Universiteit Leiden

Opleiding Informatica

Theoretical Properties of 2048

Name: Mathe Zeegers
Date: 30/08/2016

1st supervisor: Dr. Walter Kosters
2nd supervisor: Dr. Hendrik Jan Hoogeboom

MASTER'S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

Abstract

2048 is a sliding-puzzle game in which tiles containing powes of two are
merged by sliding these on a grid and combining them to obtain hi gher-
valued tiles. The goal of the game is to obtain the tile 2048 using the tiles of
values 2 and 4 that are dropped on the board by the computer. We present
a generalization of the game for which we will state and prove various
properties of reachable boards. Furthermore, we will closely examine the
one-dimensional case where the number of rows is equal to one.

By using theorems we present an algorithm that determines whether a
given con guration is reachable during a game in which it is not m andatory
to change the con guration of the board, and relate this to the ga me where
changing the con guration is compulsory. In addition, the dyn amics of
the game are investigated when more di erent tiles are dropped on t he
board. Furthermore, games in which the player loses as fast as postble
are examined and expressions or upper bounds for the number of mees
to achieve this are derived. Finally, the possibilities of sol ving the game-
theoretic value of the initial board in 2048 are discussed. It is shown, using
a computer with 1:5TB of memory, that when the player plays optimally,
a tile of value 128 can always be obtained.

Contents

1 Introduction | 3
2__Related work | 6
I3 Methods and problem statement | 9
3.1 Modications and conventions 9
3.2 Implementation|o 10
3.3 Problem statement 10
4 General properties | 12
[5__One-dimensional case | 16
.1 Theoretical analysi$ 16
2.2 Checking reachable con gurations In the passing game 23
5.3 Checking reachable con gurations in the non-passing game . .. 25
6 Role of maximum dropped tile | 31
6.1 Dropping di erent tiles to prevent merging| 31
6.2 Maximum reachable tiles for various settings 35
|7 Short games | 38
|/.1 Theoretical analysi$ 38
|7.2 Computationalresults 46
18 Notes on solving the game | 48
8 H A . . o e 48
[8.2 Hash table distributions 50
8.3 Compressing hashtables 55
9__Conclusions and future work | 58
[References] 60

1 Introduction

The game 2048(1] has been very popular recently. It was developed by Gabriele
Cirulli during a single weekend and released on March 9 in 2014. The game is
based on 1024 by Veewo Studio and similar to Threes! by Asher Vollmer. 2048 i
a sliding-puzzle game in which tiles that spawn on a four-by-four boardhave to
be merged to obtain higher-valued tiles. The objective of the game is t@btain
the tile 2048. An example of a reachable con guration is given as a screenshot
in Figure [1

Join the numbers and get to the 2048 tile!

2 2

Figure 1: Reachable con guration of the game 2048, as it appears in1].

During each turn a 2-valued tile or a 4-valued tile is dropped randomly onthe
board. Tile 2 is dropped with probability 0:9 and tile 4 with probability O :1.
The player then swipes the tiles in one of the four directions (up,down, left
or right) and merges pairs of equally-valued tiles in the process. Forxample,
two 2-valued tiles lining up to each other become a 4-valued tile by aplying
the correct move. A move is only allowed when the con guration on the boad
changes. If no more moves are available, the player loses. This is tloase when
the board is full and no tile can be merged. An example of a con guration
and the possible moves is shown in Figurg]2. This also shows the predure of
merging. In each row or column each tile can merge at most one time per move
with another equally-valued tile. The order of the new tiles in a row or column
that appear by merging depends on the direction of the move that is cared out.

(00]
—
»
(0¢]
(0¢]

4 2 2] 4
4 4 Left 1, 5 2| Right 4 4
8 4 < 44 4 4 8
216 8 4 216 8 4 2 16 8 4

2
8 4 2 4
216 8 8

Figure 2: A random con guration with the resulting boards of the four possible
moves of the player. The moves are indicated by the arrows.

The game also features a scoring mechanism. When two tiles with valu2 merge

to 2'*1 | the score increases with 2% (with i 1). While most research of 2048
is targeted towards obtaining the highest possible score, this will ot be the

main focus of this thesis.

Given the rules of the game, an important question is whether it is alwgs
possible to reach tile 2048 or not. Many of the results in this thesis are riven
by this question.

This thesis is part of the master project for the master programme of Compter
Science at the Leiden Institute of Advanced Computer Science (LIAC$ of Lei-
den University, and is supervised by Walter Kosters and Hendrik Jan H@geboom.

In this thesis we will closely examine the theoretical propertiesof this game.
In Section[2 previous work on 2048 is reviewed. We will modify and generiake
the game to have a better understanding of the mechanics. To this ah the
modi cations to the game are described in Section B as well as programs andhé
computational resources that are used. Sectiof 3|3 states the various pr#ms

4

that will be analyzed in this project in the light of the modi cations . Then, in
Section[4 general properties of the boards will be stated and proved. Sgon [5|will
be targeted to the one-dimensional version of the game. We will state andrpve
additional properties of the game and use these for an algorithm that checks
whether a given board is reachable in the game. In Sectidn| 6 the in uere of the
maximum tile that can be dropped on the board (which is 4 in the original 2048
game) is investigated by employing theoretic methods as well as compational
methods. Sectior{ ¥ will be concerned with keeping the game as short a®ssible
in terms of the number of moves. This will also be examined by theoitical and
computational methods. In Section[§ the methods for solving 2048 are disissed.
Section[9 collects all conclusions, and suggestions for future researare given,
as well as predictions in which case 2048 is solvable.

2 Related work

Since the release of the game many variations have been develop&i(B]. These
variations range from simple graphical overhauls or small gameplay changes to
versions that seriously change the rules to add interesting spinsat the game,
such as larger boards, multiple dimensions and di erent dynamics of tle tiles.
A selection of variants is given in Figure[3. Apart from this the original game
was also picked up by researchers. The most important portion of the resarch
focuses on heuristics for winning the game as often as possible. The kst e orts
included an agent by Chowdhury and Dhamodaran that applied a depth-linited
expectimax algorithm to the game H] and achieved a winning ratio of nearly
90%. Rodgers and Levine made a comparison between Monte Carlo Tree Search
(MCTS) and Averaged Depth Limited Search (ADLS) [5], although the aim here
(and in most subsequent research) was to maximize the score rather #m win the
game. It turned out that ADLS produces higher scores than MCTS. Meanwhik,
Temporal Di erence (TD) learning was applied to 2048 by Szubert and Jakavski
[6]. Using N -tuple networks this method achieved a winning ratio of about 97%.
Here an N -tuple contains values of N predetermined positions on the board
and a look-up table containing weights for each observable sequence. Aing
to increase the rate at which large tiles are reached, Wu et al[{] extended
this approach by using Multi-Stage Temporal Di erence (MSTD) learni ng to
adapt the agent to several stages of the game. Their MSTD-program reached
the 32768-tile with a rate of 31:75%, a signi cant improvement compared to the
rate of 0% using TD. More recently, Gui et al. [8] adapted deep neural networks
with reinforcement learning to 2048, but the networks performed worsethan an
agent that only uses reinforcement learning. Oka and Matsuzaki9] extended the
previous TD approaches by investigating the usefulness of varioull -tuples. It
appeared from their research that the design of the tuples is highly iruential on
the performance of the agent. The authors used 7-tuples to achieve the aximum
score known as of yet (504660).

However, only little research has been devoted to the theoretical mperties
of the game, almost exclusively in the eld of computational complexity. The
earliest e ort by Mehta [[15] argued that the game is PSPACE-complete using
a reduction from Nondeterministic Constraint Logic (NCL). However, it was
debated by Abdelkader, Acharya and Dasler[L6, [17] not only that the proof just
showed that 2048 is NP-complete, but also that there are a few problems Wi
the reduction (the blocks do not always move according to the game'sules, for
example). In their paper, it is shown that 2048 is NP-hard using a redution from
3-SAT and that, using the argument that 2048 is in NP by Christopher Chen
[18], 2048 is NP-complete. However, in their version of the game it is assumed
that all tiles in the game are present on the initial board and that during the
game no new tiles are dropped. Later on, the problem of NP-completeness was
picked up by Langerman and Uno[L9]. They showed that the original game is
NP-complete as well. Another proof by Gobbert P0] showed that 2048 is also
NP-complete for all rectangular boards, but in this case only for obtaining fles
with certain values.

PUPPIES EATEN
880

Prevent the evil AI player from reaching the 2048 tile! 1 63 84 H ex

Join the numbers and get to the 16384 tile!

00:

2048 +-*/ ol AR
SCORE BEST
Multiply and add numbers to reach 2048!

Be careful, if you reach -2048 or Infinity you lose Join the numbers and get to the 2048 tile!

2048 - 3D

Bann: - A

Join the numbers inside cube and get to the 2048 tile!
The squares represent layers of the cube - bottom, middle and top.

n-n - -EA-:0

Figure 3: A small selection of the large amount of variations on 2048 that have
appeared on the internet. Upper left: A variant with the roles of player and
computer reversed. Upper right: A variant that is played on a small hexagonal
board with six possible moves. Middle left: A variant where 2048 must le reached
using combinations of numbers and operators. Middle right: A variant whee
2-valued tiles are dropped after each move and after each elapsed secoglow:
A 3-D variant of 2048 on a3 3 3 board. Images taken from[LG, (11, (12, [13, [14]
respectively.

In [21] the maximum-valued tile is determined for various boards and setupsin
this version the computer is treated as a second player instead of a raomized
tile dropper. The largest two-dimensional board that has been solved has 14
squares. It is strongly suggested that in case of perfect play by the coputer
the original 4 4 game cannot be won. We will revisit and extend some of the
material covered in this paper.

It is also worth noting that several competitions regarding 2048 have been
organized P2, [23. In the Taiwan 2048-bot contest in 2014, the ranking was
based on the maximum score, the average score, the maximum tile and thete
of high-valued tiles over 100 games. The top-three winning programs all sl
expectimax search and the second placed program was based on TD learning.

3 Methods and problem statement

In this section the modi ed game is presented and the conventional daitions
and notations in this thesis are explained. In addition, the programs thatare
developed to obtain the results in this work will be brie y discussed.

3.1 Modications and conventions

This thesis will use several simple modi cations from the original gane. First
of all, we transform the game into a two-player game, where the rst player
drops tiles on the board and the second player swipes the tiles in one tlfie four
directions. We will call the rst player "Dropper' and the second player "Slider'.
Dropper is the player that always starts on a board that is initially empty.

We will not restrict the board dimensions to 4 4. Instead, we denote the sizes
by m;n 2 N. . Here, m is the length of the vertical axis and n is the length of
the horizontal axis. We take these parameters such tham n, since the other
cases lead to similar boards (when rotated).

The representation of tiles in the original game is also changed. Given ailé
X 0 in the original game, the following function V maps it to their new values:

V(x) = 0 _|f x=0
log,(x) if x>0

In this case two i-valued tiles merge to one { + 1)-valued tile.
Dropper is allowed to place new tiles on an empty position (i.e. with alue 0)
on the board. The parameterD o« indicates the maximum value of tiles he is
allowed drop.
In the original game the value of the objective tile is xed. In the modi ed version
we use parameterO to indicate the objective value. We assumeD > D pax . Unless
stated otherwise, the objective tile iSO = m n + Dpax. This is the smallest
value that is certainly not obtainable, which will be shown in Theorem[g. We
write O and leave out the dependency on the parameters.
The game ends when either the objective tile appears on the board or Skt
cannot swipe in any direction changing the board. In the former case Slier wins
and in the latter case Dropper wins.
As for notation, we useC 2 N™ " to indicate a con guration during the game.
We also leave out the dependency on the parameters in this notation. fie value
of a tile in row i and columnj of the board is indicated by C;; , with 0 i<m
and 0 j<n .The board C° is the empty board (i.e. every site has value 0). For
boards with m =1 we will use a lowercasec (additional notation for this case
will be explained in Section). Furthermore, we will use the tems “board' and
“con guration' interchangeably. The same goes for the terms “tile' and value'.
We will call a board C ‘reachable' by Dropper when it is Dropper's turn and
there exists a sequence of moves by both players that leads © from C°. The
same holds for Slider.
We also introduce the notion of “passing'. In the original 2048 game a valid may

by the player is when the con guration changes. In this paper we also cosider
the case where this is not mandatory. We refer to this version as a game thi

passing, or, equivalently, a passing game. A pass is a move where theapér
does not change the con guration. In this case, Slider only loses when thboard
is completely lled with tiles and he is not able to apply a non-passirg move.
Unless noted otherwise, we consider the game without passing by defawl

As we will look at di erent properties of the game, the problems outlined in

Section[3.3 will be approached in di erent ways in each section of theemainder
of this paper and calls for slight modi cations. In each section, we willexplicitly

describe what modi cations are made on top of the modi cations that have been
described in this section.

