Leiden University

Computer Science

Mobile radio tomography:
Autonomous vehicle planning for dynamic sensor positions

Name: Leon Helwerda
Date: August 29, 2016

1st supervisor: Walter Kosters (LIACS)
2nd supervisor: Joost Batenburg (CWI & MI)

MASTER'S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands



Mobile radio tomography: Autonomous vehicle planning for dynamic sensor pasons

Abstract

Radio tomography is a collection of techniques that measures the signal tngth
of low-energy radio waves which are exchanged between sensors aroundaea, and
reconstructs information about objects within that area. We show that it is possible
to replace commonly-used static sensors with a mobile sensor netwarkJnmanned
vehicles move the wireless sensors around based on routes that visitcations where
they perform measurements, ensuring that they wait for other vehites along the way.

We investigate planning algorithms that help us to search for routes, andpropose
new algorithms that solve problems related to assigning sensor positiorte the vehicles
and avoiding collisions between them. We implement a toolchain thatis capable of
performing the radio tomographic measurements, with support for roves, drones and
other vehicles, as well as peripheral sensors for communication and maaiing.

We experiment with the complete toolchain in order to determine the performance
and e ectiveness. The results indicate that planning the sensor asgnments and routes
is a di cult problem, but an automatically generated mission could compete with a
hand-made one in terms of the quality of the tomographic image.

Keywords: radio tomography, reconstruction, tomographic imaging, aitonomous vehicles,
mission planning, search algorithms, assignment problemssensor positioning problem,
swarms, multi-agent synchronization, collision avoidane, multiobjective optimization.
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1 Introduction

Radio tomography is an emerging eld of science that deals with the detection of objects
or persons within an area. The techniques employed by radio tomography ake use of
sensor measurements in order to perform this detection. There isaneed for the objects
themselves to have any form of active sensor device or passive markexg.

The measurements that radio tomography technigues collect come from wéless sensors.
These sensors send and receive information to each other. For each packé information
that one sensor receives, the wireless module determines whatdtsignal strength is at
that given moment. This may be the actual transmission power that the wireless antenna
receives or an approximate indication thereof.

Each combination of wireless sensors that communicate in this way form &nk. Assuming
that we know the positions of the sensors, then we also know where thenks are inside a
network of many sensor links. Figure 1 shows an example of such a network.

L T ) L I

@ Wireless Node
@ Attenuating Object

-” Unique Link

Figure 1: A network used in radio tomography. The objects inside the netvork may be
reconstructed using the signal strength measurements of the links

The signal strength of one link is a ected by the objects that are locatedin between the
two sensors. There are certairpaths that the signal can take, which in uences the signal
strength. When the signal passes through objects of di erent materialsit is attenuated by
the object. This causes the signal to be slightly absorbed. It may als be partially re ected
by the object into di erent directions. This leads to an observable decreased signal strength
at the receiving antenna.

Using certain radio tomographic models we make assumptions about how the signal is
attenuated. The signal strength measurements can then reveal some imfimation about
the dimensions and the types of the objects that it crosses. We howev need many links
to determine where those objects are located. Additionally, re ecton caused by the objects
as well as other types of attenuation may lead to noisy measurements, wtih we need to
account for as well [21].
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The reconstruction that we perform in this way allows us to create an image displaying the
objects that are located within the network. These reconstruction nmethods are a part of
an additional collection of techniques, known agadio tomographic imaging (RTI). Various
algorithms that are used in RTI contribute toward reconstructing the measurements into
a smooth image of the detected objects [36].

Thus, we can use RTI to create such cross-section images, without any lo¢r information
than the signal strengths. However, one limitation of current radio tomography solutions
is that they require a large number of wireless sensors that remain ima xed location. This
means that it is di cult to deploy a sensor network in any random locati on.

We propose a new approach to the problem of gathering wireless sensor massments
that overcomes these limitations. We call this versionmobile radio tomography This is a
collection of adapted reconstruction methods, and additional algorithms b make it stable.
The intention is that it can be easily deployed in di erent settin gs without much prior
knowledge about the objects within the network as well as the surrounahgs.

1.1 Problem statement

The main goal of our research is to make it possible to use radio tomography in ber
contexts compared to previous work. We want to nd out whether it is feasible to use a
network with fewer sensors. Instead of placing these at xed positios which we do not
alter during the measurements, we move the sensors around to measudi erent links.

This simple concept does need some more elaboration before we can actyathckle the
reconstruction problem. A dynamic approach also has a number of interégsg subproblems
on its own. This includes the question of how to move those sensors @und without
disturbing the measurements themselves. We also need to enguthat the sensors are placed
at correct and useful locations. Another issue is to make the collectiorof measurements
fast enough so that the objects do not need to stand still for an impractially long time.
This also means that we want to receive a reconstructed image relatie quickly, even if
it is only a partial result with missing measurements.

A major novelty within this subject consists of the principle of moving the sensors around.
In this thesis, we primarily focus on this essential part of mobile adio tomography. To

make the placement of sensors precise enough and to remove most of the mahlabor

during the measurements, we require the use autonomous vehiclesespecially those that
are completely unmanned. These vehicles can take the wireless sens along with them,

collect measurements and send these to a remote station for furthereconstruction.

The use of autonomously moving vehicles brings some additional complicins. We need
to ensure that the vehicles do not collide with objects in the netvork or with each other.
The vehicles should stay close to the network and not lose track of theiposition.

In order to increase the e ciency of mobile radio tomography, we should determine how
the vehicles can gather many sensor links as quickly as possible. Thiseans that there
could be an optimal route for each vehicle. Finding such a route is a prdlem on its own.

In Section 1.1.1, we further explain the reasoning behind the mobile adio tomography
concept, and justify why this is an interesting and novel principle. Section 1.1.2 builds
further upon this by providing possible applications where mobileradio tomography can
help and solve practical problems.
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1.1.1 Motivation

Radio tomography is a relatively new eld of science, but it makes use ofvell-established
algorithms and intuitive tomographic models. It is related to other well-known techniques,
such as radio propagation and telecommunications studies. It also has closgmilarities
with certain medical specialities, such as radiology and radiation therag.

In particular, radio tomographic imaging shares core properties with medtal imaging
processes, including computed tomography (CT) and magnetic resonandgmaging (MRI).

The foundations of these techniques have a common principle, namelthat some form
of radiation is emitted by a source. These waves of energy are absorbed, ptned or

otherwise attenuated by some intermediate object of interest. The esulting signal is then
measured at a collector, and combined with many other sensor readings te@econstruct the
(internal) structure of the objects.

Radio tomography is located at an intersection of multiple principal elds of science. It
uses physics to describe the e ects of radio frequency energy at atomic level, and de nes
fundamental models that make the reconstruction possible using matbmatical methods.
We then put computer science into practice to actually perform the reconstruction in
a reasonable time, and wrap everything together. The full RTI technigue can then be
embedded into other elds, such as biology, medicine, archaeology, paletology, geology,
engineering and social sciences.

There are thus many uses for radio tomography, and it should become accebk to end
users, without requiring them to have an in-depth knowledge of hav RTI works. Radio
tomography also provides many research opportunities, since it can beonstantly improved
through interpretation of existing results and new experiments.

Mobile radio tomography adds to the usability of this technique, sinceit requires far
fewer sensors and can be applied in more situations. It also includesitain interesting
areas of computer science, such as vehicle movement dynamics, adial intelligence and
combinatorial optimization of path routing in graphs.

1.1.2 Applications

We foresee multiple potential settings where mobile radio tomography wuld work better
than other solutions. Since normal radio tomography requires one to builda network of
sensors, whereas the mobile version should be quick to deploy, thatter may perform well
in situations where time is critical.

One realistic example is the case of a building that is on re. The loal re department may
deem it to be unsafe to send in re ghters when the structural int egrity of the complex is
uncertain. On the other hand, there might still be people inside, viho may be unconscious
or otherwise unable to make their presence known. To add insult torijury, the doors may
be locked, and it would take too long to break into all rooms.

Thus, while starting the extinguishing, the re department could make use of robotic vehi-
cles that either move around the premises or drive into the buildhg, using radio frequency
sensors to measure the objects and the unfortunate individuals. Theeconstructed image
can be compared to a oor plan to make a thoughtful decision of whether thee are people
to be saved and to risk the remen's lives.
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Other public services may also have applications for autonomous remotdetection. The
vehicles could be sent to a dangerous location to perform surveillaecor reconnaissance
missions. Mobile radio tomography can be used to determine how many pe&pare inside an
enclosed building during a hostage situation or when a crowd's sizeaeds to be controlled.
It may also be useful for bomb disposal actions, such as to determine welther a suspicious
item has electronic, explosive or moving parts inside it, or that it is a fake.

Robotics are also increasingly used in healthcare facilities to prode resources and enter-
tainment to patients and elderly people. Robotic vehicles could alsmbserve that someone
trips or falls out of a bed, and alarm sta appropriately.

Conventional techniques that are used in the cases described herearf invade someone's
privacy. Radio tomography, on the other hand, does not make a distinction letween people,
who appear as \blobs" within the reconstructed image. This makes it posible to use it in
public places, such as warehouses or festivals. Also, the wireless radrequencies are not
too intrusive or harmful. Thus, RTI is safe to use in these circunstances.

1.2 Approach

We set up a project dedicated to mobile radio tomography. Within this project, we inves-
tigate the possible steps that we should take, implement a toolchain at perform experi-
ments. In the end, this leads to a fully functional and well-tested result.

The project is split up into multiple phases: planning the misdons, operating unmanned
vehicles [19], communicating between the wireless sensors [26],ethradio tomographic
reconstruction and the nal visualization [27]. Figure 2 provides a highlevel overview of
the phases in this project.

_,| Waypoint Mission Wireless Tomography Tomography
planning monitoring measurements reconstruction visualization

Figure 2: Flow diagram of the high-level phases of the mobile radio tomographyroject.

This thesis focuses on the rst two phases, related to autonomous \ecle movement. These
involve planning the (order of) positions where we perform tomographic neasurements,
and letting the vehicles automatically visit these positions without any problems. In our
research, we determine our requirements, create a model of thelsdomain in which we wish
to solve these problems, investigate existing algorithms, implem#& a software toolchain
that plans and monitors missions, and experiment with the entire setp.

Our main ndings of this approach are that the use of search algorithms, collsion avoidance
and other planning algorithms can be helpful tools to augment manually crated routes,
and that the use of vehicles for the purpose of radio tomography is a viabletsategy. These
highlights form the main goal of this thesis.

1.2.1 Team

In order to investigate all the elds related to the mobile radio tomography project and to
divide the tasks among the people responsible for it, we formed a rearch group consisting
of members from Leiden University as well as CWI Amsterdam.

6
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The group consists of the following members, in alphabetical order:

Joost Batenburg (CWI Amsterdam): Supervisor, diverse knowledge otomography
theory and radio tomography imaging (RTI)

Folkert Bleichrodt (CWI Amsterdam): Researcher in RTI and intere sts in embedded
hardware and rovers

Leon Helwerda (Leiden University): MSc student, focus on autonomous nsisions and
vehicle planning

Walter Kosters (Leiden University): Supervisor, diverse knowlalge in the eld of
arti cial intelligence

Tim van der Meij (Leiden University): MSc student, focus on ZigBee packet stream
and reconstruction visualization

The group is frequently assisted by Willem Jan Palenstijn, Daniel Relt, Zhichao Zhong and
Xiaodong Zhuge, all from CWI Amsterdam. They supply useful feedback onlhe theoretical
basis of tomography, antenna properties and other research related to unamned vehicles.
We also appreciate the suggestions from Alyssa Milburn. Her help allowsur research to
make use of, and continue with earlier projects [19, 25, 26, 29].

This master's thesis is made in association with the Leiden Institue of Advanced Computer
Science (LIACS) of Leiden University, and the Centrum Wiskunde & Informatica (CWI)
at Amsterdam, under the supervision of Walter Kosters and Joost Batenbug.

1.3 Overview

The remainder of this thesis is built up as follows. In Section 2, we prform a literature
study concerning existing algorithms and implementations that can hép within the context
of mobile radio tomography. Section 3 provides de nitions for many conceps related to
autonomous vehicles within an environment where we can perform tomograpb sensor
measurements. Then, in Section 4, we describe various algorithms thavere adapted or
speci cally created for planning missions and operating vehicles awthomously. Section 5
puts the de nitions and algorithms into a physical perspective, making it possible to use
them in reality.

We proceed with the introduction of the mobile radio tomography toolchain in Section 6,
which describes how we implement the necessary components in &utured manner.
Section 7 proposes experiments that we perform with this toolchainand provides the
results found in this way. Finally, we conclude in Section 8 with ®me remarks about the
usefulness of the techniques, and state potential future work in Sgion 8.1.

2 Related work

To increase our knowledge and understanding of the problems that we e@ounter when we
create a mobile radio tomography toolchain, we give an overview of some reladl literature.

For more information on the principles of the techniques related to rado tomography, we
refer to other papers that focus on the tomographic measurement collein, reconstruction
and imaging problems [25, 36, 21]. In particular, there are some recent invagations into

7
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making radio tomography more versatile by rotating sensors [35], moving tem for short
distances [20], or placing them in exterior environments [2].

In the remainder of this section, we focus on algorithms, equipment ath other techniques
that allow us to really make a mobile variant of radio tomography, using vehcles that
move the wireless sensors around. In Section 2.1, we describe ekigtalgorithms that can
help us plan and optimize the routes that the vehicles take. Section 2 shows some ways
how we can make the vehicles move around autonomously, where arti ciahtelligence (Al)
and swarm communication play a role. We also discuss the bene ts and dadvantages of
certain autopilot hardware that can control the propulsion of a vehicle.

2.1 Routing algorithms

It is a well-known problem to nd an optimal path between certain loc ations, using a
restricted set of possible moves. This problem has its roots in Al, Were the task is to
improve the path that robots take so that they reach their goal as fast as pos#ile.

There are many variations of this basic problem. These may include addibnal constraints,

such as only allowing movement between certain pairs of locations or gtuding penalties
for certain paths. Depending on the speci c problem that we want to sole, we may use
an algorithm that is adapted for this purpose.

A family of algorithms that is often used to solve these problems, is thegroup of search
algorithms. These routines acceptgraphs as input. Such a graph describes the possible
connections between discrete positions. A search algorithm follow$e paths between those
positions in the graph, in order to construct a route from one point to another, improving

it whenever possible. We investigate the search algorithms furthein Section 4.1.

Another important problem in the eld of combinatorial optimization is the traveling

salesman problem(TSP). In this case, each position has a connection to another, but the
connections can have di erent distances that add up to the length of tre route. The goal
is to nd the shortest route that visits each position (exactly) once. We can add more
restrictions, such as penalties for \turning" in a certain direction, or having to take a

detour, by augmenting the distance weights [37].

A specialized case is the traveling salesman problem for multiple agés. Here, we have
more than one vehicle that needs to visit certain positions. Possiblythe vehicles all have
the same set of positions that are to be visited by one of them. They coulélso have their
own sets, where the goal is to optimize each distinct TSP subprobleni].

We increase the complexity of the problem by requiring each vehid to visit a certain

position at the same time that another vehicle visits a di erent position, such that they

can perform measurements between each other. These synchronizatipmoblems are also
studied independently, and are related to the use of swarms of agentdhat cooperate to
solve a problem [11].

There exist various algorithms that attempt to solve TSP and related vehicle routing prob-
lems [23], known asTSP solvers [18]. They may use various combinatorial optimization
algorithms or local minima gradient searches to improve their solution

A di erent type of optimization methods are the evolutionary algorithms [6]. Here, we use
not just one solution that we improve, but we have apopulation of multiple individuals,
consisting of variables that encode a potential solution. The values oftiose variables can

8
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be mutated to form a new individual, which is then compared to the individuals in the
existing population using a tness function. This evaluation allows us to select the worst
individual, which is then removed from the whole population.

