
WRITE_PROJ_
MAN_DOC_(X,Y)

CALL _TPM_
WRITE_PROJ_
MAN_DOC_(X,Y)

1st AND 2nd
ESTIMATE
ARE KNOWN

TPM_WRITE_
PROJ_MAN_
DOC_(X,Y)
ASKED

TPM_WRITE_
PROJ_MAN_
DOC_(X,Y)
ASKED

PREPARATIONPREPARATION

T-6

figure 5.97 employee int-tpm_write_proposal_(x) : subprocess S6

The third employee is the caller operation ‘ tpm_write_proposal_(x)’ . This operation calls ‘ tpm_perform_estimate_(x)’ of
the same object. After the call it may proceed another state (it calls ‘hprs_second_estimate_(x)’), but then it has to wait for
the result of ‘ tpm_perform_estimate(x)’ . (At this point it also has to wait for the estimate returned by ‘hprs_
second_estimate_(x)’ . So it may only proceed if both the first and second estimate are known.) The fact that it may
proceed right after the call , but must wait for the result further on in the STD results in two subprocesses : S5 with the two
state-trap T-5 allowing the STD to proceed one state after the call and S6 with the trap T-6.

T-7

NON-
TPM_CONFER_
ESTIMATE_(X)

TPM_CONFER_
ESTIMATE_(X)
ASKED

CONSIDER
THE REMARK
‘X’ AND RESPOND

figure 5.98 employee int-tpm_confer_estimate_(x) : subprocess S7

T-8

NON-
TPM_CONFER_
ESTIMATE_(X) ACT_

TPM_CONFER_
ESTIMATE_(X)

TPM_CONFER_
ESTIMATE_(X)
ASKED CONSIDER

THE REMARK
‘X’ AND RESPOND

figure 5.99 employee int-tpm_confer_estimate_(x) : subprocess S8

The fourth employee is the own internal operation ‘ tpm_confer_estimate_(x)’ . This employee has two subprocesses S7
and S8 and two traps T-7 and T-8 according to the caller_callee-construct. The caller, which is the operation ‘ tpm_

Software Process Modeling
in SOCCA

page :
version : 0.10

193

write_proposal_(x)’ of another tpm-object, has to wait for the result. This is modeled conform the second variant of the
caller-waits construct. The subprocesses and traps of the caller in this respect are S9 and S10 and T-9 and T-10 according
to the caller-callee construct.

[SDP or PC]

CALL _
CU_AGREE_
PROJ_MAN_
DOC_(X)

NON-
TPM_WRITE_
PROJ_MAN_(X)

TPM_WRITE_
PROJ_MAN_(X)
ASKED

[IRA]

[DOCUMENT FINISHED]

CU_AGREE_
PROJ_MAN_
DOC_(X)
ASKED

CALL _
HPRS_CONSULT _(X)

HPRS_
CONSULT _(X)
ASKED

HPRS_
CONSULT _(X)
ASKED

CALL _
HPRS_
CONSULT _(X)

CALL _
AM_INQUIRE_
CU_
BUDGET_(X)

AM_INQUIRE_
CU_BUDGET_
_(X) ASKED

CALL _
PM D_WRITE
_(X)

PM D_WRITE
_(X)
ASKED

CALL _
PM D_WRITE_(X)

PM D_WRITE
_(X)
ASKED

CALL _
HSS_INQUIRE_
RESOURCE_
(X)

HSS_INQUIRE_
RESOURCE_
(X)
ASKED

QAA_INQUIRE_
RESOURCE_
(X)
ASKED

CALL _
QAA_
INQUIRE_
RESOURCE_
(X)

[DOCUMENT FINISHED]

T-11

figure 5.100 employee int-tpm_write_proj_man_doc_(x,y) : subprocess S11

[SDP or PC]

CALL _
CU_AGREE_
PROJ_MAN_
DOC_(X)

NON-
TPM_WRITE_
PROJ_MAN_(X) ACT-

TPM_WRITE_
PROJ_MAN_(X)

TPM_WRITE_
PROJ_MAN_(X)
ASKED

[IRA]

[DOCUMENT FINISHED]

CU_AGREE_
PROJ_MAN_
DOC_(X)
ASKED

CALL _
HPRS_CONSULT_(X)

HPRS_
CONSULT_(X)
ASKED

HPRS_
CONSULT_(X)
ASKED

CALL _
HPRS_
CONSULT_(X)

CALL _
AM_INQUIRE_
CU_
BUDGET_(X)

AM_INQUIRE_
CU_BUDGET_
_(X) ASKED

CALL _
PM D_WRITE
_(X)

PM D_WRITE
_(X)
ASKED

CALL _
PM D_WRITE_(X)

PM D_WRITE
_(X)
ASKED

CALL _
HSS_INQUIRE_
RESOURCE_
(X)

HSS_INQUIRE_
RESOURCE_
(X)
ASKED

QAA_INQUIRE_
RESOURCE_
(X)
ASKED

CALL _
QAA_
INQUIRE_
RESOURCE_
(X)

[DOCUMENT FINISHED]

T-12

figure 5.101 employee int-tpm_write_proj_man_doc_(x,y) : subprocess S12

Software Process Modeling
in SOCCA

page :
version : 0.10

194

The fifth employee is the own internal operation ‘ tpm_write_proj_man_doc_(x)’ . This employee has two subprocesses
S11 and S12 and two traps T-11 and T-12 according to the caller_callee-construct. The caller, which is the operation
‘ tpm_write_proposal_(x)’ of the same tpm-object as to which the callee belongs, has to wait for a result to be returned.
There can be up to three instances of ‘ tpm_write_proj_man_doc_(x,y)’ running concurrently (each with a different value
of y). Each instance is started by the manager on behalf of the same caller. Consequently the manager STD plays three
roles and prescribes three subprocesses at any one time for the caller. These prescribed subprocesses can (but don’ t have
to) be different. The actual subprocess of the caller is the intersection of these three subprocesses. In this model the same
subprocess is prescribed by the three manager-roles at any one time. So the intersection is equal to any one of these
subprocesses.

The caller has to wait until all concurrent instances of the callee have turned in their result. This is achieved by breaking up
the operation ‘ tpm_write_proposal_(x)’ into three subprocesses and making use of the manager state ‘disc_waiting_
caller_proceed’ . The subprocesses are S13 with the nested traps T-13a, T-13b and T-13c, S14 with the traps T-14a, T-14b
and T-14c, and S15 with the traps T-15a and T-15b.

ACT_
TPM_WRITE_
PROPOSAL_(X)

NON
TPM_WRITE_
PROPOSAL_(X)

TPM_WRITE_
PROPOSAL_(X)
ASKED [REQUIRE-

MENTS ARE
CLEAR]

ANALYSE
REQUIRE-
MENTS DOC X

CALL _
QAA_AUDIT_(X)

CALL _
HPRS_PMM_
REQUEST_
APPROVAL(X)

CALL _
HPRS_FINAL_
REVIEW_(X)

CALL _AM_QUERY_
REQUIREMENT_(X)

AM_QUERY_
REQUIREMENT
_(X) ASKED

PERFORM
RISC ANALYSIS CALL _TPM_

PERFORM_
ESTIMATE_(X)

TPM_PERFORM_
ESTIMATE_(X)
ASKED CALL _HPRS_

SECOND_
ESTIMATE_(X)

HPRS_SECOND_
ESTIMATE_(X)
ASKED

CALL _TPM_
CONFER_
ESTIMATE_(X)

TPM_CONFER_
ESTIMATE_(X)
ASKED

[CONSENSUS
ON ESTIMATE]

CALL _TPM_
WRITE_PROJ_
MAN_DOC_(X,Y)

HPRS_FINAL_
REVIEW_(X)
ASKED

[NOT OK]

QAA_AUDIT_(X)
ASKED

[NOT OK]

HPRS_PMM_
REQUEST_
APPROVAL(X)
ASKED

BEGIN
WRITING

WRITING
FINISHED

TPM_WRITE_
PROJ_MAN_
DOC_(X,Y)
ASKED

CALL _TPM_
WRITE_PROJ_
MAN_DOC_(X,Y)

CALL _TPM_
WRITE_PROJ_
MAN_DOC_(X,Y)

1st AND 2nd
ESTIMATE
ARE KNOWN

TPM_WRITE_
PROJ_MAN_
DOC_(X,Y)
ASKED

TPM_WRITE_
PROJ_MAN_
DOC_(X,Y)
ASKED

PREPARATIONPREPARATION

T-13a

T-13b

T-13c

figure 5.102 employee int-tpm_write_proposal_(x) : subprocess S13

Software Process Modeling
in SOCCA

page :
version : 0.10

195

ACT_
TPM_WRITE_
PROPOSAL_(X)

NON
TPM_WRITE_
PROPOSAL_(X)

TPM_WRITE_
PROPOSAL_(X)
ASKED [REQUIRE-

MENTS ARE
CLEAR]

ANALYSE
REQUIRE-
MENTS DOC X

CALL _
QAA_AUDIT_(X)

CALL _
HPRS_PMM_
REQUEST_
APPROVAL(X)

CALL _AM_QUERY_
REQUIREMENT_(X)

AM_QUERY_
REQUIREMENT
_(X) ASKED

PERFORM
RISC ANALYSIS CALL _TPM_

PERFORM_
ESTIMATE_(X)

TPM_PERFORM_
ESTIMATE_(X)
ASKED CALL _HPRS_

SECOND_
ESTIMATE_(X)

HPRS_SECOND_
ESTIMATE_(X)
ASKED

CALL _TPM_
CONFER_
ESTIMATE_(X)

TPM_CONFER_
ESTIMATE_(X)
ASKED

[CONSENSUS
ON ESTIMATE]

HPRS_FINAL_
REVIEW_(X)
ASKED

[NOT OK]

QAA_AUDIT_(X)
ASKED

[NOT OK]

HPRS_PMM_
REQUEST_
APPROVAL(X)
ASKED

BEGIN
WRITING

WRITING
FINISHED

TPM_WRITE_
PROJ_MAN_
DOC_(X,Y)
ASKED

1st AND 2nd
ESTIMATE
ARE KNOWN

TPM_WRITE_
PROJ_MAN_
DOC_(X,Y)
ASKED

TPM_WRITE_
PROJ_MAN_
DOC_(X,Y)
ASKED

PREPARATIONPREPARATION

T-14a

T-14bT-14c

figure 5.103 employee int-tpm_write_proposal_(x) : subprocess S14

ACT_
TPM_WRITE_
PROPOSAL_(X)

NON
TPM_WRITE_
PROPOSAL_(X)

TPM_WRITE_
PROPOSAL_(X)
ASKED [REQUIRE-

MENTS ARE
CLEAR]

ANALYSE
REQUIRE-
MENTS DOC X

CALL _
QAA_AUDIT_(X)

CALL _
HPRS_PMM _
REQUEST_
APPROVAL(X)

CALL _
HPRS_FINAL_
REVIEW_(X)

CALL _AM_QUERY_
REQUIREMENT_(X)

AM_QUERY_
REQUIREMENT
_(X) ASKED

PERFORM
RISC ANALYSIS CALL _TPM_

PERFORM_
ESTIMATE_(X)

TPM_PERFORM_
ESTIMATE_(X)
ASKED CALL _HPRS_

SECOND_
ESTIMATE_(X)

HPRS_SECOND_
ESTIMATE_(X)
ASKED

CALL _TPM_
CONFER_
ESTIMATE_(X)

TPM_CONFER_
ESTIMATE_(X)
ASKED

[CONSENSUS
ON ESTIMATE]

HPRS_FINAL_
REVIEW_(X)
ASKED

[NOT OK]

QAA_AUDIT_(X)
ASKED

[NOT OK]

HPRS_PMM _
REQUEST_
APPROVAL(X)
ASKED

BEGIN
WRITING

WRITING
FINISHED

TPM_WRITE_
PROJ_MAN_
DOC_(X,Y)
ASKED

1st AND 2nd
ESTIMATE
ARE KNOWN

TPM_WRITE_
PROJ_MAN_
DOC_(X,Y)
ASKED

TPM_WRITE_
PROJ_MAN_
DOC_(X,Y)
ASKED

PREPARATIONPREPARATION

T-15b T-15a

figure 5.104 employee int-tpm_write_proposal_(x) : subprocess S15

Software Process Modeling
in SOCCA

page :
version : 0.10

196

The assumption in the model is that the tpm calls the needed operations ‘ tpm_write_proj_man_doc_(x,y)’ one after the
other without delay. Initialy the tpm executes 3 calls when he starts from scratch. He has to produce the three project
management documents ‘software development plan’ , ‘ internal resoures allocation-document’ and ‘project contract’ .
Later on, when he has to correct some (or all) of the documents, he executes 1,2 or 3 calls. It is further assumed that the
point in time on which the tpm performs its last call precedes the point in time on which any one of the earlier called
‘ tpm_write_proj_man_doc_(x,y)’ operations finishes its execution. After the last call the tpm stays in the corresponding
state ‘ tpm_write_proj_man_doc_(x,y) asked’ and will not proceed to the next ‘preparation’ state. The tpm can in this
model no longer place a call to ‘ tpm_write_proj_man_doc_(x,y)’ after one of the previously started operations has
returned a result. These are reasonable assumptions considering the amount of time that is needed to write a
projectmanagment document and the fact that all the needed calls are made within a short time frame.

At first the manager prescribes in its neutral state the subprocess S11 for the callee and S13 for the caller. The manager
detects that the first call i s placed when the caller enters it trap T13-a. The manager reacts (if the callee is in T-11) by
going to it state ‘starting tpm_write_proj_man_doc_(x,y)’ and starts the first instance of the called operation. In this state
‘starting tpm_write_proj_man_doc_(x,y)’ the manager prescribes S12 for the callee instance and still S13 for the caller. If
the callee enters trap T-12, the manager can (and will) transit back to neutral. The manager detects the second call (if there
is any) when the caller enters the trap T-13b. The manager will t hen transit again to its state ‘starting tpm_write_
proj_man_doc_(x,y)’ and start a second instance of the callee (this second instance is per definition in its trap T-11). The
manager precsribes in this state S12 for the second instance and still S11 for the first instance. For the caller it prescribes
S13. (That is to say both manager roles prescribe S13 for the caller and the actual prescribed subprocess is thus S13). If the
second callee instance enters its trap T-12, the manager transits back to neutral. The third call (is there is any) is handled by
the manager in a similar way.

Now all the calls that the tpm is going to make, are made. The manager is in its neutral state. Then one of the ‘ tpm_write_
proj_man_doc_(x,y)’ instances finishes its execution. The manager detects this when an instance, for which there exists a
caller-callee relation, enters its trap T-11. The manager transits to its state ‘disc_waiting_caller_proceed’ . Here it still
prescribes S11 for the callee instance. For the caller the manager (in all it roles) prescribes the subprocess S14. The
manager waits in the state ‘disc_waiting_caller_proceed’ until the caller has entered trap T-14a or T-14b or T14-c. I.e. the
caller is allowed to ‘shift’ one state back.

Suppose the caller enters in its traps T-14c or T-14b (i.e. it has placed 2 or 3 calls). If it does so, the manager transits back
to its neutral state where it now prescribes S15 for the caller. The manager can now handle the next finishing instance of
‘ tpm_write_proj_man_doc_(x,y)’ . When this next instance finishes, i.e has entered its T-11, and the caller is in its trap T-
15a or T-15b (i.e. has shifted back another state), the manager transits again to the its state ‘disc_ waiting_caller_proceed’
where it prescribes again S14 for the caller.

Suppose the caller enters now its trap T-14a (i.e. there are no more instances executing on behalf of the caller). When the
manager detects this, it transits back to its state ‘neutral’ . Here it prescribes now S13 for the caller. This means that the
caller is now allowed to proceed.

Software Process Modeling
in SOCCA

page :
version : 0.10

197

5.3.7.2 Customer

5.3.7.2.1 Customer : external behavior-STD, organizational view

The external behavior STD shows the possible sequences in which the exported operation(s) can be started. The class
‘customer’ has two operations relevant for the process fragment ‘writing project management documents’ , phase2. The
organizational view of the external STD does not show any communication details. Consequently the STD consists of one
state ‘neutral’ in which the customer waits for a call to its exported operations ‘cu_query_requirement_(x)’ and
‘cu_agree_proj_man_doc_(x). If a call has taken place, the customer can make the transition labeled wih the called
operation. The customer then comes again in the state ‘neutral’ . The possible starting sequence specified by this STD is
thus any combination of the operations ‘cu_query_requirement_(x)’ and ‘cu_agree_proj_man_doc_(x)’ .

NEUTRAL

CU_QUERY_REQUIREMENT_(X)

CU_AGREE_PROJ_MAN_DOC_(X)

figure 5.105 customer : external behavior STD, organizational view

5.3.7.2.2 Customer : external behavior-STD, communicative view

The communicative view of the external behavior STD shows the communication details between the external STD and
the called operation(s). It consists of a neutral state in which the customer waits for a call to its operation and two starting
states in which the called operations are started. Typically the customer does not wait in this ‘starting’ states until the
called operation is finished, but returns as soon as possible to its neutral state to allow handling a call of its other
operations (or a call to the just started operation).

NEUTRAL

STARTING_
CU_AGREE_
PROJ_MAN_
DOC_(X)

CU_AGREE_PROJ_MAN_DOC_(X)

MAKE OR BUY
DECISION
TAKEN

STARTING_
CU_QUERY_
REQUIRE-
MENT_(X)

DISC_
WAITING_
CALLE R_
PROCEED

CU_QUERY_REQUIREMENT_(X)

figure 5.106 customer : external behavior STD, communicative view

When ‘cu_query_requirement_(x)’ or ‘cu_agree_proj_man_doc_(x)’ are called, the callers must wait for the answer that is
produced by the callees. When a callee has produced an answer, the manager transits to the state ‘disc_waiting_
caller_proceed’ . This state‘disc_waiting_caller_proceed’ is an aggregate state in which the manager determines which
waiting caller had called the callee that produced the result. This caller is then allowed to proceed.

5.3.7.2.3 Customer : internal behavior-STDs

Software Process Modeling
in SOCCA

page :
version : 0.10

198

The customer class has 2 internal operations, ‘cu_query_requirement_(x)’ and ‘cu_agree_proj_man_doc_(x)’ , that are
relevant for phase 2. These operations have the following internal behavior STDs.

ACT_
CU_QUERY_
REQUIREMENT_(X)

NON-
CU_QUERY_
REQUIRE-
MENT_(X)

CU_QUERY_
REQUIRE-
MENT_(X)
ASKED

READY
PREPARE AND
GIVE
ANSWER TO
QUERY

figure 5.107 int-cu_query_requirement_(x) : internal behavior STD

The operation ‘cu_query_requirement_(x)’ is called to ask the customer a question about a certain requirements document.
The formal parameter ‘x’ specifies this requirements document. With this operation the customer answers the question.

ACT_
CU_AGREE_
PROJ_MAN_DOC_(X)

NON-
CU_AGREE_
PROJ_MAN_
DOC_(X)

CU_AGREE_
PROJ_MAN_
DOC_(X)
ASKED

CONSIDER
PROPOSED
PROJ_MAN_DOC
AND GIVE
COMMENT / CONSENT

READY

figure 5.108 int-cu_agree_proj_man_doc_(x) : internal behavior STD

The operation ‘cu_agree_proj_man_doc_(x)’ is called to ask the customer if he agrees with a certain (maybe final) version
of a project management document. The formal parameter ‘x’ is this project management document in question. This can
either be a software development plan or a project contract. With this operation the customer either gives his consent to
the document or he does not agree and gives some comments. This is the operation that is called by the technical project
manager when he writes a project management document. If the customer does not agree and gives some comments, the
technical project manager updates the document accordingly. If the customer agrees with the document, then the technical
project manager knows that the document in its present form will be eventually signed by the customer and it can therefore
be given to his section head for final review.

5.3.7.2.4 Customer : manager-STD

The communication between the customer’s operations (callees) and its callers is managed by a manager STD. The
manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager STD are labeled
with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the transition. I.e. the
transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant employee(s)
has/have entered the trap(s), the transition can and will (eventually) take place.

CPS1

MAKE OR BUY
DECISION
TAKEN

CPS2CPS3

CPS4

TL F-2

TL F-1TL F-3

TL F-4

TL F-5TL F-6

Software Process Modeling
in SOCCA

page :
version : 0.10

199

figure 5.109 customer : manager STD

The notation CPSx in the STD stands for Consolidated Prescribed Subprocesses and is a set of CCx’s. The notation CCx
in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-callee combination.
The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that enables the transition.
The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

The caller-waits construct is modeled conform the second variant. This means that the TLF-1, TLF-3,and TLF-5 have to
have some additional information for the manager to decide which transition to take. This information comes from the
internal bookkeeping of the manager. If an operation is started by the manager on behalf of a caller, a caller-callee relation
is initiated. In this way the manager can check whether a non-active employee still has some caller waiting to be allowed
to proceed. If both the callee and the caller have terminated, the particular caller-callee relation is cancelled in the internal
administration of the manager.

In the state ‘neutral’ the CPS and the TLFs for the transitions leaving the state are :

CPS1 = {CC1-1, CC2-1}
TLF-1 = T-1 and (T-3 and not(caller-callee relation))
TLF-3 = T-5 and (T-7 and not(caller-callee relation))
TLF-5 = (T-1 and (T-3 and (caller-callee relation)) or

 (T-5 and (T7 and (caller-callee relation))

In the state ‘starting_cu_query_requirement_(x)’ the CPS and the TLFs for the transitions leaving the state are :

CPS2 = {CC1-2, CC2-1}
TLF-2 = T-2

In the state ‘starting_cu_agree_proj_man_doc_(x)’ the CPS and the TLFs for the transitions leaving the state are :

CPS3 = {CC1-1, CC2-2}
TLF-4 = T-6

The state ‘disc_waiting_caller_proceed’ is entered by the manager after it detects that some employee has returned a result.
The manager decides in this state which caller is allowed to proceed. The CPS and the TLFs for the transitions leaving the
state are :

CPS4 = {CC1-3, CC2-1} or
{CC1-1, CC2-3}

TLF-6 = T-4 or T-8

The caller-callee combinations for ‘cu_query_requirement_(x)’ and its caller ‘am_query_requirement_(x)’ are :

CC1-1 = {S1, S3}
CC1-2 = {S2, S3} (the caller has to wait)
CC1-3 = {S1, S4} (the caller may proceed)

The caller-callee combinations for ‘cu_agree_proj_man_doc_(x)’ and its caller ‘ tpm_write_proj_man_doc_(x,y)’ are :

CC2-1 = {S5, S7}
CC2-2 = {S6, S7} (the caller has to wait)
CC2-3 = {S5, S8} (the caller may proceed)

5.3.7.2.5 Customer : employee-STDs

The manager STD has 4 employees relevant for this phase. The first employee is the own internal operation
‘cu_query_requirement_(x)’ . This employee has two subprocesses S1 and S1 and two traps T-1 and T-2 according to the
caller_callee-construct.

Software Process Modeling
in SOCCA

page :
version : 0.10

200

The second employee is the operation ‘am_query_requirement_(x)’ of the class account manager. This is the caller of
‘cu_query_requirement_(x)’ . This second employee has the subprocesses S3 and S4 and traps T-3 and T-4 according to
the caller-callee construct. The caller has to wait for the result. This is modeled conform the second variant of the caller-
waits construct.

The third employee is the own internal operation ‘cu_agree_proj_man_doc_(x)’ . This employee has two subprocesses S5
and S6 and two traps T-5 and T-6 according to the caller_callee-construct.

The fourth employee is the operation ‘ tpm_write_proj_man_doc_(x,y)’ of the class technical project manager. This is the
caller of ‘ cu_agree_proj_man_doc_(x)’ . This fourth employee has the subprocesses S7 and S8 and traps T-7 and T-8
according to the caller-callee construct. The caller has to wait for the result. This is modeled conform the second variant of
the caller-waits construct.

Software Process Modeling
in SOCCA

page :
version : 0.10

201

5.3.7.3 Account manager

5.3.7.3.1 Account manager : external behavior-STD, organizational view

The external behavior STD shows the possible sequences in which the exported operation(s) can be started. The class
‘account manager’ has two operations relevant for the process fragment ‘writing project management documents’ , phase2.
The organizational view of the external STD does not show any communication details. Consequently the STD consists of
one state ‘neutral’ in which the account manager waits for a call to its exported operations ‘am_query_requirement_(x)’
and ‘am_inquire_cu_budget_(x). If a call has taken place, the account manager can make the transition labeled wih the
called operation. The account manager then comes again in the state ‘neutral’ . The possible starting sequence specified by
this STD is thus any combination of the operations ‘am_query_requirement_(x)’ and ‘am_inquire_cu_budget_(x)’ .

NEUTRAL

AM_QUERY_REQUIREMENT_(X)

AM_INQUIRE_CU_BUDGET_(X)

figure 5.110 account manager : external behavior STD, organizational view

5.3.7.3.2 Account manager : external behavior-STD, communicative view

The communicative view of the external behavior STD shows the communication details between the external STD and
the called operation(s). It consists of a neutral state in which the customer waits for a call to its operation and two starting
states in which the called operations are started. Typically the customer does not wait in this ‘starting’ states until the
called operation is finished, but returns as soon as possible to its neutral state to allow handling another call to one of its
operations.

NEUTRAL

STARTING_
AM_INQUIRE_
CU_BUDGET_(X)

AM_INQUIRE_CU_BUDGET_(X)

MAKE OR BUY
DECISION
TAKEN

STARTING_
AM_QUERY_
REQUIRE-
MENT_(X)

DISC_
WAITING_
CALLE R_
PROCEED

AM_QUERY_REQUIREMENT_(X)

figure 5.111 account manager : external behavior STD, communicative view

When ‘am_query_requirement_(x)’ or ‘am_inquire_cu_budget_(x)’ are called, the callers must wait for the answer that is
produced by the callees. When a callee has produced an answer, the manager transits to the state ‘disc_waiting_
caller_proceed’ . This state‘disc_waiting_caller_proceed’ is an aggregate state in which the manager determines which
waiting caller had called the callee that produced the result. This caller is then allowed to proceed.

5.3.7.3.3 Account manager : internal behavior-STDs

Software Process Modeling
in SOCCA

page :
version : 0.10

202

The account manager class has 2 internal operations, ‘am_query_requirement_(x)’ and ‘am_inquire_cu_budget_(x)’ , that
are relevant for phase 2. These operations have the following internal behavior STDs.

ACT_
AM_QUERY_
REQUIREMENT_(X)

NON-
AM_QUERY_
REQUIRE-
MENT_(X)

AM_QUERY_
REQUIRE-
MENT_(X)
ASKED

CU_QUERY_
REQUIRE-
MENT_(X)
ASKED

CALL
CU_QUERY_
REQUIREMENT_(X)

figure 5.112 int-am_query_requirement_(x) : internal behavior STD

The operation ‘am_query_requirement_(x)’ is called to ask the account manager a question about a certain requirements
document. The formal parameter ‘x’ specifies this requirements document. The account manager relays the question to the
customer (call cu_query_requirement_(x)). When the account manager has received an answer from the customer, this
answer is relayed back to the original inquiring object.

ACT_
AM_INQUIRE_
CU_BUGET_(X)

NON-
AM_INQUIRE_
CU_BUDGET_(X)

AM_INQUIRE_
CU_BUDGET_(X)
ASKED LOOK UP

AND RETURN
CUSTOMER BUDGET
FOR PROJECT X

READY

figure 5.113 int-am_inquire_cu_budget_(x) : internal behavior STD

The operation ‘am_inquire_cu_budget_(x)’ is called to ask the account manager if a customer has a suff icient budget for a
certain project. The formal parameter ‘x’ is a compound datastructure which holds the customer and project in question.
The account manager answers this question after consulting the relevant customer data.

5.3.7.3.4 Account manager : manager-STD

The communication between the account manager’s operations (callees) and its callers is managed by a manager STD. The
manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager STD are labeled
with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the transition. I.e. the
transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant employee(s)
has/have entered the trap(s), the transition can and will (eventually) take place.

CPS1

MAKE OR BUY
DECISION
TAKEN

CPS2CPS3

CPS4

TL F-2

TL F-1TL F-3

TL F-4

TL F-5TL F-6

figure 5.114 account manager : manager STD

Software Process Modeling
in SOCCA

page :
version : 0.10

203

The notation CPSx in the STD stands for Consolidated Prescribed Subprocesses and is a set of CCx’s. The notation CCx
in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-callee combination.
The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that enables the transition.
The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

The caller-waits construct is modeled conform the second variant. This means that the TLF-1, TLF-3 and TLF-5 have to
have some additional information for the manager to decide which transition to take. This information comes from the
internal bookkeeping of the manager. If an operation is started by the manager on behalf of a caller, a caller-callee relation
is initiated. In this way the manager can check whether a non-active employee still has some caller waiting to be allowed
to proceed. If both the callee and the caller have terminated, the particular caller-callee relation is cancelled in the internal
administration of the manager.

In the state ‘neutral’ the CPS and the TLFs for the transitions leaving the state are :

CPS1 = {CC1-1, CC2-1}
TLF-1 = T-1 and (T-3 and not(caller-callee relation))
TLF-3 = T-5 and (T-7 and not(caller-callee relation))
TLF-5 = (T-1 and (T-3 and (caller-callee relation)) or

 (T-5 and (T-7 and (caller-callee relation))

In the state ‘starting_am_query_requirement_(x)’ the CPS and the TLFs for the transitions leaving the state are :

CPS2 = {CC1-2, CC2-1}
TLF-2 = T-2

In the state ‘starting_am_inquire_cu_budget_(x)’ the CPS and the TLFs for the transitions leaving the state are :

CPS3 = {CC1-1, CC2-2}
TLF-4 = T-6

The state ‘disc_waiting_caller_proceed’ is entered by the manager after it detects that some employee has returned a result.
The manager decides in this state which caller is allowed to proceed. The CPS and the TLFs for the transitions leaving the
state are :

CPS4 = {CC1-3, CC2-1} or
{CC1-1, CC2-3}

TLF-6 = T-4 or T-8

The caller-callee combinations for ‘am_query_requirement_(x)’ and its caller ‘ tpm_write_proposal_(x)’ are :

CC1-1 = {S1, S3}
CC1-2 = {S2, S3} (the caller has to wait)
CC1-3 = {S1, S4} (the caller may proceed)

The caller-callee combinations for ‘am_inquire_cu_budget_(x)’ and its caller ‘ tpm_write_proj_man_doc_(x,y)’ are :

CC2-1 = {S5, S7}
CC2-2 = {S6, S7} (the caller has to wait)
CC2-3 = {S5, S8} (the caller may proceed)

5.3.7.3.5 Account manager : employee-STDs

The manager STD has 4 employees relevant for this phase. The first employee is the own internal operation
‘am_query_requirement_(x)’ . This employee has two subprocesses S1 and S1 and two traps T-1 and T-2 according to the
caller_callee-construct.

The second employee is the operation ‘ tpm_write_proposal_(x)’ of the class technical project manager. This is the caller
of ‘ am_query_requirement_(x)’ . This second employee has the subprocesses S3 and S4 and traps T-3 and T-4 according
to the caller-callee construct. The caller has to wait for the result. This is modeled by the second variant of the caller-waits
construct.

Software Process Modeling
in SOCCA

page :
version : 0.10

204

The third employee is the own internal operation ‘am_inquire_cu_budget_(x)’ . This employee has two subprocesses S5
and S6 and two traps T-5 and T-6 according to the caller_callee-construct.

The fourth employee is the operation ‘ tpm_write_proj_man_doc_(x,y)’ of the class technical project manager. This is the
caller of ‘ am_inquire_cu_budget_(x)’ . This fourth employee has the subprocesses S7 and S8 and traps T-7 and T-8
according to the caller-callee construct. The caller has to wait for the result. This is modeled conform the second variant of
the caller-waits construct.

Software Process Modeling
in SOCCA

page :
version : 0.10

205

5.3.7.4 Quality assurance adviser

5.3.7.4.1 Quality assurance adviser : external behavior-STD, organizational view

The external behavior STD shows the possible sequences in which the exported operation(s) can be started. The class
‘quality assurance adviser’ has two operations relevant for the process fragment ‘writing project management documents’ ,
phase2. The organizational view of the external STD does not show any communication details. Consequently the STD
consists of one state ‘neutral’ in which the account manager waits for a call to its exported operations
‘qaa_inquire_resource_(x)’ and ‘qaa_audit_(x). If a call has taken place, the account manager can make the transition
labeled wih the called operation. The account manager then comes again in the state ‘neutral’ . The possible starting
sequence specified by this STD is thus any combination of the operations ‘qaa_inquire_resource_(x)’ and ‘qaa_audit_(x)’ .

NEUTRAL

QAA_INQUIRE_RESOURCE_(X)

QAA_AUDIT_(X)

figure 5.115 quality asssurance adviser : external behavior STD, organizational view

5.3.7.4.2 Quality assurance adviser : external behavior-STD, communicative view

The communicative view of the external behavior STD shows the communication details between the external STD and
the called operation(s). It consists of a neutral state in which the customer waits for a call to its operation and two starting
states in which the called operations are started. Typically the customer does not wait in this ‘starting’ states until the
called operation is finished, but returns as soon as possible to its neutral state to allow handling another call to one of its
operations.

NEUTRAL

STARTING_
QAA_AUDIT_(X)

QAA_AUDIT_(X)

MAKE OR BUY
DECISION
TAKEN

STARTING_
QAA_INQUIRE_
RESOURCE_(X)

DISC_
WAITING_
CALLE R_
PROCEED

QAA_INQUIRE_RESOURCE_(X)

figure 5.116 quality assurance adviser : external behavior STD, communicative view

When ‘qaa_inquire_resource_(x)’ or ‘qaa_audit_(x)’ are called, the callers must wait for the answer that is produced by
the callees. When a callee has produced an answer, the manager transits to the state ‘disc_waiting_ caller_proceed’ . This
state‘disc_waiting_caller_proceed’ is an aggregate state in which the manager determines which waiting caller had called
the callee that produced the result. This caller is then allowed to proceed.

5.3.7.4.3 Quality assurance adviser : internal behavior-STDs

Software Process Modeling
in SOCCA

page :
version : 0.10

206

The quality assurance adviser class has 2 internal operations, ‘qaa_inquire_resource_(x)’ and ‘qaa_audit_(x)’ , that are
relevant for phase 2. These operations have the following internal behavior STDs.

ACT_
QAA_INQUIRE_
RESOURCE_(X)

NON-
QAA_INQUIRE_
RESOURCE_(X)

QAA_INQUIRE_
RESOURCE_(X)
ASKED

READY

CONSULT
PLANNING AND
ANSWER

figure 5.117 int-qaa_inquire_resource_(x) : internal behavior STD

The operation ‘qaa_inquire_resource_(x)’ is called to ask the quality assurance adviser (qaa) if he can spend a certain
amount of time (in a certain time frame) on a certain project. The formal parameter ‘x’ specifies the time frame during
which the assistance of the quality assurance adviser is necessary. The quality assurance adviser inspects his planning
(agenda) and indicates whether or not he is available for advise. The caller of this operation is the technical project
manager (tpm) when he writes an ‘ internal resources allocation’ -document. If the qaa can accommodate the tpm, then the
tpm will record it in the document. If the qaa can not accommodate the tpm, then the tpm has to determine a new time
frame for the qaa. He will ask the qaa again if he is available in the new time frame. Etc. until a match has been found. If
the schedule of the project changes significantly because of non-availabilit y of the qaa, the tpm will i nform his section
head of the problem.

ACT_
QAA_AUDIT_(X)

NON-
QAA_AUDIT_(X)

QAA_AUDIT_(X)
ASKED AUDIT

DOCUMENT ‘X’
AND RETURN
EVALUATION

READY

figure 5.118 int-qaa_audit_(x) : internal behavior STD

With the operation ‘qaa_audit_(x)’ the quality assurance adviser (qaa) audits a document. The document to be audited is
passed as the parameter ‘x’ . The operation returns the audit result to the caller. The caller of this operation is the technical
project manager (tpm) after he has written a project management document. If the audit result is not OK, the tpm will
update the document according to the comments of the qaa (see also operation ‘ tpm_write_proj_man_doc_(x)’ of the
tpm).

5.3.7.4.4 Quality assurance adviser : manager-STD

The communication between the quality assurance adviser’s operations (callees) and its callers is managed by a manager
STD. The manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager STD are
labeled with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the
transition. I.e. the transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant
employee(s) has/have entered the trap(s), the transition can and will (eventually) take place.

Software Process Modeling
in SOCCA

page :
version : 0.10

207

CPS1

MAKE OR BUY
DECISION
TAKEN

CPS2CPS3

CPS4

TL F-2

TL F-1TL F-3

TL F-4

TL F-5TL F-6

figure 5.119 quality assurance adviser : manager STD

The manager STD and the subprocesses and traps of its employees are conceptualy the same, and use the same names, as
those used in the modeling of the account manager (in phase 2). For the definition of the CPSs, TLFs and CCs a reference
is therefore made to those of the account manager (in phase 2). The account manager’s employees must then be
substituted by the quality assurance adviser’s employees.

5.3.7.4.5 Quality assurance adviser : employee-STDs

The manager STD has 4 employees relevant for this phase. The first employee is the own internal operation
‘qaa_inquire_resource_(x)’ . This employee has two subprocesses S1 and S1 and two traps T-1 and T-2 according to the
caller_callee-construct.

The second employee is the operation ‘ tpm_write_proj_man_doc_(x,y)’ of the class technical project manager. This is the
caller of ‘ qaa_inquire_resource_(x)’ . This second employee has the subprocesses S3 and S4 and traps T-3 and T-4
according to the caller-callee construct. The caller has to wait for the result. This is modeled conform the second variant of
the caller-waits construct.

The third employee is the own internal operation ‘qaa_audit_(x)’ . This employee has two subprocesses S5 and S6 and two
traps T-5 and T-6 according to the caller-callee-construct.

The fourth employee is the operation ‘ tpm_write_proposal_(x)’ of the class technical project manager. This is the caller of
‘qaa_audit_(x)’ . This fourth employee has the subprocesses S7 and S8 and traps T-7 and T-8 according to the caller-callee
construct. The caller has to wait for the result. This is modeled conform the second variant of the caller-waits construct.

Software Process Modeling
in SOCCA

page :
version : 0.10

208

5.3.7.5 Head production section

5.3.7.5.1 Head production section : external behavior-STD, organizational view

The external behavior STD shows the possible sequences in which the exported operation(s) can be started. The class
‘head production section’ has four operations relevant for the process fragment ‘writing project management documents’ ,
phase2. The organizational view of the external STD does not show any communication details. Consequently the STD
consists of one state ‘neutral’ in which the customer waits for a call to one of its its exported operations
‘hprs_second_estimate_(x)’ , ‘hprs_consult_(x)’ , ‘hprs_final_review_(x)’ or ‘hprs_pmm_request_approval_(x)’ . The
possible starting sequence specified by this STD is any combination of the four exported operations.

NEUTRAL

HPRS_SECOND_ESTIMATE_(X)

HPRS_CONSULT _(X) HPRS_FINAL_REVIEW_(X)

HPRS_PMM_REQUEST_APPROVAL_(X)

figure 5.120 head production section : external behavior STD, organizational view

5.3.7.5.2 Head production section : external behavior-STD, communicative view

The communicative view of the external behavior STD shows the communication details between the external STD and
the called operation(s). It consists of a neutral state in which the customer waits for a call to its operation and four starting
states in which the called operations are started. Typically the customer does not wait in this ‘starting’ states until the
called operation is finished, but returns as soon as possible to its neutral state to allow handling of another call .

NEUTRAL

STARTING_
HPRS_PMM_
REQUEST_
APPROVAL_(X)

HPRS_PMM_REQUEST_APPROVAL_(X)

MAKE OR BUY
DECISION
TAKEN

STARTING_
HPRS_SECOND_
ESTIMATE_(X)

DISC_
WAITING_
CALLE R_
PROCEED

HPRS_SECOND_ESTIMATE_(X)

HPRS_CONSULT _(X)

STARTING_
HPRS_
CONSULT _(X)

HPRS_FINAL_REVIEW_(X)

STARTING_
HPRS_FINAL_
REVIEW_(X)

figure 5.121 head production section : external behavior STD, communicative view

When ‘hps_second_estimate_(x)’ , ‘hprs_consult_(x)’ or ‘hprs_final_review_(x)’ are called, the callers must wait for the
result that is produced by the callees. When a callee has produced an answer, the manager transits to the state
‘disc_waiting_ caller_proceed’ . This state‘disc_waiting_caller_proceed’ is an aggregate state in which the manager
determines which waiting caller had called the callee that produced the result. This caller is then allowed to proceed.

The caller of the operation ‘hprs_pmm_request_approval_(x)’ does not have to wait for a result but may continue
immeditiately after its callee has been started by the manager.

The callers of the operations of this class can be found in the relevant import-export diagram. They are given in the
‘ import_list’ attribute of the ‘uses associations’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

209

5.3.7.5.3 Head production section : internal behavior-STDs

The customer class has 4 internal operations relevant for this phase 2. These are ‘hprs_second_estimate_(x)’ ,
‘hprs_consult_(x)’ , ‘hprs_final_review_(x)’ and ‘hprs_pmm_request_approval_(x)’ . These operations have the following
internal behavior STDs.

ACT_
HPRS_SECOND_
ESTIMATE_(X)

HPRS_SECOND_
ESTIMATE_(X)
ASKED

TPM_
ESTIMATE_(X)
ASKEDCALL

TPM_
ESTIMATE_(X)

NON-
HPRS_SECOND_
ESTIMATE_(X) DECIDE ON

WHICH TPM
WILL BE T HE
 2E ESTIMATOR

2E ESTIMATOR
CHOSEN

figure 5.122 int-hprs_second_estimate_(x) : internal behavior STD

When the ‘head production section’ is asked by a technical project manager for a second estimate on a project for which
the tpm is writing a proposal, this operation is started. In it the ‘head production section’ chooses another tpm as second
estimator and orders him to produce a (second) estimate (call tpm_estimate_(x)). When the second tpm returns his
estimate to the ‘head production section’ , the ‘head production section’ communicates this estimate to the first tpm. The
parameter ‘x’ is the requirements document on which the estimate is to be based.

ACT_
HPRS_
CONSULT _(X)

HPRS_
CONSULT _(X)
ASKED

READY

ANSWER
QUESTION ‘X’NON-

HPRS_
CONSULT _(X)

CHOOSE ACTION

READ DOCUMENT ‘X’
AND
GIVE COMM ENTS

figure 5.123 int-hprs_consult_(x) : internal behavior STD

The operation ‘hprs_consult_(x)’ is called by a tpm who is busy writing a project management document. Its use is either
to solicit comments of the ‘head production section’ on an intermediate version of the project management document (and
at the same time informing the ‘head production section’ of the progress made so far in writing the document) or to ask
some advice on a technical matter from the ‘head production section’ . The ‘head production section’ reacts by reading the
document and giving comments or by just answering the question. The parameter ‘x’ is either the project management
document or the question asked.

The multiplicity of concurrent executing instances is zero or more. The ‘head production section’ has many technical
project managers working for him who can all seek advice from him at the same time.

ACT_
HPRS_FINAL_
REVIEW_(X)

NON-
HPRS_FINAL_
REVIEW_(X)

HPRS_FINAL_
REVIEW_(X)
ASKED REVIEW

DOCUMENTS ‘X’
AND RETURN
COMM ENTS OR
APPROVAL

READY

figure 5.124 int-hprs_final_review_(x) : internal behavior STD

With the operation ‘hprs_final_review_(x)’ the ‘head production section reviews the final versions of the three project
management documents and gives his comments. If there are no comments, the documents are approved. The technical
project manager presents the ‘head production section’ with all three project management documents (project contract,

Software Process Modeling
in SOCCA

page :
version : 0.10

210

software development plan and ‘ internal resources allocation’ -document) together at the same time. The parameter ‘x’
includes all three documents.

ACT_
HPRS_PM M_
REQUEST_
APPROVAL_(X)

NON-
HPRS_PM M_
REQUEST_
APPROVAL_(X)

HPRS_PM M_
REQUEST_
APPROVAL_(X)
ASKED

CALL
PMM_REQUEST_
APPROVAL_(X)

PMM_REQUEST_
APPROVAL_(X)
ASKED

figure 5.125 int-hprs_pmm_request_approval_(x) : internal behavior STD

The technical project manager gives the three project management documents to his ‘head production secion’ f or
management approval. The ‘head production section’ thereupon enters the three project management documents in the
next ‘project meeting minus’ f or approval by the participants of that meeting (call pmm_request_approval_(x)). The
formal parameter ‘x’ constitutes the three project management documents to be approved.

5.3.7.5.4 Head production section : manager-STD

The communication between the head production section’s operations (callees) and its callers is managed by a manager
STD. The manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager STD are
labeled with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the
transition. I.e. the transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant
employee(s) has/have entered the trap(s), the transition can and will (eventually) take place.

CPS4

TL F-2

TL F-1TL F-3

TL F-4

TL F-5TL F-6

CPS1

CPS2CPS3

CPS5CPS6

TL F-7

TL F-8

TL F-9

TL F-10

figure 5.126 head production section : manager STD

The notation CPSx in the STD stands for Consolidated Prescribed Subprocesses and is a set of CCx’s. The notation CCx
in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-callee combination.
The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that enables the transition.
The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

The callers of the operations ‘hps_second_estimate_(x)’ , ‘hprs_consult_(x)’ and ‘hprs_final_review_(x)’ have to wait for
the return results of the callees. This is modeled conform the second variant of the caller-waits construct. This means that
the TLF-3, TLF-5, TLF-7 and TLF-9 have to have some additional information for the manager to decide which transition
to take. This information comes from the internal bookkeeping of the manager. If an operation is started by the manager
on behalf of a caller, a caller-callee relation is initiated. In this way the manager can check whether a non-active employee
still has some caller waiting to be allowed to proceed. If both the callee and the caller have terminated, the particular
caller-callee relation is cancelled in the internal administration of the manager.

In the state ‘neutral’ the CPS and the TLFs for the transitions leaving the state are :

Software Process Modeling
in SOCCA

page :
version : 0.10

211

CPS1 = {CC1-1, CC2-1, CC3-1, CC4-1}
TLF-1 = T-1 and T-3
TLF-3 = T-5 and (T-7 and not(caller-callee relation))
TLF-5 = (T-5 and (T-7 and (caller-callee relation))) or

 (T-9 and (T-11 and (caller-callee relation))) or
 (T-13 and (T-15 and (caller-callee relation)))

TLF-7 = T-9 and (T-11 and not (caller-callee relation))
TLF-9 = T-13 and (T-15 and not(caller-callee relation))

In the state ‘starting_hprs_pmm_request_approval_(x)’ the CPS and the TLFs for the transitions leaving the state are :

CPS2 = {CC1-2, CC2-1, CC3-1, CC4-1}
TLF-2 = T-2 and T-4

In the state ‘starting_hprs_second_estimate_(x)’ the CPS and the TLFs for the transitions leaving the state are :

CPS3 = {CC1-1, CC2-2, CC3-1, CC4-1}
TLF-4 = T-6

In the state ‘starting_hprs_final_review_(x)’ the CPS and the TLFs for the transitions leaving the state are :

CPS5 = {CC1-1, CC2-1, CC3-2, CC4-1}
TLF-8 = T-10

In the state ‘starting_hprs_consult_(x)’ the CPS and the TLFs for the transitions leaving the state are :

CPS6 = {CC1-1, CC2-1, CC3-1, CC4-2}
TLF-10 = T-14

The state ‘disc_waiting_caller_proceed’ is entered by the manager after it detects that some employee has returned a result.
The manager decides in this state which caller is allowed to proceed. The CPS and the TLFs for the transitions leaving the
state are :

CPS4 = {CC1-1, CC2-3, CC3-1, CC4-1} or
{CC1-1, CC2-1, CC3-3, CC4-1} or
{CC1-1, CC2-1, CC3-1, CC4-3}

TLF-6 = T-8 or T-12 or T-16

The caller-callee combinations for ‘hprs_pmm_request_approval_(x)’ and its caller ‘ tpm_write_proposal_(x)’ are :

CC1-1 = {S1, S3}
CC1-2 = {S2, S4}

The caller-callee combinations for ‘hprs_second_estimate_(x)’ and its caller ‘ tpm_write_proposal_(x)’ are :

CC2-1 = {S5, S7}
CC2-2 = {S6, S7} (the caller has to wait)
CC2-3 = {S5, S8} (the caller may proceed)

The caller-callee combinations for ‘hprs_final_review_(x)’ and its caller ‘ tpm_write_proposal_(x)’ are :

CC3-1 = {S9, S11}
CC3-2 = {S10, S11} (the caller has to wait)
CC3-3 = {S9, S12} (the caller may proceed)

The caller-callee combinations for ‘hprs_consult_(x)’ and its caller ‘ tpm_write_proj_man_doc_(x,y)’ are :

CC4-1 = {S13, S15}
CC4-2 = {S14, S15} (the caller has to wait)
CC4-3 = {S13, S16} (the caller may proceed)

Software Process Modeling
in SOCCA

page :
version : 0.10

212

5.3.7.5.5 Head production section : employee-STDs

The manager STD has 6 employees relevant for this phase. These are the internal operations ‘hprs_pmm_request_
approval_(x)’ , ‘hprs_second_estimate_(x)’ and ‘hprs_final_review_(x)’ which are all called by the operation
‘ tpm_write_proposal_(x)’ at some point during its execution. Plus the internal operation ‘hprs_consult_(x)’ and its caller
‘ tpm_write_proj_man_doc_(x,y)’ .

The first employee is ‘hprs_pmm_request_approval_(x)’ . This employee has two subprocesses S1 and S1 and two traps T-
1 and T-2 according to the caller-callee construct. The second employee is the operation ‘ tpm_write_proposal_(x)’ in its
role of caller of ‘ hprs_pmm_request_approval_(x)’ . This second employee has the subprocesses S3 and S4 and traps T-3
and T-4 according to the caller-callee construct.

The third employee is ‘hprs_second_estimate_(x)’ . This employee has two subprocesses S5 and S6 and two traps T-5 and
T-6 according to the caller-callee construct. Its caller is again the operation ‘ tpm_write_proposal_(x)’ . This operation has
therefore in this respect the subprocesses S7 and S8 and the traps T-7 and T-8 according to the caller-callee construct.

The fourth employee is ‘hprs_final_review_(x)’ . This employee has two subprocesses S9 and S10 and two traps T-9 and
T-10 according to the caller-callee construct. Its caller is again the operation ‘ tpm_write_proposal_(x)’ . This operation has
therefore in this respect the subprocesses S11 and S12 and the traps T-11 and T-12 according to the caller-callee construct.

The fifth employee is the operation ‘hprs_consult_(x)’ . This employee has two subprocesses S13 and S14 and two traps T-
13 and T-14 according to the caller-callee construct. Its caller is the sixth employee. It is the operation ‘ tpm_write_
proj_man_doc_(x,y)’ of the class technical project manager. This employee has the subprocesses S15 and S16 and the
traps T-15 and T-16 according to the caller-callee construct.

Software Process Modeling
in SOCCA

page :
version : 0.10

213

5.3.7.6 Head support section

5.3.7.6.1 Head support section : external behavior-STD, organizational view

The external behavior STD shows the possible sequences in which the exported operation(s) can be started. The class
‘head support section’ has only one operation relevant for the process fragment ‘writing project management documents’ ,
phase2. The organizational view of the external STD does not show any communication details. Consequently the STD
consists of one state ‘neutral’ in which the ‘head support section’ waits for a call to its exported operation
‘hss_inquire_resource_(x)’ . If the call has taken place, the ‘head support section’ can make the transition labeled
‘hss_inquire_resource_(x)’ . The ‘head support section’ then comes again in the state ‘neutral’ . The possible starting
sequence specified by this STD is thus ‘hss_inquire_resource_(x)’ , ‘hss_inquire_resource_(x)’ , etc.

NEUTRAL

HSS_INQUIRE_RESOURCE_(X)

figure 5.127 head support section : external behavior STD, organizational view

5.3.7.6.2 Head support section : external behavior STD, communicative view

The communicative view of the external behavior STD shows the communication details between the external STD and
the called operation(s).

HSS_INQUIRE_
RESOURCE_(X)

NEUTRAL
STARTING_
HSS_INQUIRE_
RESOURCE_(X)

WAITING
CALLE R
PROCEED

figure 5.128 head support section : external behavior STD, communicative view

It consists of a neutral state in which the ‘head support section’ waits for a call to its operation and a state in which he
starts this operation. The ‘head support section’ does not wait in this ‘starting’ state for the called operation to finish, but
returns as soon as possible to its neutral state. It can then handle another call to the operation before the current execution
has finished.

The caller of the operation has to wait for the callee to return a result before it may proceed. The manager detects that the
callee has produced a result, transits to the state ‘waiting caller proceed’ and there allows the caller to proceed.

The caller of the operation of this class can be found in the import-export diagram. It can be found in the the ‘ import_ list’
attribute of the ‘uses association’ .

5.3.7.6.3 Head support section : internal behavior-STDs

The 1 operation ‘hss_inquire_resource_(x)’ of the ‘head support section’ has the following internal behavior STD.

ACT_
HSS_INQUIRE_
RESOURCE_(X)

NON-
HSS_INQUIRE_
RESOURCE_(X)

HSS_INQUIRE_
RESOURCE_(X)
ASKED

READY

CONSIDER
AVAILABILITY
AND ANSWER

figure 5.129 int-hss_inquire_resource_(x) : internal behavior STD

Software Process Modeling
in SOCCA

page :
version : 0.10

214

With this operation the ‘head support section’ is asked if there is a certain resource ((software)engineers, computer
equipment, support software, person-hours of the computer support section, work locations, off ice equipment or person-
hours of the controller section) available during a certain time frame. This is reflected in the parameter ‘x’ .

The ‘head suppport section’ considers this request and answers according to the availablity of the resource in question.
The multiplicity of concurrent executing STD instances is zero or more. This means that the ‘head support section’ can
handle inquiries made by several technical project managers at the same time.

5.3.7.6.4 Head support section : manager-STD

The communication between the head support section’s operation (callee) and its caller is managed by a manager STD.
The manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager STD are
labeled with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the
transition. I.e. the transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant
employee(s) has/have entered the trap(s), the transition can and will (eventually) take place.

TL F-1

TL F-2

TL F-3

TL F-4

CC1-2CC1-1CC1-3

figure 5.130 head support section : manager STD

The notation CCx in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-
callee combination. The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that
enables the transition. The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

There is only one caller-callee combination, the callee ‘hss_inquire_resource_(x)’ and its caller ‘ tpm_write_proj_
man_doc_(x,y)’ of the class ‘ technical project manager’ . Because the caller has to wait for the result produced by the
callee, the call i s modeled conform the second ‘caller waits’ -variant of the caller-callee construct. This means that the
TLF-1 and TLF-3 have to have some additional information for the manager to decide which transition to take. This
information comes from the internal bookkeeping of the manager. If an operation is started by the manager on behalf of a
caller, a caller-callee relation is initiated. In this way the manager can check whether a non-active employee still has some
caller waiting to be allowed to proceed. If both the callee and the caller have terminated, the particular caller-callee relation
is cancelled in the internal administration of the manager.

In the state ‘neutral’ the CC and the TLF for the transition leaving the state are :

CC1-1 = {S1, S3}
TLF-1 = T-1 and (T-3 and not(caller-callee relation))
TLF-3 = T-1 and (T-3 and (caller-callee relation))

In the state ‘starting_hss_inquire_resource_(x)’ the CC and the TLF for the transition leaving the state are :

CC1-2 = {S2, S3} (caller has to wait)
TLF-2 = T-2

In the state ‘waiting_caller_proceed’ the CC and the TLF for the transition leaving the state are :

CC1-3 = {S1, S4} (caller may proceed)
TLF-4 = T-4

5.3.7.6.5 Head support section : employee-STDs

Software Process Modeling
in SOCCA

page :
version : 0.10

215

The manager STD has the following 2 employee STDs. The first employee is ‘hss_inquire_resource_(x)’ . This employee
has two subprocesses S1 and S1 and two traps T-1 and T-2 according to the caller-callee construct. The second employee
is the caller ‘ tpm_write_proj_man_doc(x,y)’ . This second employee has the subprocesses S3 and S4 and traps T-3 and T-4
according to the caller-callee construct.

Software Process Modeling
in SOCCA

page :
version : 0.10

216

5.3.7.7 Project management document

5.3.7.7.1 Project management document : external behavior-STD, organizational view

The external behavior STD shows the possible sequences in which the exported operation(s) can be started. The class
‘project management document’ has only one operation relevant for the process fragment ‘writing project management
documents’ , phase2. The organizational view of the external STD does not show any communication details.
Consequently the STD consists of one state ‘neutral’ in which the ‘project management document’ waits for a call to its
exported operation ‘pmd_write_(x)’ . If the call has taken place, the ‘project management document’ can make the
transition labeled ‘pmd_write_(x)’ . It then comes again in the state ‘neutral’ . The possible starting sequence specified by
this STD is thus ‘pmd_write_(x)’ , ‘pmd_write_(x)’ , etc.