3.2 Implementation

For the problems that will be presented in Section3.B a handful of progams
have been developed. These programs are written in € .

The rst important program is an improvement of the one that is described
in [21]. This program computes which player will win in case of optimal play
for any speci ed setup. To save multiple evaluations of boards a hash tale
is used that stores the game-theoretic value of boards. Optimizations ofhe
previous program include creating fewer new boards, only hashing boardsat
are reachable by Dropper and cramming ve game-theoretic values of boards
(this includes attainability of the board) into a byte instead of one value. More
details of the program are given in[R1] and more notes on optimizations and
techniques will be given in Sectior| B. This program will be used in Sgions|[6,[1
and[8.

The second important program identi es boards that are reachable in a one-
dimensional (i.e.m = 1) passing game. The core part of the algorithm will be
explained in Section[%.

All computations in this thesis are done on a computer having a process speed
of 2.4GHz. The computer has a total of 1.5TB of RAM which is used for the
hash table. This means that no more than 75 10'? game-theoretic values can
be stored in the hash table.

3.3 Problem statement

We aim to answer the following questions:

1. Given m;n 2 N. and Dnax 2 N., what are the properties of reachable
boards?

2. Given m;n 2 Ny and Dnax 2 Ns, is there an (e cient) algorithm that
checks whether a given con guration is reachable in a passing game? Can
this algorithm be used to check whether a given con guration is reachal#
in a non-passing game?

10

3. Given m;n 2 N., is there a value of Do independent of n for which
Dropper can play in a way that no two tiles can be merged by Slider duing
the entire game? What is the highest obtainable tiles for Slider, givera
Dmax Vvalue?

4. Given m;n 2 N, and Do 2 N., what is the fastest way to obtain a
board where Dropper wins (where Dropper and Slider cooperate)?

5. Given m=3;n =5 and D =2, can we give a time and space e cient
method to solve the question whether Slider or Dropper wins the mdi ed
game in case of optimal play? What can we say aboutn = 4;n =4 and
Dmax =2?

These questions will be covered in Sectior[g 4 through 8, with a sepate section
for each question.

11

4 General properties

In this section we will state and prove some useful facts of the modied game
that will be helpful in later sections.

Theorem 1. Let m;n 2 N, and let Dmax 2 N+ . Every reachable con guration
C in the modi ed game has a corner point Co.0;Con 1;Cm 1.0 Of Cny 1:n 1)
that has value at mostD ay .

Proof. We prove this statement with induction to the number of moves N of
Dropper and Slider. The statement is obviously true forN =0 as board C° is
still empty.

Assume that statement holds afterN® 0 moves. Without loss of generality we
may assume corner pointCo.o contains a value between 0 an nax . Now there
are two cases:

Assume it is Dropper's turn. When corner Cy.q is empty he may drop a
value between 1 andD . there. Then after N+ 1 moves this corner
contains a value between 0 and 5. When the corner contains a value
between 1 andD 5« this value stays the same when Dropper places his
tile (elsewhere) on boardC. In either case we see that the statement holds
after N9+ 1 moves.

Assume it is Slider's turn. Let C° be the board after Slider applies his
move. There are two slightly di erent cases:

{ Assume Cy.c = 0. When Slider swipes to the right or downwards
then we still have C,, = 0. When Slider swipes upwards then we
have C,, 1.0 = 0 and when Slider swipes to the left then we have
Con 1 =0.In all cases we have an empty corner point, so afteN %+ 1
moves the statement holds.

{ Assume 0<Cypp Dmax- When Slider swipes to the right or down-
wards then C3., = Co,0 or C3,, = 0 holds. When Slider swipes upwards
Co.0 stays the same or merges. When it merges, the@,, 1.0 =0 and
the statement holds after N°+ 1 moves (but now the corner point
is CO 1.0)- When Slider swipes to the left and Co,o merges, then
C8n 1 =0 (and thus the desired corner point is C§,, ;). In all cases,
we have a corner point inC°that has value between 0 andD -

Thus after N°+ 1 moves the statement holds. O
Theorem 2. Let m;n 2 N, . The following four statements hold:

A move to the right is allowed if and only if the board contains a trizontal
equally-valued adjacent pair or an empty position with a non-empgt value
directly left of it. In other words, it is allowed if and only if th ere existi; |
with j <n 1,G; >0 and either Cij+1 = Cjj or Cjj +1 =0.

12

A move to the left is allowed if and only if the board contains a hidzontal
equally-valued adjacent pair or an empty position with a non-empgt value
directly right of it. In other words, it is allowed if and only if t here exist
i;j with j<n 1, Cija>0 and either Cij = Cjj+1 or Gy =0.

A move upwards is allowed if and only if the board contains a veal
equally-valued adjacent pair or an empty position with a non-empt value
directly below. In other words, it is allowed if and only if there eist i;j
withi<m 1, Cjs1; > 0 and either C;; = Cij415 or Cj; =0.

A move downwards is allowed if and only if the board contains a vecal
equally-valued adjacent pair or an empty position with a non-empt value
directly above it. In other words, it is allowed if and only if thete existi;

with i<m 1, C;; > 0 and either Cj+1; = Cjj or Ci+14 =0.

Proof. We will prove the rst statement as the proofs of the other statements
are analogous.

Assume that the board contains a horizontal equally-valued pair, so thereare
i 0,j<n 1with Gy = Cjj +1, that will merge during a move to the right.
When applying this move these two tiles merge into a tile with vaue C;; + 1.
Thus, the number of tiles with value larger than C;; has increased and the
con guration on the board has changed.

Assume that the board contains an empty position, sayC;; = 0 with j > 0 with
a non-empty value directly left of it, say Cj; 1 =y with j;y > 0. Assume that
there arek > 0 non-empty tiles left of the C;; tile. Applying a move to the right
means that all k non-empty tiles move at least one position to the right. This
means that after the move there are at mostk 1 tiles left of the C;; tile. This
implies that the con guration has changed.

In both cases the con guration has changed and the move rightwards is therfere
valid.

Conversely, assume each row does not contain an equally-valued adjacqueir
or an empty position with a non-empty value directly left of it. Let C;j; be a
non-zero tile on the board. Then because all tileC;; o with j°> are non-zero
and becauseCij +1 6 Cj; if j <n, it follows that C;; will keep the same value
after the move. Thus, each non-zero tile stays at the same place andsitvalue
will not change. Therefore, the con guration on the board will not change and
the move is not allowed. O

From Theorem[2 we immediately have a necessary and su cient conditn for
when the game is over for Slider.

Corollary 3. Slider loses if and only if during his turn there are no empty
positions or equally-valued adjacent pairs. In other words, Sfier loses if an only
if there are noi;j with Cij =0 or Cj = Cij+1 if j<n lor Gy = Cjuqjy if
i<m 1 O
Theorem 4. Let m;n 2 N.. Let C be a con guration that is reachable by
Dropper. Then C has a boundary point C;j with eitheri =0;i=m 1;j =0
or j = n 1) with value 0.

13

Proof. We will prove this statement with induction to the number of moves N
of Dropper. Again, the statement is true for N = 0 as board C° is completely
empty. Assume that the statement holds after N® 0 moves. LetC be any
con guration reachable by Dropper in exactly N° moves. By the induction
hypothesis, con guration C has at least one zero-valued boundary point, sag;; .
When Dropper places a new tile on a zero-valued non-boundary point themfter
applying any move by Slider eitherCoj, Cyy 1;, Ci;0 or Cin 1 is zero-valued.
Therefore, assume that Dropper places a new tile on a boundary point. Now
there are three situations:

There are no empty tiles or equally-valued adjacent pairs. Then by Cool-
lary B] Slider loses and the game is over. So the statement holds.

There are empty positions. Then after a move there is an empty boundar
point, since after each move the number of tiles has not increased andlal
non-zero tiles are pushed at one side and all empty positions at the other
side of the rows or columns (depending on the directions of the move)

There are equally-valued adjacent pairs and no empty tiles. Then the
number of tiles decreases and a new empty tile appears on the board when
the move is applied in the direction parallel to the pair. By the nature of
the move, this must be at a boundary point.

In all cases, there is a new boundary point afteN °+ 1 moves by Dropper and
Slider. O

Theorem 5. Let m;n 2 N. . A con guration that is reachable by Dropper does
not contain an adjacent pair of an empty position and a non-zeroite in all four

directions at the same time.

A con guration that is reachable by Slider contains these pairs notmore than
one time in at least one of the four directions.

Proof. Assume that a con guration reachable by Dropper contains an adjacent
pair of an empty position and a non-zero tile in all four directions at the ame
time. This con guration cannot be C°, so at least one move by Slider has
been executed. Assume that the previous move was a swipe to the righThis
contradicts the fact that we have an empty position and a non-zero tile &ft of it,
since a move to the right would have moved the non-zero tile at leasbne position
to the right. Swipes into other directions would lead to similar contradictions.
The statement follows.

Since Dropper can place a new tile at any empty square on the board, the send
statement is a direct consequence of the rst statement. O

Theorem 6. Let m;n 2 N, and let Dnax 2 N+ . The highest obtainable tile is
not more than mn + Dpay 1.

Proof. Assume that the highest obtainable tile ismn + D« and let C be any
con guration containing tile mn + Dpax . Then there must exist a con guration
Cmn+Dn 1 PrecedingC with at least two tiles with value mn + Dpax 1. This

14

implies that there must exist a con guration Cmn +p,,, 2 PrecedingCmn +p . 1
with either two tiles with value mn+ Dnax 2 and one tile of valuemn+ Dpax 1
or four tiles with values mn + Dynax 2. This means thatCpp+p,,,, 2 has at
least three tiles, of which at least two have valuemn + D5« 2. In the same way
there must exist a con guration Cmp+p,,., 3 PrecedingCmn+p,, 2 With at
least four tiles, of which at least two have valuemn + D 3. Continuing this
reasoning there must exist a preceding con gurationC; with at least mn + D pax
tiles, containing at least two tiles with value 1. However, this is in contradiction
with the fact the there are only mn squares. Thus, the highest obtainable tile is
not more than mn + Dnax 1. O

There are boards where valuenn + D,ax 1 is attainable. This will be shown
for Dmax =1 later on in Lemma [[2], and the proof is extensible to larger values
Of Dmax .

15

5 One-dimensional case

In this section we will examine the one-dimensional modi ed 2048 game,é. the
cases withm = 1. We are particularly interested which boards are possible in the
game in caseD nax = 1. If we have an e cient way of generating all boards that

can occur in the game, this would be helpful to determine the game-tloretic
value of the modi ed game (see[[211]).

5.1 Theoretical analysis

The modi ed game in the casem = 1 is slightly di erent from the case m > 2.
Dropper is still to drop a 1-valued tile on an empty site of the board, but Slider is
only allowed to swipe to the right or the left. Thus, Slider wins when a speci ed
objective tile is obtained by repeatedly merging equally-valued ties to the left
or to the right to get higher-valued tiles.