The family of evolutionary algorithms includes a variant which is known as multiobjective
optimization algorithms [13]. Here, we have multiple tness functions, known as objectives
and also have constraints that denote that a certain individual cannot result in a correct
solution. The use of more objectives allow us to improve in multipledomains, e.g., not
only decreasing the length of the routes, but also enhancing other demtive properties.
We continue our research of these evolutionary algorithms in Section 4.2.3.

2.2 Autonomous vehicles

Recently, there is much interest into self-driving cars. Mostof the research concerns large-
scale automobiles that can carry passengers while reducing the need ftiiem to take
action during their normal mode of operation. Such vehicles may even etect dangerous
situations and avoid as much damage as possible. Additional problems are roul a path
to certain locations and adhering to all regulations, such as speed lirtg and tra c signals.

Our research also focuses on autonomous vehicles, but these are of aatent kind. We
do not intend to operate the vehicles on public roads, especially noti the case of certain
types of vehicles that are not allowed nearby such zones, includingrdnes.

The vehicles do not have to carry a pilot or passengers, thus they canébosmaller in size.
We do need to carry around sensors and remain stable, also when we stantillsFinally,
we do need to keep track of other unmanned vehicles that we should awhiand cooperate
with them to solve the tasks at hand.

This requires advanced arti cial intelligence to model and implement the robotic movement
patterns that the vehicles make use of. Such models have a intricattheoretical foundation,
which includes concepts such as the degree of freedom of robotic moyeke discrete
representation of the real world within the robot's memory, and other | ters that make
use of sensors [33].

We can also model the way that di erent vehicles interact as if theyare aswarm, a group of
individual robots that attempt to reach the same goal, either by preprogrammed behavior
or through dynamic communication or sensor detection [14]. This communicdabn also
improves the safety of the arrangement of vehicles, since they can ltanore easily where
the other vehicles are and avoid them while moving.

Finally, we look into existing hardware and software packages that could a us in solving
the problems that we describe. We keep in mind that we want to supparas many di erent
types of vehicles as possible, so that the complete toolchain can beagin many contexts.
This includes vehicles that can y and those that operate on the ground [31]

We can make use of the MAVLink communication protocol, which supports these types
of vehicles [24]. The DroneKit software package allows one to write programtat make
use of this interface, so that they can work with various vehicles, btispeci cally drones
and other miniature plane-like aircraft [1]. Several hardware autopilotscan be controlled
in this way, including the ArduPilot and Navio+ microcontrollers [5, 15].
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3 De nitions

In this section, we provide de nitions for the concepts related to autonomous vehicle
movement and radio tomography. These de nitions lay down the theoretcal foundations
related to the main problem of visiting sensor positions using vehies to the benet of
a tomographic reconstruction. This allows us to express the problemschallenges and
results in a clearly de ned manner. This removes ambiguity about the terms, thus helping
in making the goals more concrete and insightful.

Before de ning a complicated model for sensor positioning in radio tonegraphy, we rst
need to realize that any such model needs to take place in some kind epace This space
can be de ned as some mathematical collection from which we can draw di gent points.
The space may contain any number of points, or in fact have in nitely many points.

The space is the basis of the model in which we de ne our autonomously nving vehicles
that collect tomography measurements. We alter and constrain the space a&ording to
certain rules in Section 3.1, Il it with an environment of physical ob jects in Section 3.2
and give some of those items certain roles, such as the vehicles therves in Section 3.3,
and their sensing features in Section 3.4. This then allows us to dee the missions and
goals in a formal manner in Section 3.5.

3.1 Geometry

The space and the points it contains have certain properties that follev a set of rules

included in a geometry We de ne a geometry as a system of axiomatic rule statements.
Such a geometry augments our model of the space, allowing the model tcehave similar

to the way the physical world works. This holds at least up to a certainlevel of precision

and in certain regions of the space.

The geometric model is thus not exactly equal to the physical world, lt it is similar
enough to work well for our purposes. Through the use of propositions, we cade ne the
shape and density of the space, thus constraining its cloud of points.

One type of geometry in this sense is Euclidean geometry [12]. This axioatic system
de nes ve postulates that describe the properties of the geometry. The postulates bind
together points, allowing other structures such as lines and circle to be de ned. The
postulates are basic necessities for this type of geometry; if a statesnt follows from the
postulates, then that statement is not a postulate.

90

N
180

(a) Postulates 1, 2, 5: lines  (b) Postulate 3: circle radius (c) Postulate 4: angles

Figure 3: Visual representations of the postulates of Euclidean geometry.

In Figure 3, we show some direct results of the postulates. The postates themselves can
be paraphrased as follows:

10
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We connect points with each other using straightlines or segments of nite length.
Such lines can be extended continuously, as long as they remain rgt

We describe acircle uniquely by its center point and a scalar radius.

el

When two lines intersect, then there is anangle between the two lines. Lines that
extend in opposing directions yieldstraight angles and a line exactly in between those
two directions makesright angles with them. This is summarized in the statement
that right angles are equal to each other.

5. Finally, according to the parallel postulate, two line segments, wken we extend them
continuously, must at some point intersect with each other when the agle between
them and a line connecting their start points, the base is less than a straight angle.

3.1.1 Coordinate system

Within the geometry of Section 3.1, we can de ne acoordinate system Each point in our
space receives a unique identi er in this system. This identier, known as a coordinate tuple
or simply coordinates is an ordered, xed-length list of numerical scalars. Each element
of this list is a value from the set of real numbersR.

Such acoordinate value represents the length of a line segment between the point and
another point at which the line segment makes a right angle with a certainline or a
surface de ned by multiple lines. A surface is a plane in the space at whicheach point in
the surface has similar line segments that make right angles with everiine in the surface.

These lines must be a part of the set ofaxes The lines in this set are at right angles
with each other. The intersection of these axes is at one and the same pajrwhich is the
origin of the space. The axes extend continuously in all directions. A coordiate value of
a certain point can then be de ned as the length between the point and acertain surface
of the axes, excluding the axis line related to the coordinate valuen question.

The number of axes is thedimensionality of the system. Often, a space is three-dimensional,
which gives us coordinates of the form €o; €1; €2) 2 R®. When the dimensionality is 2, the
coordinate value of one axis is easier to determine than the plane consiction: the value
is equal to the length of a line to the other axis which is at a right angle with that axis.
The coordinate values also determine the distance onorm between points: the generic
notation kvk, for a given point v 2 R® from our space, means the norm used within the
space, of which we show examples in Equations 3.1 and 3.2.

The use of real numbers for coordinate values allows us to have in nély many points.
Thus, a line can keep on extending, and it can always end at a point. Also,le de nition
of distance between two points (pgo; p1; p2) and (go; th; ) in our space is given using the
L2 norm:

p
k(Po; P1;P2)  (Gos s )k, = (Po )2+ (Ppr )2+ (P2 )2 (3.1)

Here, we make use of elementwise subtraction to be able to handle th@ardinate tuples.

11
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We can constrain the coordinate system to only describe the discret points of the space.
For example, we restrict the coordinate values to only use integersrém Z. This gives
us agrid space where we still have continuous line segments, they just dooh always
intersect at points with coordinates. The grid distance can also be deed as the L norm
or Manhattan norm:

K(po;P1;P2)  (CosChiR)Ky = jPo Coj + jp1 Chj + [Pz j (3.2)

A di erent type of geometry is spherical geometry. Here, lines may intersect even when
they are at right angles with the base. The coordinate system and its assdated norm do
not use straight line distances. Instead, they are based on curves arodma sphere at the
same north-south and east-west parallel lines. The upward axis is wargk so that it is at
right angles of these lines at every point.

At a local level, the spherical geometry behaves much like the othregeometries, but for
greater distance ranges it can be an approximative model of the Earth's dpere geoid [17].
This means that spherical geometry is a more applicable model for the plsical world at
a global level when navigating a larger distance.

N N
(5;0) (5;0)
(4;0) . (4;0)
(3;0) 45 (3;0) 45
(2;0) (2;0)
(1;0) 45 (1;0) i L

(0;0) (0;1)(0;2)(0;3)(0;4)(0:5)E (0;0) (0:l)(O:2)(0;3)(0:4)(0:5)E

(a) Normal Euclidean geometry (b) Grid geometry (c) Spherical geometry

Figure 4: Overview of di erences between certain geometries in therst two dimensions,
such as bounds on the usable points and signi cance of right angles.

Many of the similarities and distinctions between the geometries kted here can also be
represented in a visual manner. We outline some of these charactetiiss in Figure 4. In
Figure 4a, the rst two dimensions of normal Euclidean geometry are shownwhere any
point with real-valued coordinate values is allowable.

Figure 4b shows grid geometry, where we only consider points on speciegrid lines. All
other properties from Euclidean geometry, such as right angles, still bld. Not each part
of the line is actually a point that we can describe in the coordinate sgtem, but this does
not invalidate the line segment itself.

Finally, Figure 4c shows the curved space of spherical geometry. Note foright angles
might still lead to lines that intersect, unlike in other geometries where this is axiomatically
true. Distances between points follow thegreat circle distance [12].

3.1.2 Locations

The points in our geometry de ne locations at which events can take place or objects can
be situated. We often describe locations by the coordinates of the pots that they inhabit.

12



Mobile radio tomography: Autonomous vehicle planning for dynamic sensor pasons

Locations are distinct from points, because we overlay the coordinateystem after de ning
points in our space. The locations are thus a restricted subset of allqgde ned points; not
every point may be a location.

As we have seen in Section 3.1, there exist various geometries and coaordie systems.
Consequently, a location can also be de ned in multiple ways. Thee are more di erences
between the coordinate systems than we discuss in Section 3.1.1. Theerences mentioned
in this section mostly relate to the meaning of the axes in the systemwhich are represented
in Figure 5.

A Euclidean geometry usually has three dimensions, respectivelyabeled asnorth, east
and up axes. These axes extend into the corresponding intuitive direébns as shown in
Figure 5a. The axes are also often given shorthands. In our case, we respigety call them
the y, x and z axes.

Although an ordering of (x;y;z) would be more aesthetically pleasing, the ¥; x; z) order
stems from the two-dimensional coordinate system. Usually, they axis is directed to the
top and x rightward on a at surface. The z axis just adds a third dimension. We then
have coordinates of the form g;es;e;) 2 R3.

Note that the names and order of the axes may dier in systems used in othe elds,
such as aeronautics and ight dynamics [34], or completely di erent applcations such as
computerized imaging.

A grid geometry is similar to the normal Euclidean geometry, with coordinates from the

Cartesian product Z3. If the grid is two-dimensional, then we leave out thez component.

However, when we do use thez component, then it is actually a down axis extending

downward, rather than extending upward in the space. This means thatin comparison to

the normal Euclidean geometry, the nal coordinate value e, becomes its additive inverse
e;. The e ect of this operation on the axes can be witnessed in Figure 5b.

up (6:5;6;55) @
|
! alt
0:0:5) north ! 0:0: 5) north
Rl A ] R 1 ©:0;5) lat
S 7 N
G east & east S
' A S S & lon
(0; 50 (0;5;0) (0; 5;0) (0;5;0) ' )
) S (0; 5,0 (0;5;0)
s Lo s 5 o
; 0; 1 (0;0;5
~ ~ ( ) \(” 1 (0;0; 5)
down

(a) Normal Euclidean geometry (b) Geometry with down axis (c) Spherical geometry

Figure 5: Axes of the three-dimensional coordinate systems in certaigeometries. There
are di erences in axis directions.

The spherical geometry in Figure 5c also has coordinates with three congments, named
after latitude, longitude and altitude [30]. The latitude and longitude axes curve around
a spheroid, while the altitude extends upward perpendicular to he current point. This
means that the direction of the upward\axis" changes along with the curvature of the rst
two axes.
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3.2 Objects

As mentioned in Section 3.1.2, a location may be the host of an object or an evewhich
is directly caused by such an object. Anobject is a unique entity that exists within the
space. Objects come in various types and shapes. They are physical obijg, meaning that
no other object can coincide with it at the same time.

T LD

(a) Cube (b) Cylinder (c) Sphere (d) Cone (e) Other polygon

Figure 6: Examples of various object shapes that exist within the space.

Large objects can take up multiple locations, and they may not be constraiad by, e.g.,
grid coordinates. We can model them as cubes, spheres, boxes, cormesl cylinders, to
give a few examples. We can also construct objects from combinations of ése shapes. We
transform the object by placing the shapes at speci ¢ translation coordnates from their
center location. Figure 6 shows some of these shapes.

Another way to de ne objects is through the use of polygons which are cut-outs from
planes in the space. A polygon can be described by an ordered sequence of cooalies

and its successor§;; p; + 1) for i <m , as well as the nal point and the rst point in the
sequence b ; p1). The polygon itself is the area within thesem edges. For coherency, we
only consider polygons that do not have edges that intersect with each otér.

other circular shapes cannot be de ned with a nite number of polygons.We can create a
large subset of possible objects using polygons, such as the objecthigure 6e.

We use polygons to model real-world objects. We can often leave out some tife large
amount of details, since these do not in uence the large-scale distams between objects.

3.3 Vehicles

One speci c type of object within the space is avehicle Unlike most objects that we
introduce in Section 3.2, a vehicle can move in the space de ned by eumodel. This allows
it to change its current location and orientation. Thus, the vehicle has properties that
de ne its current state.

The orientation or attitude of the vehicle de nes the rotational transformation applied
on the object, i.e., the angle direction that the front end of the vehide is pointing to,
compared to each axis.

Often, the attitude axes are calledpitch, roll and yaw, corresponding to rotations around
the axes in the coordinate system, instead of using the various coondate axis names of
the geometries directly. This is because we may consider the atiitde axes inside a local
frame, after applying transformations and attitudes of parent objects. This plays a role in
the sensors that may depend on multiple attitudes, as described irSection 3.4.
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The vehicles are under the control of the creator of the model, so we arable to choose
how it moves. There are however constraints to its movement pattens, determined by
properties of the vehicle. The vehicle cannot just change its locabn to any other location
instantaneously. Instead, it has a variable but limited speedat which we are able to move
to other locations. The speed is a vector of components for every axis.he speed values
are measured in coordinate values per time unit.

(a) Caterpillar track robot

Tk 2

(b) Rover with wheels (c) Flying quadcopter drone

Figure 7: Physical vehicle types

Vehicles have di erent types. We consider a number of vehicle yipes, some of which are
depicted in Figure 7. If we have a land vehicle such as a caterpillaraick shown in Figure 7a,
a bipedalic robot, or a rover with wheels in Figure 7b, then it always noves on aground
surface in the space. It cannot change the altitude or down component of & initial location.
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Other vehicles might be able to y, such as the drone in Figure 7c. A ying vehicle may
still be a ected by gravity, an acceleration property of the space that attempts to increase
downward speed.

Depending on the vehicle type, the possible values of the speedater may depend on
the vehicle's attitude. For example, a vehicle with wheels can ory move forward or turn
around a certain turning radius. Tracked wheels can operate faster, buare more limited
in turning.

In addition to the speed limitations and external in uences, there are also constant physical
constraints. Vehicles cannot move through other objects, includingvehicles; they can only
change the coordinates of their own parts.

Although the vehicles are under our control, we may provide the vehite with restricted
knowledge about the space it operates in. This may mean that the vehiel knows details
about the bounded size and geometry of the space, but it cannot make any assuyntions
about the objects and their locations in order to avoid them more easilyln Section 5, we
not only restrict this knowledge, but factor in uncertainty of inform ation.

3.4 Sensors

Our model contains sensorsthat detect other parts of the model and interact with them.
There are various types of sensors, but we rst look at sensors that are ofse for radio
tomography. Thesetomographic sensorsare able to send and/or receive signals that are
attenuated by objects in between them, resulting in a detectablenveaker or stronger signal.
They can thus have a sender or receiverole. They can also have both roles at the same
time or cycle between the two transmitter roles over time, depeding on the type of sensor.