NEUTRAL

PM D_WRITE_(X)

figure 5.131 project management document : external behavior STD, organizational view

5.3.7.7.2 Project management document : external behavior STD, communicative view

The communicative view of the external behavior STD shows the communication details between the external STD and
the called operation(s).

PMD_WRITE_(X)

NEUTRAL STARTING_
PMD_WRITE_(X)

WAITING
CALLE R
PROCEED

figure 5.132 project management document : external behavior STD, communicative view

It consists of a neutral state in which the ‘project management document’ waits for a call to its operation and a state in
which he starts this operation. The ‘project management document’ does not wait in this ‘starting’ state for the called
operation to finish, but returns as soon as possible to its neutral state. It can then handle a call to the one of its other
operations (For this phase 2 it has no other operations, but it is possible that it has some operations relevant to another
process fragment. These operations will not be modeled here.) The ‘project management document’ will not honor
another call to ‘pmd_write_(x)’ while the operation is still executing. The operation ‘pmd_write_(x)’ has a multiplicity of
concurrent executing STD instances of zero or 1. This means that the ‘write’ -actions on the document only can take place
one after the other (sequential) and not in parallel.

The caller of the operation has to wait for the callee to acknowledge that it has mutated the project management document
before it may proceed. When the manager STD detects that the callee has indeed progressed far enough in its execution, it
will t ransit to the state ‘waiting caller proceed’ . In this state it will allow the caller to proceed.

5.3.7.7.3 Project management document : internal behavior-STDs

The 1 operation ‘pmd_write_(x)’ of the ‘project management document’ has the following internal behavior STD.

ACT_
PMD_WRITE_(X)

NON-
PMD_WRITE_(X)

PMD_WRITE_(X)
ASKED

READY
UPDATE
CONTENT-
ATTRIBUTE
WITH ‘X’

Software Process Modeling
in SOCCA

page :
version : 0.10

217

figure 5.133 int-pmd_write_(x) : internal behavior STD

The operation updates the content attribute of the project management document-object with the actual value of the
parameter ‘x’ .

The multiplicity of concurrent executing STD instances is zero or 1. This is indicated by the hollow circle inside the first
state of the STD. This serializes the ‘writes’ in the project management document. I.e. the ‘writes’ can not happen in
parallel, but only sequential.

5.3.7.7.4 Project management document : manager-STD

The manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager STD are
labeled with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the
transition. I.e. the transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant
employee(s) has/have entered the trap(s), the transition can and will (eventually) take place.

TL F-1

TL F-2

TL F-3

TL F-4

CC1-2CC1-1CC1-3

figure 5.134 project management document : manager STD

The notation CCx in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-
callee combination. The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that
enables the transition. The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

Because the caller has to wait until the callee has updated the project management document, the call i s modeled conform
the second ‘caller waits’ -variant of the caller-callee construct. This means that the TLF-1 and TLF-3 have to have some
additional information for the manager to decide which transition to take. This information comes from the internal
bookkeeping of the manager. If an operation is started by the manager on behalf of a caller, a caller-callee relation is
initiated. In this way the manager can check whether a non-active employee still has some caller waiting to be allowed to
proceed. If both the callee and the caller have terminated, the particular caller-callee relation is cancelled in the internal
administration of the manager.

In the state ‘neutral’ the CC and the TLF for the transition leaving the state are :

CC1-1 = {S1, S3}
TLF-1 = T-1 and (T-3 and not(caller-callee relation))
TLF-3 = T-1 and (T-3 and (caller-callee relation))

In the state ‘starting_pmd_write_(x)’ the CC and the TLF for the transition leaving the state are :

CC1-2 = {S2, S3} (caller has to wait)
TLF-2 = T-2

In the state ‘waiting_caller_proceed’ the CC and the TLF for the transition leaving the state are :

CC1-3 = {S1, S4} (caller may proceed)
TLF-4 = T-4

5.3.7.7.5 Project management document : employee-STDs

The manager STD has the following 2 employee STDs. The first employee is ‘pmd_write_(x)’ . This employee has two
subprocesses S1 and S1 and two traps T-1 and T-2 according to the caller-callee construct. The second employee is the
caller ‘ tpm_write_proj_man_doc(x,y)’ . This second employee has the subprocesses S3 and S4 and traps T-3 and T-4
according to the caller-callee construct.

Software Process Modeling
in SOCCA

page :
version : 0.10

218

Software Process Modeling
in SOCCA

page :
version : 0.10

219

5.3.7.8 Project meeting minus

5.3.7.8.1 Project meeting minus : external behavior-STD, organizational view

The external behavior STD shows the possible sequences in which the exported operation(s) can be started. The class
‘project meeting minus’ has only one operation relevant for the process fragment ‘writing project management
documents’ , phase 2. The organizational view of the external STD does not show any communication details.
Consequently the STD consists of one state ‘neutral’ in which the ‘project meeting minus’ waits for a call to its exported
operation ‘pmm_request_approval_(x)’ . If the call has taken place, the ‘project meeting minus’ can make the transition
labeled the operation name. The ‘project meeting minus’ then comes back again in the state ‘neutral’ . The possible starting
sequence specified by this STD is thus ‘pmm_request_approval_(x)’ , ‘pmm_request_approval_(x)’ , etc.

NEUTRAL

PMM_REQUEST_APPROVAL_(X)

figure 5.135 project meeting minus : external behavior STD, organizational view

5.3.7.8.2 Project meeting minus : external behavior-STD, communicative view

The communicative view of the external behavior STD shows the communication details between the external STD and
the called operation(s).

NEUTRAL
STARTING_
PMM_REQUEST_
APPROVAL_(X)

PMM_REQUEST_
APPROVAL_(X)

figure 5.136 project meeting minus : external behavior STD, communicative view

This external behavior STD has two states. In the state neutral the ‘project meeting minus’ waits until a call has been
placed to its operation ‘pmm_request_approval_(x). If a call has been made, the manager STD can (and eventually will)
transit to the state ‘starting_pmm_request_approval_(x)’ . If the operation has been started the manager can transit back to
the state neutral.

The caller of the operation does not have to wait for the result of the ‘project meeting minus’ . This is because the
projecmanagement documents have already ondergone extensive review by the heads of the support sections and by the
customer. The approval is in fact only a formality.

The caller of the operation is ‘hprs_pmm_request_approval_(x)’ . This is documented in the import_export diagram. It is
presented there as a value of the ‘ import_list’ attribute of the relevant ‘uses association’ .

5.3.7.8.3 Project meeting minus : internal behavior-STDs

The ‘project meeting minus’ has 1 operation relevant for phase 2 of the process fragment ‘writing project management
documents’ : ‘pmm_request_approval_(x)’ . Only a ‘view’ of the internal STD of this operation is shown here. The full
STD is described in the modeling of phase 3. A ‘view’ on an STD shows only the transitions and (aggregated) states that
are important for a certain ‘user’ of that STD. (See also the explanation on ‘views’ in the SOCCA chapter). The view
shown here is the view of the external STD on his internal STD. Only the one transition ‘act_pmm_request_approval
_(x)’ is relevant to the external STD. And only two states are seen by the external STD. Either the internal STD is non-
active or the internal STD is executing.

Software Process Modeling
in SOCCA

page :
version : 0.10

220

ACT_
PMM_REQUEST_
APPROVAL_(X)

NON-
PMM_REQUEST_
APPROVAL_(X)

PROJECT
MEETING
TAKES
PLACE

figure 5.137 int-pmm_request_approval_(x) : internal behavior STD, view

The operation ‘pmm_request_approval_(x)’ has one formal parameter ‘x’ . This includes the three project management
documents (software development plan, ‘ internal resources allocation’ -document and project contract) that the
(participants of the) meeting have to approve. The functionality of the operation is described in the modeling of phase 3 of
the process fragment ‘writing project management documents’ . Here it is only shown as the aggregate state ‘project
meeting takes place’ .

5.3.7.8.4 Project meeting minus : manager-STD

The communication between the ‘project meeting minus’’ s operations (callees) and their callers is managed by a manager
STD. The manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager STD are
labeled with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the
transition. I.e. the transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant
employee(s) has/have entered the trap(s), the transition can and will (eventually) take place.

TL F-1

TL F-2

CC1-1 CC1-2

figure 5.138 project meeting minus : manager STD

The notation CCx in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-
callee combination. The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that
enables the transition. The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

There is only one caller-callee combination, the callee ‘pmm_request_approval_(x)’ and its caller ‘hprs_pmm_request_
approval_(x)’ of the class ‘head production section’ . The calli ng is modeled by the ‘caller does not wait’ -variant of the
caller-callee construct.

In the state ‘neutral’ the CC and the TLF for the transition leaving the state are :

CC1-1 = {S1, S3}
TLF-1 = T-1 and T-3 (corresponds with ‘pmm_request_approval_(x)’ transition in extern STD)

In the state ‘starting_pmm_request_approval_(x)’ the CC and the TLF for the transition leaving the state are :

CC1-2 = {S2, S4}
TLF-2 = T-2 and T-4

5.3.7.8.5 Project meeting minus : employee-STDs

The manager STD has 2 employee STDs. These are the callee ‘pmm_request_approval_(x)’ and its caller ‘hprs_
pmm_request_approval_(x)’ of the class ‘head production section’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

221

T-1

NON-
PMM_REQUEST_
APPROVAL_(X)

figure 5.139 employee int-pmm_request_approval_(x) : subprocess S1

T-2

PROJECT
MEETING
TAKES
PLACE

NON-
PM M_REQUEST_
APPROVAL_(X) ACT_

PM M_REQUEST_
APPROVAL_(X)

figure 5.140 employee int-pmm_request_approval_(x) : subprocess S2

The first employee, ‘pmm_request_approval_(x)’ has two subprocesses S1 and S1 and two traps T-1 and T-2 according to
the caller_callee-construct.

The second employee, the caller ‘hprs_pmm_request_approval_(x)’ , has two subprocesses S3 and S4 and two traps T-3
and T-4 according to the caller_callee-construct.

The manager prescribes initially subprocess S3 for the calli ng employee, it is waiting for the call . When the caller enters its
trap T-3, i.e. excutes the call (and the callee is ready in its trap T-1) the manager can make the transition to the next state.
Here it prescribes S4 for the caller, thereby allowing it to proceed in its next subprocess. This has the effect that the caller
does not wait for the result of the called operation but proceeds right away after the manager has started the called
operation.

When the callee has entered its trap T-2 and the caller has entered his trap T-4, the manager can transit back to the state
‘neutral’ .

SOFTWARE PROCESS MODELING in SOCCA

student : H.G.Brugman
studentnr : 9105506
version : 0.10

Software Process Modeling
in SOCCA

page :
version : 0.10

221

5. Key Process Area ‘Software Project Planning’

figure 5.1figure 5.2 figure 5.3figure 5.4 figure 5.5figure 5.6 figure 5.7figure 5.8 figure 5.9figure 5.10
figure 5.11figure 5.12figure 5.13 figure 5.14figure 5.15 figure 5.16figure 5.17 figure 5.18figure 5.19figure 5.20
figure 5.21figure 5.22figure 5.23figure 5.24 figure 5.25figure 5.26figure 5.27figure 5.28 figure 5.29figure 5.30
figure 5.31figure 5.32 figure 5.33figure 5.34 figure 5.35figure 5.36 figure 5.37figure 5.38 figure 5.39figure 5.40
figure 5.41figure 5.42figure 5.43 figure 5.44figure 5.45 figure 5.46figure 5.47 figure 5.48figure 5.49figure 5.50
figure 5.51figure 5.52figure 5.53figure 5.54 figure 5.55figure 5.56figure 5.57figure 5.58 figure 5.59figure 5.60
figure 5.61figure 5.62 figure 5.63figure 5.64 figure 5.65figure 5.66 figure 5.67figure 5.68 figure 5.69figure 5.70
figure 5.71figure 5.72figure 5.73 figure 5.74figure 5.75 figure 5.76figure 5.77 figure 5.78figure 5.79figure 5.80
figure 5.81figure 5.82figure 5.83figure 5.84 figure 5.85figure 5.86figure 5.87figure 5.88 figure 5.89figure 5.90
figure 5.91figure 5.92 figure 5.93figure 5.94 figure 5.95figure 5.96 figure 5.97figure 5.98 figure 5.99figure 5.100
figure 5.101figure 5.102figure 5.103 figure 5.104figure 5.105 figure 5.106figure 5.107 figure 5.108figure 5.109figure 5.110
figure 5.111figure 5.112figure 5.113figure 5.114 figure 5.115figure 5.116figure 5.117figure 5.118 figure 5.119figure 5.120
figure 5.121figure 5.122figure 5.123 figure 5.124figure 5.125 figure 5.126figure 5.127 figure 5.128figure 5.129figure 5.130
figure 5.131figure 5.132figure 5.133figure 5.134 figure 5.135figure 5.136figure 5.137figure 5.138 figure 5.139figure 5.140

Software Process Modeling
in SOCCA

page :
version : 0.10

222

5.3.8 State Transition Diagrams - Phase 3

Phase 3, ‘approval’ , of the process fragment ‘writing project management documents’ (partly) models the behavior of the
following classes :

- project meeting minus
- chief executive off icer
- head support section
- quality assurance adviser
- head controller section
- account manager
- customer
- archive/documentation administrator
- technical project manager

Software Process Modeling
in SOCCA

page :
version : 0.10

223

5.3.8.1 Project meeting minus

5.3.8.1.1 Project meeting minus : external behavior-STD, organizational view

The class ‘project meeting minus’ has only one operation of interest for phase 3 of the process fragment ‘writing project
management documents. This is ‘pmm_request_approval_(x)’ . This operation is called in phase 2 of the process fragment.
The external STD, organizational view, is already given during the modeling of phase 2. See the appropriate paragraph of
the phase 2 modeling.

5.3.8.1.2 Project meeting minus : external behavior-STD, communicative view

The class ‘project meeting minus’ has only one operation of interest for phase 3 of the process fragment ‘writing project
management documents. This is ‘pmm_request_approval_(x)’ . This operation is called in phase 2 of the process fragment.
The external STD, communicative view, is already given during the modeling of phase 2. See the appropriate paragraph of
the phase 2 modeling.

5.3.8.1.3 Project meeting minus : internal behavior-STDs

The ‘project meeting minus’ has 1 operation relevant for phase 3 of the process fragment ‘writing project management
documents’ : ‘pmm_request_approval’ . This operation has the following internal behavior STDs.

ACT_
PMM_REQUEST_
APPROVAL_(X)

NON-
PMM_REQUEST_
APPROVAL_(X)

PROJECT
MEETING
TAKES
PLACE

figure 5.141 int-pmm_request_approval_(x) : internal behavior STD, view

In the description of the operation ‘pmm_request_approval_(x)’ in phase 2 only a view of its internal STD was given (see
figure above). Here the complete STD is given. To indicate how the view corresponds to the full STD, the aggregated state
‘project meeting takes place’ is shown in the full STD (see figure below).

PROJECT
MEETING
TAKES PLACE

CALL_
CEO_SIGN_
PC_(X)

MAKE
COPIES OF
PROJ ECT
CONTRACT
AND SDP

HSS_SIGN_
IRA_DOC_(X)
ASKEDSIM _CALL _

HSS_SIGN_
IRA_DOC_(X)

CEO_SIGN_
PC_(X)
ASKED

NON-
PMM _REQUEST_
APPROVAL_(X)

PMM _REQUEST_
APPROVAL_(X)
ASKEDACT-

PMM _REQUEST_
APPROVAL_(X)

CALL_
QAA_SIGN_
IRA_DOC_(X)

QAA_SIGN_
IRA_DOC_(X)
ASKEDCALL_

HCS_ENTER_
IN_MIS_(X)

HCS_ENTER_
IN_MIS_(X)
ASKEDCALL_

AM_CU_SIGN_
PC_(X)

AM_CU_
SIGN_PC_(X)
ASKEDCALL_

TPM_ENTER_IN_
PROJ_FILE_(X)

TPM_ENTER_
IN_PROJ_
FILE_(X)
ASKED

CURRENT
DATE & TIME
>=
SCHEDULED
DATE & TIME

[NO]

[YES]

figure 5.142 int-pmm_request_approval_(x) : internal behavior STD

The operation ‘pmm_request_approval_(x)’ has one formal parameter ‘x’ . This signifies the project management
documents which the meeting has to approve. The project management documents encompass the software development
plan (sdp), the ‘ internal resources allocation’ -document (ira-doc) and the project contract (pc). The multiplicity of

Software Process Modeling
in SOCCA

page :
version : 0.10

224

concurrent executing STD instances is zero or more. This means that the ‘project meeting minus’ can handle management
documents of more than one project at the same time. This is usually the case.

When an instance of the operation ‘pmm_request_approval_(x)’ is started, it goes to the its state ‘current date & time >=
scheduled time & date’ . There it compares the current time and date with the time and date the meeting is scheduled to
start. This way the ‘project meeting minus’ starts on it scheduled time. If there are more instances executing (i.e. more
projects want their documents approved at the meeting), they all wait for the scheduled time and are thus synchronized.
The meeting can then handle the documents of more then one project a the same time.

It is presumed that the current date and time is available for inspection by the ‘project meeting minus’ -object. This is not
modeled in detail .

The project management documents that are handled by the ‘project meeting minus’ are a project contract, a software
development plan and a ‘ internal resources allocation’ -document (ira-document). The ira-document contains the project
form as an appendix.

When the meeting has started, a copy is made of the project contract and the software development plan. For this copying
the ‘project meeting minus’ uses the method ‘pmd_copy’ of the class ‘project management document’ . This is not further
detailed, but shown here as an aggregate (higher level) state.

The project contract and its copy are then given to the chief excutive off icer for his signature (call_ceo_sign_(x)).

Then each of the support section heads (head controller section, head personnel section, head computer support section
and head infrastructure section) are given that part of the ‘ internal resources allocation’ -document which concerns his
section. They all sign their respective parts if the ira-document. They will do this in parallel.This is achieved by placing a
simultaneous call (sim_call) to all four heads (sim_call_hss_sign_(x)).

Next the quality assurance part of the ira-document will be given to the quality assurance adviser. He will sign this part of
the document.

Then the updated project form is given to the head of the controller section. The project form is an appendix to te ‘ ira’ -
document and has been updated by the technical project manager during the writing of the ‘ ira’ - document. The updated
data in the project form is entered by the (personnel of the) controller section into the Management Information System
(MIS) of the Waco Business Unit (WBU).

At this point in its execution, the ‘project meeting minus’ has to wait until all documents are signed. After the signed
documents become available, the account manager is given the two copies of the project contract (with the software
development plan as appendix). The account manager will approach the customer for his signature on the project contract.

The ira-documents (containing the signed parts) is given back to the technical project manager of the project. He will file
the document in the appropriate ‘project file’ .

5.3.8.1.4 Project meeting minus : manager-STD

The class ‘project meeting minus’ has only one operation of interest for phase 3 of the process fragment ‘writing project
management documents. This is ‘pmm_request_approval_(x)’ . This operation is called in phase 2 of the process fragment.
The manager STD is already given during the modeling of phase 2. See the appropriate paragraph of the phase 2
modeling.

5.3.8.1.5 Project meeting minus : employee-STDs

The manager STD has 2 employee STDs. These are the callee ‘pmm_request_approval_(x)’ and its caller ‘hprs_
pmm_request_approval_(x)’ of the class ‘head production section’ .

The employees are already given during the modeling of phase 2. See the appropriate paragraph of the phase 2 modeling.

Software Process Modeling
in SOCCA

page :
version : 0.10

225

5.3.8.2 Chief executive officer

5.3.8.2.1 Chief executive officer : external behavior-STD, organizational view

The class ‘chief executive off icer’ has one operation relevant to this phase 3. This is ‘ceo_sign_pc_(x)’ . The possible
starting sequence of this operation is shown in the external STD. Because there is only one operation the starting sequence
is simply the succession ‘ceo_sign_pc_(x)’ , ‘ceo_sign_pc_(x)’ , etc.

NEUTRAL

CEO_SIGN_PC_(X)

figure 5.143 chief executive off icer : external behavior STD, organizational view

5.3.8.2.2 Chief executive officer : external behavior STD, communicative view

In addition to the possible starting sequence of the internal operations, the communicative view of the external behavior
STD shows also communication details between external STD and the called operation(s).

CEO_SIGN_PC_(X)

NEUTRAL
STARTING_
CEO_SIGN_
PC_(X)

WAITING
CALLE R
PROCEED

figure 5.144 chief executive off icer : external behavior STD, communicative view

The STD consists of a neutral state. When in this state the object is ready to handle a call to its operation. When the call
has been made, the object can go to the ‘starting’ -state. Here the internal operation is started. The caller of the operation
has to wait for the callee to return some result (in this case the signed project contract). When the STD notices that the
callee indeed has returned its result it can transit to the state ‘waiting caller proceed’ . In this state the caller is allowed to
proceed with its execution.

5.3.8.2.3 Chief executive officer : internal behavior-STDs

The operation ‘ceo_sign_pc_(x)’ has the following internal behavior STD.

ACT_
CEO_SIGN_PC_(X)

NON-
CEO_SIGN_
PC_(X)

CEO_SIGN_
PC_(X)
ASKED

SIGN BOTH
COPIES OF
PROJECT
CONTRACT ‘X’

READY

figure 5.145 int-ceo_sign_pc_(x) : internal behavior STD

With this operation the ‘chief executive off icer’ (ceo) signs both copies of the project contract. For the actual signing the
ceo uses the operation ‘pmd_sign’ of the class ‘project management document’ . This is not modeled in detail , but shown
here as an aggregate (high level) state.

The parameter ‘x’ contains the object id-s of both the project contracts to be signed. Because the ceo can sign the project
contracts of more then one project in parallel, the multiplicity of concurrent executing STDs is zero or more.

Software Process Modeling
in SOCCA

page :
version : 0.10

226

5.3.8.2.4 Chief executive officer : manager-STD

The manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager STD are
labeled with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the
transition. I.e. the transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant
employee(s) has/have entered the trap(s), the transition can and will (eventually) take place.

TL F-1

TL F-2

TL F-3

TL F-4

CC1-2CC1-1CC1-3

figure 5.146 chief executive off icer : manager STD

The notation CCx in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-
callee combination. The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that
enables the transition. The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

There is only one caller-callee combination, the callee ‘ceo_sign_pc_(x)’ and its caller ‘pmm_request_approval_(x)’ of the
class ‘project meeting minus’ . Because the caller may only proceed for four more states after the call and then has to wait
for the result produced by the callee, the call i s modeled conform the second ‘caller waits’ -variant of the caller-callee
construct. The trap of the subprocess S3 of the caller contains four states. This reflects the fact that the caller may proceed
four states after placing the call .

The manager keeps track of which callee is started for which caller. This infomation is called the ‘caller-callee’ relation.
In the second variant of the caller waits-construct the manager can not decide by the trap-information alone if it has to
make the transition TLF-1 or TLF-3 (the trap-information is the same for both transitions). The manager uses the caller-
callee relation to distinguish between both transitions.

In the state ‘neutral’ the CC and the TLF for the transition leaving the state are :

CC1-1 = {S1, S3}
TLF-1 = T-1 and (T-3 and not(caller-callee relation))
TLF-3 = T-1 and (T-3 and (caller-callee relation))

In the state ‘starting_ceo_sign_pc_(x)’ the CC and the TLF for the transition leaving the state are :

CC1-2 = {S2, S3} (caller may proceed four states and then has to wait)
TLF-2 = T-2

In the state ‘waiting_caller_proceed’ the CC and the TLF for the transition leaving the state are :

CC1-3 = {S1, S4} (caller may proceed)
TLF-4 = T-4

5.3.8.2.5 Chief executive officer : employee-STDs

The manager STD has the following 2 employee STDs. The first employee is ‘ceo_sign_pc_(x)’ . This employee has two
subprocesses S1 and S1 and two traps T-1 and T-2 according to the caller-callee construct.

Software Process Modeling
in SOCCA

page :
version : 0.10

227

CALL _
CEO_SIGN_
PC_(X)

MAKE
COPIES OF
PROJ ECT
CONTRACT
AND SDP

HSS_SIGN_
IRA_DOC_(X)
ASKEDSIM_CALL _

HSS_SIGN_
IRA_DOC_(X)

CEO_SIGN_
PC_(X)
ASKED

NON-
PMM_REQUEST_
APPROVAL_(X)

PMM_REQUEST_
APPROVAL_(X)
ASKEDACT-

PMM_REQUEST_
APPROVAL_(X)

CALL _
QAA_SIGN_
IRA_DOC_(X)

QAA_SIGN_
IRA_DOC_(X)
ASKEDCALL _

HCS_ENTER_
IN_MIS_(X)

HCS_ENTER_
IN_MIS_(X)
ASKED

AM_CU_
SIGN_PC_(X)
ASKEDCALL _

TPM_ENTER_IN_
PROJ_FILE_(X)

TPM_ENTER_
IN_PROJ_
FILE_(X)
ASKED

CURRENT
DATE & TIME
>=
SCHEDULED
DATE & TIME

[NO]

[YES]

T-3

figure 5.147 employee int-pmm_request_approval_(x) : subprocess S3

MAKE
COPIES OF
PROJ ECT
CONTRACT
AND SDP

HSS_SIGN_
IRA_DOC_(X)
ASKEDSIM_CALL_

HSS_SIGN_
IRA_DOC_(X)

CEO_SIGN_
PC_(X)
ASKED

NON-
PM M_REQUEST_
APPROVAL_(X)

PM M_REQUEST_
APPROVAL_(X)
ASKEDACT-

PM M_REQUEST_
APPROVAL_(X)

CALL_
QAA_SIGN_
IRA_DOC_(X)

QAA_SIGN_
IRA_DOC_(X)
ASKEDCALL_

HCS_ENTER_
IN_M IS_(X)

HCS_ENTER_
IN_M IS_(X)
ASKEDCALL_

AM_CU_SIGN_
PC_(X)

AM_CU_
SIGN_PC_(X)
ASKEDCALL_

TPM_ENTER_IN_
PROJ_FILE_(X)

TPM_ENTER_
IN_PROJ_
FILE_(X)
ASKED

CURRENT
DATE & TIME
>=
SCHEDULED
DATE & TIME

[NO]

[YES]

T-4

figure 5.148 employee int-pmm_request_approval_(x) : subprocess S4

The second employee is the caller ‘pmm_request_approval_(x)’ . This second employee has the subprocesses S3 and S4
and traps T-3 and T-4 according to the caller-callee construct. Because the caller may proceed for four states after the call ,
the trap T-3 contains four states. Accordingly the trap T-4 contains the remaining states.

Initially the operation ‘ceo_sign_pc_(x)’ is not executing. The manager prescribes S3 for the caller (the manager is waiting
for the call). It also prescribes S1 for the callee (the manager is waiting for the callee to be ready to be started). When the
caller enters its trap T-3, i.e. excutes the call (and the callee is ready in its trap T-1) the manager can make the transition to
the state ‘starting_ceo_sign_pc_(x)’ . Here it prescribes S2 for the callee, thereby starting it. It also still prescribes S3 for
the caller. This allows the caller to proceed four states after the call . Then it can proceed no further.

When the manager transits to the starting state it will record the caller-callee relation. That is to say, it will remember on
behalf of which caller the callee is starting execution.

When in the state ‘starting_ceo_sign_(x)’ the callee enters the trap T-2 (signaling that it has started execution), the
manager can (and eventualy will) transit back to neutral.

Here it prescribes S1 for the callee. Which means that the callee just continues excuting. The manager prescribes S3 for
the caller, thereby allowing it to proceed for a maximum of the next four states..

When the callee finishes execution (indicated by its entering the trap T-1), the manager can transit to the state ‘waiting
caller proceed’ . Here it prescribes S4 for the caller. This means that the caller can start executing again if it already had
reached the last of the four states allowed in S3. If the caller had not reached the fourth state yet, it means that it can just
continue after it has reached that fourth state.

When the caller enters now trap T-4 in its prescribed behavior restriction S4, the manager can and will t ransit back to the
neutral state. On this transition the manager deletes the caller-callee relation and is ready for the next cycle.

Software Process Modeling
in SOCCA

page :
version : 0.10

228

5.3.8.3 Head support section

5.3.8.3.1 Head support section : external behavior-STD, organizational view

The class ‘head support section’ has one operation relevant to this phase 3. This is ‘hss_sign_ira_doc_(x)’ . The possible
starting sequence of this operation is shown in the external STD. Because there is only one operation the starting sequence
is simply a succession of ‘ ceo_sign_pc_(x)’ -operations.

NEUTRAL

HSS_SIGN_IRA_DOC_(X)

figure 5.149 head support section : external behavior STD, organizational view

5.3.8.3.2 Head support section : external behavior STD, communicative view

In addition to the possible starting sequence of the internal operations, the communicative view of the external behavior
STD shows also communication details between external STD and the called operation(s).

HSS_SIGN_IRA_
DOC_(X)

NEUTRAL
STARTING_
HSS_SIGN_
IRA_DOC_(X)

WAITING
CALLE R
PROCEED

figure 5.150 head support section : external behavior STD, communicative view

The STD consists of a neutral state. When in this state the object is ready to handle a call to its operation. When the call
has been made, the object can go to the ‘starting’ -state. Here the internal operation is started. The caller of the operation
has to wait for the callee to return some result (in this case the signed part of the ‘ internal resources allocation’ -document).
When the STD notices that the callee indeed has returned its result it can transit to the state ‘waiting caller proceed’ . In this
state the caller is allowed to proceed with its execution.

5.3.8.3.3 Head support section : internal behavior-STDs

The operation ‘hss_sign_ira_doc_(x)’ has the following internal behavior STD.

ACT_
HSS_SIGN_
IRA_DOC_(X)

NON-
HSS_SIGN_
IRA_DOC_(X)

HSS_SIGN_
IRA_DOC_(X)
ASKED

SIGN IRA-
DOCUMENT ’X’ READY

figure 5.151 int-hss_sign_ira_doc_(x) : internal behavior STD

With this operation the ‘head support section’ (hss) signs his part of the ‘ internal resources allocation’ -document (ira-
document). For the actual signing the hss uses the operation ‘pmd_sign’ of the class ‘project management document’ . This
is not modeled in detail , but shown here as an aggregate (high level) state.

The parameter ‘x’ contains the object id of the ira -document that has to be signed. Because the hss can sign ira-documents
of more then one project in parallel, the multiplicity of concurrent executing STDs is zero or more.

5.3.8.3.4 Head support section : manager-STD

Software Process Modeling
in SOCCA

page :
version : 0.10

229

The manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager STD are
labeled with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the
transition. I.e. the transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant
employee(s) has/have entered the trap(s), the transition can and will (eventually) take place.

TL F-1

TL F-2

TL F-3

TL F-4

CC1-2CC1-1CC1-3

figure 5.152 head support section : manager STD

The manager STD and the subprocesses and traps of its employees are conceptualy the same, and use the same names, as
those used in the modeling of the chief executive off icer (in phase 3). For the definition of the CPSs, TLFs and CCs a
reference is therefore made to those of the chief executive off icer (in phase 3). The chief executive off icer’s employees
must then be substituted by the head support section’s employees.

There is only one caller-callee combination, the callee ‘hss_sign_ira_doc_(x)’ and its caller ‘pmm_request_ approval_(x)’
of the class ‘project meeting minus’ . Because the caller may proceed for three more states after the call and then has to
wait for the result produced by the callee, the call i s modeled conform the second ‘caller waits’ -variant of the caller-callee
construct. The trap of the subprocess S3 of the caller contains three states. This reflects the fact that the caller may proceed
three states after placing the call .

All the heads of a support section (head controller section, head personnel section, head computer support section and
head infrastructure section) are asked to sign at the same time. This is modeled by a ‘simultaneous’ call (sim_call). The
working of the sim_call i s explained in the SOCCA chapter. Because the caller may proceed for three states after the call ,
these three states are also part of the simultaneous call -construct. When the internal STD would be given in more detail ,
these states are repeated at the end of every branch leaving the ‘selector’ state.

5.3.8.3.5 Head support section : employee-STDs

The manager STD has the following 2 employee STDs. The first employee is ‘hss_sign_ira_doc_(x)’ . This employee has
two subprocesses S1 and S1 and two traps T-1 and T-2 according to the caller-callee construct.

CALL _
CEO_SIGN_
PC_(X)

MAKE
COPIES OF
PROJ ECT
CONTRACT
AND SDP

HSS_SIGN_
IRA_DOC_(X)
ASKEDSIM_CALL _

HSS_SIGN_
IRA_DOC_(X)

CEO_SIGN_
PC_(X)
ASKED

NON-
PMM _REQUEST_
APPROVAL_(X)

PMM _REQUEST_
APPROVAL_(X)
ASKEDACT-

PMM _REQUEST_
APPROVAL_(X)

CALL _
QAA_SIGN_
IRA_DOC_(X)

QAA_SIGN_
IRA_DOC_(X)
ASKEDCALL _

HCS_ENTER_
IN_M IS_(X)

HCS_ENTER_
IN_M IS_(X)
ASKED

AM_CU_
SIGN_PC_(X)
ASKEDCALL _

TPM _ENTER_IN_
PROJ_FILE_(X)

TPM _ENTER_
IN_PROJ_
FILE_(X)
ASKED

CURRENT
DATE & TIME
>=
SCHEDULED
DATE & TIME

[NO]

[YES]

T-3

figure 5.153 employee int-pmm_request_approval_(x) : subprocess S3

Software Process Modeling
in SOCCA

page :
version : 0.10

230

CALL _
CEO_SIGN_
PC_(X)

MAKE
COPIES OF
PROJ ECT
CONTRACT
AND SDP

HSS_SIGN_
IRA_DOC_(X)
ASKED

CEO_SIGN_
PC_(X)
ASKED

NON-
PMM_REQUEST_
APPROVAL_(X)

PMM_REQUEST_
APPROVAL_(X)
ASKEDACT-

PMM_REQUEST_
APPROVAL_(X)

CALL _
QAA_SIGN_
IRA_DOC_(X)

QAA_SIGN_
IRA_DOC_(X)
ASKEDCALL _

HCS_ENTER_
IN_M IS_(X)

HCS_ENTER_
IN_M IS_(X)
ASKEDCALL _

AM_CU_SIGN_
PC_(X)

AM_CU_
SIGN_PC_(X)
ASKEDCALL _

TPM_ENTER_IN_
PROJ_FILE_(X)

TPM_ENTER_
IN_PROJ_
FILE_(X)
ASKED

CURRENT
DATE & TIME
>=
SCHEDULED
DATE & TIME

[NO]

[YES]

T-4

figure 5.154 employee int-pmm_request_approval_(x) : subprocess S4

The second employee is the caller ‘pmm_request_approval_(x)’ . This second employee has the subprocesses S3 and S4
and traps T-3 and T-4 according to the caller-callee construct. Because the caller may proceed for three states after the call ,
the trap T-3 contains three states. Accordingly the trap T-4 contains the remaining states.

The manager STD and the subprocesses and traps of its employees are conceptualy the same, and use the same names, as
those used in the modeling of the chief executive off icer (in phase 3). For the working of the manager STD with respect to
its employees a reference is therefore made to the chief executive off icer (in phase 3). The chief executive off icer’s
employees must then be substituted by the head support section’s employees.

The working of the manager STD in the ‘simultaneous’ call construct assures that the caller STD can only proceed after all
four callees (head controller section, head personnel section, head computer support section and head infrastructure
section) have returned their result.

Software Process Modeling
in SOCCA

page :
version : 0.10

231

5.3.8.4 Quality assurance adviser

5.3.8.4.1 Quality assurance adviser : external behavior-STD, organizational view

The class ‘quality assurance adviser’ has one operation relevant to this phase 3. This is ‘qaa_sign_ira_doc_(x)’ . The
possible starting sequence of this operation is shown in the external STD. Because there is only one operation the starting
sequence is simply a succession of ‘ qaa_sign_ira_doc_(x)’ operations.

NEUTRAL

QAA_SIGN_IRA_DOC_(X)

figure 5.155 quality assurance adviser : external behavior STD, organizational view

5.3.8.4.2 Quality assurance adviser : external behavior STD, communicative view

In addition to the possible starting sequence of the internal operations, the communicative view of the external behavior
STD shows also communication details between external STD and the called operation(s).

QAA_SIGN_
IRA_DOC_(X)

NEUTRAL
STARTING_
QAA_SIGN_
IRA_DOC_(X)

WAITING
CALLE R
PROCEED

figure 5.156 quality assurance adviser : external behavior STD, communicative view

The STD consists of a neutral state. When in this state the object is ready to handle a call to its operation. When the call
has been made, the object can go to the ‘starting’ -state. Here the internal operation is started. The caller of the operation
has to wait for the callee to return some result (in this case the signed quality-part of the ‘ internal resources allocation’ -
document). When the STD notices that the callee indeed has returned its result it can transit to the state ‘waiting caller
proceed’ . In this state the caller is allowed to proceed with its execution.

5.3.8.4.3 Quality assurance adviser : internal behavior-STDs

The operation ‘qaa_sign_ira_doc_(x)’ has the following internal behavior STD.

ACT_
QAA_SIGN_
IRA_DOC_(X)

NON-
QAA_SIGN_
IRA_DOC_(X)

QAA_SIGN_
IRA_DOC_(X)
ASKED

SIGN IRA-
DOCUMENT ’X’ READY

figure 5.157 int-qaa_sign_ira_doc_(x) : internal behavior STD

With this operation the ‘quality assurance adviser’ (qaa) signs his part of the ‘ internal resources allocation’ -document (ira-
document). For the actual signing the qaa uses the operation ‘pmd_sign’ of the class ‘project management document’ .
This is not modeled in detail , but shown here as an aggregate (high level) state.

The parameter ‘x’ contains the object id of the ira-document that has to be signed. Because the qaa can sign ira-documents
of more then one project in parallel, the multiplicity of concurrent executing STDs is zero or more.

5.3.8.4.4 Quality assurance adviser : manager-STD

Software Process Modeling
in SOCCA

page :
version : 0.10

232

The manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager STD are
labeled with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the
transition. I.e. the transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant
employee(s) has/have entered the trap(s), the transition can and will (eventually) take place.

TL F-1

TL F-2

TL F-3

TL F-4

CC1-2CC1-1CC1-3

figure 5.158 chief executive off icer : manager STD

There is only one caller-callee combination, the callee ‘qaa_sign_ira_doc_(x)’ and its caller ‘pmm_request_ approval_(x)’
of the class ‘project meeting minus’ . Because the caller may proceed for two more states after the call and then has to wait
for the result produced by the callee, the call i s modeled conform the second ‘caller waits’ -variant of the caller-callee
construct. The trap of the subprocess S3 of the caller contains two states. This reflects the fact that the caller may proceed
two states after placing the call .

The manager STD and the subprocesses and traps of its employees are conceptualy the same, and use the same names, as
those used in the modeling of the chief executive off icer (in phase 3). For the definition of the CCs and TLFs a reference is
therefore made to those of the chief executive off icer (in phase 3). The chief executive off icer’s employees must then be
substituted by the quality assurance adviser’s employees.

5.3.8.4.5 Quality assurance adviser : employee-STDs

The manager STD has the following 2 employee STDs. The first employee is ‘qaa_sign_ira_doc_(x)’ . This employee has
two subprocesses S1 and S1 and two traps T-1 and T-2 according to the caller-callee construct.

CALL _
CEO_SIGN_
PC_(X)

MAKE
COPIES OF
PROJ ECT
CONTRACT
AND SDP

HSS_SIGN_
IRA_DOC_(X)
ASKEDSIM_CALL _

HSS_SIGN_
IRA_DOC_(X)

CEO_SIGN_
PC_(X)
ASKED

NON-
PMM _REQUEST_
APPROVAL_(X)

PMM _REQUEST_
APPROVAL_(X)
ASKEDACT-

PMM _REQUEST_
APPROVAL_(X)

CALL _
QAA_SIGN_
IRA_DOC_(X)

QAA_SIGN_
IRA_DOC_(X)
ASKEDCALL _

HCS_ENTER_
IN_MIS_(X)

HCS_ENTER_
IN_MIS_(X)
ASKED

AM_CU_
SIGN_PC_(X)
ASKEDCALL _

TPM_ENTER_IN_
PROJ_FILE_(X)

TPM_ENTER_
IN_PROJ_
FILE_(X)
ASKED

CURRENT
DATE & TIME
>=
SCHEDULED
DATE & TIME

[NO]

[YES]

T-3

figure 5.159 employee int-pmm_request_approval_(x) : subprocess S3

Software Process Modeling
in SOCCA

page :
version : 0.10

233

CALL _
CEO_SIGN_
PC_(X)

MAKE
COPIES OF
PROJ ECT
CONTRACT
AND SDP

HSS_SIGN_
IRA_DOC_(X)
ASKEDSIM_CALL _

HSS_SIGN_
IRA_DOC_(X)

CEO_SIGN_
PC_(X)
ASKED

NON-
PM M_REQUEST_
APPROVAL_(X)

PM M_REQUEST_
APPROVAL_(X)
ASKEDACT-

PM M_REQUEST_
APPROVAL_(X)

QAA_SIGN_
IRA_DOC_(X)
ASKEDCALL _

HCS_ENTER_
IN_M IS_(X)

HCS_ENTER_
IN_M IS_(X)
ASKEDCALL _

AM_CU_SIGN_
PC_(X)

AM_CU_
SIGN_PC_(X)
ASKEDCALL _

TPM_ENTER_IN_
PROJ_FILE_(X)

TPM_ENTER_
IN_PROJ_
FILE_(X)
ASKED

CURRENT
DATE & TIME
>=
SCHEDULED
DATE & TIME

[NO]

[YES]

T-4

figure 5.160 employee int-pmm_request_approval_(x) : subprocess S4

The second employee is the caller ‘pmm_request_approval_(x)’ . This second employee has the subprocesses S3 and S4
and traps T-3 and T-4 according to the caller-callee construct. Because the caller may proceed for two states after the call ,
the trap T-3 contains two states. Accordingly the trap T-4 contains the remaining states.

The manager STD and the subprocesses and traps of its employees are conceptualy the same, and use the same names, as
those used in the modeling of the chief executive off icer (in phase 3). For the working of the manager STD with respect to
its employees a reference is therefore made to the chief executive off icer (in phase 3). The chief executive off icer’s
employees must then be sustituted by the quality assurance adviser’s employees.

Software Process Modeling
in SOCCA

page :
version : 0.10

234

5.3.8.5 Head controller section

5.3.8.5.1 Head controller section : external behavior-STD, organizational view

The class ‘head controller section’ has one operation relevant to this phase 3. This is ‘hcs_enter_in_mis_(x)’ . This
operation is also used in phase 1. The only difference is in the caller of the operation. In phase 1 the caller is
‘hps_initiate_project_form_(x)’ . Here, in phase 3, the caller is ‘pmm_request_approval_(x)’ . The possible starting
sequence of this operation is shown in the external STD. Because there is only one operation the starting sequence is
simply a succession of ‘ hcs_enter_in_mis_(x)’ operations.

NEUTRAL

HCS_ENTER_IN_MIS_(X)

figure 5.161 head controller section : external behavior STD, organizational view

5.3.8.5.2 Head controller section : external behavior STD, communicative view

In addition to the possible starting sequence of the internal operations, the communicative view of the external behavior
STD shows also communication details between external STD and the called operation(s).

NEUTRAL
STARTING_
HCS_ENTER_
IN_MIS_(X)

HSC_ENTER_
IN_MIS_(X)

figure 5.162 head controller section : external behavior STD, communicative view

The STD consists of a neutral state. When in this state the object is ready to handle a call to its operation. When the call
has been made, the object can go to the ‘starting’ -state. Here the internal operation is started. The caller of the operation
does not have to wait for the callee to return some result. As soon as the internal operation is started, the manager can
transit back to neutral.

5.3.8.5.3 Head controller section : internal behavior-STDs

For the internal STD of the operation ‘hcs_enter_in_mis_(x)’ a reference is made to the description of this STD during the
modeling of phase 1.

5.3.8.5.4 Head controller section : manager-STD

For the manager STD of the class ‘head controller section’ a reference is made to the description of this STD during the
modeling of phase 1. The only difference is that the operation ‘pmm_request_approval_(x)’ is the caller in this phase 3.
The names of the subprocesses and traps of this caller are the same as those used for the caller in phase 1.

5.3.8.5.5 Head controller section : employee-STDs

The manager STD has 2 employee STDs. The first employee is ‘hcs_enter_in_mis_(x)’ . This employee has two
subprocesses S1 and S1 and two traps T-1 and T-2 according to the caller-callee construct. The second employee is the
caller ‘pmm_request_approval_(x)’ . This second employee has the subprocesses S3 and S4 and traps T-3 and T-4
according to the caller-callee construct.

Software Process Modeling
in SOCCA

page :
version : 0.10

235

5.3.8.6 Account manager

5.3.8.6.1 Account manager : external behavior-STD, organizational view

The class ‘account manager’ has one operation relevant to this phase 3. This is ‘am_cu_sign_pc_(x)’ . The possible starting
sequence of this operation is shown in the external STD. Because there is only one operation the starting sequence is
simply a succession of ‘ am_cu_sign_pc_(x)’ operations.

NEUTRAL

AM_CU_SIGN_PC_(X)

figure 5.163 account manager : external behavior STD, organizational view

5.3.8.6.2 Account manager : external behavior-STD, communicative view

The communicative view of the external behavior STD shows the communication details between the external STD and
the called operation(s).

NEUTRAL
STARTING_
AM_CU_SIGN_
PC_(X)

AM_CU_SIGN_
PC_(X)

figure 5.164 head controller section : external behavior STD, communicative view

This external behavior STD has two states. In the state neutral the account manager waits until a call has been placed to its
operation ‘am_cu_sign_pc_(x). If a call has been made, the manager STD can (and eventually will) transit to the state
‘starting_am_cu_sign_pc_(x)’ . If the operation has been started the manager can transit back to the state neutral. The caller
does not have to wait for a result from the callee, but can proceed right after the call i s acknowledged by the manager.

The caller of the operation of this class can be found in the relevant import-export diagram. It is given in the ‘ import_list’
attribute of the ‘uses association’ .

5.3.8.6.3 Account manager : internal behavior-STDs

The account manager has 1 operation relevant for phase 3 : ‘am_cu_sign_pc_(x)’ . This operation has the following
internal behavior STD.

ACT_
AM_CU_SIGN_
PC_(X)

NON-
AM_CU_SIGN_
PC_(X)

AM_CU_SIGN_
PC_(X)
ASKED

CU_SIGN_PC_(X)
ASKED

MAKE
COPY OF
PROJECT
CONTRACT ‘X’

CALL
ADA_ARCHIVE_(X)

CALL
CU_SIGN_ PC_(X)

ADA_
ARCHIVE_(X)
ASKED CALL

TPM _ENTER_
IN_PROJ_FILE_(X)

TPM _ENTER_
IN_PROJ_
FILE_(X)
ASKED

figure 5.165 int-am_cu_sign_pc_(x) : internal behavior STD

The formal parameter of the operation is the project contract (in duplicate) that the customer has to sign.

The account manager presents the two copies of the project contract (plus the appended software development plan) to the
customer for his signature (call_cu_sign_pc_(x)). The customer signs both copies. He keeps one copy for himself and
returns the other.
The returned (signed) copy is now duplicated. For this copying the ‘account manager’ uses the method ‘pmd_copy’ of the
class ‘project management document’ . This is not further detailed, but shown here as an aggregate (higher level) state.

Software Process Modeling
in SOCCA

page :
version : 0.10

236

The original is filed by ‘archive/documentation administrator’ in the central archive (call_ada_archive_(x)). The duplicate
is filed by the technical project manager in the ‘project file’ of the project (call_tpm_enter_in_proj_file_(x)).

5.3.8.6.4 Account manager : manager-STD

The communication between the head controller’s operations (callees) and their callers is managed by a manager STD.
The manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager STD are
labeled with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the
transition. I.e. the transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant
employee(s) has/have entered the trap(s), the transition can and will (eventually) take place.

TL F-1

TL F-2

CC1-1 CC1-2

figure 5.166 account manager : manager STD

The notation CCx in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-
callee combination. The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that
enables the transition. The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

There is only one caller-callee combination, the callee ‘am_cu_sign_pc_(x)’ and its caller ‘pmm_request_approval_(x)’ of
the class ‘project meeting minus’ . The calli ng is modeled by the ‘caller does not wait’ -variant of the caller-callee
construct.

In the state ‘neutral’ CC and the TLF for the transition leaving the state are :

CC1-1 = {S1, S3}
TLF-1 = T-1 and T-3

In the state ‘starting_am_cu_sign_pc_(x)’ the CC and the TLF for the transition leaving the state are :

CC1-2 = {S2, S4}
TLF-2 = T-2 and T-4

5.3.8.6.5 Account manager : employee-STDs

The manager STD has the following 2 employee STDs. The first employee is ‘am_cu_sign_pc_(x)’ . This employee has
two subprocesses S1 and S1 and two traps T-1 and T-2 according to the caller-callee construct.

The second employee is the caller ‘pmm_request_approval_(x)’ . This second employee has the subprocesses S3 and S4
and traps T-3 and T-4 according to the caller-callee construct.

Software Process Modeling
in SOCCA

page :
version : 0.10

237

5.3.8.7 Customer

5.3.8.7.1 Customer : external behavior-STD, organizational view

The class customer has one operation relevant to this phase 3. This is ‘cu_sign_pc_(x)’ . The possible starting sequence of
this operation is shown in the external STD. Because there is only one operation the starting sequence is simply a
succession of ‘ cu_sign_pc_(x)’ operations.

NEUTRAL

CU_SIGN_PC_(X)

figure 5.167 customer : external behavior STD, organizational view

5.3.8.7.2 Customer : external behavior STD, communicative view

In addition to the possible starting sequence of the internal operations, the communicative view of the external behavior
STD shows also communication details between external STD and the called operation(s).

CU_SIGN_PC_(X)

NEUTRAL
STARTING_
CU_SIGN_PC_(X)

WAITING
CALLE R
PROCEED

figure 5.168 customer : external behavior STD, communicative view

The STD consists of a neutral state. When in this state the object is ready to handle a call to its operation. When the call
has been made, the object can go to the ‘starting’ -state. Here the internal operation is started. The caller of the operation
has to wait for the callee to return some result (in this case one signed copy of the project contract). When the STD notices
that the callee indeed has returned its result it can transit to the state ‘waiting caller proceed’ . In this state the caller is
allowed to proceed with its execution.

5.3.8.7.3 Customer : internal behavior-STDs

The operation ‘cu_sign_pc_(x)’ has the following internal behavior STD.

ACT_
CU_SIGN_PC_(X)

NON-
CU_SIGN_PC_(X)

CU_SIGN_PC_(X)
ASKED

SIGN BOTH
COPIES OF THE
PROJECT
CONTRACT ’X’

READY

figure 5.169 int-cu_sign_pc_(x) : internal behavior STD

With this operation the customer signs both copies of the project contract. For the actual signing the cutomer uses the
operation ‘pmd_sign’ of the class ‘project management document’ . This is not modeled in detail , but shown here as an
aggregate (high level) state.

The parameter ‘x’ contains the object id-s of both copies the project contract that have to be signed. Because the customer
can sign project contracts of more then one project in parallel, the multiplicity of concurrent executing STDs is zero or
more.

Software Process Modeling
in SOCCA

page :
version : 0.10

238

5.3.8.7.4 Customer : manager-STD

The manager STD prescribes in its states the subprocesses for its employees. The transitions of the manager STD are
labeled with a combination of traps. The entering of the trap(s) by the relevant employee(s) is a condition for the
transition. I.e. the transition can not take place if the relevant employee(s) has/have not entered the trap(s). If the relevant
employee(s) has/have entered the trap(s), the transition can and will (eventually) take place.

TL F-1

TL F-2

TL F-3

TL F-4

CC1-2CC1-1CC1-3

figure 5.170 customer : manager STD

There is only one caller-callee combination, the callee ‘cu_sign_pc_(x)’ and its caller ‘am_cu_sign_pc_(x)’ of the class
‘account manager’ . Because the caller has to wait for the result produced by the callee, the call i s modeled conform the
second ‘caller waits’ -variant of the caller-callee construct.

The manager keeps track of which callee is started for which caller. This infomation is called the ‘caller-callee’ relation.
In the second variant of the caller waits-construct the manager can not decide by the trap-information alone if it has to
make the transition TLF-1 or TLF-3 (the trap-information is the same for both transitions). The manager uses the caller-
callee relation to distinguish between both transitions.

In the state ‘neutral’ the CC and the TLF for the transition leaving the state are :

CC1-1 = {S1, S3}
TLF-1 = T-1 and (T-3 and not(caller-callee relation))
TLF-3 = T-1 and (T-3 and (caller-callee relation))

In the state ‘starting_cu_sign_pc_(x)’ the CC and the TLF for the transition leaving the state are :

CC1-2 = {S2, S3} (caller has to wait)
TLF-2 = T-2

In the state ‘waiting_caller_proceed’ the CC and the TLF for the transition leaving the state are :

CC1-3 = {S1, S4} (caller may proceed)
TLF-4 = T-4

5.3.8.7.5 Customer : employee-STDs

The manager STD has the following 2 employee STDs. The first employee is ‘cu_sign_pc_(x)’ . This employee has two
subprocesses S1 and S1 and two traps T-1 and T-2 according to the caller-callee construct.

The second employee is the caller ‘am_cu_sign_pc_(x)’ . This second employee has the subprocesses S3 and S4 and traps
T-3 and T-4 according to the caller-callee construct.

Software Process Modeling
in SOCCA

page :
version : 0.10

239

5.3.8.8 Archive/documentation administrator

5.3.8.8.1 Archive/documentation administrator : external behavior-STD, organizational view

The class ‘account manager adviser’ has one operation relevant to this phase 3. This is ‘ada_archive_(x)’ . The possible
starting sequence of this operation is shown in the external STD. Because there is only one operation the starting sequence
is simply a succession of ‘ ada_archive_(x)’ operations.

NEUTRAL

ADA_ARCHIVE_(X)

figure 5.171 archive/documentation administrator : external behavior STD, organizational view

5.3.8.8.2 Archive/documentation administrator : external behavior-STD, communicative view

The communicative view of the external behavior STD shows the communication details between the external STD and
the called operation(s).

NEUTRAL
STARTING_
ADA_
ARCHIVE_(X)

ADA_ARCHIVE_(X)

figure 5.172 archive/documentation administrator : external behavior STD, communicative view

This external behavior STD has two states. In the state neutral the administrator waits until a call has been placed to its
operation. If a call has been made, the manager STD can (and eventually will) transit to the starting state. If the operation
has been started the manager can transit back to the state neutral. The caller does not have to wait for a result from the
callee, but can proceed right after the call i s acknowledged by the manager.

The caller of the operation of this class can be found in the relevant import-export diagram. It is given in the ‘ import_list’
attribute of the ‘uses association’ .

5.3.8.8.3 Archive/documentation administrator : internal behavior-STDs

The archive/documentation administrator has 1 operation relevant for phase 3 : ‘ada_archive_(x)’ . This operation has the
following internal behavior STD.

ACT_
ADA_ARCHIVE_(X)

NON-
ADA_
ARCHIVE_(X)

ADA_
ARCHIVE_(X)
ASKED FILE

DOCUMENT(S) ‘X’
IN ARCHIVE

READY

figure 5.173 int-ada_archive_(x) : internal behavior STD

With this operation the archive/documentation administrator files the document(s) represented by the parameter ‘x’ in the
archive of the Waco Business Unit (WBU). The administator can file more documents in parallel. So the multiplicity of
concurrent STDs is zero or more.

Software Process Modeling
in SOCCA

page :
version : 0.10

240

5.3.8.8.4 Archive/documentation administrator : manager-STD

The states and transitions of the manager STD corresponds with the states and transitions of the external STD,
communicative view.

TL F-1

TL F-2

CC1-1 CC1-2

figure 5.174 archive/documentation administrator : manager STD

There is only one caller-callee combination, the callee ‘ada_archive_(x)’ and its caller ‘am_cu_sign_pc_(x)’ of the class
‘account manager’ . The calli ng is modeled by the ‘caller does not wait’ -variant of the caller-callee construct.

In the state ‘neutral’ CC (caller-callee combination) and the TLF (transition logical formula) for the transition leaving the
state are :

CC1-1 = {S1, S3}
TLF-1 = T-1 and T-3

In the state ‘starting_ada_archive_(x)’ the CC and the TLF for the transition leaving the state are :

CC1-2 = {S2, S4}
TLF-2 = T-2 and T-4

5.3.8.8.5 Archive/documentation administrator : employee-STDs

The manager STD has the following 2 employee STDs. The first employee is ‘ada_archive_(x)’ . This employee has two
subprocesses S1 and S1 and two traps T-1 and T-2 according to the caller-callee construct.

The second employee is the caller ‘am_cu_sign_pc_(x)’ . This second employee has the subprocesses S3 and S4 and traps
T-3 and T-4 according to the caller-callee construct.

Software Process Modeling
in SOCCA

page :
version : 0.10

241

5.3.8.9 Technical_Project_Manager

5.3.8.9.1 Technical_Project_Manager : external behavior-STD, organizational view

The class ‘ technical project manager’ has one operation relevant to this phase 3. This is ‘ tpm_enter_in_proj_file_(x)’ . The
possible starting sequence of this operation is shown in the external STD. Because there is only one operation the starting
sequence is simply a succession of ‘ tpm_enter_in_proj_file_(x)’ operations.