For this game it is not easy to come up with an optimal strategy for Slider to
win the game. In the one-dimensional case this is not the case for Droppelt
is best for him to place his tile next to another tile. In every stage ofthe game
this move is uniquely de ned and therefore the move by Dropper isdeterminis-
tic. So the problem that remains is to nd the best way for Slider to play the game.

Given the board length n 2 N., a board con guration is represented by a
string of length n. To keep those strings readable we introduce the alphabet

for the tiles with values 10 to 35. In this thesis we hardly need valueshigh
values of tiles, and certainly not larger than 35, so we do not de ne symbolgor
them. Let |, be the alphabet restricted to the values 0 to n (we will prove
later in Lemma that n is the largest value that can occur on the board).
Potential con gurations are now elements of |, which is the set of strings
c2 with j¢j = n. The words \string", \con guration" and \board" are used
interchangeably.

To de ne appropriate sets to work with for solving our problem we rst n eed to
distinguish the following two cases: the game where it is allowed tewipe to the
right without merging, which is called \passing" in Section and the game
where this is not allowed. The convention here is that we assume that tven
a swipe to the left takes place the board is mirrored, so that all tilesstay at
the right side of the board. This will be formalized shortly. Note that th e rst

version of the game possibly allows more con gurations than the second veim.

We de ne the following three operations. A dropping operationd on a con g-
uration c replaces the rightmost dot inc by a 1. A ipping operation f onc
mirrors the smallest substring of ¢ that contains all nondot-symbols. A merging
operation g is de ned analogous to the swipe to the right in the original 2048
game. For example, applying this operation on con gurationc = :12233 gives
g(c) = :::134.

16

Using the functions de ned above we can de ne functions for swipingleft and

right consistently with the game. A swipe to the right is the composition r =il g

and a swipe to the left is the composition® €y g f.

Let P2s be the set that contains precisely all possible con gurations in the
modi ed one-dimensional 2048 game with board lengttn where passing is al-
lowed and where it is Slider's turn. This set can be constructed agollows. First,
the string c® containing only dots except for the last symbol being a 1 is an
element of P3S. A con guration cis in the set if it can be obtained from c® by
repeatedly applying the function ~ or r to it in any order.

Let]°PaS pe the set that contains precisely all possible con gurations in the
modi ed one-dimensional 2048 game with board lengthn where passing isnot
allowed and where it is Slider's turn. The construction of this setis analogous to
that of the set h2SS, except that it is not allowed to apply a move to the right
on a con guration c2 1°P@S whenr(c) = d(c) (or equivalently: g(c) = c). Note
that poPass Pass holds.

Before we proceed, we give examples that make the above de nitions and
statements clear.

Example 1. Take for examplen =5. A string ¢=124:22 | is a potential
string. We can apply the de ned functions on this con guration to obtain:

d(c) = 12412
f(c)=2:421
g(c) = :1242
r(c) =11242
“(0) = 12421

However, it does not make much sense to consider this string in the context of
the one-dimensional modi ed 2048 game, as it is impossible to obtain thisteng
from a sequence of moves and r applied to c®. Thereforec2 ,n Rass,
Consider the string c®= ::1122 . This string is an element of P2 since
there exists a series of moves applied ta® to obtain this c® namely r (r (" (c?)))
or r(r(r(c?)). Note that there are in total four di erent possible sequences of
moves to obtain c® For all these sequences we have®= ::12 after applying

the rst two moves. Now we have that r(c®y = ::112 = d(c®§ = ¢ Therefore,
COg Hopass_

The objective now is to give an algorithm that determines for a given congu-
ration c2 |, whether it is an obtainable con guration in the game or not. In
other words it should be able to determine ifc2 P25 in the case where passing
is allowed andc 2 [°P2S in the case where passing is not allowed. The following
section focuses on the game with passing.

17

When given a con guration c, the algorithm rst performs a set of checks onc.
In this way, the algorithm can quickly reject many con gurations that are not in

Pass We rst give lemmas and theorems that are used to show the correctnes
of these checks. The rst lemmas are relatively simple but the lermas and
theorems get more complicated to prove as we move on. Note that most lemmas
also automatically hold for [oPass,

Lemma 7. Let c2 p2S. All dots are at the left side ofc and all non-dot
symbols are at the right side. The rst non-dot symbol ofcis 12 .

Proof. This follows from the construction of 525, We prove this with induction
to the number of movesk applied to c°.

For k = 0 we have string c® which has only one non-dot symbol which is a 1.
Assume that the statement holds afterk moves, and that we obtain c° after
k moves. We can apply the k + 1)th move and obtain a new con guration
by sliding to the right or to the left. A move to the right gives r(c) = d(g(c)).
Operation g ensures that all non-dot symbols are at the end of the string and
d puts a 1 in front of them. A move to the left gives “(c) = d(g(f (c))). Again,
applying g after f ensures that the non-dot symbols are at the end of the string
and d puts a 1 in front of them. In both cases we have that the rst non-dot
symbol of the new string is a 1. O

In the following, three important properties of con gurations in 525 will be
stated and proved. Before we do this, we need two lemmas and de nitins.

Lemma 8. Let c2 S, The last two symbols ofc cannot both bel, except
when the preceding symbol is a dot.

Proof. Note that *(c°) gives a con guration that ends with two ones and has no
preceding symbols (for example, whem = 4 we get *(c°) = ::11).

Let c be a con guration that ends with x11 wherex 1. Since both 1s cannot
be the result of a merge and none of the two could be dropped during a mev
that resulted in c (since there is anx in front of them), we should have the same
11-pair in a previous con guration c®. But since any 11-pair in c® would merge to

a 2 for both moves, we cannot have 11 at the end af. Contradiction. So there

are no con gurations that end with x11 with x > 1. O

We will also use the following important de nition.

De nition 1. A con guration c 2 1S js bhitonic when the symbols of the
string are rst only increasing and from some point onwards only decreasig in
lexicographical order.

Example 2.
 is bitonic

c= :1234 is bitonic.

18

€ =43321 is bitonic.
€ = 13642 is bitonic.
c= :1111 is bitonic.
c = 14251 isnot bitonic.

De nition 2. Letc2 P35, Let ¢ be theith symbol in c. De ne the following
four quantities:

x
T 201
i=1
ci>0

X
def
T(c;x) = 26 1
i=1
0<cj<x
X
def)
T(c;x) € 26 1
i=1
0<c j <X
i minargmax ;fcjg
X
def .
T (cx) = 26 1
i=1
0<c i <x
i maxargmax ;fcjg

Lemma 9. Let c2 FP#S. The number of moves to reaclc is equal toT(c) 1.

Proof. To create a 2 there are two 1s needed. To create a 3 we need two 2s, for
which in turn four 1s are needed. In general, to create a tile of value; there
are £ ! tiles of value 1 needed. This implies that for every tillgci on boardc a
total of 2% 1 tiles have spawned. So for all tiles on the board [, 2% ! must
have been spawned, which is equal td (c). Since during every move exactly 1
tile spawns and sincec® has one 1-tile, it follows that the number of moves to

reachcis equaltoT(c) 1. O
Theorem 10. Let c2 FP#S. The following three properties hold:

Any non-dot symbolx 2 |, cannot appear more than two times consecu-
tively in c.

Con guration c is bitonic.
Any non-dot symbolx 2 , cannot appear more than three times inc.

Proof. We will prove this statement with induction to the number of moves.
First of all, note that all three properties hold for con guration c°.
Now, let N 2 N.; and assume that the properties hold for all con gurations

19

cwith T(¢) 1 N. Let c®be any con guration that can be formed from
con gurations with T(¢) 1 = N. For this con guration we have T(c® 1= N+1.
Assume that ¢ contains more than two equal symbols next to each other. Then
c® contains a substringxxx with x > 1. Lety = x 1. Let T be any con guration
with T(t) 1= N for which c®is reachable by either swipe to the right or to
the left. Since eachx-valued tile in ®is either x or yy in T, there are at most
eight possible combinations for the substring inc that forms xxx in ¢

1. yyyyyy
2. yyyyx
3. yyxyy
4. Xyyyy
5. yyxx
6. Xyyx
7. XXyy

8. xxx

Note that all of the above substrings are all impossible. By the inductionhy-
pothesis, substring 12;4 and 8 are not possible since they have three or more
equally-valued consecutive non-dot symbols. Substring 6 is not poise since
it is not bitonic. Substrings 1;2; 3; 4 are not possible since they contairy four
or more times. And substrings 5 and 7 are not possible since they fornx(+ 1)
when slid to the right or to the left. So none of the substrings is posible, which
shows that xxx is not possible whenx > 1.

In the special casex = 1 con guration T should have contained either 111 and 11,
since 1 cannot be formed by merging other tiles (the latter case is whel111 in
c® is preceded by a dot). But sliding this con guration to the right or to the left
produces a 2-valued tile instead of 111. Smxx with X =1 is also not possible.
So we reached a contradiction. This shows that® cannot contain non-dot symbols
that appear more than three times consecutively.

Assume that c® is not bitonic. Then there are x;w;z with x<w,x<z,x 1
such that wxxz or wxz is a substring in c®. For T there are several possibilities.
Note that when x is formed from (x 1)(x 1) (in casex > 1), then Tis certainly
not bitonic, so this is not possible. Also note that c® can only be formed either
whenw = x +1 and w was formed from (v 1)(w 1)inctorwhenz=x+1
and z was formed from 1)(z 1) in T. But then T contained the substring
xxx , which is not possible by the induction hypothesis. Contradiction. So c® is
bitonic.

Assume that c® contains four equally-valued non-dot symbols. Since® is bitonic
and cannot contain three equally-valued consecutive non-dot symbols;® must

20

contain the substring xxSxx (where S represents a non-empty substring that
only contains values higher thanx).

When x = 1, then the pair xx at the right of the substring S forms the end of
¢ sincec®is bitonic and all dots are at the left of the string. By Lemma [g| this
is not possible. So this gives a contradiction.

When x > 2, then the left pair must have been formed by ¢ 1)(x 1)xintT
and the right pair by x(x 1)(x 1) (this follows from bitonicity and from the
fact that xx merges to & +1). But then T contains (x 1) four times, which, by
the induction hypothesis, is not possible. Contradiction.

So c® does not contain more than three equally-valued non-dot symbols. O

Theorem 11. Letc2 FR#S, For every symbol inx in c we haveT(c;x) x 1

Proof. For obtaining x at some point the substring 1123::(x 2)(x 1) should
occur on the board (note that it cannot occur in reverse order by Lemmd:p).
Merging this substring to x costs exactlyx 1 moves, and since after every move
a new 1 appears on the board, there is an additional value irc of at leastx 1
made up by tiles that are all lower than x, soT(c;x) x 1. O

Lemma 12. Letc2 F3S. The largest value that can occur inc is n. This value
can be achieved by continuously sliding rightwards and is locateat the end of
the con guration.

Proof. We will prove this theorem with induction to n. First, note that the
statement holds forn = 1. Now, let N 2 N. o and assume that the statement
holds for all n < N . Thus, by continuously sliding to the right we obtain tile
value N 1 at the end of a boardc® of length N 1. Now add an empty symbol
at the beginning of c® to obtain T. The con guration cCis bitonic, so the leftover
values are increasing. By repeatedly applying the induction hypothsis we see
that on the remaining spots (without N 1) a new symbol of valueN 1 can
be created and is located at the second to last spot, thusy ;1 = N 1. Merging
this new symbol with ty = N 1 at the rightmost spot gives the symbol with
value N .

Assume that there is a con guration cwith tile N +1. Then there is a con guration
¢ from which c can be reached that contains twoN -valued tiles. But then either
of these two tiles has been constructed o, which is a board with less thanN
tiles. Contradiction. O

Theorem 13. Letc2 1§ Then T(c) 2" 1, and there exists a reachable
con guration c®with T(c)=2" 1.