All sensors are objects, or are a part of them. A distinguishing feature okensors is that
they can bestatic or dynamic. A sensor that is part of a vehicle as described in Section 3.2
is called dynamic, i.e., its location can change. Otherwise, the saor object is static.
Moving a vehicle thus changes the point at which a dynamic sensor is as well. For some
sensors, we may only be interested in locations where the vehitdespeed is zero, or where
the vehicle is at an actual grid location. The sensor can receive feedba@bout the vehicle
state, as well as its own conditions.

The state of a tomographic sensor can bactive or passive In the active mode, the sensor
performs signal measurements with other sensors. Through these measments, it may
learn the locations of those sensors and the signal strength of the linknl passive mode,
the sensor can also send or receive packets of limited information, buhe communication
can contain other data than that which it sends in active mode.

Aside from tomographic sensors, there also exist other types of sensotsat do not interfere
with the radio tomography. One of these sensors is thénfrared sensor, which can receive
a small-sized command from the creator of the model at any time.

Another type of sensor is thedistance sensor This sensor detects nearby objects. In case
there is an object in a line segment starting from the sensor positiom the current attitude,
the distance sensor determines the intersection point of the linat the object, which is the
rst point that is a part of the object. It then provides the distance to the detected point,
using the L2 norm from Equation 3.1.
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These sensors are part of vehicles, thus they inherit their locatin and attitude angles.
However, it is possible to change this inheritance by associating aervo to the distance
sensor, for example. The servo has a certain angle range in which it caretely rotate. The
servo always rotates in a certain attitude axis relative to the vehide. The servo's current
angle is added to this axis to result in the sensor's current attituce.

There are also other sensors that allow a vehicle to know more about itsr@ironment and

current situation, such as location sensing. Also, the vehicle may ha a clock that sets a
time limit on the vehicle's lifetime. For example, a battery limi ts the amount of time that

the vehicle can move and make use of its sensors. A battery monitor can hesed to know
how long this takes. These sensors are put in a more practical contexhiSection 5.

3.5 Missions

A vehicle may have amission that determines what it should do inside the space during
its lifetime. This mission can be de ned in di erent ways, incl uding specifying the vehicle's
speed at each time unit.

We can describe a mission in a simple but still powerful form usig waypoints. The way-
points are an ordered sequence of locations that the vehicle should Viisin that order.
The way the vehicle reaches those locations does not need to be sped, in which case it
should attempt to reach them in the fastest and safest way possible.

This gives some freedom to adjust the mission while the vehicle i®fiowing it, for example
to avoid collisions with other vehicles or modeled objects that are notexplicitly known
to the mission beforehand. The mission can receive online adjustmé&nto add additional
intermediate waypoints, or remove ones that end up to be unreachable

Waypoints may also let the vehicle wait at a speci c location in order to let the sensor
perform measurements. This can allow us to delay the continuation of he mission until

we have successfully exchanged signals with at least a speci ¢ sBtof sensors, determined
by unique identi ers.

Using this construction, the vehicles can operate in the space usingissions to perform
measurements with their tomographic sensors at speci c locations. Th resulting setP of
sensor positionscontains information about the measurements, most importantly pairs of
locations. In addition, a sensor position may have a time unit in orderto provide unique
timestamps to the measurements.

A measurement (E; F) from location E to F is inside the setP if and only if there are
active tomographic sensors at both locations at the same time, and the sensat E sends
a signal that the sensor atF successfully receives. This means that, in order to add more
viable sensor positions toP, we can alter the missions of the vehicles in such a way that
they visit more locations and synchronize with each other. If both sesors can send and
receive, then we obtain both measurementsE;F ) and (F; E) in the sensor positionsP.

3.5.1 Safe paths
The vehicles from Section 3.3 can move around, but they cannot move tlmugh objects.

Instead, they collide with objects, which might have serious realorld implications, such
as damaging the objects and causing the vehicle to malfunction. In Seicin 5, we take these
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implications into consideration. At the very least, the missions from Section 3.5 could be
consideredfailed when they are obstructed, since they are unable to nish visiting all
points that they should have.

Obviously, the model from Section 3.2 gives us the freedom to de ne gbcts in such a
way that a predetermined mission never collides with them. The ame applies to avoiding
collisions with other vehicles. We can simply make sure that the misions never send
vehicles to the same point at the same time, taking the size of the veable's object into

account, with a suitable padding for the region of in uence of the object.

In some missions, as well as in the practical world mentioned in Sectioh, we might not

know beforehand where each vehicle is located at every time unit ofaeh vehicle's lifetime.

For example, de ning the missions as waypoints means the vehiclesdve a degree of
freedom of moving around to such a waypoint. We could restrict this feedom to ensure that
there are no concurrent intersections between the vehicles' waoints. This also restricts

the possible missions that we can have.

Another option is to remove such restrictions, and avoid impending ollisions during the
mission, shortly before they are about to happen. We can use the distagcsensor from
Section 3.4 to detect any vehicles or objects that are in the way, or eveuse the location
information from an active sensor to determine other object's behavior

Using this proximity information, we can then stop the vehicle, which should prevent the
collision if all vehicles behave in this way. However, this stratgy does not ensure that a
vehicle can continue later on. This means that the mission might stillfail.

When we detect an object close to us, we want to nd a way to get around tlis obstacle
and leave its region of in uence, apart from the passive solution of waitig or stopping
until the other object is gone. However, nding such an escape route mabe nontrivial, or

in some cases, impossible. Aafe pathis a sequence of locations that does not enter any
known regions of in uence that are caused by other objects or vehicledn Section 4.1, we
discuss the details of various methods of nding safe paths.

4  Algorithms

Using the de nitions that we state in Section 3, we can use a higher leMeof abstraction for
modeling our problems and their solutions as search spaces and algorithmespectively.

We outline some of the problems related to autonomous vehicle movemerdand sensor
position planning in this section. In Section 4.1, we delve into the finctionality of existing
search algorithms, and describe them in a formal manner using our modeiVe also describe
a new problem that needs a similar but novel kind of algorithm to solve.Iln Section 4.2,
we return to the problem of nding as many sensor positions as possible ithin certain
limitations, and describe a class of evolutionary algorithms that might give approximate
solutions to this problem in Section 4.2.3.

We propose new algorithms that solve specic problems in a specializethanner. The
same applies to the problems themselves, which may either be vidnown in other elds
of science, or novel approaches within the topics of radio tomography.
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4.1 Search algorithm

There is a need of actively avoiding collisions with objects and velties to allow completing
missions, as seen in Section 3.5.1. This requires an algorithm that searh for a new, safe
path to the next waypoint. Such a search algorithm can be any program that, given the
current location and target location, as well as any environmental informafon such as
unsafe regions, returns a path that is safe according to the current iformation.

The safety of the given path cannot be guaranteed for the time that it takes b follow
that path. We can detect previously unseen objects, or another vehied may move onto the
path. An obvious solution is to use the search algorithm again to nd a new safepath,
once an impeding object is detected.

The search algorithm might not provide an \optimal” safe path, neither in t he sense of
its total length nor in the probability that it remains safe. Of course, an algorithm that
provides certain guarantees about its degree of optimality is helpful.

In the remainder of this section, we recite a number of search algoritins, demonstrate
their similar structure as well as their di erences, and explore the use of search algorithms
in the context of our geometries and missions. The algorithms involved ardreadth rst
search (BFS), Dijkstra, A*, iterative deepening and bidirectional search [33].

The algorithms mentioned here share the property that their input is usually a graph, where
the possible locations are modeled as nodes with edges that indicatedirect connection
between those points. The overall structure of these algorithms istoown in Algorithm 4.1.

Algorithm 4.1  Generic structure of most graph-based search algorithms.
Let G = (V;E) be a graph with an operation to nd a node's neighbors and an indication
of the size ofV. Let s 2 V be the starting node ande 2 V the end node.

1. procedure Search (G, s, €)

2: initialize state variables and distance functions, if necessary

3 allocate memory for paths, maps, sets or queues based on graph size

4 while not all nodes have been visiteddo

5: selectv from unvisited nodes according to a selection procedure, initidy s
6: if v = ethen

7 return the (reconstructed) path from s to v

8: end if

9 update state variables, markv expanded

10: for each neighborv of v according to G do

11: if v has not been expanded befor¢hen

12: add v to the collection of unvisited nodes

13: determine distance of the current path froms to v

14: if there is no earlier path froms to v with lower distance then

15: add edge ¢ ;v) to a path from s to v, using the path from s to v
16: update state variables, including distances

17: end if

18: end if

19: end for

20: end while
21: return an empty sequence
22: end procedure
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For certain geometries in Section 3.1, it may be di cult to describe the space as nite sets
of nodes and edges. One exception is grid geometry, where it is trividb convert points
and grid lines to a graph.

Either way, we do not need to provide the search algorithm with the 1ll graph in one go.
Instead, when an algorithm takes a step of \expanding" a node, that is to s§ nding its
incidental edges or following an edge, we can generate the next part of thgraph on the
y. It is helpful to know the size of the space, the number of nodes or bounds on each
dimension's axis in advance, so that the search algorithm can allocate auti@ry memory.

Finally, we leave out nodes from the graph when they are too close to safe regions.
This can also be determined just before expanding a node. Using thiconstruction, we can
describe the location points in the way they were meant to in Sectin 3.1.2, and only have
an implicit graph during the algorithm.

We can also limit the number of edges of each node in our dynamic graph. We gnconsider
a point to be a neighbor if it is the closest point to the current point in a certain direction.
The neighbor must be in one of the(inter)cardinal directions, i.e., the axis directions and
line segments that havediagonal angles, precisely between the right-angled axes.

When the search algorithm completely expands the end node during its path creation
from the starting node s, it can stop its search. We then have a safe path frons to e.
However, some algorithms might not generate the fastest path possible. Ewn if they do,
they might provide paths that never end up going to e quickly anyway. These di erences
often stems from the order in which an algorithm expands its nodes.

For example, BFS expands nodes in the order that it nds them, usinga queue to expand
nodes found earlier before newly expanded nodes. There is thus amplicit range search
that slowly expands the search outward froms. There is no explicit relationship with the

distance to e, thus the BFS algorithm is not a guided search method.

Another di erence between the search algorithms is the degree of heistics that they use
to speed up the search. The A* search algorithm uses a tentative distate function h(v),
which calculates the norm between any given node and e. The norm may be the one
used in the space, for example Equation 3.1, or any other distance measure.

One condition for this heuristic is that distance function is monotoneg i.e., h(v) is not
greater than the actual path distance to any intermediate nodev®plus h(v9). Also, h(e) = 0.
During the selection phase, the A* search algorithm expands an unviséd node whose
distance from s plus the tentative distance to e appears to be minimal.

Some of these algorithms are designed for weighted graphs, where each edggidates its
distance. If all points are spread out in a grid-like manner, with a g{gance of c between
points on one line, then this distance iscin the cardinal directions and 2c2 in intercardinal
directions when Equation 3.1 is used in normal geometry, for example. Té distance weight
might be helpful information for some search algorithms, e.g., Dijkstras algorithm, but it
does not necessarily lead to a better path or a faster algorithm.

In summary, we can use search algorithms to provide the vehicles witan option to avoid
collisions and take a di erent action when it is inside the region of in uence of another
object. The safe paths that may be provided by a search algorithm may notbe optimal,
but are safe for a while and can bring the vehicle back to its original mision quickly.
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4.2 Planning problem

While we may be able to use algorithms to nd safe paths as shown in Sein 4.1, another
problem is whether we can design an algorithm that plans which waypointsve want to visit
in our mission. Such a mission includes various waypoints, as menti@d in Section 3.5. At
these waypoints, we can perform tomographic measurements. This hedgn increasing the
number of sensor positions, which is vital for making tomographic reconstiction possible
in the rst place, as well as improving its accuracy.

The ultimate goal is thus to nd a mission that optimizes the set of senr positions. This
goal can be de ned into more detail, as it can be split up into multiple, possibly con icting,

subgoals. This is because we do not only want to have more sensor positigimit also keep
the mission duration as low as possible.

Other aims during the mission planning are to cover as much of the spac of interest
as possible, have many intersecting measurement links, decreatiee length of the links
themselves and improve reconstruction in certain areas of the spac&hese aims stem from
the reconstruction algorithm [27], which has some preconditions to be alel to function and
can be improved by following these guidelines. These desiraltiles directly in uence the

usefulness of the chosen mission.

We design di erent missions for multiple vehicles, operating in aswarm-based manner to
move to the necessary sensor positions. When a certain measuremdink (E; F ) is desired,
then one vehicle needs to be at positiorE, and another at F, at the same time.

It might be possible to plan the timing of the vehicles so that they are at those positions up
to a certain degree, but we should still allow for dynamic adjustmens during the mission,
when safe paths from Section 3.5.1 need to be recalculated.

These goals and restrictions limit which missions are of use for the tomogphic recon-
struction, but also provides interesting challenges in allocatig the work of moving and
waiting at waypoints to the vehicles.

In Section 4.2.1, we delve into the problem of assigning a collection of geested sensor
links to the available vehicles, and provide a greedy algorithm whih is able to solve this
problem. Section 4.2.2 augments this algorithm with a collision detecton and avoidance
algorithm. Finally, in Section 4.2.3, we introduce a family of evolutionary algorithms that
can help in optimizing multiple goals, and provide an overview of the omplete algorithm
that attempts to optimize the sensor link positions for our purposes.

4.2.1 Sensor position assignment

As mentioned in Section 3.5, we can describe a mission by the sequermfewaypoints that
it should visit. Usually, this sequence of locations is already order when we provide it
to the vehicle, so that it consecutively moves fromA to B, and then to location C, if
those are provided in that order. However, what do we need to do if we atady have the
sequence of waypoints we want to visit, but not yet the order in whid to visit?

The problem statement here implies that we receive the sequendss if it were an unordered
set. This means that there is probably no need to follow any speci ¢ oder. Some orderings
may be helpful for the tomographic reconstruction, but this is not the issue at this point.
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Instead, we can rearrange the waypoints such that the mission takes Isgime, by visiting
waypoints closer to each other before moving on to distant points.

This principle is similar to the traveling salesman problem (TSP), where we want to visit
each node of a graph exactly once. Each edge in that graph hasveeight a numeric value
indicating the distance between the nodes. We can then optimizehe selected path to
have the smallest total distance. This structure also shares simdrities with the search
algorithm's graph from Section 4.1.

In our case, the input is not just a sequence of waypoints for one givenehicle, but a
set of sensor points. In fact, we havepairs of such sensor locations, originating from
predetermined sensor positions that make up measurement links. Tus we cannot simply
use a TSP solving algorithm to nd the shortest path, since a vehiclecannot be at both
endpoints to perform a measurement.

On the other hand, the additional constraints related to synchronizing those pairs of way-
points pave the way for us to solve the problem using a simple algoritm. Before we
demonstrate this algorithm, we discuss what input it receives, and gplain some conse-
guences of the problem statement.

Assume that the vehicles are each at a giverstarting location, i.e., the location where
they are placed before the mission begins. Consider the vehicles te elements from the

of vehicle v;. Later on, we update these locations to track thecurrent location based on
which waypoints the algorithm assigns to the vehicle.

The sensor positions are given as a set of pairs
P = f(pu1:Pr2); (P2:15P2:2); 215 (Pm;1; Pm;2) G5 (4.1)

with m desired measurement links in total.

Then we determineU, a speci ¢ subset of the Cartesian product of the vehicles:

U

f(u;v)ju2 V;v2 V;ué vg
VZnf(v;v)jv2 Vg (4.2)

These are all the permutations of length 2 of the vehicles, i.e., all th ways we can combine
one vehicle with another vehicle (excluding itself). In the caseof n = 2, we have the

vehicle pairsU = f(v1;V2); (v2;Vv1)g. Thus, a vehicle pair# = (va; vp) from U adheres to

the precondition that either a<b ora>bh.

Next, we take each vehicle pai## = (va; Vp) 2 V and each waypoint pair = ( pc:1;Pe2) 2 P
and calculate the distance of each part of the pair. This gives usl; = kS;  pc1k and
d> = kSp  pc:2k, the distances that the selected vehicles would need to take if #y are
assigned the chosen sensor positions in this selection order. We udeetnorm related to
the target space's coordinate system described in Section 3.1.

