

Specifying and Analyzing Paradigm

Diagrams through UML Diagrams

Dennis Mohorko

E-mail: d.mohorko@umail.leidenuniv.nl

Student number: 1335170
Computer Science { Master Project, 4343MRP42

Leiden Institute of Advanced Computer Science
Leiden University, The Netherlands

February 15, 2016

1

Abstract

This master thesis presents a speci�cation of a linear pipeline written
in the coordination language Paradigm. This pipeline example illustrate
the goals in this master thesis. A pipeline exist of a �lter and a bu�er,
which collaborate on a producer and consumer manner. The main goal of
this master research is to translate the given Paradigm pipeline diagrams
to the thirteen Uni�ed Modeling Languages (UML) 2.0 diagrams. The
translation through UML is a possible enhancement, as UML is more
rich then Paradigm. This thesis will indicate if it is actually possible to
translate the Paradigm models through all the thirteen UML 2.0 diagrams.

2

Acknowledgments

A lot of studying and researching, a lot of thinking and brainstorming
and a lot of sheets, maybe more then hundred, with concept models which
are used in this thesis. My goal of writing the thesis now has been ful�lled.

First of all, I would like to thank my thesis supervisor Dr. Luuk Groe-
newegen of Universiteit Leiden, LIACS, for his support and inspiration,
his wide view of Paradigm and always his very interesting talks about
Paradigm.

I would also like to thank Dr. Marcello Bonsangue of Universiteit Leiden,
LIACS, as the second supervisor of this thesis, and his valuable comments
on this thesis.

Finally, I must express my very profound gratitude to my family and
friends for providing me with unfailing support and continuous encour-
agement in my years of study. This would not have been possible without
them.

Thank you, from the bottom of my heart.

- Dennis Mohorko

3

Contents

1 Introduction 5
1.1 Research Questions . 5

2 A brief overview of Paradigm and UML 5
2.1 Paradigm . 6
2.2 A Paradigm model . 7
2.3 A basic architecture for a Paradigm model 10
2.4 UML . 14

3 Translating Paradigm into UML models 17
3.1 STD, partition and role . 17

3.1.1 Prod �lter . 17
3.1.2 Cons �lter . 21
3.1.3 Prod and Cons �lter . 24
3.1.4 Sink bu�er . 24
3.1.5 Source bu�er . 28
3.1.6 Sink and Source bu�er . 31

3.2 Structure overview . 31
3.3 Consistency rules . 37

4 Conclusion 47

4

1 Introduction

Paradigm is an State Transition Diagram (STD)-based coordination modeling
language, where so-called vertical communication and horizontal communication
is applied. Vertical is between a component and its role port and between a port
and its mirrored role. Horizontal is between components or between mirrored
roles. Paradigm models together with the special component McPal, can be
dynamically adapted via self-adaptation. This means that a Paradigm can be
improved or extended with components from a AsIs model to a new ToBe model.
Paradigm uses one diagram type, an STD. Paradigms key notions are an STD,
a phase, a trap, a role STD and a consistency rule, only the consistency rule
does not have a explicit Paradigm diagram, but the other four notions have a
visualization based on an STD.

When designing with Paradigm, some UML models, like an UML composite
structure diagram can be used to clarify the concrete Paradigm model. And, to
visualize the Paradigm consistency rules, an UML activity diagram can show
the exact steps which the Paradigm consistency rules are taking. This means
that the two languages already is some case are connected with each other.

By visualizing the Paradigm key notions as UML diagrams, the Paradigm
modeling language can be understood using UML tools and techniques, as UML
is a more widely used modeling language in the world problems. Also, it can
help to enhance the model, as there are more aspects in UML which can be
taken in mind.

In Chapter 2 a short introduction to Paradigm and UML is described. In
this chapter the STDs of the �lter and bu�er is visualized and described. Then
an architecture of the given pipeline model is visualized and described. In
Chapter 3 the actual translation from the given Paradigm diagrams in Chapter 2
are translated to the UML 2.0 diagrams. The last chapter, Chapter 4 will give
the conclusion.

1.1 Research Questions

There are �ve research questions:

RQ 1: To what extent can Paradigm models be translated into UML 2.0 model?

RQ 2: Which UML sub-languages are (minimally) needed?

RQ 3: What does this mean for coherence/consistency of these sub-languages?