Proof. We know that a con guration c®2 |, with T(c®%=2" 1 must consist
of values 1 ton 1 that are used only once (since the binary expansion of (c9)
is unique). Note that there is a reachable con guration with these values, namely
12:::n. By using Lemma[12, this con guration can be obtained by continuously
sliding to the right.

Suppose that there is a con guration c® with T(c) 2". By Lemma[17 no tile
with value higher than n can occur, so at least one of the tiles ;1::;n must

21

occur more than once. Letx be the highest tile that occurs more than once. This
implies that either of the x-valued tiles has been formed on a board of length
x 1. By Lemma[12, this is impossible. Contradiction. O

Theorem 14. Letc2 P2s Assumec = x andc.; = xwithl i<n.Then
the following statements hold:

When i< minargmax;f¢ g, then T-(c;x) x 1
Wheni< maxargmax fcg, then T, (c;x) x 2
Wheni 2 argmax f¢ g, then either T-(c;x) x 1or T, (c;x) x 2

Proof. Assumei < minargmax; f ¢ g. Then in a previous con guration the sub-
string xx starting at position i should have beenx 1)(x 1)x. Continuing
this reasoning, in a con guration c®which leads tocin x 1 steps the stringxx
was 1123::(x 1)x (or the reverse).

Now assume without loss of generality thatT-(c; x) = x. For every move back-
wards at most one 1 can be removed from the tiles left ok. So not all tiles
right of x can be removed withinx 1 steps backward. This means that going
backwardsx 1 steps, we have substringy1123:::(x 1)x in the con guration
(or substring x(x 1):::3211y) with y 1. If y > 1 then the string is not bitonic
and wheny = 1 we have three consecutive 1 symbols. Theorein 10 shows that
both cases are not possible. Contradiction. S@-(c;x) x 1.

The argument for i > minarg max; f ¢ g is similar, except that during the rst
step backward it is not possible to remove a 1 (since the 1 that shoulthe removed
is the last symbol of ¢, not the rst). Therefore T,(c;x) x 2.

For i 2 argmax; fc g we know that exactly one x-valued tile of xx must be
expanded, thus in this case eitherT-(c;x) x 1orT,(c;x) x 2holds. O

Note that the statement of Theorem[I4 can be re ned. For example, ifc =
1224331, then bothT-(c;2) = 1 and T, (c;3) = 1 hold. However, for any con gu-
ration that resulted in c® by a move " or r, the left 2 should be expanded and
the right 3 should be expanded. Thus

1224331((1)1243221 (1)2234211

The above notation indicates the con gurations that result in ¢, where (1)
indicates the 1 that will be dropped before the swipes take place. Té rst

con guration results in ¢ by *~ and the second con guration by r. Note that both

con gurations are not in ¢ 2 1S since the former con guration ends with

substring 221 and the latter con guration ends with 11. The problem here les in
the fact that in each turn only one 1 is dropped. Thus when reasoning backards,
only one 1 is removed, while there may be multiple pairs in the conguration. A

re nement of Theorem |14 would mean that we compare all valuesT- (c; x) with

all values T, (c;y) where x and y are part of pairs, which may become very time
consuming whenc consists of many pairs.

Nevertheless, Theorenj 14 is powerful enough for the purpose of the algtiin

that is proposed in the next section.

22

5.2

Checking reachable con gurations in the passing game

We will now describe an algorithm that, given an elementc2 |, determines
whetherc2 Fass,

In the rst stages of the algorithm, con guration c will be subjected to a number
of tests, which all run in polynomial time in terms of n. The aforementioned
theorems in the previous section are used to check if an element2 |, does not
belong to F2sS. These tests check the following rules:

1.

(o]

All zeroes inc are located at the left of c and the rst nonzero symbol is a
1 (Lemmal[7).

. There is no 11 substring at the end ofc (Lemma@).

. There are no 3 consecutive symbols iie representing the same value, except
for value O (Theorem[10).

. String c is bitonic (Theorem).
. Atile x> 0 can occur at most 3 times inc (Theorem).

. For every symbolx in c we haveT(c;x) x 1 (Theorem). We say
that ¢ meets the twopower-rule for every tile. For example, forn =5, the
con guration ¢ = ::124 is valid in terms of this rule. For x = 2 we have
the sumT(¢c;x) =21 1 =1 x 1, and for x = 4 we have the sum
T(c;x)=22 1421 1=3 x 1. Note that the con guration = ::125
is invalid.

. The total value of the powers of 2 of tiles on the boardc is at most 2" 1
(Theorem [13). For example, forn = 5 the value cannot be higher than
04+21422423424=31=32 1=25 1. The board c®= 12345
corresponds to this value.

. For each pair xx that occurs in c the following should hold (Theorem[14):
If the pair is left of the highest tile, then the sum of all powers of 2 of

the tiles left of xx should be at mostx 1.

If the pair is right of the highest tile, then the sum of all powers of 2
of the tiles right of xx should be at mostx 2.

If x is the highest tile on the board, then at least one of the two
previous cases should hold.

When a con guration passes these tests a new phase of the algorithm start$n

this
con

process we reason backwards, in the sense that we reconstructsaquence of
gurations that would lead from c° to the current con guration using valid

moves. This can be done in a deterministic manner, making this proessO(2"),
although this vanishes in the average case as! 1 . The procedure to do this
will be explained below.

23

Given a con guration ¢, we want to construct the previous con guration. This
means that the rst 1 in cis removed. Also, certain tiles may be expanded (for
example, tile x + 1 then becomes two tilesxx). However, we need to make sure
that there is enough space to do this, since the length of the board is stricted
to n. This means that when there arei empty positions (after removing the rst
1), that at most i tiles are expanded. Moreover, when a tilex + 1 is expanded to
xx, then we also have expansions in the nexx 1 rounds, so the length of the
non-dot substring may blow up. Therefore, the idea is to expand asdw tiles as
possible.

There are situations where tilesmust be expanded nonetheless. These can be
grouped in three cases:

1. When we have a pairxx, then the outer tile (the tile that is furthest away
from the highest tile) should be expanded. Whenx is the highest value
then one of both tiles should be expanded. It turns out that it is better to
expand the tile that has the lowest twopower value at his side (the rason
for this follows from the third case). For example, whenc = :112331 it is
better to expand the right 3-valued tile, since this one has only valuel at
his side, whereas the other 3-tile has value 4 at his side.

2. When a tile x should be expanded it may be possible that other tiles
also have to be expanded. This is because when this does not happeve
eventually get three consecutive tiles, which should not be possib.

3. Atile x should also be expanded when the powers of two of tiles lower
than x sum up to x 1, or otherwise at some point we will not have 1s
that can be removed. For example, wherc = ::1125, we have to expand
the 5 since the powers of two of its lower tiles sum up to 4. If we do ot
expand 5 immediately, but when doing it a move later, we get the follaving

11125 9 125
=) 11144
=) 11334
=) 2234

and now there is no 1 that can be removed. In fact,::125 is an invalid
move since the twopower-rule does not hold for 5.

Note that this rule does not apply when a tile should already be expanded
because of the other two rules. For example, when we have the con gurain
¢ = 1125655, then only the rightmost 5 should be expanded.

We know that the initial con guration is invalid when, at some point, the number
of tiles that should be expanded is larger than the number of empty posibns.
This is because it is optimal to expand as few tiles as possible.

When the necessary tiles have been expanded we only need to knovhether

the non-dot substring should be mirrored (corresponding to a move ¢ the left).
This is the case when at least one of the following conditions is true:

24

1. The rst non-dot symbol is not a 1.
2. The con guration ends with 11.

3. The con guration ends with 21 and the 2 should be expanded in the next
iteration of the algorithm. To determine this we should apply the process
described above on the expanded board. So basically, we look forward one
iteration.

A problem occurs when one of the above conditions is true but it is not pssible
to mirror the board. This is the case when in addition

1. The con guration begins with 11.

2. The con guration begins with 12 and the 2 should be expanded in the
next iteration.

If either of these cases is true, then the con guration we started wih is invalid.

This process of expanding and mirroring is repeated until either acon guration
is rejected or until c® is reached. In the latter case the board will be accepted.
The above is a general description of the algorithm; there are a few tectical
subtleties that we leave out here. The algorithm has been tested on bods of
length up to n = 14, by generating all boards in |, and applying the algorithm
on each of them. In all these cases, it exactly accepts all elements thare in

Pass and rejects all con gurations that are not in P25, This has been checked
by comparing the results to the results generated by a brute force gorithm that
plays the game in all possible ways.

5.3 Checking reachable con gurations in the non-passing
game

We now turn our attention to the version of the game where passing is not dbwed.
As mentioned before, we have [°Pass Pass The elements in F2%5n [oPass
can be divided into two di erent categories:

1. Con gurations for which the sum of powers of two is too high.

2. Con gurations that do not belong to the rst category, and are only
reachable through an invalid move to the right. For example, the move of
the form 123:::(x 1)x =) 1123:::(x 1)x with x> 1 is not valid.

We will rst try to identify the con gurations that are in category 1. Tot his
end, we analyze the libraries of con gurations for boards up to valuen = 19 to

nd con gurations for which the values of powers of two is highest. For these
con gurations we look at the distributions of tiles. Table []indicates for each
0<n 19 per tile value the number of occurrences on those boards.

25

Y— —
o —
© — -
o — N N N
o] = N
@© (e I B B B |
(o] — NANNNNNN
[ce] A N A A A A A A A
N~ A A A A A A A A A A
(o] — NANANNNNNNNANN
To] D BV B B B I e o o B B B |
< L B B B B B B B B B B I B I |
o™ SN ANNANNNNNNNNNNNN
N Sl BV B B B B B B B B B B B B B B |
-l L VIR B B B B B B B B B B B B I B B |
Q
=

P NE R TR e o B et

Table 1: Frequency per tile pern for con gurations that have the highest

twopower value. Empty entries represent zeroes.

26

We see that there is a pattern in Table[] fromn =5 onwards. For each valuen
we have that from a certain (m + 1)-valued tile on the frequency is always zero.
For a given n this value m can be determined by
_ 3 N 1

mp = 7 n 5
We also see that each tile whose valug m is divisible by 3 has frequency 2,
except for a few cases. Whem = 4k for somek > 1 we have that whenv = m
the frequency is 1 and wherv = m 1itis 0. Also, whenn =4k 1 for some
k > 1 we have that whenv = m that the frequency is 1. An algorithm that
checks that the sum of powers of two on the board does not exceed the sum
of powers of tiles times their frequencies in the correspondingow in Table [1,
without actually having to compute these values, is as follows:

int count;
for (int i =m; i > 0; i)f
count = O;
for (int j = 0; j < n; j+b)
if (array[j] = 1)
count++;
if (count = 0) return true ;
if (Nn%W4=0&& i =m 1)
if (count > 0) return false ;
if Nn%4=0& i =m 2)f

if (count > 2) return false ;
if (count < 2) return true ;
g
if (i I=m&& i%3 = 0) f
if (count < 2) return true ;
if (count > 2) return false ;
g
else if (count > 1) return false ;

g
return true ;

This algorithm successfully rejects con gurations that belong to cateyory 1, so
we now only have to concentrate on the other category. For the game without
passing it is not allowed to move to the right without merging. This means that,
when reasoning backwards, in each iteration at least one tile should be panded
or the con guration should be mirrored. As of yet, it is unclear what strate gy
is optimal in the sense that we only additionally reject all con gurations in
category 2, but not con gurations in ~ £2ss,

To identify the con gurations in category 2 we will look at the game trees in the
case where passing is allowed. The partial game tree for =5 is shown in Figure
[4. The subtree of 11234 has not been entirely worked out, since we do not riee
it for our next analysis as all subsequent con gurations belong the categoryi.