Because the vehicles have to wait for each other before they can perfarthe measurements
at these locations, the actualcost of the selection is the maximum ofd; and d,. Afterward,
the new locations of the two vehiclesS,, S, become the selected sensor positions. We then
perform the same steps to calculate the cost of the remaining positionsexcluding
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Since the cost of a selection depends on the current location of thewnlved vehicles, it is
di cult to determine which sequence of selections provides the minimal total cost. We do
not want to calculate every possible selection for every permutation ofhe vehicle pairs at
every step. A greedy algorithm in this case can nd a solution that is posgbly non-optimal
but still has a low cost.

At each step where the greedy algorithm needs to choose a selection o¥ahicle pair and
a sensor pair, it selects the ones that we nd to minimize the folloving:

argmin  max(di(#; );d2(#; )) (4.3)
(# )2U P

The de nitions for , #, d; and d; are as given before, but in Equation 4.3, they are shown
in their dependent form, using whichever pairs# = (Vva;Vvp) and = (Pc:1; Pe:2)-

We select the pairs#m = (Va;Vo)m and m = (Pc1;Pe2)m that are the result of the
minimization within Equation 4.3. If there is more than one possible sekction, then the
greedy algorithm chooses the ones with the lowest vehicle or sensordiges, i.e, the rst
ones it nds when searching in and ordered fashion.

The greedy algorithm then applies this selection by updating the curent locations S, to

pc1 and Sy to pe;2 and removing the sensor position pair fromP. It then continues with

the next step with this new state. In Algorithm 4.2, we provide an overview of the greedy
algorithm, where we show one method to nd the vehicle and sensor pag that minimize

the norms, equivalent to Equation 4.3.

Algorithm 4.2  Structure of the greedy waypoint assignment algorithm.

2: initialize a sequence of waypointsA; for each vehiclev;, with i =1;2;:::;n
3 determine the vehicle permutation pairsU as in Equation 4.2

4: while P 6 ? do

5: let n 1

6: initialize #m, and

7 foral (#; )2U P do

8: note: we have# = (va;Vvp) and = ( Pc:1; Pe:2)

9: letd max(kSa pcikikSp  pe2k)

10: if d< , then

11: m d#nmn #and

12: end if

13: end for

14: note: we now have#y = (Va; Vo)m and m = (Pc:1; Pe2)m as per Equation 4.3
15: add pc;1 to the assignmentA, for vehicle vy

16: add pc2 to the assignmentAy, for vehicle vy

17: Sa PcrandS,  pe2

18: remove , from the set P

19: end while

20: return the assignmentsAi; Az;:::; An

21: end procedure
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4.2.2 Collision avoidance

When vehicles are moving between their assigned waypoints, thegould come across other
objects that impede their progress. Even if we assume that the vehies operate within an

area of the space where there are no xed obstacles, they could stillinder each other due

to conicting routes by crossing each other or blocking another vehicle's waypoint.

We could leave the vehicles to detect potential collisions on theiown during the mission,
as mentioned in Section 3.5. However, we want to know beforehand whethe certain
planned mission can be completed safely and successfully, and avoiéatllock situations
where vehicles block the waypoints of each other. Thus we integrata form of collision
avoidanceinto the objectives of the planning problems that we wish to solve.

In Section 3.5.1, the concept of a safe path is introduced. This notion atiws us to de ne
beforehand whether a route from one waypoint to another likely leads tcan unsafe state.
It does not provide certainty that a safe path always remains safe. In ontrolled situations,
where there are no moving objects other than the vehicles, we assuwarthat it is safe.

Since there might be multiple possible paths that a vehicle could &ke, we want to be able
to deduce which one leads to the least con icts and can be considereth¢ \safest". We also
want to know how long the chosen routes are, so we can receive a measofenission length
of the vehicles. The search algorithm from Section 4.1 helps in solvinthese problems, but
the algorithm does not state how we keep track of the concurrent routes ohow to make
use of the resulting path, if it can be found.

We propose a collision avoidance planning algorithm which tracks the podsle locations,
delegates the safe path problem to a search algorithm and nalizes the roes of the
vehicles. This algorithm keeps the synchronization points of the veltles in mind. The
current information of which vehicle has synchronized with another cetermines which
routes we need to take into account. These are the concurrent routes lvich could con ict
with a path toward a certain waypoint.

When two vehicles perform a measurement, they need to take separmtroutes to two
locations. The routes should not cross each other. Afterward, their prr routes no longer
con ict with any later route. Of course, a vehicle's route does not ©n ict with any earlier
part of its own route. However, if there are more than two vehicles, a por route may still
con ict with some other route until each vehicle has synchronized wih all other vehicles.

The collision avoidance algorithm integrates with the greedy sensor poson assignment
algorithm from Section 4.2.1. Whenever the assignment algorithm selectshie vehicles to
move to some positions, we check whether this is safe. The norm usdd the greedy
selection can also be augmented to use a more realistic distance, késg detours in mind.
The collision avoidance algorithm takes one step each time to accomplishhis.

In between the calls to the collision avoidance algorithm, we keep trdc of the routes,
locations and synchronization states of the vehicles. These global stadepersist between
calls to the algorithm, so that a next step can continue from the previots state without
having to do a lot of initialization again.

The graph of possible locations often needs to be altered during the algithm. We track
which locations are potentially dangerous, by removing the edges to ttm. Due to this,
the search algorithm from Section 4.1 skips the dangerous areas. When a vele is not yet
synchronized with the vehicle, then we mark its previous route as dngerous.
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Note that synchronicity is not a symmetric relation. Thus, one vehicle may not have
followed its entire route when the current vehicle is synchronzing with it. Therefore, we
check whether the current vehicle has waited for other vehicle, ot the other way around.

When we have found a route, then we start tracking this new route as wit as the new
location of the vehicle. If no route could be found by the search algoritim, then the visit to
the given waypoint is potentially unsafe. The planning algorithm still continues, ignoring
the vehicle's route, but we can mark the entire assignment invalid h some use cases.

To end this step, we place the graph back to the way it was before. Thewrent vehicle's
location becomes unreachable. The algorithm detects which vehiclese fully synchronized.
Their prior routes as well the sets of vehicles they synchronized ith are then forgotten.

The collision avoidance algorithm ensures that an assignment of waypoints safe enough
to put into practice. It copes with vehicles and missions that cannotavoid obstacles by
themselves, and improves performance otherwise. We can thus dtdllow con icting routes
and predict problematic situations. The complete algorithm is shown h Algorithm 4.3.

Algorithm 4.3  The collision avoidance planning algorithm.

Let vp be the vehicle that we currently assign the locationN, to, and vq a vehicle that
synchronized with it there.

L letV f wvi;ve;iii;vng

2. let Wq; Wy;:::; W, be sets, whereW; f vig are vehicles with whichv; synchronized
3: initialize a graph G where each node corresponds to (the area around) a location
4: remove edges fronG for node pairs that enter forbidden areas

5: remove incoming edges fronG for nodes corresponding taS;;:::; Sy
6: initialize sequencesRy;:::;Rp

7: procedure Avoid (S1;Sp;:::; Sn; Vp; Vg, Np)

8: forall vi 2V do

9: if vi 2 W, then

10: remove the edges for nodes iR; from G

11: end if

12: end for

13: let r  Search (G; Sp;Np)

14: appendr excluding the goal point to Rp

15: readd the edges forS, to G

16: remove incoming edges for the node corresponding N,

172 Sp NpandW, W,[f vgg

18: forall vi 2V do

19: if vi 2 W, then

20: readd the edges for nodes iR; to G

21: end if

22: if vi 8 vp™ W; =V then

23: clear the sequencer;

24:. Wi f Vig

25: end if

26: end for
27: end procedure
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4.2.3 Evolutionary algorithms

In order to obtain a safe and well-ordered assignment of mission waypoist we rst need
to nd a good set of positions in the rst place. In other words, we want to deduce which
sensor positions are helpful for the reconstruction algorithm, and optinize toward a better
result without increasing the mission length too much.

For this purpose, we design an evolutionary algorithm, which is based on amily known as
multiobjective optimization algorithms (MOOASs) [13]. The process ow of such a MOOA
is similar to the normal evolutionary strategy [6]:

1. Initialize a random population, where eachindividual represents a potential solution
to the problem.

2. Pick one of the individuals and mutate it to create another individual.

3. As a nal step of one iteration, select an inadequate individual and remove it from
the population, so that it remains the same size.

This continues from step 2 for a given number of iterationstmax . When the algorithm ends,
we select one of the individuals objectively or subjectively, and otput it as the solution.

In the remainder of this section, we look into more detail how each ste works, in which
ways a MOOA di ers from other evolutionary algorithms, and what the impl ications are
for our purpose.

namely i1; i2;:::; i . The variables receive values that are generated using a uniform
random distribution over a given domain [8]. The domain may di er per variable, but its
parameters are shared between individuals. Therefore, each variable; may receive real
numbers from an interval [a;;3) R, or they can be limited to the integers from Z. A
variable can also be binary, thus receiving a uniform random value fronf 0; 1g.

After the population has been generated, we determine whether each dividual adheres to
all constraints and calculate the objective values For this purpose, the planning problem
from Section 4.2 needs to provide a number of constraints and objecte/functions that can
be evaluated to provide a score for a given individual. A constraint déermines whether
the individual is feasible i.e., it is an acceptable solution, whereas an objective function
can be evaluated to receive an indication whether one individual is better in reachhg a
certain goal than another individual.

In our case, the variables of an individual are a representation of a certai selection of
sensor positions, and the function evaluations, if necessary, convethis representation to
an assignment of waypoints for each vehicle and resulting tness value Using the greedy
assignment algorithm in Section 4.2.1, we can determine such waypointgnd also obtain
an objective value for the mission duration, which we want to minimize

We use similar approaches to determine whether the positions are valifor a tomographic
reconstruction, and deduce additional constraints and objectives. Tis provides for each
individual X; the feasibility value f; 2 f 0; 1g, which is 1 if and only if all constraints are
met. We also determine the values of objective functionsgc : R ! Rwith1l Kk ,
so function evaluations per individual. These resulting feasibility valuesf; and objective
values gk (X;) play important roles during step 3, when we select an individual toremove.
However, we rst need to perform a mutation in step 2.
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a discrete uniform distribution over the -sized population. We apply mutation operators
to the values of all variables. This operator can have di erent e ects onthe variables. One
common mutation operator uses a normal distributionN; ( i ; ;) with standard deviation

j » to slightly shift a real-valued variable ; . This may cause the value to leave the interval
[3;;13). We can reject such mutations using constraints. Another simple opgator bit- ips
a binary variable with a speci ¢ probability ; [7].

We can also use problem-speci c operators that use knowledge about theslationships
between dependent variables, such as trying to put one sensor poirin the other side of
the area of interest. In any case, we should attempt to keep the valuewithin the interval
constraints, otherwise the mutated individual is immediately infeasible and thus useless.
The constraints and objectives are also evaluated for this new individal, after which we
enter the selection step with + 1 individuals.

Similar to a normal evolutionary algorithm, we attempt to remove infeasible individuals,

so if there are any that fail some constraints, we randomly select one. @ierwise, we have
to select an individual to remove from a population that contains only feasible individuals.

Now, because we have multiple objective functions, we cannot simpldecide to remove
a feasible individual based on one function evaluation. Instead, we faor in all objective

functions by grouping the resulting individual solutions.

% % % % % %

Figure 8: Example of a Pareto front with objective functions as axes.

We consider an individual X ; dominated if there is another feasible individual X, with
1 b that is strictly better in all objectives, i.e.,

a(Xa) >gk(Xp) forall kwithl k (4.4)
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An individual is nondominated if there is no such individual that dominates it, according
to Equation 4.4. We assume that all objectives are to be minimized. If adinction g should
be maximized, then we convert it to an objective by negating it, i.e, g°= g.

We group the individuals into dominated and nondominated layers; the latter group is also
called the Pareto front. If there are no infeasible individuals, but we do have dominated
individuals in the population, then we randomly select and remove oneof them.

When the MOOA has a population containing only feasible, nondominated imividuals,
then it uses a di erent selection mechanism, which removes théndividual that contributes
the least to the current population. Such heuristics keep individuals whose neighboring
points are the furthest away, using specialized distance or conthiution calculations [16]. In
addition, we keep the nondominated individuals that have one currenly minimal objective
value, i.e., the endpoints if the objective values of this front wee plotted, as shown in the
example in Figure 8.

Thus, in each iteration, we perform one mutation and one selection. The an is to converge
toward some feasible, optimal individual, whose objective values carot be improved in
any way. The rate of convergence of the evolutionary algorithm is highly dpendent on the
problem's constraints and objectives as well as the mutation operators tht we use.

Due to this, the MOOA might accidentally create a mutated individu al that is infeasible
or dominated in every iteration. This causes the Pareto front to remainmotionless, even
though the optimal solution has not been found. We need to formulate the poblem and
perhaps create specialized mutation operators to prevent such a stastill.

Once the MOOA reaches the maximum number of iterationstnax, We do not have just one
solution, but at most  feasible, nondominated individuals. Each of them provides a useful
set of sensor measurement positions and corresponding missions for thehicles. Some
individuals may be better in one objective, while others are relatvely good in another.

If we only want one solution instead of a range of possibilities, then we redl to make
a nal selection from the Pareto front. This can be done subjectively by comparing the
solutions manually and taking the preferred one. Another selection stategy is to use a
knee point [10], which is a nondominated solution that is average in all the objectivs.

In the end, the resulting individual solutions heavily depend ona number of properties
that we can tune: the initial population, the mutation operators and the par ameters of the
random distributions that they use, the selection strategy, the nunber of iterations that
we let the algorithm run, and of course the constraints and objectives temselves.

We must thus determine whether the solutions are suitable, and if 8 select one to use for
the nal missions. If the result is unsatisfying, then we can optionaly tweak the algorithm
and see what another run provides. The nondeterministic nature of tle stochastic process
means we may receive widely di erent results from a new run.

5 Context

In the model that we de ned in Section 3, we include certain assumpibns about the space
that we are in. This plays a role when we take a more practical approach and ggy

the model to a physical mission with actual vehicles. This allows 8 to get to a working

implementation in Section 6.
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In this section, we outline the di erences between the de ned nodel and the reality. These
di erences spark the need to make assumptions for the model to workeliably, or create
practical solutions so we can actually make use of the system of elementade nitions.

We propose changes to our model that make it re ect reality better. This includes physical
challenges related to movement and location detection. We state someogsible reasons for
the resulting inaccuracies and uncertainties. Finally, we createa contingency plan that

provides solutions for overcoming these challenges in some cases.

As mentioned in Section 3.3, a vehicle may have limited information abotithe space it

is in. This applies to positions that the objects are at. Also, the current location of the

vehicle itself might not be directly accessible. The model track the precise location of
each vehicle, but the vehicle cannot determine it with the same aaaracy.

Similar to the other sensors in Section 3.4, the vehicle has bbcation sensor that deter-

mines a position using previously collected information and live datasuch as an external
positioning system, a projected grid on the ground surface of the spac®r the measured
speed of the vehicle. All these data sources may be inaccurate, whigpropagates to the
quality of the location sensor and results in a fuzzy position.

It is important to keep the accuracy of the location sensor within accepable bounds.
A sensor that provides erratic results makes it di cult to know wh ether the vehicle has
reached a certain waypoint. If the error or di erence between the model location and
detected point increases through time, then the usefulness of thiecation sensor decreases.

Time is also an impeding factor for sensors. A sensor could spend somet units to process
the data sources. Due to this, the location sensor detects the locatn of an earlier time
unit while moving, and the distance sensor might not detect a nearby olect immediately.

Certain distance sensors use the echo of an ultrasound signal to calcutathe distance, for
example. Thus, timing is an essential part of the model.