NEUTRAL

TPM_ENTER_IN_PROJ_FILE_(X)

figure 5.175 technical project manager : external behavior STD, organizational view

5.3.8.9.2 Technical_Project_Manager : external behavior-STD, communicative view

The communicative view of the external behavior STD shows the communication details between the external STD and
the called operation(s).

NEUTRAL

DISC_
STARTING_
TPM_ENTER_IN_
PROJ_FILE_(X)

TPM_ENTER_IN_
PROJ_FILE_(X)

figure 5.176 technical project manager : external behavior STD, communicative view

This external behavior STD has two states. In the state neutral the technical project manager waits until a call has been
placed to its operation. If a call has been made, the manager STD can (and eventually will) transit to the starting state. The
starting state is a so-called ‘discriminator’ -state. Here the manager decides which caller has made the call . The two
possible callers are ‘pmm_request_approval_(x)’ and ‘am_cu_sign_pc_(x)’ . After the operation has been started the
manager can transit back to the state neutral. Neither of the two possible callers have to wait for a result from the callee,
but can proceed right after the call i s acknowledged by the manager.

5.3.8.9.3 Technical_Project_Manager : internal behavior-STDs

The technical project manager has 1 operation relevant for phase 3 : ‘ tpm_enter_in_proj_file_(x)’ . This operation has the
following internal behavior STD.

ACT_
TPM_ENTER_IN_
PROJ_FILE_(X)

NON-
TPM_ENTER_IN_
PROJ_FILE_(X)

TPM_ENTER_IN
_PROJ_FILE_(X)
ASKED ENTER

DOCUMENT(S) ‘X’
IN PROJECT FILE

READY

figure 5.177 int-tpm_enter_in_proj_file_(x) : internal behavior STD

With this operation the technical project manager (tpm) enters the document(s) represented by the parameter ‘x’ in the
appropriate project file. The tpm can file more documents at the same time. So the multiplicity of concurrent STDs is zero
or more.

Software Process Modeling
in SOCCA

page :
version : 0.10

242

5.3.8.9.4 Technical_Project_Manager : manager-STD

The states and transitions of the manager STD corresponds with the states and transitions of the external STD,
communicative view.

TL F-1

TL F-2

CSP1 CSP2

figure 5.178 technical project manager : manager STD

There is only one caller-callee combination : the callee ‘ tpm_enter_in_proj_file_(x)’ and its two callers ‘pmm_request_
approval_(x)’ and ‘am_cu_sign_pc_(x)’ . The calli ng is modeled by the ‘caller does not wait’ -variant of the caller-callee
construct.

The notation CCx in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-
callee combination. The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that
enables the transition. The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

The ‘or’ -conditions in the CCs and TLFs are caused by the discriminator-state. The transition to the discriminator state
takes place when either T-3 or T-5 has been entered. In the state is decided which caller has placed the call . I.e. it is
decided if T-3 or T-5 was entered. Accordingly either {S2, S4, S5} or {S2, S3, S6} is prescribed in the discriminator state.

In the state ‘neutral’ CC and the TLF for the transition leaving the state are :

CC1-1 = {S1, S3, S5}
TLF-1 = T-1 and (T-3 or T-5)

In the state ‘disc_starting_tpm_enter_in_proj_file_(x)’ the CC and the TLF for the transition leaving the state are :

CC1-2 = {S2, S4, S5} or
 {S2, S3, S6}

TLF-2 = T-2 and (T-4 or T-6)

5.3.8.9.5 Technical_Project_Manager : employee-STDs

The manager STD has 3 employee STDs. The first employee is ‘ tpm_enter_in_proj_file_(x)’ . This employee has two
subprocesses S1 and S1 and two traps T-1 and T-2 according to the caller-callee construct.

The second employee is the caller ‘pmm_request_ approval_(x)’ . This second employee has the subprocesses S3 and S4
and traps T-3 and T-4 according to the caller-callee construct.

The third employee is the caller ‘am_cu_sign_pc_(x)’ . This third employee has the subprocesses S5 and S6 and traps T-5
and T-6 according to the caller-callee construct.

SOFTWARE PROCESS MODELING in SOCCA

student : H.G.Brugman
studentnr : 9105506
version : 0.10

Software Process Modeling
in SOCCA

page :
version : 0.10

242

5. Key Process Area ‘Software Project Planning’

figure 5.1figure 5.2figure 5.3figure 5.4figure 5.5figure 5.6figure 5.7figure 5.8figure 5.9figure 5.10
figure 5.11figure 5.12figure 5.13figure 5.14figure 5.15figure 5.16figure 5.17figure 5.18figure 5.19figure 5.20
figure 5.21figure 5.22figure 5.23figure 5.24figure 5.25figure 5.26figure 5.27figure 5.28figure 5.29figure 5.30
figure 5.31figure 5.32figure 5.33figure 5.34figure 5.35figure 5.36figure 5.37figure 5.38figure 5.39figure 5.40
figure 5.41figure 5.42figure 5.43figure 5.44figure 5.45figure 5.46figure 5.47figure 5.48figure 5.49figure 5.50
figure 5.51figure 5.52figure 5.53figure 5.54figure 5.55figure 5.56figure 5.57figure 5.58figure 5.59figure 5.60
figure 5.61figure 5.62figure 5.63figure 5.64figure 5.65figure 5.66figure 5.67figure 5.68figure 5.69figure 5.70
figure 5.71figure 5.72figure 5.73figure 5.74figure 5.75figure 5.76figure 5.77figure 5.78figure 5.79figure 5.80
figure 5.81figure 5.82figure 5.83figure 5.84figure 5.85figure 5.86figure 5.87figure 5.88figure 5.89figure 5.90
figure 5.91figure 5.92figure 5.93figure 5.94figure 5.95figure 5.96figure 5.97figure 5.98figure 5.99figure 5.100
figure 5.101figure 5.102figure 5.103figure 5.104figure 5.105figure 5.106figure 5.107figure 5.108figure 5.109figure 5.110
figure 5.111figure 5.112figure 5.113figure 5.114figure 5.115figure 5.116figure 5.117figure 5.118figure 5.119figure 5.120
figure 5.121figure 5.122figure 5.123figure 5.124figure 5.125figure 5.126figure 5.127figure 5.128figure 5.129figure 5.130
figure 5.131figure 5.132figure 5.133figure 5.134figure 5.135figure 5.136figure 5.137figure 5.138figure 5.139figure 5.140
figure 5.141figure 5.142figure 5.143figure 5.144figure 5.145figure 5.146figure 5.147figure 5.148figure 5.149figure 5.150
figure 5.151figure 5.152figure 5.153figure 5.154figure 5.155figure 5.156figure 5.157figure 5.158figure 5.159figure 5.160
figure 5.161figure 5.162figure 5.163figure 5.164figure 5.165figure 5.166figure 5.167figure 5.168figure 5.169figure 5.170
figure 5.171figure 5.172figure 5.173figure 5.174figure 5.175figure 5.176figure 5.177figure 5.178

Software Process Modeling
in SOCCA

page :
version : 0.10

243

5.3.9 State Transition Diagrams - Phase 4

Phase 4, ‘ resource allocation’ , of the process fragment ‘writing project management documents’ (partly) models the
behavior of the following classes :

- head personnel section
- head computer support section
- terms of reference document
- project form
- internal memorandum
- technical project manager
- head production section
- engineer
- head controller section

Software Process Modeling
in SOCCA

page :
version : 0.10

244

5.3.9.1 Head personnel section

5.3.9.1.1 Head personnel section : external behavior-STD, organizational view

The class ‘head personnel section’ has one operation relevant for this phase 4. This is the autonomous operation
‘hps_allocate_resource’ . This operation is not called by any outside caller, but is autonomously started by an object of the
class. The possible starting sequence of this operation is shown in the external STD. Because there is only one operation
the starting sequence is simply a succession of ‘ hps_allocate_resource’ operations.

NEUTRAL

HPS_ALL OCATE_RESOURCE

figure 5.179 head personnel section : external behavior STD, organizational view

5.3.9.1.2 Head personnel section : external behavior STD, communicative view

In addition to the possible starting sequence of the internal operations, the communicative view of the external behavior
STD shows also communication details between external STD and the called operation(s).

NEUTRAL
STARTING_
HPS_ALL OCATE
_RESOURCE

HPS_ALL OCATE_
RESOURCE

figure 5.180 head personnel section : external behavior STD, communicative view

The head of the personnel section exihibits autonomous behavior by starting the operation without it being called from
another object. It can do this in its state ‘neutral’ . When the object decides to execute the internal operation, it transits to
the ‘starting’ -state. Here the internal operation is started. The object then transits back to the neutral state. It is then ready
to again start (another instance of) the internal operation.

5.3.9.1.3 Head personnel section : internal behavior-STDs

The operation ‘hps_allocate_resource’ has the following internal behavior STD.

UPDATE
PROJECT
FORM

HPRS_
INFORM_(X)
ASKEDSIM _CALL_

HPRS_
INFORM_(TOR)

WRITE
INTERNAL
MEM O

NON-
HPS_ALLOCATE
_RESOURCE

HPS_ALLOCATE
_RESOURCE
ASKEDACT-

HPS_ALLOCATE_
RESOURCE

CALL _
TPM _
INFORM_(TOR)

TPM _
INFORM_(X)
ASKEDCALL _

ENG_
INFORM_(TOR)

ENG_
INFORM_(TOR)
ASKED

WRITE
TOR-
DOCUM ENT

UPDATE
MIS

figure 5.181 int-hps_allocate_resource : internal behavior STD

First the ‘head of the personnel section’ (hps) writes a ‘ terms of reference’ -document (tor-document). For the actual
writing the hps uses the operation ‘ tor_write_(x)’ of the class ‘ terms of reference’ -document. This is not modeled in detail ,
but shown here as an aggregate (high level) state.

Software Process Modeling
in SOCCA

page :
version : 0.10

245

Then the hps updates the project form with the information on allocated personnel. For the actual updating the hps uses
the operation ‘pf_update_(x)’ of the class ‘project form’ . This is not modeled in detail , but shown here as an aggregate
(high level) state.

Then the hps writes an memorandum as a covering letter for the tor-document. For the actual writing the hps uses the
operation ‘ im_write_(x)’ of the class ‘ internal memorandum’. This is not modeled in detail , but shown here as an
aggregate (high level) state.

Next the hps informs the technical project manager (call_tpm_inform_(tor)), his head production section, the engineer
involved (call_eng_inform_(tor)), and his head production section, of the allocation of the engineer to the project.
Both heads production section are informed by a simultaneous call (sim_call_hprs_inform(tor)). If the engineer and
the technical project manager have the same section head, the simultaneous call becomes a single call.

Next the updated project form is given to the head of the controller section (hcs). The controller section will enter the data
on the form in the Management Information System (MIS) of the Waco Business Unit (WBU). The hps uses the operation
‘hcs_enter_in_mis_(x)’ of the class ‘head controller section’ to present the updated project form to the hcs. This is not
modeled in detail , but shown here as an aggregate (high level) state.

5.3.9.1.4 Head personnel section : manager-STD

The states and transitions of the manager STD corresponds with the states and transitions of the external STD,
communicative view.

TL F-1

TL F-2

CC1-1 CC1-2

figure 5.182 head personnel section : manager STD

The notation CCx in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-
callee combination. The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that
enables the transition. The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

The caller-callee combination for ‘hps_allocate_resource’ consist only of the prescribed subprocesses of the callee ‘hps_
allocate_resource’ . This is because ‘hps_allocate_resource’ is an autonomous operation.

In the state ‘neutral’ the CC and the TLF for the transition leaving the state are :

CC1-1 = {S1}
TLF-1 = T-1 (corresponds with ‘hps_allocate_resource’ transition in extern STD)

In the state ‘starting_hps_allocate_resource’ the CC and the TLF for the transition leaving the state are :

CC1-2 = {S2}
TLF-2 = T-2

5.3.9.1.5 Head personnel section : employee-STDs

The manager STD has 1 employee STD. This is the autonomous operation ‘hps_allocate_resource’ . This employee has
two subprocesses S1 and S2 and two traps T-1 and T-2 according to the caller-callee construct.

Software Process Modeling
in SOCCA

page :
version : 0.10

246

5.3.9.2 Head computer support section

5.3.9.2.1 Head computer support section : external behavior-STD, organizational view

The class ‘head computer support section’ has one operation relevant for this phase 4. This is the autonomous operation
‘hcss_allocate_resource’ . This operation is not called by any outside caller, but autonomously started by an object of the
class. The possible starting sequence of this operation is shown in the external STD. Because there is only one operation
the starting sequence is simply a succession of ‘ hcss_allocate_resource’ operations.

NEUTRAL

HCSS_ALL OCATE_RESOURCE

figure 5.183 head computer support section : external behavior STD, organizational view

5.3.9.2.2 Head computer support section : external behavior STD, communicative view

In addition to the possible starting sequence of the internal operations, the communicative view of the external behavior
STD shows also communication details between external STD and the called operation(s).

NEUTRAL

STARTING_
HCSS_
ALL OCATE_
RESOURCE

HCSS_ALL OCATE_
RESOURCE

figure 5.184 head computer support section : external behavior STD, communicative view

The head of the computer support section exihibits autonomous behavior by starting the operation without it being called
from another object. It can do this in its state ‘neutral’ . When the object decides to execute the internal operation, it transits
to the ‘starting’ -state. Here the internal operation is started. The object then transits back to the neutral state. It is then
ready to again start (another instance of) the internal operation.

5.3.9.2.3 Head computer support section : internal behavior-STDs

The operation ‘hcss_allocate_resource’ has the following internal behavior STD.

HPRS_
INFORM_(X)
ASKEDCALL _

HPRS_
INFORM_(IM)

WRITE
INTERNAL
MEM O

NON- HCSS_
ALL OCATE_
RESOURCE

HCSS_
ALL OCATE_
RESOURCE
ASKED

ACT-
HCSS_ALL OCATE_
RESOURCE

CALL _
TPM _
INFORM_(IM)

TPM _
INFORM_(X)
ASKED

figure 5.185 int-hcss_allocate_resource : internal behavior STD

First the ‘head of the computer support section’ (hcss) writes an internal memorandum, describing the allocation of
computer section-personnel to a project. For the actual writing the hcss uses the operation ‘ im_write_(x)’ of the class
‘ internal memorandum’. This is not modeled in detail , but shown here as an aggregate (high level) state.

Next the hcss informs the technical project manager (call_tpm_inform_(im)) and his head production section
(call_hprs_inform(im)) of this allocation by communicating the internal memo to them.

Software Process Modeling
in SOCCA

page :
version : 0.10

247

5.3.9.2.4 Head computer support section : manager-STD

The states and transitions of the manager STD corresponds with the states and transitions of the external STD,
communicative view.

TL F-1

TL F-2

CC1-1 CC1-2

figure 5.186 head computer section section : manager STD

The caller-callee combination for ‘hcss_allocate_resource’ consist only of the prescribed subprocesses of the callee
‘hcss_allocate_resource’ . This is because ‘hcss_allocate_resource’ is an autonomous operation.

In the state ‘neutral’ the CC (caller-callee combination) and the TLF (traps logical formula) for the transition leaving the
state are :

CC1-1 = {S1}
TLF-1 = T-1 (corresponds with ‘hcss_allocate_resource’ transition in extern STD)

In the state ‘starting_hcss_allocate_resource’ the CC and the TLF for the transition leaving the state are :

CC1-2 = {S2}
TLF-2 = T-2

5.3.9.2.5 Head computer support section : employee-STDs

The manager STD has 1 employee STD. This is the autonomous operation ‘hcss_allocate_resource’ . This employee has
two subprocesses S1 and S2 and two traps T-1 and T-2 according to the caller-callee construct.

Software Process Modeling
in SOCCA

page :
version : 0.10

248

5.3.9.3 Terms of Reference-document

5.3.9.3.1 Terms of Reference-document : external behavior-STD, organizational view

The class ‘ terms of reference-document’ has one operation relevant for this phase 4. This is the operation ‘ tor_write_(x)’ .
The possible starting sequence of this operation is shown in the external STD. Because there is only one operation the
starting sequence is simply a succession of ‘ tor_write_(x)’ operations.

NEUTRAL

TOR_WRITE_(X)

figure 5.187 terms of reference-document : external behavior STD, organizational view

5.3.9.3.2 Terms of Reference-document : external behavior STD, communicative view

Because the calli ng of this operation is not modeled in detail i n the caller STD, hps_allocate_resource, the organizational
view of the external STD is also not detailed into the communicative view.

5.3.9.3.3 Terms of Reference-document : internal behavior-STDs

The operation ‘ tor_write_(x)’ has the following internal behavior STD.

ACT_
TOR_WRITE_(X)

NON-
TOR_WRITE_(X)

TOR_WRITE_(X)
ASKED

READY
UPDATE
CONTENT-
ATTRIBUTE
WITH ‘X’

figure 5.188 int-tor_write_(x) : internal behavior STD

The operation updates the content attribute of the ‘ terms of reference’ -document object with the actual value of the
parameter ‘x’ .

The multiplicity of concurrent executing STD instances is zero or 1. This is indicated by the hollow circle inside the first
state of the STD. This serializes the ‘writes’ in the tor-document. I.e. the ‘writes’ can not happen in parallel, but only
sequential.

5.3.9.3.4 Terms of Reference-document : manager-STD

Because the calli ng of this operation is not modeled in detail i n the caller STD, hps_allocate_resource, the manager STD
controlli ng this caller-callee combination is also not modeled.

5.3.9.3.5 Terms of Reference-document : employee-STDs

Because the calli ng of this operation is not modeled in detail i n the caller STD, hps_allocate_resource, the employees
(caller-callee combination) and the prescribed traps and subprocesses are also not modeled.

Software Process Modeling
in SOCCA

page :
version : 0.10

249

5.3.9.4 Project form

5.3.9.4.1 Project form : external behavior-STD, organizational view

The class ‘project form’ has one operation relevant for this phase 4. This is the operation ‘pf_update_(x)’ . The possible
starting sequence of this operation is shown in the external STD. Because there is only one operation the starting sequence
is simply a succession of ‘pf_update_(x)’ operations.

NEUTRAL

PF_UPDATE_(X)

figure 5.189 project form : external behavior STD, organizational view

5.3.9.4.2 Project form : external behavior STD, communicative view

Because the calli ng of this operation is not modeled in detail i n the caller STD, hps_allocate_resource, the organizational
view of the external STD is also not detailed into the communicative view.

5.3.9.4.3 Project form : internal behavior-STDs

The operation ‘pf_update_(x)’ has the following internal behavior STD.

ACT_
PF_UPDATE_(X)

NON-
PF_UPDATE_(X)

PF_UPDATE_(X)
ASKED

READY
UPDATE
CONTENT-
ATTRIBUTE
WITH ‘X’

figure 5.190 int-pf_update_(x) : internal behavior STD

The operation updates the content attribute of the ‘project form’ object with the actual value of the parameter ‘x’ .

The multiplicity of concurrent executing STD instances is zero or 1. This is indicated by the hollow circle inside the first
state of the STD. This serializes the ‘updates’ in the project form. I.e. the ‘updates’ can not happen in parallel, but only
sequential.

5.3.9.4.4 Project form : manager-STD

Because the calli ng of this operation is not modeled in detail i n the caller STD, hps_allocate_resource, the manager STD
controlli ng this caller-callee combination is also not modeled.

5.3.9.4.5 Project form : employee-STDs

Because the calli ng of this operation is not modeled in detail i n the caller STD, hps_allocate_resource, the employees
(caller-callee combination) and the prescribed traps and subprocesses are also not modeled.

Software Process Modeling
in SOCCA

page :
version : 0.10

250

5.3.9.5 Internal memorandum

5.3.9.5.1 Internal memorandum : external behavior-STD, organizational view

The class ‘ internal memorandum’ has one operation relevant for this phase 4. This is the operation ‘ im_write_(x)’ . The
possible starting sequence of this operation is shown in the external STD. Because there is only one operation the starting
sequence is simply a succession of ‘ im_write_(x)’ operations.

NEUTRAL

IM_WRITE_(X)

figure 5.191 internal memorandum : external behavior STD, organizational view

5.3.9.5.2 Internal memorandum : external behavior STD, communicative view

Because the calli ng of this operation is not modeled in detail i n the STD of the callers, hps_allocate_resource and hcss_
allocate_resource, the organizational view of the external STD is also not detailed into the communicative view.

5.3.9.5.3 Internal memorandum : internal behavior-STDs

The operation ‘ im_write_(x)’ has the following internal behavior STD.

ACT_
IM_WRITE_(X)

NON-
IM_WRITE_(X)

IM_WRITE_(X)
ASKED

READY
UPDATE
CONTENT-
ATTRIBUTE
WITH ‘X’

figure 5.192 int-im_write_(x) : internal behavior STD

The operation updates the content attribute of the ‘ internal memorandum’ object with the actual value of the parameter
‘x’ .

The multiplicity of concurrent executing STD instances is zero or 1. This is indicated by the hollow circle inside the first
state of the STD. This serializes the ‘writes’ in the internal memo. I.e. the ‘writes’ can not happen in parallel, but only
sequential.

5.3.9.5.4 Internal memorandum : manager-STD

Because the calli ng of this operation is not modeled in detail i n the caller STDs, hps_allocate_resource and hcss
_allocate_resource, the manager STD controlli ng this caller-callee combination is also not modeled. N.B. the starting state
of this manager STD is a ‘discriminator’ state. In this way the STD can distinguish between the two callers.

5.3.9.5.5 Internal memorandum : employee-STDs

Because the calli ng of this operation is not modeled in detail i n the caller STDs, the employees (caller-callee
combinations) and the prescribed traps and subprocesses are also not modeled.

Software Process Modeling
in SOCCA

page :
version : 0.10

251

5.3.9.6 Technical_Project_Manager

5.3.9.6.1 Technical_Project_Manager : external behavior-STD, organizational view

The class ‘ technical project manager’ has one operation relevant for this phase 4. This is ‘ tpm_inform_(x)’ . The possible
starting sequence of this operation is shown in the external STD. Because there is only one operation the starting sequence
is simply a succession of ‘ tpm_inform_(x)’ operations.

NEUTRAL

TPM _INFORM _(X)

figure 5.193 technical project manager : external behavior STD, organizational view

5.3.9.6.2 Technical_Project_Manager : external behavior-STD, communicative view

The communicative view of the external behavior STD shows the communication details between the external STD and
the called operation(s).

NEUTRAL

DISC_
STARTING_
TPM_
INFORM_(X)

TPM_INFORM_(X)

figure 5.194 technical project manager : external behavior STD, communicative view

This external behavior STD has two states. In the state neutral the technical project manager waits until a call has been
placed to its operation. If a call has been made, the manager STD can (and eventually will) transit to the starting state. The
starting state is a so-called ‘discriminator’ -state. Here the manager decides which caller has made the call . The two
possible callers are ‘hps_allocate_resource’ and ‘hcss_allocate_resource’ . After the operation has been started the manager
can transit back to the neutral state. Neither of the two possible callers have to wait for a result from the callee, but can
proceed right after the call i s acknowledged by the manager.

5.3.9.6.3 Technical_Project_Manager : internal behavior-STDs

The technical project manager has 1 operation relevant for phase 4 : ‘ tpm_inform_(x)’ . This operation has the following
internal behavior STD.

ACT_
TPM_INFORM_(X)

NON-
TPM_
INFORM_(X)

TPM_
INFORM_(X)
ASKED TAKE NOTICE

OF
INFORMATION ‘X’

READY

figure 5.195 int-tpm_inform_(x) : internal behavior STD

With this operation the technical project manager (tpm) is informed of the information represented by the parameter ‘x’ .
The tpm can absorb more pieces of information at the same time. So the multiplicity of concurrent STDs is zero or more.

Software Process Modeling
in SOCCA

page :
version : 0.10

252

5.3.9.6.4 Technical_Project_Manager : manager-STD

The states and transitions of the manager STD corresponds with the states and transitions of the external STD,
communicative view.

TL F-1

TL F-2

CSP1 CSP2

figure 5.196 technical project manager : manager STD

There is only one caller-callee combination : the callee ‘ tpm_inform_(x)’ and its two callers ‘hps_allocate_resource’ and
‘hcss_allocate_resource’ . The calli ng is modeled by the ‘caller does not wait’ -variant of the caller-callee construct.

The notation CCx in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-
callee combination. The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that
enables the transition. The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

The ‘or’ -conditions in the CCs and TLFs are caused by the discriminator-state. The transition to the discriminator state
takes place when either T-3 or T-5 has been entered. In the state is decided which caller has placed the call . I.e. it is
decided if T-3 or T-5 was entered. Accordingly either {S2, S4, S5} or {S2, S3, S6} is prescribed in the discriminator state.

In the state ‘neutral’ CC and the TLF for the transition leaving the state are :

CC1-1 = {S1, S3, S5}
TLF-1 = T-1 and (T-3 or T-5)

In the state ‘disc_starting_tpm_inform_(x)’ the CC and the TLF for the transition leaving the state are :

CC1-2 = {S2, S4, S5} or
 {S2, S3, S6}

TLF-2 = T-2 and (T-4 or T-6)

5.3.9.6.5 Technical_Project_Manager : employee-STDs

The manager STD has 3 employee STDs. The first employee is ‘ tpm_inform_(x)’ . This employee has two subprocesses S1
and S2 and two traps T-1 and T-2 according to the caller-callee construct.

The second employee is the caller ‘hps_allocate_resource’ . This second employee has the subprocesses S3 and S4 and
traps T-3 and T-4 according to the caller-callee construct.

The third employee is the caller ‘hcss_allocate_resource. This third employee has the subprocesses S5 and S6 and traps T-
5 and T-6 according to the caller-callee construct.

Software Process Modeling
in SOCCA

page :
version : 0.10

253

5.3.9.7 Head production section

5.3.9.7.1 Head production section : external behavior-STD, organizational view

The class ‘head production section’ has one operation relevant for this phase 4. This is ‘hprs_inform_(x)’ . The possible
starting sequence of this operation is shown in the external STD. Because there is only one operation the starting sequence
is simply a succession of ‘ hprs_inform_(x)’ operations.

NEUTRAL

HPRS_INFORM_(X)

figure 5.197 head production section : external behavior STD, organizational view

5.3.9.7.2 Head production section : external behavior-STD, communicative view

The communicative view of the external behavior STD shows the communication details between the external STD and
the called operation(s).

NEUTRAL

DISC_
STARTING_
HPRS_
INFORM_(X)

HPRS_INFORM_(X)

figure 5.198 head production section : external behavior STD, communicative view

This external behavior STD has two states. In the state neutral the head of the production section waits until a call has been
placed to its operation. If a call has been made, the manager STD can (and eventually will) transit to the starting state. The
starting state is a so-called ‘discriminator’ -state. Here the manager decides which caller has made the call . The two
possible callers are ‘hps_allocate_resource’ and ‘hcss_allocate_resource’ . After the operation has been started the manager
can transit back to the neutral state. Neither of the two possible callers have to wait for a result from the callee, but can
proceed right after the call i s acknowledged by the manager.

5.3.9.7.3 Head production section : internal behavior-STDs

The head production section has 1 operation relevant for phase 4 : ‘hprs_inform_(x)’ . This operation has the following
internal behavior STD.

ACT_
HPRS_INFORM_(X)

NON-
HPRS_
INFORM_(X)

HPRS_
INFORM_(X)
ASKED TAKE NOTICE

OF
INFORMATION ‘X’

READY

figure 5.199 int-hprs_inform_(x) : internal behavior STD

With this operation the head production section (hprs) is given the information represented by the parameter ‘x’ . The hprs
can absorb more pieces of information at the same time. So the multiplicity of concurrent STDs is zero or more.

Software Process Modeling
in SOCCA

page :
version : 0.10

254

5.3.9.7.4 Head production section : manager-STD

The states and transitions of the manager STD corresponds with the states and transitions of the external STD,
communicative view.

TL F-1

TL F-2

CSP1 CSP2

figure 5.200 head production section : manager STD

There is only one caller-callee combination : the callee ‘hprs_inform_(x)’ and its two callers ‘hps_allocate_resource’ and
‘hcss_allocate_resource’ . The calli ng is modeled by the ‘caller does not wait’ -variant of the caller-callee construct.

The notation CCx in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-
callee combination. The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that
enables the transition. The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

The ‘or’ -conditions in the CCs and TLFs are caused by the discriminator-state. The transition to the discriminator state
takes place when either T-3 or T-5 has been entered. In the state is decided which caller has placed the call . I.e. it is
decided if T-3 or T-5 was entered. Accordingly either {S2, S4, S5} or {S2, S3, S6} is prescribed in the discriminator state.

In the state ‘neutral’ CC and the TLF for the transition leaving the state are :

CC1-1 = {S1, S3, S5}
TLF-1 = T-1 and (T-3 or T-5)

In the state ‘disc_starting_hprs_inform_(x)’ the CC and the TLF for the transition leaving the state are :

CC1-2 = {S2, S4, S5} or
 {S2, S3, S6}

TLF-2 = T-2 and (T-4 or T-6)

5.3.9.7.5 Head production section : employee-STDs

The manager STD has 3 employee STDs. The first employee is ‘hprs_inform_(x)’ . This employee has two subprocesses
S1 and S2 and two traps T-1 and T-2 according to the caller-callee construct.

The second employee is the caller ‘hps_allocate_resource’ . This second employee has the subprocesses S3 and S4 and
traps T-3 and T-4 according to the caller-callee construct.

The third employee is the caller ‘hcss_allocate_resource. This third employee has the subprocesses S5 and S6 and traps T-
5 and T-6 according to the caller-callee construct.

Software Process Modeling
in SOCCA

page :
version : 0.10

255

5.3.9.8 Engineer

5.3.9.8.1 Engineer : external behavior-STD, organizational view

The class ‘engineer’ has one operation relevant for this phase 4. This is ‘eng_inform_(x)’ . The possible starting sequence
of this operation is shown in the external STD. Because there is only one operation the starting sequence is simply a
succession of ‘ eng_inform_(x)’ operations.

NEUTRAL

ENG_INFORM_(X)

figure 5.201 engineer : external behavior STD, organizational view

5.3.9.8.2 Engineer : external behavior-STD, communicative view

The communicative view of the external behavior STD shows the communication details between the external STD and
the called operation(s).

NEUTRAL
STARTING_
ENG_
INFORM_(X)

ENG_INFORM_(X)

figure 5.202 engineer : external behavior STD, communicative view

This external behavior STD has two states. In the state neutral the engineer waits until a call has been placed to its
operation. If a call has been made, the manager STD can (and eventually will) transit to the starting state. After the
operation has been started the manager can transit back to the neutral state. The caller does not have to wait for a result
from the callee, but can proceed right after the call i s acknowledged by the manager.

5.3.9.8.3 Engineer : internal behavior-STDs

The engineer has 1 operation relevant for phase 4 : ‘eng_inform_(x)’ . This operation has the following internal behavior
STD.

ACT_
ENG_INFORM_(X)

NON-
ENG_
INFORM_(X)

ENG_
INFORM_(X)
ASKED TAKE NOTICE

OF
INFORMATION ‘X’

READY

figure 5.203 int-eng_inform_(x) : internal behavior STD

With this operation the engineer (eng) is given the information represented by the parameter ‘x’ . The engineer can absorb
more pieces of information at the same time. So the multiplicity of concurrent STDs is zero or more.

Software Process Modeling
in SOCCA

page :
version : 0.10

256

5.3.9.8.4 Engineer : manager-STD

The states and transitions of the manager STD corresponds with the states and transitions of the external STD,
communicative view.

TL F-1

TL F-2

CSP1 CSP2

figure 5.204 engineer : manager STD

There is only one caller-callee combination : the callee ‘eng_inform_(x)’ and its caller ‘hps_allocate_resource’ . The
calli ng is modeled by the ‘caller does not wait’ -variant of the caller-callee construct.

The notation CCx in the STD stands for ‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-
callee combination. The notation TLF-x stands for ‘Traps Logical Formula’ and describes the combination of traps that
enables the transition. The numbering of the subprocesses and traps corresponds to the one used in the next paragraph.

In the state ‘neutral’ CC and the TLF for the transition leaving the state are :

CC1-1 = {S1, S3}
TLF-1 = T-1 and T-3

In the state ‘starting_eng_inform_(x)’ the CC and the TLF for the transition leaving the state are :

CC1-2 = {S2, S4}
TLF-2 = T-2 and T-4

5.3.9.8.5 Engineer : employee-STDs

The manager STD has 2 employee STDs. The first employee is ‘eng_inform_(x)’ . This employee has two subprocesses S1
and S2 and two traps T-1 and T-2 according to the caller-callee construct.

The second employee is the caller ‘hps_allocate_resource’ . This second employee has the subprocesses S3 and S4 and
traps T-3 and T-4 according to the caller-callee construct.

Software Process Modeling
in SOCCA

page :
version : 0.10

257

5.3.9.9 Head controller section

5.3.9.9.1 Head controller section : external behavior-STD, organizational view

The class ‘head controller section’ has one operation relevant for this phase 4. This is ‘hcs_enter_in_mis_(x)’ . This
operation is also used in phase 1. The only difference is in the caller of the operation. In phase 1 the caller is
‘hps_initiate_project_form_(x)’ . Here, in phase 4, the caller is ‘hps_allocate_resource’ . The possible starting sequence of
this operation is shown in the external STD. Because there is only one operation the starting sequence is simply a
succession of ‘ hcs_enter_in_mis_(x)’ operations.

NEUTRAL

HCS_ENTER_IN_MIS_(X)

figure 5.205 head controller section : external behavior STD, organizational view

5.3.9.9.2 Head controller section : external behavior STD, communicative view

In addition to the possible starting sequence of the internal operations, the communicative view of the external behavior
STD shows also communication details between external STD and the called operation(s).

NEUTRAL
STARTING_
HCS_ENTER_
IN_MIS_(X)

HSC_ENTER_
IN_MIS_(X)

figure 5.206 head controller section : external behavior STD, communicative view

The STD consists of a neutral state. When in this state the object is ready to handle a call to its operation. When the call
has been made, the object can go to the ‘starting’ -state. Here the internal operation is started. The caller of the operation
does not have to wait for the callee to return some result. As soon as the internal operation is started, the manager can
transit back to neutral.

5.3.9.9.3 Head controller section : internal behavior-STDs

For the internal STD of the operation ‘hcs_enter_in_mis_(x)’ a reference is made to the description of this STD during the
modeling of phase 1.

5.3.9.9.4 Head controller section : manager-STD

For the manager STD of the class ‘head controller section’ a reference is made to the description of this STD during the
modeling of phase 1. The only difference is that the operation ‘hps_allocate_resource’ is the caller in this phase 4. The
names of the subprocesses and traps of this caller are the same as those used for the caller in phase 1.

5.3.9.9.5 Head controller section : employee-STDs

The manager STD has 2 employee STDs. The first employee is ‘hcs_enter_in_mis_(x)’ . This employee has two
subprocesses S1 and S2 and two traps T-1 and T-2 according to the caller-callee construct. The second employee is the
caller ‘hps_allocate_resource’ . This second employee has the subprocesses S3 and S4 and traps T-3 and T-4 according to
the caller-callee construct.

SOFTWARE PROCESS MODELING in SOCCA

student : H.G.Brugman
studentnr : 9105506
version : 0.10

Software Process Modeling
in SOCCA

page :
version : 0.10

258

6. Integration of process fragment ‘writing project management documents’

6.1 Introduction

To look into the question of the ‘scaleability’ of SOCCA (i.e can a larger SOCCA model be constructed from separate
smaller sub-models), the modeling of the process fragment ‘writing project management documents’ is done by splitting
the process fragment into four smaller process fragments (phases). These four phases are modeled indepently of each
other. The four phases are : ‘phase 1, recognizing customer requirements’ , ‘phase 2, writing and consultation’ , ‘phase 3,
approval’ and ‘phase 4, resource allocation’ . The sub-models of these four phases are described in chapter 5.

In this chapter 6 the integration of the four sub-models of ‘phase 1’, ‘phase 2’, ‘phase 3’ and ‘phase 4’ into one
SOCCA model of the process fragment ‘writing project management documents’ is performed.

In paragraph 6.2 the general principles involved in the integration will be discussed, as they apply to the integration of the
process fragment ‘writing project management documents’.

The SOCCA model of the integrated process fragment ‘writing project management documents’ is described in
paragraph 6.3. Paragraph 6.3.1 describes the ‘class diagrams’ of the model, as they apply to the integration. Paragraph
6.3.2 describes the ‘state transition diagrams’ of the model, as they apply to the integration.

Paragraph 6.3 also contains an explanation of how the integrated process fragment ‘writing project management
documents’ executes. Also is explained in paragraph 6.3 how multiple instances of the process fragment can execute
concurrently.

6.2 General principles

In this paragraph the general principles involved in the integration will be discussed, as they apply to the integration of the
process fragment ‘writing project management documents’.

The intention of the integration process is not to influence the models of the four phases. That is to say to make the
modeling of the constituent smaller process fragments independent of their integration. This allows for a separate
modeling of the sub-models (by separate engineers) in a big project. It also facilit ates the update of the total model if there
are any changes required during the li fe time of the model. This is according to the accepted software engineering
principle of low coupling between software modules. Still some changes to the sub-models may be necessary. The
possible reasons for these changes are described in the next subparagraph.

The integration of SOCCA behavior sub-models into one bigger model, takes place in 4 steps (analogous to the 4 steps
that are used in database view (schema) integration [ELM]) :

- identifying correspondences and conflicts between the sub-models
- modifying the sub-models to conform with each other (resolving the conflicts)
- merging the sub-models. This includes the modeling of the sequential dependencies between the sub-models.
- restructuring of the resulting model (optimizing)

conflicts between sub-models

Two kinds of conflicts are possible. These are ‘ type’ -conflicts and ‘name’-conflicts.

a. type conflict

With this type of conflict some concept is modeled in one sub-model by a class. This results in behavior STDs for this
class. In another sub-model this same concept may be modeled by an attribute (of some other class). When this is the case,
one of the sub-models has to be re-modeled before any integration can take place.

In the sub-models of the four phases of the process fragment ‘writing project managment documents’ no ‘ type’ -conflicts
exist.

b. name conflict

Software Process Modeling
in SOCCA

page :
version : 0.10

259

When different sub-models use different names for two identical internal STDs (synonyms), one of these internal STD’s
must be renamed. When different sub-models use the same name for two different internal STDs (homonyms), one of
these internal STDs must be renamed. Subprocess names (e.g. S1) and trap names (e.g. T-1) used in the sub-models are
abbreviations. The full name includes a quali fier as to the manager STD which prescribes them (as well as the class name
and operation-name in which the subprocesses and traps appear using the ‘dot’ -notation). E.g. the full name of subprocess
S3 of the operation ‘cu_request_proposal’ of the class ‘customer’ as modeled in phase 1, paragraph ‘ requirements
document : employee STDs’ , is ‘ requirements_document.cu_request_proposal.S3_with_respect_
to_requirements_document’ . So these names are actually unique and don’ t require renaming. The sub-model uses only the
abbreviated names because the manager STD can be readily deduced.

In the sub-models of the four phases of the process fragment ‘writing project management documents’ no naming
conflicts exist.

modifying sub-models

The modification necessary for the resolving of the type-conflicts and the naming conflicts is already discussed in the
above subparagraph.

There may be yet another modification necessary. This is when two sub-models model an identical functionality with a
(slightly) different internal STD. Here one (or maybe two) of the STDs has to be remodeled so that they become identical.
Care has to be taken as that this remodeled STD does not to affect the remaining part of sub-model.

In the sub-models of the four phases of the process fragment ‘writing project management documents’ this type of
modification is not necessary.

However the behavior of the class customer in phase 1 has to be changed. In the original sub-model it was assumed that
the customer could start phase 1 (and therefore the total process fragment ‘writing project management documents’)
repetitively by sequential calls to its autonomous operation ‘cu_request_proposal’ . In this way more than one request for
proposal could be handled in parallel. In the integration this parallel functionality is handled in another way, by
parallelizing a new operation instead of ‘ cu_request_proposal’ . The customer now calls its autonomous operation
‘cu_project_li fe_cycle’ repetitively to start parallel executions of the process fragment. During each separate execution the
customer can only once call it s operation ‘cu_request_proposal’ .

The changes in the class ‘customer’ will be shown separately in this paragraph instead of directly in the sub-model. This is
to clearly document the work required during the integration.

merging the sub-models

- internal STDs

All the internal STDs of the sub-models are part of the integrated model. This includes the prescribed subprocesses and
traps of these internal STDs. In case of identical internal STDs exactly one will be part of the total model. On the other
hand, all different/various sets of subprocesses and traps of the identical STDs together belong to the integrated model.

- external STDs

For each class in the process fragment a total external STD will be constructed. The construction algorithm is as follows

- extend each phase-external STD of the class with a start state end a final state. The start state has a transition leaving it
and entering the phase-external STD. The final state has a transition coming into it from the phase-external STD.

- connect the so extended phase-external STD with each other in such a way that the final state of one phase-external STD
coincides with the start state of the next phase-external STD. This ‘coinciding’ state between two phase-external STDs is
called an ‘ intermediate’ state. This models the sequential dependency between the phases.

- the transitions leaving the start states get the label ‘change_to_phase_x’ . These represent the ‘phase-changing’ -
operations. The transitions entering the final states get the label ‘phase_ended. These represent the ‘phase-ended’
operation. When a ‘phase_ended’-operation is called the total external STD can and will make the transition to the next
intermediate state. When a ‘phase_changing’ -operation is called the total external STD can and will make the transition to
the next phase-external STD. In this way the total external STD to transit from one phase-external STD to the next via an

Software Process Modeling
in SOCCA

page :
version : 0.10

260

intermediate state. The intermediate state in conjunction with the ‘phase_ended’-operation is important in the model to
prevent that the classes ‘ race’ through their total external STD without the phases being properly terminated.

If a class does not participates in some phase it will not have an external STD for that phase. In this case a dummy state is
inserted in the total external STD. This is done for reasons of symmetry. It will make the integration process easier to
perform.

The ‘phase-changing’ -operations of a total external STD are called by a special kind of object. This is a so-called control
object.

- control object

A control object models the (higher level) control flow of a process (fragment). It does this by manipulating the external
STDs of the classes involved in the constituent (smaller) process fragments. For this purpose the control object has an
internal operation (control operation) which calls the ‘phase-changing’ -operations of a (total) external STD in sequence.

This concept of differents parts of an external STD being active at different times models the foreseen ‘evolution’ of the
process (fragment) [FIN]. The behavior of the process (fragment) evolves over time. It is a predictable evolution in that the
future behavior is known beforehand.

So the internal STD of the control operation of the control object manages (models) the control flow of the total process
fragment. It ‘switches’ the total external STDs from phase 1 to phase 2 to phase 3 to phase 4.

There are 19 classes participating in the process fragment ‘writing project management documents’ . The switching from
phase to phase is done for all 19 total external STDs at the same time. To do so the control operation places a
‘simultaneous call (sim_call)’ to the ‘phase changing’ -operations of all 19 classes.

As control object is chosen an object of the class ‘project’ . This is a natural choice because all the work in the process
fragment is related to a certain project. It is also in compliance with the definition in [FIN] of a project : ‘a project is an
instantiation of a process to produce a specific product in a given organization, with specific objectives and constraints.’

6.3 SOCCA model (integration)

This paragraph starts with an explanation of how the integrated process fragment ‘writing project management
documents’ executes. Then is explained how multiple instances of the process fragment can execute concurrently.

Then follows the description of the SOCCA model of the integrated process fragment ‘writing project management
documents’. Paragraph 6.3.1 describes the ‘class diagrams’ of the model, as they apply to the integration. Paragraph
6.3.2 describes the ‘state transition diagrams’ of the model, as they apply to the integration.

The next table shows which classes are taking part in which phase of the process fragment.

class phase 1 phase 2 phase 3 phase 4
customer yes yes yes -
requirements document yes - - -
account manager yes yes yes -
make or buy meeting yes - - -
chief executive off icer yes - yes -
head personnel section yes - - yes
project form yes - - yes
head controller section yes - yes yes
technical project manager - yes yes yes
quality assurance adviser - yes yes -
head production section - yes - yes
head support section - yes yes -
project management document - yes - -
project meeting minus - - yes -
archive/documentation administrator - - yes -

Software Process Modeling
in SOCCA

page :
version : 0.10

261

head computer support section - - - yes
terms of reference document - - - yes
internal memorandum - - - yes
engineer - - - yes

table 6.1 participating classes versus phases

Executing process fragment

The process fragment is ‘started’ by the customer. The started and executing process fragment is called the ‘enacting’
model in the terminology of the Software Process Modeling-community [FIN]. To start the process fragment the customer
invokes its own autonomous operation ‘cu_project_li fe_cycle’ . In this operation the operation ‘pr_ project_li fe_cycle’ of a
certain project object is called. The operation ‘pr_project_li fe_cycle’ then switches all the (19) total external STDs from
their start state to their phase 1-state. It does this by the calli ng the operation ‘change_to_phase_1’ of all (19) participating
classes. It performs all the (19) calls simultaneously by placing a sim_call . All (19) external STD will (eventually) enter
their phase 1-state. So phase 1 of the process fragment ‘writing project management documents’ can now take place.

Although the ‘phase-changing’ -operation of all (19) classes are called simultenuously, there is no guarantee that the total
external STDs are all i n their phase 1-state at the same time. Some of them may already be active in their phase 1 while
others still are ‘on their way’ to their state ‘phase 1’ . The situation can arise where some internal STD of a class
participating in phase 1 places a call to another participating class of which the external STD is not yet in its ‘phase 1’ -
state. In this case the calli ng STD just waits until the external STD in question has arrived in its phase 1-state and can
accept its call . This is the same situation as when a ‘normal’ external STD is not (yet) in a state where it can accept some
call .

At the end of phase 1 the last operation of the phase 1 calls (as the last action it performs) the operation ‘pr_phase_ended’
of the control object ‘project’ . In this way it signals to the control object that the phase has ended. The control object then
sim_calls all the participating classes to exit from their current phase-external STD. The last operation of phase 1 is the
operation ‘mb_request_decision_(x)’ of the class ‘make or buy meeting’ .

The reason for the design decision to let the last operation call the control object instead of the last operation (sim_)calli ng
the ‘phase_ended’ / ‘phase_changing’ operations of the other classes directly is twofold. Firstly, in this way the control
flow is clearly visible in the model of the control operation of the control object. More importantly, the responsiblity for
the flow in the process fragment now lies at a level above the internal operations of the participating classes. This is were
it should lie. Secondly, it provides for a lower ‘coupling’ between the modeled internal operations of the process fragment.
The last operation does not have to know all the other operations in the process fragment. Nor does it have to know which
phase comes next in the process fragment. It only has to deal with the control object of the process fragment.

At the’ sim_call_phase_ended’ f rom the control operation ‘pr_phase_ended’ , all the (19) classes will (eventually) leave
their current phase_external STD and enter the next intermediate state.

Now the ’sim_call_change_to_phase_2’ of the control operation ‘pr_project_li fe_cyle’ (which is still executing and may
or may not have placed this call already) can be handled by the classes of the process fragment. They are now in the
correct intermediate state to handle the call . All participating classes will (eventually) transit from the intermediate state to
the next state, phase 2. The process fragment comes in its next phase. Phase 2 of the process fragment ‘writing project
management documents’ can now take place.

At the end of phase 2 the last operation of the phase 2 calls (as the last action it performs) the operation ‘pr_phase_ended’
of the control object ‘project’ . In this way it signals to the control object that the phase has ended. The control object then
‘sim_calls’ all the participating classes to exit from their current phase-external STD. The last operation of phase 2 is the
operation ‘hprs_pmm_ request_approval_(x)’ of the class ‘head production section’ .

At the’ sim_call_phase_ended’ f rom the control operation ‘pr_phase_ended’ , all the (19) classes will (eventually) leave
their current phase_external STD and enter the next intermediate state.

Now the ’sim_call_change_to_phase_3’ of the control operation ‘pr_project_li fe_cyle’ (which is still executing and may
or may not have placed this call already) can be handled by the classes of the process fragment. They are now in the
correct intermediate state to handle the call . All participating classes will (eventually) transit from the intermediate state to
the next state, phase 3. The process fragment comes in its next phase. Phase 3 of the process fragment ‘writing project
management documents’ can now take place.

Software Process Modeling
in SOCCA

page :
version : 0.10

262

At the end of phase 3 the last operation of the phase 3 calls (as the last action it performs) the operation ‘pr_phase_ended’
of the control object ‘project’ . In this way it signals to the control object that the phase has ended. The control object then
‘sim_calls’ all the participating classes to exit from their current phase-external STD. The last operation of phase 3 is the
operation ‘pmm_request_approval_(x)’ of the class ‘project meeting minus’ .

At the’ sim_call_phase_ended’ f rom the control operation ‘pr_phase_ended’ , all the (19) classes will (eventually) leave
their current phase_external STD and enter the next intermediate state.

Now the ’sim_call_change_to_phase_4’ of the control operation ‘pr_project_li fe_cyle’ (which is still executing and may
or may not have placed this call already) can be handled by the classes of the process fragment. They are now in the
correct intermediate state to handle the call . All participating classes will (eventually) transit from the intermediate state to
the next state, phase 4. The process fragment comes in its next phase. Phase 4 of the process fragment ‘writing project
management documents’ can now take place.

The detection of the end of phase 4 is somewhat more complicated. The operation ‘hcss_allocate_resource’ of the class
‘head computer support section’ and the operation ‘hps_allocate_resource’ of the class ‘head personnel section’ execute
indepently of each other. Both operations have to be finished for phase 4 to be completed. This is handled by the
operation ‘pr_count_two_phase_ended’ of the control object ‘project’ in conjunction with two ‘counting’ states in the
manager STD of the control object ‘project’ .

Both operations ‘hccs_allocate_resources’ and ‘hps_allocate_resources’ call (as their last call before they finish executing)
the operation ‘pr_count_two_phase_ended’ . The number of calls is counted via transitions by the manager STD of control
object to the (next) counting state. When two calls have been placed (and accepted by the manager STD) the manager STD
calls autonomously its own operation ‘pr_phase_ended’ . The sim_call i n this operation to the participating classes finishes
phase 4.

All 19 total external STDs of the participating classes will (eventually) transit from their state ‘phase 4’ to their next state
(the execution of the process fragment has ended). When the ended process fragment is the last fragment in the project life
cycle, this next state is the final state. When the ended process fragment has a successor process fragment in the project
li fe cycle, the next state is the start state of this successor process fragment.

Parallel executing process fragments

The process fragment is ‘started’ by the customer. The customer will i nvoke the internal operation ‘pr_project_li fe
_cycle’ of a certain project object.

The customer uses it own autonomous operation ‘cu_ project_li fe_cycle’ to call ‘pr_ project_li fe_cycle’ . The autonomous
operation ‘cu_ project_li fe_cycle’ stays available to the customer in all the phases of the process fragment ‘writing project
management documents’ (see the updated external STD of the class customer)

Normaly many projects are in progress at the same time in the WBU (Waco Business Unit). This is modeled as follows. If
the customer wants to start another project, he will call again its operation ‘cu_ project_li fe_cycle’ . This operation will
now call the operation ‘pr_ project_li fe_cycle’ of another project object. This other project will use another set of
ocurrences of the 19 total external STDs of the participating classes. In this other set it switches all total external STDs
from phase to phase, starting with the transition from the start state to the ‘phase 1’ -state. All concurrently running
instances of the external STDs are valid for that class. This is known as ‘multiplicity of concurrent external STDs’ . It is
equivalent to the notion of ‘multiplicity of concurrent internal STDs’ . The notation convention of the multiplicity of
concurrent executing external STDs is just like that used with internal STDs. A solid littl e circle in the start state indicates
a multiplicity of concurrent instances of zero or more. A hollow littl e circle inside the start state indicates a multiplicity of
zero or one.
The function of the operation on the transition leaving the start state of an total external STD is twofold. Firstly it starts a
new instance of the external STD. This is analogous to the act-transition of an internal STD. Secondly it starts the called
operation. This is the normal function. So if one instance of an external STD is for example in phase 4 and another project
object (representing a second project that has been started by the customer) place a call to the change_to_phase_1
operation of a class participating in the project fragment, then a next instance of the external STD of that class is started
and the internal operation ‘change_to_phase_1’ of the second instance of that class is started.

So, the general rule for concurrently executing external STDs can be formulated. If no instance of the external STD is
currently executing, and the operation labeling the (a) transition leaving the start state is called, the external STD starts

Software Process Modeling
in SOCCA

page :
version : 0.10

263

executing (and it starts the called operation). If there is currently excuting an instance of the external STD and the
operation labeling the (a) transition leaving the start state is called, two possibliti es exist. If the multiplicity of the external
STD is zero or one, nothing will happen. If the multiplicity of the external STD is zero or more, another instance of the
external STD starts executing (and it starts the called operation).

- multiple instances of process fragment

Now suppose that there are two projects started, then each participating class will have two (identical instances of) total
external STDs that run in parallel. Both total external STDs are in use at the same time.

On a higher level one can say that the process fragment has now two instances executing. One for each project. The
projects may be in the same phase or in a different phase. This is in compliance with the definition in [FIN]. There a
project is defined as an instantiation of a process. Two projects are thus two instantiations of the (same) process that run
concurrently. The instantiations may or may not be in the same phase.

It is assumed that the internal operations in one instance of the process fragment place their calls with the manager STDs
belonging to that instance. This assumption is made to make the model conceptually more clear. The assumption is not
strictly needed because the model will also work if the internal operations place their calls with a manager of another
instance of the process fragment.

6.3.1 Class diagrams (integration)

This paragraph describes the ‘class diagrams’ of the model, as they apply to the integration. The integration of the four
phase-models into one model of the process fragment ‘writing project management documents’ results in the following
additions to the class diagram of the process fragment. The control class ‘project’ with the internal (control) operations
‘pr_project_li fe_cycle’ , ‘pr_phase_ended’ and ‘pr_count_two_phase_ended’ is added to the class diagram.

The operation ‘pr_phase_ended’ is called by the last operation of particular phase. In this way the last operation signals to
the control object that the phase has ended. The operation ‘pr_phase_ended’ then places a simultaneous call (sim_call) to
all the classes participating in the phase. All these classes will t hen leave their current phase-external STD and this phase is
then ended.

The operation ‘pr_count_two_phase_ended’ is used to in situations where there are two ‘ last’ operations. Both ‘ last’
operations must finish before the phase can end. The use of the counting operation ‘pr_count_two_phase_ended’ is
explained later on in this chapter.