27

Figure 4: Partial game tree with passing forn = 5. Red con gurations are not
reachable in the non-passing game. Con guration 11234 is not worked out.

We see interesting areas in the game tree. The rst one is the red areat con-
guration ::112, the second is the area at con guration:1123 and the third is
the area at con guration 11234. The con gurations in these areas all share the
following characteristic: the only way to obtain these con gurations is to pass
through a con guration of the form 1123:::(x 1)x with x> 1. Hence, these
con gurations belong to category 2.

The question now is how to modify the algorithm described above to e€ject these
con gurations. A rst thought would be to reject con gurations that event ually
end up in a con guration of the form 1123:::(x 1)x. However, then we need
to redirect the backtracking for con gurations that are possible to obtain. For
example, when we are in con guration::123 we must go t0:1122 instead of::113.
Note that when we go downwards from a con guration 1123::(x 1)x, the
level that we reach con gurations that are in °P#% is the same regardless of
the path we take (this has been fully veried for 2 x 9). Therefore, when
reasoning backwards we may determine the levels for which one may émp in
the red areas and use this knowledge to nd ways to avoid them. This apears
to be extremely hard, since the depth of the subtrees indicated ythe dashes
displays strange behavior in terms ofx. Table 2 indicates the depths in terms ofx.

depth
2
3
4
6
8
18
19
31

© 0o ~NO O wWwNX

Table 2: Depth of the red subtrees with roots of the form 1123::(x 1)x for
di erent values of x

Some of the values contained in these subtrees can be characterized time
following way. If the highest tile in a con guration cis x > 0, then the twopower-
value of lower-valued tiles should sum up tox instead of x 1, thus T(c;x) = X.
In addition, if ¢ contains a substring of the formyy(y + 1) :::xx or its mirrored
version with 0 <y <x , then T(c;y) = y. For eachx, this e ectively rejects all
con gurations up to depth x in the corresponding subtrees. However, this does
not cover the con gurations lower in these subtrees. For example, fox = 5 the
con gurations in the last row of its subtree (including con gurations 11622 and
1163) are still not recognized as unreachable. The reason for this is that thes
con guration are not only children of the subtree of 112345, but also from the
subtree of 11245, which is also a con guration that only be reach using an invadi
move. Characterizing all these con guration is very di cult and thei r relation

29

to the elements in P3°n [°P3S gre hard to analyze, because the game trees
get very rapidly more complex asn increases and some problems only become
apparent on levels deep in the trees.

30

6 Role of maximum dropped tile

In this section we will have a closer look at the role ofD 5« in the game. More
speci cally, we investigate the highest tile that Slider can obtain on various
rectangular boards for xed values of D nax . We should immediately note that
the higher the value of Do« is, the more computationally demanding it is to
solve this question, since it increases the branching factor subahntially. Therefore
we rst try to determine for di erent rectangular boards the value of D« for
which the Dropper can play in such a way that the Slider can never mege two
tiles. We do this because if we nd such a value for a board it immediately
implies that for Dnax = i Slider can not obtain a value higher thani. Note that
the reverse is not true.

6.1 Dropping di erent tiles to prevent merging

In this subsection we do not allow for merging tiles. If it happens, Dopper loses.
We will rst start with a simple example on a board for m =2 and n = 3.
Note that when we want to show that no merging can occur for a certain value
of Dmax the representative of same-valued tiles does not matter. We now set
Dmax = 3. Also, without loss of generality (because of the previous and the fact
that the board can be rotated and mirrored) we assume that Dropper can always
obtain a board of the form

We now show that Slider cannot win by showing how Dropper has to playIn
the next move Dropper should drop a 2 in the position aligned with 1 and 3.
The only possible move for Slider is to move to the left

Then Dropper should drop a 3 at the lower position aligned to 2 (note thatno
other moves are possible). Then, whenever Slider moves upwards tw the right,
Dropper can nish the game by dropping a 1-tile on the last open position.

So we have now shown that foD o« = 3 the Slider can not merge any tile when
Dropper plays optimally. Trivially, this also holds for Dmax > 3. FOr Dpax = 2
it is not possible since after two drops, Slider can always line up ng tiles with
either of these tiles and merge them in his next move.

31

The main question is now as follows: given a xed sizan 2 N, is there a value
of Dmax that is independent of n 2 N such that no two tiles can be merged in
case of optimal play by Dropper and Slider on a board of sizem by n?

Showing that a value of Dyax Su ces, boils down to nding a strategy for

Dropper to play optimally (in the sense that Slider can never merge wo tiles).
We can show that for m = 1 the value we look for is Dmax = 2. This is done in
the following simple theorem.

Theorem 15. Given a board with sizem =1, n2 Nand Dyax 2. In case of
optimal play by both Dropper and Slider, no tiles can be merged and theghest
tile that Slider obtains is at most 2.

Proof. After the rst moves by both players we have a 1-tile at the right side of
the board. The strategy of Dropper is simple: there is always exactly oa empty
position on the board adjacent to an existing tile. If this tile is 1, a 2-tile is
dropped next to it and vice versa. This produces a alternating patten of 1s and
2s on the board, none of which can be merged. This shows that the highesti¢i
that Slider can obtain is 2. O

For n = 2 it is also possible to nd a suitable Do« value. The arguments for
proving that this value su ces are slightly more complicated.

Theorem 16. Given a board with sizen =2, m2 N and Dyax = 4. In case of
optimal play by both Dropper and Slider, no tiles can be merged and theghest
tile that Slider obtains is at most 4.

Proof. First of all, note that it is possible for Dropper to obtain the following

(initial) con guration after four moves (the tiles may be at the other s ide of
the board, but then we obtain a similar con guration by mirroring the board

horizontally)

< X
< N

wherex;y;z;v 2 f 1;2;3; 4g are pairwise di erent numbers (this is the case for
the rest of the proof). For this con guration the distance between equally-valued

positive numbers is not smaller than 2 (since there are no two equaltvalued

positive numbers in this con guration).

Now assume that we have a con gurationC for which the following (*) holds:

the horizontal distance between equally-valued numbers is not smadr than 2,
possibly except for pairs of the following form

X Z
oy x

32

or (this is an exclusive 'or'") for all pairs x embedded in the following form

y X
oy 7t

With this we mean that diagonal pairs of the rst form may occur (possibly
multiple times) in C and diagonal pairs of the second form may occur (possibly
multiple times) in C, but not both. Note that the initial con guration meets
these conditions.

Now assume that we have a con guration in which all equally-valued numbes
have horizontal distance larger than 1 and in which there are no diagonal pas.
Thus we have a con guration of the form

X z
oy v

Dropper can now proceed by placing a new tile on one of the two positionwith
an underscore. Consider the lowest of the two. We should try to retainthe form
(*). Thus Dropper can only drop a z or a v on this position. Suppose Dropper
drops av. Then Slider can move upwards, and then Dropper placeg on the
lower position. This gives:

N <

< X
< N

and the form of (*) is retained. However, Slider also may have swipedd the left.
Mirroring the resulting board gives the following con guration:

?s W z X
rt " " vyyv

with w = x or w = y (since the distance between equally-valued humbers was
2 or larger), andr;s;t 2 f 1;2; 3;4g being pairwise di erent numbers. When
w = y we see that a diagonal pair has formed. In general more pairs of this form
may have been created, but they are all oriented in the same direabin (to see
this, suppose that a pair of the other orientation has been formed, thenn the
previous con guration they were aligned and could have been merged). Wsee
that when Dropper places a tile not equal tos or r on the question mark the
form of (*) is retained.

33

A similar argument holds when Dropper places az on the lower underscore.
Naturally, the arguments also hold when Dropper places a/ or a z on the upper
underscore.

Now assume that we have a con guration in which all equally-valued numbes
have horizontal distance 2 or larger, except for pairs of the form

X Z
yX...

and that there appears at least one such diagonal pair in the con guration, but
no diagonal pairs with the other orientation (the proof for the reverse cas is
analogous). Then we have a con guration of the form

X z
oy v

with possibly x = v. Let q 2 f1;2;3;4g be such thatq = v if x 6 v and

g6 x;06 y;q6 zif x = v. In this case, Dropper cannot place a tile on the
position marked by the upper underscore, because when Dropper swep to the
right the diagonal pairs become aligned. Thus, Dropper can only place tileg or

z on the lower underscore. If Slider swipes upwards after Dropper pced either
of these tiles, Dropper can place the other tile on the lower undersare. Then
the form of (*) is retained.

On the other hand, Slider could also have swiped to the left. Assum®ropper

placesz on the lower underscore. A swipe to the left results, after mirroing, in

?s w X
r t v z

z
y

with w = x or w = y (since the distance between equally-valued numbers was 2
or larger), and r;s;t 2 f 1; 2; 3; 49 being pairwise di erent numbers. We see that
at least one diagonal pair of the form

X Z
yx...

has appeared. Also note that, there are no pairs with the other orientation(as
otherwise it was possible to merge these tiles in the previous con gation).
Again, we see that when Dropper places a tile not equal t® or r on the question
mark the form of (*) is retained. A similar argument can be given when Slicer

34

placed g on the lower underscore.

To summarize, we have given a strategy for Dropper for which the boardsatain
a property under the moves of Slider such that no tiles can be mergedSince

can obtain is at most 4.
O

For the other cases we resort to computational methods. We use a simple
modi cation of the program in [21], declaring the game as a lose for Dropper
when two tiles have merged. Note that two tiles have merged when th@umber
of tiles on the board is less than the number of moves by Dropper.

Table 3 below gives for various boards the minimumD 5 value that is needed
to Il the entire board with tiles without merging.

nil1 2 3 45 6 7 8 9

- 2

2 2 2 2 2
3 4 4 4 4 4
5

A wN

~wNRD
1
(2B~ N N

Table 3: Minimum amount of dierent tiles to play the game without ever
merging two tiles in case of optimal play by both player, for various values ofm
and n. Empty entries are not yet computed due to time restrictions, as these
computations are matters of weeks.

We see that the two upper rows corresponding tom =1 and m = 2 are in
accordance with Theorem 15 and Theorem 16. Fom = 2 and n < 4 the
minimum Do« Values are even lower (as evidenced by the example at the start
of this paragraph). The third row shows that for m = 3 the minimum D ax
value is at least 5 and the fourth row shows that form = 4 this value is at least
6. Also noteworthy is the fourth column, where the values form =2 and m =3
are equal, but betweenm = 3 and m = 4 there is a jump of 2. This shows that
the additional freedom for the players that is created by adding new ravs or
columns is not easy to characterize and strongly depends on the morphology of
the boards.

6.2 Maximum reachable tiles for various settings

Now we take a more general approach by allowing the tiles to be merged and
investigating what the highest reachable for Slider are in di erent setups. Again,
we vary the parametersm and n and in addition also the D5« parameter. The
values in the Table 3 in the previous paragraph are upper bounds for their

35

respectiveD max Cases, but they do not necessarily have to be sharp.

In Table 4 the results are outlined for the caseD . = 1. We see that for all
computed values withm > 1 the maximum reachable tile is equal tom n. Thus
in this case Dropper has virtually no control over the strength of Slider's moves.
Dropper only has some in uence in the game whemm = 1. This case has been
discussed in Section 5.

nil1 2 3 4 5 6 7 8 9
m

1 |- 2 2 3 4 5 6 7 7
2 |- 4 6 8 10 12

3 |- - 9 12

4 |- - -

Table 4: Maximum reachable tile for various boards in case of optimal play by
both players for Dmax = 1.