Another problem is when there is an oncoming vehicle with an angle that imot exactly

a straight angle, or even if a sideways collision is imminent. A servaan be used to scan
the surroundings to mitigate this problem. Servo angle changes are ratheinstantaneous
in practice, but again the distance sensor takes time to process.

We need to take care that such problems, as well as other characterisgcof the mission,

do not make the mission needlessly long. The vehicles have a lifate in which they can

operate. This lifetime is limited by the power consumption of the wehicles. They need to
use batteries to operate freely in the real world. A larger space meande vehicles need a
longer range. This is only possible if the battery's capacity and currenhallows for a longer

lifetime or a higher motor speed.

All these problems mean that we need a sort oftontingency plan We need to detect
when the location sensor becomes inaccurate or when the battery charge af vehicle
is approaching critical levels, and take appropriate action to keep the ehicle in a safe
location. Some of these problems can be solved through the use of additionsénsors or
heuristics, and some need a human touch to stop the vehicle remotelysing a command
via the infrared sensor.

The contingency plan alters the mission mentioned in Section 3.5. It add new waypoints
when the vehicle strays, or stops the mission early. The plan indegndently monitors
external in uences as well as the mission itself. Thus, there is aort of watchdog that
oversees the sensor data and accuracy, and acts immediately when ittéets issues.
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6 Implementation

As a part of the research within the mobile radio tomography project, we ceate a toolchain
that plans missions, operates vehicles, performs and collects measuments and creates a
reconstructed image using radio tomographic imaging [28].

In this section, we describe our contributions to this mobile radiotomography toolchain,
which includes a control panel for planning and monitoring missions fom a ground sta-
tion, as well as the autonomous vehicle movement which can act upon inforation from
environmental sensors. The de nitions from Section 3 form a useful bsis that already
describes a large portion of the implementation details.

We provide an overview of the components created for these purposes Bection 6.1. We
then focus on the types of autonomous vehicles in Section 6.2. The furiohality of the

sensors is outlined in Section 6.3. We show various kinds of missionsahhelp to position

the tomography sensors at speci ¢ locations in Section 6.4.

Section 6.5 then studies optimization algorithms for creating waypointbased missions.
These algorithms should solve the problem of sensor positioning. We foswpon the details
of the speci ¢ planning problem and relationships to the reconstrud¢ion problem as well
as properties of the geometry.

6.1 Overview of the components

We implement a toolchain that consists of multiple parts. A major part is the vehicle's
environment, which provides mission control and runs as a service othe vehicle's central
computer without direct user interaction.

Independent of the vehicle part, we have a control panel, which is graphical user interface
on a ground station, e.g., a desktop or laptop computer. The researcher camd out various
status information before and during a mission, or use planning and recastruction tools.

These tools satisfy di erent needs within the phases of the mobileadio tomography project

mentioned in Section 1.2. Parts of the ground station are described in S&on 6.6.
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Figure 9: Diagram of components in the toolchain. The numbers refer to sgtions where
the components are described in detail. An arrow indicates that the corponent at the
starting end makes use of the far end component.
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The overall toolchain consists of a number of components that each part camake use
of. These may be related to the distance sensor, determination of theurrent location,
the missions, the vehicle and its environment. There is also a planng component for the
control panel. Each component may be used in simulation or inside the cdrol panel, as
well as have a function in a physical environment with the actual velicle hardware.

For these components, there is often a main purpose for which it was caged. For example,
sensor and other vehicle-based components are mostly used in the vela part, while
reconstruction and planning components are useful for the ground statiorcontrol panel.
However, some components depend on the functionality of another compongrsuch as
the planning problem making use of reconstruction and geometry detailsThis is possible
within the cohesive structure of the toolchain. We provide a diagramof the components
and the dependencies between them in Figure 9.

The components often have a well-tested basis and specialized varss for di erent uses.
Thus, it is easy to replace one version with another. This also means tit we reduce the
risk of one version not working, since the common code already behaves azpected.
Section 6.7 describes how we make use of tests to ensure that the eodiorks correctly.

A component can depend on another component even when the latter is a mdyer of a
di erent part, e.g., a planning component using a vehicle or recongtuction component.
Because the component has an accessible interface and works well in @gn part, it is
easy to reuse that component elsewhere. This makes our toolchain solis well as reusable,
which is essential for using it in multiple contexts.

6.2 \ehicles

An important component of the mobile radio tomography toolchain is the vehide interface.

This component makes it possible to provide instructions to a phygal vehicle in order

to make it arm its motors, move, rotate, lift o, adjust its settings, tr avel to a certain

waypoint, and so on. These instructions are collected and convertedot signals that the

speci ¢ vehicle is capable of understanding. Additionally, we can regest the vehicle's
status, e.g., its current mode, position and orientation, and act upon poblems such as low
battery power when they are detected by the vehicle's control cicuit.

The vehicle component consists of several implementations for di eent types of vehicles,
which are introduced in Section 3.3. Each version supports a compatikl interface. This
makes it possible to use the same missions on di erent hardware platfons.

6.2.1 Hardware communication

The communication between the high-level mission components and thghysical hard-
ware is established by the vehicle component. This means that the o#r components can
send requests to the vehicle component in order to take a certain awn, retrieve status
information or update it. The vehicle interface processes the actiorspeci cation, such as
moving to a given location at a specic speed. We convert the informaion so that it is
understandable for a lower-level hardware device. This can mean thate enable some sort
of motors for a certain amount of time. The exact process di ers betweerthe vehicle types.

As an example, many simple rover vehicles have a motor speed contrall¢hat receives
a number of input signals. These signals determine how fast it shouldurn its motors,
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and if so whether each of them should turn forward or backward. The lattertype of
signal can be easily provided using logic level signals, where thereeatwo possible signal
voltages: a high value and a low value. Often, the motor speed is providkas a pulse width
modulation (PWM) signal, which uses signals at high and low power at speiacc durations
to signify the PWM value. A Raspberry Pi [32] has no hardware PWM support, but can
provide PWM signals using fairly accurate software timers.

In some cases, it might be desirable or necessary to use intermediahardware. This can
be the case when the motor speed controller uses di erent logic leveloltages than the
Raspberry Pi does, for example. The intermediary hardware may simly be a conduit to
convert the logic level voltage, or it might be programmable so that it can provide a more
sophisticated backend interface to the vehicle component.

Such middle man hardware might make it easier to develop the vehicleamponent. The
Zumo shield [31], for example, can be programmed using an Arduino [4] witlan existing
library, thus we only need to create a communication interface betwen that and the vehicle
component, and perform the right actions based on the corresponding commais.

The intermediary hardware may also be a full- edged autopilot, such asthe ones described
in Section 2.2. This means that it already has some intelligence in choasjy a path to reach a
location, and xing the location when it is imprecise. The autopilot h ardware may provide
the needed support for battery monitoring, connecting additional perpherals and sending
PWM values to the motors.

6.2.2 Interfaces

From the software perspective, the vehicle component is an interfaethat allows other com-
ponents to exchange status information with the vehicle. This meanshat all components
can share the same location and related elements of the vehicle's state

For this reason, the vehicle interface must either provide its ow location based on some
internal inference system, or it can use another component, such as ¢hline follower in

Section 6.3.2 to retrieve a location. The location can be representeds a coordinate tuple
from the coordinate system in Section 3.1.1. Some interfaces may add in ore or less
details in the location, such as excluding the altitude component or tacking the location

using multiple coordinate systems at once.

The same applies to other properties of the interface, which the velsle must always have
some knowledge about. The vehicle has home location where it starts its mission, and
may provide an automated way to return to this home location at any point. The vehicle
has di erent modesin which it can operate. This includes an automated mode where the
vehicle follows a sequence alommands such as waypoints, and a guided mode where the
mission component presents actions on the go. The vehicle must bemed before it can
do anything, and it can be disarmed whenever it would be safer to stop alinotors than it
is to continue.

We can also access live information from the interface, including thesehicle's speed The
speed can either be provided as one unit in the current direction ofthe vehicle, or as a
velocity in the three components of the coordinate system. The sped is the approximate
distance that the vehicle travels in one time unit. The attitude of the vehicle, i.e., the
direction in which it would travel, is also provided as rotations compared to the three
components, known as theroll, pitch and yaw.
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Each vehicle interface has some way to provide commands. The vehickhould eventually
follow these in the order that they are given, unless they are clearetty some other com-
mand. At the very least, the vehicle must be able to go to a speci ¢ vaypoint and wait

at that waypoint until a di erent command arrives. Depending on the t ype of vehicle, we
can take o to a speci c altitude or rotate at one point.

Figure 10 demonstrates the various interfaces that we support. The groupf MAVLink
vehicles support a speci ¢ internal communications protocol for reeiving commands [24].
They are more geared towards ying drones, although rover vehicles are ab supported.
An internal autopilot determines the best way to process a certain ommand.

The group of robot vehicles are interfaces to rovers that can follow line on the ground.
The coordinate system is based on the grid geometry from Section 3.1, so gntliscrete
points can be provided in the waypoint commands. The guided mode alles some more
freedom, but the main mode of operation is following lines, arriving atintersection points
and rotating to di erent directions.

Vehicle
[ |
MAVLink vehicle Robot vehicle
I I
[ |
DroneKit vehicle ‘ ‘ Mock vehicle‘ ‘ Direct Raspberry Pi ‘ ‘Arduino conduit ‘

|

Arduino intermediary

Figure 10: Inheritance diagram of the vehicle interface.

6.2.3 Simulation

Some of the vehicle interfaces supporsimulation. In simulation mode, the interface does
not actually communicate with actual hardware as mentioned in Section 6.2.1put instead
allows an external simulator to follow what the vehicle is doing.

This makes it possible to enact mission and determine its likely outome, without actually
sending a vehicle into a physical environment. The vehicle ishiien an \engine" for the
simulator, keeping track of what happens based on external commands and cgurable
environmental hazards. Thus we can nd out how a mission would act in cetain situations.

While the simulator itself is not a part of the vehicle, it is tightly connected to its state.
The simulator can show a map of the current vehicle's location, or proide a rst-person
display of the space. This takes into account which direction the vaicle is facing. We can
build in additional safety checks to see if the vehicle would lose tck of its location, or
detect whether it collides with another object.

Some vehicles may behave randomly or erratically in some situations. Wring simulation,
it is sometimes helpful to make this behavior more deterministic This allows us to test
the missions without variations between test runs. The mock vehite in Figure 10 re ects
the behavior of complicated autopilot, but it is only dependent on timing, not on other
sources of randomness. This gives us a solid foundation for testing misss, which we
expand upon in Section 6.7.
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6.3 Environmental sensors

The vehicle has a number of sensors with various types. We need to ciwal these sensors
through standard interfaces, so that we may replace the hardware with isnilar sensors
if necessary, or use simulated versions of the sensors. Additionallyye want to keep the
interfaces of the sensors in one place, so that it is easy to use themofn the mission
components.

For this reason, we initialize the sensors within anenvironment, which is a software layer
that provides access to information from the space that the vehicle ests in. It provides
a convenience access to the vehicle's interface, including sonfienctions that perform
distance and angle calculations.

The environmental sensors interact with the space in di erent ways, which we introduced

in Section 3.4. The tomographic sensor, also known amdio frequency (RF) sensor, makes
it possible to exchange packets of information with other RF sensors at th ground station

of Section 6.6, as well as with the other vehicles. They also provide aeceived signal
strength indication (RSSI), which can di er due to attenuation and absorption by objects

of di erent materials that lie in between the sensors [27]. A standardied interface gives us
the possibility to change between di erent modes, such as sendmand receiving specialized
packets, or continuously measuring the RSSI. Internally, the packes are forwarded to the

physical sensor device.

The distance sensor has an interface to measure the distance to thest object along a line
segment starting from the vehicle's location at its current attitud e. A physical distance
sensor might work using ultrasound signals. It then measures the time between such a
signal and the corresponding echo signal, and converts this to a distaea = t c,, where
Ca is the speed of sound in air.

We can simulate the behavior of a distance sensor for experimental pposes. We de ne
a number of simulated objects, such as the ones from Section 3.2. We theralculate the
minimal distance to the intersection point at each object for the line segment, if there exists
such an intersection. This requires some geometric models for deting intersections of
lines with polygons, planes, other lines, as well as the di erent basé¢ypes of objects [19].

The distance sensor usually points in the same direction as the attitde of the vehicle.
However, it is possible to alter the behavior of this sensor using aervo This object
cannot sense anything from the environment, except its own rotationalangle. Often, the
servo has a limited range orduty cycle in which it can quickly rotate between. The servo
receives a PWM value that corresponds to the requested angle. Whenombined with a
distance sensor, we can detect nearby objects in di erent directins, without having to
rotate the entire vehicle.

6.3.1 Infrared sensor

The infrared (IR) sensor is similar to an RF sensor in that it can receive a packet from
another source. An IR sensor cannot send any data, and it loses the whole signahen it is

blocked due to scattering, rather than receiving it at reduced pover. Because it operates in
a separate light spectrum and works independently from the other sesors, the IR sensor
does not interfere with measurements of the RF sensor or the distamcsensor.
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IR sensors are simple hardware accessories, that do not need much morah pass through

the light pulses that it receives. These can be converted back to si ¢ code sequences,
which may or may not correspond to button presses on a remote control. Wdoad the

con guration of code sequences for one remote type, so that the vehiddisten to commands
from that remote.

The commands that we send to the IR sensor include starting and stoppig the mission.
This is important, since we need a safe way to stop a mission remotelwithout interference

of RF sensor measurements. We can also send commands to go to speci cypaints or

follow a certain mission. This is mostly for experimenting with new missions or tuning

the line follower in Section 6.3.2. The button presses are limited tossimple commands, so
actual data transmission must fall back to the RF sensor.

6.3.2 Line follower

The robot vehicles from Section 6.2.2 can track their location using an aditional sensor
called the line follower. This sensor is actually an array of infrared emitters and light-
sensitive diodes. The light sensors detect how much of the lightsi re ected from beneath
the sensor, which is mounted on the front of the rover, facing downwad.

A darker surface absorbs more light compared to a light surface. Thus, agrectance sensor
above a black line receives a detectable lower intensity comparet another sensor above
a white background. Internally, this detection works similar to the distance sensor's echo
detection: a charge in the circuit decays based on the light intensy received on the diode,

and we can time how long it takes before the charge appears to be lost. Thigives us an

approximate grayscalevalue of the surface.

We combine the values of the sensors, which gives us a way to detecthere there is a
line, compared to a background. This edge detection may work in any sitation where

we have a surface with grayscale color di erences, but it works betr in the restricted

case of thick, black lines on a white background. We can determine threshold where any
grayscale value below this threshold is not a line, while every vale above it is considered
to be a line.

This allows the robot vehicle to follow lines, detect intersectons, and rotate to one of the
cardinal directions on a surface with a printed line grid. If the vehicle is not moving exactly
straight on a line, then it can detect that it is diverging from the lin e and slightly adjust

the motor speeds. Once the re ectance sensor detect only black valsethen we consider
the location to be an intersection, which corresponds to a discreteoordinate tuple. At

an intersection, we can perform stable measurements, or rotate the vétie into another

direction, for example to move to the next waypoint.

6.4 Missions

The vehicle's normal mode of operation is to follow the instructions povided by the
mission component. This component takes the status of the vehicle imt account and sends
commands to move toward certain points in succession. In this seain, we describe how
the component is set up, which modes it supports and how we make use df erent kinds
of missions to reach our goals.
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Before the vehicle can move around, the mission undergoes its rsthpase of verifying the
automated pre ight checks. The mission must ensure that the vehicle is ready to arm
before it starts ying or driving. This can include waiting for a signal from the ground
station, via the RF or IR sensor from Section 6.3. If the mission has a xedsequence of
waypoints, then we must wait until the waypoints are loaded and any old data is cleared.

The mission can then arm the vehicle, which should be a simple phasef powering and
starting up the motors. Depending on the type of the vehicle, the mgsion then takes o
to the altitude where we want to start the actual mission. This optional phase can also
be used for other purposes, for example to calibrate its line followesensor of the robot
vehicle from Section 6.3.2.