For the 19 participating classes the ‘phase changing’ -operations ‘change_to_phase_1’ , ‘change_to_phase_2’ ,
‘change_to_phase_3’ , ‘change_to_phase_4’ and ‘phase_ended’ are added. Also the operation ‘cu_project_li fe_cycle’ is
added to the class ‘customer’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

264

PROJECT

PR_PROJECT_LIFE_CYCLE
PR_PHASE_ENDED
PR_COUNT_TWO_PHASE_ENDED

CUSTOM ER

. . .
CU_PROJECT_LIFE_CYCLE
CHANGE_TO_PHASE_1
CHANGE_TO_PHASE_2
CHANGE_TO_PHASE_3
CHANGE_TO_PHASE_4
PHASE_ENDED

REQUIREMENTS
DOCUM ENT

. . .
CHANGE_TO_PHASE_1
CHANGE_TO_PHASE_2
CHANGE_TO_PHASE_3
CHANGE_TO_PHASE_4
PHASE_ENDED

ACCOUNT M ANAGER

. . .
CHANGE_TO_PHASE_1
CHANGE_TO_PHASE_2
CHANGE_TO_PHASE_3
CHANGE_TO_PHASE_4
PHASE_ENDED

MAKE OR BUY
MEETING

. . .
CHANGE_TO_PHASE_1
CHANGE_TO_PHASE_2
CHANGE_TO_PHASE_3
CHANGE_TO_PHASE_4
PHASE_ENDED

CHIEF EXECUTIVE
OFFICER

. . .
CHANGE_TO_PHASE_1
CHANGE_TO_PHASE_2
CHANGE_TO_PHASE_3
CHANGE_TO_PHASE_4
PHASE_ENDED

HEAD PERSONNEL
SECTION

. . .
CHANGE_TO_PHASE_1
CHANGE_TO_PHASE_2
CHANGE_TO_PHASE_3
CHANGE_TO_PHASE_4
PHASE_ENDED

PROJECT FORM

. . .
CHANGE_TO_PHASE_1
CHANGE_TO_PHASE_2
CHANGE_TO_PHASE_3
CHANGE_TO_PHASE_4
PHASE_ENDED

HEAD CONTROLL ER
SECTION

. . .
CHANGE_TO_PHASE_1
CHANGE_TO_PHASE_2
CHANGE_TO_PHASE_3
CHANGE_TO_PHASE_4
PHASE_ENDED

TECHNICAL PROJECT
MANAGER

. . .
CHANGE_TO_PHASE_1
CHANGE_TO_PHASE_2
CHANGE_TO_PHASE_3
CHANGE_TO_PHASE_4
PHASE_ENDED

QUAL ITY ASSURANCE
ADVISER

. . .
CHANGE_TO_PHASE_1
CHANGE_TO_PHASE_2
CHANGE_TO_PHASE_3
CHANGE_TO_PHASE_4
PHASE_ENDED

HEAD PRODUCTION
SECTION

. . .
CHANGE_TO_PHASE_1
CHANGE_TO_PHASE_2
CHANGE_TO_PHASE_3
CHANGE_TO_PHASE_4
PHASE_ENDED

HEAD SUPPORT SECTION

. . .
CHANGE_TO_PHASE_1
CHANGE_TO_PHASE_2
CHANGE_TO_PHASE_3
CHANGE_TO_PHASE_4
PHASE_ENDED

PROJECT MANAGEMENT
DOCUM ENT

. . .
CHANGE_TO_PHASE_1
CHANGE_TO_PHASE_2
CHANGE_TO_PHASE_3
CHANGE_TO_PHASE_4
PHASE_ENDED

PROJECT MEETING
MINUS

. . .
CHANGE_TO_PHASE_1
CHANGE_TO_PHASE_2
CHANGE_TO_PHASE_3
CHANGE_TO_PHASE_4
PHASE_ENDED

ARCHIVE/DOCUM ENTATION
ADM INISTRATOR

. . .
CHANGE_TO_PHASE_1
CHANGE_TO_PHASE_2
CHANGE_TO_PHASE_3
CHANGE_TO_PHASE_4
PHASE_ENDED

HEAD COMPUTER
SUPPORT SECTION

. . .
CHANGE_TO_PHASE_1
CHANGE_TO_PHASE_2
CHANGE_TO_PHASE_3
CHANGE_TO_PHASE_4
PHASE_ENDED

TERMS OF REFERENCE
DOCUM ENT

. . .
CHANGE_TO_PHASE_1
CHANGE_TO_PHASE_2
CHANGE_TO_PHASE_3
CHANGE_TO_PHASE_4
PHASE_ENDED

INTERNAL M EMORANDUM

. . .
CHANGE_TO_PHASE_1
CHANGE_TO_PHASE_2
CHANGE_TO_PHASE_3
CHANGE_TO_PHASE_4
PHASE_ENDED

ENGINEER

. . .
CHANGE_TO_PHASE_1
CHANGE_TO_PHASE_2
CHANGE_TO_PHASE_3
CHANGE_TO_PHASE_4
PHASE_ENDED

figure 6.1 Class diagram : classes, attributes and operations (additions wrt integration)

Import-export diagram

The execution sequence of the process fragment as explained above results in the following import-export diagram. The
diagam shows the use of the ‘phase-changing’ - and ‘phase-ended’-operations of the classes participating in the process
fragment by the control class ‘project’ . Also shown are the use of the operation ‘pr_project_li fe_cycle’ and ‘cu_project_
li fe_cycle’ by the class ‘customer’ , the use of the operation ‘pr_phase_ended’ by the classes ‘make or buy meeting’ , ‘head
production section’ , ‘project meeting minus’ and ‘project’ and the use of the operation ‘pr_count_two_ phase_ ended’ by
the classes ‘head computer support section’ and ‘had personnel section’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

265

USES27

USES1 USES2 USES3 USES4 USES5 USES6

USES20 USES21 USES22

USES7 USES8 USES9 USES10 USES11 USES12

USES13 USES14 USES15 USES16 USES17 USES18

USES23

USES25USES24

USES19
ENGINEER

PROJECT FORM
HEAD
CONTROLLER
SECTION

TECHNICAL
PROJECT
MANAGER

QUALITY
ASSURANCE
ADVISER

HEAD
PRODUCTION
SECTION

HEAD
SUPPORT
SECTION

PROJECT
MANAGEMENT
DOCUMENT

PROJECT
MEETING
MINUS

ARCHIVE/
DOCUMENTATION
ADM INISTRATOR

HEAD COMPUTER
SUPPORT
SECTION

TERMS OF
REFERENCE
DOCUMENT

INTERNAL
MEMORANDUM

CUSTOMER REQUIREMENTS
DOCUMENT

ACCOUNT
MANAGER

MAKE OR BUY
MEETING

CHIEF
EXECUTIVE
OFFICER

HEAD
PERSONNEL
SECTION

PROJECT

USES26

 figure 6.2 Class diagram : classes and uses associations (new wrt integration)

The customer uses it own autonomous operation ‘cu_ project_li fe_cycle’ to call ‘pr_ project_li fe_cycle’ . This starts the
process fragment.

The operation ‘pr_ project_li fe_cycle’ then ‘sim_calls’ the operations ‘change_to_phase_1’ of all the 19 participating
classes. All 19 total external STD will t ransit (eventually) from their state ‘start’ to their state ‘phase 1’ .

The process fragments enters in its phase 1 behavior. At the end of phase 1 the operation ‘mb_request_decision_(x)’ of the
class ‘make or buy meeting’ calls the operation ‘pr_phase_ended’ of the control class ‘project’ . The operation
‘pr_phase_ended’ starts executing and it ‘sim_calls’ the operations ‘phase_ended’ of all the 19 participating classes. All
19 total external STD of the participating classes will (eventually) enter their state ‘ intermediate_1’ .

The ‘sim_call ’ of the operation ‘pr_project_li fe_cycle’ (sim_call_change_to_phase_2) can then be handled by the 19
participating classes. This ‘sim_call ’ may already been placed or it may still have to come. When the 19 participating
classes service the ‘sim_call_change_to_phase_2’ , their total external STDs transit to their phase 2 behavior.

The process fragments enters in its phase 2 behavior. At the end of phase 2 the operation ‘hprs_pmm_ request_
approval_(x)’ of the class ‘head production section’ calls the operation ‘pr_phase_ended’ of the control class ‘project’ .
The operation ‘pr_phase_ended’ starts executing and it ‘sim_calls’ the operations ‘phase_ended’ of all the 19 participating
classes. All 19 total external STD of the participating classes will (eventually) enter their state ‘ intermediate_2’ .

The ‘sim_call ’ of the operation ‘pr_project_li fe_cycle’ (sim_call_change_to_phase_3) can then be handled by the 19
participating classes. This ‘sim_call ’ may already been placed or it may still have to come. When the 19 participating
classes service the ‘sim_call_change_to_phase_3’ , their total external STDs transit to their phase 3 behavior.

The process fragments enters in its phase 3 behavior. At the end of phase 3 the operation ‘pmm_request_approval_(x)’ of
the class ‘project meeting minus calls the operation ‘pr_phase_ended’ of the control class ‘project’ . The operation
‘pr_phase_ended’ starts executing and it ‘sim_calls’ the operations ‘phase_ended’ of all the 19 participating classes. All
19 total external STD of the participating classes will (eventually) enter their state ‘ intermediate_3’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

266

The ‘sim_call ’ of the operation ‘pr_project_li fe_cycle’ (sim_call_change_to_phase_4) can then be handled by the 19
participating classes. This ‘sim_call ’ may already been placed or it may still have to come. When the 19 participating
classes service the ‘sim_call_change_to_phase_4’ , their total external STDs transit to their phase 4 behavior.

The process fragments enters in its phase 4 behavior. At the end of phase 4 both the operation ‘hcss_allocate_resource’ of
the class ‘head computer support section’ and the operation ‘hps_allocate_resource’ of the class ‘head personnel section’
call the operation ‘pr_count_two_phase_ended’ of the control class ‘project’ . The control object ‘project’ checks (via the
counting states in its manager STD) that both operations have placed their call . The control object ‘project’ then starts
autonomously its own operation ‘pr_phase_ended’ . This operation ‘sim_calls’ the operations ‘phase_ended’ of all the 19
participating classes. All 19 total external STD of the participating classes will (eventually) transit from their state ‘phase
4’ to their next state (the execution of the process fragment has ended). When the ended process fragment is the last
fragment in the project life cycle, this next state is the final state. When the ended process fragment has a successor
process fragment in the project life cycle, the next state is the start state of this successor process fragment.

In terms of the values of the ‘ import-list’ -attributes of the uses- and event-associations this amounts to the following :

uses1 until uses 19 :
imported operation imported by
change_to_phase_1 pr_project_li fe_cycle
change_to_phase_2 pr_project_li fe_cycle
change_to_phase_3 pr_project_li fe_cycle
change_to_phase_4 pr_project_li fe_cycle
phase_ended pr_phase_ended

uses20 : imported operation imported by
pr_project_li fe_cycle cu_project_li fe_cycle

uses21 : imported operation imported by
pr_phase_ended mb_request_decision_(x)

uses22 : imported operation imported by
pr_count_two_phase_ended hps_allocate_resource

uses23 : imported operation imported by
pr_phase_ended hprs_pmm_ request_approval_(x)

uses24 : imported operation imported by
pr_phase_ended pmm_request_approval_(x)

uses25 : imported operation imported by
pr_count_two_phase_ended hcss_allocate_resource

uses26 : imported operation imported by
pr_phase_ended autonomous

uses26 : imported operation imported by
cu_project_li fe_cycle autonomous

Software Process Modeling
in SOCCA

page :
version : 0.10

267

6.3.2 State Transition Diagrams (integration)

In the integration of the process fragment ‘writing project management documents’ the behavior that is relevant for the
integration is modeled for the following classes :

- project
- customer
- requirements document
- account manager
- make or buy meeting
- chief executive off icer
- head personnel section
- project form
- head controller section
- technical project manager
- quality assurance adviser
- head production section
- head support section
- project management document
- project meeting minus
- archive/documentation administrator
- head computer support section
- terms of reference document
- internal memorandum
- engineer

Software Process Modeling
in SOCCA

page :
version : 0.10

268

6.3.2.1 Project (control class)

6.3.2.1.1 Project (control class) : external behavior-STD, organizational view

The class ‘project’ is used as the ‘control’ class for the process fragment ‘writing project management documents’ . It has
one operation relevant for the organizational view. This is the operation ‘pr_project_li fe_cycle’ . A project in the real world
has one (1) project life cycle. So for each project object the operation ‘pr_project_li fe_cycle’ can only be called once. This
is modeled in the external STD.

START
PR_PROJECT_
LIFE_CYCLE

MANAGING
PROJECT

figure 6.3 project : external behavior STD, organizational view

When the state ‘managing project’ is more shown in more detail , the following detailed external STD is the result.

START
PR_PROJECT_
LIFE_CYCLE

NEUTRAL

PR_PHASE_ENDED

PR_COUNT_TWO_
PHASE_ENDED

1

PR_COUNT_TWO_
PHASE_ENDED

2

PR_PHASE_ENDED

MANAGING
PROJECT

figure 6.4 project : external behavior STD, organizational view (detailed)

The operations ‘pr_phase_ended’ and ‘pr_count_two_phase_ended’ take, together with the states ‘neutral’ and the
‘counting’ states ‘1’ and ‘2’ , care of the ‘end’ signal of a process phase. The ‘end’ signal of a phase is a call by the last
operation in that process phase to either ‘pr_phase_ended’ or ‘pr_count_two_phase_ended’ .

‘pr_phase_ended’ is called when only one (last) operation in a process phase has to reach a certain point in its execution to
indicate that the phase has ended. ‘pr_count_two_phase_ended’ is called when two operations in a process phase have to
reach a certain point in their execution for the phase to end.

6.3.2.1.2 Project (control class) : external behavior STD, communicative view

The communicative view of the external behavior STD shows the communication details between the external STD and
the called operations.

Software Process Modeling
in SOCCA

page :
version : 0.10

269

STARTING
PR_PROJECT_
LIFE_CYCLE

NEUTRAL

PR_PHASE_ENDED

PR_COUNT_TWO_
PHASE_ENDED

DISC_
STARTING_PR_
PHASE_ENDED

DISC_
STARTING_PR
COUN_TWO_
PHASE_ENDED

PR_COUNT_
TWO_PHASE_
ENDED
AVA ILABLE
 AGAIN

AUTONOMOUS
PR_PHASE_ENDED

STARTING
PR_PHASE_
ENDED

COUNTING STATE

START
PR_PROJECT_
LIFE_CYCLE

PR_COUNT_TWO_
PHASE_ENDED STARTING_PR

COUNT_TWO_
PHASE_ENDED

figure 6.5 project : external behavior STD, communicative view

When the customer calls ‘pr_ project_li fe_cycle’ the manager can (and will) transit to its state ‘starting pr_project_
li fe_cycle’ . When the internal operation ‘pr_project_li fe_cycle’ of the object ‘project’ is started, the external STD can (and
will) transit to its state ‘neutral’ . The internal operation ‘pr_project_li fe_cycle’ is now executing. This operation will t ake
care of the entering of the sequential phases by the total external STDs of the classes that participate in the process
fragment. It does so by sequentially sim_calli ng the operations ‘change_to_phase_x’ of the participating classes.

The ending of a phase (The transition from the state ‘phase x’ to the next intermediate state in the total external STDs of
the participating classes) is taken care of by the operations ‘pr_phase_ended’ and ‘pr_count_two_phase_ended.

The external STD of the object ‘project’ is in its state ‘neutral’ . Now the phase 1 is ending. I.e. the last operation of phase
1, ‘mb_request_decision_(x)’ of the class ‘make or buy meeting’ , calls the operation ‘pr_phase_ended’ . The external STD
of the object ‘project can (and will) take the transition to the state ‘disc_starting_pr_phase_ended’ . The operation
‘pr_phase_ended’ is started and the external STD of ‘ project’ transits back to the neutral state. In the execution of
‘pr_phase_ended’ it will ‘sim_call ’ the operation ‘phase_ended’ of all the (19) participating classes. The external STDs of
the participating classes can (and will) transit to their next ‘ intermediate’ state. I.e. the phase is ended.

The still executing operation ‘pr_project_li fe_cycle’ of ‘ project’ can now have its ‘sim_call ’ to ‘change_to_phase_2’
serviced by the 19 participating classes. The total external STDs of the participating classes can (and will) enter their next
phase.

This mechanism is also used at the end of phase 2. The last operation of phase 2 is the operation ‘hprs_pmm_
request_approval_(x)’ of the class ‘head production section’ . The same mechanism is also used at the end of phase 3. The
last operation of phase 3 is the operation ‘pmm_request_approval_(x)’ of the class ‘project meeting minus’ .

To distinguish between the four callers of the internal operation ‘pr_phase_ended’ , the starting state of this operation in
the external STD is a discriminator state. The four callers are ‘mb_request_decision_(x)’ , ‘hprs_pmm_ request_
approval_(x)’ , ‘pmm_request_approval_(x)’ (see above) and the autonomous call of the object itself (see below).

The external STD of ‘ project’ is again in its neutral state. Now phase 4 ends. This means that either ‘hcss_allocate_
resource’ of the class ‘head computer support section’ places a call to ‘pr_count_two_phase_ended’ or ‘hps_allocate_
resource’ of the class ‘head personnel section’ places a call to ‘pr_count_two_phase_ended’ . When the external STD of
‘project’ detects that someone has made a call to ‘pr_count_two_phase_ended, it can (and will) transit to the state
‘disc_starting_pr_count_two_phase_ended’ . This is a discriminator state which distinguishes between the two possible
callers. In this state the operation ‘pr_count_two_phase_ended’ is started. This is a so-called ‘nop’ , a no-operation. This
means that the operation performs no function while executing. The sole purpose of such an operation is to enable the
corresponding transition of the external STD within the existing SOCCA framework.
The external STD of ‘ project’ is now in its state ‘disc_starting_pr_counting_two_phase_ended’ . Here it waits for the
started instance of the operation ‘pr_counted_two_phase_ended’ to reach its trap T-2. This means that the operation is

Software Process Modeling
in SOCCA

page :
version : 0.10

270

really executing and a second instance of the operation could be started. When the started instance reaches its trap T-2, the
external STD of ‘ project’ transits to the state ‘pr_count_two_phase_ended available again’ . Here it waits for the second
call of the operation ‘pr_count_two_phase_ended’ . When this calls comes, the external STD can (and will) transit to its
state ‘starting_pr_count_two_phase_ended’ . When it does so it will start another instance of the internal
‘pr_count_two_phase_ended’-operation. Note : the first instance may still be executing when the second instance is
started.

Now the external STD has counted two calls to its operation ‘pr_counted_two_phase_ended’ . It knows now that phase 4
can be ended. The ‘project’ object now calls autonomously it own operation ‘pr_phase_ended’ and transits to its state
‘starting_pr_phase_ended’ . When this operation is started, the external STD transits back to its state ‘neutral’ . The
operation ‘pr_phase_ended’ sim_calls the operation ‘phase_ended’ of the 19 participating classes. The participating
classes then end their ‘phase 4’ behavior. I.e. phase 4 ends.

6.3.2.1.3 Project (control class) : internal behavior-STDs

The class ‘project’ has three internal behavior STDs. These are the operations ‘pr_phase_ended’ , ‘pr_count_two_
phase_ended’ and ‘pr_project_li fe_cycle’ .

The operation ‘pr_phase_ended’ places a ‘sim_call ’ to the operation ‘phase_ended’ of all the classes that are participating
in the process fragment ‘writing project management documents’ . The participating classes then exit from their current
phase behavior. The multiplicity of concurrent executing STDs is zero or 1. In this way only one ‘phase-ending’ at any one
time can take place.

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED SIM_CALL _

PHASE_ENDED

READY

figure 6.6 int-pr_phase_ended : internal behavior STD

The operation ‘pr_count_two_phase_ended’ is a no-operation (nop). This means that the operation performs no function
while executing. The sole purpose of such an operation is to enable the corresponding transition of the external STD
within the existing SOCCA framework. The multiplicity of concurrency of the STD is zero or more. There may be
concurrently executing instances. This means that the two callers of this operation can be serviced more quickly.

ACT_
PR_COUNT_
TWO_PHASE_
ENDED

NON-
PR_COUNT_
TWO_PHASE_
ENDED

PR_COUNT_
TWO_PHASE_
ENDED
ASKED

NOP
(no-operation)

READY

figure 6.7 int-pr_count_two_phase_ended : internal behavior STD

As seen by the external STD , the internal operation ‘pr_project_li fe_cycle’ appears as only two states. The state ‘non-
active’ and the state ‘project life cycle’ (active). The muliplicity of the operation is zero or 1. Per object there can only be
one instance of this STD in execution.

ACT_
PR_PROJECT_
LIFE_CYCLE

NON-
PR_PROJECT_
LIFE_CYCLE

PROJECT_
LIFE_CYCLE

figure 6.8 int-pr_project_life_cycle : internal behavior STD

Software Process Modeling
in SOCCA

page :
version : 0.10

271

The class ‘project’ is not only the control class of the process fragment ‘writing project management documents’ . It is also
the control class of the process fragment ‘changing project management documents’ and of the process fragment ‘closing
project’ . These two process fragments are not modeled in detail this thesis. They will be represented here by the highest
possible aggregation level. Namely one state ‘changing project management documents’ f or the process fragment
‘changing project management documents’ and one state ‘closing project’ f or the process fragment ‘closing project’ . The
integration of the models of the process fragments ‘writing project management documents’ , ‘changing project
management documents’ and ‘closing project’ into one bigger process model for the total process (fragment) ‘Software
Project Planing’ (SPP-process) is shown in a more detailed view of the state ‘project life cycle’ of the internal operation
‘pr_project_li fe_cycle’ .

ACT_
PR_PROJECT_
LIFE_CYCLE

NON-
PR_PROJECT_
LIFE_CYCLE

PR_PROJECT_
LIFE_CYCLE
ASKED

WRITING
PROJECT
MANAGEMENT
DOCUMENTS

END
PROJECT_
LIFE_CYCLE

CHANGING
PROJECT
MANAGEMENT
DOCUMENTS

CLOSING
PROJECT

PROJECT_LIFE_CYCLE

figure 6.9 int-pr_project_life_cycle : internal behavior STD

After being started the operation enters the state ‘writing project management documents’ . When this state is finished the
operation continues in the state ‘changing project management documents’ . When this is finished the operation proceeds
with ‘closing project’ . After the closing of a project its li fe cycle is ended. The project enters its final state ‘end project life
cycle’ .

It can be seen from the operation that the sequential dependency between the process fragments is modeled by the
sequention of their respective aggregate states. The internal operation goes through these states (in which it places ‘phase
changing’ calls to the total external STDs of the classes participating in the process fragments ‘writing project
management’ , ‘changing project management documents’ and ‘closing project’ respectively. It places these calls without
knowing in which states the total external STDs of the participating classes are in. It does no have to know this. It can just
place its calls. The ‘phase-ended’ calls (of the last operation of a phase (or bigger process fragment) in conjunction with
the ‘ intermediate’ states of the total external STDs will guarantee that a phase (or bigger process fragment) is correctly
finished before the next phase (or bigger process fragment) can be entered (by servicing the ‘phase changing’ calls of the
operation ‘pr_project_li fe_cycle’).

The three process fragments are sequential in real li fe. This is modeled by the sequential states in the operation
‘pr_project_li fe_cycle’ . But something more is needed. All three process fragments have constructed ‘ total external STDs’
for their participating classes. These ‘ total external STDs’ of the three fragments have to be constructed into ‘grand total
external STDs’ f or the total process ‘Software Project Planning’ . The construction of a ‘grand total external STD’ is the
same as the construction of a ‘ total external STD’ . The final state of the model of one process fragment is just merged with
the start state of the model of the next process fragment to form an intermediate state.

So, the integration algorithm is the same for every level in the model. Namely, the method for the integration of phases
into one process fragment is the same as the method used for the integration of process fragments into a bigger process
(fragment). This ensures that the model can be scaled up in a transparant and easy manner.

When the process fragment in real li fe are parallel instead of sequential the integration is slightly different. In this case the
‘ total external STDs’ of the process fragments are not coupled via an intermediate state. They remain separate. Both ‘ total
external STDs’ are now valid at the same time. The control operation of a control object still shows the process fragments
as consecutive states. When the internal operation now executes and performs its ‘phase changing’ calls in sequence, first
the one process fragment is started and the the second. This second process fragment will execute in parallel with the first
process fragment. This is conform the parallel execution of different projects (process fragments) as explained in the
beginning of this chapter. When using this concept (‘parallel integration’) plus the ‘sequential integration’ the operation
‘pr_project_li fe_cycle’ can be extended in such a way that the class ‘project’ becomes the control class of the total
‘Corporate Process Model (CPM)’ . This model integrates the behavior models of all the KPA-processes of the WBU
organization. Another, more modular way, to scale up, is to apply the integration algorithm to the ‘control’ classes of the
different, already integrated sub-models. These ‘control’ classes, managing the different sub-models, are then managed by
a ‘master’ control class.

The operation ‘pr_project_li fe_cycle’ is also the control operation for the integration of the phases 1, 2, 3, and 4 into the
process fragment ‘writing project management document’ . To look more closely into this integration, we will first

Software Process Modeling
in SOCCA

page :
version : 0.10

272

aggregate (abstract) the not relevant states of the operation into the states ‘pre writing project management documents’ and
‘post writing project management documents’ .

ACT_
PR_PROJECT_
LIFE_CYCLE

NON-
PR_PROJECT_
LIFE_CYCLE

PR_PROJECT_
LIFE_CYCLE
ASKED

WRITING
PROJECT
MANAGEMENT
DOCUMENTS

END
PROJECT_
LIFE_CYCLE

CHANGING
PROJECT
MANAGEMENT
DOCUMENTS

CLOSING
PROJECT

PRE_WRITING_PROJECT_MANAGEMENT_DOCUMENTS POST_WRITING_PROJECT_M ANAGEMENT_DOCUMENTS

figure 6.10 int-pr_project_life_cycle : internal behavior STD

Then we will l ook deeper into the state ‘writing project management document’ by giving an exploded view of this state.

SIM_CALL_
CHANGE_TO_
PHASE_1

IN
PHASE 1
ASKED

OUT

WRITING PROJECT MANAGEMENT DOCUMENTS

 POST
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

 PRE
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

SIM_CALL_
CHANGE_TO_
PHASE_2

PHASE 2
ASKED SIM_CALL_

CHANGE_TO_
PHASE_3

PHASE 3
ASKED SIM_CALL_

CHANGE_TO_
PHASE_4

PHASE 4
ASKED

figure 6.11 int-pr_project_life_cycle : internal behavior STD

Inside the state ‘writing project management documents’ the four ‘sim_calls’ to the phase-changing operations take place.
As already explained the phase-ended calls (of the last operation inside a phase) will ensure that the phase-changing calls
are serviced only after a phase has ended. The function of the states ‘ in’ and ‘out’ is the ‘de-coupling’ of the process
fragment model inside the state ‘writing project management documents’ f rom the rest of the operation
‘pr_project_li fe_cycle’ . The operation ‘pr_project_li fe_cycle’ can be constructed (on the higher aggregate level) without
knowledge (of the names of) the operations that are called inside the state ‘writing project management documents’ .

6.3.2.1.4 Project (control class) : manager-STD

The manager STD is the same as the external STD, communicative view. Therefore no separate figure is needed for the
manager STD. In it states it prescribes the subprocesses for its employees. The transitions are guarded with a combination
of traps. The employees have to be in these traps for the transition to be enabled.

The notation CPSx stands for Consolidated Prescribed Subprocesses and is a set of CCx’s. The notation CCx stands for
‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-callee combination. The notation TLF-x
stands for ‘Traps Logical Formula’ and describes the combination of traps that enables the transition. The numbering of
the subprocesses and traps corresponds to the one used in the next paragraph.

The CPSx’s have the same name as the state for which they are valid. E.g. ‘disc_starting_pr_count_two_phase_ended’ is
the name of a state in the external STD and it is also the name of the CPS for that state in the manager STD. The TLF-x’
have the same name as the operation that is started when the transition is taken. E.g. ‘pr_count_two_phase_ ended’ is the
name of the operation that is started (indicated in the external STD) and it is also the name of the TLF that is guarding the
transition in the manager STD. Transitions with no TLF (with no name in the external STD) are automatic transitions
(unless otherwise indicated in the definitions below). Traps that are not mentioned in the TLF are don’ t cares.

Software Process Modeling
in SOCCA

page :
version : 0.10

273

The name of CCx’s will i nclude the full names of the caller and callee operations separated by a tilde (~) character. E.g.
the CC of the caller operation ‘cu_project_li fe_cycle’ and the callee ‘pr_project_li fe_cycle’ will be named
‘cu_project_li fe_cycle ~ pr_project_li fe_cycle’ .

Subprocesses and traps will be given as much of their full name as is necessary to avoid ambiguity. This full name is
constructed with the ‘dot’ -notation. E.g. ‘cu_project_li fe_cycle.S1’ is subprocess S1 of the operation
cu_project_li fe_cycle’ . If there are more subprocesses with the same name prescribed to an operation, the manager
prescribing each subprocess will be added. E.g. ‘cu_project_li fe_cycle.S1_wrt_project. This is the subprocess S1 with
respect to (wrt, prescribed by) the manager of the class ‘project’ . In the same way the naming of the traps is handled. E.g.
‘cu_project_li fe_cycle.S1.T1_wrt_project’ is the trap T-1 prescribed by the ‘project’ manager STD in the subprocess S1
(which is also prescribed by the ‘project’ manager STD) of the operation ‘cu_project_li fe_ cycle’ . If the class of an
operation is not clear, the class will be prefixed to the operation name. E.g. ‘customer.cu_project_ li fe_cycle’ is the
operation ‘cu_start_project_li fe_cycle’ of the class ‘customer’ .

The CPSs, CCs and TLFs for this manager are :

CPS ‘start’ =
 { cu_project_li fe_cycle.S1_wrt_project ~ pr_project_li fe_cycle.S1_wrt_project,

 {mb_request_decision_(x).S1_wrt_project,
 hprs_pmm_request_approval_(x).S1_wrt_project,
 pmm_request_approval_(x).S1_wrt_project,
 autonomous} ~ pr_phase_ended.S1_wrt_project,
 { hcss_allocate_resource.S1_wrt_project,
 hps_allocate_resource.S1_wrt_project} ~ pr_count_two_phase_ended.S1_wrt_project}

TLF ‘pr_project_li fe_cycle’ = cu_project_li fe_cycle.T1.wrt_project and pr_project_li fe_cycle.T1_wrt_project

CPS ‘starting_pr_project_li fe_cycle’ =
 { cu_project_li fe_cycle.S2_wrt_project ~ pr_project_li fe_cycle.S2_wrt_project,

 {mb_request_decision_(x).S1_wrt_project,
 hprs_pmm_request_approval_(x).S1_wrt_project,
 pmm_request_approval_(x).S1_wrt_project,
 autonomous} ~ pr_phase_ended.S1_wrt_project,
 { hcss_allocate_resource.S1_wrt_project,
 hps_allocate_resource.S1_wrt_project} ~ pr_count_two_phase_ended.S1_wrt_project}

TLF ‘no name’ = cu_project_li fe_cycle.T2_wrt_project and pr_project_li fe_cycle.T2_wrt_project

CPS ‘neutral’ =
 { cu_project_li fe_cycle.S1_wrt_project ~ pr_project_li fe_cycle.S1_wrt_project,

 {mb_request_decision_(x).S1_wrt_project,
 hprs_pmm_request_approval_(x).S1_wrt_project,
 pmm_request_approval_(x).S1_wrt_project,
 autonomous} ~ pr_phase_ended.S1_wrt_project,
 { hcss_allocate_resource.S1_wrt_project,
 hps_allocate_resource.S1_wrt_project} ~ pr_count_two_phase_ended.S1_wrt_project}

TLF ‘pr_phase_ended’ (1e) = pr_phase_ended.T1_wrt_project
 and
 (mb_request_decision_(x).T-1_wrt_project
 or hprs_pmm_request_approval_(x).T-1_wrt_project
 or pmm_request_approval_(x).T-1_wrt_project)

CPS ‘disc_starting_pr_phase_ended’ = (note : this is a discriminator state)
 { cu_project_li fe_cycle.S1_wrt_project ~ pr_project_li fe_cycle.S1_wrt_project,

{{ mb_request_decision_(x).S2_wrt_project,
 hprs_pmm_request_approval_(x).S1_wrt_project,
 pmm_request_approval_(x).S1_wrt_project,
 autonomous} or
 {mb_request_decision_(x).S1_wrt_project,
 hprs_pmm_request_approval_(x).S2_wrt_project,

Software Process Modeling
in SOCCA

page :
version : 0.10

274

 pmm_request_approval_(x).S1_wrt_project,
 autonomous} or
 {mb_request_decision_(x).S1_wrt_project,
 hprs_pmm_request_approval_(x).S1_wrt_project,
 pmm_request_approval_(x).S2_wrt_project,
 autonomous}} ~ pr_phase_ended.S2_wrt_project,
 { hcss_allocate_resource.S1_wrt_project,
 hps_allocate_resource.S1_wrt_project} ~ pr_count_two_phase_ended.S1_wrt_project}

TLF ‘no name’ = pr_phase_ended.T1_wrt_project
and
(mb_request_decision_(x).T-2_wrt_project
 or hprs_pmm_request_approval_(x).T-2_wrt_project
 or pmm_request_approval_(x).T-2_wrt_project)

TLF ‘pr_count_two _phase_ended’ (1e) = pr_count_two_phase_ended.T1_wrt_project
 and
 (hcss_allocate_resource.T-1_wrt_project
 or hps_allocate_resource.T-1_wrt_project)

CPS ‘disc_starting_pr_count_two_phase_ended’ = (note : this is a discriminator state)
 { cu_project_li fe_cycle.S1_wrt_project ~ pr_project_li fe_cycle.S1_wrt_project,

 {mb_request_decision_(x).S1_wrt_project,
 hprs_pmm_request_approval_(x).S1_wrt_project,
 pmm_request_approval_(x).S1_wrt_project,
 autonomous} ~ pr_phase_ended.S1_wrt_project,
{{ hcss_allocate_resource.S2_wrt_project,
 hps_allocate_resource.S1_wrt_project} or
 { hcss_allocate_resource.S1_wrt_project,
 hps_allocate_resource.S2_wrt_project}} ~ pr_count_two_phase_ended.S2_wrt_project}

TLF ‘no name’ = pr_count_two_phase_ended.T2_wrt_project
(note : the entering of T-2 means that another instance could be started)

CPS ‘pr_count_two_phase_ended available again’ = (note : this is also a discriminator state)
 { cu_project_li fe_cycle.S1_wrt_project ~ pr_project_li fe_cycle.S1_wrt_project,

 {mb_request_decision_(x).S1_wrt_project,
 hprs_pmm_request_approval_(x).S1_wrt_project,
 pmm_request_approval_(x).S1_wrt_project,
 autonomous} ~ pr_phase_ended.S1_wrt_project,
{{ hcss_allocate_resource.S2_wrt_project,
 hps_allocate_resource.S1_wrt_project} or
 { hcss_allocate_resource.S1_wrt_project,
 hps_allocate_resource.S2_wrt_project}} ~ pr_count_two_phase_ended.S1_wrt_project}

TLF ‘pr_count_two _phase_ended’ (2e) = pr_count_two_phase_ended.T1_wrt_project
 and
 (hcss_allocate_resource.T-1_wrt_project
 and hps_allocate_resource.T-1_wrt_project)

(note : this pr_count_two_phase_ended.T-1 is on object-level. It indicates that the act-mechanism can start another
instance of the operation. The first instance of the operation may still be executing and not yet be in its STD instance-level
trap T-1.)

CPS ‘starting_pr_count_two_phase_ended’ =
 { cu_project_li fe_cycle.S1_wrt_project ~ pr_project_li fe_cycle.S1_wrt_project,

 {mb_request_decision_(x).S1_wrt_project,
 hprs_pmm_request_approval_(x).S1_wrt_project,
 pmm_request_approval_(x).S1_wrt_project,
 autonomous} ~ pr_phase_ended.S1_wrt_project,
 { hcss_allocate_resource.S2_wrt_project,

Software Process Modeling
in SOCCA

page :
version : 0.10

275

 hps_allocate_resource.S2_wrt_project} ~ pr_count_two_phase_ended.S2_wrt_project}

TLF ‘pr_phase_ended’ (2e) = pr_phase_ended.T1_wrt_project

CPS ‘starting_pr_phase_ended’ =
 { cu_project_li fe_cycle.S1_wrt_project ~ pr_project_li fe_cycle.S1_wrt_project,

 {mb_request_decision_(x).S1_wrt_project,
 hprs_pmm_request_approval_(x).S1_wrt_project,
 pmm_request_approval_(x).S1_wrt_project,
 autonomous} ~ pr_phase_ended.S2_wrt_project,
 { hcss_allocate_resource.S2_wrt_project,
 hps_allocate_resource.S2_wrt_project} ~ pr_count_two_phase_ended.S2_wrt_project}

TLF ‘no name’ = pr_count_two_phase_ended.T2_wrt_project
 and pr_count_two_phase_ended.T2_wrt_project (note : this trap requirement is delayed one state to

allow for more parallelism)

6.3.2.1.5 Project (control class) : employee-STDs

The manager STD has 9 employees. These are the callee ‘pr_project_life_cycle’ and its caller ‘cu_project_life_cycle’;
the callee ‘pr_phase_ended’ and its three possible callers ‘mb_request_decision_(x)’, ‘hprs_pmm_request_
approval_(x)’ and ‘pmm_request_approval_(x)’; and the callee ‘pr_count_two_phase_ended’ and its two possible
callers ‘hcss_allocate_resource” and ‘hps_allocate_resource’.

The employee ‘pr_project_life_cycle’ has two subprocesses S1 and S2, and two traps T-1 and T-2 with respect to the
manager STD of the class ‘project. This is according to the caller_callee-construct. In the next three figures first the
internal STD of the operation is shown, followed by the two subprocesses S1 and S2.

ACT_
PR_PROJECT_
LIFE_CYCLE

NON-
PR_PROJECT_
LIFE_CYCLE

PROJECT_
LIFE_CYCLE

figure 6.12 employee int-pr_project_life_cycle : internal behavior STD

NON-
PR_PROJECT_
LIFE_CYCLE

T-1

figure 6.13 employee int-pr_project_life_cycle : subprocess S1_wrt_project

ACT_
PR_PROJECT_
LIFE_CYCLE

NON-
PR_PROJECT_
LIFE_CYCLE

PROJECT_
LIFE_CYCLE

T-2

figure 6.14 employee int-pr_project_life_cycle : subprocess S2_wrt_project

The operation ‘cu_project_li fe_cycle’ is the caller of ‘ pr_project_li fe_cycle’ . The employee ‘cu_project_li fe_cycle’ has
two subprocesses S1 and S2 and two traps T1 and T2 with respect to the manager STD of ‘ project’ . This is according to
the caller_callee-construct. In the next three figures first the internal STD of the operation is shown, followed by the
two subprocesses S1 and S2.

Software Process Modeling
in SOCCA

page :
version : 0.10

276

ACT_
CU_PROJECT_
LIFE_CYCLE

NON-
CU_PROJECT_
LIFE_CYCLE

CU_PROJECT_
LIFE_CYCLE
ASKED CALL _

PR_PROJECT_
LIFE_CYCLE

PR_PROJECT_
LIFE_CYCLE
ASKED

figure 6.15 employee int-cu_project_life_cycle : internal behavior STD

T-1

NON-
CU_PROJECT_
LIFE_CYCLE ACT_

CU_PROJECT_
LIFE_CYCLE

CU_PROJECT_
LIFE_CYCLE
ASKED CALL _

PR_PROJECT_
LIFE_CYCLE

PR_PROJECT_
LIFE_CYCLE
ASKED

figure 6.16 employee int-cu_project_life_cycle : subprocess S1_wrt_project

T-2

PR_PROJECT_
LIFE_CYCLE
ASKED

CU_PROJECT_
LIFE_CYCLE
ASKEDACT_

CU_PROJECT_
LIFE_CYCLE

NON-
CU_PROJECT_
LIFE_CYCLE

figure 6.17 employee int-cu_project_life_cycle : subprocess S2_wrt_project

The callee operation ‘pr_phase_ended’ has two subprocesses S1 and S2, and two traps T-1 and T-2 with respect to the
manager STD of ‘ project’ . This is according to the caller_callee-construct. In the next three figures first the internal STD
of the operation is shown, followed by the two subprocesses S1 and S2.

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED SIM_CALL _

PHASE_ENDED

READY

figure 6.18 employee int-pr_phase_ended : internal behavior STD

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED SIM_CALL _

PHASE_ENDED

READY

T-1

figure 6.19 employee int-pr_phase_ended : subprocess S1_wrt_project

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED SIM_CALL _

PHASE_ENDED

READY

T-2

figure 6.20 employee int-pr_phase_ended : subprocess S2_wrt_project

Software Process Modeling
in SOCCA

page :
version : 0.10

277

The employee ‘mb_request_decision_(x)’ is one of the possible callers of ‘ pr_phase_ended’ . It is the last operation of
phase 1 of the process fragment ‘writing project management documents’ . The call to ‘pr_phase_ended’ is a signal for the
control object ‘project’ that the current phase can be terminated. The operation ‘mb_request_decision_(x)’ has already
been modeled in phase 1, without regard to later integration. Therefore the call to ‘pr_phase_ended’ is not yet incorporated
in the internal STD of ‘mb_request_decision_(x)’ . Here, in this paragraph, the call to ‘pr_phase_ended’ will be explicitly
modeled into the internal STD of the operation. This is done by viewing deeper in one of the states of the STD and putting
the call there. In a real li fe situation, in a big model, this will result in a lot of rework on an already finished sub-model. It
will also cause a high ‘coupling’ between the sub-models and the integrated model. This situation is not advisable. It is
therefore recommended to introduce a special ‘f inishing state’ -indicator. The notation of this ‘f inishing state’ -indicator is
an asterix (*). The modeler of sub-model will t hen use this ‘f inishing state’ -indicator. He will place it in the ‘f inishing’
state of his sub-model. The modeler of the sub-model is the person with the knowledge which state is the ‘f inishing’ state.
The integrator (the modeler of the integrated model) inspects the sub-models that he has to integrate. He then knows in
(which state of) which operation of a sub-model a ‘phase_ended’ call takes place. He will not remodel the original
operation, but he will just add this operation to the list of employees of the control object. In such a way the ‘f inishing
state’ -indicator is a shorthand notation for the caller-part of the caller_callee construct of the operation ‘pr_phase_ended’
and it callers.

In the next four figures first the internal STD of the operation ‘mb_request_decision_(x)’ is shown with the ‘finishing
state’-indicator. Then there follows a figure which looks ‘inside’ the ‘finishing’-state and which shows the call to the
operation ‘pr_phase_ended’. Then the two subprocesses S1 and S2 with respect to the manager STD of the control
object ‘project’ will be given.

NON-
MB_REQUEST_
DECISION_(X)

MB_REQUEST_
DECISION_(X)
ASKED

CALL _
HPS_MB_
DECISION_(X)

CALL _
CEO_MB_
DECISION_(X)

HPS_MB_
DECISION_
(X)
ASKED

SEE KPA
SOFTWARE
SUBCONTRACT
MANAGEMENT

[BUY]

ACT-
MB_REQUEST_
DECISION_(X)

CEO_MB_
DECISION_
(X)
ASKED

[MAKE]

CALL _
HPS_INITIATE_
PROJECT_
FORM_(X)

HPS_INITIATE_
PROJECT_
FORM_(X)
ASKED

CALL _
TPM_WRITE_
PROPOSAL_(X)

TPM_WRITE_
PROPOSAL_(X)
ASKED

DETERMINE
PROJECT_
FORM
CONTENT

figure 6.21 employee int-mb_request_decision_(x) : internal behavior STD, with ‘f inishing state’- indicator

Software Process Modeling
in SOCCA

page :
version : 0.10

278

NON-
MB_REQUEST_
DECISION_(X)

MB_REQUEST_
DECISION_(X)
ASKED

CALL _
HPS_MB_
DECISION_(X)

CALL _
CEO_MB_
DECISION_(X)

HPS_MB_
DECISION_
(X)
ASKED

SEE KPA
SOFTWARE
SUBCONTRACT
MANAGEMENT

[BUY]

ACT-
MB_REQUEST_
DECISION_(X)

CEO_MB_
DECISION_
(X)
ASKED

[MAKE]

CALL _
HPS_INITIATE_
PROJECT_
FORM_(X)

CALL _
TPM_WRITE_
PROPOSAL_(X)

TPM_WRITE_
PROPOSAL_(X)
ASKED

DETERMINE
PROJECT_
FORM
CONTENT

HPS_INITIATE_
PROJECT_
FORM_(X)
ASKED

CALL _
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED

FINISHING STATE

figure 6.22 employee int-mb_request_decision_(x) : internal behavior STD, with exploded view of ‘f inishing state’

NON-
MB_REQUEST_
DECISION_(X)

MB_REQUEST_
DECISION_(X)
ASKED

CALL _
HPS_MB_
DECISION_(X)

CALL _
CEO_MB_
DECISION_(X)

HPS_MB_
DECISION_
(X)
ASKED

SEE KPA
SOFTWARE
SUBCONTRACT
MANAGEMENT

[BUY]

ACT-
MB_REQUEST_
DECISION_(X)

CEO_MB_
DECISION_
(X)
ASKED

[MAKE]

CALL _
HPS_INITIATE_
PROJECT_
FORM_(X)

TPM_WRITE_
PROPOSAL_(X)
ASKED

DETERMINE
PROJECT_
FORM
CONTENT

HPS_INITIATE_
PROJECT_
FORM_(X)
ASKED

CALL _
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED

FINISHING STATE

T-1

figure 6.23 employee int-mb_request_decision_(x) : subprocess S1_wrt_project

Software Process Modeling
in SOCCA

page :
version : 0.10

279

NON-
MB_REQUEST_
DECISION_(X)

MB_REQUEST_
DECISION_(X)
ASKED

CALL _
HPS_MB_
DECISION_(X)

CALL _
CEO_MB_
DECISION_(X)

HPS_MB_
DECISION_
(X)
ASKED

SEE KPA
SOFTWARE
SUBCONTRACT
MANAGEMENT

[BUY]

ACT-
MB_REQUEST_
DECISION_(X)

CEO_MB_
DECISION_
(X)
ASKED

[MAKE]

CALL _
HPS_INITIATE_
PROJECT_
FORM_(X)

CALL _
TPM_WRITE_
PROPOSAL_(X)

TPM_WRITE_
PROPOSAL_(X)
ASKED

DETERM INE
PROJECT_
FORM
CONTENT

HPS_INITIATE_
PROJECT_
FORM_(X)
ASKED

PR_PHASE_
ENDED
ASKED

FINISHING STATE

T-2

figure 6.24 employee int-mb_request_decision_(x) : subprocess S2_wrt_project

The employee ‘hprs_pmm_request_approval_(x)’ is one of the possible callers of ‘ pr_phase_ended’ . It is the last operation
of phase 2 of the process fragment ‘writing project management documents’ . The call to ‘pr_phase_ended’ is a signal for
the control object ‘project’ that the current phase can be terminated. The operation ‘hprs_pmm_request_approval_(x)’ has
already been modeled in phase 2, without regard to later integration. Therefore the call to ‘pr_phase_ended’ is not yet
incorporated in the internal STD of ‘ hprs_pmm_request_approval_(x)’ . Here, in this paragraph, the call to
‘pr_phase_ended’ will be explicitly modeled into the internal STD of the operation.

In the next four figures first the internal STD of the operation ‘hprs_pmm_request_approval_(x)’ is shown with the
‘finishing state’-indicator. Then there follows a figure which looks ‘inside’ the ‘finishing’-state and which shows the
call to the operation ‘pr_phase_ended’. Then the two subprocesses S1 and S2 with respect to the manager STD of the
control object ‘project’ will be given.

ACT_
HPRS_PMM_
REQUEST_
APPROVAL_(X)

NON-
HPRS_PMM_
REQUEST_
APPROVAL_(X)

HPRS_PMM_
REQUEST_
APPROVAL_(X)
ASKED

CALL
PMM_REQUEST_
APPROVAL_(X)

PMM_REQUEST_
APPROVAL_(X)
ASKED

figure 6.25 employee int-hprs_pmm_request_approval_(x) : internal behavior STD, with ‘f inishing state’- indicator

Software Process Modeling
in SOCCA

page :
version : 0.10

280

ACT_
HPRS_PM M_
REQUEST_
APPROVAL_(X)

NON-
HPRS_PM M_
REQUEST_
APPROVAL_(X)

CALL
PMM_REQUEST_
APPROVAL_(X)

PMM_REQUEST_
APPROVAL_(X)
ASKED

HPRS_PM M_
REQUEST_
APPROVAL_(X)
ASKED

CALL _
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED

FINISHING STATE

figure 6.26 employee int-hprs_pmm_request_approval_(x) : internal behavior STD, with exploded view of ‘f inishing state’

ACT_
HPRS_PMM_
REQUEST_
APPROVAL_(X)

NON-
HPRS_PMM_
REQUEST_
APPROVAL_(X)

PM M_REQUEST_
APPROVAL_(X)
ASKED

HPRS_PMM_
REQUEST_
APPROVAL_(X)
ASKED

CALL _
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED

FINISHING STATE

T-1

figure 6.27 employee int-hprs_pmm_request_approval_(x) : subprocess S1_wrt_project

ACT_
HPRS_PM M_
REQUEST_
APPROVAL_(X)

NON-
HPRS_PM M_
REQUEST_
APPROVAL_(X)

CALL
PMM_REQUEST_
APPROVAL_(X)

PMM_REQUEST_
APPROVAL_(X)
ASKED

HPRS_PM M_
REQUEST_
APPROVAL_(X)
ASKED

PR_PHASE_
ENDED
ASKED

FINISHING STATE

T-2

figure 6.28 employee int-hprs_pmm_request_approval_(x) : subprocess S2_wrt_project

The employee ‘pmm_request_approval_(x)’ is one of the possible callers of ‘ pr_phase_ended’ . It is the last operation of
phase 3 of the process fragment ‘writing project management documents’ . The call to ‘pr_phase_ended’ is a signal for the
control object ‘project’ that the current phase can be terminated. The operation ‘pmm_request_approval_(x)’ has already
been modeled in phase 3, without regard to later integration. Therefore the call to ‘pr_phase_ended’ is not yet incorporated

Software Process Modeling
in SOCCA

page :
version : 0.10

281

in the internal STD of ‘ pmm_request_approval_(x)’ . Here, in this paragraph, the call to ‘pr_phase_ended’ will be
explicitly modeled into the internal STD of the operation.

In the next four figures first the internal STD of the operation ‘pmm_request_approval_(x)’ is shown with the
‘finishing state’-indicator. Then there follows a figure which looks ‘inside’ the ‘finishing’-state and which shows the
call to the operation ‘pr_phase_ended’. Then the two subprocesses S1 and S2 with respect to the manager STD of the
control object ‘project’ will be given.

CALL _
CEO_SIGN_
PC_(X)

MAKE
COPIES OF
PROJ ECT
CONTRACT
AND SDP

HSS_SIGN_
IRA_DOC_(X)
ASKEDSIM _CALL_

HSS_SIGN_
IRA_DOC_(X)

CEO_SIGN_
PC_(X)
ASKED

NON-
PMM _REQUEST_
APPROVAL_(X)

PMM _REQUEST_
APPROVAL_(X)
ASKEDACT-

PMM _REQUEST_
APPROVAL_(X)

CALL _
QAA_SIGN_
IRA_DOC_(X)

QAA_SIGN_
IRA_DOC_(X)
ASKEDCALL _

HCS_ENTER_
IN_M IS_(X)

HCS_ENTER_
IN_M IS_(X)
ASKEDCALL _

AM_CU_SIGN_
PC_(X)

AM_CU_
SIGN_PC_(X)
ASKEDCALL _

TPM _ENTER_IN_
PROJ_FILE_(X)

TPM _ENTER_
IN_PROJ_
FILE_(X)
ASKED

CURRENT
DATE & TIME
>=
SCHEDULED
DATE & TIME

[NO]

[YES]

figure 6.29 employee int-pmm_request_approval_(x) : internal behavior STD, with ‘f inishing state’- indicator

CALL _
CEO_SIGN_
PC_(X)

MAKE
COPIES OF
PROJ ECT
CONTRACT
AND SDP

HSS_SIGN_
IRA_DOC_(X)
ASKEDSIM_CALL_

HSS_SIGN_
IRA_DOC_(X)

CEO_SIGN_
PC_(X)
ASKED

NON-
PMM_REQUEST_
APPROVAL_(X)

PMM_REQUEST_
APPROVAL_(X)
ASKEDACT-

PMM_REQUEST_
APPROVAL_(X)

CALL _
QAA_SIGN_
IRA_DOC_(X)

QAA_SIGN_
IRA_DOC_(X)
ASKEDCALL _

HCS_ENTER_
IN_MIS_(X)

HCS_ENTER_
IN_MIS_(X)
ASKEDCALL _

AM_CU_SIGN_
PC_(X)

AM_CU_
SIGN_PC_(X)
ASKED

CALL
TPM_ENTER_IN_
PROJ_FILE_(X)

CURRENT
DATE & TIME
>=
SCHEDULED
DATE & TIME

[NO]

[YES]

TPM_ENTER_
IN_PROJ_
FILE_(X)
ASKED

CALL _
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED

FINISHING STATE

figure 6.30 employee int-pmm_request_approval_(x) : internal behavior STD, with exploded view of ‘f inishing state’

Software Process Modeling
in SOCCA

page :
version : 0.10

282

CALL _
CEO_SIGN_
PC_(X)

MAKE
COPIES OF
PROJ ECT
CONTRACT
AND SDP

HSS_SIGN_
IRA_DOC_(X)
ASKEDSIM_CALL_

HSS_SIGN_
IRA_DOC_(X)

CEO_SIGN_
PC_(X)
ASKED

NON-
PMM_REQUEST_
APPROVAL_(X)

PMM_REQUEST_
APPROVAL_(X)
ASKEDACT-

PMM_REQUEST_
APPROVAL_(X)

CALL _
QAA_SIGN_
IRA_DOC_(X)

QAA_SIGN_
IRA_DOC_(X)
ASKEDCALL _

HCS_ENTER_
IN_MIS_(X)

HCS_ENTER_
IN_MIS_(X)
ASKEDCALL _

AM_CU_SIGN_
PC_(X)

AM_CU_
SIGN_PC_(X)
ASKED

CALL
TPM_ENTER_IN_
PROJ_FILE_(X)

CURRENT
DATE & TIME
>=
SCHEDULED
DATE & TIME

[NO]

[YES]

TPM_ENTER_
IN_PROJ_
FILE_(X)
ASKED

CALL _
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED

FINISHING STATE

T-1

figure 6.31 employee int-pmm_request_approval_(x) : subprocess S1_wrt_project

T-2

CALL_
CEO_SIGN_
PC_(X)

MAKE
COPIES OF
PROJ ECT
CONTRACT
AND SDP

HSS_SIGN_
IRA_DOC_(X)
ASKEDSIM _CALL _

HSS_SIGN_
IRA_DOC_(X)

CEO_SIGN_
PC_(X)
ASKED

NON-
PM M_REQUEST_
APPROVAL_(X)

PM M_REQUEST_
APPROVAL_(X)
ASKEDACT-

PM M_REQUEST_
APPROVAL_(X)

CALL_
QAA_SIGN_
IRA_DOC_(X)

QAA_SIGN_
IRA_DOC_(X)
ASKEDCALL_

HCS_ENTER_
IN_M IS_(X)

HCS_ENTER_
IN_M IS_(X)
ASKEDCALL_

AM_CU_SI GN_
PC_(X)

AM_CU_
SIGN_PC_(X)
ASKED

CALL
TPM _ENTER_I N_
PROJ_FILE_(X)

CURRENT
DATE & TIME
>=
SCHEDULED
DATE & TI ME

[NO]

[YES]

TPM _ENTER_
IN_PROJ_
FILE_(X)
ASKED

PR_PHASE_
ENDED
ASKED

FINISHING STATE

figure 6.32 employee int-pmm_request_approval_(x) : subprocess S2_wrt_project

The employee ‘hps_allocate_resource’ is one of the two possible callers of ‘ pr_count_two_phase_ended’ . It is one of the
two ‘ last’ operations of phase 4 of the process fragment ‘writing project management documents’ . The other ‘ last’
operation of phase 4 is the operation ‘hcss_allocate_resource’ . Both operations have to signal to the manager STD of the
control object before the manager STD finishes phase 4. The manager STD counts the number of calls to
‘pr_count_two_phase_ended’ in its ‘counting’ state.

The operation ‘hps_allocate_resource’ has already been modeled in phase 4, without regard to later integration. Therefore
the call to ‘pr_count_two_phase_ended’ is not yet incorporated in the internal STD of ‘ hps_allocate_resource’ . Here, in
this paragraph, the call to ‘pr_count_two_phase_ended’ will be explicitly modeled into the internal STD of the operation.

Again in a real li fe situation this re-modeling will not take place. The modeler of sub-model will use the ‘f inishing state’ -
indicator. He will place it in both the ‘f inishing’ states of his sub-model. The integrator (the modeler of the integrated

Software Process Modeling
in SOCCA

page :
version : 0.10

283

model) inspects the sub-models that he has to integrate. He finds two (2) ‘f inishing’ states in the sub-model. In his
integrated model he then uses a ‘ two-counting’ state, and adds the operation ‘pr_count_two_phase_ended’ to the
operations of integrated model. He will not remodel the original operation ‘hps_allocate_resource’ , but he will just add
this operation to the list of employees of the control object.

This integration mechanism can easily be scaled up. If the modeler of the integrated model finds three ‘f inishing’ states in
some sub-model, he will add a ‘ three-counting’ state to the manager of the control object. Plus he will add the operation
‘pr_count_three_phase_ended’ , etc.

In the next four figures first the internal STD of the operation ‘hps_allocate_resource’ is shown with the ‘finishing
state’-indicator. Then there follows a figure which looks ‘inside’ the ‘finishing’-state and which shows the call to the
operation ‘pr_count_two_phase_ended’. Then the two subprocesses S1 and S2 with respect to the manager STD of the
control object ‘project’ will be given.