Table 5 shows the results forD max = 2, with very di erent results compared to
Table 4. As a result of Theorem 15 we see that the row fom = 1 consists entirely
of 2s, and of course this holds for all values larger tham n,x = 2. The values
in the rows and columns increase much slower withm and n. For m=3;n =5
only a lower bound has been computed, but given the structure of theadble it is
likely that the maximum reachable tile will indeed be 7. Of course, the value
for m =4;n =4 is the result we are looking for, but the resources in terms of
memory and computation time are limited as of yet (see Section 9 for a more
detailed discussion). However, given the other values in the tablean educated
guess for the maximum reachable tile form = 4;n = 4 would be either 7 or
maybe 8.

nii 2 3 4 5 6 7 8 9
m

1 |- -2 2 2 2 2 2 2
2 |- 3 4 5 5 6 6
3 |- 5 6 7

4 |- - - 7

Table 5: Maximum reachable tile for various boards in case of optimal play by
both players for Dmax = 2.

In contrast to the previous two tables, Table 6 corresponding toDpmax = 3
shows discrepancies between boards with an equal amount of squares hwith
di erent shapes for setups with m > 1. For instance, in the casem =2;n =6
the maximum reachable tile is 4, but in the casem = 3;n =4, where the board

36

has the same amount of squares, the maximum reachable tile is 5. Similatljor
m = 2;n = 8 this value is 5 while for m = 4;n = 4 this is at least 6. This once
again con rms that the shape of the board is important for the possiblities ofthe
players, and that this di erence is not only present betweenm =1 and m > 1.

nil1 2 3 4 5 6 7 8 9

2 2
5

#WNHB
| I |
)
5w

2 2 2 2
4 4 4 4
5 5

6

Table 6: Maximum reachable tile for various boards in case of optimal play by
both players for Dmax = 3.

For Dmax = 4 the entire second row in Table 7 is not larger than 4, in accordance
with Theorem 16. Comparing the other values in this table with those in Table

3, the casem = 3;n =5 is worth mentioning. In this case we need at least ve

di erent tiles to entirely prevent any merging, but when tiles 1 to 4 are used
Dropper still can manage that Slider loses wherD = 5. As it appears, Dropper

can let tiles merge without drastic results, as long as it does not set oa chain

reaction in the sense that Slider reaches a 5.

nil1 2 3 45 6 7 8 9

m

1 |- - - 2 2 2 2 2 2
2 |- 3 3 4 4 4 4 4 4
3 |- - 4 4 4 5

4 |- - - 5

Table 7: Maximum reachable tile for various boards in case of optimal play by
both players for Dmax = 4.

By comparing the four tables it is clear that the value of the maximum readable

tile is decreasing inD nax . The rate of decrease is quite fast. BetweelD o = 1

and D nax = 2 the computed values are roughly divided by two. This is di erent

for each board. Indeed, the rate of decrease depends not only an n, but

also onm and n seperately. The limited values that can be determined due to
the mechanics of the game makes it not possible to make a proper quantitate

analysis on this, but it is still useful to keep these observationsn mind when

solving various games and estimating the resources and tools that and need
for this.

37

7 Short games

In this section we will address the problem of playing the game suchhat it ends
as quickly as possible. In this case Dropper and Slider play cooperatly. The
problem will be split up into di erent cases. We will consider di erent values of
Dmax - In addition, we will look what happens if m and n are varied. Afterwards,
we will relate the theoretic results to the computational results.

7.1 Theoretical analysis

As noted, Dropper wins when there are no empty tiles and there are nowo
adjacent tiles of the same value. This implies that a lower bound on thenaumber of
moves can be found by analyzing boards with alternating 1-valued and 2-vakd
tiles. See for example Figure 5. We refer to the set of these boards asetlset of
1-2-patterned boards. Note that for Dpax = 1 for all m and n this set contains
one board that is uniquely de ned modulo symmetry. This also holds wen m
and n are odd, since by Theorem 1 there must be at least one corner point with
value 1.

Note that for obtaining a lower total value of tiles, one of the 2-valued tiles
must be a 1l-valued tile or one 1-valued tile must be removed, but therby
Corollary 3 the con guration is not a nal board any more. The question is in
which situations this pattern can be achieved.

Figure 5: 1-2-patterned board form =3 and n = 4.

We de ne M (m; n; D nax) to be the smallest number of moves by Dropper needed
to win the game, where Slider cooperates as good as possible.

AssumeDpnax 2. From Theorem 15 it follows that when m = 1 the alternating
1-2 pattern can be achieved. For eaclm, the pattern can be achieved by alter-
nately dropping 1s and 2s.

For m > 1, the same trick can be repeated. Assume that Dropper starts placing
tiles in the rst row. When Slider swipes the tiles alternately to the left and
to the right and Dropper places a 1 next to a 2 or vice versa in the rstrow,
eventually the rst row will be lled with a 1-2 pattern. Slider i s then forced to
swipe the entire row downwards. Now Slider and Dropper can repeat te same
process in the rst row and create another 1-2 pattern. They must takecare that
when Slider has to move downwards again no tiles can merge. To achievhis,
Slider and Dropper can play in exactly the same way as they did for the rst

38

row, but Slider must place a 1 where he placed a 2 in the previous vo and vice
versa. Sliding downwards now gives a 1-2 rectangular pattern in the lwer part
of the board. Repeating this process eventually gives a rectangular 1attern
on the entire board. Figure 6 illustrates this process.

Figure 6: lllustration of the strategy for letting Dropper win where Dpyax =2
and m =3 and n = 4. The newly dropped tiles are indicated by a black square
and the directions of the moves of Slider are indicated by the small aows.

The arguments above show that forDh.x 2 a 1-2 pattern can be achieved
on any rectangular board. Form and n xed it takes exactly m n moves for
Dropper to completely Il the board and win the game, since every tileis dropped
during exactly one move. For Slider it costs exactlym n 1 moves to Il the board.

Now assumeD s« = 1. First of all, note that for m = 2 the 1-2 pattern can be
created. For this see Figure 7. In this case it costs exactly 3 moves fdropper
per column and thus M (2;n; 1) = 3n moves to Il the whole board.

Assumem = 1. We know that the nal board should not have any empty tiles
and there are not two adjacent tiles. Also, it can be shown (using a proo&imilar
to that of Theorem 10) that the nal board should also be bitonic. Therefore, for
odd n the earliest obtainable nal board winning for Dropper has the following
form:

The earliest obtainable board winning for Dropper with n 4 even has the

39

Figure 7: lllustration of the strategy for letting Dropper win where Dpax =1
andm=2and n=3.

following form:

[NJ=
NS
[N=}

The exception is forn = 2, where the earliest obtainable board winning for
Dropper is

All cases ofn can be expressed in one form:

1|2 dtte | b™1c 2 |1

We will now show that this board is obtainable by giving the strategy for Dropper
and Slider that results in this board. First, Dropper places a tile arywhere on
the board except for the rightmost site on the board. After this, Slider always
swipes rightwards. During Dropper's next move, he places his té next to another
tile (this position is uniquely determined). When the leftmost tile on the board
is larger than 1, Dropper places his tile at distance 2 from the leftmost ile.
Dropper and Slider continue this strategy until the con guration the f ollowing
con guration appears on the board:

1 1
1| 2 diite 1 | d'3te

40

This is always possible because the non-dot tiles in this con guratiortake up
d%e n sites (note that non-dot tiles in any intermediate con guration do
not take up more than d%e sites as well). When this con guration appears,
Slider swipes to the left to obtain the reverse con guration at the Ieft side of the
board, while at the right side of the board we haven d “e= b";1c empty
positions. Then (if n > 2) Dropper and Slider repeat the same procedure (but
Slider now keeps sliding to the left) to obtain the remaining tiles of the earliest

reachable con guration winning for Dropper.

Now we can determine the number of moved (1;n; 1) for Dropper needed to
obtain this con guration. For this we need to take the sum of the powers oftwo:
d“Xgie . b”Xz—lc .
M(1;n;1) = 20 ts 21

This gives:

«
M (Ln: 1) = 22?11 2 if n even

22 2 ifnodd

When comparing the cases oin = 1 and m = 2 for D = 1 we see that
the number of moves is linear inn for m = 2 and exponential in n for m = 1.
The fact that sliding upwards or downwards is not possible form = 1 creates
a signi cant di erence in the complexity of the number of moves to obtain a
winning con guration for Dropper as quickly as possible.

Now assumem > 2. In this case it is not easy to show whether it is possible to
obtain a 1-2-patterned board. Computations show that that for m =3;n =3
(achieved by a complicated sequence of moves) and = 3;m =5 it is indeed
possible to obtain these boards (for some of these results see the tablm [21]).
On the other hand, form =3;n=4 and m = 3;n =6 it is not possible at all.
The same goes fom =4;n =4. For m = 3;n = 4 the earliest nal board is the
1-2 pattern where one 2 is replaced by a 3. The process of reaching tHieard
is again very complicated, and it is unclear whether it could be generatied to
higher values ofn.

For boards with m > 2 wherem and n are both odd the number of moves in
games that reach the earliest possible nal board can be bounded from above
by reducing the problem to the case ofm = 1. For this process see Figure 8,
assumingn is odd. First the lowest row is lled with 1s and 2s in such a way that
there is a 1 at one edge and a 3 at the other edge. By using this 3 it is poséé

41

to create a 1-2 patterned row above it, and afterwards a new row with a Zan
be created. This process is repeated until the last row, which vllibe lled in the
same way as in the case af = 1. This is possible because by construction the
second-to-last row has 2s at both edges.

For boards with m > 2 where eitherm is odd and n even or vice versa the same
strategy can be applied, but now the lowest row must be lled with 1sand 2s
such that there is a 2 at both edges of the row. Then the same mechanisnac
be applied as in the previous case until the second-to-last row is Bd, after
which the last row is lled in the same way as in the case ofm = 1.

The resulting boards of two example setups after using this approach ar given
in Figure 9 and Figure 10.

In case bothm and n are even, a similar strategy could be employed, although
there are a number of issues to cope with. First of all, there are no rex for
3-valued tiles, since all rows can be lled with only 1s and 2s whemn is even. For
this process see Figure 11. Secondly, the case= 1 can not be reused for the
last row since in this way either the leftmost 1-2 or the rightmost 1-2 pair would
line up with an identical pair in the row below. This can be solved noretheless
by creating the upper row in the following way (or a mirrored version):

+1

NS
NS
w
N

The mirrored version is created in Figure 12, wheren = 6. Figure 13 shows that
the method is better when the board is rotated rst, as this con gurati on can be
obtained in fewer moves. Thus, wherm and n are both even the method should
be applied along the longest axis. The same statement for the rst methd (of
Figure 8) holds whenm and n are both odd.

Note that the method as described in Figure 11 can also be used when eéh
m is odd andn even or vice versa. Therefore in this case two strategies can be
employed. Which of the two strategies is faster depends on the valgeofm and n.

The number of moves by Dropper can be computer in the following wayln

casem and n are both odd we have% columns in which the number of 1s is
equal to ™5 and the number of 2s is equal to™;%. Furthermore, we have "1
columns containing one 3, in which the number of 2s is equal td“z—l and in

which the number of 1s is equal tomTl. The number of moves to obtain the
last column is equal to the case oh = 1 (the length of this column is equal to

m here).

In casem and n are both even we haven 1 columns in which the number of 1s

is % and the number of 2s is%. The number of moves to obtain the last column

42

Figure 8: lllustration of the strategy for letting Dropper win as quickl y as possible,
where Dmax =1 and both parameters m and n are odd. In this example we have

m =5 and n = 5. The green squares indicate the 2s and 3s that are exploited to
create new 2s. By continuing this method and lling the last row as in the case

of m =1 we obtain the con guration in Figure 9.

43

Figure 9: Result of the given Figure 10: Result of the given
approach form =5;n=5;Dnax =1. approach form=4;n=5;Dnax = 1.

Figure 11: lllustration of the strategy for letting Dropper win as quickly as
possible, whereDax = 1 and both parameters m and n are even. In this
example we havem =4 and n = 6. The green squares indicate the 2s that are
exploited to create new 2s. By continuing this method and lling the last row in
a similar way as in the case oim = 1 we obtain the con guration in Figure 12.