RQ 4: What other UML sub-languages could be involved (useful) for more/better
understanding?

RQ 5: To what extent could the remaining sub-languages of UML be used in
this context?

2 A brief overview of Paradigm and UML

A short overview to Paradigm and UML which underpin the introduction in
Chapter 1 is given.

5

2.1 Paradigm

A system architecture is organized along speci�c collaboration dimensions, called
partitions. A partition is a well-chosen set of sub-behaviors of the local behavior
of a component, specifying the phases the component goes through when taking
part in a collaboration.

At a higher layer in the architecture, the component participates via its role,
an abstract representation of the phases.

As progress within a phase is completely local to the component, the use of
phase transfer, where a phase transfer is a change between more phases with
traps, instead of state transfer, where a state transfer is between states in one
particular phase, is the key concept of Paradigm. This makes it possible to
model, at the same time and separated from one another, both behavioral local
changes per component, and global changes across architectural layers [1].

Formal de�nitions are de�ned in the paper by Andova et al [1] and are
given in the following list structure which underpin the above motivation and
explanation.

� An STD is a triple Z =<ST, AC, TR> with ST the set of states containing
one particular starting state, AC the set of actions and TR � ST x AC x
ST the set of transitions of Z, notation x

a�! x0.

� a phase S of an STD Z = <ST, AC, TR> is an STD S = <st, ac, tr>
such that st � ST, ac � AC and tr � f(x; a; x0) 2 TR j x; x0 2 st; a 2
acg.

� A trap t of a phase S = <st, ac, tr> of STD Z is an non-empty set of states
t � st such that x 2 t and x

a�! x0 2 tr imply x0 2 t. If t = st, the trap is
called trivial. A trap t of phase S of STD Z connects phase S to a phase
S’ = <st’, ac’, tr’> of Z if t � st’. Such trap-based connectivity between

two phases of Z is called a phase transfer and is denoted as S
t�! S0.

� A partition � = f (Si; Ti) j i 2 I g of an STD Z = <ST, AC, TR>, I a
non-empty index set, is a set of pairs (Si; Ti) consisting of a phase Si =
<sti; aci; tri> of Z and of a set Ti of traps of Si.

� A role Z (�) at the level of a partition � = f (Si; Ti) j i 2 I g of an STD

Z = <ST, AC, TR> is an STD role Z (�) = <cST ;dAC;dTR> with cST �
f Si j i 2 I g, dAC � S

i2I Ti and dTR �fSi
t�! Sj j i; j 2 I; t 2 dACg a set

of phase transfers. Z is called the detailed STD underlying global STD
Z (�), being role Z (�).

� A consistency rule � for an set of roles Z1(�1), . . . , Zk(�k) is a mechanism
for synchronizing the transitions mention in �, mainly from roles in the
ensemble. As such a consistency rule � is denoted as a string starting with
an "*" followed by a non-empty comma-separated list of phase transfers
taken from di�erent roles from the ensemble. The string may be preceded
by one transition from a non-role STD Z. In the presence of a transition
from a non-role STD Z a so-called change clause Z:[y := expr] can be
part of the list, overwriting the variable y accessible for Z by the value
of the expr of appropriate type. If a change clause is inserted, the list of
phase transfers may be empty. An STD Zk occurring in the list of phase

6

transfers, is called a participant of �; if a transition of a non-role STD
Z occurs in �, Z is called a conductor of �. A consistency rule with a
conductor is also called an orchestration step; a consistency rule without
a conductor is also called a choreography step.

� A Paradigm model is an set of STDs, roles thereof and consistency rules.

� A subset P of the consistency rules from a Paradigm model, is called
protocol P if for any role Zi(�i) occurring in a rule from P, role Zi(�i)
does not occur in whatever consistency rule outside P. Any consistency
rule � belonging to a protocol P is called a protocol step of P. A protocol
P is called a choreography, if all consistency rule in P are choreography
steps. A protocol not being a choreography is called an orchestration. The
conductor of an orchestration step in orchestration P is called a conductor
of P too.

2.2 A Paradigm model

The component Filteri is given as an STD in Figure 1. The example given is
a variant of a second example from the paper by Groenewegen et al [2]. An
STD, in this case, of Filteri exist of four states and four actions. The �lter is
based on producing and consuming an item in one full cycle via its Prod role
for producing and Cons role for consuming.