UPDATE
PROJECT
FORM

HPRS_
INFORM_(X)
ASKEDSIM_CALL _

HPRS_
INFORM_(TOR)

WRITE
INTERNAL
MEMO

NON-
HPS_ALL OCATE
_RESOURCE

HPS_ALL OCATE
_RESOURCE
ASKEDACT-

HPS_ALL OCATE_
RESOURCE

CALL_
TPM_
INFORM_(TOR)

TPM_
INFORM_(X)
ASKEDCALL_

ENG_
INFORM_(TOR)

ENG_
INFORM_(TOR)
ASKED

WRITE
TOR-
DOCUM ENT

UPDATE
MIS

figure 6.33 employee int-hps_allocate_resource : internal behavior STD, with ‘f inishing state’- indicator

UPDATE
PROJECT
FORM

HPRS_
INFORM_(X)
ASKEDSIM_CALL _

HPRS_
INFORM_(TOR)

WRITE
INTERNAL
MEMO

NON-
HPS_ALL OCATE
_RESOURCE

HPS_ALL OCATE
_RESOURCE
ASKEDACT-

HPS_ALL OCATE_
RESOURCE

CALL_
TPM_
INFORM_(TOR)

TPM_
INFORM_(X)
ASKEDCALL_

ENG_
INFORM_(TOR)

ENG_
INFORM_(TOR)
ASKED

WRITE
TOR-
DOCUM ENT

UPDATE
MISCALL_

PR_COUNT_
TWO_PHASE_
ENDED

PR_COUNT_
TWO_PHASE_
ENDED
ASKED

FINISHING STATE

figure 6.34 employee int-hps_allocate_resource : internal behavior STD, with exploded view of ‘f inishing state’

Software Process Modeling
in SOCCA

page :
version : 0.10

284

UPDATE
PROJECT
FORM

HPRS_
I NFORM_(X)
ASKEDSI M_CALL _

HPRS_
I NFORM_(TOR)

WRI TE
I NTERNAL
MEMO

NON-
HPS_ALL OCATE
_RESOURCE

HPS_ALL OCATE
_RESOURCE
ASKEDACT-

HPS_ALL OCATE_
RESOURCE

CALL _
TPM_
I NFORM_(TOR)

TPM_
I NFORM_(X)
ASKEDCALL _

ENG_
I NFORM_(TOR)

ENG_
I NFORM_(TOR)
ASKED

WRI TE
TOR-
DOCUMENT

UPDATE
MI SCALL _

PR_COUNT_
TWO_PHASE_
ENDED

PR_COUNT_
TWO_PHASE_
ENDED
ASKED

FI NI SHI NG STATE

T-1

figure 6.35 employee int-hps_allocate_resource : subprocess S1_wrt_project

UPDATE
PROJECT
FORM

HPRS_
INFORM_(X)
ASKEDSIM _CALL_

HPRS_
INFORM_(TOR)

WRITE
INTERNAL
MEM O

NON-
HPS_ALLOCATE
_RESOURCE

HPS_ALLOCATE
_RESOURCE
ASKEDACT-

HPS_ALLOCATE_
RESOURCE

CALL_
TPM_
INFORM_(TOR)

TPM_
INFORM_(X)
ASKEDCALL_

ENG_
INFORM_(TOR)

ENG_
INFORM_(TOR)
ASKED

WRITE
TOR-
DOCUM ENT

UPDATE
MIS

PR_COUNT_
TWO_PHASE_
ENDED
ASKED

FINISHING STATET-2

figure 6.36 employee int-hps_allocate_resource : subprocess S2_wrt_project

The employee ‘hcss_allocate_resource’ is one of the two possible callers of ‘ pr_count_two_phase_ended’ . It is one of the
two ‘ last’ operations of phase 4 of the process fragment ‘writing project management documents’ . The other ‘ last’
operation of phase 4 is the operation ‘hps_allocate_resource’ . Both operations have to signal to the manager STD of the
control object before the manager STD finishes phase 4. The manager STD counts the number of calls to ‘pr_count_two
_phase_ended’ in its ‘counting’ state.

The operation ‘hcss_allocate_resource’ has already been modeled in phase 4, without regard to later integration. Therefore
the call to ‘pr_count_two_phase_ended’ is not yet incorporated in the internal STD of ‘ hcss_allocate_resource’ . Here, in
this paragraph, the call to ‘pr_count_two_phase_ended’ will be explicitly modeled into the internal STD of the operation.

In the next four figures first the internal STD of the operation ‘hcss_allocate_resource’ is shown with the ‘finishing
state’-indicator. Then there follows a figure which looks ‘inside’ the ‘finishing’-state and which shows the call to the
operation ‘pr_count_two_phase_ended’. Then the two subprocesses S1 and S2 with respect to the manager STD of the
control object ‘project’ will be given.

Software Process Modeling
in SOCCA

page :
version : 0.10

285

HPRS_
INFORM_(X)
ASKEDCALL _

HPRS_
INFORM_(IM)

WRITE
INTERNAL
MEMO

NON- HCSS_
ALL OCATE_
RESOURCE

HCSS_
ALL OCATE_
RESOURCE
ASKED

ACT-
HCSS_ALL OCATE_
RESOURCE

CALL _
TPM_
INFORM_(IM)

TPM_
INFORM_(X)
ASKED

figure 6.37 employee int-hcss_allocate_resource : internal behavior STD, with ‘f inishing state’- indicator

CALL _
HPRS_
INFORM_(X)

WRITE
INTERNAL
MEMO

NON- HCSS_
ALL OCATE_
RESOURCE

HCSS_
ALL OCATE_
RESOURCE
ASKED

ACT-
HCSS_ALL OCATE_
RESOURCE

CALL _
TPM_
INFORM_(IM)

TPM_
INFORM_(X)
ASKED

HPRS_
INFORM_(X)
ASKED

CALL _
PR_COUNT_
TWO_PHASE_
ENDED

PR_COUNT_
TWO_PHASE_
ENDED
ASKED

FINISHING STATE

figure 6.38 employee int-hcss_allocate_resource : internal behavior STD, with exploded view of ‘f inishing state’

CALL _
HPRS_
INFORM_(X)

WRITE
INTERNAL
MEMO

NON- HCSS_
ALL OCATE_
RESOURCE

HCSS_
ALL OCATE_
RESOURCE
ASKED

ACT-
HCSS_ALL OCATE_
RESOURCE

CALL _
TPM_
INFORM_(IM)

TPM_
INFORM_(X)
ASKED

HPRS_
INFORM_(X)
ASKED

CALL _
PR_COUNT_
TWO_PHASE_
ENDED

PR_COUNT_
TWO_PHASE_
ENDED
ASKED

FINISHING STATE

T-1

figure 6.39 employee int-hcss_allocate_resource : subprocess S1_wrt_project

CALL _
HPRS_
INFORM_(X)

WRITE
INTERNAL
MEMO

NON- HCSS_
ALL OCATE_
RESOURCE

HCSS_
ALL OCATE_
RESOURCE
ASKED

ACT-
HCSS_ALL OCATE_
RESOURCE

CALL _
TPM_
INFORM_(IM)

TPM_
INFORM_(X)
ASKED

HPRS_
INFORM_(X)
ASKED

PR_COUNT_
TWO_PHASE_
ENDED
ASKED

FINISHING STATE

T-2

figure 6.40 employee int-hcss_allocate_resource : subprocess S2_wrt_project

Software Process Modeling
in SOCCA

page :
version : 0.10

286

6.3.2.2 Customer (phase 1, changed)

6.3.2.2.1 Customer (phase 1, changed) : external behavior-STD, organizational view

In the original sub-model of phase 1 it was assumed that the customer could start phase 1 (and therefore the total process
fragment ‘writing project management documents’) repetitively by sequential calls to its autonomous operation
‘cu_request_proposal’ . In this way more than one request for proposal could be handled in parallel. In the integration of
the four phase-submodels this parallel functionality is handled in another way. The customer now calls it autonomous
operation ‘cu_project_li fe_cycle’ repetitively to start parallel executions of the process fragment. Within one execution of
the process fragment ‘writing project management documents’ the customer can only once call it s operation
‘cu_request_proposal’ . The external STD for phase 1 is changed to reflect this.

CU_REQUEST_
PROPOSAL

NEUTRAL
CU_REQUEST_
PROPOSAL
ASKED

figure 6.41 customer : external behavior STD (phase 1) , organizational view

6.3.2.2.2 Customer (phase 1, changed) : external behavior-STD, communicative view

The changes in the external STD, organizational view, are reflected in the external STD, communicative view. Because
the operation ‘cu_request_proposal’ can only be called once, the STD does not return to its neutral state after the call has
been accepted. The ‘starting’ state, in which the called operation is started, still exists. After that, when the operation has
been started, the STD goes to its (end)-state ‘cu_request_proposal started’ .

CU_REQUEST_
PROPOSAL

NEUTRAL

CU_REQUEST_
PROPOSAL
STARTED

STARTING
CU_REQUEST_
PROPOSAL

CU_REQUEST_PROPOSAL ASKED

figure 6.42 customer : external behavior STD (phase 1), communicative view

6.3.2.2.3 Customer (phase 1, changed) : internal behavior-STDs

For phase 1 still only the operation ‘cu_request_proposal’ of the customer is relevant. Its internal behavior STD has not
been changed with respect to the way it was modeled in the original phase 1-submodel.

ACT_
CU_REQUEST_
PROPOSAL

NON
CU_REQUEST_
PROPOSAL

CU_REQUEST_
PROPOSAL
ASKED

DETERMINE
CONTENT CALL _

RD_INITIATE_
(CONTENT)

RD_INITIATE
ASKED CALL _

AM_REQUEST_
PROPOSAL_
(REQUIREMENTS
DOCUMENT)

AM_REQUEST_
PROPOSAL
ASKED

figure 6.43 int-cu_request_proposal : internal behavior STD

With the operation ‘cu_request_proposal’ the customer considers his requirements (= determines the contents of the
requirements document). Then he creates a requirements document and initiates it with his requirements (call_
rd_initiate_(content)). With this requirements document he approaches the account manager with a request for a proposal
based on the requirements (call_am_request_proposal_(requirements document)).

Software Process Modeling
in SOCCA

page :
version : 0.10

287

6.3.2.2.4 Customer (phase 1, changed) : manager-STD

The manager STD is the same as the external STD, communicative view. In it states the manager STD prescribes the
subprocesses for its employees. The transitions are guarded with a combination of traps. The employees have to be in
these traps for the transition to be enabled.

The notation CPSx stands for Consolidated Prescribed Subprocesses and is a set of CCx’s. The notation CCx stands for
‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-callee combination. The notation TLF-x
stands for ‘Traps Logical Formula’ and describes the combination of traps that enables the transition. The numbering of
the subprocesses and traps corresponds to the one used in the next paragraph.

The CPSx’s have the same name as the state for which they are valid. The TLF-x’ have the same name as the operation
that is started when the transition is taken. Transitions with no TLF (with no name in the external STD) are automatic
transitions (unless otherwise indicated). The name of CCx’s will i nclude the full names of the caller and callee operations
separated by a ‘~’ character. Subprocesses and traps will be given as much of their full name as is necessary to avoid
ambiguity. This full name is constructed with the ‘dot’ -notation.

For the (changed) ‘phase 1’ -manager STD of the class customer, the CPSs, CCs and the TLFS are :

CPS ‘neutral’ = {autonomous ~ cu_request_proposal.S1_wrt_customer}
TLF ‘cu_request_proposal’ = cu_request_proposal.T1_wrt_customer
CPS ‘starting cu_request_proposal’ = {autonomous ~ cu_request_proposal.S2_wrt_customer}
TLF ‘no name’ = cu_request_proposal.T2_wrt_customer
CPS ‘cu_request_proposal started’ = {autonomous ~ cu_request_proposal.S1_wrt_customer}

6.3.2.2.5 Customer (phase 1, changed) : employee-STDs

For phase 1 still only the employee ‘cu_request_proposal’ of the customer is relevant. The subprocesses S1 and S2, and
two traps T-1 and T-2 are the same as modeled in the original ‘phase 1’ -submodel. S1, S2 ,T-1 and T-2 (all with respect to
customer) are according to the caller-callee construct.

Software Process Modeling
in SOCCA

page :
version : 0.10

288

6.3.2.3 Customer (corporate)

6.3.2.3.1 Customer (corporate) : external behavior-STD, organizational view

The autonomous operation ‘cu_start_project_li fe_cycle’ is always available to the customer. It can always start a new
project life cycle. This is modeled by adding to the total ‘constructed’ external STD of the customer (constructed during
the integration of the process fragments ‘writing project management documents’ , ‘changing project management
documents’and ‘closing project’) a parallel STD that includes the transition ‘cu_project_li fe_cycle’ . This constitutes the
total ‘corporate’ external STD of the class customer.

NEUTRAL

CU_PROJECT_LIFE_CYCLE

TOTAL
CONSTRUCTED
EXTERNAL
STD

figure 6.44 customer : total corporate external STD, organizational view

The fact that both external STDs ‘ total constructed external STD’ and ‘neutral’ can run in parallel, is modeled by the
AND-superstate (the big rectangle with the rounded corners, with the dashed line dividing it into two compartments). The
AND-superstate is part of the UML notation for state diagrams, which is essentially the Harel statechart notation [HAR].

6.3.2.3.2 Customer (corporate) : external behavior-STD, communicative view

The autonomous operation ‘cu_project_li fe_cycle’ can be called repetetively by the customer. The external STD has a
‘neutral’ state in which the STD waits for a call to the operation. The STD also has a ‘starting’ state. After the operation is
started, the STD transits back to neutral. Here it can service the next call to ‘cu_project_li fe_cycle’ . I.e. the customer can
start the next project (li fe cycle).

Software Process Modeling
in SOCCA

page :
version : 0.10

289

NEUTRAL
STARTING_
CU_PROJECT_
LIFE_CYCLE

CU_PROJECT_
LIFE_CYCLE

TOTAL
CONSTRUCTED
EXTERNAL
STD

figure 6.45 customer : total corporate external STD, communicative view

6.3.2.3.3 Customer (corporate) : internal behavior-STDs

To the total corporate model of the customer the internal operation ‘cu_project_li fe_cycle’ is added. It has the following
internal STD.

ACT_
CU_PROJECT_
LIFE_CYCLE

NON-
CU_PROJECT_
LIFE_CYCLE

CU_PROJECT_
LIFE_CYCLE
ASKED CALL _

PR_PROJECT_
LIFE_CYCLE

PR_PROJECT_
LIFE_CYCLE
ASKED

figure 6.46 int-cu_project_life_cycle : internal behavior STD

The operation simply calls ‘pr_project_li fe_cycle’ of the class project. With this operation the customer starts a new
project (li fe cycle).

6.3.2.3.4 Customer (corporate) : manager-STD

The manager STD is the same as the external STD, communicative view. In it states the manager STD prescribes the
subprocesses for its employees. The transitions are guarded with a combination of traps. The employees have to be in
these traps for the transition to be enabled.

The notation CPSx stands for Consolidated Prescribed Subprocesses and is a set of CCx’s. The notation CCx stands for
‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-callee combination. The notation TLF-x
stands for ‘Traps Logical Formula’ and describes the combination of traps that enables the transition. The numbering of
the subprocesses and traps corresponds to the one used in the next paragraph.

For the ‘cu_project_li fe_cycle’ -part of the total corporate external STD of the class customer, the CPSs, CCs and the
TLFS are :

CPS ‘neutral’ = {autonomous ~ cu_project_li fe_cycle.S1_wrt_customer}

Software Process Modeling
in SOCCA

page :
version : 0.10

290

TLF ‘cu_project_li fe_cycle’ = cu_project_li fe_cycle.T1_wrt_customer
CPS ‘starting cu_project_li fe_cycle’ = {autonomous ~ cu_project_li fe_cycle.S2_wrt_customer}
TLF ‘no name’ = ‘cu_project_li fe_cycle.T2_wrt_customer

6.3.2.3.5 Customer (corporate) : employee-STDs

To the total corporate model of the customer the employee ‘cu_project_li fe_cycle’ is added. It has the subprocesses S1
and S2, and the traps T-1 and T-2 (all with respect to customer), according to the caller-callee construct.

Software Process Modeling
in SOCCA

page :
version : 0.10

291

6.3.2.4 Customer (integration)

6.3.2.4.1 Customer (integration) : extended phase-external behavior-STDs

The first step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is the extension of the constituent phase-external STDs with a start state and an end (final) state. The start state
has a transition leaving it and entering the phase-external STD. The final state has a transition coming into it from the
phase-external STD. This construction is performed in the next figures for the phase 1-external STD, the phase 2-external
STD, the phase 3-external STD and the phase 4-external STD of the class ‘customer’ .

The class ‘customer’ does not participate in phase 4. Therefore the phase 4-external STD consists of a dummy state. The
phase 1-external STD has been changed with respect to the original sub-model of phase 1.

START

PHASE 1

CU_REQUEST_
PROPOSAL

ENDNEUTRAL
CU_REQUEST_
PROPOSAL
ASKED

figure 6.47 customer : extended phase 1-external STD

ENDPHASE 2

CU_QUERY_REQUIREMENT_(X)

CU_AGREE_PROJ_MAN_DOC_(X)

START

figure 6.48 customer : extended phase 2-external STD

PHASE 3 ENDSTART

CU_SIGN_PC_(X)

figure 6.49 customer : extended phase 3-external STD

PHASE 4 ENDSTART

figure 6.50 customer : extended phase 4-external STD

6.3.2.4.2 Customer (integration) : total external behavior-STD

The second step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is to connect the extended phase-external STDs with each other in such a way that the final state of one phase-
external STD coincides with the start state of the next phase-external STD. This ‘coinciding’ state between two phase-
external STDs is called an ‘ intermediate’ state. This models the sequential dependency between the phases.

Software Process Modeling
in SOCCA

page :
version : 0.10

292

The transitions leaving the start states get the label ‘change_to_phase_x’ . These represent the ‘phase-changing’ -operations.
The transitions entering the final states get the label ‘pr_phase_ended’ . These represent the ‘phase-ended’ operation. The
construction is performed in the next figure.

START

PHASE 1

CU_REQUEST_
PROPOSAL

INTER-
MEDIATE_1

NEUTRAL
CU_REQUEST_
PROPOSAL
ASKED

INTER-
MEDIATE_2PHASE 2

CU_QUERY_REQUIREMENT_(X)

CU_AGREE_PROJ_MAN_DOC_(X)

PHASE 3 INTER-
MEDIATE_3

CU_SIGN_PC_(X)

PHASE 4 END

CHANGE_TO_
PHASE_1

PHASE_ENDED CHANGE_TO_
PHASE_2

PHASE_ENDED

CHANGE_TO_PHASE_3

PHASE_ENDEDPHASE_ENDED CHANGE_TO_
PHASE_4

figure 6.51 customer : ext_wpmd_customer, total external STD

The naming convention for a total external STD is as follows. The name starts with the prefix ‘EXT’ . This is conform the
normal external STD notation. Then follows the indication of the process fragment for which the total external STD will
be valid. In this case ‘WPMD’. This stands for ‘Writing Project Management Documents’ . This is followed by the class
name. E.g. EXT_WPMD_CUSTOMER is the external STD of the class ‘customer’ valid for the process fragment ‘writing
project management documents’ .

The total external STD is initially in its state ‘start’ . When the control operation ‘pr_project_li fe_cyle’ of the control object
‘project’ (sim_)calls the operation ‘change_to_phase_1’ of the ‘customer’ , the total external STD will (eventually) transit
to its state ‘phase 1’ . Here it manages its phase 1-employees. I.e. phase 1 takes place. At the end of phase 1, the last
operation of this phase signals the control object that this phase can be ended. The operation ‘pr_phase_ended’ of the
control object then (sim_)calls the operation ‘phase_ended’ of the ‘customer’ . The total STD will (eventually) transit to
the state ‘ intermediate_1’ . I.e. phase 1 has ended.

In the state ‘ intermediate_1’ the total external STD is ready to accept a call to ‘change_to_phase_2’ . When the control
operation ‘pr_project_li fe_cycle’ (sim_)calls the operation ‘change_to_phase_2’ of the ‘customer’ , the total external STD
will (eventually) transit to its state ‘phase 2’ . Here it manages its phase 2-employees. I.e. phase 2 takes place. At the end of
phase 2, the last operation of this phase signals the control object that this phase can be ended. The operation
‘pr_phase_ended’ of the control object then (sim_)calls the operation ‘phase_ended’ of the ‘customer’ . The total STD will
(eventually) transit to the state ‘ intermediate_2’ . I.e. phase 2 has ended.

In the state ‘ intermediate_2’ the total external STD is ready to accept a call to ‘change_to_phase_3’ . When the control
operation ‘pr_project_li fe_cycle’ (sim_)calls the operation ‘change_to_phase_3’ of the ‘customer’ , the total external STD
will (eventually) transit to its state ‘phase 3’ . Here it manages its phase 3-employees. I.e. phase 3 takes place. At the end of
phase 3, the last operation of this phase signals the control object that this phase can be ended. The operation
‘pr_phase_ended’ of the control object then (sim_)calls the operation ‘phase_ended’ of the ‘customer’ . The total STD will
(eventually) transit to the state ‘ intermediate_3’ . I.e. phase 3 has ended.

In the state ‘ intermediate_3’ the total external STD is ready to accept a call to ‘change_to_phase_4’ . When the control
operation ‘pr_project_li fe_cycle’ (sim_)calls the operation ‘change_to_phase_4’ of the ‘customer’ , the total external STD
will (eventually) transit to its state ‘phase 4’ . Since the class ‘customer’ does not participate in phase 4, no action of
‘customer’ will t ake place here. At the end of phase 4, both the ‘ last’ operations of this phase signal the control object that
this phase can be ended. The manager of the control object counts the number of calls to the operation
‘pr_count_two_phase_ended’ . When this operation has been called twice, the manager STD of the control object
autonomously starts its own operation ‘pr_phase_ended’ . This operation ‘pr_phase_ended’ of the control object then
(sim_)calls the operation ‘phase_ended’ of the ‘customer’ . The total external STD will (eventually) transit to its final state
‘end’ . I.e. phase 4 has ended. I.e. the total process fragment ‘writing project management documents’ has ended.

Software Process Modeling
in SOCCA

page :
version : 0.10

293

6.3.2.4.3 Customer (integration) : internal behavior-STDs

The internal operations of the class ‘customer’ are in the first place the internal operations as modeled in the phase 1, 2
and 3. Added to these operations is the operation ‘cu_project_li fe_cycle’ as modeled in the corporate model of the class
‘customer’ .

During the integration the following internal operations are added to the class ‘customer’ : ‘change_to_phase_1’ ,
‘change_to_phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and ‘phase_ended’ .

These 5 additional operations are so-called ‘no-operations’ (nops). A nop is an operation that performs no function while
executing. The sole purpose of such an operation is to enable the corresponding transition of the external STD within the
existing SOCCA framework.

ACT_
CHANGE_TO_
PHASE_1

NON-
CHANGE_TO_
PHASE_1

CHANGE_TO_
PHASE_1
ASKED NOP

(no-operation)

READY

figure 6.52 int-change_to_phase_1 : internal behavior STD

ACT_
CHANGE_TO_
PHASE_2

NON-
CHANGE_TO_
PHASE_2

CHANGE_TO_
PHASE_2
ASKED NOP

(no-operation)

READY

figure 6.53 int-change_to_phase_2 : internal behavior STD

ACT_
CHANGE_TO_
PHASE_3

NON-
CHANGE_TO_
PHASE_3

CHANGE_TO_
PHASE_3
ASKED NOP

(no-operation)

READY

figure 6.54 int-change_to_phase_3 : internal behavior STD

ACT_
CHANGE_TO_
PHASE_4

NON-
CHANGE_TO_
PHASE_4

CHANGE_TO_
PHASE_4
ASKED NOP

(no-operation)

READY

figure 6.55 int-change_to_phase_4 : internal behavior STD

ACT_
PHASE_ENDED

NON-
PHASE_ENDED

PHASE_ENDED
ASKED NOP

(no-operation)

READY

Software Process Modeling
in SOCCA

page :
version : 0.10

294

figure 6.56 int-phase_ended : internal behavior STD

6.3.2.4.4 Customer (integration) : manager-STD

The total manager STD is the same as the total external STD. Therefore no separate figure is needed for the total manager
STD. The total manager STD of the process fragment ‘writing project management documents’ prescribes in its ‘phase 1’ ,
‘phase 2’ and ‘phase 3’ states still t he same subprocesses for its phase-employees as was modeled in the phase 1-, phase 2-
and phase 3-sub-models. These may be called ‘old prescribed subprocesses’ . Subprocess prescriptions for an employee in
states (of the total manager STD) that are not relevant for that employee are ‘don’ t cares’ .

In the integration the total manager gets new employees. For this new employees it is also prescribing subprocesses. These
may be called ‘new prescribed subprocesses’ . The sum total of the prescribed subprocesses by the total manager STD is
therefore (per state) : { old prescribed subprocesses} ∪ { don’ t cares} ∪ { new prescribed subprocesses} .

In this paragraph only the {new prescribed subprocesses} will be specified. Also only the new traps will be specified. The
‘old’ traps as modeled in the ‘phase’ -sub-models are still valid in the integrated model.

The notation CPSx stands for Consolidated Prescribed Subprocesses and is a set of CCx’s. The notation CCx stands for
‘Caller(s)-Callee’ and is the set of subprocesses prescribed for a certain caller-callee combination. The notation TLF-x
stands for ‘Traps Logical Formula’ and describes the combination of traps that enables the transition. The numbering of
the subprocesses and traps corresponds to the one used in the next paragraph.

The CPSx’s have the same name as the state for which they are valid. The TLF-x’ have the same name as the operation
that is started when the transition is taken. Transitions with no TLF (with no name in the external STD) are automatic
transitions (unless otherwise indicated in the definitions below). Traps that are not mentioned in the TLF are don’ t cares.
The name of CCx’s will i nclude the full names of the caller and callee operations separated by a ‘~’ character.
Subprocesses and traps will be given as much of their full name as is necessary to avoid ambiguity. This full name is
constructed with the ‘dot’ -notation.

The new CPSs, CCs and TLFs for this total manager STD are :

CPS ‘start’ =
 { pr_project_li fe_cycle.S1_wrt_customer ~ change_to_phase_1.S1_wrt_customer,

~ change_to_phase_2.S1_wrt_customer,
~ change_to_phase_3.S1_wrt_customer,
~ change_to_phase_4.S1_wrt_customer,

pr_phase_ended.S1_wrt_customer ~ phase_ended.S1_wrt_customer}

TLF ‘change_to_phase_1’ = pr_project_li fe_cycle.T1.wrt_customer and change_to_phase_1.T1_wrt_customer

CPS ‘phase_1’ =
 { pr_project_li fe_cycle.S2_wrt_customer ~ change_to_phase_1.S2_wrt_customer,

~ change_to_phase_2.S1_wrt_customer,
~ change_to_phase_3.S1_wrt_customer,
~ change_to_phase_4.S1_wrt_customer,

pr_phase_ended.S1_wrt_customer ~ phase_ended.S1_wrt_customer}

TLF ‘phase_ended’ (1e) = pr_phase_ended.T1_wrt_customer and phase_ended.T1_wrt_customer

CPS ‘ intermediate_1’ =
 { pr_project_li fe_cycle.S2_wrt_customer ~ change_to_phase_1.S2_wrt_customer,

~ change_to_phase_2.S1_wrt_customer,
~ change_to_phase_3.S1_wrt_customer,
~ change_to_phase_4.S1_wrt_customer,

pr_phase_ended.S2_wrt_customer ~ phase_ended.S2_wrt_customer}

TLF ‘change_to_phase_2’ = pr_project_li fe_cycle.T2.wrt_customer and change_to_phase_2.T1_wrt_customer
 and pr_phase_ended.T2_wrt_customer and phase_ended.T2_wrt_customer

Software Process Modeling
in SOCCA

page :
version : 0.10

295

CPS ‘phase_2’ =
 { pr_project_li fe_cycle.S3_wrt_customer ~ change_to_phase_1.S2_wrt_customer,

~ change_to_phase_2.S2_wrt_customer,
~ change_to_phase_3.S1_wrt_customer,
~ change_to_phase_4.S1_wrt_customer,

pr_phase_ended.S1_wrt_customer ~ phase_ended.S1_wrt_customer}

TLF ‘phase_ended’ (2e) = pr_phase_ended.T1_wrt_customer and phase_ended.T1_wrt_customer

CPS ‘ intermediate_2’ =
 { pr_project_li fe_cycle.S3_wrt_customer ~ change_to_phase_1.S2_wrt_customer,

~ change_to_phase_2.S2_wrt_customer,
~ change_to_phase_3.S1_wrt_customer,
~ change_to_phase_4.S1_wrt_customer,

pr_phase_ended.S2_wrt_customer ~ phase_ended.S2_wrt_customer}

TLF ‘change_to_phase_3’ = pr_project_li fe_cycle.T3.wrt_customer and change_to_phase_3.T1_wrt_customer
 and pr_phase_ended.T2_wrt_customer and phase_ended.T2_wrt_customer

CPS ‘phase_3’ =
 { pr_project_li fe_cycle.S4_wrt_customer ~ change_to_phase_1.S2_wrt_customer,

~ change_to_phase_2.S2_wrt_customer,
~ change_to_phase_3.S2_wrt_customer,
~ change_to_phase_4.S1_wrt_customer,

pr_phase_ended.S1_wrt_customer ~ phase_ended.S1_wrt_customer}

TLF ‘phase_ended’ (3e) = pr_phase_ended.T1_wrt_customer and phase_ended.T1_wrt_customer

CPS ‘ intermediate_3’ =
 { pr_project_li fe_cycle.S4_wrt_customer ~ change_to_phase_1.S2_wrt_customer,

~ change_to_phase_2.S2_wrt_customer,
~ change_to_phase_3.S2_wrt_customer,
~ change_to_phase_4.S1_wrt_customer,

pr_phase_ended.S2_wrt_customer ~ phase_ended.S2_wrt_customer}

TLF ‘change_to_phase_4’ = pr_project_li fe_cycle.T4.wrt_customer and change_to_phase_4.T1_wrt_customer
 and pr_phase_ended.T2_wrt_customer and phase_ended.T2_wrt_customer

CPS ‘phase_4’ =
 { pr_project_li fe_cycle.S5_wrt_customer ~ change_to_phase_1.S2_wrt_customer,

~ change_to_phase_2.S2_wrt_customer,
~ change_to_phase_3.S2_wrt_customer,
~ change_to_phase_4.S2_wrt_customer,

pr_phase_ended.S1_wrt_customer ~ phase_ended.S1_wrt_customer}

TLF ‘phase_ended’ (4e) = pr_phase_ended.T1_wrt_customer and phase_ended.T1_wrt_customer
 and pr_project_li fe_cycle.T5.wrt_customer
 and change_to_phase_1.T2_wrt_customer
 and change_to_phase_2.T2_wrt_customer
 and change_to_phase_3.T2_wrt_customer
 and change_to_phase_4.T2_wrt_customer

CPS ‘end’ =
 { pr_project_li fe_cycle.S5_wrt_customer ~ change_to_phase_1.S1_wrt_customer,

~ change_to_phase_2.S1_wrt_customer,
~ change_to_phase_3.S1_wrt_customer,
~ change_to_phase_4.S1_wrt_customer,

pr_phase_ended.S2_wrt_customer ~ phase_ended.S2_wrt_customer}

Software Process Modeling
in SOCCA

page :
version : 0.10

296

Note : the operations ‘pr_phase_ended’ and ‘phase_ended’ are prescribed their subprocess S2 in the final state ‘end’ . If
there is a successor process fragment then the final (end) state of the total manager STD of the process fragment ‘writing
project management documents’ is ‘merged’ with the start state of the total manager STD of the next process fragment.
The guard on the transition out of this new intermediate state will be [pr_phase_ended.T2_wrt_customer and
phase_ended.T2_wrt_customer] and the internal STDs will be switched back to their S1 subprocess. So they can be used
again in the next process fragment.

6.3.2.4.5 Customer (integration) : employee-STDs

The employees of the manager STD of the class ‘customer’ are in the first place the employees as modeled in the phase 1,
2 and 3. Added to these is the employee ‘cu_project_li fe_cycle’ as modeled in the corporate model of the class
‘customer’ .

During the integration the following 7 employees are added: ‘change_to_phase_1’ , ‘change_to_phase_2’ ,
‘change_to_phase_3’ , ‘change_to_phase_4’ and their caller ‘pr_project_li fe_cycle’ and ‘phase_ended’ and its caller
‘pr_phase_ended’ .

The employee ‘change_to_phase_1’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
customer), according to the caller-callee construct.

NON-
CHANGE_TO_
PHASE_1

CHANGE_TO_
PHASE_1
ASKED NOP

(no-operation)

READY

T-1

figure 6.57 employee int-change_to_phase_1 : subprocess S1_wrt_customer

ACT_
CHANGE_TO_
PHASE_1

NON-
CHANGE_TO_
PHASE_1

CHANGE_TO_
PHASE_1
ASKED NOP

(no-operation)

READY

T-2

figure 6.58 employee int-change_to_phase_1 : subprocess S2_wrt_customer

The employee ‘change_to_phase_2’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
customer), according to the caller-callee construct.

NON-
CHANGE_TO_
PHASE_2

CHANGE_TO_
PHASE_2
ASKED NOP

(no-operation)

READY

T-1

figure 6.59 employee int-change_to_phase_2 : subprocess S1_wrt_customer

ACT_
CHANGE_TO_
PHASE_2

NON-
CHANGE_TO_
PHASE_2

CHANGE_TO_
PHASE_2
ASKED NOP

(no-operation)

READY

T-2

figure 6.60 employee int-change_to_phase_2 : subprocess S2_wrt_customer

Software Process Modeling
in SOCCA

page :
version : 0.10

297

The employee ‘change_to_phase_3’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
customer), according to the caller-callee construct.

NON-
CHANGE_TO_
PHASE_3

CHANGE_TO_
PHASE_3
ASKED NOP

(no-operation)

READY

T-1

figure 6.61 employee int-change_to_phase_3 : subprocess S1_wrt_customer

ACT_
CHANGE_TO_
PHASE_3

NON-
CHANGE_TO_
PHASE_3

CHANGE_TO_
PHASE_3
ASKED NOP

(no-operation)

READY

T-2

figure 6.62 employee int-change_to_phase_3 : subprocess S2_wrt_customer

The employee ‘change_to_phase_4’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
customer), according to the caller-callee construct.

NON-
CHANGE_TO_
PHASE_4

CHANGE_TO_
PHASE_4
ASKED NOP

(no-operation)

READY

T-1

figure 6.63 employee int-change_to_phase_4 : subprocess S1_wrt_customer

ACT_
CHANGE_TO_
PHASE_4

NON-
CHANGE_TO_
PHASE_4

CHANGE_TO_
PHASE_4
ASKED NOP

(no-operation)

READY

T-2

figure 6.64 employee int-change_to_phase_4 : subprocess S2_wrt_customer

The employee ‘pr_project_li fe_cycle’ is the caller of the four callees ‘change_to_phase_1’ , ‘change_to_phase_2’ ,
‘change_to_phase_3’ and ‘change_to_phase_4’ of the class ‘customer’ . Consequently it has five subprocesses and traps
with respect to the manager STD of the class ‘customer’ : S1, S2, S3, S4 and S5 and T-1, T-2, T-3, T-4 and T-5. The next
two figures show the internal operation ‘pr_project_li fe_cycle’ and its five subprocesses.

Software Process Modeling
in SOCCA

page :
version : 0.10

298

SIM_CALL_
CHANGE_TO_
PHASE_1

IN
PHASE 1
ASKED

OUT

WRITING PROJECT MANAGEMENT DOCUMENTS

 POST
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

 PRE
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

SIM_CALL_
CHANGE_TO_
PHASE_2

PHASE 2
ASKED SIM_CALL_

CHANGE_TO_
PHASE_3

PHASE 3
ASKED SIM_CALL_

CHANGE_TO_
PHASE_4

PHASE 4
ASKED

figure 6.65 employee int-pr_project_life_cycle : internal behavior STD

S-1 SIM_CALL_
CHANGE_TO_
PHASE_1

IN
PHASE 1
ASKED

 PRE
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

T-1

PHASE 1
ASKED SIM_CALL_

CHANGE_TO_
PHASE_2

PHASE 2
ASKEDS-2

T-2

PHASE 2
ASKED SIM_CALL_

CHANGE_TO_
PHASE_3

PHASE 3
ASKEDS-3

T-3

PHASE 3
ASKED SIM_CALL_

CHANGE_TO_
PHASE_4

PHASE 4
ASKEDS-4

T-4

OUT

 POST
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

PHASE 4
ASKED

T-5

S-5

figure 6.66 employee int-pr_project_life_cycle : subprocesses S1, S2, S3, S4, S5 wrt_customer

This operation ‘pr_project_li fe_cycle’ is not only an employee of ‘ customer’ , but also of all other participating classes of
the process fragment ‘writing project management documents’ . All these participating classes prescribe the same
subprocesses S1, S2, S3, S4 and S5. The operation has therefore 19 subprocesses prescribed to it at any one time. The
actual subprocess is the intersection of these 19 prescribed subprocesses. At the start the operation has the prescribed
subprocesses :

S1_wrt_customer,

Software Process Modeling
in SOCCA

page :
version : 0.10

299

S1_wrt_requirements_document,
S1_wrt_account_manager,
S1_wrt_make_or_buy_meeting,
S1_wrt_chief_executive_off icer,
S1_wrt_head_personnel section,
S1_wrt_project_form,
S1_wrt_head_controller_section,
S1_wrt_technical_project_manager,
S1_wrt_quality_assurance_adviser,
S1_wrt_head_production_section,
S1_wrt_head_support_section,
S1_wrt_project_management_document,
S1_wrt_project_meeting_minus,
S1_wrt_archive/documentation_administrator,
S1_wrt_head_computer_support_section,
S1_wrt_terms_of_reference_document,
S1_wrt_internal_memorandum,
S1_wrt_engineer.

All these subprocesses are the same. The actual subprocess (the intersection) is thus S1. Then the operation places the
sim_call_change_to_phase_1 to all 19 participating classes and it transits to its state ‘phase 1 asked’ . The participating
classes will service the call to their operation ’change_to_phase_1’ . They do this not all at the same time. So some of the
manager STDs of the participating classes will still be in their state where they prescribe S1, while others are already in a
state where they prescribe S2. The actual subprocess of the operation ‘pr_project_li fe_cycle’ will t hen be the intersection
of S1-subprocesses and S2-subprocesses. This results in an actual subprocess consisting only of the state ‘phase 1 asked’
for the operation ‘pr_project_li fe_cycle’ . As the operation ‘pr_project_li fe_cycle’ has placed its
sim_call_change_to_phase_1 it is already in this state. It wil now be confined to this state. When all 19 participating
classes have serviced the call and are in their state where they prescribe S2, the actual subprocess of
‘pr_project_li fe_cycle’ will become S2. It can then place the sim_call_change_to_phase_2. This mechanism applies also
to the other prescribed subprocesses. In this way the operation ‘pr_poject_li fe_cycle’ is ‘clocked’ through its states.

The employee ‘phase_ended’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to customer),
according to the caller-callee construct.

NON-
PHASE_ENDED

PHASE_ENDED
ASKED NOP

(no-operation)

READY

T-1

figure 6.67 employee int-phase_ended : subprocess S1_wrt_customer

ACT_
PHASE_ENDED

NON-
PHASE_ENDED

PHASE_ENDED
ASKED NOP

(no-operation)

READY

T-2

figure 6.68 employee int-phase_ended : subprocess S2_wrt_customer

The employee ‘pr_phase_ended’ is the caller of the callee ‘phase_ended’ of the class ‘customer’ . It has two subprocesses
S1 and S2, and two traps T-1 and T-2 (all with respect to customer) according to the caller_callee-construct.

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED SIM_CALL _

PHASE_ENDED

READY

T-1

Software Process Modeling
in SOCCA

page :
version : 0.10

300

figure 6.69 employee int-pr_phase_ended : subprocess S1_wrt_customer

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED

READY

T-2

figure 6.70 employee int-pr_phase_ended : subprocess S2_wrt_customer

This operation ‘pr_phase_ended’ is not only an employee of ‘ customer’ , but also of all other participating classes of the
process fragment ‘writing project management documents’ . All these participating classes prescribe the same
subprocesses S1 and S2. The operation has therefore 19 subprocesses prescribed to it at any one time. The actual
subprocess is the intersection of these 19 prescribed subprocesses. Before the operation has placed its
sim_call_phase_ended, it has prescribed to it the subprocesses S1_wrt_customer, S1_wrt_requirements_document,
S1_wrt_account_manager, etc. The actual subprocess is thus S1. Then the operation places the sim_call_phase_ended to
all 19 participating classes and it transits to its state ‘ ready’ . The participating classes will service the call to their operation
‘phase_ended’ . They do this not all at the same time. So some of the manager STDs of the participating classes will still be
in their state where they prescribe S1, while others are already in a state where they prescribe S2. The actual subprocess of
the operation ‘pr_phase_ended’ will t hen be the intersection of S1-subprocesses and S2-subprocesses. This results in an
actual subprocess consisting only of the state ‘ ready’ f or the operation ‘pr_phase_ ended’ . As the operation
‘pr_phase_ended’ has placed its sim_call_phase_ended it is already in this state. It wil now be confined to this state. When
all 19 participating classes have serviced the call and are in their state where they prescribe S2, the actual subprocess of
‘pr_phase_ended’ will become S2. The operation ‘pr_phase_ended’ can then continue with its next subprocess S2. This
S2 being the ‘ intermediate’ subprocess on the way to the next S1 in which it can place the next sim_call_phase_ended.

Software Process Modeling
in SOCCA

page :
version : 0.10

301

6.3.2.5 Requirements document (integration)

6.3.2.5.1 Requirements document (integration) : extended phase-external behavior-STDs

The first step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is the extension of the constituent phase-external STDs with a start state and an end (final) state. The start state
has a transition leaving it and entering the phase-external STD. The final state has a transition coming into it from the
phase-external STD. This construction is performed in the next figures for the phase 1-external STD, the phase 2-external
STD, the phase 3-external STD and the phase 4-external STD of the class ‘ requirements document’ .

The class ‘ requirements document’ does not participate in phase 2, 3 or 4. Therefore the phase 2-, phase 3- and phase 4-
external STDs consist of a dummy state.

START PHASE 1 END

RD_INITIATE_(X)

figure 6.71 requirements document : extended phase 1-external STD

START PHASE 2 END

figure 6.72 requirements document : extended phase 2-external STD

START PHASE 3 END

figure 6.73 requirements document : extended phase 3-external STD

START PHASE 4 END

figure 6.74 requirements document : extended phase 4-external STD

6.3.2.5.2 Requirements document (integration) : total external behavior-STD

The second step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is to connect the extended phase-external STDs with each other in such a way that the final state of one phase-
external STD coincides with the start state of the next phase-external STD. This ‘coinciding’ state between two phase-
external STDs is called an ‘ intermediate’ state. This models the sequential dependency between the phases.

The transitions leaving the start states get the label ‘change_to_phase_x’ . These represent the ‘phase-changing’ -operations.
The transitions entering the final states get the label ‘pr_phase_ended’ . These represent the ‘phase-ended’ operation. The
construction is performed in the next figure.

Software Process Modeling
in SOCCA

page :
version : 0.10

302

START PHASE 1
INTER-
MEDIATE_1

RD_INITIATE_(X)

PHASE 2
INTER-
MEDIATE_2

PHASE 3
INTER-
MEDIATE_3

PHASE 4 END

CHANGE_TO_
PHASE_2

CHANGE_TO_
PHASE_1

CHANGE_TO_PHASE_3

CHANGE_TO_
PHASE_4

PHASE_ENDEDPHASE_ENDED

PHASE_ENDED PHASE_ENDED

figure 6.75 requirements document : ext_wpmd_requirements_document, total external STD

The total external STD is initially in its state ‘start’ . When the control operation ‘pr_project_li fe_cyle’ of the control object
‘project’ (sim_)calls the operation ‘change_to_phase_1’ of the ‘ requirements document’ , the total external STD will
(eventually) transit to its state ‘phase 1’ . Here it manages its phase 1-employees. I.e. phase 1 takes place. At the end of
phase 1, the last operation of this phase signals the control object that this phase can be ended. The operation
‘pr_phase_ended’ of the control object then (sim_)calls the operation ‘phase_ended’ of the ‘ requirements document’ . The
total STD will (eventually) transit to the state ‘ intermediate_1’ . I.e. phase 1 has ended.

In the state ‘ intermediate_1’ the total external STD is ready to accept a call to ‘change_to_phase_2’ . When the control
operation ‘pr_project_li fe_cycle’ (sim_)calls the operation ‘change_to_phase_2’ of the ‘ requirements document’ , the total
external STD will (eventually) transit to its state ‘phase 2’ . Since the class ‘ requirements document’ does not participate in
phase 2, no action of ‘ requirements document’ will t ake place here. At the end of phase 2, the last operation of this phase
signals the control object that this phase can be ended. The operation ‘pr_phase_ended’ of the control object then
(sim_)calls the operation ‘phase_ended’ of the ‘ requirements document’ . The total STD will (eventually) transit to the
state ‘ intermediate_2’ . I.e. phase 2 has ended.

In the state ‘ intermediate_2’ the total external STD is ready to accept a call to ‘change_to_phase_3’ . When the control
operation ‘pr_project_li fe_cycle’ (sim_)calls the operation ‘change_to_phase_3’ of the ‘ requirements document’ , the total
external STD will (eventually) transit to its state ‘phase 3’ . Since the class ‘ requirements document’ does not participate in
phase 3, no action of ‘ requirements document’ will t ake place here. At the end of phase 3, the last operation of this phase
signals the control object that this phase can be ended. The operation ‘pr_phase_ended’ of the control object then
(sim_)calls the operation ‘phase_ended’ of the ‘ requirements document’ . The total STD will (eventually) transit to the
state ‘ intermediate_3’ . I.e. phase 3 has ended.

In the state ‘ intermediate_3’ the total external STD is ready to accept a call to ‘change_to_phase_4’ . When the control
operation ‘pr_project_li fe_cycle’ (sim_)calls the operation ‘change_to_phase_4’ of the ‘ requirements document’ , the total
external STD will (eventually) transit to its state ‘phase 4’ . Since the class ‘ requirements document’ does not participate in
phase 4, no action of ‘ requirements document’ will t ake place here. At the end of phase 4, both the ‘ last’ operations of
this phase signal the control object that this phase can be ended. The manager of the control object counts the number of
calls to the operation ‘pr_count_two_phase_ended’ . When this operation has been called twice, the manager STD of the
control object autonomously starts its own operation ‘pr_phase_ended’ . This operation ‘pr_phase_ended’ of the control
object then (sim_)calls the operation ‘phase_ended’ of the ‘ requirements document’ . The total external STD will
(eventually) transit to its final state ‘end’ . I.e. phase 4 has ended. I.e. the total process fragment ‘writing project
management documents’ has ended.

6.3.2.5.3 Requirements document (integration) : internal behavior-STDs

The internal operations of the class ‘ requirements document’ are in the first place the internal operation as modeled in the
phase 1.

During the integration the following internal operations are added to the class ‘ requirements document’ :
‘change_to_phase_1’ , ‘change_to_phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and ‘phase_ended’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

303

These 5 additional operations are so-called ‘no-operations’ (nops). A nop is an operation that performs no function while
executing. The sole purpose of such an operation is to enable the corresponding transition of the external STD within the
existing SOCCA framework.

These internal operations have internal STDs equivalent to the corresponding operations of the class ‘customer’ (described
in the paragraph ‘Customer (integration) : internal behavior STDs’).

6.3.2.5.4 Requirements document (integration) : manager-STD

The total manager STD is the same as the total external STD. Therefore no separate figure is needed for the total manager
STD. The total manager STD of the process fragment ‘writing project management documents’ prescribes in its ‘phase 1’
state still t he same subprocesses for its phase-employees as was modeled in the phase 1 sub-model. These may be called
‘old prescribed subprocesses’ . Subprocess prescriptions for an employee in states (of the total manager STD) that are not
relevant for that employee are ‘don’ t cares’ .

In the integration the total manager gets new employees. For this new employees it is also prescribing subprocesses. These
may be called ‘new prescribed subprocesses’ . The sum total of the prescribed subprocesses by the total manager STD is
therefore (per state) : { old prescribed subprocesses} ∪ { don’ t cares} ∪ { new prescribed subprocesses} .

In this paragraph only the {new prescribed subprocesses} will be specified. Also only the new traps will be specified. The
‘old’ traps as modeled in the ‘phase’ -sub-models are still valid in the integrated model.

The new CPSs (Consolidated Prescribed Subprocesses), CCs (Caller_Callee combinations) and TLFs (Transition Logical
Formulas) for this total manager STD are :

CPS ‘start’ =
{pr_project_li fe_cycle.S1_wrt_requirements_document ~ change_to_phase_1.S1_wrt_requirements_document,

~ change_to_phase_2.S1_wrt_requirements_document,
~ change_to_phase_3.S1_wrt_requirements_document,
~ change_to_phase_4.S1_wrt_requirements_document,

 pr_phase_ended.S1_wrt_requirements_document ~ phase_ended.S1_wrt_requirements_document}

TLF ‘change_to_phase_1’ = pr_project_li fe_cycle.T1.wrt_requirements_document
 and change_to_phase_1.T1_wrt_requirements_document

CPS ‘phase_1’ =
{pr_project_li fe_cycle.S2_wrt_requirements_document ~ change_to_phase_1.S2_wrt_requirements_document,

~ change_to_phase_2.S1_wrt_requirements_document,
~ change_to_phase_3.S1_wrt_requirements_document,
~ change_to_phase_4.S1_wrt_requirements_document,

 pr_phase_ended.S1_wrt_requirements_document ~ phase_ended.S1_wrt_requirements_document}

TLF ‘phase_ended’ (1e) = pr_phase_ended.T1_wrt_requirements_document
 and phase_ended.T1_wrt_requirements_document

CPS ‘ intermediate_1’ =
{pr_project_li fe_cycle.S2_wrt_requirements_document ~ change_to_phase_1.S2_wrt_requirements_document,

~ change_to_phase_2.S1_wrt_requirements_document,
~ change_to_phase_3.S1_wrt_requirements_document,
~ change_to_phase_4.S1_wrt_requirements_document,

 pr_phase_ended.S2_wrt_requirements_document ~ phase_ended.S2_wrt_requirements_document}

TLF ‘change_to_phase_2’ = pr_project_li fe_cycle.T2.wrt_requirements_document
 and change_to_phase_2.T1_wrt_requirements_document
 and pr_phase_ended.T2_wrt_requirements_document
 and phase_ended.T2_wrt_requirements_document

CPS ‘phase_2’ =

Software Process Modeling
in SOCCA

page :
version : 0.10

304

{ pr_project_li fe_cycle.S3_wrt_requirements_document ~ change_to_phase_1.S2_wrt_requirements_document,
~ change_to_phase_2.S2_wrt_requirements_document,
~ change_to_phase_3.S1_wrt_requirements_document,
~ change_to_phase_4.S1_wrt_requirements_document,

 pr_phase_ended.S1_wrt_requirements_document ~ phase_ended.S1_wrt_requirements_document}

TLF ‘phase_ended’ (2e) = pr_phase_ended.T1_wrt_requirements_document
 and phase_ended.T1_wrt_requirements_document

CPS ‘ intermediate_2’ =
{pr_project_li fe_cycle.S3_wrt_requirements_document ~ change_to_phase_1.S2_wrt_requirements_document,

~ change_to_phase_2.S2_wrt_requirements_document,
~ change_to_phase_3.S1_wrt_requirements_document,
~ change_to_phase_4.S1_wrt_requirements_document,

 pr_phase_ended.S2_wrt_requirements_document ~ phase_ended.S2_wrt_requirements_document}

TLF ‘change_to_phase_3’ = pr_project_li fe_cycle.T3.wrt_requirements_document
 and change_to_phase_3.T1_wrt_requirements_document
 and pr_phase_ended.T2_wrt_requirements_document
 and phase_ended.T2_wrt_requirements_document

CPS ‘phase_3’ =
{pr_project_li fe_cycle.S4_wrt_requirements_document ~ change_to_phase_1.S2_wrt_requirements_document,

~ change_to_phase_2.S2_wrt_requirements_document,
~ change_to_phase_3.S2_wrt_requirements_document,
~ change_to_phase_4.S1_wrt_requirements_document,

 pr_phase_ended.S1_wrt_requirements_document ~ phase_ended.S1_wrt_requirements_document}

TLF ‘phase_ended’ (3e) = pr_phase_ended.T1_wrt_requirements_document
 and phase_ended.T1_wrt_requirements_document

CPS ‘ intermediate_3’ =
{pr_project_li fe_cycle.S4_wrt_requirements_document ~ change_to_phase_1.S2_wrt_requirements_document,

~ change_to_phase_2.S2_wrt_requirements_document,
~ change_to_phase_3.S2_wrt_requirements_document,
~ change_to_phase_4.S1_wrt_requirements_document,

 pr_phase_ended.S2_wrt_requirements_document ~ phase_ended.S2_wrt_requirements_document}

TLF ‘change_to_phase_4’ = pr_project_li fe_cycle.T4.wrt_requirements_document
 and change_to_phase_4.T1_wrt_requirements_document
 and pr_phase_ended.T2_wrt_requirements_document
 and phase_ended.T2_wrt_requirements_document

CPS ‘phase_4’ =
{pr_project_li fe_cycle.S5_wrt_requirements_document ~ change_to_phase_1.S2_wrt_requirements_document,

~ change_to_phase_2.S2_wrt_requirements_document,
~ change_to_phase_3.S2_wrt_requirements_document,
~ change_to_phase_4.S2_wrt_requirements_document,

 pr_phase_ended.S1_wrt_requirements_document ~ phase_ended.S1_wrt_requirements_document}

TLF ‘phase_ended’ (4e) = pr_phase_ended.T1_wrt_requirements_document
 and phase_ended.T1_wrt_requirements_document
 and pr_project_li fe_cycle.T5.wrt_requirements_document
 and change_to_phase_1.T2_wrt_requirements_document
 and change_to_phase_2.T2_wrt_requirements_document
 and change_to_phase_3.T2_wrt_requirements_document
 and change_to_phase_4.T2_wrt_requirements_document

CPS ‘end’ =
{pr_project_li fe_cycle.S5_wrt_requirements_document ~ change_to_phase_1.S1_wrt_requirements_document,

~ change_to_phase_2.S1_wrt_requirements_document,

Software Process Modeling
in SOCCA

page :
version : 0.10

305

~ change_to_phase_3.S1_wrt_requirements_document,
~ change_to_phase_4.S1_wrt_requirements_document,

 pr_phase_ended.S2_wrt_requirements_document ~ phase_ended.S2_wrt_requirements_document }

Note : the operations ‘pr_phase_ended’ and ‘phase_ended’ are prescribed their subprocess S2 in the final state ‘end’ . If
there is a successor process fragment then the final (end) state of the total manager STD of the process fragment ‘writing
project management documents’ is ‘merged’ with the start state of the total manager STD of the next process fragment.
The guard on the transition out of this new intermediate state will be [pr_phase_ended.T2_wrt_requirements_
document and phase_ended.T2_wrt_ requirements_document] and the internal STDs will be switched back to their S1
subprocess. So they can be used again in the next process fragment.

6.3.2.5.5 Requirements document (integration) : employee-STDs

The employees of the manager STD of the class ‘ requirements document’ are in the first place the employee as modeled in
the phase 1. During the integration the following 7 employees are added: ‘change_to_phase_1’ , ‘change_to_phase_2’ ,
‘change_to_phase_3’ , ‘change_to_phase_4’ and their caller ‘pr_project_li fe_cycle’ and ‘phase_ended’ and its caller
‘pr_phase_ended’ .

The employee ‘change_to_phase_1’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘ requirements document’), according to the caller-callee construct.

The employee ‘change_to_phase_2’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘ requirements document’), according to the caller-callee construct.

The employee ‘change_to_phase_3’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘ requirements document’), according to the caller-callee construct.

The employee ‘change_to_phase_4’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘ requirements document’), according to the caller-callee construct.

The employee ‘pr_project_li fe_cycle’ is the caller of the four callees ‘change_to_phase_1’ , ‘change_to_phase_2’ ,
‘change_to_phase_3’ and ‘change_to_phase_4’ of the class ‘ requirements document’ . Consequently it has five
subprocesses and traps with respect to the manager STD of the class ‘ requirements document’ : S1, S2, S3, S4 and S5 and
T-1, T-2, T-3, T-4 and T-5. The next figure shows these five subprocesses of the internal operation ‘pr_project_
li fe_cycle’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

306

S-1 SIM_CALL_
CHANGE_TO_
PHASE_1

IN
PHASE 1
ASKED

 PRE
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

T-1

PHASE 1
ASKED SIM_CALL_

CHANGE_TO_
PHASE_2

PHASE 2
ASKEDS-2

T-2

PHASE 2
ASKED SIM_CALL_

CHANGE_TO_
PHASE_3

PHASE 3
ASKEDS-3

T-3

PHASE 3
ASKED SIM_CALL_

CHANGE_TO_
PHASE_4

PHASE 4
ASKEDS-4

T-4

OUT

 POST
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

PHASE 4
ASKED

T-5

S-5

figure 6.76 employee int-pr_project_life_cycle : subprocesses S1, S2, S3, S4, S5 wrt_requirements_document

This operation ‘pr_project_li fe_cycle’ is not only an employee of ‘ requirements document’ , but also of all other
participating classes of the process fragment ‘writing project management documents’ . All these participating classes
prescribe the same subprocesses S1, S2, S3, S4 and S5. The operation has therefore 19 subprocesses prescribed to it at any
one time. The actual subprocess is the intersection of these 19 prescribed subprocesses. At the start the operation has the
prescribed subprocesses :

S1_wrt_customer,
S1_wrt_requirements_document,
S1_wrt_account_manager,
S1_wrt_make_or_buy_meeting,
S1_wrt_chief_executive_off icer,
S1_wrt_head_personnel section,
S1_wrt_project_form,
S1_wrt_head_controller_section,
S1_wrt_technical_project_manager,
S1_wrt_quality_assurance_adviser,
S1_wrt_head_production_section,
S1_wrt_head_support_section,
S1_wrt_project_management_document,
S1_wrt_project_meeting_minus,
S1_wrt_archive/documentation_administrator,
S1_wrt_head_computer_support_section,
S1_wrt_terms_of_reference_document,
S1_wrt_internal_memorandum,
S1_wrt_engineer.