44

Figure 12: Result of the given Figure 13: Result of the given
approach form =4;n=6;Dmnax =1. approach form=6;n=4;Dnax = 1.

is equal to

In case the parameters are not both odd or even the upper bound is the mimum
of the two strategies given above.

For the number of moves the above can be summarized into the followin
inequality, given m n:

m_ 1

8(3m+3)”2—1+3 277 2 if m;n odd
Sm(n 1)+3 2% 3 if m;n even
min(3n(m 1)+3 2% 3;

% @Bm+3) L+ 3 143 2% 2) if modd,neven

M (m;n)

2
min(3m(n 1)+3 2% 3
@Bn+3)m 1+ 3 143 2% 2) if meven,n odd
Of course, the upper bound of the moves for Slider are equal to the exgssions
above minus one. We see that the upper bounds given above are exponeatti

in either n or m (but not both). The parity of n and m determine in which
parameter the expression is exponential.

In summary, we have that the minimal number of moves for Dropper to wn the
gameM (m; n; D max) is equal to

45

8
=m n if Dmax 2
=5 2z 1 2 ifm=1;n even
Dmax =1
=3 2% 2 if m=1:n odd;
Dimax = 1
=3n fm=2;Dnax =1
@Bm+3)L+3 2" 2 ifm> 2;n> 2 odd:
M (m; n; D max) 3 m . D max __1
sm(n 1)+3 2= 3 ifm> 2;n> 2 even
D max = 1
min(3n(m 1)+3 2% 3; if m> 2 odd,
@Bm+3) L+ 3 143 2% 2) n> 2even
Dimax = 1
min(3m(n 1)+3 2% 3 if m> 2 even,
n 1

@Bn+3)m 14+ 30143 2% 2 n> 2 odd,
Dmax =1

7.2 Computational results

In this section we give a short overview of the number of moves and theon gu-
rations of the shortest games for various parameter values. For the equalis
of M (m; n; D nax) all computed results are in accordance with the values and
con gurations in the previous paragraph. Therefore, we will look at the boards
for which an upper bound for the number of moves has been given. We only
take boards for which the number of moves for the shortest game is actually
computable. Note that the nal con gurations do not have to be unique. The
boards and the nal con gurations of a corresponding shortest game are given
in Figure 14.

In the case ofm = 3;n = 3 we see that the given approach in the previous
paragraph is not optimal as it takes 3 more moves. The upper bound for
M (m; n; D max) in case ofm = 3;n = 4 is sharp as the rst argument of the
minimum operation also evaluates to 21. Therefore, the suggested approach i
optimal for this board. As a consequence, the approach is also very good forlal
boards with m =4 and n > 3, as it always needs only one extra move.

For m = 3;n =5 the given approach is not optimal as it takes 8 more moves.
We that the suggested method form = 4;n =4 also takes only one more move
than any optimal method (note that a 2 instead of a 1 is substituted for a 3).
The results for boards with m and n odd suggest that there is a approach such
that an 1-2 patterned board. However, the way how this could be achieveds
still unknown.

46

Figure 14: Final con gurations of shortest games with Do = 1. Upper left:

m = 3;n =4 and number of moves is 13. Upper right:m = 3;n = 4 and number

of moves is 21. Lower leftm = 3;n =5 and number of moves is 22. Lower right:
m =4;n =4 and number of moves is 26.

47

8 Notes on solving the game

One of the more important questions for the modi ed 2048 game is whether a
game is winning for Slider given values fom; n and D nax . In the original 2048
game we haveD nax = 2, so this case is among the most interesting ones. As
indicated in Table 5 the smallest boards that are still unsolved arem =3;n =5
and m = 4;n = 4. In this section we will discuss the techniques that are emplogd
for solving this question for these boards. Before this is done, we wigo more
into detail about the rst program described in Section 3.2.

8.1 Hashing

As in [21], the hash table is used to prevent the same board being evaluated
more than one time. The hashing function for a boardC is given by:
X 1xX 1 L
Hmn (C) = Cm 1 in 1 j h(m Hn j 1
i=0 j=0
whereh is the hashing parameter, which is usually set equal to paramete®. The
function indicates that hashing is done from left to right and from the bottom

to top. An example of this way of hashing is given in Figure 15. Using hash
parameter h = 7, this con guration is hashed to a value of

H44(C)= Cg3+ Cg2 h+ Cg1 h*+ Cgo h®+ Czg h*+:1:
3+6 7+4 49+3 343+4 2401+:::

= 4764512287895

Figure 15: Example of a con guration. The order of hashing is from left to right
and bottom to top, so the order in terms of tilesis3 6 4 3 4 1 5
2 00 411 0 0 1

The fact that h is chosen to be one larger than the highest value that can appear
on the board ensures that no two boards are hashed to the same value. On the
other hand, the hash table may become very large. By using Theorem 1 we
know that the upper left corner is always at most D o When rotating the board

48

appropriately. Therefore, a very good upper bound to the largest hashhat is
possible is given by:
max | Hmin (C) |qm;n;D max d:ef(Dmax +1) h™ 1

%gé\rﬂable
From now on we leave out the dependencies om; n and D 5« as these parameter
values are always clear from the context. For every con guration there arethree
di erent states that can be stored in the hash table. The rst state in dicates that
a board is not reachable, the second state indicates that the board is reaahle
and losing for Dropper and the third state indicates that the board is reatable
and winning for Dropper. Note that we do not store information for positions
reachable by Slider since this can be retrieved by evaluating the dards that
result from the four possible moves. Since every con guration has thee states
it is possible to store ve con gurations in a byte without the need of overly
time-consuming computations. Therefore, the number of bytes neestl for the
hash table given the values oim;n and D« is roughly

1 1
gﬁ = g(Dmax +1) h™ 1

For an indication how important the hash table is, see Figure 16. This graph
shows the time needed to evaluate the game-theoretic value of the il con-
guration C° as a function of the number of entries in the hash table for
m =3;n =4;Dnax = 2 and O = 5. In this case, an upper bound for the
largest hash is 146484375, and the actual largest entry is 146454854. If a board
is hashed to an entry that is larger than the number of entries it is evaliated
normally, otherwise its game-theoretic value is taken over from the tale if
it has been evaluated before. It is clear from the gure that the number of
available entries should be large enough, because at some point, when ueihg
the number of entries, the time needed to evaluate the game-theorgt value
increases extremely fast. In this example, it happens when redireg the table
with approximately 75%. This implies that the largest portion of reachable
con gurations is hashed to low values or that the most important positions are
hashed to low values (or both of course). The behavior as seen in Figure X&n
be observed for any possible setup. Other examples fon = 4; n = 4 are shown in
17. Here the denseness of the hash table is even lower, usually not mokah 0:5%.

Unfortunately, for larger values of m;n or O the moment at which the com-
putation time increases drastically occurs even earlier. For examp, for m =
3n=4;Dmhax =2 and O = 6 it takes 56 seconds using a hash table of size
1090000000. However, when reducing this table with 40% it takes approximately
53171 seconds. So the need for a hash table which length is almost equal taeth
the upper bound is even more important.

In Figure 16 we also see that the denseness of the table increases diowith
the reduction of the number of possible entries. With denseness dhe table we

49

Figure 16: Left: Computation time for various lengths of the hash table. The mrameter values arem = 3;n =4 and
O = 5. A boards is not hashed when its hash value exceeds the table size. dgtit: Denseness of the table for various
lengths of the hash table. The parameter values are the same.

mean the number of unique hashed boards relative to the size of the tabl The
denseness increases as the number of entries reduces, althoughyvelowly.

For 1.5TB of RAM it is in case of m = 3 and n =5 possible to compute the
game-theoretic value for all values of parameteiO up to O = 7, since in this
case the upper bound? evaluates to about 204 102, which is equivalent to a
hash table of 407GB. In the case ofn = 4;n = 4 the values can be computed
up to O = 6, since in this case the upper boundt is about 1:42 102, which is
equivalent to a hash table of 283GB. Nevertheless, both setups resulhio a win
for Slider so the turning point is even higher thanO = 7 and O = 6 respectively.

8.2 Hash table distributions

The graphs in the previous paragraph can be explained by inspecting theense-
ness of the resulting hash tables in various setups. We group the enés of the
hash tables by placing them in one of 1000 bins of length approximatelylo%ﬁ.
For each bin we count how many boards are actually hashed to a value within
that bin. The results give an impression of the distribution of the hashed boards
within the hash table. The results for m = 3;n = 4 are shown in Figure 18. We
see that the majority of hashed boards are in the rst % of the table. So we
can conclude that the majority of boards haveCy.q = 0. This also explains the
increase of computation time in Figure 16. Note that for increasing values oD

50

Figure 17: Left: Computation time for various lengths of the hash table. The mrameter values arem = 4;n =4 and

O = 4. Right: Computation time for various lengths of the hash table. The parameter values arem = 4;n = 4 and
O =5.

we can see roughly the same regions in the graphs, although the values ineh
bins tend to get smoother asO increases. The results for another rectangular
board with m = 3;n =5 are shown in Figure 19. The behavior is approximately
the same as form = 3;n = 4, although here it is even easier to di erentiate
between well-used regions. The rst% of the table is used well. After this there is
a region from approximately bin 450 to 650 with relatively many hashed boards
There are also two similar regions around bin 800 and at the nal bins. Note
that the regions tend to move a little backwards towards O.

The results for square boards are di erent. In Figure 20 the results ae shown for
m = 3;n =3 and in Figure 21 those form = 4;n = 4. We see that in these cases
an even larger portion of hashed boards is concentrated at lower valued bins
Figure 21 also explains the results shown in 17. FoD = 4 there are apparently
so few hashed values in later regions that the increase of computation timdoes
not happen until 8% of the table size. ForO =5 the region from 600 to 800 is
only moderately important as the computation time only multiplies by 10 here.
It is not until about 57% that the computation time increases faster. The time
will probably increase very fast for values lower than 30%.

51

Figure 18: Distributions of used hash values. The hash values are grouped of bins of sizeﬁﬁ and the values in the

graph indicate the number of unique boards that are hashed into a bin. Tle parameter values arem =3;n =4 and O
ranges from 4 to 8.

Figure 19: Distributions of used hash values. The hash values are grouped of bins of sizeﬁﬁ and the values in the
graph indicate the number of unique boards that are hashed into a bin. Tle parameter values arem =3;n =5 and O
ranges from 4 to 7.

53

Figure 20: Distributions of used hash values. The hash values are grouped of bins of sizeﬁﬁ and the values in the

graph indicate the number of unique boards that are hashed into a bin. Tle parameter values arem =3;n =3 and O
ranges from 4 to 8.

Figure 21: Distributions of used hash values. The hash values are grouped of bins of sizeﬁﬁ and the values in the
graph indicate the number of unique boards that are hashed into a bin. Tle parameter values arem =4;n =4 and O

ranges from 4 to 6.

8.3 Compressing hash tables

Since the denseness of the hash table is usually not more than a few pent
it is clear that by far not all con gurations with a legal hash value can be
reached. A subset of these unreachable con gurations can be characteed by
the theorems given in Section 4. These statements can be used to rezkithe
number of entries needed in the hash table, but this both very hard ad not quite
fruitful in terms of compression. However, the boards are always rotatd in such
a way that the hash value is minimized. This means that certain combirations
of tiles in particular positions are not possible. It turns out that this is especially

55

advantageous for boards withm = n. In this particular case we see thatCo.1

cannot be larger than C;.¢ because otherwise the board would be mirrored in the
diagonal axis. Similarly, Cy.o cannot be larger than Cy., 1 since otherwise the
board would be rotated counterclockwise by 90 or mirrored in the vertical axis.