The component Bufferi is given as an STD in Figure 2. The bu�er is
based on storing an item into the bu�er, with a storecycle via its Sink role and
popping one item out of the bu�er with a popcycle via its Source role.

Filteri

Figure 1: STD of Filteri

The states are Wanting, Transforming, Finished and Ready. The actions
are take, produce, give and resume.

The starting state is Wanting, where the �lter is looking for new input from
the bu�er. By taking action take it gets the input in the form of one item.

In the second state, Transforming, it transforms this item in a new item.
By taking action produce the new item is made available for being put into the
bu�er.

In the third state, Finished, it indicates availability of the new item for
being put into the bu�er. By taking action give it puts the new item into the
bu�er.

In the fourth and last state, Ready, the �lter is done with producing and
consuming activities. By taking action resume it resumes to the �rst state
Wanting where it is waiting for a new item to be taken from the bu�er.

7

Buffer1

Figure 2: STD of Buffer1

The component Bufferi where i = 1 is given as an STD in Figure 2. An
STD, in this case of Bufferi, the states are 0 to n, which are visualized in the
middle layer of the bu�er. The starting state of the bu�er is 0, which means
that the bu�er is empty. State n means that the bu�er is full, but only �lled
with natural numbers.

As can see, there is a 0+ state in between states 0 to state 1 for adding an
item into the bu�er. State 0+ is there for adding an item via action planStore
and via action store to state 1. The actions planStore and store are a storecyle
for storing an item.

The state 1� in between states 1 to state 0 is there for removing an item
out of the bu�er. State 1� is there for removing an item via action planPop
and via action pop to state 0. The actions planPop and pop are a popcycle for
removing an item.

This two actions planStore and planPop are for deciding when to do a store
or when to do a pop action. Depending on the decision always a store or a pop
will follow.

(a) Partition of F ilteri (b) Role F ilteri

Figure 3: Partition and role for Filteri(Prod)

The partition and role behavior of Filteri(Prod) are given in Figure 3. Fig-
ure 3a visualizes two phases named, NotGiving and Giving. Each phase has a
trap. The trap in phase NotGiving, where state Finished lies in trap request
is there that the pipeline behavior cannot move to another state or cannot leave
the trap once the trap has been entered. The trap in phase Giving is much
larger then the trap in phase NotGiving. The states Wanting, Transforming
and Ready lie in trap done.

In case of phase NotGiving where state Finished lies in trap request, the
�lter wants to put a renewed item into the bu�er. In case of phase Giving, the
�lter places this renewed item into the bu�er indeed.

Therefore, Figure 3b visualizes the role behavior. Via the trap, the phase
moves from one phase to another phase, a phase transfer. The starting phase is

8

NotGiving where the phase transfer is from phase NotGiving via trap request
to phase Giving. The second phase transfer is from phase Giving via trap done
back to phase NotGiving.

(a) Partition of F ilteri (b) Role F ilteri

Figure 4: Partition and role for Filteri(Cons)

Where Figure 3 visualizes the �lter with its Prod role. The �lter with its
Cons role, Filteri(Cons) is visualized in Figure 4. Figure 4a visualizes the
partition. This partition has two phases NotTaking and Taking. In phase
Taking, state Wanting lies in trap request where the �lter wants to get an
item from the bu�er. In phase Taking the states Transforming, Finished
and Ready lie in trap done where it cannot ask again for a new item from state
Wanting.

The role behavior of Filteri(Cons) is visualized in Figure 4b. The starting
phase is NotTaking where the phase transfer is from phase NotTaking via trap
request to phase Taking. The second phase transfer is from phase Taking via
trap done back to phase NotTaking.

(a) Partition of Bufferi(Sink) (b) Role Bufferi(Sink)

Figure 5: Partition and role for Bufferi(Sink)

A store cycle, for storing items in the bu�er, is done in two steps: by taking
the actions planStore and store. The phases Stable, Collecting and Stabilizing
are visualized in Figure 5a. Phase Stable will do no action planStore or action
store for a store cycle. Phase Collecting will do the �rst step of a store cycle,
taking action planStore. Phase Stabilizing will do the second step of the store
cycle, taking action store. All three phases allow all possible pop cycles, but at
most one step of a store cycle.

9