Software Process Modeling
in SOCCA

page :
version : 0.10

307

All these subprocesses are the same. The actual subprocess (the intersection) is thus S1. Then the operation places the
sim_call_change_to_phase_1 to all 19 participating classes and it transits to its state ‘phase 1 asked’ . The participating
classes will service the call to their operation ’change_to_phase_1’ . They do this not all at the same time. So some of the
manager STDs of the participating classes will still be in their state where they prescribe S1, while others are already in a
state where they prescribe S2. The actual subprocess of the operation ‘pr_project_li fe_cycle’ will t hen be the intersection
of S1-subprocesses and S2-subprocesses. This results in an actual subprocess consisting only of the state ‘phase 1 asked’
for the operation ‘pr_project_li fe_cycle’ . As the operation ‘pr_project_li fe_cycle’ has placed its
sim_call_change_to_phase_1 it is already in this state. It wil now be confined to this state. When all 19 participating
classes have serviced the call and are in their state where they prescribe S2, the actual subprocess of
‘pr_project_li fe_cycle’ will become S2. It can then place the sim_call_change_to_phase_2. This mechanism applies also
to the other prescribed subprocesses. In this way the operation ‘pr_poject_li fe_cycle’ is ‘clocked’ through its states.

The employee ‘phase_ended’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘ requirements document’), according to the caller-callee construct.

The employee ‘pr_phase_ended’ is the caller of the callee ‘phase_ended’ of the class ‘ requirements document’ . It has two
subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘ requirements document’) according to the
caller_callee-construct.

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED SIM_CALL _

PHASE_ENDED

READY

T-1

figure 6.77 employee int-pr_phase_ended : subprocess S1_wrt_requirements_document

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED

READY

T-2

figure 6.78 employee int-pr_phase_ended : subprocess S2_wrt_requirements_document

This operation ‘pr_phase_ended’ is not only an employee of ‘ requirements document’ , but also of all other participating
classes of the process fragment ‘writing project management documents’ . All these participating classes prescribe the
same subprocesses S1 and S2. The operation has therefore 19 subprocesses prescribed to it at any one time. The actual
subprocess is the intersection of these 19 prescribed subprocesses. Before the operation has placed its
sim_call_phase_ended, it has prescribed to it the subprocesses S1_wrt_customer, S1_wrt_requirements_document,
S1_wrt_account_manager, etc. The actual subprocess is thus S1. Then the operation places the sim_call_phase_ended to
all 19 participating classes and it transits to its state ‘ ready’ . The participating classes will service the call to their operation
‘phase_ended’ . They do this not all at the same time. So some of the manager STDs of the participating classes will still be
in their state where they prescribe S1, while others are already in a state where they prescribe S2. The actual subprocess of
the operation ‘pr_phase_ended’ will t hen be the intersection of S1-subprocesses and S2-subprocesses. This results in an
actual subprocess consisting only of the state ‘ ready’ f or the operation ‘pr_phase_ended’ . As the operation
‘pr_phase_ended’ has placed its sim_call_phase_ended it is already in this state. It wil now be confined to this state. When
all 19 participating classes have serviced the call and are in their state where they prescribe S2, the actual subprocess of
‘pr_phase_ended’ will become S2. The operation ‘pr_phase_ended’ can then continue with its next subprocess S2. This
S2 being the ‘ intermediate’ subprocess on the way to the next S1 in which it can place the next sim_call_phase_ended.

Software Process Modeling
in SOCCA

page :
version : 0.10

308

6.3.2.6 Account manager (integration)

6.3.2.6.1 Account manager (integration) : extended phase-external behavior-STDs

The first step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is the extension of the constituent phase-external STDs with a start state and an end (final) state. The start state
has a transition leaving it and entering the phase-external STD. The final state has a transition coming into it from the
phase-external STD. This construction is performed in the next figures for the phase 1-external STD, the phase 2-external
STD, the phase 3-external STD and the phase 4-external STD of the class ‘account manager’ .

The class ‘account manager’ does not participate in phase 4. Therefore the phase 4-external STD consists of a dummy
state.

START PHASE 1 END

AM_REQUEST_PROPOSAL_(X)

figure 6.79 account manager : extended phase 1-external STD

START ENDPHASE 2

AM_QUERY_REQUIREMENT_(X)

AM_INQUIRE_CU_BUDGET_(X)

figure 6.80 account manager : extended phase 2-external STD

PHASE 3

AM_CU_SIGN_(X)

START END

figure 6.81 account manager : extended phase 3-external STD

START PHASE 4 END

figure 6.82 account manager : extended phase 4-external STD

6.3.2.6.2 Account manager (integration) : total external behavior-STD

The second step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is to connect the extended phase-external STDs with each other in such a way that the final state of one phase-
external STD coincides with the start state of the next phase-external STD. This ‘coinciding’ state between two phase-
external STDs is called an ‘ intermediate’ state. This models the sequential dependency between the phases.

The transitions leaving the start states get the label ‘change_to_phase_x’ . These represent the ‘phase-changing’ -operations.
The transitions entering the final states get the label ‘pr_phase_ended’ . These represent the ‘phase-ended’ operation. The
construction is performed in the next figure.

Software Process Modeling
in SOCCA

page :
version : 0.10

309

PHASE 3

AM_CU_SIGN_(X)

PHASE 2

AM_QUERY_REQUIREM ENT_(X)

AM_INQUIRE_CU_BUDGET_(X)

START PHASE 1
INTER-
MEDIATE_1

AM_REQUEST_PROPOSAL_(X)

INTER-
MEDIATE_2

INTER-
MEDIATE_3

PHASE 4 END

CHANGE_TO_
PHASE_2

CHANGE_TO_
PHASE_1

CHANGE_TO_PHASE_3

CHANGE_TO_
PHASE_4

PHASE_ENDEDPHASE_ENDED

PHASE_ENDED PHASE_ENDED

figure 6.83 account manager : ext_wpmd_account_manager, total external STD

The flow through this total external STD is analogous to the flow through the total external STD of the class ‘ requirements
document’ (as described in the paragraph ‘Requirements document (integration) : total external behavior-STD).

With the difference that the class ‘account manager’ does not participate in phase 4. Therefore no action of ‘ account
manager’ will t ake place in that phase.

6.3.2.6.3 Account manager (integration) : internal behavior-STDs

The internal operations of the class ‘account manager’ are in the first place the internal operations as modeled in the
phases 1, 2 and 3.

During the integration the following internal operations are added to the class: ‘change_to_phase_1’ , ‘change_to_
phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and ‘phase_ended’ .

These 5 additional operations are so-called ‘no-operations’ (nops). A nop is an operation that performs no function while
executing. The sole purpose of such an operation is to enable the corresponding transition of the external STD within the
existing SOCCA framework.

These internal operations have internal STDs equivalent to the corresponding operations of the class ‘customer’ (described
in the paragraph ‘Customer (integration) : internal behavior STDs’).

6.3.2.6.4 Account manager (integration) : manager-STD

The total manager STD is the same as the total external STD. Therefore no separate figure is needed for the total manager
STD. The total manager STD of the process fragment ‘writing project management documents’ prescribes in its ‘phase 1’ ,
‘phase 2’ and ‘phase 3’ states still t he same subprocesses for its phase-employees as was modeled in the phase 1-, phase 2-
and phase 3-sub-models. These may be called ‘old prescribed subprocesses’ . Subprocess prescriptions for an employee in
states (of the total manager STD) that are not relevant for that employee are ‘don’ t cares’ .

In the integration the total manager gets new employees. For this new employees it is also prescribing subprocesses. These
may be called ‘new prescribed subprocesses’ . The sum total of the prescribed subprocesses by the total manager STD is
therefore (per state) : { old prescribed subprocesses} ∪ { don’ t cares} ∪ { new prescribed subprocesses} .

The new CPSs (Consolidated Prescribed Subprocesses), CCs (Caller_Callee combinations) and TLFs (Transition Logical
Formulas) for this total manager STD are the same as the CPSs, CCs and TLFs for the total manager STD of the class
‘ requirements document’ (as described in the paragraph ‘Requirements document (integration) : manager-STD).

Software Process Modeling
in SOCCA

page :
version : 0.10

310

With the difference that all the subprocesses and traps are with respect to ‘account manager’ instead of with respect to
‘ requirements document’ .

6.3.2.6.5 Account manager (integration) : employee-STDs

The employees of the manager STD of the class ‘account manager’ are in the first place the employees as modeled in the
phase 1, 2 and 3. During the integration the following 7 employees are added: ‘change_to_phase_1’ ,
‘change_to_phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and their caller ‘pr_project_li fe_cycle’ and
‘phase_ended’ and its caller ‘pr_phase_ended’ .

The employee ‘change_to_phase_1’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘account manager’), according to the caller-callee construct.

The employee ‘change_to_phase_2’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘account manager’), according to the caller-callee construct.

The employee ‘change_to_phase_3’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘account manager’), according to the caller-callee construct.

The employee ‘change_to_phase_4’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘account manager’), according to the caller-callee construct.

The employee ‘pr_project_li fe_cycle’ is the caller of the four callees ‘change_to_phase_1’ , ‘change_to_phase_2’ ,
‘change_to_phase_3’ and ‘change_to_phase_4’ of the class ‘account manager’ . Consequently it has five subprocesses and
traps with respect to the manager STD of the class ‘account manager’ : S1, S2, S3, S4 and S5 and T-1, T-2, T-3, T-4 and
T-5. The next figure shows these five subprocesses of the internal operation ‘pr_project_ li fe_cycle’ .

S-1 SIM_CALL _
CHANGE_TO_
PHASE_1

IN
PHASE 1
ASKED

 PRE
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

T-1

PHASE 1
ASKED SIM_CALL _

CHANGE_TO_
PHASE_2

PHASE 2
ASKEDS-2

T-2

PHASE 2
ASKED SIM_CALL _

CHANGE_TO_
PHASE_3

PHASE 3
ASKEDS-3

T-3

PHASE 3
ASKED SIM_CALL _

CHANGE_TO_
PHASE_4

PHASE 4
ASKEDS-4

T-4

OUT

 POST
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

PHASE 4
ASKED

T-5

S-5

figure 6.84 employee int-pr_project_life_cycle : subprocesses S1, S2, S3, S4, S5 wrt_account_manager

Software Process Modeling
in SOCCA

page :
version : 0.10

311

This operation ‘pr_project_li fe_cycle’ is not only an employee of ‘ account manager’ , but also of all other participating
classes of the process fragment ‘writing project management documents’ . All these participating classes prescribe the
same subprocesses S1, S2, S3, S4 and S5. The operation has therefore 19 subprocesses prescribed to it at any one time.
The actual subprocess is the intersection of these 19 prescribed subprocesses. At the start the operation has the prescribed
subprocesses S1_wrt_customer, S1_wrt_requirements_document, S1_wrt_account_manager, etc. The actual subprocess is
thus S1. Then the operation places the sim_call_change_to_phase_1 to all 19 participating classes and it transits to its state
‘phase 1 asked’ . The participating classes will service the call to their operation ’change_to_phase_1’ . They do this not all
at the same time. So some of the manager STDs of the participating classes will still be in their state where they prescribe
S1, while others are already in a state where they prescribe S2. The actual subprocess of the operation
‘pr_project_li fe_cycle’ will t hen be the intersection of S1-subprocesses and S2-subprocesses. This results in an actual
subprocess consisting only of the state ‘phase 1 asked’ f or the operation ‘pr_project_li fe_cycle’ . As the operation
‘pr_project_li fe_cycle’ has placed its sim_call_change_to_phase_1 it is already in this state. It wil now be confined to this
state. When all 19 participating classes have serviced the call and are in their state where they prescribe S2, the actual
subprocess of ‘ pr_project_li fe_cycle’ will become S2. It can then place the sim_call_change_to_phase_2. This mechanism
applies also to the other prescribed subprocesses. In this way the operation ‘pr_poject_li fe_cycle’ is ‘clocked’ through its
states.

The employee ‘phase_ended’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘account
manager’), according to the caller-callee construct. The employee ‘pr_phase_ended’ is the caller of the callee
‘phase_ended’ of the class ‘account manager’ . It has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with
respect to ‘account manager’) according to the caller_callee-construct.

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED SIM_CALL _

PHASE_ENDED

READY

T-1

figure 6.85 employee int-pr_phase_ended : subprocess S1_wrt_account_manager

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED

READY

T-2

figure 6.86 employee int-pr_phase_ended : subprocess S2_wrt_account_manager

This operation ‘pr_phase_ended’ is not only an employee of ‘ account manager’ , but also of all other participating classes
of the process fragment ‘writing project management documents’ . All these participating classes prescribe the same
subprocesses S1 and S2. The operation has therefore 19 subprocesses prescribed to it at any one time. The actual
subprocess is the intersection of these 19 prescribed subprocesses. Before the operation has placed its
sim_call_phase_ended, it has prescribed to it the subprocesses S1_wrt_customer, S1_wrt_requirements_document,
S1_wrt_account_manager, etc. The actual subprocess is thus S1. Then the operation places the sim_call_phase_ended to
all 19 participating classes and it transits to its state ‘ ready’ . The participating classes will service the call to their operation
‘phase_ended’ . They do this not all at the same time. So some of the manager STDs of the participating classes will still be
in their state where they prescribe S1, while others are already in a state where they prescribe S2. The actual subprocess of
the operation ‘pr_phase_ended’ will t hen be the intersection of S1-subprocesses and S2-subprocesses. This results in an
actual subprocess consisting only of the state ‘ ready’ f or the operation ‘pr_phase_ended’ . As the operation
‘pr_phase_ended’ has placed its sim_call_phase_ended it is already in this state. It wil now be confined to this state. When
all 19 participating classes have serviced the call and are in their state where they prescribe S2, the actual subprocess of
‘pr_phase_ended’ will become S2. The operation ‘pr_phase_ended’ can then continue with its next subprocess S2. This
S2 being the ‘ intermediate’ subprocess on the way to the next S1 in which it can place the next sim_call_phase_ended.

Software Process Modeling
in SOCCA

page :
version : 0.10

312

6.3.2.7 Make or buy-meeting (integration)

6.3.2.7.1 Make or buy-meeting (integration) : extended phase-external behavior-STDs

The first step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is the extension of the constituent phase-external STDs with a start state and an end (final) state. The start state
has a transition leaving it and entering the phase-external STD. The final state has a transition coming into it from the
phase-external STD. This construction is performed in the next figures for the phase 1-external STD, the phase 2-external
STD, the phase 3-external STD and the phase 4-external STD of the class ‘make or buy-meeting’ .

The class ‘make or buy meeting’ does not participate in phase 2, 3 or 4. Therefore the phase 2-, phase 3- and phase 4-
external STDs consist of a dummy state.

START PHASE 1 END

MB_REQUEST_DECISION_(X)

figure 6.87 make or buy-meeting : extended phase 1-external STD

START PHASE 2 END

figure 6.88 make or buy-meeting : extended phase 2-external STD

START PHASE 3 END

figure 6.89 make or buy-meeting : extended phase 3-external STD

START PHASE 4 END

figure 6.90 make or buy-meeting : extended phase 4-external STD

6.3.2.7.2 Make or buy-meeting (integration) : total external behavior-STD

The second step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is to connect the extended phase-external STDs with each other in such a way that the final state of one phase-
external STD coincides with the start state of the next phase-external STD. This ‘coinciding’ state between two phase-
external STDs is called an ‘ intermediate’ state. This models the sequential dependency between the phases.

The transitions leaving the start states get the label ‘change_to_phase_x’ . These represent the ‘phase-changing’ -operations.
The transitions entering the final states get the label ‘pr_phase_ended’ . These represent the ‘phase-ended’ operation. The
construction is performed in the next figure.

Software Process Modeling
in SOCCA

page :
version : 0.10

313

START PHASE 1
INTER-
MEDIATE_1

MB_REQUEST_DECISION_(X)

PHASE 2
INTER-
MEDIATE_2

PHASE 3
INTER-
MEDIATE_3

PHASE 4 END

CHANGE_TO_
PHASE_2

CHANGE_TO_
PHASE_1

CHANGE_TO_PHASE_3

CHANGE_TO_
PHASE_4

PHASE_ENDEDPHASE_ENDED

PHASE_ENDED PHASE_ENDED

figure 6.91 make or buy-meeting : ext_wpmd_make_or_buy_meeting, total external STD

The flow through this total external STD is analogous to the flow through the total external STD of the class ‘ requirements
document’ (as described in the paragraph ‘Requirements document (integration) : total external behavior-STD).

With the difference that the class ‘make or buy meeting’ does not participate in phase 2, 3 or 4. Therefore no action of
‘make or buy meeting’ will t ake place in these phases.

6.3.2.7.3 Make or buy-meeting (integration) : internal behavior-STDs

The internal operations of the class ‘make or buy meeting’ are in the first place the internal operation as modeled in the
phase 1. During the integration the following internal operations are added to the class: ‘change_to_phase_1’ , ‘change_to_
phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and ‘phase_ended’ .

These 5 additional operations are so-called ‘no-operations’ (nops). A nop is an operation that performs no function while
executing. The sole purpose of such an operation is to enable the corresponding transition of the external STD within the
existing SOCCA framework.

These internal operations have internal STDs equivalent to the corresponding operations of the class ‘customer’ (described
in the paragraph ‘Customer (integration) : internal behavior STDs’).

6.3.2.7.4 Make or buy-meeting (integration) : manager-STD

The total manager STD is the same as the total external STD. Therefore no separate figure is needed for the total manager
STD. The total manager STD of the process fragment ‘writing project management documents’ prescribes in its ‘phase 1’
state still t he same subprocesses for its phase-employees as was modeled in the phase 1-sub-model. These may be called
‘old prescribed subprocesses’ . Subprocess prescriptions for an employee in states (of the total manager STD) that are not
relevant for that employee are ‘don’ t cares’ .

In the integration the total manager gets new employees. For this new employees it is also prescribing subprocesses. These
may be called ‘new prescribed subprocesses’ . The sum total of the prescribed subprocesses by the total manager STD is
therefore (per state) : { old prescribed subprocesses} ∪ { don’ t cares} ∪ { new prescribed subprocesses} .

The new CPSs (Consolidated Prescribed Subprocesses), CCs (Caller_Callee combinations) and TLFs (Transition Logical
Formulas) for this total manager STD are the same as the CPSs, CCs and TLFs for the total manager STD of the class
‘ requirements document’ (as described in the paragraph ‘Requirements document (integration) : manager-STD).

With the difference that all the subprocesses and traps are with respect to ‘make or buy meeting’ instead of with respect to
‘ requirements document’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

314

6.3.2.7.5 Make or buy-meeting (integration) : employee-STDs

The employees of the manager STD of the class ‘make or buy meeting’ are in the first place the employees as modeled in
the phase 1. During the integration the following 7 employees are added: ‘change_to_phase_1’ , ‘change_to_phase_2’ ,
‘change_to_phase_3’ , ‘change_to_phase_4’ and their caller ‘pr_project_li fe_cycle’ and ‘phase_ended’ and its caller
‘pr_phase_ended’ .

The employee ‘change_to_phase_1’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘make
or buy meeting’), according to the caller-callee construct.

The employee ‘change_to_phase_2’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘make
or buy meeting’), according to the caller-callee construct.

The employee ‘change_to_phase_3’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘make
or buy meeting’), according to the caller-callee construct.

The employee ‘change_to_phase_4’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘make
or buy meeting’), according to the caller-callee construct.

The employee ‘pr_project_li fe_cycle’ is the caller of the four callees ‘change_to_phase_1’ , ‘change_to_phase_2’ ,
‘change_to_phase_3’ and ‘change_to_phase_4’ of the class ‘make or buy meeting’ . Consequently it has five subprocesses
and traps with respect to the manager STD of the class ‘make or buy meeting’ : S1, S2, S3, S4 and S5 and T-1, T-2, T-3,
T-4 and T-5. The next figure shows these five subprocesses of the internal operation ‘pr_project_ li fe_cycle’ .

S-1 SIM_CALL _
CHANGE_TO_
PHASE_1

IN PHASE 1
ASKED

 PRE
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

T-1

PHASE 1
ASKED SIM_CALL _

CHANGE_TO_
PHASE_2

PHASE 2
ASKEDS-2

T-2

PHASE 2
ASKED SIM_CALL _

CHANGE_TO_
PHASE_3

PHASE 3
ASKEDS-3

T-3

PHASE 3
ASKED SIM_CALL _

CHANGE_TO_
PHASE_4

PHASE 4
ASKEDS-4

T-4

OUT

 POST
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

PHASE 4
ASKED

T-5

S-5

figure 6.92 employee int-pr_project_life_cycle : subprocesses S1, S2, S3, S4, S5 wrt_make_or_buy_meeting

This operation ‘pr_project_li fe_cycle’ is not only an employee of ‘make or buy meeting’ , but also of all other participating
classes of the process fragment ‘writing project management documents’ . All these participating classes prescribe the
same subprocesses S1, S2, S3, S4 and S5. The operation has therefore 19 subprocesses prescribed to it at any one time.
The actual subprocess is the intersection of these 19 prescribed subprocesses. The actual subprocesses of this operation
due to the intersection mechanism, are explained in the paragraph ‘Requirements document (integration) : employee-
STDs’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

315

The employee ‘phase_ended’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘make or buy
meeting’), according to the caller-callee construct.

The employee ‘pr_phase_ended’ is the caller of the callee ‘phase_ended’ of the class ‘make or buy meeting’ . It has two
subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘make or buy meeting’) according to the
caller_callee-construct.

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED SIM_CALL _

PHASE_ENDED

READY

T-1

figure 6.93 employee int-pr_phase_ended : subprocess S1_wrt_make_or_buy_meeting

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED

READY

T-2

figure 6.94 employee int-pr_phase_ended : subprocess S2_wrt_make_or_buy_meeting

This operation ‘pr_phase_ended’ is not only an employee of ‘make or buy meeting’ , but also of all other participating
classes of the process fragment ‘writing project management documents’ . All these participating classes prescribe the
same subprocesses S1 and S2. The operation has therefore 19 subprocesses prescribed to it at any one time. The actual
subprocess is the intersection of these 19 prescribed subprocesses.

The actual subprocesses of this operation due to the intersection mechanism, are explained in the paragraph ‘Requirements
document (integration) : employee-STDs’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

316

6.3.2.8 Chief executive officer (integration)

6.3.2.8.1 Chief executive officer (integration) : extended phase-external behavior-STDs

The first step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is the extension of the constituent phase-external STDs with a start state and an end (final) state. The start state
has a transition leaving it and entering the phase-external STD. The final state has a transition coming into it from the
phase-external STD. This construction is performed in the next figures for the phase 1-external STD, the phase 2-external
STD, the phase 3-external STD and the phase 4-external STD of the class ‘chief executive off icer’ .

The class ‘chief executive off icer’ does not participate in phase 2 or 4. Therefore the phase 2- and phase 4-external STDs
consist of a dummy state.

START PHASE 1 END

CEO_MB_DECISION_(X)

figure 6.95 chief executive off icer : extended phase 1-external STD

START PHASE 2 END

figure 6.96 chief executive off icer : extended phase 2-external STD

PHASE 3

CEO_SIGN_PC_(X)

START END

figure 6.97 chief executive off icer : extended phase 3-external STD

START PHASE 4 END

figure 6.98 chief executive off icer : extended phase 4-external STD

6.3.2.8.2 Chief executive officer (integration) : total external behavior-STD

The second step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is to connect the extended phase-external STDs with each other in such a way that the final state of one phase-
external STD coincides with the start state of the next phase-external STD. This ‘coinciding’ state between two phase-
external STDs is called an ‘ intermediate’ state. This models the sequential dependency between the phases.

The transitions leaving the start states get the label ‘change_to_phase_x’ . These represent the ‘phase-changing’ -operations.
The transitions entering the final states get the label ‘pr_phase_ended’ . These represent the ‘phase-ended’ operation. The
construction is performed in the next figure.

Software Process Modeling
in SOCCA

page :
version : 0.10

317

PHASE 3

CEO_SIGN_PC_(X)

START PHASE 1
INTER-
MEDIATE_1

CEO_MB_DECISION_(X)

PHASE 2
INTER-
MEDIATE_2

INTER-
MEDIATE_3

PHASE 4 END

CHANGE_TO_
PHASE_2

CHANGE_TO_
PHASE_1

CHANGE_TO_PHASE_3

CHANGE_TO_
PHASE_4

PHASE_ENDEDPHASE_ENDED

PHASE_ENDED PHASE_ENDED

figure 6.99 chief executive off icer : ext_wpmd_chief_executive_off icer, total external STD

The flow through this total external STD is analogous to the flow through the total external STD of the class ‘ requirements
document’ (as described in the paragraph ‘Requirements document (integration) : total external behavior-STD).

With the difference that the class ‘chief executive off icer’ does not participate in phase 2 or 4. Therefore no action of
‘chief executive off icer’ will t ake place in these phases.

6.3.2.8.3 Chief executive officer (integration) : internal behavior-STDs

The internal operations of the class ‘chief executive off icer’ are in the first place the internal operations as modeled in the
phase 1 and 3. During the integration the following internal operations are added to the class: ‘change_to_phase_1’ ,
‘change_to_ phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and ‘phase_ended’ .

These 5 additional operations are so-called ‘no-operations’ (nops). A nop is an operation that performs no function while
executing. The sole purpose of such an operation is to enable the corresponding transition of the external STD within the
existing SOCCA framework.

These internal operations have internal STDs equivalent to the corresponding operations of the class ‘customer’ (described
in the paragraph ‘Customer (integration) : internal behavior STDs’).

6.3.2.8.4 Chief executive officer (integration) : manager-STD

The total manager STD is the same as the total external STD. Therefore no separate figure is needed for the total manager
STD. The total manager STD of the process fragment ‘writing project management documents’ prescribes in its ‘phase 1’
and ‘phase 3’ states still t he same subprocesses for its phase-employees as was modeled in the phase 1- and phase 3-sub-
model. These may be called ‘old prescribed subprocesses’ . Subprocess prescriptions for an employee in states (of the total
manager STD) that are not relevant for that employee are ‘don’ t cares’ .

In the integration the total manager gets new employees. For this new employees it is also prescribing subprocesses. These
may be called ‘new prescribed subprocesses’ . The sum total of the prescribed subprocesses by the total manager STD is
therefore (per state) : { old prescribed subprocesses} ∪ { don’ t cares} ∪ { new prescribed subprocesses} .

The new CPSs (Consolidated Prescribed Subprocesses), CCs (Caller_Callee combinations) and TLFs (Transition Logical
Formulas) for this total manager STD are the same as the CPSs, CCs and TLFs for the total manager STD of the class
‘ requirements document’ (as described in the paragraph ‘Requirements document (integration) : manager-STD).

With the difference that all the subprocesses and traps are with respect to ‘chief executive off icer’ instead of with respect
to ‘ requirements document’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

318

6.3.2.8.5 Chief executive officer (integration) : employee-STDs

The employees of the manager STD of the class ‘chief executive off icer’ are in the first place the employees as modeled in
the phase 1 and 3. During the integration the following 7 employees are added: ‘change_to_phase_1’ ,
‘change_to_phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and their caller ‘pr_project_li fe_cycle’ and
‘phase_ended’ and its caller ‘pr_phase_ended’ .

The employee ‘change_to_phase_1’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘chief
executive off icer’), according to the caller-callee construct.

The employee ‘change_to_phase_2’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘chief
executive off icer’), according to the caller-callee construct.

The employee ‘change_to_phase_3’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘chief
executive off icer’), according to the caller-callee construct.

The employee ‘change_to_phase_4’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘chief
executive off icer’), according to the caller-callee construct.

The employee ‘pr_project_li fe_cycle’ is the caller of the four callees ‘change_to_phase_1’ , ‘change_to_phase_2’ ,
‘change_to_phase_3’ and ‘change_to_phase_4’ of the class ‘chief executive off icer’ . Consequently it has five
subprocesses and traps with respect to the manager STD of the class ‘chief executive off icer’ : S1, S2, S3, S4 and S5 and
T-1, T-2, T-3, T-4 and T-5. The next figure shows these five subprocesses of the internal operation ‘pr_project_
li fe_cycle’ .

S-1 SIM_CALL _
CHANGE_TO_
PHASE_1

IN PHASE 1
ASKED

 PRE
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

T-1

PHASE 1
ASKED SIM_CALL _

CHANGE_TO_
PHASE_2

PHASE 2
ASKEDS-2

T-2

PHASE 2
ASKED SIM_CALL _

CHANGE_TO_
PHASE_3

PHASE 3
ASKEDS-3

T-3

PHASE 3
ASKED SIM_CALL _

CHANGE_TO_
PHASE_4

PHASE 4
ASKEDS-4

T-4

OUT

 POST
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

PHASE 4
ASKED

T-5

S-5

figure 6.100 employee int-pr_project_life_cycle : subprocesses S1, S2, S3, S4, S5 wrt_chief_executive_off icer

This operation ‘pr_project_li fe_cycle’ is not only an employee of ‘ chief executive off icer’ , but also of all other
participating classes of the process fragment ‘writing project management documents’ . All these participating classes
prescribe the same subprocesses S1, S2, S3, S4 and S5. The operation has therefore 19 subprocesses prescribed to it at any
one time. The actual subprocess is the intersection of these 19 prescribed subprocesses. The actual subprocesses of this

Software Process Modeling
in SOCCA

page :
version : 0.10

319

operation due to the intersection mechanism, are explained in the paragraph ‘Requirements document (integration) :
employee-STDs’ .

The employee ‘phase_ended’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘chief
executive off icer’), according to the caller-callee construct.

The employee ‘pr_phase_ended’ is the caller of the callee ‘phase_ended’ of the class ‘chief executive off icer’ . It has two
subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘chief executive off icer’) according to the
caller_callee-construct.

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED SIM_CALL _

PHASE_ENDED

READY

T-1

figure 6.101 employee int-pr_phase_ended : subprocess S1_wrt_chief_executive_off icer

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED

READY

T-2

figure 6.102 employee int-pr_phase_ended : subprocess S2_wrt_chief_executive_off icer

This operation ‘pr_phase_ended’ is not only an employee of ‘ chief executive off icer’ , but also of all other participating
classes of the process fragment ‘writing project management documents’ . All these participating classes prescribe the
same subprocesses S1 and S2. The operation has therefore 19 subprocesses prescribed to it at any one time. The actual
subprocess is the intersection of these 19 prescribed subprocesses.

The actual subprocesses of this operation due to the intersection mechanism, are explained in the paragraph ‘Requirements
document (integration) : employee-STDs’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

320

6.3.2.9 Head personnel section (integration)

6.3.2.9.1 Head personnel section (integration) : extended phase-external behavior-STDs

The first step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is the extension of the constituent phase-external STDs with a start state and an end (final) state. The start state
has a transition leaving it and entering the phase-external STD. The final state has a transition coming into it from the
phase-external STD. This construction is performed in the next figures for the phase 1-external STD, the phase 2-external
STD, the phase 3-external STD and the phase 4-external STD of the class ‘head personnel section’ .

The class ‘head personnel section’ does not participate in phase 2 or 3. Therefore the phase 2- and phase 3-external STDs
consist of a dummy state.

PHASE 1

HPS_MB_DECISION_(X)

HPS_INITIATE_PROJECT_FORM_(X)

START END

figure 6.103 head personnel section : extended phase 1-external STD

START PHASE 2 END

figure 6.104 head personnel section : extended phase 2-external STD

PHASE 3START END

figure 6.105 head personnel section : extended phase 3-external STD

PHASE 4

HPS_ALL OCATE_RESOURCE

START END

figure 6.106 head personnel section : extended phase 4-external STD

6.3.2.9.2 Head personnel section (integration) : total external behavior-STD

The second step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is to connect the extended phase-external STDs with each other in such a way that the final state of one phase-
external STD coincides with the start state of the next phase-external STD. This ‘coinciding’ state between two phase-
external STDs is called an ‘ intermediate’ state. This models the sequential dependency between the phases.

The transitions leaving the start states get the label ‘change_to_phase_x’ . These represent the ‘phase-changing’ -operations.
The transitions entering the final states get the label ‘pr_phase_ended’ . These represent the ‘phase-ended’ operation. The
construction is performed in the next figure.

Software Process Modeling
in SOCCA

page :
version : 0.10

321

PHASE 4

HPS_ALLOCATE_RESOURCE

PHASE 1

HPS_M B_DECISION_(X)

HPS_INITIATE_PROJECT_FORM_(X)

PHASE 3

START
INTER-
MEDIATE_1 PHASE 2

INTER-
MEDIATE_2

INTER-
MEDIATE_3

END

CHANGE_TO_
PHASE_2

CHANGE_TO_
PHASE_1

CHANGE_TO_PHASE_3

CHANGE_TO_
PHASE_4

PHASE_ENDEDPHASE_ENDED

PHASE_ENDED PHASE_ENDED

figure 6.107 head personnel section : ext_wpmd_head_personnel_section, total external STD

The flow through this total external STD is analogous to the flow through the total external STD of the class ‘ requirements
document’ (as described in the paragraph ‘Requirements document (integration) : total external behavior-STD).

With the difference that the class ‘head personnel section’ does not participate in phase 2 or 3. Therefore no action of
‘head personnel section’ will t ake place in these phases.

6.3.2.9.3 Head personnel section (integration) : internal behavior-STDs

The internal operations of the class ‘head personnel section’ are in the first place the internal operations as modeled in the
phase 1 and 4. During the integration the following internal operations are added to the class: ‘change_to_phase_1’ ,
‘change_to_ phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and ‘phase_ended’ .

These 5 additional operations are so-called ‘no-operations’ (nops). A nop is an operation that performs no function while
executing. The sole purpose of such an operation is to enable the corresponding transition of the external STD within the
existing SOCCA framework.

These internal operations have internal STDs equivalent to the corresponding operations of the class ‘customer’ (described
in the paragraph ‘Customer (integration) : internal behavior STDs’).

6.3.2.9.4 Head personnel section (integration) : manager-STD

The total manager STD is the same as the total external STD. Therefore no separate figure is needed for the total manager
STD. The total manager STD of the process fragment ‘writing project management documents’ prescribes in its ‘phase 1’
and ‘phase 4’ states still t he same subprocesses for its phase-employees as was modeled in the phase 1- and phase 4-sub-
model. These may be called ‘old prescribed subprocesses’ . Subprocess prescriptions for an employee in states (of the total
manager STD) that are not relevant for that employee are ‘don’ t cares’ .

In the integration the total manager gets new employees. For this new employees it is also prescribing subprocesses. These
may be called ‘new prescribed subprocesses’ . The sum total of the prescribed subprocesses by the total manager STD is
therefore (per state) : { old prescribed subprocesses} ∪ { don’ t cares} ∪ { new prescribed subprocesses} .

The new CPSs (Consolidated Prescribed Subprocesses), CCs (Caller_Callee combinations) and TLFs (Transition Logical
Formulas) for this total manager STD are the same as the CPSs, CCs and TLFs for the total manager STD of the class
‘ requirements document’ (as described in the paragraph ‘Requirements document (integration) : manager-STD).

With the difference that all the subprocesses and traps are with respect to ‘head personnel section’ instead of with respect
to ‘ requirements document’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

322

6.3.2.9.5 Head personnel section (integration) : employee-STDs

The employees of the manager STD of the class ‘head personnel section’ are in the first place the employees as modeled in
the phase 1 and 4. During the integration the following 7 employees are added: ‘change_to_phase_1’ ,
‘change_to_phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and their caller ‘pr_project_li fe_cycle’ and
‘phase_ended’ and its caller ‘pr_phase_ended’ .

The employee ‘change_to_phase_1’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘head
personnel section’), according to the caller-callee construct.

The employee ‘change_to_phase_2’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘head
personnel section’), according to the caller-callee construct.

The employee ‘change_to_phase_3’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘head
personnel section’), according to the caller-callee construct.

The employee ‘change_to_phase_4’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘head
personnel section’), according to the caller-callee construct.

The employee ‘pr_project_li fe_cycle’ is the caller of the four callees ‘change_to_phase_1’ , ‘change_to_phase_2’ ,
‘change_to_phase_3’ and ‘change_to_phase_4’ of the class ‘head personnel section’ . Consequently it has five
subprocesses and traps with respect to the manager STD of the class ‘head personnel section’ : S1, S2, S3, S4 and S5 and
T-1, T-2, T-3, T-4 and T-5. The next figure shows these five subprocesses of the internal operation ‘pr_project_
li fe_cycle’ .

S-1 SIM_CALL _
CHANGE_TO_
PHASE_1

IN PHASE 1
ASKED

 PRE
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

T-1

PHASE 1
ASKED SIM_CALL _

CHANGE_TO_
PHASE_2

PHASE 2
ASKEDS-2

T-2

PHASE 2
ASKED SIM_CALL _

CHANGE_TO_
PHASE_3

PHASE 3
ASKEDS-3

T-3

PHASE 3
ASKED SIM_CALL _

CHANGE_TO_
PHASE_4

PHASE 4
ASKEDS-4

T-4

OUT

 POST
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

PHASE 4
ASKED

T-5

S-5

figure 6.108 employee int-pr_project_life_cycle : subprocesses S1, S2, S3, S4, S5 wrt_head_personnel_section

This operation ‘pr_project_li fe_cycle’ is not only an employee of ‘ head personnel section’ , but also of all other
participating classes of the process fragment ‘writing project management documents’ . All these participating classes
prescribe the same subprocesses S1, S2, S3, S4 and S5. The operation has therefore 19 subprocesses prescribed to it at any
one time. The actual subprocess is the intersection of these 19 prescribed subprocesses. The actual subprocesses of this

Software Process Modeling
in SOCCA

page :
version : 0.10

323

operation due to the intersection mechanism, are explained in the paragraph ‘Requirements document (integration) :
employee-STDs’ .

The employee ‘phase_ended’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘head
personnel section’), according to the caller-callee construct.

The employee ‘pr_phase_ended’ is the caller of the callee ‘phase_ended’ of the class ‘head personnel section’ . It has two
subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘head personnel section’) according to the
caller_callee-construct.

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED SIM_CALL _

PHASE_ENDED

READY

T-1

figure 6.109 employee int-pr_phase_ended : subprocess S1_wrt_head_personnel_section

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED

READY

T-2

figure 6.110 employee int-pr_phase_ended : subprocess S2_wrt_head_personnel_section

This operation ‘pr_phase_ended’ is not only an employee of ‘ head personnel section’ , but also of all other participating
classes of the process fragment ‘writing project management documents’ . All these participating classes prescribe the
same subprocesses S1 and S2. The operation has therefore 19 subprocesses prescribed to it at any one time. The actual
subprocess is the intersection of these 19 prescribed subprocesses.

The actual subprocesses of this operation due to the intersection mechanism, are explained in the paragraph ‘Requirements
document (integration) : employee-STDs’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

324

6.3.2.10 Project form (integration)

6.3.2.10.1 Project form (integration) : extended phase-external behavior-STDs

The first step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is the extension of the constituent phase-external STDs with a start state and an end (final) state. The start state
has a transition leaving it and entering the phase-external STD. The final state has a transition coming into it from the
phase-external STD. This construction is performed in the next figures for the phase 1-external STD, the phase 2-external
STD, the phase 3-external STD and the phase 4-external STD of the class ‘project form’ .

The class ‘project form’ does not participate in phase 2 or 3. Therefore the phase 2- and phase 3-external STDs consist of
a dummy state.

PHASE 1

PF_INITIATE_(X)

START END

figure 6.111 project form : extended phase 1-external STD

START PHASE 2 END

figure 6.112 project form : extended phase 2-external STD

PHASE 3START END

figure 6.113 project form : extended phase 3-external STD

PHASE 4

PF_UPDATE_(X)

START END

figure 6.114 project form : extended phase 4-external STD

6.3.2.10.2 Project form (integration) : total external behavior-STD

The second step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is to connect the extended phase-external STDs with each other in such a way that the final state of one phase-
external STD coincides with the start state of the next phase-external STD. This ‘coinciding’ state between two phase-
external STDs is called an ‘ intermediate’ state. This models the sequential dependency between the phases.

The transitions leaving the start states get the label ‘change_to_phase_x’ . These represent the ‘phase-changing’ -operations.
The transitions entering the final states get the label ‘pr_phase_ended’ . These represent the ‘phase-ended’ operation. The
construction is performed in the next figure.

Software Process Modeling
in SOCCA

page :
version : 0.10

325

PHASE 4

PF_UPDATE_(X)

PHASE 1

PF_INITIATE_(X)

PHASE 3

START
INTER-
MEDIATE_1 PHASE 2

INTER-
MEDIATE_2

INTER-
MEDIATE_3

END

CHANGE_TO_
PHASE_2

CHANGE_TO_
PHASE_1

CHANGE_TO_PHASE_3

CHANGE_TO_
PHASE_4

PHASE_ENDEDPHASE_ENDED

PHASE_ENDED PHASE_ENDED

figure 6.115 project form : ext_wpmd_project_form, total external STD

The flow through this total external STD is analogous to the flow through the total external STD of the class ‘ requirements
document’ (as described in the paragraph ‘Requirements document (integration) : total external behavior-STD).

With the difference that the class ‘project form’ does not participate in phase 2 or 3. Therefore no action of ‘ project form’
will t ake place in these phases.

6.3.2.10.3 Project form (integration) : internal behavior-STDs

The internal operations of the class ‘project form’ are in the first place the internal operations as modeled in the phase 1
and 4. During the integration the following internal operations are added to the class: ‘change_to_phase_1’ , ‘change_to_
phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and ‘phase_ended’ .

These 5 additional operations are so-called ‘no-operations’ (nops). A nop is an operation that performs no function while
executing. The sole purpose of such an operation is to enable the corresponding transition of the external STD within the
existing SOCCA framework.

These internal operations have internal STDs equivalent to the corresponding operations of the class ‘customer’ (described
in the paragraph ‘Customer (integration) : internal behavior STDs’).

6.3.2.10.4 Project form (integration) : manager-STD

The total manager STD is the same as the total external STD. Therefore no separate figure is needed for the total manager
STD. The total manager STD of the process fragment ‘writing project management documents’ prescribes in its ‘phase 1’
and ‘phase 4’ states still t he same subprocesses for its phase-employees as was modeled in the phase 1- and phase 4-sub-
model. These may be called ‘old prescribed subprocesses’ . Subprocess prescriptions for an employee in states (of the total
manager STD) that are not relevant for that employee are ‘don’ t cares’ .

In the integration the total manager gets new employees. For this new employees it is also prescribing subprocesses. These
may be called ‘new prescribed subprocesses’ . The sum total of the prescribed subprocesses by the total manager STD is
therefore (per state) : { old prescribed subprocesses} ∪ { don’ t cares} ∪ { new prescribed subprocesses} .

The new CPSs (Consolidated Prescribed Subprocesses), CCs (Caller_Callee combinations) and TLFs (Transition Logical
Formulas) for this total manager STD are the same as the CPSs, CCs and TLFs for the total manager STD of the class
‘ requirements document’ (as described in the paragraph ‘Requirements document (integration) : manager-STD).

With the difference that all the subprocesses and traps are with respect to ‘project form’ instead of with respect to
‘ requirements document’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

326

6.3.2.10.5 Project form (integration) : employee-STDs

The employees of the manager STD of the class ‘project form’ are in the first place the employees as modeled in the phase
1 and 4. During the integration the following 7 employees are added: ‘change_to_phase_1’ , ‘change_to_phase_2’ ,
‘change_to_phase_3’ , ‘change_to_phase_4’ and their caller ‘pr_project_li fe_cycle’ and ‘phase_ended’ and its caller
‘pr_phase_ended’ .

The employee ‘change_to_phase_1’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘project form’), according to the caller-callee construct.

The employee ‘change_to_phase_2’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘project form’), according to the caller-callee construct.

The employee ‘change_to_phase_3’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘project form’), according to the caller-callee construct.

The employee ‘change_to_phase_4’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘project form’), according to the caller-callee construct.

The employee ‘pr_project_li fe_cycle’ is the caller of the four callees ‘change_to_phase_1’ , ‘change_to_phase_2’ ,
‘change_to_phase_3’ and ‘change_to_phase_4’ of the class ‘project form’ . Consequently it has five subprocesses and
traps with respect to the manager STD of the class ‘project form’ : S1, S2, S3, S4 and S5 and T-1, T-2, T-3, T-4 and T-5.
The next figure shows these five subprocesses of the internal operation ‘pr_project_ li fe_cycle’ .

S-1 SIM_CALL _
CHANGE_TO_
PHASE_1

IN PHASE 1
ASKED

 PRE
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

T-1

PHASE 1
ASKED SIM_CALL _

CHANGE_TO_
PHASE_2

PHASE 2
ASKEDS-2

T-2

PHASE 2
ASKED SIM_CALL _

CHANGE_TO_
PHASE_3

PHASE 3
ASKEDS-3

T-3

PHASE 3
ASKED SIM_CALL _

CHANGE_TO_
PHASE_4

PHASE 4
ASKEDS-4

T-4

OUT

 POST
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

PHASE 4
ASKED

T-5

S-5

figure 6.116 employee int-pr_project_life_cycle : subprocesses S1, S2, S3, S4, S5 wrt_project_form

This operation ‘pr_project_li fe_cycle’ is not only an employee of ‘ project form’ , but also of all other participating classes
of the process fragment ‘writing project management documents’ . All these participating classes prescribe the same
subprocesses S1, S2, S3, S4 and S5. The operation has therefore 19 subprocesses prescribed to it at any one time. The
actual subprocess is the intersection of these 19 prescribed subprocesses. The actual subprocesses of this operation due to
the intersection mechanism, are explained in the paragraph ‘Requirements document (integration) : employee-STDs’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

327

The employee ‘phase_ended’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘project
form’), according to the caller-callee construct.

The employee ‘pr_phase_ended’ is the caller of the callee ‘phase_ended’ of the class ‘project form’ . It has two
subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘project form’) according to the caller_callee-
construct.

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED SIM_CALL _

PHASE_ENDED

READY

T-1

figure 6.117 employee int-pr_phase_ended : subprocess S1_wrt_project_form

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED

READY

T-2

figure 6.118 employee int-pr_phase_ended : subprocess S2_wrt_project_form

This operation ‘pr_phase_ended’ is not only an employee of ‘ project form’ , but also of all other participating classes of the
process fragment ‘writing project management documents’ . All these participating classes prescribe the same
subprocesses S1 and S2. The operation has therefore 19 subprocesses prescribed to it at any one time. The actual
subprocess is the intersection of these 19 prescribed subprocesses.

The actual subprocesses of this operation due to the intersection mechanism, are explained in the paragraph ‘Requirements
document (integration) : employee-STDs’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

328

6.3.2.11 Head controller section (integration)

6.3.2.11.1 Head controller section (integration) : extended phase-external behavior-STDs

The first step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is the extension of the constituent phase-external STDs with a start state and an end (final) state. The start state
has a transition leaving it and entering the phase-external STD. The final state has a transition coming into it from the
phase-external STD. This construction is performed in the next figures for the phase 1-external STD, the phase 2-external
STD, the phase 3-external STD and the phase 4-external STD of the class ‘head controller section’ .

The class ‘head controller section’ does not participate in phase 2. Therefore the phase 2-external STD consists of a
dummy state.

PHASE 1

HCS_ENTER_IN_MIS_(X)

START END

figure 6.119 head controller section : extended phase 1-external STD

START PHASE 2 END

figure 6.120 head controller section : extended phase 2-external STD

PHASE 3

HCS_ENTER_IN_MIS_(X)

START END

figure 6.121 head controller section : extended phase 3-external STD

PHASE 4

HCS_ENTER_IN_MIS_(X)

START END

figure 6.122 head controller section : extended phase 4-external STD

6.3.2.11.2 Head controller section (integration) : total external behavior-STD

The second step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is to connect the extended phase-external STDs with each other in such a way that the final state of one phase-
external STD coincides with the start state of the next phase-external STD. This ‘coinciding’ state between two phase-
external STDs is called an ‘ intermediate’ state. This models the sequential dependency between the phases.

The transitions leaving the start states get the label ‘change_to_phase_x’ . These represent the ‘phase-changing’ -operations.
The transitions entering the final states get the label ‘pr_phase_ended’ . These represent the ‘phase-ended’ operation. The
construction is performed in the next figure.

Software Process Modeling
in SOCCA

page :
version : 0.10

329

PHASE 3

HCS_ENTER_IN_M IS_(X)

PHASE 4

HCS_ENTER_IN_M IS_(X)

PHASE 1

HCS_ENTER_IN_M IS_(X)

START
INTER-
MEDIATE_1 PHASE 2

INTER-
MEDIATE_2

INTER-
MEDIATE_3

END

CHANGE_TO_
PHASE_2

CHANGE_TO_
PHASE_1

CHANGE_TO_PHASE_3

CHANGE_TO_
PHASE_4

PHASE_ENDEDPHASE_ENDED

PHASE_ENDED PHASE_ENDED

figure 6.123 head controller section : ext_wpmd_head_controller_section, total external STD

The flow through this total external STD is analogous to the flow through the total external STD of the class ‘ requirements
document’ (as described in the paragraph ‘Requirements document (integration) : total external behavior-STD).

With the difference that the class ‘head controller section’ does not participate in phase 2. Therefore no action of ‘ head
controller section’ will t ake place in that phase.

6.3.2.11.3 Head controller section (integration) : internal behavior-STDs

The internal operations of the class ‘head controller section’ are in the first place the internal operations as modeled in the
phase 1, 3 and 4. During the integration the following internal operations are added to the class: ‘change_to_phase_1’ ,
‘change_to_ phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and ‘phase_ended’ .

These 5 additional operations are so-called ‘no-operations’ (nops). A nop is an operation that performs no function while
executing. The sole purpose of such an operation is to enable the corresponding transition of the external STD within the
existing SOCCA framework.

These internal operations have internal STDs equivalent to the corresponding operations of the class ‘customer’ (described
in the paragraph ‘Customer (integration) : internal behavior STDs’).

6.3.2.11.4 Head controller section (integration) : manager-STD

The total manager STD is the same as the total external STD. Therefore no separate figure is needed for the total manager
STD. The total manager STD of the process fragment ‘writing project management documents’ prescribes in its ‘phase 1’ ,
phase 3’ and ‘phase 4’ states still t he same subprocesses for its phase-employees as was modeled in the phase 1-, phase 3-
and phase 4-sub-model. These may be called ‘old prescribed subprocesses’ . Subprocess prescriptions for an employee in
states (of the total manager STD) that are not relevant for that employee are ‘don’ t cares’ .

In the integration the total manager gets new employees. For this new employees it is also prescribing subprocesses. These
may be called ‘new prescribed subprocesses’ . The sum total of the prescribed subprocesses by the total manager STD is
therefore (per state) : { old prescribed subprocesses} ∪ { don’ t cares} ∪ { new prescribed subprocesses} .

The new CPSs (Consolidated Prescribed Subprocesses), CCs (Caller_Callee combinations) and TLFs (Transition Logical
Formulas) for this total manager STD are the same as the CPSs, CCs and TLFs for the total manager STD of the class
‘ requirements document’ (as described in the paragraph ‘Requirements document (integration) : manager-STD).

With the difference that all the subprocesses and traps are with respect to ‘head controller section’ instead of with respect
to ‘ requirements document’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

330

6.3.2.11.5 Head controller section (integration) : employee-STDs

The employees of the manager STD of the class ‘head controller section’ are in the first place the employees as modeled in
the phase 1, 3 and 4. During the integration the following 7 employees are added: ‘change_to_phase_1’ ,
‘change_to_phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and their caller ‘pr_project_li fe_cycle’ and
‘phase_ended’ and its caller ‘pr_phase_ended’ .

The employee ‘change_to_phase_1’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘head
controller section’), according to the caller-callee construct.

The employee ‘change_to_phase_2’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘head
controller section’), according to the caller-callee construct.

The employee ‘change_to_phase_3’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘head
controller section’), according to the caller-callee construct.

The employee ‘change_to_phase_4’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘head
controller section’), according to the caller-callee construct.

The employee ‘pr_project_li fe_cycle’ is the caller of the four callees ‘change_to_phase_1’ , ‘change_to_phase_2’ ,
‘change_to_phase_3’ and ‘change_to_phase_4’ of the class ‘head controller section’ . Consequently it has five
subprocesses and traps with respect to the manager STD of the class ‘head controller section’ : S1, S2, S3, S4 and S5 and
T-1, T-2, T-3, T-4 and T-5. The next figure shows these five subprocesses of the internal operation ‘pr_project_
li fe_cycle’ .

S-1 SIM_CALL _
CHANGE_TO_
PHASE_1

IN PHASE 1
ASKED

 PRE
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

T-1

PHASE 1
ASKED SIM_CALL _

CHANGE_TO_
PHASE_2

PHASE 2
ASKEDS-2

T-2

PHASE 2
ASKED SIM_CALL _

CHANGE_TO_
PHASE_3

PHASE 3
ASKEDS-3

T-3

PHASE 3
ASKED SIM_CALL _

CHANGE_TO_
PHASE_4

PHASE 4
ASKEDS-4

T-4

OUT

 POST
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

PHASE 4
ASKED

T-5

S-5

figure 6.124 employee int-pr_project_life_cycle : subprocesses S1, S2, S3, S4, S5 wrt_head_controller_section

This operation ‘pr_project_li fe_cycle’ is not only an employee of ‘ head controller section’ , but also of all other
participating classes of the process fragment ‘writing project management documents’ . All these participating classes
prescribe the same subprocesses S1, S2, S3, S4 and S5. The operation has therefore 19 subprocesses prescribed to it at any
one time. The actual subprocess is the intersection of these 19 prescribed subprocesses. The actual subprocesses of this

Software Process Modeling
in SOCCA

page :
version : 0.10

331

operation due to the intersection mechanism, are explained in the paragraph ‘Requirements document (integration) :
employee-STDs’ .

The employee ‘phase_ended’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘head
controller section’), according to the caller-callee construct.

The employee ‘pr_phase_ended’ is the caller of the callee ‘phase_ended’ of the class ‘head_controller section’ . It has two
subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘head controller section’) according to the
caller_callee-construct.

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED SIM_CALL _

PHASE_ENDED

READY

T-1

figure 6.125 employee int-pr_phase_ended : subprocess S1_wrt_head_controller_section

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED

READY

T-2

figure 6.126 employee int-pr_phase_ended : subprocess S2_wrt_head_controller_section

This operation ‘pr_phase_ended’ is not only an employee of ‘ head controller section’ , but also of all other participating
classes of the process fragment ‘writing project management documents’ . All these participating classes prescribe the
same subprocesses S1 and S2. The operation has therefore 19 subprocesses prescribed to it at any one time. The actual
subprocess is the intersection of these 19 prescribed subprocesses.

The actual subprocesses of this operation due to the intersection mechanism, are explained in the paragraph ‘Requirements
document (integration) : employee-STDs’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

332

6.3.2.12 Technical project manager (integration)

6.3.2.12.1 Technical project manager (integration) : extended phase-external behavior-STDs

The first step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is the extension of the constituent phase-external STDs with a start state and an end (final) state. The start state
has a transition leaving it and entering the phase-external STD. The final state has a transition coming into it from the
phase-external STD. This construction is performed in the next figures for the phase 1-external STD, the phase 2-external
STD, the phase 3-external STD and the phase 4-external STD of the class ‘ technical project manager’ .

The class ‘ technical project manager’ does not participate in phase 1. Therefore the phase 1-external STD consists of a
dummy state.

PHASE 1START END

figure 6.127 technical project manager : extended phase 1-external STD

TPM_CONFER_ESTIMATE_(X)

PHASE 2

TPM_PERFORM_ESTIMATE_(X) TPM_WRITE_PROJ_MAN_DOC_(X)

START END

figure 6.128 technical project manager : extended phase 2-external STD

PHASE 3

TPM_ENTER_IN_PROJ_FILE_(X)

START END

figure 6.129 technical project manager : extended phase 3-external STD

PHASE 4

TPM_INFORM_(X)

START END

figure 6.130 technical project manager : extended phase 4-external STD

6.3.2.12.2 Technical project manager (integration) : total external behavior-STD

The second step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is to connect the extended phase-external STDs with each other in such a way that the final state of one phase-
external STD coincides with the start state of the next phase-external STD. This ‘coinciding’ state between two phase-
external STDs is called an ‘ intermediate’ state. This models the sequential dependency between the phases.

The transitions leaving the start states get the label ‘change_to_phase_x’ . These represent the ‘phase-changing’ -operations.
The transitions entering the final states get the label ‘pr_phase_ended’ . These represent the ‘phase-ended’ operation. The
construction is performed in the next figure.

Software Process Modeling
in SOCCA

page :
version : 0.10

333

PHASE 4

TPM _INFORM_(X)

PHASE 3

TPM _ENTER_IN_PROJ_FILE_(X)

TPM _CONFER_ESTIMATE_(X)

PHASE 2

TPM _PERFORM_ESTIMATE_(X) TPM _WRITE_PROJ_MAN_DOC_(X)

START PHASE 1
INTER-
MEDIATE_1

INTER-
MEDIATE_2

INTER-
MEDIATE_3

END

CHANGE_TO_
PHASE_2

CHANGE_TO_
PHASE_1

CHANGE_TO_PHASE_3

CHANGE_TO_
PHASE_4

PHASE_ENDEDPHASE_ENDED

PHASE_ENDED PHASE_ENDED

figure 6.131 technical project manager : ext_wpmd_technical_project_manager, total external STD

The flow through this total external STD is analogous to the flow through the total external STD of the class ‘ requirements
document’ (as described in the paragraph ‘Requirements document (integration) : total external behavior-STD).