The mission can work in di erent modes that alter the vehicle's mode and state. Inguided
mode, the mission works in steps: at a scheduled interval, the msion checks whether the
vehicle's location is correct, and alters its speed, attitude and otler properties, if necessary.
This gives the mission a lot of control over the vehicle, which gives st more freedom in
designing the mission but removes the focus away from visitingmeci ¢ sensor positions.

The auto mode still allows us to frequently monitor the mission, but the vehicle component
is fully responsible for moving to predetermined waypoints. Wecan detect when we are
close to a waypoint or alter the sequence in case of unexpected safgtyoblems, for example
to avoid collisions. Thus we can easily design a xed mission and stilallow some leeway.

During the actual mission, the RF sensor enters its active state, Were it continuously
gathers measurements. Thus we can only use the measurement packets Eommunicating
between the vehicles and the ground station. Other packets for con gung the mission
and the other components must be provided during the passive state athe RF sensor.
This means we can only alter the mission before the arming phases.

Mission
|
[ 1
Guided mode Auto mode
| ' | | | |
Browse IR commands (6.3.1)| | RF waypoints (6.4.1) Squares
Free search IR waypoints Fan beams (6.4.3)
Path search (4.1) Calibration (6.4.2)

Figure 11: Inheritance diagram of the mission components.

Some of the missions that we implement are included in the overvievn Figure 11. The
IR sensor missions are described in Section 6.3.1. The simplest gudimission browsesthe
surroundings of the vehicle, by holding it at the same position but rotating the vehicle or
its distance sensors.

Since we do want to move around with the vehicle, another mission usethe browsing
mission as a building block: the search mission moves in one direction and browses its
surroundings when the vehicle is within the region of in uence of anoher object. It then
chooses the safest direction to move toward, while trying to stayclose to the objects. This
allows us to scan the objects with the distance sensor and the RF senis
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We can replace this heuristic approach with a mission that uses a sedrncalgorithm from
Section 4.1. It follows a certain list of waypoints, but when it is too close to another vehicle
or object, then it uses the search algorithm to nd a new path to the nex waypoint.

The missions that use the automated mode usually assume that there is gafe zone around
the area of interest, but using safe paths is also an option. The sequea of waypoints are
designed to improve the RF sensor measurements for the reconstrimn algorithm. We
look into more detail how these waypoints work in Section 6.4.1, and presnt a number of
waypoint sequences in implemented missions in Sections 6.4.2 and6.

6.4.1 Waypoints

A waypoint is a location which should be visited by the vehicle it is assigned to, during its
mission. It is a core element of all automated missions and some of the guidemissions.
We de ne waypoints in this context in Section 3.5. In this section, we look into more types
of waypoints, which are speci cally helpful when collecting RF sesor measurements.

The reconstruction algorithm requires measurements for links betwen sensors. During the
mission, we visit these sensor positions such that there is a veh&at each end of the link.
This imposes restrictions on how we design the mission of the indidual vehicles.

Firstly, the reconstruction algorithm assumes that the positions in all sensor links are
on the same altitude. This is because the reconstruction creates a \sle" of the area of
interest. In this slice, we need a large number of intersections étween a dense network of
links. We thus want to have the links to be on the same plane. A at plane is the simplest
and most useful to have in our use cases.

This means that we should make the vehicles operate on the same altitugde For ying
vehicles, we can take o to the desired level, and potentially chain he same mission on
di erent altitudes. For other vehicles, we skip this part of the mi ssion which occurs after
arming the vehicle. However, one could alter the composition of the veble so that the
sensors are mounted at the required altitude.

During the mission, we want to gather reliable measurements. This blps the reconstruction

algorithm to generate a radio tomographic image that clearly re ects the physical objects

inside the network. Thus, RF sensor measurements while the vetlie is moving can be
considered unstable. Additionally, we need to synchronize with otler vehicles to ensure we
actually measure at the requested sensor link positions.

We can let a vehicle wait for the other vehicles once it reaches a waygnt. The RF sensor
can send a packet containing enough data to synchronize the vehicles this way. However,
sometimes we just want to provide a waypoint to the vehicle so thatit follows a certain
path, such as a safe path from Section 3.5.1.

There are thus multiple types of waypoints, including ones that cawse the vehicle towait
once it reaches such a waypoint, and ones that allow the vehicle tpass without taking
concurrent vehicles into account for the purposes of collecting measements.

A mission can consist of a combination of these types of waypoints. A fragent pattern in
some of the missions discussed here is to move the vehicle along eagjht line or a more
complicated path, and perform measurements at regular distance inteads. We can then
have waypoints where the vehicle waits, mixed with passable waygnts.
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If the series of waiting waypoints are at a xed, evenly spaced lineainterval between the
starting point and the nal waypoint, then we call these points a range. We can implement
a range by only stating the nal waypoint and the total number of waiting poi nts in the
range, assuming we know the previous location. Note that waiting at the sara location a

number of times is also considered to be a range.

6.4.2 Calibration

Certain reconstruction algorithms make use ofbaselinemeasurements. This means that we
need to perform measurements for all possible links beforehand, whithe area of interest
is devoid of the objects that we want to detect eventually.

During the baseline measurements, the area may contain uninteréigg objects, such as
walls or other static objects, which are then ignored during the reconguction phase. This
is done through a comparison between the baseline measurement and thetaal measured

link strengths when the area is lled.

In some cases, we may be able to perform the same mission twice for thsirpose, rst
to collect the baseline measurements, then the actual mission of gathieg link strengths.
However, if we want to compare the in uence of di erent missions, or reuse a stable set of
baseline measurements later on, then this limited collection swgemay not be su cient.
For completion, we should measure every possible link that we could ev have, to ensure
that the reconstruction has a full set of baseline measurements.

This brings us to the design of acalibration mission. This mission works in a grid-like
space by visiting each position that we could perform measurements ait makes use of
two vehicles, that each swap roles between two kinds of cycles: a mement cycle and a
stationary cycle. Each time, one vehicle moves clockwise from itsuerent location around
the area of interest. The other vehicle stands still on the location yist one grid cell away
from the rst vehicle, when seen counterclockwise.
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Figure 12: Examples of calibration cycles with two vehicles, where oneehicle remains
stationary and generates measurements with all other grid edge points.
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The rst vehicle ends its cycle one cell away from the second vehble's location. An example
of this cycle for a 10 by 10 grid with starting locations (0; 0) and (0; 1) for the two vehicles,
respectively, is shown in Figure 12a. After this, the second vehiel starts its movement cycle,
with the rst vehicle playing the stationary role. Such a cycle is shown in Figure 12b.

These cycles measure di erent links. However, once we start rep¢ing this for the whole
network, continuing along with the clockwise cycles as if it is a réay race, then this may
result in duplicated measurements. This is because a measurenteinom one location to
the other automatically gives us the measurement in the other directbn as well.

However, the baseline measurements may have a use for these twineasurements. This
is because the vehicle at each sensor point may di er during the caliration mission. If
the vehicles are equipped with RF sensors that have slightly di @ent antenna properties,
then the reconstruction algorithm can account for this if it has su cien t measurements
from both vehicles in all permutations.

Time is not a huge factor during the calibration, although we do want to limit the time
needed per measurements and the total number of measurements. Theigaion duration
can grow quadratically for larger network dimensions, thus we ensure tht the performance
of the calibration mission is adequate.

6.4.3 Fan beam and straight line patterns

During the design of missions for the purpose of collecting measuremts for tomographic
reconstruction, there are some patterns that appear to be useful. Siicpatterns provide a
large volume of di erent measurements within a small time period. Sich patterns often let
the vehicles travel some distance, while being on, e.g., oppositédes of the network, and
the resulting measurements are spread out in such a way that they a@r a large portion
of the network.

A mission may be built up from a combination of such patterns. One probém is that

going from one pattern to another might waste time, in case that they do not t together

exactly. We could move the vehicles at full speed between theseopitions, or we can make
use of certain other patterns that bridge the gap and provide link coveage in other parts
of the network.

In this section, we look into two speci ¢ patterns, as well as desdbe some related patterns
that augment them. The rst and simplest pattern that we present is t he straight line

pattern. Here, two vehicles move in the same direction along opposingdges of the network.
They move from one end point of such an edge to the other, synchronizingith the other

vehicle at each sensor point in between.

This results in measurements that cross the network. These linksare parallel to one of
the rst two dimensions of the space, or at least relative to the area of mnterest. If the

vehicles move northward and southward, then we receive measuremilinks parallel to

the eastward axis, and vice versa for eastward or westward movement. Mement that is
not in one of the cardinal directions results in angled lines, which mg also be an option.
An example of northward movement providing straight lines is shown n Figure 13a.

A related pattern makes the vehicles move from one corner of the netwér across distinct
edges, to the corner on the far end of a diagonal. This works quite di eretty from the
straight line pattern, but results in measurement links that are laid out like diagonal lines.
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Straight line patterns are quite simple, and they are fairly similar to the waypoint ranges
discussed in Section 6.4.1. A straight line pattern can be de ned by tw waypoint ranges,

where there is one range for each vehicle. The waypoints are of the waity type, and the

start and end points of each range only di er in one coordinate value. Waypait ranges

can thus be useful as a building block for patterns involving multple vehicles, even more
complicated patterns that still involve some straight lines or stationary points.
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Figure 13: Examples of straight line and fan beam cycles. Two vehicles me forward in a
parallel fashion. Then, one moves along the sides that the stationary veble is not on.

In Section 6.4.2, an example of a more sophisticated pattern is shown, whe calibration

cycles lead to a fan-like form starting from a stationary sensor point. V¢ can adjust such a
fan beam pattern to include fewer links. The links that cross an edge omvhich the vehicles
move around is not very relevant for the tomographic reconstruction, so & can start the

movement cycle from a corner instead. When we put the stationary veltle in the other

corner of that edge, then we can stop the movement cycle when the vetie has reached
the start of the other connected edge.

This movement pattern leads to a fan beam which intersects with mawy grid cells, and has
a high density in one corner. Figure 13b provides an example of this. Wean also place
the stationary vehicle in the middle of an edge, and let the other vehite move along the
three other edges, which provides yet move fan beam patterns. We casometimes skip
parts of those edges when they provide few di erent measurement.

A fan beam pattern can often be joined together with other fan beams, or we caalternate
it with a straight line pattern before performing yet another pattern . The order in which
we perform certain patterns can determine how quickly we obtain enogh intersecting links
in the entire network for the reconstruction algorithm to function we ll.

If we want to combine such patterns with a fan beam where the stationaryvehicle is in
the middle of an edge, then we can perform certain corner patterns. Twaehicles moving
on perpendicular edges result in some more unique intersectingnks around that corner.
We can also skip these measurements and quickly move into the corepositions for the
fan beam pattern.
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6.5 Planning

The vehicles can move around using hand-crafted missions, but we alsvant to automate
the planning part. The planning problem from Section 4.2 can be solved sing algorithms
that we demonstrate there. There are some more details that we need to ake explicit in
order to present a full implementation of the planning component. Weslightly alter some
of the algorithms to obtain information that can be used elsewhere. We alscstate the
precise objectives and constraint functions that we use. Finally, v discuss performance
considerations that help make the implementation viable to run.

We divide the implementation details into speci ¢ sections. In Section 6.5.1, we describe
the novel mutation operators, constraints and objective functions that we use within the
evolutionary multiobjective algorithm. The evaluation of the individu als and generation of
sensor positions is explained in Section 6.5.2. We then discuss the ggament of waypoints
while trying to avoid collisions in Section 6.5.3.

6.5.1 Multiobjective optimization

We make use of an evolutionary multiobjective optimization algorithm to evaluate, mutate
and select a population of individual solutions. The iterative nature ofthe algorithm means
that we might converge toward certain optimal or nondominated solutions ushg such an
algorithm. This does greatly depend on several factors, such as how wenlit our search
space, how we design our objectives and which operators we use for mutaiti and selection.

The constraints and objectives are tightly related to the problem that we wish to solve; a
di erent problem would need other evaluation functions. There are sone basic constraints
that ensure that the variables of one individual remain within the bounds of their domains
when we mutate them, as mentioned in Section 4.2.3.

Additional constraints help the algorithm so that it searches in the right direction of
a large search space. The constraints reject individuals that are cledr infeasible. The
reconstruction algorithm provides us with a weight matrix containing information about
sensor links that intersect with certain pixels: this weight matrix W; of an individual X;
isan’; matrix, where i is the number of links from the individual that actuall_y Cross
the network, and is the number of \pixels" within the network. Furthermore, wj(;'k) is the
value in row j and column k of the weight matrix W, as provided by the reconstruction

algorithm [27]. We then have the following predicate:

Qui:9j :8k:wi) 60 (6.1)

If some pixels are not intersected at all, then the reconstruction canot determine a suitable
pixel value, which we avoid with the constraint in Equation 6.1. Each coumn corresponding
to some pixel has at least one link that crosses it.

Another constraint is that we need enough links to consider the missiorfeasible. It may
occur that the algorithm misplaces many links along the edges of the netark so that they

do not intersect with the network. It is acceptable to discard some ofthe measurements, but
the number of correct measurements should be above a certain threstd , dependent on
the total number of links that we want. This gives us the second constrait in Equation 6.2

and the combined feasibility value in Equation 6.3:
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Q2 : \i( (6.2)
0 if: Qui_: Qi
. Ql,l — Q2,| (6.3)

1 if Qui ® Qu;i
The objectives of the reconstruction planning problem are similar tothe constraints. Many
of the pixels in the weight matrix should be intersected by multiple links, otherwise the
reconstruction algorithm would not be able to determine whether a sigml strength for one

link actually in uences such a pixel. We can wrap this into an objective function by taking
the sums of the lled weight matrix entries as the function value in Equation 6.5:

0 ifx=0
h(x) = 6.4
(x) 1 ifx>0 ©.4)
X X (i)
0(Xi) = h(Wj;k) (6.5)
=1 k=1

The second objective focuses more on link distances and the travefj distances during
the mission. We want the links to be short, because long sensor linkesult in RSSI values
that are less meaningful for the large volume of pixels that they intergct. The sensor link

We also desire a short mission, which we determine from the distam®cT; provided by an
adapted greedy assignment algorithm from Section 4.2.1. We weigh these twasiances

into one objective using a parameter with O 1
0 1
Xi
®(Xi)= @ kp1 pKkA+@R ) T (6.6)

i=1

We describe in more detail how the domain constraints and sensor posins are de ned in
Section 6.5.2, and how we obtain the traveling distance for Equation 6.6 irbection 6.5.3.

There are multiple reasons for having exactly two objectives instad of more. One reason
is that it is easier to visualize a Pareto front for two objectives. Also, we havecon icting
objectives that optimize toward di erent kinds of missions. The r st objective can be
improved with individuals that have lots of measurements with long-distance sensor links.
The second objective attempts to reduce these instead.

Another reason is that the selection process requires more procesgitime when we have
more than two objectives. To determine the solutions that are nondomirated within the
current population, we use the Kung, Luccio and Preparata (KLP) algorithm, which nds
the maxima or minima of a set of vectors [22]. The complexity of the KLP algorthm for
the two-dimensional problem is lower, compared to the three-dimesional variant.

Similarly, the selection for a population consisting of only hondominatel solutions is also
simpli ed. NSGA-II [13] and SMS-EMOA [16] are evolutionary multiobjecti ve algorithms
that determine a contribution measure of each individual toward the Pareto front. The
implementations for both algorithms is simpli ed when only using two objectives.
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6.5.2 Positioning problem

While we can describe the constraints and objectives in a simple marer in Section 6.5.1,
we do need to transform the variables within the individuals so that we can actually
calculate the weight matrix and the waypoint assignment. To do so, we als de ne what
our variables actually mean and how they in uence the result.

We consider two types of reconstruction planning problems: oneontinuous version where
sensors can be positioned anywhere along the edges of the network, andliacrete variant
where the sensors are placed at certain points that are evenly spread oatound the edges.