As a consequence, we see that many of the bins in the tables in the priews

paragraph are empty. Depending on the value of parameteD, we see that the

fraction of the table that is unused because ofCy.; < C 1.0 IS

3(0> 0)_o0 1
02 20

Similarly, depending on the value of parameterO and D ., we see that the
fraction of the table that is unused because ofCo.o <Copn 1 iS

%((Dmax +1)2 (Dmax +1)) - D max
(Dmax +1) O 20

given that Dnhax < O. Note that the rst expression converges to% asO!1
while the second expression converges to 0 &!1 with Dpax xed. Also, the
second expression converges t%o—l asDmax " O 1, which in turn converges to
% asO!1 . This implies that the compression depends on the initial setup. h
the case ofm =4;n =4 and O =7 the table could be reduced by respectively a
factor 2 and 3, which makes it less than half as long. However, in this way we
count the boards that have both Cyp.; > C 1.9 and Co.9 > C o,y 1 twice. Therefore,
the table could be reduced tod &+ % = ZI of its length.

The only problem is that given a con guration C how much should be subtracted
from the hash value such that no two con gurations are accidentally hashedo
the same values. Given a con gurationC this can be done in the following way:

X 1K 1))
H(C) = Cm 1in 1 hMOni 1
i=0 j=0
h2 h C2, Co
Co;o > ht3 Qlfo'l h* Coi (Coz h+ Coz+1) h'!
C2 Co
O]Ofoyo h'2 Cgo (Co1 h+ Coo+1) h'?

Céo Coo h?2 h Cé: Cox
) ’ h12 + ; ’ C . h12
2 2 0:0

+ Co2 (Coo Co1) h''+min(Coo;Co:3) Coz h't

+

The rst line in this expression is the usual hash value. The secondine subtracts
the number of times Cy.; > C ;.o has occurred before this entry and the third line
subtracts the number of timesCq.o > Co.,n 1 has occurred before. The fourth and
the fth line add the number of time both Cg.1 > C 1.9 and Co.p > Co;n 1 have
occurred. While the expression above can be simpli ed, there is slight increase
in computation time. The technique outlined above is also possibledr other im-
possible combinations, such as for exampl€y.0 > Co.n 1, Co.0 >Cm 1.n 1 @nd

56

Co:1 = C1.0 Co:2 > C2.0. However, the hash function gets more complicated
with each included feature, as we also need to compensate for con guratns

that more than one feature. Moreover, the relative compression decreas with

each new feature included, resulting in less and less density gain

Nevertheless, the above approach makes it possible to solve the casenof=
4:n =4;Dmax =2 and O =7. The computation took about 3:5 days and the
resulting distribution of hash values is given in Figure 22. The resul is that the
game is still winning for Slider. This means that when player playsoptimally in
2048, he or she is always able to obtain tile 128.

Figure 22: Distribution of used hash values for which a boards is hashed sy
the compression method described in this paragraph. The parameter vaés are
m=4;n=4,0=7.

57

9 Conclusions and future work

We have presented a generalization of the game 2048. For this version we have
proved various theoretical aspects about the con gurations of the board, tte
tiles that can appear on the board and conditions for applying moves. We
have analyzed the one-dimensional version of the game. By stating and pving
theorems we have developed an algorithm that can check whether a board is
reachable in the passing game. The complexity of this algorithm iD(2"). We
have given an expression for the number of moves of the shortest game ihe
one-dimensional version from which it follows that any brute force algorihm
would have a complexity of

n n_1
(2522 1) or (2 3272)

depending on the parity of n. Therefore the algorithm is much better than any
brute force method. The algorithm has been related to the non-passingersion
and the irregular behavior of the game trees in this version is discugsl.

We showed that changing the maximum valueD o« that Dropper can place on
the board is in uential on the highest tile that Slider can obtain. When this
value is increased the highest obtainable tile is decreased. It is stwvn that the
rate of decrease depends om and n. We also showed that forD s = 2 and
m = 1 the highest obtainable tile is 2 and that for Dpnax = 4 and m = 2 the
highest obtainable tile is 4.

In addition we analyzed the shortest possible games and gave strategies and
expressions for (upper bounds of) the numbers of moves to achieveith For
Dmax =2 and for Dpax =1 and m 2 we have given precise expressions for
this, while for Dnax =1 and m > 2 we have given upper bounds. Computational
results indicated that the upper bounds are very good in some cases the sense
that the number of moves exceed the minimum by a constant value indpendent
of the values ofn. All given expressions are at most exponential in one of the
parametersm and n.

Finally, we addressed the problem of solving the original game 2048 and the ke
sion ofm =3;n =5 and Dna = 2. The method of hashing has been explained
and the density of the hash tables has been investigated. A method thaéxploits
the symmetry of the board in the casem = 4;n = 4 has been explained and
applied to the original. This showed that with optimal play it is alway s possible
to achieve tile 128 in the original game.

It is suggested that for both the game on a board of 3 5 and 4 4 the highest
obtainable tile in case of optimal play by both players is 8. However, forhe 3 5

board we would need 264TB of RAM to show this and for the 4 4 we would
need 2112TB. The computation would take about a week in the former case and
about three weeks in the latter case. By applying the methods desdred in Sec-
tion 8.3 on two corner points for m = 3;n =5 the amount of necessary memory
can be reduced to% 2:64 2:07TB of RAM. Applying the method in exactly

the same way as in that section fom = 4; n = 4 the amount of necessary memory

58

can be reduced to% 21:12 11.72TB of RAM. The method can be applied
on more points but the reduction of memory is less with every newly igluded
feature while it takes more computation and becomes more di cult to implement.

Another method to solve these games is to analyze the graphs given in Semh
8.2. The sections in the hash table where only few tables are hashed to can
be taken out of the table. This would save memory while the penalty of eta
computation time would be very low. Additionally, similar graphs can be made
on how often hash values in bins are requested by the program to see whic
sections of the hash tables are important for keeping the computation tine low.
This can also be combined with the height of the corresponding board intie
game tree, as boards at low levels are probably more important than those on
high levels. Finally, the hashing function can also be changed. The fuction would
ideally hash boards at low levels to low values without the need of compdated
computations.

More research can be devoted to the theoretical aspects of the game. The
algorithm given in Section 5.2 for the passing game can be extended to the
non-passing version, although this is expected to be very challenginconsidering
the irregular structures in the game tree. Another interesting direction would be
to show whether there exists aD nax value for which Dropper can play in such a
way that Slider cannot merge two tile on a board with m = 3 or higher values
of m. If this value exists, we have shown that it should be at least 5. Findly,
better strategies can be divised for executing the shortest posdi® games for
m> 2;n> 2 and Dpax = 1.

Other topics that can be investigated are the inclusion of scores, the yhamics
in case of non-rectangular boards, the in uence of special squares likeokes in
the board or the change of gameplay when the dropping or sliding mechanism
is altered. There are numerous possibilities for additional researcto 2048 or
sliding-games in general, as evidenced by the huge amount of variations thaian
be found on the web.

59

References

[1] G. Cirulli, 2048 http://gabrielecirulli.github.io/2048/ , 2014 [ac-
cessed at 11.07.2016].

[2] 2048 Variants, Semi-long Blog, https://phenomist.wordpress.com/
2048-variants/ , 2014 [accessed at 11.07.2016].

[3] 20 (Slightly) Dierent 2048 Versions, Moment of Geekiness, http://
www.momentofgeekiness.com/2014/03/22/list-20-2048-versions/
[accessed at 11.07.2016], 2014.

[4] G. Chowdhury and V. Dhamodaran, 2048 Using Expectimax |,
http://www.cs.uml.edu/ecg/uploads/Alfalll4/vignesh_gayas
2048 _project.pdf , 2014 [accessed at 11.07.2016].

[5] P. Rodgers and J. Levine,An Investigation into 2048 Al strategies, In
Proceedings of 2014 IEEE Conference on Computational Intelligence and
Games, 2 pages, 2014.

[6] M. Szubert and W. Jaskowski, Temporal di erence learning of N-tuple
networks for the game 2048In Proceedings of 2014 IEEE Conference on
Computational Intelligence and Games, 8 pages, 2014.

[7] I. Wu, K. Yeh, C. Hsueh, C. Chang, C. Liang and H. Chiang, Multi-Stage
Temporal Di erence Learning for 2048, In Proceedings of Technologies and
Applications of Arti cial Intelligence (TAAI 2014), LNAI 8916, 366{378,
Springer, 2014.

[8] H. Gui, T. Wei, C. Huang and |I. Wu, An Empirical Study on Applying
Deep Reinforcement Learning to the Game 2048Workshop on Neural
Networks in Games, The 9th International Conference on Computers and
Games (CG2016), 2016.

[9] K. Oka and K. Matsuzaki, Systematic Selection of N-tuple Networks for
2048 In Proceedings of the 9th International Conference on Computers
and Games (CG2016), 2016.

[10] M. Overlan and T. Hargreaves, 2048, https://sphere.chronosempire.
org.uk/ ~HEx/8402/ [accessed at 17.08.2016].

[11] R. Basak, 16384 Hex http://rudradevbasak.github.io/16384_hex/
[accessed at 17.08.2016].

[12] F. Hamand, 2048 +-*/ , http://frankh.github.io/2048/ [accessed at
17.08.2016].
[13] R. Kandasamy, 2048 - 3D, http://balderdash.github.io/2048/ [ac-

cessed at 17.08.2016].

60

[14] M. Opler, 2048 - 3D, http://joppi.github.io/2048-3D/ [accessed at
17.08.2016].

[15] R. Mehta, 2048 is (PSPACE) Hard, but Sometimes EasyarXiv preprint
arXiv:1408.6315, 2014.

[16] A. Abdelkader, A. Acharya and P. Dasler, On the Complexity of Slide-and-
Merge Games arXiv preprint arXiv:1501.03837, 2015.

[17] A. Abdelkader, A. Acharya and P. Dasler, 2048 Without New Tiles Is
Still Hard, In Proceedings of 8th International Conference on Fun with
Algorithms (FUN 2016), 14 pages, 2016.

[18] C. Chen, 2048 is in NP, http://blog.openendings.net/2014/03/2048-
is-in-np.html [accessed at 11.07.2016].

[19] S. Langerman and Y. Uno,Threes!, Fives, 1024!, and 2048 are hargdarXiv
preprint arXiv:1505.04274, 2015.

[20] M. Gobbert, Edge Hop - Ein Modell zur Komplexiatsanalyse von
kombinatorischen Spielen Master Thesis, Universiat Trier, Ger-
many, 2015, https://www.uni-trier.de/fileadmin/fb4/prof/INF/
TIN/Veroeffentlichungen/Gob2015.pdf

[21] M. Zeegers,Research Project - 2048 Leiden University, the Netherlands
2015.

[22] K. Yeh, C. Liang, K. Wu and |. Wu, 2048-Bot Tournament in
Taiwan, https://icga.leidenuniv.nl/wp-content/uploads/2015/04/
2048-bot-tournament-report-1104.pdf , 2014 [accessed at 11.07.2016].

[23] W. Jaskowski and M. Szubert, Game 2048 Al con-
troller competiton @ GECCO 2015 http://www.cs.put.
poznan.pl/wjaskowski/pub/2015-GECCO-2048-Competition/
GECCO-2015-2048-Competition-Results.pdf , 2015 [accessed at
11.07.2016].

61

	Introduction
	Related work
	Methods and problem statement
	Modifications and conventions
	Implementation
	Problem statement

	General properties
	One-dimensional case
	Theoretical analysis
	Checking reachable configurations in the passing game
	Checking reachable configurations in the non-passing game

	Role of maximum dropped tile
	Dropping different tiles to prevent merging
	Maximum reachable tiles for various settings

	Short games
	Theoretical analysis
	Computational results

	Notes on solving the game
	Hashing
	Hash table distributions
	Compressing hash tables

	Conclusions and future work