With the difference that the class ‘ technical project manager’ does not participate in phase 1. Therefore no action of
‘ technical project manager’ will t ake place in that phase.

6.3.2.12.3 Technical project manager (integration) : internal behavior-STDs

The internal operations of the class ‘ technical project manager’ are in the first place the internal operations as modeled in
the phase 2, 3 and 4. During the integration the following internal operations are added to the class: ‘change_to_phase_1’ ,
‘change_to_ phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and ‘phase_ended’ .

These 5 additional operations are so-called ‘no-operations’ (nops). A nop is an operation that performs no function while
executing. The sole purpose of such an operation is to enable the corresponding transition of the external STD within the
existing SOCCA framework.

These internal operations have internal STDs equivalent to the corresponding operations of the class ‘customer’ (described
in the paragraph ‘Customer (integration) : internal behavior STDs’).

6.3.2.12.4 Technical project manager (integration) : manager-STD

The total manager STD is the same as the total external STD. Therefore no separate figure is needed for the total manager
STD. The total manager STD of the process fragment ‘writing project management documents’ prescribes in its ‘phase 2’ ,
phase 3’ and ‘phase 4’ states still t he same subprocesses for its phase-employees as was modeled in the phase 2-, phase 3-
and phase 4-sub-models. These may be called ‘old prescribed subprocesses’ . Subprocess prescriptions for an employee in
states (of the total manager STD) that are not relevant for that employee are ‘don’ t cares’ .

In the integration the total manager gets new employees. For this new employees it is also prescribing subprocesses. These
may be called ‘new prescribed subprocesses’ . The sum total of the prescribed subprocesses by the total manager STD is
therefore (per state) : { old prescribed subprocesses} ∪ { don’ t cares} ∪ { new prescribed subprocesses} .

The new CPSs (Consolidated Prescribed Subprocesses), CCs (Caller_Callee combinations) and TLFs (Transition Logical
Formulas) for this total manager STD are the same as the CPSs, CCs and TLFs for the total manager STD of the class
‘ requirements document’ (as described in the paragraph ‘Requirements document (integration) : manager-STD). With the
difference that all the subprocesses and traps are with respect to ‘ technical project manager’ instead of with respect to
‘ requirements document’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

334

6.3.2.12.5 Technical project manager (integration) : employee-STDs

The employees of the manager STD of the class ‘ technical project manager’ are in the first place the employees as
modeled in the phase 2, 3 and 4. During the integration the following 7 employees are added: ‘change_to_phase_1’ ,
‘change_to_phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and their caller ‘pr_project_li fe_cycle’ and
‘phase_ended’ and its caller ‘pr_phase_ended’ .

The employee ‘change_to_phase_1’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘ technical project manager’), according to the caller-callee construct.

The employee ‘change_to_phase_2’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘ technical project manager’), according to the caller-callee construct.

The employee ‘change_to_phase_3’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘ technical project manager’), according to the caller-callee construct.

The employee ‘change_to_phase_4’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘ technical project manager’), according to the caller-callee construct.

The employee ‘pr_project_li fe_cycle’ is the caller of the four callees ‘change_to_phase_1’ , ‘change_to_phase_2’ ,
‘change_to_phase_3’ and ‘change_to_phase_4’ of the class ‘ technical project manager’ . Consequently it has five
subprocesses and traps with respect to the manager STD of the class ‘ technical project manager’ : S1, S2, S3, S4 and S5
and T-1, T-2, T-3, T-4 and T-5. The next figure shows these five subprocesses of the internal operation ‘pr_project_
li fe_cycle’ .

S-1 SIM_CALL _
CHANGE_TO_
PHASE_1

IN PHASE 1
ASKED

 PRE
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

T-1

PHASE 1
ASKED SIM_CALL _

CHANGE_TO_
PHASE_2

PHASE 2
ASKEDS-2

T-2

PHASE 2
ASKED SIM_CALL _

CHANGE_TO_
PHASE_3

PHASE 3
ASKEDS-3

T-3

PHASE 3
ASKED SIM_CALL _

CHANGE_TO_
PHASE_4

PHASE 4
ASKEDS-4

T-4

OUT

 POST
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

PHASE 4
ASKED

T-5

S-5

figure 6.132 employee int-pr_project_life_cycle : subprocesses S1, S2, S3, S4, S5 wrt_technical_project_manager

This operation ‘pr_project_li fe_cycle’ is not only an employee of ‘ technical project manager’ , but also of all other
participating classes of the process fragment ‘writing project management documents’ . All these participating classes
prescribe the same subprocesses S1, S2, S3, S4 and S5. The operation has therefore 19 subprocesses prescribed to it at any
one time. The actual subprocess is the intersection of these 19 prescribed subprocesses. The actual subprocesses of this

Software Process Modeling
in SOCCA

page :
version : 0.10

335

operation due to the intersection mechanism, are explained in the paragraph ‘Requirements document (integration) :
employee-STDs’ .

The employee ‘phase_ended’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘ technical
project manager’), according to the caller-callee construct.

The employee ‘pr_phase_ended’ is the caller of the callee ‘phase_ended’ of the class ‘ technical project manager’ . It has
two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘ technical project manager’) according to the
caller_callee-construct.

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED SIM_CALL _

PHASE_ENDED

READY

T-1

figure 6.133 employee int-pr_phase_ended : subprocess S1_wrt_technical_project_manager

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED

READY

T-2

figure 6.134 employee int-pr_phase_ended : subprocess S2_wrt_technical_project_manager

This operation ‘pr_phase_ended’ is not only an employee of ‘ technical project manager’ , but also of all other participating
classes of the process fragment ‘writing project management documents’ . All these participating classes prescribe the
same subprocesses S1 and S2. The operation has therefore 19 subprocesses prescribed to it at any one time. The actual
subprocess is the intersection of these 19 prescribed subprocesses.

The actual subprocesses of this operation due to the intersection mechanism, are explained in the paragraph ‘Requirements
document (integration) : employee-STDs’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

336

6.3.2.13 Quality assurance adviser (integration)

6.3.2.13.1 Quality assurance adviser (integration) : extended phase-external behavior-STDs

The first step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is the extension of the constituent phase-external STDs with a start state and an end (final) state. The start state
has a transition leaving it and entering the phase-external STD. The final state has a transition coming into it from the
phase-external STD. This construction is performed in the next figures for the phase 1-external STD, the phase 2-external
STD, the phase 3-external STD and the phase 4-external STD of the class ‘quality assurance adviser’ .

The class ‘quality assurance adviser’ does not participate in phase 1 or 4. Therefore the phase 1- and phase 4-external
STDs consist of a dummy state.

START PHASE 1 END

figure 6.135 quality assurance adviser : extended phase 1-external STD

QAA_AUDIT_(X)

PHASE 2

QAA_INQUIRE_RESOURCE_(X)

START END

figure 6.136 quality assurance adviser : extended phase 2-external STD

PHASE 3

QAA_SIGN_IRA_DOC(X)

START END

figure 6.137 quality assurance adviser : extended phase 3-external STD

START PHASE 4 END

figure 6.138 quality assurance adviser : extended phase 4-external STD

6.3.2.13.2 Quality assurance adviser (integration) : total external behavior-STD

The second step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is to connect the extended phase-external STDs with each other in such a way that the final state of one phase-
external STD coincides with the start state of the next phase-external STD. This ‘coinciding’ state between two phase-
external STDs is called an ‘ intermediate’ state. This models the sequential dependency between the phases.

The transitions leaving the start states get the label ‘change_to_phase_x’ . These represent the ‘phase-changing’ -operations.
The transitions entering the final states get the label ‘pr_phase_ended’ . These represent the ‘phase-ended’ operation. The
construction is performed in the next figure.

Software Process Modeling
in SOCCA

page :
version : 0.10

337

PHASE 3

QAA_SIGN_IRA_DOC(X)

QAA_AUDIT_(X)

PHASE 2

QAA_INQUIRE_RESOURCE_(X)

START PHASE 1
INTER-
MEDIATE_1

INTER-
MEDIATE_2

INTER-
MEDIATE_3

PHASE 4 END

CHANGE_TO_
PHASE_2

CHANGE_TO_
PHASE_1

CHANGE_TO_PHASE_3

CHANGE_TO_
PHASE_4

PHASE_ENDEDPHASE_ENDED

PHASE_ENDED PHASE_ENDED

figure 6.139 quality assurance adviser : ext_wpmd_quality_assurance_adviser, total external STD

The flow through this total external STD is analogous to the flow through the total external STD of the class ‘ requirements
document’ (as described in the paragraph ‘Requirements document (integration) : total external behavior-STD).

With the difference that the class ‘quality assurance adviser’ does not participate in phase 1 or 4. Therefore no action of
‘quality assurance adviser’ will t ake place in these phases.

6.3.2.13.3 Quality assurance adviser (integration) : internal behavior-STDs

The internal operations of the class ‘quality assurance adviser’ are in the first place the internal operations as modeled in
the phase 2 and 3. During the integration the following internal operations are added to the class: ‘change_to_phase_1’ ,
‘change_to_ phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and ‘phase_ended’ .

These 5 additional operations are so-called ‘no-operations’ (nops). A nop is an operation that performs no function while
executing. The sole purpose of such an operation is to enable the corresponding transition of the external STD within the
existing SOCCA framework.

These internal operations have internal STDs equivalent to the corresponding operations of the class ‘customer’ (described
in the paragraph ‘Customer (integration) : internal behavior STDs’).

6.3.2.13.4 Quality assurance adviser (integration) : manager-STD

The total manager STD is the same as the total external STD. Therefore no separate figure is needed for the total manager
STD. The total manager STD of the process fragment ‘writing project management documents’ prescribes in its ‘phase 2’
and ‘phase 3’ states still t he same subprocesses for its phase-employees as was modeled in the phase 2-, and phase 3-sub-
models. These may be called ‘old prescribed subprocesses’ . Subprocess prescriptions for an employee in states (of the
total manager STD) that are not relevant for that employee are ‘don’ t cares’ .

In the integration the total manager gets new employees. For this new employees it is also prescribing subprocesses. These
may be called ‘new prescribed subprocesses’ . The sum total of the prescribed subprocesses by the total manager STD is
therefore (per state) : { old prescribed subprocesses} ∪ { don’ t cares} ∪ { new prescribed subprocesses} .

The new CPSs (Consolidated Prescribed Subprocesses), CCs (Caller_Callee combinations) and TLFs (Transition Logical
Formulas) for this total manager STD are the same as the CPSs, CCs and TLFs for the total manager STD of the class
‘ requirements document’ (as described in the paragraph ‘Requirements document (integration) : manager-STD).

With the difference that all the subprocesses and traps are with respect to ‘quality assurance adviser’ instead of with
respect to ‘ requirements document’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

338

6.3.2.13.5 Quality assurance adviser (integration) : employee-STDs

The employees of the manager STD of the class ‘quality assurance adviser’ are in the first place the employees as modeled
in the phase 2 and 3. During the integration the following 7 employees are added: ‘change_to_phase_1’ ,
‘change_to_phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and their caller ‘pr_project_li fe_cycle’ and
‘phase_ended’ and its caller ‘pr_phase_ended’ .

The employee ‘change_to_phase_1’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘quality assuance adviser’), according to the caller-callee construct.

The employee ‘change_to_phase_2’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘quality assurance adviser’), according to the caller-callee construct.

The employee ‘change_to_phase_3’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘quality assurance adviser’), according to the caller-callee construct.

The employee ‘change_to_phase_4’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘quality assurance adviser’), according to the caller-callee construct.

The employee ‘pr_project_li fe_cycle’ is the caller of the four callees ‘change_to_phase_1’ , ‘change_to_phase_2’ ,
‘change_to_phase_3’ and ‘change_to_phase_4’ of the class ‘quality assurance adviser’ . Consequently it has five
subprocesses and traps with respect to the manager STD of the class ‘quality assurance adviser’ : S1, S2, S3, S4 and S5
and T-1, T-2, T-3, T-4 and T-5. The next figure shows these five subprocesses of the internal operation ‘pr_project_
li fe_cycle’ .

S-1 SIM_CALL _
CHANGE_TO_
PHASE_1

IN PHASE 1
ASKED

 PRE
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

T-1

PHASE 1
ASKED SIM_CALL _

CHANGE_TO_
PHASE_2

PHASE 2
ASKEDS-2

T-2

PHASE 2
ASKED SIM_CALL _

CHANGE_TO_
PHASE_3

PHASE 3
ASKEDS-3

T-3

PHASE 3
ASKED SIM_CALL _

CHANGE_TO_
PHASE_4

PHASE 4
ASKEDS-4

T-4

OUT

 POST
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

PHASE 4
ASKED

T-5

S-5

figure 6.140 employee int-pr_project_life_cycle : subprocesses S1, S2, S3, S4, S5 wrt_quality_assurance_adviser

This operation ‘pr_project_li fe_cycle’ is not only an employee of ‘ quality assurance adviser’ , but also of all other
participating classes of the process fragment ‘writing project management documents’ . All these participating classes
prescribe the same subprocesses S1, S2, S3, S4 and S5. The operation has therefore 19 subprocesses prescribed to it at any

Software Process Modeling
in SOCCA

page :
version : 0.10

339

one time. The actual subprocess is the intersection of these 19 prescribed subprocesses. The actual subprocesses of this
operation due to the intersection mechanism, are explained in the paragraph ‘Requirements document (integration) :
employee-STDs’ .

The employee ‘phase_ended’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘quality
assurance adviser’), according to the caller-callee construct.

The employee ‘pr_phase_ended’ is the caller of the callee ‘phase_ended’ of the class ‘quality assurance adviser’ . It has
two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘quality assurance adviser’) according to the
caller_callee-construct.

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED SIM_CALL _

PHASE_ENDED

READY

T-1

figure 6.141 employee int-pr_phase_ended : subprocess S1_wrt_quality_assurance_adviser

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED

READY

T-2

figure 6.142 employee int-pr_phase_ended : subprocess S2_wrt_quality_assurance_adviser

This operation ‘pr_phase_ended’ is not only an employee of ‘ quality assurance adviser’ , but also of all other participating
classes of the process fragment ‘writing project management documents’ . All these participating classes prescribe the
same subprocesses S1 and S2. The operation has therefore 19 subprocesses prescribed to it at any one time. The actual
subprocess is the intersection of these 19 prescribed subprocesses.

The actual subprocesses of this operation due to the intersection mechanism, are explained in the paragraph ‘Requirements
document (integration) : employee-STDs’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

340

6.3.2.14 Head production section (integration)

6.3.2.14.1 Head production section (integration) : extended phase-external behavior-STDs

The first step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is the extension of the constituent phase-external STDs with a start state and an end (final) state. The start state
has a transition leaving it and entering the phase-external STD. The final state has a transition coming into it from the
phase-external STD. This construction is performed in the next figures for the phase 1-external STD, the phase 2-external
STD, the phase 3-external STD and the phase 4-external STD of the class ‘head production section’ .

The class ‘head production section’ does not participate in phase 1 or 3. Therefore the phase 1- and phase 3-external STDs
consist of a dummy state.

START PHASE 1 END

figure 6.143 head production section : extended phase 1-external STD

HPRS_FINAL_REVIEW_(X) HPRS_SECOND_ESTIMATE_(X)

PHASE 2

HPRS_CONSULT _(X) HPRS_PMM _REQUEST_APPROVAL_(X)

START END

figure 6.144 head production section : extended phase 2-external STD

START PHASE 3 END

figure 6.145 head production section : extended phase 3-external STD

PHASE 4

HPRS_INFORM_(X)

START END

figure 6.146 head production section : extended phase 4-external STD

6.3.2.14.2 Head production section (integration) : total external behavior-STD

The second step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is to connect the extended phase-external STDs with each other in such a way that the final state of one phase-
external STD coincides with the start state of the next phase-external STD. This ‘coinciding’ state between two phase-
external STDs is called an ‘ intermediate’ state. This models the sequential dependency between the phases.

The transitions leaving the start states get the label ‘change_to_phase_x’ . These represent the ‘phase-changing’ -operations.
The transitions entering the final states get the label ‘pr_phase_ended’ . These represent the ‘phase-ended’ operation. The
construction is performed in the next figure.

Software Process Modeling
in SOCCA

page :
version : 0.10

341

PHASE 4

HPRS_INFORM_(X)

HPRS_FINAL_REVIEW_(X) HPRS_SECOND_ESTIMATE_(X)

PHASE 2

HPRS_CONSULT _(X) HPRS_PM M_REQUEST_APPROVAL_(X)

START PHASE 1
INTER-
MEDIATE_1

INTER-
MEDIATE_2

PHASE 3
INTER-
MEDIATE_3

END

CHANGE_TO_
PHASE_2

CHANGE_TO_
PHASE_1

CHANGE_TO_PHASE_3

CHANGE_TO_
PHASE_4

PHASE_ENDEDPHASE_ENDED

PHASE_ENDED PHASE_ENDED

figure 6.147 head production section : ext_wpmd_head_production_section, total external STD

The flow through this total external STD is analogous to the flow through the total external STD of the class ‘ requirements
document’ (as described in the paragraph ‘Requirements document (integration) : total external behavior-STD).

With the difference that the class ‘head production section’ does not participate in phase 1 or 3. Therefore no action of
‘head production section’ will t ake place in these phases.

6.3.2.14.3 Head production section (integration) : internal behavior-STDs

The internal operations of the class ‘head production section’ are in the first place the internal operations as modeled in the
phase 2 and 4. During the integration the following internal operations are added to the class: ‘change_to_phase_1’ ,
‘change_to_ phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and ‘phase_ended’ .

These 5 additional operations are so-called ‘no-operations’ (nops). A nop is an operation that performs no function while
executing. The sole purpose of such an operation is to enable the corresponding transition of the external STD within the
existing SOCCA framework.

These internal operations have internal STDs equivalent to the corresponding operations of the class ‘customer’ (described
in the paragraph ‘Customer (integration) : internal behavior STDs’).

6.3.2.14.4 Head production section (integration) : manager-STD

The total manager STD is the same as the total external STD. Therefore no separate figure is needed for the total manager
STD. The total manager STD of the process fragment ‘writing project management documents’ prescribes in its ‘phase 2’
and ‘phase 4’ states still t he same subprocesses for its phase-employees as was modeled in the phase 2-, and phase 4-sub-
models. These may be called ‘old prescribed subprocesses’ . Subprocess prescriptions for an employee in states (of the
total manager STD) that are not relevant for that employee are ‘don’ t cares’ .

In the integration the total manager gets new employees. For this new employees it is also prescribing subprocesses. These
may be called ‘new prescribed subprocesses’ . The sum total of the prescribed subprocesses by the total manager STD is
therefore (per state) : { old prescribed subprocesses} ∪ { don’ t cares} ∪ { new prescribed subprocesses} .

The new CPSs (Consolidated Prescribed Subprocesses), CCs (Caller_Callee combinations) and TLFs (Transition Logical
Formulas) for this total manager STD are the same as the CPSs, CCs and TLFs for the total manager STD of the class
‘ requirements document’ (as described in the paragraph ‘Requirements document (integration) : manager-STD). With the
difference that all the subprocesses and traps are with respect to ‘head production section’ instead of with respect to
‘ requirements document’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

342

6.3.2.14.5 Head production section (integration) : employee-STDs

The employees of the manager STD of the class ‘head production section’ are in the first place the employees as modeled
in the phase 2 and 4. During the integration the following 7 employees are added: ‘change_to_phase_1’ ,
‘change_to_phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and their caller ‘pr_project_li fe_cycle’ and
‘phase_ended’ and its caller ‘pr_phase_ended’ .

The employee ‘change_to_phase_1’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘head
production section’), according to the caller-callee construct.

The employee ‘change_to_phase_2’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘head
production section’), according to the caller-callee construct.

The employee ‘change_to_phase_3’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘head
production section’), according to the caller-callee construct.

The employee ‘change_to_phase_4’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘head
production section’), according to the caller-callee construct.

The employee ‘pr_project_li fe_cycle’ is the caller of the four callees ‘change_to_phase_1’ , ‘change_to_phase_2’ ,
‘change_to_phase_3’ and ‘change_to_phase_4’ of the class ‘head production section’ . Consequently it has five
subprocesses and traps with respect to the manager STD of the class ‘head production section’ : S1, S2, S3, S4 and S5 and
T-1, T-2, T-3, T-4 and T-5. The next figure shows these five subprocesses of the internal operation ‘pr_project_
li fe_cycle’ .

S-1 SIM_CALL _
CHANGE_TO_
PHASE_1

IN PHASE 1
ASKED

 PRE
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

T-1

PHASE 1
ASKED SIM_CALL _

CHANGE_TO_
PHASE_2

PHASE 2
ASKEDS-2

T-2

PHASE 2
ASKED SIM_CALL _

CHANGE_TO_
PHASE_3

PHASE 3
ASKEDS-3

T-3

PHASE 3
ASKED SIM_CALL _

CHANGE_TO_
PHASE_4

PHASE 4
ASKEDS-4

T-4

OUT

 POST
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

PHASE 4
ASKED

T-5

S-5

figure 6.148 employee int-pr_project_life_cycle : subprocesses S1, S2, S3, S4, S5 wrt_head_production_section

This operation ‘pr_project_li fe_cycle’ is not only an employee of ‘ head production section’ , but also of all other
participating classes of the process fragment ‘writing project management documents’ . All these participating classes
prescribe the same subprocesses S1, S2, S3, S4 and S5. The operation has therefore 19 subprocesses prescribed to it at any
one time. The actual subprocess is the intersection of these 19 prescribed subprocesses. The actual subprocesses of this

Software Process Modeling
in SOCCA

page :
version : 0.10

343

operation due to the intersection mechanism, are explained in the paragraph ‘Requirements document (integration) :
employee-STDs’ .

The employee ‘phase_ended’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘head
production section’), according to the caller-callee construct.

The employee ‘pr_phase_ended’ is the caller of the callee ‘phase_ended’ of the class ‘head production section’ . It has two
subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘head production section’) according to the
caller_callee-construct.

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED SIM_CALL _

PHASE_ENDED

READY

T-1

figure 6.149 employee int-pr_phase_ended : subprocess S1_wrt_head_production_section

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED

READY

T-2

figure 6.150 employee int-pr_phase_ended : subprocess S2_wrt_head_production_section

This operation ‘pr_phase_ended’ is not only an employee of ‘ head production section’ , but also of all other participating
classes of the process fragment ‘writing project management documents’ . All these participating classes prescribe the
same subprocesses S1 and S2. The operation has therefore 19 subprocesses prescribed to it at any one time. The actual
subprocess is the intersection of these 19 prescribed subprocesses.

The actual subprocesses of this operation due to the intersection mechanism, are explained in the paragraph ‘Requirements
document (integration) : employee-STDs’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

344

6.3.2.15 Head support section (integration)

6.3.2.15.1 Head support section (integration) : extended phase-external behavior-STDs

The first step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is the extension of the constituent phase-external STDs with a start state and an end (final) state. The start state
has a transition leaving it and entering the phase-external STD. The final state has a transition coming into it from the
phase-external STD. This construction is performed in the next figures for the phase 1-external STD, the phase 2-external
STD, the phase 3-external STD and the phase 4-external STD of the class ‘head support section’ .

The class ‘head support section’ does not participate in phase 1 or 4. Therefore the phase 1- and phase 4-external STDs
consist of a dummy state.

START PHASE 1 END

figure 6.151 head support section : extended phase 1-external STD

HSS_INQUIRE_RESOURCE_(X)

PHASE 2START END

figure 6.152 head support section : extended phase 2-external STD

PHASE 3

HSS_SIGN_IRA_DOC_(X)

START END

figure 6.153 head support section : extended phase 3-external STD

START PHASE 4 END

figure 6.154 head support section : extended phase 4-external STD

6.3.2.15.2 Head support section (integration) : total external behavior-STD

The second step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is to connect the extended phase-external STDs with each other in such a way that the final state of one phase-
external STD coincides with the start state of the next phase-external STD. This ‘coinciding’ state between two phase-
external STDs is called an ‘ intermediate’ state. This models the sequential dependency between the phases.

The transitions leaving the start states get the label ‘change_to_phase_x’ . These represent the ‘phase-changing’ -operations.
The transitions entering the final states get the label ‘pr_phase_ended’ . These represent the ‘phase-ended’ operation. The
construction is performed in the next figure.

Software Process Modeling
in SOCCA

page :
version : 0.10

345

PHASE 3

HSS_SIGN_IRA_DOC_(X)

HSS_INQUIRE_RESOURCE_(X)

PHASE 2START PHASE 1
INTER-
MEDIATE_1

INTER-
MEDIATE_2

INTER-
MEDIATE_3

PHASE 4 END

CHANGE_TO_
PHASE_2

CHANGE_TO_
PHASE_1

CHANGE_TO_PHASE_3

CHANGE_TO_
PHASE_4

PHASE_ENDEDPHASE_ENDED

PHASE_ENDED PHASE_ENDED

figure 6.155 head support section : ext_wpmd_head_support_section, total external STD

The flow through this total external STD is analogous to the flow through the total external STD of the class ‘ requirements
document’ (as described in the paragraph ‘Requirements document (integration) : total external behavior-STD).

With the difference that the class ‘head support section’ does not participate in phase 1 or 4. Therefore no action of ‘ head
support section’ will t ake place in these phases.

6.3.2.15.3 Head support section (integration) : internal behavior-STDs

The internal operations of the class ‘head support section’ are in the first place the internal operations as modeled in the
phase 2 and 3. During the integration the following internal operations are added to the class: ‘change_to_phase_1’ ,
‘change_to_ phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and ‘phase_ended’ .

These 5 additional operations are so-called ‘no-operations’ (nops). A nop is an operation that performs no function while
executing. The sole purpose of such an operation is to enable the corresponding transition of the external STD within the
existing SOCCA framework.

These internal operations have internal STDs equivalent to the corresponding operations of the class ‘customer’ (described
in the paragraph ‘Customer (integration) : internal behavior STDs’).

6.3.2.15.4 Head support section (integration) : manager-STD

The total manager STD is the same as the total external STD. Therefore no separate figure is needed for the total manager
STD. The total manager STD of the process fragment ‘writing project management documents’ prescribes in its ‘phase 2’
and ‘phase 3’ states still t he same subprocesses for its phase-employees as was modeled in the phase 2-, and phase 3-sub-
models. These may be called ‘old prescribed subprocesses’ . Subprocess prescriptions for an employee in states (of the
total manager STD) that are not relevant for that employee are ‘don’ t cares’ .

In the integration the total manager gets new employees. For this new employees it is also prescribing subprocesses. These
may be called ‘new prescribed subprocesses’ . The sum total of the prescribed subprocesses by the total manager STD is
therefore (per state) : { old prescribed subprocesses} ∪ { don’ t cares} ∪ { new prescribed subprocesses} .

The new CPSs (Consolidated Prescribed Subprocesses), CCs (Caller_Callee combinations) and TLFs (Transition Logical
Formulas) for this total manager STD are the same as the CPSs, CCs and TLFs for the total manager STD of the class
‘ requirements document’ (as described in the paragraph ‘Requirements document (integration) : manager-STD).

With the difference that all the subprocesses and traps are with respect to ‘head support section’ instead of with respect to
‘ requirements document’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

346

6.3.2.15.5 Head support section (integration) : employee-STDs

The employees of the manager STD of the class ‘head support section’ are in the first place the employees as modeled in
the phase 2 and 3. During the integration the following 7 employees are added: ‘change_to_phase_1’ ,
‘change_to_phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and their caller ‘pr_project_li fe_cycle’ and
‘phase_ended’ and its caller ‘pr_phase_ended’ .

The employee ‘change_to_phase_1’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘head
support section’), according to the caller-callee construct.

The employee ‘change_to_phase_2’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘head
support section’), according to the caller-callee construct.

The employee ‘change_to_phase_3’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘head
support section’), according to the caller-callee construct.

The employee ‘change_to_phase_4’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘head
support section’), according to the caller-callee construct.

The employee ‘pr_project_li fe_cycle’ is the caller of the four callees ‘change_to_phase_1’ , ‘change_to_phase_2’ ,
‘change_to_phase_3’ and ‘change_to_phase_4’ of the class ‘head support section’ . Consequently it has five subprocesses
and traps with respect to the manager STD of the class ‘head support section’ : S1, S2, S3, S4 and S5 and T-1, T-2, T-3, T-
4 and T-5. The next figure shows these five subprocesses of the internal operation ‘pr_project_ li fe_cycle’ .

S-1 SIM_CALL _
CHANGE_TO_
PHASE_1

IN PHASE 1
ASKED

 PRE
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

T-1

PHASE 1
ASKED SIM_CALL _

CHANGE_TO_
PHASE_2

PHASE 2
ASKEDS-2

T-2

PHASE 2
ASKED SIM_CALL _

CHANGE_TO_
PHASE_3

PHASE 3
ASKEDS-3

T-3

PHASE 3
ASKED SIM_CALL _

CHANGE_TO_
PHASE_4

PHASE 4
ASKEDS-4

T-4

OUT

 POST
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

PHASE 4
ASKED

T-5

S-5

figure 6.156 employee int-pr_project_life_cycle : subprocesses S1, S2, S3, S4, S5 wrt_head_support_section

This operation ‘pr_project_li fe_cycle’ is not only an employee of ‘ head support section’ , but also of all other participating
classes of the process fragment ‘writing project management documents’ . All these participating classes prescribe the
same subprocesses S1, S2, S3, S4 and S5. The operation has therefore 19 subprocesses prescribed to it at any one time.
The actual subprocess is the intersection of these 19 prescribed subprocesses. The actual subprocesses of this operation
due to the intersection mechanism, are explained in the paragraph ‘Requirements document (integration) : employee-
STDs’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

347

The employee ‘phase_ended’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘head
support section’), according to the caller-callee construct.

The employee ‘pr_phase_ended’ is the caller of the callee ‘phase_ended’ of the class ‘head support section’ . It has two
subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘head support section’) according to the
caller_callee-construct.

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED SIM_CALL _

PHASE_ENDED

READY

T-1

figure 6.157 employee int-pr_phase_ended : subprocess S1_wrt_head_support_section

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED

READY

T-2

figure 6.158 employee int-pr_phase_ended : subprocess S2_wrt_head_support_section

This operation ‘pr_phase_ended’ is not only an employee of ‘ head support section’ , but also of all other participating
classes of the process fragment ‘writing project management documents’ . All these participating classes prescribe the
same subprocesses S1 and S2. The operation has therefore 19 subprocesses prescribed to it at any one time. The actual
subprocess is the intersection of these 19 prescribed subprocesses.

The actual subprocesses of this operation due to the intersection mechanism, are explained in the paragraph ‘Requirements
document (integration) : employee-STDs’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

348

6.3.2.16 Project management document (integration)

6.3.2.16.1 Project management document (integration) : extended phase-external behavior-STDs

The first step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is the extension of the constituent phase-external STDs with a start state and an end (final) state. The start state
has a transition leaving it and entering the phase-external STD. The final state has a transition coming into it from the
phase-external STD. This construction is performed in the next figures for the phase 1-external STD, the phase 2-external
STD, the phase 3-external STD and the phase 4-external STD of the class ‘project management document’ .

The class ‘project management document’ does not participate in phase 1, 3 or 4. Therefore the phase 1-, phase 3- and
phase 4-external STDs consist of a dummy state.

START PHASE 1 END

figure 6.159 project management document : extended phase 1-external STD

PMD_WRITE_(X)

PHASE 2START END

figure 6.160 project management document : extended phase 2-external STD

PHASE 3START END

figure 6.161 project management document : extended phase 3-external STD

START PHASE 4 END

figure 6.162 project management document : extended phase 4-external STD

6.3.2.16.2 Project management document (integration) : total external behavior-STD

The second step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is to connect the extended phase-external STDs with each other in such a way that the final state of one phase-
external STD coincides with the start state of the next phase-external STD. This ‘coinciding’ state between two phase-
external STDs is called an ‘ intermediate’ state. This models the sequential dependency between the phases.

The transitions leaving the start states get the label ‘change_to_phase_x’ . These represent the ‘phase-changing’ -operations.
The transitions entering the final states get the label ‘pr_phase_ended’ . These represent the ‘phase-ended’ operation. The
construction is performed in the next figure.

Software Process Modeling
in SOCCA

page :
version : 0.10

349

PM D_WRITE_(X)

PHASE 2

PHASE 3

START PHASE 1
INTER-
MEDIATE_1

INTER-
MEDIATE_2

INTER-
MEDIATE_3

PHASE 4 END

CHANGE_TO_
PHASE_2

CHANGE_TO_
PHASE_1

CHANGE_TO_PHASE_3

CHANGE_TO_
PHASE_4

PHASE_ENDEDPHASE_ENDED

PHASE_ENDED PHASE_ENDED

figure 6.163 project management document : ext_wpmd_project_management_document, total external STD

The flow through this total external STD is analogous to the flow through the total external STD of the class ‘ requirements
document’ (as described in the paragraph ‘Requirements document (integration) : total external behavior-STD).

With the difference that the class ‘project management document’ does not participate in phase 1, 3 or 4. Therefore no
action of ‘ project management document’ will t ake place in these phases.

6.3.2.16.3 Project management document (integration) : internal behavior-STDs

The internal operations of the class ‘project management document’ are in the first place the internal operation as modeled
in the phase 2. During the integration the following internal operations are added to the class: ‘change_to_phase_1’ ,
‘change_to_ phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and ‘phase_ended’ .

These 5 additional operations are so-called ‘no-operations’ (nops). A nop is an operation that performs no function while
executing. The sole purpose of such an operation is to enable the corresponding transition of the external STD within the
existing SOCCA framework.

These internal operations have internal STDs equivalent to the corresponding operations of the class ‘customer’ (described
in the paragraph ‘Customer (integration) : internal behavior STDs’).

6.3.2.16.4 Project management document (integration) : manager-STD

The total manager STD is the same as the total external STD. Therefore no separate figure is needed for the total manager
STD. The total manager STD of the process fragment ‘writing project management documents’ prescribes in its ‘phase 2’
state still t he same subprocesses for its phase-employees as was modeled in the phase 2-sub-model. These may be called
‘old prescribed subprocesses’ . Subprocess prescriptions for an employee in states (of the total manager STD) that are not
relevant for that employee are ‘don’ t cares’ .

In the integration the total manager gets new employees. For this new employees it is also prescribing subprocesses. These
may be called ‘new prescribed subprocesses’ . The sum total of the prescribed subprocesses by the total manager STD is
therefore (per state) : { old prescribed subprocesses} ∪ { don’ t cares} ∪ { new prescribed subprocesses} .

The new CPSs (Consolidated Prescribed Subprocesses), CCs (Caller_Callee combinations) and TLFs (Transition Logical
Formulas) for this total manager STD are the same as the CPSs, CCs and TLFs for the total manager STD of the class
‘ requirements document’ (as described in the paragraph ‘Requirements document (integration) : manager-STD).

With the difference that all the subprocesses and traps are with respect to ‘project management document’ instead of with
respect to ‘ requirements document’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

350

6.3.2.16.5 Project management document (integration) : employee-STDs

The employees of the manager STD of the class ‘project management document’ are in the first place the employees as
modeled in the phase 2. During the integration the following 7 employees are added: ‘change_to_phase_1’ ,
‘change_to_phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and their caller ‘pr_project_li fe_cycle’ and
‘phase_ended’ and its caller ‘pr_phase_ended’ .

The employee ‘change_to_phase_1’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘project management document’), according to the caller-callee construct.

The employee ‘change_to_phase_2’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘project management document’), according to the caller-callee construct.

The employee ‘change_to_phase_3’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘project management document’), according to the caller-callee construct.

The employee ‘change_to_phase_4’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘project management document’), according to the caller-callee construct.

The employee ‘pr_project_li fe_cycle’ is the caller of the four callees ‘change_to_phase_1’ , ‘change_to_phase_2’ ,
‘change_to_phase_3’ and ‘change_to_phase_4’ of the class ‘project management document’ . Consequently it has five
subprocesses and traps with respect to the manager STD of the class ‘project management document’ : S1, S2, S3, S4 and
S5 and T-1, T-2, T-3, T-4 and T-5. The next figure shows these five subprocesses of the internal operation ‘pr_project_
li fe_cycle’ .

S-1 SIM_CALL _
CHANGE_TO_
PHASE_1

IN PHASE 1
ASKED

 PRE
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

T-1

PHASE 1
ASKED SIM_CALL _

CHANGE_TO_
PHASE_2

PHASE 2
ASKEDS-2

T-2

PHASE 2
ASKED SIM_CALL _

CHANGE_TO_
PHASE_3

PHASE 3
ASKEDS-3

T-3

PHASE 3
ASKED SIM_CALL _

CHANGE_TO_
PHASE_4

PHASE 4
ASKEDS-4

T-4

OUT

 POST
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

PHASE 4
ASKED

T-5

S-5

figure 6.164 employee int-pr_project_life_cycle : subprocesses S1, S2, S3, S4, S5 wrt_project_management_document

This operation ‘pr_project_li fe_cycle’ is not only an employee of ‘ project management document’ , but also of all other
participating classes of the process fragment ‘writing project management documents’ . All these participating classes
prescribe the same subprocesses S1, S2, S3, S4 and S5. The operation has therefore 19 subprocesses prescribed to it at any
one time. The actual subprocess is the intersection of these 19 prescribed subprocesses. The actual subprocesses of this

Software Process Modeling
in SOCCA

page :
version : 0.10

351

operation due to the intersection mechanism, are explained in the paragraph ‘Requirements document (integration) :
employee-STDs’ .

The employee ‘phase_ended’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘project
management document’), according to the caller-callee construct.

The employee ‘pr_phase_ended’ is the caller of the callee ‘phase_ended’ of the class ‘project management document’ . It
has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘project management document’)
according to the caller_callee-construct.

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED SIM_CALL _

PHASE_ENDED

READY

T-1

figure 6.165 employee int-pr_phase_ended : subprocess S1_wrt_project_management_document

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED

READY

T-2

figure 6.166 employee int-pr_phase_ended : subprocess S2_wrt_project_management_document

This operation ‘pr_phase_ended’ is not only an employee of ‘ project management document’ , but also of all other
participating classes of the process fragment ‘writing project management documents’ . All these participating classes
prescribe the same subprocesses S1 and S2. The operation has therefore 19 subprocesses prescribed to it at any one time.
The actual subprocess is the intersection of these 19 prescribed subprocesses.

The actual subprocesses of this operation due to the intersection mechanism, are explained in the paragraph ‘Requirements
document (integration) : employee-STDs’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

352

6.3.2.17 Project meeting minus (integration)

6.3.2.17.1 Project meeting minus (integration) : extended phase-external behavior-STDs

The first step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is the extension of the constituent phase-external STDs with a start state and an end (final) state. The start state
has a transition leaving it and entering the phase-external STD. The final state has a transition coming into it from the
phase-external STD. This construction is performed in the next figures for the phase 1-external STD, the phase 2-external
STD, the phase 3-external STD and the phase 4-external STD of the class ‘project meeting minus’ .

The class ‘project meeting minus’ does not participate in phase 1, 2 or 4. Therefore the phase 1-, phase 2- and phase 4-
external STDs consist of a dummy state.

START PHASE 1 END

figure 6.167 project meeting minus : extended phase 1-external STD

PHASE 2START END

figure 6.168 project meeting minus : extended phase 2-external STD

PHASE 3

PMM_REQUEST_APPROVAL_(X)

START END

figure 6.169 project meeting minus : extended phase 3-external STD

START PHASE 4 END

figure 6.170 project meeting minus : extended phase 4-external STD

6.3.2.17.2 Project meeting minus (integration) : total external behavior-STD

The second step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is to connect the extended phase-external STDs with each other in such a way that the final state of one phase-
external STD coincides with the start state of the next phase-external STD. This ‘coinciding’ state between two phase-
external STDs is called an ‘ intermediate’ state. This models the sequential dependency between the phases.

The transitions leaving the start states get the label ‘change_to_phase_x’ . These represent the ‘phase-changing’ -operations.
The transitions entering the final states get the label ‘pr_phase_ended’ . These represent the ‘phase-ended’ operation. The
construction is performed in the next figure.

Software Process Modeling
in SOCCA

page :
version : 0.10

353

PHASE 3

PM M_REQUEST_APPROVAL_(X)

PHASE 2START PHASE 1
INTER-
MEDIATE_1

INTER-
MEDIATE_2

INTER-
MEDIATE_3

PHASE 4 END

CHANGE_TO_
PHASE_2

CHANGE_TO_
PHASE_1

CHANGE_TO_PHASE_3

CHANGE_TO_
PHASE_4

PHASE_ENDEDPHASE_ENDED

PHASE_ENDED PHASE_ENDED

figure 6.171 project meeting minus : ext_wpmd_project_meeting_minus, total external STD

The flow through this total external STD is analogous to the flow through the total external STD of the class ‘ requirements
document’ (as described in the paragraph ‘Requirements document (integration) : total external behavior-STD).

With the difference that the class ‘project meeting minus’ does not participate in phase 1, 2 or 4. Therefore no action of
‘project meeting minus’ will t ake place in these phases.

6.3.2.17.3 Project meeting minus (integration) : internal behavior-STDs

The internal operations of the class ‘project meeting minus’ are in the first place the internal operation as modeled in the
phase 3. During the integration the following internal operations are added to the class: ‘change_to_phase_1’ , ‘change_to_
phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and ‘phase_ended’ .

These 5 additional operations are so-called ‘no-operations’ (nops). A nop is an operation that performs no function while
executing. The sole purpose of such an operation is to enable the corresponding transition of the external STD within the
existing SOCCA framework.

These internal operations have internal STDs equivalent to the corresponding operations of the class ‘customer’ (described
in the paragraph ‘Customer (integration) : internal behavior STDs’).

6.3.2.17.4 Project meeting minus (integration) : manager-STD

The total manager STD is the same as the total external STD. Therefore no separate figure is needed for the total manager
STD. The total manager STD of the process fragment ‘writing project management documents’ prescribes in its ‘phase 3’
state still t he same subprocesses for its phase-employees as was modeled in the phase 3-sub-model. These may be called
‘old prescribed subprocesses’ . Subprocess prescriptions for an employee in states (of the total manager STD) that are not
relevant for that employee are ‘don’ t cares’ .

In the integration the total manager gets new employees. For this new employees it is also prescribing subprocesses. These
may be called ‘new prescribed subprocesses’ . The sum total of the prescribed subprocesses by the total manager STD is
therefore (per state) : { old prescribed subprocesses} ∪ { don’ t cares} ∪ { new prescribed subprocesses} .

The new CPSs (Consolidated Prescribed Subprocesses), CCs (Caller_Callee combinations) and TLFs (Transition Logical
Formulas) for this total manager STD are the same as the CPSs, CCs and TLFs for the total manager STD of the class
‘ requirements document’ (as described in the paragraph ‘Requirements document (integration) : manager-STD).

With the difference that all the subprocesses and traps are with respect to ‘project meeting minus’ instead of with respect
to ‘ requirements document’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

354

6.3.2.17.5 Project meeting minus (integration) : employee-STDs

The employees of the manager STD of the class ‘project meeting minus’ are in the first place the employees as modeled in
the phase 3. During the integration the following 7 employees are added: ‘change_to_phase_1’ , ‘change_to_phase_2’ ,
‘change_to_phase_3’ , ‘change_to_phase_4’ and their caller ‘pr_project_li fe_cycle’ and ‘phase_ended’ and its caller
‘pr_phase_ended’ .

The employee ‘change_to_phase_1’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘project meeting minus’), according to the caller-callee construct.

The employee ‘change_to_phase_2’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘project meeting minus’), according to the caller-callee construct.

The employee ‘change_to_phase_3’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘project meeting minus’), according to the caller-callee construct.

The employee ‘change_to_phase_4’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘project meeting minus’), according to the caller-callee construct.

The employee ‘pr_project_li fe_cycle’ is the caller of the four callees ‘change_to_phase_1’ , ‘change_to_phase_2’ ,
‘change_to_phase_3’ and ‘change_to_phase_4’ of the class ‘project meeting minus’ . Consequently it has five
subprocesses and traps with respect to the manager STD of the class ‘project meeting minus’ : S1, S2, S3, S4 and S5 and
T-1, T-2, T-3, T-4 and T-5. The next figure shows these five subprocesses of the internal operation ‘pr_project_
li fe_cycle’ .

S-1 SIM_CALL _
CHANGE_TO_
PHASE_1

IN PHASE 1
ASKED

 PRE
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

T-1

PHASE 1
ASKED SIM_CALL _

CHANGE_TO_
PHASE_2

PHASE 2
ASKEDS-2

T-2

PHASE 2
ASKED SIM_CALL _

CHANGE_TO_
PHASE_3

PHASE 3
ASKEDS-3

T-3

PHASE 3
ASKED SIM_CALL _

CHANGE_TO_
PHASE_4

PHASE 4
ASKEDS-4

T-4

OUT

 POST
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

PHASE 4
ASKED

T-5

S-5

figure 6.172 employee int-pr_project_life_cycle : subprocesses S1, S2, S3, S4, S5 wrt_project_meeting_minus

This operation ‘pr_project_li fe_cycle’ is not only an employee of ‘ project meeting minus’ , but also of all other
participating classes of the process fragment ‘writing project management documents’ . All these participating classes
prescribe the same subprocesses S1, S2, S3, S4 and S5. The operation has therefore 19 subprocesses prescribed to it at any
one time. The actual subprocess is the intersection of these 19 prescribed subprocesses. The actual subprocesses of this

Software Process Modeling
in SOCCA

page :
version : 0.10

355

operation due to the intersection mechanism, are explained in the paragraph ‘Requirements document (integration) :
employee-STDs’ .

The employee ‘phase_ended’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘project
meeting minus’), according to the caller-callee construct.

The employee ‘pr_phase_ended’ is the caller of the callee ‘phase_ended’ of the class ‘project meeting minus’ . It has two
subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘project meeting minus’) according to the
caller_callee-construct.

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED SIM_CALL _

PHASE_ENDED

READY

T-1

figure 6.173 employee int-pr_phase_ended : subprocess S1_wrt_project_meeting_minus

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED

READY

T-2

figure 6.174 employee int-pr_phase_ended : subprocess S2_wrt_project_meeting_minus

This operation ‘pr_phase_ended’ is not only an employee of ‘ project meeting minus’ , but also of all other participating
classes of the process fragment ‘writing project management documents’ . All these participating classes prescribe the
same subprocesses S1 and S2. The operation has therefore 19 subprocesses prescribed to it at any one time. The actual
subprocess is the intersection of these 19 prescribed subprocesses.

The actual subprocesses of this operation due to the intersection mechanism, are explained in the paragraph ‘Requirements
document (integration) : employee-STDs’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

356

6.3.2.18 Archive/documentation administrator (integration)

6.3.2.18.1 Archive/doc administrator (integration) : extended phase-external behavior-STDs

The first step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is the extension of the constituent phase-external STDs with a start state and an end (final) state. The start state
has a transition leaving it and entering the phase-external STD. The final state has a transition coming into it from the
phase-external STD. This construction is performed in the next figures for the phase 1-external STD, the phase 2-external
STD, the phase 3-external STD and the phase 4-external STD of the class ‘archive/documentation administrator’ .

The class ‘archive/documentation administrator’ does not participate in phase 1, 2 or 4. Therefore the phase 1-, phase 2-
and phase 4-external STDs consist of a dummy state.

START PHASE 1 END

figure 6.175 archive/documentation administrator : extended phase 1-external STD

PHASE 2START END

figure 6.176 archive/documentation administrator : extended phase 2-external STD

PHASE 3

ADA_ARCHIVE_(X)

START END

figure 6.177 archive/documentation administrator : extended phase 3-external STD

START PHASE 4 END

figure 6.178 archive/documentation administrator : extended phase 4-external STD

6.3.2.18.2 Archive/documentation administrator (integration) : total external behavior-STD

The second step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is to connect the extended phase-external STDs with each other in such a way that the final state of one phase-
external STD coincides with the start state of the next phase-external STD. This ‘coinciding’ state between two phase-
external STDs is called an ‘ intermediate’ state. This models the sequential dependency between the phases.

The transitions leaving the start states get the label ‘change_to_phase_x’ . These represent the ‘phase-changing’ -operations.
The transitions entering the final states get the label ‘pr_phase_ended’ . These represent the ‘phase-ended’ operation. The
construction is performed in the next figure.

Software Process Modeling
in SOCCA

page :
version : 0.10

357

PHASE 3

ADA_ARCHIVE_(X)

PHASE 2START PHASE 1
INTER-
MEDIATE_1

INTER-
MEDIATE_2

INTER-
MEDIATE_3

PHASE 4 END

CHANGE_TO_
PHASE_2

CHANGE_TO_
PHASE_1

CHANGE_TO_PHASE_3

CHANGE_TO_
PHASE_4

PHASE_ENDEDPHASE_ENDED

PHASE_ENDED PHASE_ENDED

figure 6.179 archive/documentation administrator : ext_wpmd_archive/documentation_administrator, total external STD

The flow through this total external STD is analogous to the flow through the total external STD of the class ‘ requirements
document’ (as described in the paragraph ‘Requirements document (integration) : total external behavior-STD).

With the difference that the class ‘archive/documentation administrator’ does not participate in phase 1, 2 or 4. Therefore
no action of ‘ archive/documentation administrator’ will t ake place in these phases.

6.3.2.18.3 Archive/documentation administrator (integration) : internal behavior-STDs

The internal operations of the class ‘archive/documentation administrator’ are in the first place the internal operation as
modeled in the phase 3. During the integration the following internal operations are added to the class:
‘change_to_phase_1’ , ‘change_to_ phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and ‘phase_ended’ .

These 5 additional operations are so-called ‘no-operations’ (nops). A nop is an operation that performs no function while
executing. The sole purpose of such an operation is to enable the corresponding transition of the external STD within the
existing SOCCA framework.

These internal operations have internal STDs equivalent to the corresponding operations of the class ‘customer’ (described
in the paragraph ‘Customer (integration) : internal behavior STDs’).

6.3.2.18.4 Archive/documentation administrator (integration) : manager-STD

The total manager STD is the same as the total external STD. Therefore no separate figure is needed for the total manager
STD. The total manager STD of the process fragment ‘writing project management documents’ prescribes in its ‘phase 3’
state still t he same subprocesses for its phase-employees as was modeled in the phase 3-sub-model. These may be called
‘old prescribed subprocesses’ . Subprocess prescriptions for an employee in states (of the total manager STD) that are not
relevant for that employee are ‘don’ t cares’ .

In the integration the total manager gets new employees. For this new employees it is also prescribing subprocesses. These
may be called ‘new prescribed subprocesses’ . The sum total of the prescribed subprocesses by the total manager STD is
therefore (per state) : { old prescribed subprocesses} ∪ { don’ t cares} ∪ { new prescribed subprocesses} .

The new CPSs (Consolidated Prescribed Subprocesses), CCs (Caller_Callee combinations) and TLFs (Transition Logical
Formulas) for this total manager STD are the same as the CPSs, CCs and TLFs for the total manager STD of the class
‘ requirements document’ (as described in the paragraph ‘Requirements document (integration) : manager-STD).

With the difference that all the subprocesses and traps are with respect to ‘archive/documentation administrator’ instead of
with respect to ‘ requirements document’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

358

6.3.2.18.5 Archive/documentation administrator (integration) : employee-STDs

The employees of the manager STD of the class ‘archive/documentation administrator’ are in the first place the employees
as modeled in the phase 3. During the integration the following 7 employees are added: ‘change_to_phase_1’ ,
‘change_to_phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and their caller ‘pr_project_li fe_cycle’ and
‘phase_ended’ and its caller ‘pr_phase_ended’ .

The employee ‘change_to_phase_1’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘archive/documentation administrator’), according to the caller-callee construct.

The employee ‘change_to_phase_2’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘archive/documentation administrator’), according to the caller-callee construct.

The employee ‘change_to_phase_3’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘archive/documentation administrator’), according to the caller-callee construct.

The employee ‘change_to_phase_4’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘archive/documentation administrator’), according to the caller-callee construct.

The employee ‘pr_project_li fe_cycle’ is the caller of the four callees ‘change_to_phase_1’ , ‘change_to_phase_2’ ,
‘change_to_phase_3’ and ‘change_to_phase_4’ of the class ‘archive/documentation administrator’ . Consequently it has
five subprocesses and traps with respect to the manager STD of the class ‘archive/documentation administrator’ : S1, S2,
S3, S4 and S5 and T-1, T-2, T-3, T-4 and T-5. The next figure shows these five subprocesses of the internal operation
‘pr_project_ li fe_cycle’ .

S-1 SIM_CALL _
CHANGE_TO_
PHASE_1

IN PHASE 1
ASKED

 PRE
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

T-1

PHASE 1
ASKED SIM_CALL _

CHANGE_TO_
PHASE_2

PHASE 2
ASKEDS-2

T-2

PHASE 2
ASKED SIM_CALL _

CHANGE_TO_
PHASE_3

PHASE 3
ASKEDS-3

T-3

PHASE 3
ASKED SIM_CALL _

CHANGE_TO_
PHASE_4

PHASE 4
ASKEDS-4

T-4

OUT

 POST
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

PHASE 4
ASKED

T-5

S-5

figure 6.180 employee int-pr_project_life_cycle : subprocesses S1, S2, S3, S4, S5 wrt_archive/documentation_administrator

This operation ‘pr_project_li fe_cycle’ is not only an employee of ‘ archive/documentation administrator’ , but also of all
other participating classes of the process fragment ‘writing project management documents’ . All these participating
classes prescribe the same subprocesses S1, S2, S3, S4 and S5. The operation has therefore 19 subprocesses prescribed to
it at any one time. The actual subprocess is the intersection of these 19 prescribed subprocesses. The actual subprocesses

Software Process Modeling
in SOCCA

page :
version : 0.10

359

of this operation due to the intersection mechanism, are explained in the paragraph ‘Requirements document (integration) :
employee-STDs’ .

The employee ‘phase_ended’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘archive/documentation administrator’), according to the caller-callee construct.

The employee ‘pr_phase_ended’ is the caller of the callee ‘phase_ended’ of the class ‘archive/documentation
administrator’ . It has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘archive/ documentation
administrator’) according to the caller_callee-construct.

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED SIM_CALL _

PHASE_ENDED

READY

T-1

figure 6.181 employee int-pr_phase_ended : subprocess S1_wrt_archive/documentation_administrator

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED

READY

T-2

figure 6.182 employee int-pr_phase_ended : subprocess S2_wrt_archive/documentation_administrator

This operation ‘pr_phase_ended’ is not only an employee of ‘ archive/documentation administrator’ , but also of all other
participating classes of the process fragment ‘writing project management documents’ . All these participating classes
prescribe the same subprocesses S1 and S2. The operation has therefore 19 subprocesses prescribed to it at any one time.
The actual subprocess is the intersection of these 19 prescribed subprocesses.

The actual subprocesses of this operation due to the intersection mechanism, are explained in the paragraph ‘Requirements
document (integration) : employee-STDs’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

360

6.3.2.19 Head computer support section (integration)

6.3.2.19.1 Head computer support section (integration) : extended phase-external behavior-STDs

The first step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is the extension of the constituent phase-external STDs with a start state and an end (final) state. The start state
has a transition leaving it and entering the phase-external STD. The final state has a transition coming into it from the
phase-external STD. This construction is performed in the next figures for the phase 1-external STD, the phase 2-external
STD, the phase 3-external STD and the phase 4-external STD of the class ‘head computer support section’ .

The class ‘head computer support section’ does not participate in phase 1, 2 or 3. Therefore the phase 1-, phase 2- and
phase 3-external STDs consist of a dummy state.

START PHASE 1 END

figure 6.183 head computer support section : extended phase 1-external STD

PHASE 2START END

figure 6.184 head computer support section : extended phase 2-external STD

PHASE 3START END

figure 6.185 head computer support section : extended phase 3-external STD

PHASE 4

HCSS_ALL OCATE_RESOURCE

START END

figure 6.186 head computer support section : extended phase 4-external STD

6.3.2.19.2 Head computer support section (integration) : total external behavior-STD

The second step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is to connect the extended phase-external STDs with each other in such a way that the final state of one phase-
external STD coincides with the start state of the next phase-external STD. This ‘coinciding’ state between two phase-
external STDs is called an ‘ intermediate’ state. This models the sequential dependency between the phases.

The transitions leaving the start states get the label ‘change_to_phase_x’ . These represent the ‘phase-changing’ -operations.
The transitions entering the final states get the label ‘pr_phase_ended’ . These represent the ‘phase-ended’ operation. The
construction is performed in the next figure.