In the continuous problem, we describe a sensor link with two variakes: the distance of
the link's line from the origin of the network, and the angle or slope that the line makes
compared to the eastward axis.

Thus, if we want at most measurements and the network %imension% arp (@, then
each individual X; has variablesby;bp;:::;b with domain [ = p2+ ¢?; p?2+ ¢?), and

y; =tan( g )x+ by. We consider two points on the line that intersect with the edges of he
network to be the sensor points of the link. Whenag; = % , the line extends northward

and by is the eastward coordinate value of the points.

If the two sensor points do not have correct positions, for example whethe vertical o set

is negative and the slope is more than% , then this sensor link is unsnappable If there

are many unsnappable links, then the solution becomes infeasible. Toelp nding stable

solutions, we add a binary variableg; for each link in X;. When the anglea; is close to a
cardinal direction and ¢ = 1, then the line's angle becomes equal to that direction.

Figure 14: Example discrete solution with some padding.

43



Leon Helwerda

The discrete problem uses four variables per link instead of threeThere are two variables
per sensor point, paired with another point to form a link. The variables encode northward
and eastward coordinates from the origin, which are natural numbers witln the domain
of the network sizes. This includes anypadding around the edges where we can also per-
form measurements. If a point ends up inside the network, then we aempt to place this
point along the same line of the link outside the network, which may or may not end up
somewhere within the padding. If the resulting points are not discete, then we consider
the link to be unsnappable.

In Figure 14, we show a discrete solution generated by the evolutionary gbrithm, which
makes use of padding. The resulting links appear to be quite chaotic, Wit they intersect
with practically every pixel.

We can make the result more orderly by creating a mutation operator that wolks similar to
the additional variable of the continuous version. This operator causes tk links to prefer
certain kinds of angles by moving one of the sensor points to another edgd the network.

6.5.3 Waypoint assignment

After we have deduced the positions of sensors as mentioned in Sectidh5.2, we can
use them as input for other algorithms to nd out how well the sensors peform. This
includes passing the sensor pairs to the reconstruction algorithm tond out how much the
reconstructed image pixels will be intersected. This intermedhte step also makes use of
the greedy waypoint assignment algorithm from Section 4.2.1 and the collisn avoidance
algorithm in Section 4.2.2 to nd out how the vehicles can reach these sesor positions.

The implementation of these components does not di er much from the epresentation of
the algorithms speci ed in those sections, but the data structuresdo. We do not make use
of graphs to describe the area where the vehicles are located.

Instead, this map of obstacles is implemented using a matrix, knowras the memory map

Each cell within the matrix describes a point in the space, so we camave one cell to an
actual location for grid-based geometry de ned in Section 3.1. For other geomntées with

a much larger volume of points within the physical space, we can adjusthe resolution of
the map. The resolution determines how many cells we have per meatdéor one dimension,
and thus per square meter within one slice of the space. We can also dee a region of
in uence for each cell that contains an object, marked with a nonzero valie within the

matrix. When the distance of a vehicle to such an object is less thanhte radius of a circular
region of in uence, then we consider it to be unsafe.

The unsafe areas in the memory map are removed from the possibilitieshat the search
algorithm from Section 4.1 considers. During the collision avoidance algithm, we also
mark the inner edge of the network to be disallowed, so that the vehiles have to take a
detour if they wish to move to another side of the network. The algorithm removes and
reinserts the routes that unsynchronized vehicles traverse ira slightly di erent order, in
an attempt to reduce the number of alterations to the memory map.

The collision avoidance planning algorithm adjusts the distance that the greedy waypoint
assignment algorithm associates with a selected vehicle pair and sewgosition pair. This
however happens after the greedy algorithm has selected the pairs thaminimize the greedy
distance, i.e., when we have#,, and n, in Algorithm 4.2. Thus it will not improve the
order of the assignment in which the vehicles move to the waypoints
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Still, the distance information is of use for the evolutionary algorithm from Section 6.5.1.
The adapted greedy algorithm not only provides the assignment of waypoirg, but also
the total traveling distance, which is an indication of the duration of t he entire mission.
Such a measure is used for the objectives of the algorithm, so that we camprove our
solutions to take less time or have fewer con icting movements.

6.6 Ground station

A large portion of this thesis focuses on how the vehicles operate in thenvironment in
order to collect measurements, with the goal of reconstructing what obgcts exist within
some area of interest. The vehicles send signals to each other in ord&y achieve this
goal. However, some parts of these intentions simply cannot be accomplietd with just a
few vehicles. For example, the planning algorithms of where the vehbles can be resource
intensive, and thus needs a full computer to run.

For this purpose, we implement a part of the toolchain which operates onthe ground
station, a machine that coordinates the collection of measurements. It prodes an interface
to a researcher to alter the state of the vehicles and track the progresof the reconstruction.

(a) Planning view, showing current state

(b) Waypoints view (c) Settings view

Figure 15: Graphical user interface of the control panel on the ground station showing
the planning and con guration displays.
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One part of this control panel is to manage a large volume o$ettings The settings in uence
how the vehicles act in certain situations, or how the implementatbn of a certain algorithm
is tuned. All settings are grouped by the component they belong to, and tle control panel
displays these in a sorted manner as shown in Figure 15c. We then stotiee revised settings
locally or send them using the RF sensors to the vehicles.

Similarly, we can plan the missions using the control panel. There arén fact two methods
with which we choose which waypoints we add to the mission. The planing algorithm
is one of them. The interface in Figure 15a allows reviewing and tuninghe parameters
before starting the execution of the evolutionary algorithm. While this process is running,
we regularly receive updates of the current status of the population tkat we are mutating.
This includes the Pareto front of the nondominated solutions, as well ather statistics.
Once the maximum number of iterations has been reached, we can comparke solutions
visually by inspecting which sensor links are used in them. We catthen choose one of the
solutions to assign waypoints to the vehicles.

We can also manually assign waypoints, for example when we want to adapt an &ting
mission or perform other experiments. Similar to the settings, we an store the waypoints
on the ground station for later use, and send ranges of waypoints in a compresd form to
the vehicles when we are done assigning them. Figure 15b shows thiderface.

6.7 Test coverage

In order to ensure that the vehicles operate in a way that is expectd according to the initial
design of the framework, we extensively test the implementationsThis includes free-form
experiments and high-level reliability checks, but also unit-tased automated tests.

The testing framework consists of the tests themselves as well as &gt bench, which
evaluates the tests and provides statistics. We design the unit tefs so that they correspond
to parts of components in the framework. Our implementation is based on abject oriented

programming (OOP) structure, where classesare the implemented parts. Each test class
has an analogous actual class, whogaterface is tested by individual test units.

The test units are separated in such a way that each one tests some part tfie behavior
of the actual class. The output is compared to the expected outcome of tlsibehavior. The
test unit can then fail if the result is not similar (enough), which means there is either a
problem with the actual class, or with the test unit itself.

The test bench loads all the test units, executes them and reportshe results. It can also
include statistics about running time, code quality and code coveage. The coverageof a
set of test units is a measure of how well much of the behavior of the aagtl class is tested
by this set. The code coverage can be de ned in multiple ways, andhey usually take more
details of the interface of a class into account.

The class interface consists of severahethods which are a means for other parts of the
same component or other components to communicate with that class. Thisauses the
class to change some state or take an action, such as ordering the vehicle toove in a
certain way or calculating the outcome of a certain algorithm.

A method is made up of severalktatements similar to (but usually more expansive than)
the lines of an algorithm. The statements tell the computer which ingructions it should
perform, which should lead to the expected outcome of the method.
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We consider two variants of code coverage: statement coverage and meth@overage. In
statement coveragewe look at each line of each method and see whether it is executed
during a test. The coverage percentage is then the number of execedl statements divided
by the total number of statements. In method coveragewe attempt to match each test
unit to one or more speci ¢ methods, and divide the number of matchedmethods by the
total, including the unmatched ones. Aside from the coverage measurdhe code coverage
techniques can also determine which statements or methods are notey covered. This
allows us to alter the test units or add another one to cover more code [3]

Statement coverage might seem to provide more granularity in its coveage measure than
method coverage. However, the statement coverage tracks all statemerthat are executed
during the test, not just the ones in the method that the test unit claims to cover.

For example, a statement in a method is not covered by its own test nit, but is reached
by another test unit. Such a statement may go undetected in statemst coverage. Method
coverage does detect the missing test unit. Thus a combination of b&tcoverage measures
helps in nding coverage de ciencies optimally.

Designing the test units to cover the statements may be di cult. The test unit should not
be too granular, otherwise it is just repeating the low-level statenents. A method may
also be complicated, or it depends on other components. We can themock some parts
of the method so that those statements always perform a certain actionThus we can get
the program into a certain state and test whether this case works as exped. If there are
more possible cases, then we mock multiple times to increase théatement coverage.

7 Experiments

We want to determine whether the implementation from Section 6 works well in practice.
We objectively compare the results that we receive from a number of xperiments.

The experiments focus on the planning and execution of missions thate provide to the
vehicles. We look at how well such missions collect measurementéat are used for a
tomographic reconstruction algorithm. This includes objectives that predict how well the
links cover the network. We also take other properties of the missios into account, such
as how long it takes and how safe it is with regards to collisions betweewehicles.

In Section 7.1, we describe how we set up these experiments, whiconsist of simulations,
algorithm runs as well as physical tests. We provide an overview of th@umerical results
and comparisons in Section 7.2, and describe the outcome of two missions $ection 7.3.

7.1 Setup

During our simulations, we focus on the planning algorithms from Sectn 4.2 to see if our
speci ¢ implementations mentioned in Section 6.5 perform as expeed.

We nd out whether the resulting individuals of the multiobjecti ve optimization algorithm
from Section 6.5.1 are a representative group of nondominated solutions. T means that
they should converge toward near-optimal solutions according to our objetves. We also
want to make our results reproducible. The constraints and objectives should lead the
evolutionary algorithm into this direction, even though it is a stochastic process.
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The evolutionary algorithm has a number of parameters that we can tune, whth we
summarize in Table 1. We look into the in uence of the maximum number of iterations
on the convergence. We also tweak the population size, and examine howehmutation
operators a ect the results.

We not only look at the evolutionary algorithm itself. We can make use of the esults of
the objective functions to see whether our formulation of the sensor psitioning problem
from Section 6.5.2 and the waypoint assignment implementation from Seabn 6.5.3 help
in improving our solutions.

The positioning problem has its own con guration, such as the intendedsize of the network,
the maximum number of measurements we want to perform, and other weiging and
tolerance levels. The waypoint assignment is less tightly connectkto the main objectives
of the reconstruction planning, but its detection of potential collisions can still in uence
which results are acceptable.

This setup gives us a large number of experiments. There are 12 seitis that are of
interest, and we want to test between two and four di erent values for each setting. We
also want to see what the result is of certain combinations of con gurations If we run the
70 possible combinations ve times, then this results in 350 experimants.

Parameter description Domain Tested values

Multiobjective algorithm parameters

Number of iterations tmax N> o 1000, 5000, 1000Q 100000

Population size Ns o 10, 15, 20

Algorithm Boolean NSGA-II, SMS-EMOA *
Waypoint positioning problem parameters

Network size N? 10 10,20 20

Network padding N? 0 0,1 1

Positioning variant Boolean Discrete’, continuous

Number of measurements N> o 50, 100, 200

Constraint and objective function parameters

Ratio of unsnappable links-  [0:0;1:0] 0.5, 0.8
Weight of second objective [0:0:1:0] 0.2,0.5,0.8

Additional algorithm and operator parameters

Specialized mutation operator Boolean Disabled, enabled
Collision avoidance algorithm Boolean Disabled, enabled
Penalty for unsafe paths R[flg 0, 20, 40,1

Table 1. Parameters that we test in the experiments. We take all comhmations of values
within the same group, and otherwise use the default values listed wh a star.

We use step sizes of 0.25 and 0.025 for the rst two types of variables in thevolutionary
algorithm. These parameters signify the standard deviation of a normal digibution used
in the mutation operator. We determined that these values work well forthe continuous
version of the problem, where the variables signify the o set and slopef each line. This
version also uses 0.25 as the probability of bit- ipping the third type of variable, which
determines whether to change the angle to a cardinal direction whertiis close to it.
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Larger step sizes mean that the evolutionary algorithm can rapidly alter its individuals,
which has the downside that it might step over an optimal solution. Thus these step sizes
seem like a good middle ground. In Section 7.2, we describe the resifor the experiments
of the parameters in Table 1 rather than the tuning of the step sizes.

We also compare the missions provided by the planning algorithms wittmissions that we
design by hand. Section 7.3 describes a physical setup and a qualitaé analysis.

7.2 Planning results

We summarize the results of our experiments with the planning algothms. Due to the
large volume of results that we obtain, we only look at the results that sigrify interesting
revelations of our algorithm, such as its performance, stability and e e¢iveness in nding
good solutions for the sensor positions.

Because of the nondeterministic nature of the evolutionary multiobjetive algorithm, it
may produce dierent individual solutions between runs. Multi ple runs with the same
parameters allow us to retrieve the mean and standard deviation of the rgulting values.

We use the KLP algorithm, which is the same sorting procedure used ding the algorithm,
to select an average knee point result from the objective values of onelsition, calculated
from Equations 6.5 and 6.6. These can be seen as the mean results of the espent.

Because we minimize the objectives, lower values (toward negativia nity) are better, but
the values may not be necessarily comparable between the two objegts. In Figure 16, we
show the objective values of all average knee points of the 70 experimsnHere, the outlier
\best" value in the bottom left is a run of the continuous variant and other wise default
values, which more easily optimizes the objectives. Other resudtthat are part of the Pareto
front of this scatter plot respectively use a smaller network sizefewer measurements, and
the highest value tested for the penalty for unsafe paths, which impoves the coverage of
intersecting links but has an average objective value for the total ditances.

Figure 16: Overview the objective values of the average knee points of adixperiments.
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We now look at some parameters used within the experiments. The spelized mutation
operator that we describe in Section 6.5.2 performs certain actions that a di erent from
the randomization of a normal distribution, so we want to compare how fast am useful
these operations are.

The number of iterations per second or\speed" of the algorithm is shownn Figure 17a,
where we show a run with the specialized mutation operator enabled an@ run where it
is disabled. Surprisingly, the specialized mutation operator appeargo require less time
to mutate the dependent variables, compared to the usual mutations. he reason for this
speedup is unclear; the arti cial placement of sensors might simpfiy the work of other
algorithms, such as the greedy assignment.

In Figure 18, we show the objective values of the average knee point at derent iterations,
in a run with 100000 iterations. We observe that the specialized mutation ogrator helps
in decreasing the objective values, although it eventually resultdn unstable knee points.

(a) Specialized mutation operator (b) Collision avoidance

Figure 17: Convergence of speed when parts of the algorithm are activated, rasured in
iterations per second.

(a) First objective: intersections (b) Second objective: distances

Figure 18: Convergence of objective values, with various parts of the algofitm activated.
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The collision avoidance algorithm from Section 4.2.2 also appears to work, irhat it
determines whether an assignment of waypoints is safe. However, isectiveness within
the evolutionary algorithm is limited. The collision avoidance algorithm rejects routes that
con ict anywhere, but such solutions can be stumbled upon anywheren the search space.
We thus reject individuals which could lead to better results if we slightly mutate them.

As shown in Figure 17b, enabling the collision avoidance algorithm signi antly reduces
the speed of the entire planning algorithm. In the runs shown in Figue 18, there are no
great di erences between objective values when we enable or disaliiee collision avoidance
algorithm. It thus hinders the performance without clear advantages.

We can alter the algorithm to penalize unsafe solutions with an additional ©st within the
second objective, instead of outright rejecting them. Even so, thisonly has an advantage
if we have space for detours. It might be more favorable to run the colBion avoidance
algorithm afterward to detect unsafe solutions.

The greedy assignment itself, using an adapted version of Algorithm 4.2, mvides a useful
measure of mission length. We use this within the second objectiveetated to distances.
Another factor of the second objective is the sum of the lengths of all sews links.