Software Process Modeling
in SOCCA

page :
version : 0.10

361

PHASE 3

PHASE 2START PHASE 1
INTER-
MEDIATE_1

INTER-
MEDIATE_2

INTER-
MEDIATE_3

PHASE 4

HCSS_ALLOCATE_RESOURCE

END

CHANGE_TO_
PHASE_2

CHANGE_TO_
PHASE_1

CHANGE_TO_PHASE_3

CHANGE_TO_
PHASE_4

PHASE_ENDEDPHASE_ENDED

PHASE_ENDED PHASE_ENDED

figure 6.187 head computer support section : ext_wpmd_head_computer_support_section, total external STD

The flow through this total external STD is analogous to the flow through the total external STD of the class ‘ requirements
document’ (as described in the paragraph ‘Requirements document (integration) : total external behavior-STD).

With the difference that the class ‘head computer support section’ does not participate in phase 1, 2 or 3. Therefore no
action of ‘ head computer support section’ will t ake place in these phases.

6.3.2.19.3 Head computer support section (integration) : internal behavior-STDs

The internal operations of the class ‘head computer support section’ are in the first place the internal operation as modeled
in the phase 4. During the integration the following internal operations are added to the class: ‘change_to_phase_1’ ,
‘change_to_ phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and ‘phase_ended’ .

These 5 additional operations are so-called ‘no-operations’ (nops). A nop is an operation that performs no function while
executing. The sole purpose of such an operation is to enable the corresponding transition of the external STD within the
existing SOCCA framework.

These internal operations have internal STDs equivalent to the corresponding operations of the class ‘customer’ (described
in the paragraph ‘Customer (integration) : internal behavior STDs’).

6.3.2.19.4 Head computer support section (integration) : manager-STD

The total manager STD is the same as the total external STD. Therefore no separate figure is needed for the total manager
STD. The total manager STD of the process fragment ‘writing project management documents’ prescribes in its ‘phase 4’
state still t he same subprocesses for its phase-employees as was modeled in the phase 4-sub-model. These may be called
‘old prescribed subprocesses’ . Subprocess prescriptions for an employee in states (of the total manager STD) that are not
relevant for that employee are ‘don’ t cares’ .

In the integration the total manager gets new employees. For this new employees it is also prescribing subprocesses. These
may be called ‘new prescribed subprocesses’ . The sum total of the prescribed subprocesses by the total manager STD is
therefore (per state) : { old prescribed subprocesses} ∪ { don’ t cares} ∪ { new prescribed subprocesses} .

The new CPSs (Consolidated Prescribed Subprocesses), CCs (Caller_Callee combinations) and TLFs (Transition Logical
Formulas) for this total manager STD are the same as the CPSs, CCs and TLFs for the total manager STD of the class
‘ requirements document’ (as described in the paragraph ‘Requirements document (integration) : manager-STD).

With the difference that all the subprocesses and traps are with respect to ‘head computer support section’ instead of with
respect to ‘ requirements document’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

362

6.3.2.19.5 Head computer support section (integration) : employee-STDs

The employees of the manager STD of the class ‘head computer support section’ are in the first place the employees as
modeled in the phase 4. During the integration the following 7 employees are added: ‘change_to_phase_1’ ,
‘change_to_phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and their caller ‘pr_project_li fe_cycle’ and
‘phase_ended’ and its caller ‘pr_phase_ended’ .

The employee ‘change_to_phase_1’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘head
computer support section’), according to the caller-callee construct.

The employee ‘change_to_phase_2’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘head
computer support section’), according to the caller-callee construct.

The employee ‘change_to_phase_3’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘head
computer support section’), according to the caller-callee construct.

The employee ‘change_to_phase_4’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘head
computer support section’), according to the caller-callee construct.

The employee ‘pr_project_li fe_cycle’ is the caller of the four callees ‘change_to_phase_1’ , ‘change_to_phase_2’ ,
‘change_to_phase_3’ and ‘change_to_phase_4’ of the class ‘head computer support section’ . Consequently it has five
subprocesses and traps with respect to the manager STD of the class ‘head computer support section’ : S1, S2, S3, S4 and
S5 and T-1, T-2, T-3, T-4 and T-5. The next figure shows these five subprocesses of the internal operation ‘pr_project_
li fe_cycle’ .

S-1 SIM_CALL _
CHANGE_TO_
PHASE_1

IN PHASE 1
ASKED

 PRE
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

T-1

PHASE 1
ASKED SIM_CALL _

CHANGE_TO_
PHASE_2

PHASE 2
ASKEDS-2

T-2

PHASE 2
ASKED SIM_CALL _

CHANGE_TO_
PHASE_3

PHASE 3
ASKEDS-3

T-3

PHASE 3
ASKED SIM_CALL _

CHANGE_TO_
PHASE_4

PHASE 4
ASKEDS-4

T-4

OUT

 POST
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

PHASE 4
ASKED

T-5

S-5

figure 6.188 employee int-pr_project_life_cycle : subprocesses S1, S2, S3, S4, S5 wrt_head_computer_support_section

This operation ‘pr_project_li fe_cycle’ is not only an employee of ‘ head computer support section’ , but also of all other
participating classes of the process fragment ‘writing project management documents’ . All these participating classes
prescribe the same subprocesses S1, S2, S3, S4 and S5. The operation has therefore 19 subprocesses prescribed to it at any
one time. The actual subprocess is the intersection of these 19 prescribed subprocesses. The actual subprocesses of this

Software Process Modeling
in SOCCA

page :
version : 0.10

363

operation due to the intersection mechanism, are explained in the paragraph ‘Requirements document (integration) :
employee-STDs’ .

The employee ‘phase_ended’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘head
computer support section’), according to the caller-callee construct.

The employee ‘pr_phase_ended’ is the caller of the callee ‘phase_ended’ of the class ‘head computer support section’ . It
has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘head computer support section’)
according to the caller_callee-construct.

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED SIM_CALL _

PHASE_ENDED

READY

T-1

figure 6.189 employee int-pr_phase_ended : subprocess S1_wrt_head_computer_support_section

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED

READY

T-2

figure 6.190 employee int-pr_phase_ended : subprocess S2_wrt_head_computer_support_section

This operation ‘pr_phase_ended’ is not only an employee of ‘ head computer support section’ , but also of all other
participating classes of the process fragment ‘writing project management documents’ . All these participating classes
prescribe the same subprocesses S1 and S2. The operation has therefore 19 subprocesses prescribed to it at any one time.
The actual subprocess is the intersection of these 19 prescribed subprocesses.

The actual subprocesses of this operation due to the intersection mechanism, are explained in the paragraph ‘Requirements
document (integration) : employee-STDs’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

364

6.3.2.20 Terms of reference document (integration)

6.3.2.20.1 Terms of reference document (integration) : extended phase-external behavior-STDs

The first step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is the extension of the constituent phase-external STDs with a start state and an end (final) state. The start state
has a transition leaving it and entering the phase-external STD. The final state has a transition coming into it from the
phase-external STD. This construction is performed in the next figures for the phase 1-external STD, the phase 2-external
STD, the phase 3-external STD and the phase 4-external STD of the class ‘ terms of reference document’ .

The class ‘ terms of reference document’ does not participate in phase 1, 2 or 3. Therefore the phase 1-, phase 2- and phase
3-external STDs consist of a dummy state.

START PHASE 1 END

figure 6.191 terms of reference document : extended phase 1-external STD

PHASE 2START END

figure 6.192 terms of reference document : extended phase 2-external STD

PHASE 3START END

figure 6.193 terms of reference document : extended phase 3-external STD

PHASE 4

TOR_WRITE_(X)

START END

figure 6.194 terms of reference document : extended phase 4-external STD

6.3.2.20.2 Terms of reference document (integration) : total external behavior-STD

The second step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is to connect the extended phase-external STDs with each other in such a way that the final state of one phase-
external STD coincides with the start state of the next phase-external STD. This ‘coinciding’ state between two phase-
external STDs is called an ‘ intermediate’ state. This models the sequential dependency between the phases.

The transitions leaving the start states get the label ‘change_to_phase_x’ . These represent the ‘phase-changing’ -operations.
The transitions entering the final states get the label ‘pr_phase_ended’ . These represent the ‘phase-ended’ operation. The
construction is performed in the next figure.

Software Process Modeling
in SOCCA

page :
version : 0.10

365

PHASE 3

PHASE 2START PHASE 1
INTER-
MEDIATE_1

INTER-
MEDIATE_2

INTER-
MEDIATE_3

PHASE 4

TOR_WRITE_(X)

END

CHANGE_TO_
PHASE_2

CHANGE_TO_
PHASE_1

CHANGE_TO_PHASE_3

CHANGE_TO_
PHASE_4

PHASE_ENDEDPHASE_ENDED

PHASE_ENDED PHASE_ENDED

figure 6.195 terms of reference document : ext_wpmd_terms_of_reference_document, total external STD

The flow through this total external STD is analogous to the flow through the total external STD of the class ‘ requirements
document’ (as described in the paragraph ‘Requirements document (integration) : total external behavior-STD).

With the difference that the class ‘ terms of reference document’ does not participate in phase 1, 2 or 3. Therefore no
action of ‘ terms of reference document’ will t ake place in these phases.

6.3.2.20.3 Terms of reference document (integration) : internal behavior-STDs

The internal operations of the class ‘ terms of reference document’ are in the first place the internal operation as modeled in
the phase 4. During the integration the following internal operations are added to the class: ‘change_to_phase_1’ ,
‘change_to_ phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and ‘phase_ended’ .

These 5 additional operations are so-called ‘no-operations’ (nops). A nop is an operation that performs no function while
executing. The sole purpose of such an operation is to enable the corresponding transition of the external STD within the
existing SOCCA framework.

These internal operations have internal STDs equivalent to the corresponding operations of the class ‘customer’ (described
in the paragraph ‘Customer (integration) : internal behavior STDs’).

6.3.2.20.4 Terms of reference document (integration) : manager-STD

The total manager STD is the same as the total external STD. Therefore no separate figure is needed for the total manager
STD. The total manager STD of the process fragment ‘writing project management documents’ prescribes in its ‘phase 4’
state still t he same subprocesses for its phase-employees as was modeled in the phase 4-sub-model. These may be called
‘old prescribed subprocesses’ . Subprocess prescriptions for an employee in states (of the total manager STD) that are not
relevant for that employee are ‘don’ t cares’ .

In the integration the total manager gets new employees. For this new employees it is also prescribing subprocesses. These
may be called ‘new prescribed subprocesses’ . The sum total of the prescribed subprocesses by the total manager STD is
therefore (per state) : { old prescribed subprocesses} ∪ { don’ t cares} ∪ { new prescribed subprocesses} .

The new CPSs (Consolidated Prescribed Subprocesses), CCs (Caller_Callee combinations) and TLFs (Transition Logical
Formulas) for this total manager STD are the same as the CPSs, CCs and TLFs for the total manager STD of the class
‘ requirements document’ (as described in the paragraph ‘Requirements document (integration) : manager-STD).

With the difference that all the subprocesses and traps are with respect to ‘ terms of reference document’ instead of with
respect to ‘ requirements document’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

366

6.3.2.20.5 Terms of reference document (integration) : employee-STDs

The employees of the manager STD of the class ‘ terms of reference document’ are in the first place the employees as
modeled in the phase 4. During the integration the following 7 employees are added: ‘change_to_phase_1’ ,
‘change_to_phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and their caller ‘pr_project_li fe_cycle’ and
‘phase_ended’ and its caller ‘pr_phase_ended’ .

The employee ‘change_to_phase_1’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘ terms
of reference document’), according to the caller-callee construct.

The employee ‘change_to_phase_2’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘ terms
of reference document’), according to the caller-callee construct.

The employee ‘change_to_phase_3’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘ terms
of reference document’), according to the caller-callee construct.

The employee ‘change_to_phase_4’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘ terms
of reference document’), according to the caller-callee construct.

The employee ‘pr_project_li fe_cycle’ is the caller of the four callees ‘change_to_phase_1’ , ‘change_to_phase_2’ ,
‘change_to_phase_3’ and ‘change_to_phase_4’ of the class ‘ terms of reference document’ . Consequently it has five
subprocesses and traps with respect to the manager STD of the class ‘ terms of reference document’ : S1, S2, S3, S4 and
S5 and T-1, T-2, T-3, T-4 and T-5. The next figure shows these five subprocesses of the internal operation ‘pr_project_
li fe_cycle’ .

S-1 SIM_CALL _
CHANGE_TO_
PHASE_1

IN PHASE 1
ASKED

 PRE
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

T-1

PHASE 1
ASKED SIM_CALL _

CHANGE_TO_
PHASE_2

PHASE 2
ASKEDS-2

T-2

PHASE 2
ASKED SIM_CALL _

CHANGE_TO_
PHASE_3

PHASE 3
ASKEDS-3

T-3

PHASE 3
ASKED SIM_CALL _

CHANGE_TO_
PHASE_4

PHASE 4
ASKEDS-4

T-4

OUT

 POST
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

PHASE 4
ASKED

T-5

S-5

figure 6.196 employee int-pr_project_life_cycle : subprocesses S1, S2, S3, S4, S5 wrt_terms_of_reference_document

This operation ‘pr_project_li fe_cycle’ is not only an employee of ‘ terms of reference document’ , but also of all other
participating classes of the process fragment ‘writing project management documents’ . All these participating classes
prescribe the same subprocesses S1, S2, S3, S4 and S5. The operation has therefore 19 subprocesses prescribed to it at any
one time. The actual subprocess is the intersection of these 19 prescribed subprocesses. The actual subprocesses of this

Software Process Modeling
in SOCCA

page :
version : 0.10

367

operation due to the intersection mechanism, are explained in the paragraph ‘Requirements document (integration) :
employee-STDs’ .

The employee ‘phase_ended’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘ terms of
reference document’), according to the caller-callee construct.

The employee ‘pr_phase_ended’ is the caller of the callee ‘phase_ended’ of the class ‘ terms of reference document’ . It has
two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘ terms of reference document’) according to
the caller_callee-construct.

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED SIM_CALL _

PHASE_ENDED

READY

T-1

figure 6.197 employee int-pr_phase_ended : subprocess S1_wrt_terms_of_reference_document

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED

READY

T-2

figure 6.198 employee int-pr_phase_ended : subprocess S2_wrt_terms_of_reference_document

This operation ‘pr_phase_ended’ is not only an employee of ‘ terms of reference document’ , but also of all other
participating classes of the process fragment ‘writing project management documents’ . All these participating classes
prescribe the same subprocesses S1 and S2. The operation has therefore 19 subprocesses prescribed to it at any one time.
The actual subprocess is the intersection of these 19 prescribed subprocesses.

The actual subprocesses of this operation due to the intersection mechanism, are explained in the paragraph ‘Requirements
document (integration) : employee-STDs’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

368

6.3.2.21 Internal memorandum (integration)

6.3.2.21.1 Internal memorandum (integration) : extended phase-external behavior-STDs

The first step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is the extension of the constituent phase-external STDs with a start state and an end (final) state. The start state
has a transition leaving it and entering the phase-external STD. The final state has a transition coming into it from the
phase-external STD. This construction is performed in the next figures for the phase 1-external STD, the phase 2-external
STD, the phase 3-external STD and the phase 4-external STD of the class ‘ internal memorandum’.

The class ‘ internal memorandum’ does not participate in phase 1, 2 or 3. Therefore the phase 1-, phase 2- and phase 3-
external STDs consist of a dummy state.

START PHASE 1 END

figure 6.199 internal memorandum : extended phase 1-external STD

PHASE 2START END

figure 6.200 internal memorandum : extended phase 2-external STD

PHASE 3START END

figure 6.201 internal memorandum : extended phase 3-external STD

PHASE 4

IM_WRITE_(X)

START END

figure 6.202 internal memorandum : extended phase 4-external STD

6.3.2.21.2 Internal memorandum (integration) : total external behavior-STD

The second step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is to connect the extended phase-external STDs with each other in such a way that the final state of one phase-
external STD coincides with the start state of the next phase-external STD. This ‘coinciding’ state between two phase-
external STDs is called an ‘ intermediate’ state. This models the sequential dependency between the phases.

The transitions leaving the start states get the label ‘change_to_phase_x’ . These represent the ‘phase-changing’ -operations.
The transitions entering the final states get the label ‘pr_phase_ended’ . These represent the ‘phase-ended’ operation. The
construction is performed in the next figure.

Software Process Modeling
in SOCCA

page :
version : 0.10

369

PHASE 3

PHASE 2START PHASE 1
INTER-
MEDIATE_1

INTER-
MEDIATE_2

INTER-
MEDIATE_3

PHASE 4

IM_WRITE_(X)

END

CHANGE_TO_
PHASE_2

CHANGE_TO_
PHASE_1

CHANGE_TO_PHASE_3

CHANGE_TO_
PHASE_4

PHASE_ENDEDPHASE_ENDED

PHASE_ENDED PHASE_ENDED

figure 6.203 internal memorandum : ext_wpmd_internal_memorandum, total external STD

The flow through this total external STD is analogous to the flow through the total external STD of the class ‘ requirements
document’ (as described in the paragraph ‘Requirements document (integration) : total external behavior-STD).

With the difference that the class ‘ internal memorandum’ does not participate in phase 1, 2 or 3. Therefore no action of
‘ internal memorandum’ will t ake place in these phases.

6.3.2.21.3 Internal memorandum (integration) : internal behavior-STDs

The internal operations of the class ‘ internal memorandum’ are in the first place the internal operation as modeled in the
phase 4. During the integration the following internal operations are added to the class: ‘change_to_phase_1’ , ‘change_to_
phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and ‘phase_ended’ .

These 5 additional operations are so-called ‘no-operations’ (nops). A nop is an operation that performs no function while
executing. The sole purpose of such an operation is to enable the corresponding transition of the external STD within the
existing SOCCA framework.

These internal operations have internal STDs equivalent to the corresponding operations of the class ‘customer’ (described
in the paragraph ‘Customer (integration) : internal behavior STDs’).

6.3.2.21.4 Internal memorandum (integration) : manager-STD

The total manager STD is the same as the total external STD. Therefore no separate figure is needed for the total manager
STD. The total manager STD of the process fragment ‘writing project management documents’ prescribes in its ‘phase 4’
state still t he same subprocesses for its phase-employees as was modeled in the phase 4-sub-model. These may be called
‘old prescribed subprocesses’ . Subprocess prescriptions for an employee in states (of the total manager STD) that are not
relevant for that employee are ‘don’ t cares’ .

In the integration the total manager gets new employees. For this new employees it is also prescribing subprocesses. These
may be called ‘new prescribed subprocesses’ . The sum total of the prescribed subprocesses by the total manager STD is
therefore (per state) : { old prescribed subprocesses} ∪ { don’ t cares} ∪ { new prescribed subprocesses} .

The new CPSs (Consolidated Prescribed Subprocesses), CCs (Caller_Callee combinations) and TLFs (Transition Logical
Formulas) for this total manager STD are the same as the CPSs, CCs and TLFs for the total manager STD of the class
‘ requirements document’ (as described in the paragraph ‘Requirements document (integration) : manager-STD).

With the difference that all the subprocesses and traps are with respect to ‘ internal memorandum’ instead of with respect
to ‘ requirements document’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

370

6.3.2.21.5 Internal memorandum (integration) : employee-STDs

The employees of the manager STD of the class ‘ internal memorandum’ are in the first place the employees as modeled in
the phase 4. During the integration the following 7 employees are added: ‘change_to_phase_1’ , ‘change_to_phase_2’ ,
‘change_to_phase_3’ , ‘change_to_phase_4’ and their caller ‘pr_project_li fe_cycle’ and ‘phase_ended’ and its caller
‘pr_phase_ended’ .

The employee ‘change_to_phase_1’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘ internal memorandum’), according to the caller-callee construct.

The employee ‘change_to_phase_2’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘ internal memorandum’), according to the caller-callee construct.

The employee ‘change_to_phase_3’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘ internal memorandum’), according to the caller-callee construct.

The employee ‘change_to_phase_4’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘ internal memorandum’), according to the caller-callee construct.

The employee ‘pr_project_li fe_cycle’ is the caller of the four callees ‘change_to_phase_1’ , ‘change_to_phase_2’ ,
‘change_to_phase_3’ and ‘change_to_phase_4’ of the class ‘ internal memorandum’. Consequently it has five
subprocesses and traps with respect to the manager STD of the class ‘ internal memorandum’ : S1, S2, S3, S4 and S5 and
T-1, T-2, T-3, T-4 and T-5. The next figure shows these five subprocesses of the internal operation ‘pr_project_
li fe_cycle’ .

S-1 SIM_CALL _
CHANGE_TO_
PHASE_1

IN PHASE 1
ASKED

 PRE
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

T-1

PHASE 1
ASKED SIM_CALL _

CHANGE_TO_
PHASE_2

PHASE 2
ASKEDS-2

T-2

PHASE 2
ASKED SIM_CALL _

CHANGE_TO_
PHASE_3

PHASE 3
ASKEDS-3

T-3

PHASE 3
ASKED SIM_CALL _

CHANGE_TO_
PHASE_4

PHASE 4
ASKEDS-4

T-4

OUT

 POST
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

PHASE 4
ASKED

T-5

S-5

figure 6.204 employee int-pr_project_life_cycle : subprocesses S1, S2, S3, S4, S5 wrt_internal_memorandum

This operation ‘pr_project_li fe_cycle’ is not only an employee of ‘ internal memorandum’, but also of all other
participating classes of the process fragment ‘writing project management documents’ . All these participating classes
prescribe the same subprocesses S1, S2, S3, S4 and S5. The operation has therefore 19 subprocesses prescribed to it at any
one time. The actual subprocess is the intersection of these 19 prescribed subprocesses. The actual subprocesses of this

Software Process Modeling
in SOCCA

page :
version : 0.10

371

operation due to the intersection mechanism, are explained in the paragraph ‘Requirements document (integration) :
employee-STDs’ .

The employee ‘phase_ended’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘ internal
memorandum’), according to the caller-callee construct.

The employee ‘pr_phase_ended’ is the caller of the callee ‘phase_ended’ of the class ‘ internal memorandum’. It has two
subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘ internal memorandum’) according to the
caller_callee-construct.

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED SIM_CALL _

PHASE_ENDED

READY

T-1

figure 6.205 employee int-pr_phase_ended : subprocess S1_wrt_internal_memorandum

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED

READY

T-2

figure 6.206 employee int-pr_phase_ended : subprocess S2_wrt_internal_memorandum

This operation ‘pr_phase_ended’ is not only an employee of ‘ internal memorandum’, but also of all other participating
classes of the process fragment ‘writing project management documents’ . All these participating classes prescribe the
same subprocesses S1 and S2. The operation has therefore 19 subprocesses prescribed to it at any one time. The actual
subprocess is the intersection of these 19 prescribed subprocesses.

The actual subprocesses of this operation due to the intersection mechanism, are explained in the paragraph ‘Requirements
document (integration) : employee-STDs’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

372

6.3.2.22 Engineer (integration)

6.3.2.22.1 Engineer (integration) : extended phase-external behavior-STDs

The first step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is the extension of the constituent phase-external STDs with a start state and an end (final) state. The start state
has a transition leaving it and entering the phase-external STD. The final state has a transition coming into it from the
phase-external STD. This construction is performed in the next figures for the phase 1-external STD, the phase 2-external
STD, the phase 3-external STD and the phase 4-external STD of the class ‘engineer’ .

The class ‘engineer’ does not participate in phase 1, 2 or 3. Therefore the phase 1-, phase 2- and phase 3-external STDs
consist of a dummy state.

START PHASE 1 END

figure 6.207 engineer : extended phase 1-external STD

PHASE 2START END

figure 6.208 engineer : extended phase 2-external STD

PHASE 3START END

figure 6.209 engineer : extended phase 3-external STD

PHASE 4

ENG_INFORM_(X)

START END

figure 6.210 engineer : extended phase 4-external STD

6.3.2.22.2 Engineer (integration) : total external behavior-STD

The second step in the construction of the total external STD for the process fragment ‘writing project management
documents’ is to connect the extended phase-external STDs with each other in such a way that the final state of one phase-
external STD coincides with the start state of the next phase-external STD. This ‘coinciding’ state between two phase-
external STDs is called an ‘ intermediate’ state. This models the sequential dependency between the phases.

The transitions leaving the start states get the label ‘change_to_phase_x’ . These represent the ‘phase-changing’ -operations.
The transitions entering the final states get the label ‘pr_phase_ended’ . These represent the ‘phase-ended’ operation. The
construction is performed in the next figure.

Software Process Modeling
in SOCCA

page :
version : 0.10

373

PHASE 3

PHASE 2START PHASE 1
INTER-
MEDIATE_1

INTER-
MEDIATE_2

INTER-
MEDIATE_3

PHASE 4

ENG_INFORM_(X)

END

CHANGE_TO_
PHASE_2

CHANGE_TO_
PHASE_1

CHANGE_TO_PHASE_3

CHANGE_TO_
PHASE_4

PHASE_ENDEDPHASE_ENDED

PHASE_ENDED PHASE_ENDED

figure 6.211 engineer : ext_wpmd_engineer, total external STD

The flow through this total external STD is analogous to the flow through the total external STD of the class ‘ requirements
document’ (as described in the paragraph ‘Requirements document (integration) : total external behavior-STD).

With the difference that the class ‘engineer’ does not participate in phase 1, 2 or 3. Therefore no action of ‘ engineer’ will
take place in these phases.

6.3.2.22.3 Engineer (integration) : internal behavior-STDs

The internal operations of the class ‘engineer’ are in the first place the internal operation as modeled in the phase 4.
During the integration the following internal operations are added to the class: ‘change_to_phase_1’ , ‘change_to_
phase_2’ , ‘change_to_phase_3’ , ‘change_to_phase_4’ and ‘phase_ended’ .

These 5 additional operations are so-called ‘no-operations’ (nops). A nop is an operation that performs no function while
executing. The sole purpose of such an operation is to enable the corresponding transition of the external STD within the
existing SOCCA framework.

These internal operations have internal STDs equivalent to the corresponding operations of the class ‘customer’ (described
in the paragraph ‘Customer (integration) : internal behavior STDs’).

6.3.2.22.4 Engineer (integration) : manager-STD

The total manager STD is the same as the total external STD. Therefore no separate figure is needed for the total manager
STD. The total manager STD of the process fragment ‘writing project management documents’ prescribes in its ‘phase 4’
state still t he same subprocesses for its phase-employees as was modeled in the phase 4-sub-model. These may be called
‘old prescribed subprocesses’ . Subprocess prescriptions for an employee in states (of the total manager STD) that are not
relevant for that employee are ‘don’ t cares’ .

In the integration the total manager gets new employees. For this new employees it is also prescribing subprocesses. These
may be called ‘new prescribed subprocesses’ . The sum total of the prescribed subprocesses by the total manager STD is
therefore (per state) : { old prescribed subprocesses} ∪ { don’ t cares} ∪ { new prescribed subprocesses} .

The new CPSs (Consolidated Prescribed Subprocesses), CCs (Caller_Callee combinations) and TLFs (Transition Logical
Formulas) for this total manager STD are the same as the CPSs, CCs and TLFs for the total manager STD of the class
‘ requirements document’ (as described in the paragraph ‘Requirements document (integration) : manager-STD).

With the difference that all the subprocesses and traps are with respect to ‘engineer’ instead of with respect to
‘ requirements document’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

374

6.3.2.22.5 Engineer (integration) : employee-STDs

The employees of the manager STD of the class ‘engineer’ are in the first place the employees as modeled in the phase 4.
During the integration the following 7 employees are added: ‘change_to_phase_1’ , ‘change_to_phase_2’ ,
‘change_to_phase_3’ , ‘change_to_phase_4’ and their caller ‘pr_project_li fe_cycle’ and ‘phase_ended’ and its caller
‘pr_phase_ended’ .

The employee ‘change_to_phase_1’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘engineer’), according to the caller-callee construct.

The employee ‘change_to_phase_2’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘engineer’), according to the caller-callee construct.

The employee ‘change_to_phase_3’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘engineer’), according to the caller-callee construct.

The employee ‘change_to_phase_4’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to
‘engineer’), according to the caller-callee construct.

The employee ‘pr_project_li fe_cycle’ is the caller of the four callees ‘change_to_phase_1’ , ‘change_to_phase_2’ ,
‘change_to_phase_3’ and ‘change_to_phase_4’ of the class ‘engineer’ . Consequently it has five subprocesses and traps
with respect to the manager STD of the class ‘engineer’ : S1, S2, S3, S4 and S5 and T-1, T-2, T-3, T-4 and T-5. The next
figure shows these five subprocesses of the internal operation ‘pr_project_ li fe_cycle’ .

S-1 SIM_CALL _
CHANGE_TO_
PHASE_1

IN PHASE 1
ASKED

 PRE
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

T-1

PHASE 1
ASKED SIM_CALL _

CHANGE_TO_
PHASE_2

PHASE 2
ASKEDS-2

T-2

PHASE 2
ASKED SIM_CALL _

CHANGE_TO_
PHASE_3

PHASE 3
ASKEDS-3

T-3

PHASE 3
ASKED SIM_CALL _

CHANGE_TO_
PHASE_4

PHASE 4
ASKEDS-4

T-4

OUT

 POST
WRITING
PROJECT
MANAGEMENT
DOCUMENTS

PHASE 4
ASKED

T-5

S-5

figure 6.212 employee int-pr_project_life_cycle : subprocesses S1, S2, S3, S4, S5 wrt_engineer

This operation ‘pr_project_li fe_cycle’ is not only an employee of ‘ engineer’ , but also of all other participating classes of
the process fragment ‘writing project management documents’ . All these participating classes prescribe the same
subprocesses S1, S2, S3, S4 and S5. The operation has therefore 19 subprocesses prescribed to it at any one time. The
actual subprocess is the intersection of these 19 prescribed subprocesses. The actual subprocesses of this operation due to
the intersection mechanism, are explained in the paragraph ‘Requirements document (integration) : employee-STDs’ .

Software Process Modeling
in SOCCA

page :
version : 0.10

375

The employee ‘phase_ended’ has two subprocesses S1 and S2, and two traps T-1 and T-2 (all with respect to ‘engineer’),
according to the caller-callee construct.

The employee ‘pr_phase_ended’ is the caller of the callee ‘phase_ended’ of the class ‘engineer’ . It has two subprocesses
S1 and S2, and two traps T-1 and T-2 (all with respect to ‘engineer’) according to the caller_callee-construct.

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED SIM_CALL _

PHASE_ENDED

READY

T-1

figure 6.213 employee int-pr_phase_ended : subprocess S1_wrt_engineer

ACT_
PR_PHASE_
ENDED

NON-
PR_PHASE_
ENDED

PR_PHASE_
ENDED
ASKED

READY

T-2

figure 6.214 employee int-pr_phase_ended : subprocess S2_wrt_engineer

This operation ‘pr_phase_ended’ is not only an employee of ‘ engineer’ , but also of all other participating classes of the
process fragment ‘writing project management documents’ . All these participating classes prescribe the same
subprocesses S1 and S2. The operation has therefore 19 subprocesses prescribed to it at any one time. The actual
subprocess is the intersection of these 19 prescribed subprocesses.

The actual subprocesses of this operation due to the intersection mechanism, are explained in the paragraph ‘Requirements
document (integration) : employee-STDs’ .

SOFTWARE PROCESS MODELING in SOCCA

student : H.G.Brugman
studentnr : 9105506
version : 0.10

Software Process Modeling
in SOCCA

page :
version : 0.10

377

7. Summary and Conclusions

This thesis presents the investigation of two already existing ideas within the Software Engineering and Information
Systems (SEIS) group of the Department of Computer Science of the University of Leiden, to achieve very large
SOCCA models.

This thesis also looks at the issue of the use of a SOCCA model as a process description instead of the usual textual
description.

The three topics addressed in this thesis are :

- investigate the use of often recurring SOCCA ‘constructs’ to limit the size of the model

- investigate if the SOCCA modeling language can be scaled up (i.e. can a larger SOCCA model be
 constructed from indepently developed sub-models)

- investigate the usefullness of a SOCCA model as a process description

Use of ‘constructs’ to limit the size of the SOCCA model

The first question was handled as follows. A very large SOCCA model was developed. The size of this model is 29
classes, 86 operations and 1041 state transition diagrams (of wich only 310 state transition diagrams had to be
explicitily shown as a result of using ‘constructs’).

The modeled process is the software process of the software development organization ‘WBU’ of the Dutch Ministry
of Defense. Two processes of this organization were modeled using the SOCCA modeling language. These processes
are the ‘Software Configuration Management’-process and part of the ‘Software Project Planning’-process (i.e. the
process fragment ‘writing project management documents’). The basis for the models were the process descriptions as
found in the ‘Manual for Technical Project Management’ of the ‘WBU’ organization.

It was found that these processes, SCM and part of SPP, could be accurately modeled in SOCCA. The participants
(agents) in a process, be they humans, documents, software items or abstract concepts (e.g. a meeting), can all be
modeled as objects. Their actions while performing the process, are modeled as the operations of these objects. The
communication between the participants is modeled by using the concepts of a ‘parallel processes modeling’
formalism which is part of SOCCA.

This combination within SOCCA of object-oriented concepts and ‘parallel processes’ concepts allows for the
development of an accurate model of the real world process. In the real world a lot of parallel actions take place. The
ability of SOCCA to model this parallellism is something which gives it an ‘added value’ with respect to other object
oriented modeling languages. The object orientation of SOCCA is in line with the current direction of object oriented
analysis and design in the software engineering field.

During the modeling often recurring ‘constructs’ were identified, named and used. These ‘constructs’ are :

- Caller_Callee-construct
- Waiting_caller_proceed-construct
- Only_internal_action-template
- No-operation (nop)
- Autonomous behavior
- Simultaneous_call-construct
- Discriminator-construct
- Counting-construct
- Consolidated Prescribed Subprocesses and Traps Logical Formula

The size of the developed model is 29 classes, 86 operations and, without the use of ‘constructs’, 1041 state transition
diagrams (STDs). As a result of using ‘constructs’ only 310 state transition diagrams (STDs) had to be explicitily
shown in the model.

Software Process Modeling
in SOCCA

page :
version : 0.10

378

This is a reduction in the size of the SOCCA model of 731 state transition diagrams, i.e. a reduction of 70 %.
The ‘Caller_Callee-construct’ with its variant ‘Waiting_caller_proceed-construct’, was by far the most important in
terms of limiting the size of the SOCCA model. This ‘construct’ specifically applies to the so-called ‘subprocess’-
STDs of a SOCCA model. In the original SOCCA model 688 of the 1041 STDs are of this type. When using the
‘construct’ only 118 ‘subprocess’-STDs had to be shown. This is a saving of 570 STDs, or 55 %.

The ‘only_internal_action template’ with its variant ‘No-operation’, also made a significant contribution to the
reduction of the size of the SOCCA model. This ‘construct’ specifically applies to the so-called ‘internal’-STDs of a
SOCCA model. In the original SOCCA model 184 of the 1041 STDs are of this type. When using the ‘construct’ only
89 ‘internal’-STDs had to be shown. This is a saving of 95 STDs, or 9 %.

The ‘External STD = Manager STD’ variant of the ‘Consolidated Prescribed Subprocesses and Traps Logical
Formula’ also made a contribution. It accounted for a saving of 66 STDs, or 6 %.

A more detailed analysis of the saving in the different parts of the SOCCA model is given in the tables below.

- Software Configuration Management, 11 classes (without constructs)

class extern STD
organ.
view

extern STD
com. view

manager
STD

internal
STD

employee
subpr. STD

Total

tpm - 1 1 6 12 20
cm - 1 1 6 48 56
ci 1 1 1 13 46 62

pcr - 1 1 8 30 40
se - 1 1 1 4 7
re - 1 1 1 4 7

scb - 1 1 1 4 7
ccb - 1 1 1 4 7
te - 1 1 1 4 7
cu - 1 1 2 6 10
rn - 1 1 1 4 7

------ ------ ------ ------ ------ ------
Total 1 11 11 41 166 230

- Software Configuration Management, 11 classes, Saving 80 %
 (with caller_callee construct, only_internal_action template and manager STD = external STD)

class extern STD
organ.
view

extern STD
com. view

manager
STD

internal
STD

employee
subpr. STD

Total

tpm - 1 - 6 - 7
cm - 1 - 6 - 7
ci 1 1 - 1 6 9

pcr - 1 - 1 6 8
se - 1 - 1 - 2
re - 1 - 1 - 2

scb - 1 - 1 - 2
ccb - 1 - 1 - 2
te - 1 - 1 - 2
cu - 1 - 2 - 3
rn - 1 - 1 - 2

------ ------ ------ ------ ------ ------
Total 1 11 - 22 12 46

Software Process Modeling
in SOCCA

page :
version : 0.10

379

- Software Project Planning (phase 1), 9 classes (without constructs)

class extern STD
organ.
view

extern STD
com. view

manager
STD

internal
STD

employee
subpr. STD

Total

cu 1 1 1 1 2 6
rd 1 1 1 1 4 8
am 1 1 1 1 4 8
mb 1 1 1 1 4 8
ceo 1 1 1 1 4 8
hps 1 1 1 2 8 13
pf 1 1 1 1 4 8
hcs 1 1 1 1 4 8
tpm 1 1 1 1 4 8

------ ------ ------ ------ ------ ------
Total 9 9 9 10 38 75

- Software Project Planning (phase 1), 9 classes, Saving 62 %
 (with caller_callee construct and manager STD = external STD)

class extern STD
organ.
view

extern STD
com. view

manager
STD

internal
STD

employee
subpr. STD

Total

cu 1 1 - 1 - 3
rd 1 1 - 1 - 3
am 1 1 - 1 - 3
mb 1 1 - 1 - 3
ceo 1 1 - 1 - 3
hps 1 1 - 2 - 4
pf 1 1 - 1 - 3
hcs 1 1 - 1 - 3
tpm 1 1 - 1 - 3

------ ------ ------ ------ ------ ------
Total 9 9 - 10 - 28

- Software Project Planning (phase 2), 8 classes (without constructs)

class extern STD
organ.
view

extern STD
com. view

manager
STD

internal
STD

employee
subpr. STD

Total

tpm 1 1 1 4 15 22
cu 1 1 1 2 8 13
am 1 1 1 2 8 13
qaa 1 1 1 2 8 13
hprs 1 1 1 4 16 23
hss 1 1 1 1 4 8
pmd 1 1 1 1 4 8
pmm 1 1 1 1 4 8

------ ------ ------ ------ ------ ------
Total 8 8 8 17 67 108

Software Process Modeling
in SOCCA

page :
version : 0.10

380

- Software Project Planning (phase 2), 8 classes, Saving 64 %
 (with caller_callee construct and manager STD = external STD)

class extern STD
organ.
view

extern STD
com. view

manager
STD

internal
STD

employee
subpr. STD

Total

tpm 1 1 - 4 5 11
cu 1 1 - 2 - 4
am 1 1 - 2 - 4
qaa 1 1 - 2 - 4
hprs 1 1 - 4 - 6
hss 1 1 - 1 - 3
pmd 1 1 - 1 - 3
pmm 1 1 - 1 - 3

------ ------ ------ ------ ------ ------
Total 8 8 - 17 5 38

- Software Project Planning (phase 3), 9 classes (without constructs)

class extern STD
organ.
view

extern STD
com. view

manager
STD

internal
STD

employee
subpr. STD

Total

pmm 1 1 1 1 4 8
ceo 1 1 1 1 4 8
hss 1 1 1 1 4 8
qaa 1 1 1 1 4 8
hcs 1 1 1 1 4 8
am 1 1 1 1 4 8
cu 1 1 1 1 4 8
ada 1 1 1 1 4 8
tpm 1 1 1 1 6 10

------ ------ ------ ------ ------ ------
Total 9 9 9 9 38 74

- Software Project Planning (phase 3), 9 classes, Saving 55 %
 (with caller_callee construct and manager STD = external STD)

class extern STD
organ.
view

extern STD
com. view

manager
STD

internal
STD

employee
subpr. STD

Total

pmm 1 1 - 1 - 3
ceo 1 1 - 1 2 5
hss 1 1 - 1 2 5
qaa 1 1 - 1 2 5
hcs 1 1 - 1 - 3
am 1 1 - 1 - 3
cu 1 1 - 1 - 3
ada 1 1 - 1 - 3
tpm 1 1 - 1 - 3

------ ------ ------ ------ ------ ------
Total 9 9 - 9 6 33

- Software Project Planning (phase 4), 9 classes (without constructs)

Software Process Modeling
in SOCCA

page :
version : 0.10

381

class extern STD
organ.
view

extern STD
com. view

manager
STD

internal
STD

employee
subpr. STD

Total

hps 1 1 1 1 2 6
hcss 1 1 1 1 2 6
tor 1 1 1 1 4 8
pf 1 1 1 1 4 8
im 1 1 1 1 6 10
tpm 1 1 1 1 6 10
hps 1 1 1 1 6 10
eng 1 1 1 1 4 8
hcs 1 1 1 1 4 8

------ ------ ------ ------ ------ ------
Total 9 9 9 9 38 74

- Software Project Planning (phase 4), 9 classes, Saving 63 %
 (with caller_callee construct and manager STD = external STD)

class extern STD
organ.
view

extern STD
com. view

manager
STD

internal
STD

employee
subpr. STD

Total

hps 1 1 - 1 - 3
hcss 1 1 - 1 - 3
tor 1 1 - 1 - 3
pf 1 1 - 1 - 3
im 1 1 - 1 - 3
tpm 1 1 - 1 - 3
hps 1 1 - 1 - 3
eng 1 1 - 1 - 3
hcs 1 1 - 1 - 3

------ ------ ------ ------ ------ ------
Total 9 9 - 9 27

- Integration, 20 classes (without constructs)

class extern STD
organ.
view

extern STD
com. view

manager
STD

internal
STD

employee
subpr. STD

Total

project 1 1 1 3 18 24
cu - 1 1 5 17 24
rd - 1 1 5 17 24
am - 1 1 5 17 24
mb - 1 1 5 17 24
ceo - 1 1 5 17 24
hps - 1 1 5 17 24
pf - 1 1 5 17 24
hcs - 1 1 5 17 24
tpm - 1 1 5 17 24
qaa - 1 1 5 17 24
hprs - 1 1 5 17 24
hss - 1 1 5 17 24
pmd - 1 1 5 17 24
pmm - 1 1 5 17 24

Software Process Modeling
in SOCCA

page :
version : 0.10

382

ada - 1 1 5 17 24
hccs - 1 1 5 17 24
tor - 1 1 5 17 24
im - 1 1 5 17 24
eng - 1 1 5 17 24

------ ------ ------ ------ ------ ------
Total 1 20 20 98 341 480

- Integration, 20 classes, Saving 71 %
 (with caller_callee construct, nop, manager STD = external STD and finishing_state construct)

class extern STD
organ.
view

extern STD
com. view

manager
STD

internal
STD

employee
subpr. STD

Total

project 1 1 - 3 - 5
cu - 1 - 1 5 7
rd - 1 - 1 5 7
am - 1 - 1 5 7
mb - 1 - 1 5 7
ceo - 1 - 1 5 7
hps - 1 - 1 5 7
pf - 1 - 1 5 7
hcs - 1 - 1 5 7
tpm - 1 - 1 5 7
qaa - 1 - 1 5 7
hprs - 1 - 1 5 7
hss - 1 - 1 5 7
pmd - 1 - 1 5 7
pmm - 1 - 1 5 7
ada - 1 - 1 5 7
hccs - 1 - 1 5 7
tor - 1 - 1 5 7
im - 1 - 1 5 7
eng - 1 - 1 5 7

------ ------ ------ ------ ------ ------
Total 1 20 - 22 95 138

- Grand Total

classes # STDs (not using
constructs)

STDs (using
constructs)

Saving (# STDs) Saving (%)

29 1041 310 731 70 %

Conclusion

The conclusion that can be drawn is that use of ‘constructs’ do indeed limit the size of a SOCCA model significantly.
In this thesis a reduction of size of 70 % was achieved. The ‘Caller_Callee-construct’ alone contributed a saving of 55
%. It is expected that this ‘Caller_Callee-construct’ will become an imported ‘tool’ when making a very large SOCCA
model.

It can be noted that the ‘simultaneous_call-construct’, ‘discriminator-construct’ and ‘counting-construct’ have no
influence on the number of STDs in the model. They ‘standardize’ often recurring situations in a process. Their use
speeds up the modeling. They also reduce the number of states in a STD.

Software Process Modeling
in SOCCA

page :
version : 0.10

383

Scaleability of SOCCA

To look into the question of the ‘scaleability’ of SOCCA, the modeling of the process fragment ‘writing project
management documents’ was done by splitting the process fragment into four smaller process fragments. These smaller
process fragments were modeled indepently of each other. Then the sub-models of these four smaller process
fragments were integrated into one SOCCA model of the total process fragment ‘writing project management
documents’ .

The intention of the integration process was not to influence the four sub-models. That is to say to make the modeling of
the constituent smaller process fragments independent of their integration. This allows for a separate modeling of the sub-
models (by separate engineers) in a big project. It also facilit ates the update of the total model if there are any changes
required during the li fe time of the model. This is according to the accepted software engineering principle of low
coupling between software modules.

During the modeling of the process fragment ‘writing project management documents’ an ‘integration’-algorithm was
developed. The basic idea of this algorithm is that of ‘foreseen evolution’ of a process. The behavior of the process
evolves over time. This is accomplished by ‘f orcing’ the external STDs of the classes participating in the process from one
behavior (state) to the next.

BEHAVIOR 1
‘FORCED’ TRANSITION
FROM BEHAVIOR 1
TO BEHAVIOR 2

BEHAVIOR 2

This ‘forcing’ is done by a special object, the ‘control’ object. This principle of ‘foreseen’ process evolution is used in
the integration of SOCCA sub-models. What is done, is constructing a ‘total’ external STD per class. The sub-model
external STDs of each class are linked together to form a ‘total’ external STD per class. The ‘total’ external STD is the
external STD for that class for the total integrated SOCCA model. The ‘control’ operation ‘forces’ all total external
STDs in the integrated model from one sub-model behavior to the next. This is in fact the sequential integration of
sub-models. With some adaptations parallel integration of sub-models is also possible.

So, three kinds of integration of SOCCA sub-models are possible :

- sequential integration of sub-models
- parallel integration of sub-models
- mixed sequential and parallel integration of sub-models

This constitutes the first step in the ‘scaling up’ of a SOCCA model. The next step involves the integration of sub-
models that are themselves integrated models. I.e. the sub-models to be integrated are the result of the first step. They
already incorporate a ‘control’ class. Now the integration algorithm is applied to the ‘control’ classes of the sub-
models. The ‘control’ classes are then managed by a ‘master’ control class. (Another, less modular way to scale up, is
to construct a new ‘control’ class that applies to all the integrated models. This new ‘control’ class then supersedes the
existing ‘control’ classes of the participating integrated models. Also for all the classes in the integrated models their
‘grand total’ external STDs have to be constructed, using the ‘total’ external STDs of the integrated models.)

So, also three kinds of integration of SOCCA integrated sub-models are possible :

- sequential integration of integrated sub-models
- parallel integration of integrated sub-models
- mixed sequential and parallel integration of integrated sub-models

In this way successively bigger models can be built . To prevent the bigger models to become to unwieldy (physically to
big), the external STDs must be aggregated to a higher level view before they are incorporated into their total external
STD. In this way, using the integration algorithm in combination with the view concept, the model can be scaled up in a
transparant manner.

Software Process Modeling
in SOCCA

page :
version : 0.10

384

Constructing a view on the external STDs before using them in a ‘total’ external STD also diminishes the amount of
‘ coupling’ between the sub-models and the integration model. Changes in a sub-model are less likely to influence the
integration model, because they are not ‘visible’ in the view of the external STD of the sub-model.

A view of a STD is another STD in which some parts of the original STD are shown and other parts not (those are
hidden). Only the information relevant for a specific ‘user’ is shown. This thesis documents two methods for the
construction of a view of a STD. These are the ‘homomorphic picture’ -construction and the ‘aggregate state’ -
construction.

Another measure to lower the ‘coupling’ between sub-models and integration model and reduce the amount of rework
needed on the sub-models when integrating, was the introduction of the ‘finishing state’-construct. This construct
standardizes the communication between a sub-model and the integration model.

The integration algorithm was succesfully used in this thesis to integrate the four sub-models of the process fragment
‘writing project management documents’ of the ‘Software Project Planning’ process. The integration involved :

- sequential integration
- 4 sub-models
- 1 control class
- 19 participating classes

The extra work to perform the integration was :

- 20 external STDs
- 22 internal STDs
- 95 subprocess STDs

This is a total of 138 STDs, or 45 % of the total of 310 STD in the SOCCA model. This seems a heavy price for the
possibility of integration. However, because of the experimental character of the integration as performed in this
thesis, no maximum use was made of the ‘constructs’. If maximum use is made, the 22 internal STDs can be reduced
to 4 internal STDs, and the 95 subprocess STDs can be reduced to 5 subprocess STDs. Then the extra work to perform
the integration will be 29 STDs, or 14 % of the then total of 202 STDs in the SOCCA model. An overhead of 14 %
seems a reasonable price to pay for the integration.

Conclusion

The integration algorithm allows for the construction of very large SOCCA models :

- by using a team of designers each modeling sub-model(s)
- by re-using existing SOCCA models (model-fragments)
- because of the scaleability of the integration algorithm

It also allows for :

- better control of the design process by decomposition of the process to be modeled
- higher maintainability of the resulting SOCCA model
- low coupling between sub-models and the integration model

The overhead of 14 % looks acceptable when compared to the above mentioned benefits.

It must be noted that the modeling of the integration of the process fragment ‘writing project management documents’
involved only sequential integration. No integration however was performed in this thesis involving parallel or mixed
integration. Also no integration was performed using a ‘master control’ class. So it is recommended to do further
research in this area to check if the integration algorithm as it is defined now, maybe needs some adaptations or
extensions for parallel, mixed or ‘master control’ class integration.

The usefullness of a SOCCA model as a process description

Software Process Modeling
in SOCCA

page :
version : 0.10

385

The usefullness of a SOCCA model as a process description compared to the usual textual description was
investigated. This was done by checking if the SOCCA models of the ‘Software Configuration Management’-process
and the ‘Software Project Planning’-process could be used as input for a process audit. As audit method was chosen
the ‘Capability Maturity Model’-assessment.

The Capability Maturity Model (CMM) is a framework that will help organizations manage and improve their software
process. The CMM was developed by the Software Engineering Institute (SEI) of the Carnegie Mellon University.

CMM provides a set of generic rules for the software process. It prescribes regular measurement of the software
process. Against these measurements the implementation of the rules is verified. On the basis of this feedback the
software process can be better managed and improved.

The measure in which an organization controls its software process is an indication for the ‘maturity’ of that
organization. A mature organization is more likely to deliver a software product according to the specifications, on
time and within budget. The Capability Maturity Model distinguishes between five levels of maturity : Initial,
Repeatable, Defined, Managed and Optimizing.

Each maturity level is divided into Key Process Areas (KPAs). Each Key Process Area is divided into Key Practices.
These Key Practices constitute the ‘checklist’ for each Key Process Area. When all Key Practices of all the Key
Process Areas of a certain maturity level have been fullfilled by an organization, the organization has reached that
maturity level.

The SOCCA models in this thesis concern two of the Key Process Areas of maturity level 2. Namely the KPA
‘Software Configuration Management’ and the KPA ‘Software Project Planning’. Consequently the SOCCA models
were checked against the Key Practices of these KPAs.

The result of this audit is a ‘ticked off’ CMM assessment checklist. The checklists are part of the chapters containing
the SOCCA models. The entries in these lists were checked against the SOCCA process model.

Conclusion

It has been found that the process audit could readily be performed with the SOCCA models as input. In this respect a
SOCCA model has the same usefullness as a textual process description. It must be noted however that a SOCCA
model enforces a more accurate process description. During the modeling several inconsistencies were discovered in
the textual process descriptions that were the basis of the SOCCA models. So, when a realy accurate process
description is required, it is advisable to construct a SOCCA model.

Software Process Modeling
in SOCCA

page :
version : 0.10

386

FINAL CONCLUSIONS

- ‘constructs’ limit the size of a SOCCA model significantly. In this thesis a reduction of size of 70 % was achieved

- the integration algorithm developed in this thesis allows a SOCCA model to be scaled up in an easy manner

- a SOCCA model is a more accurate process description than a textual process description

The SOCCA model developed in this thesis comprises 29 classes and 310 STDs. The net modeling time is estimated at
0.5 year. It is therefore felt that constructing realy large SOCCA models will be a team effort. Some form of
integration will be indispensable in this effort. The integration algorithm presented in this thesis appears to be a
promising candidate for this.

SOFTWARE PROCESS MODELING in SOCCA

student : H.G.Brugman
studentnr : 9105506
version : 0.10

Software Process Modeling
in SOCCA

page :
version : 0.10

387

8. References

[CMM] Paulk M.C., Curtis B., Chrissis M.B., Weber C.V. : Capability Maturity Model for Software, Version 1.1,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, Technical Report
CMU/SEI-93-TR-24 (ESC-TR-93-177), February 1993

[EBE] Ebert J., Engels G. : Structural and Behavioural Views on OMT-Classes, in Bertino E., Urban S. (eds.) :
Object-Oriented Methodologies and Systems (ISOOMS), Palermo, September 1994, LNCS 858, pp. 142-
157, Springer-Verlag, Berlin, Germany, 1994

[ELM] Elmasri R., Navathe S. : Fundamentals of Database Systems, second edition, pp. 457-462, pp. 530-532,
Benjamin/Cummings Publishing Company Inc., Redwood City, California, 1994

[FIN] Finkelstein A., Kramer J., Nuseibeh B. (eds.) : Software Process Modelling and Technology, pp. 9-31,
Research Studies Press Ltd., Taunton, England, 1994

[FOW] Fowler M., Scott K. : UML Distilled, Applying the Standard Object Modeling Language, Object
Technology Series, Addison Wesley Longman Inc., Reading, Massachusetts, 1997

[GRO] Groenewegen L.P.J. : Simulation, Modelling parallel phenomena in Paradigm, Lecture Notes No. 85,
University of Leiden, Department of Computer Science, Leiden, The Netherlands, 1994

[HAR] Harel D. : Statecharts: A Visual Formalism for Complex Systems, in Science of Computer Programming,
Vol 8, No. 3, pp. 231-274, June 1987

[HUM] Humprey W.S. : Managing the Software Process, SEI series in Software Engineering, Addison-Wesley
Publishing Company Inc., Reading, Massachusetts, 1989

[LON] Lonchamp J. : A Structured Conceptual and Terminological Framework for Software Process Engineering,
in Proceedings of the 2nd International Conference on the Software Process, pages 41-53, Berlin, Germany,
February 1993

[MTP] Manual for Technical Project Management, version 1.00, Waco Business Unit, Ministry of Defense, The
Hague, The Netherlands (in Dutch), August 1996

[RUM] Rumbaugh J., Blaha M., Premerlani W., Eddy F., Lorensen W. : Object-Oriented Modeling and Design,
Prentice-Hall International Inc., Englewood Cliffs, New Jersey, 1991

[UML] Booch G., Jacobson I., Rumbaugh J. : Unified Modeling Language, Notation Guide, version 1.0, 13 January
1997, Rational Software Corporation, Santa Clara, California, http://www.rational.com

SOFTWARE PROCESS MODELING in SOCCA

student : H.G.Brugman
studentnr : 9105506
version : 0.10

Software Process Modeling
in SOCCA

page :
version : 0.10

388

9. Abbreviations and Acronyms

ACT - Activate
ADA - Archive/Documentation Administrator
AM - Account Manager

CC - Caller(s)-Callee
CCB - Configuration Control Board
CEO - Chief Executive Officer
CI - Configuration Item
CM - Configuration Manager
CMM - Capability Maturity Model
CMS - Code Management System
CPM - Corporate Process Model
CPS - Consolidated Prescribed Subprocesses
CSCI - Computer Software Configuration Item
CU - CUstomer

DISC - Discriminator

EER - Extended Entity Relationship
ENG - Engineer
EXT - External

HCS - Head Controller Section
HCSS - Head Computer Support Section
HPS - Head Personnel Section
HPRS - Head PRoduction Section
HSS - Head Support Section

IAP - Internal Automation Projects
IM - Internal Memorandum
INT - Internal
IRA - Internal Resources Allocation

KP - Key Practice
KPA - Key Process Area

MB - Make or Buy meeting
MoD - Ministry of Defense

NOP - No OPeration

OO - Object Oriented

PC - Project Contract
PCR - Problem and Change Report
PF - Project Form
PMD - Project Management Document
PMM - Project Meeting Minus
PR - PRoject

QAA - Quality Assurance Adviser

RD - Requirements Document
RE - Reviewer
RN - Release Note

SCB - Software Configuration Board

Software Process Modeling
in SOCCA

page :
version : 0.10

389

SCM - Software Configuration Management
SDP - Software Development Plan
SE - Software Engineer
SEI - Software Engineering Institute
SEIS - Software Engineering and Information Systems
SIM - Simultaneous
SOCCA - Specifications Of Coordinated and Cooperative Activities
SPP - Software Project Planning
STD - State Transition Diagram

TE - Test Engineer
TLF - Traps Logical Formula
TOR - Terms Of Reference
TPM - Technical Project Manager

UML - Unified Modeling Language

Waco - Weapon and command systems
WBU - Weapon and command systems Business Unit