The two factors of the second objective are combined using a weight from Equation 6.6.

In Table 2, we see that both objective values decrease whenis low, such as @, which

causes it to assign more weight to the mission length instead of the sewmslink lengths.

This might be because the sensor links are the basis for both objectise thus we need to
assign more weight to the travel distance to optimize both objectives

g1: intersections Oo: distances
0.2 100800 5110 4184 42
0.5 88510 3107 7403 182
0.8 106910 0:0 9697 0:0

Table 2: Comparison of knee objective values between values of the weight where lower
values are better.

(a) Convergence of speed (iterations per secondjb) Convergence of second objective: distances

Figure 19: In uence of the population size on the evolutionary algorithm's behavior.
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The algorithm attempts to optimize both objectives, but it has a limit ed work space to
do so. One solution is to add more individuals to the population. The sped of such a
run, measured in number of iterations per second, ends up to be sihar to runs with
small populations when they run for a long time, as shown in Figure 19a. Ths is because
the algorithm always mutates one individual per iteration, and other steps have a linear
complexity in terms of number of individuals.

The use of a population with more individuals only slightly decreaseshe objective values of
the knee points in Figure 19b. Having more individuals means that we hag more possible
solutions to choose from, but it does not necessarily provide bettreones.

A more pressing constraint is the number of measurements that we wanto achieve. We
need more measurements to create more complicated missions and tosiimore sensor
positions for the reconstruction, but this requires more variables vithin each individual.
The addition of more variables greatly reduces the speed of the algorithmThis means
that the e ectiveness of our algorithm to search the entire search spae is limited.

Of course, the possible measurements that we can perform is limited we use discrete
points for them. When we use the continuous version of our problem, the we are able
to nd better solutions, at least according to the objectives that we minimize in Table 3.
This version is possibly even more sensitive to the con guration and he stochastic process,
because it often creates measurements that have di culties with cossing the network.

Variant O1: intersections O2: distances
Discrete 79330 12414 7128 525
Continuous 217730 1177 5778 218

Table 3: Comparison of knee objective values between discrete and contious variants.

(a) First objective: intersections (b) Second objective: distances

Figure 20: Convergence of objective values for di erent unsnappable rate

Still, under the right circumstances, we may receive interesng results from the algorithms.
We can alter the threshold at which we accept an individual that has a nunber of links that
do not cross the network. Theunsnappable ratedetermines the percentage of measurements
that must cross at least one pixel. This rate is the value -, where is the threshold
mentioned before in Section 6.5.1, and is the maximum number of measurements.
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One would expect a low unsnappable rate to allow way too many inferioresults, but we
observe from Figure 20 that this may allow the algorithm to take more risk, resulting in
deviating runs. A high rate results in stable knee points which endup to be relatively good,
but do not improve. Thus, we nd that selecting the right set of param eters is di cult

and very dependent on context, but the algorithms may give us good redts if we do nd
the right values.

7.3 Physical trials

After delving into the planning of missions, we want to actually put t he missions into
play. We let various missions collect their measurements and obseewvhich ones result in
a smoother reconstructed image of the same environment of objects.

We also compare the missions based on their running time and number ofrhes that two
vehicles are too close to each other according to an objective proxityi factor. This gives
us a measure of how safe a given mission is.

First of all, we describe how we set up the controlled space that we @sfor these physical
experiments. We use an indoor location that is enclosed by unused oons, and the experi-
ment space is also mostly empty. This minimizes most forms of noisedm the environment
that could disturb the RF sensor measurements.

When we are indoors, location detection systems such as GPS functiaquite poorly, which

we also determined empirically for the building where the expements are located. Due to
this, the vehicles need a di erent method of detecting its posiion. The vehicles have a line
follower sensor, which we describe in Section 6.3.2. With it, we caroflow black lines on a
white surface. We use tiles that can be printed on A3 paper that give usntersections of
lines that are 19 mm thick and 130 mm apart when they are cut out and repeatedThese
tiles are shown in Figure 21a.

(a) Grid tile (b) Overview of the grid with two robot vehicles

Figure 21: The experimental setup of the grid where the vehicles maynove.

The tiles need not t exactly, as one can leave some white space betweehe lines by
letting the vehicles take some leeway when the line follower saor loses the line. The
intersections are then still at equal distances from each other.
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The grid pattern resulting from the tiles has the advantage of clearly denoting the \pixels"
of the area corresponding to the reconstructed tomographic image. Thus & can check
whether the image shows the objects in their correct locations.

For our physical experiments, we create two grids: one full grid with10 by 10 pixels, and
one grid that is 20 by 20 in total but only has pixel lines at the edges of the ara. This
gives us two horizontal or vertical lines per edge, depending on the diction of the edge.
The latter grid is shown in Figure 21b. We use two vehicles in all expgments.

We perform some preliminary experiments on the smaller 10 10 grid, using di erent kinds

of missions. All of these missions employ the same kind of waypoint patéirns, which we
describe in Section 6.4.1. This includes straight lines, fan beams @inating from corners or
from the center of an edge, diagonal lines and other line patterns where throbot vehicles
are driving along di erent edges. We attempt to connect these pattens so that there is as
little downtime between measurements; this leads to a full mision with a speci c order of
patterns.

(a) Top left; straight lines mixed (b) Top left; straight lines mixed (c) Top left; straight lines, center
with corner fan beams with center fan beams fan beams and corner fan beams

(d) Center; straight lines mixed (e) Center; straight lines mixed (f) Center; straight lines, center
with corner fan beams with center fan beams fan beams and corner fan beams

Figure 22: Visualizations of tomographic reconstructions for one person standg at two
di erent locations within a 10 10 network, using various patterns in missions that collect
the measurements. We observe that (c) and (f) supply the most realigc and stable results.

The quality of the result may depend on where the objects are locatedn the network;

some areas may receive many intersecting measurements pretty ally, while others take
a long time to settle. Therefore, we perform two experiments for ach of the three missions
that we compare.

54



Mobile radio tomography: Autonomous vehicle planning for dynamic sensor pasons

In the rst experiment, a person is standing in the top left corner of the network. All
missions start the vehicles at the lower edge of the network, which mans that they need
to travel longer to get good coverage in this corner. The second expenient has one person
standing in the center of the network for further comparison.

We show these nal visualizations in Figure 22. We observe that there arequalitative
di erences in the reconstructed image for these fairly similar misions, when we run them
under the same circumstances.

Some tomographic reconstructions take longer to provide an image that is viglly similar
to what we expect. During this time, they only show unstable recorstructions. This is
because there are not enough sensor measurements in certain areas, or timks do not
cross each other enough at that point.

Eventually, the mission that combines straight lines, fan beams from he center of the
edges, and fan beams from the corners, in that order, quickly suppliethe most stable
result locations of objects that we testes, which we observe from theeconstructed images.

We now create a mission using the planning algorithm and compare it to tle hand-made
mission. We allow the algorithm to place sensors at discrete locationsof up to = 400

measurements, and require that at least 80% of them are correctly positiced such that

they cross the network. After tmax = 7000 iterations, we end the run, which gives us a
Pareto front. We pick a knee point, in this case the seventh solutionin the front.

This solution performs 382 measurements. Using ranges of waypoints, wartc compress
this mission to about 70% of the original size of the assignment of waypointsThe collision
avoidance algorithm determines that this assignment is safe, but we dmot make use of
the padding. We visually con rm the safety using a tool that shows in which order we
receive the links from a prede ned assignment.

(a) Partial result from mission (b) Partial result from mission (c¢) Final result from mission
that was automatically planned that was hand-made that was hand-made

Figure 23: Visualizations of tomographic reconstructions for one person standg in the
top right corner of a 20 20 network, during a planned mission and a hand-made mission.

When we run the planned mission, we obsertve about halfway through thatFigure 23a
distinctly shows the person who is standing in the top right corner In comparison, the
hand-made mission would nish faster for the 20 20 grid, but halfway through the
reconstruction still shows some \ghosts" of objects that are not in the ar@, which can be
seen in Figure 23b. The nal result in Figure 23c does show the object diinctly.
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8 Conclusions

In this thesis, we introduced mobile radio tomography as a novel colletion of techniques
that can be used to deploy a network of wireless sensors in a new lodah without much

prior information about the environment. We describe the foundations of geometry and
other concepts that are relevant for this purpose. This allows us to mak use of existing
algorithms and augment them with new ones. These algorithms help us plan anission
consisting of positions where we need to take sensors to, assign thesasjtions to various
vehicles and ensure that they do not collide with each other.

The algorithms form the basis of a planning component within a larger tooltain, which is

able to direct the vehicles to move to the correct directions and gersee the entire mission.
We make use of information from auxiliary sensors, which allows the vehle to perform

measurements, communicate with other vehicles as well as the groundasion, receive

commands that the vehicle processes immediately in any circumstae, and keep track of
its location and other status information.

The complete toolchain allows us to experiment with our mobile radiotomography setup.
We look at the parameters that determine how the planning algorithms wok, and also
test the missions in an actual setting, keeping in mind that our goal is toquickly receive
a stable and good reconstructed image of the area.

From our results of the large number of experiments with the planningalgorithm, it
appears that we need to carefully tune the con guration of these algorithmfor them to
function optimally. The evolutionary multiobjective optimization algor ithm has problems
with nding better results. This may also be caused by the objecives themselves, i.e., they
are not easily optimizable because the underlying functions are tooamplicated, or they
do not provide a good measure of quality.

Additionally, the algorithms that are used to generate these measures wdrwell on their
own, but they are slow and do not provide the expected end resultsvhen used within the
evolutionary algorithm. We speculate that this is due to the additional constraints laid
down by these algorithms, such as the collision avoidance algorithm re@ting or penalizing
solutions that are unsafe. The evolutionary algorithm can then unexpectdly nd worse
solutions and is not able to salvage this situation.

The greedy assignment algorithm works well for a small number of pairs of sesor positions.
When we need to obtain over 200 measurements in order to receive a googtonstruction,
then the algorithm still functions the way it is supposed to, but certain movement patterns
are not sensible for human observers.

One problem is that the travel distance determined by this algorithm is based on the
sum of the lengths of the shortest (safe) routes, and does not contain otihdactors that

increase the duration of the mission. Still, the contribution of the greedy algorithm toward

the optimization problem and nal assignment is considerable.

Indeed, when we do nd good parameter values, the planning algorithms able to provide
intriguing results. As seen in Section 7.3, the automatically planned nssion is able to
compete with a hand-made mission, which follows certain patterns that were theorized
and tested to serve well for the tomographic reconstruction. The speg of the mission is
still an issue, but the quality of the reconstructed image shows thatit is possible to put
an automatically planned mission into practice.
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The vehicles make use of the line follower sensor to detect theiotation in a discrete grid
setup. This makes it possible to take a preprinted partial grid, which might consist of only
\rail tracks", and place it in a new environment as a simple, controlled setup.

We let the vehicles follow their own mission autonomously. This in&pendence does not
mean that they cannot take the other sensor-carrying vehicles into acaunt. This allows
them to avoid collisions, and lets them synchronize the collection omeasurements. Also,
a ground station is a necessity, but only for the planning and reconstration work. Finally,
one needs to supervise the entire setup to ensure that everythg works as intended. Still,
a lot of the work is automated, which is pleasing especially for the moredborious and
repetitive tasks.

We nd that the overall approach of mobile radio tomography is successful n obtaining a
reconstructed image of an area with fairly little prior knowledge about its properties, using
far fewer sensors and measurements that one would need in a static setuWe show that
the addition of various algorithms and other sources of information can help inmaking
this approach more stable.

In conclusion, we can split up mobile radio tomography into di erent parts, which all work
the way we expect them to. Even though it may be problematic to achiee the expected
result in some cases, these di culties are not insurmountable. Thee parts allow us to
create a fully functional toolchain, which leads to the desired endresult of reconstructed
images that clearly show the location of objects within the area of inteest.

8.1 Further research

While we present a toolchain for mobile radio tomography in this thesiswhich accomplishes
our basic needs, this does not necessarily mean that this eld of resech is completely
explored. We have several ideas, theories and proposals for additionalafiires that can
be helpful to improve the stability, quality and overall usabilit y of mobile radio tomog-
raphy. We focus on the topics related to unmanned vehicles, but ths also includes novel
reconstruction work.

One particularly interesting concept is 3D tomographic reconstructon. If we make use
of more than two axes in our space, then we can gather measurements from mamyore
locations. This means that the vehicle must be able to y around or othewise change the
altitude of its sensor, e.g., through the use of a telescoping pole mouetl on a robot. We
could perform measurements that intersect with objects detecteckarlier on even more, by
placing sensors at di erent altitudes and angles.

A simpli cation would be to measure similar links at slices of the space, each slice having
one altitude that is equal between all measurements in this slice. e slices can then
be stacked, and we then connect the detected object pixels, whichre actually three-
dimensional voxels This would make it possible to display an interactive 3D visualization
of the reconstruction.

The level of detail of the reconstructed images is not only limited by e number of discrete
locations where we perform measurements, but also by the granularitpf signal strengths,
which is inherent to the wavelength and power of the wireless antenas. It may thus be
problematic to improve the resolution of the reconstructed images, ht there could still be

opportunities that can enrich the reconstruction with more detailed information.
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One option is to scan the entire network with an initial reconstruction. After enough
measurements are received, we obtain knowledge about where the obfgeof interest are
located. We could then\zoom in" on one of the objects by moving the vehtles closer to this
object, but far away enough to move around it. We can then start another reconstruction
of this object, where we decrease the distances between sensorsgortionate to this new
subnetwork.

The algorithms that we propose in this thesis can also be improved. Theearch algorithm
from Section 4.1 that we use, is based on the A* search algorithm. Variants»ast that

improve performance and decrease complexity for speci ¢ domains. Tik could be used to
make the application of the other algorithms that use the search algorithm moe viable.
The collision avoidance algorithm from Section 4.2.2 could be made less &tt by modeling

what a vehicle could do to prevent a collision, such as halting or makig a shorter detour
than it can detect right now.

The greedy algorithm, which assigns sensor positions to di erent vehiles in the form of
waypoints, could also be extended further. The algorithm that we desribe in Section 4.2.1
performs a selection that is not always optimal. The greedy algorithm coull take more
information into account to make a better decision while keeping thesame time complexity.
We could track the direction in which the vehicle is facing at everypoint, so that we can
favor moving in this direction rather than turning to go to a position behind it.

The evolutionary algorithm could also be enhanced with objectives that ketter t our
desires. We could improve the sensor positions by de ning variabke that create di erent
types of waypoints or complete patterns, such as straight lines and fan dams from certain
center points. We can use the hand-made missions as a baseline to optie further, and
use it as a reference point in our Pareto front for di erent selectionstrategies.

In our physical setup, one would rather have the vehicles nd out ther location on their
own, with no knowledge of the area at all. This excludes the grid ovday, which lets the ve-
hicles position their sensors at precise but xed locations. The gid restricts the movement
to certain directions, even when diagonal movement would be fasterof example.

A major bottleneck here is that the reconstruction requires precse location information,
and relying on external positioning information is too fragile. A solution that uses a global
positioning system (GPS) would not work reliably when there is no opa air, and even
when outdoors it may be inexact and shifting the position incorrectl.

Other location detection systems such as ultrasound or infrared sems information may

be possible but require additional setup or assumptions about the envonment. Another

option is letting the vehicles determine their location through the use of the tomographic
measurements themselves. When there are enough sensors in our netly and we have
some baseline information such as initial positions and a realistic speéeindicator, then a

triangulation approach could be possible.

Finally, we mostly consider vehicles that can freely move around in ouconception of mobile

radio tomography. If we want a permanent setup with fewer sensors, the we can also use
other robotic systems to transport the wireless sensors. One couldasider a guidance rail
mounted against a wall which holds sensors in certain positions and drags &m around

to measure di erent links. This gives us the freedom to position sasors wherever we want
along these rails, without requiring a large number of them or dependig on completely

independent, battery-powered vehicles.
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