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ABSTRACT

Archives around the world store innumerable amounts of his-
torical data. In the last few years, many of these archives have
been digitized, which enables new ways of exploring the data.
Computer applications can search through hundreds of years of
data in just seconds. However, many of these datasets lack a
structure that can easily be interpreted by computers, which is
caused by ambiguities in the text and the fact that most texts
are not annotated with metadata. In order to be able to con-
struct comprehensive life stories of individuals that are hidden
within these datasets, the occurrences of person names should
be extracted, along with other interesting pieces of information
that can be found. Furthermore, it should be decided which of
these references refer to the same real-world entities in a process
called entity resolution.

This thesis discusses methods and techniques that can be
used for this purpose. A software pipeline is described that takes
unstructured text as input and outputs reference pairs, ranked
by a confidence score. This score is based on the rareness of
the properties of the reference, such as name and occupation,
and information extracted from the surrounding context. The
novelty of this research was the introduction of the Mazimally k-
Informative Itemset (MIKI) as a means of capturing the topics of
a section that a reference occurs in. Experiments were conducted
on real archive data supplied by the The National Archives in
London. For a portion of this data, entity resolution had been
carried out manually by historians, which allowed us to compare
theirs results with that of our automated technique.

We found that entity resolution can be performed automat-
ically in many cases, though our technique has difficulties in
linking references of which little information is known. Better
methods for feature extraction are therefore required to provide
the classification algorithm with a richer input.



Acknowledgements

First and foremost, I would like to thank my supervisor, Arno Knobbe, for
having given me the valuable opportunity to work in the Data Mining group
of the Leiden Institute of Advances Computer Science, for being a mentor
and keeping up with me throughout the process of writing this thesis. I would
rather not think of what would have become of me without your help ;)

Secondly, I would like to thank my parents for their love and patience.
You have always given me the liberty in which I have been able to discover
my interests and pursue my ideas.

Thirdly, I would like to thank my friends and colleagues for being simply
amazing. I am very fortunate to be surrounded by such beautiful people.

Last but not least, I would like to speak out my gratitude to all the
creators and innovators for the work they share. Our views and thoughts, our
identities, are shaped by the discoveries, creative thoughts and innovations of
others. It is only because of those who share that we can learn and enjoy life
to the fullest. If I were to thank every author of a piece of code or scientific
article, it would easily become bigger than the main body of this thesis. 1
trust that this is probably not what they would like, so I try and reach out
to all of them with a simple: “Thank you all!”.

To make it easier for other people to take advantage of this work, I have made
the TEX source available at https://github.com/benjaminvdb/master _
thesis.


https://github.com/benjaminvdb/master_thesis
https://github.com/benjaminvdb/master_thesis

Contents

1 Introduction

1.1 Motivation . . .. . .. ... 1

1.2 Challenges . . . . . . . . ... 2

1.3 Problem definition . . . . . .. ..o oo 5
1.4 Related work . . . . .. ... .. o 9
1.5 Outline . . ... .. 10

2 Record Linkage Pipeline 11
2.1 Named-entity extraction . . . . . . . ... ... ... ... .. 12
2.2 Blocking . . . . ... 13
2.2.1 Standard blocking . . . ... ... ... 13

2.2.2  Sorted neighborhood . . . . . . ... ... 0. 15

2.3 Field-based comparisons . . . . . .. .. ... L. 15
2.3.1 Edit and Levenshtein distance . . . . ... ... ... 17

2.3.2 Q-gram string matching . . . . . ... ..o 19

2.3.3 Jaro and Jaro-Winkler similarity . . .. ... .. ... 19

2.3.4 Soundex and Editex phonetic similarity . . ... . .. 20

2.4 Candidate pair classification . . . . . . . . ... .. ... ... 22

3 Feature Extraction 25
3.1 Maximally informative k-itemsets . . . . . . . ... ... ... 26
3.2 Algorithms for computing MIKIs . . . . .. ... ... .. .. 29
3.3 Utilizing MIKIs for entity resolution . . . ... ... ... .. 30

vi



4 Experimental Evaluation 31

4.1 Overview of the dataset . . . . . . . . . ... ... .. .... 31
4.2 Occurrence extraction . . . . . . . . . . . oo 34
4.3 Miki extraction . . . . . . ... 35
4.4 Linking entities . . . . . . . ... oo 38
5 Conclusions and future work 43

vii



—Fach person in the world creates a Book of Life. This
Book starts with birth and ends with death. Its pages
are made up of the records of the principal events in
life. Record linkage is the name given to the process
of assembling the pages of this Book into a volume.

Halbert L. Dunn, 1946

Introduction

NTITY RESOLUTION is the process of finding records in one or
more datasets that relate to the same entity. Entities in this con-
text commonly refer to people, such as patients and customers,
but they can also refer to products, events or any other concept.

Applications of entity resolution range from duplicate detection to the merg-
ing of datasets to obtain a single, enriched database. It has a long history
of research and a lot of effort has been put into building systems that can
perform the task in diverse contexts. However, many of the techniques devel-
oped rely on a database that has a well-defined data model in which specific
pieces of information about an entity are mapped to a fixed number of fields.
Whenever unstructured, continuous text is considered, such as commonly
found in books and on the web, many of these techniques are not directly
applicable and must be modified or perhaps entirely new approaches must be
considered. In this thesis, we explore methods to overcome these issues and
study ways of extracting information from text in order to improve entity
resolution.

1.1 Motivation

When studying historical documents, researchers are often confronted with
the problem of ambiguous references to people in text. A document might
have been prepared to be of only temporary use or might have been written
with a particular set of people in mind, limiting the number of possible people
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that could have been referred to. However, when the document is studied
after many centuries, the exact context is often lost and it will be more
difficult to identify the people. A careful study of other datasets, such as
birth registers and censuses, might therefore be needed to figure out who the
person under consideration is. This can be a laborious task and, furthermore,
it can be hard to estimate the quality of the results.

In 2014, The National Archives (TNA) launched the Traces Through
Time project that had the goal of developing a new tool that would enable
its users to explore TNA’s vast repository of digitized archives in a com-
pletely new way. The system would have to identify occurrences of people
in text and decide which of them referred to the same people. It would
also have to deal with “fuzzy” nature of historical data, including aliases,
incomplete information, spelling variations and errors. This is essentially
an entity resolution problem with the added difference that not structured
databases, but unannotated documents in natural language are to be linked.
This projects shows the need for the development of such a system and serves
as an excellent use case.

Another possible application of a system for entity resolution in unanno-
tated data lies in the semantic web [10, 25]. The semantic web can be seen
as a graph in which the nodes represent concepts which are connected by
edges that represent a type of relation. Although the web standards have
been extended to support several types of annotations with RDF [28], it is
not used in all pages on the web, often because it is laborious to incorporate
semantic information. In this context, entity resolution could allow for auto-
matic detection of people in text and link documents together that contain
information about the same people.

Information could also be extracted from text and aggregated into auto-
matically generated summaries, resembling simple Wikipedia [8] pages. Web
searches could be entity-driven: besides the existing “Images” and “News’
categories of search, the search engine could include one for “People”. Results
from such a system would aggregate web pages referring to the same people
together, instead of returning a large list of possibly unrelated people.

?

1.2 Challenges

Traditionally, entity resolution is performed on tables in databases. Since
these usually have a schema, and therefore a well-defined structure, we can
compute similarities between references by comparing their individual fields.
However, the main focus of this thesis is to study entity resolution in data
in natural language, which often lacks a well-defined structure. Even though
the text commonly respects the syntax of a language and therefore has a
certain degree of structure, it is hard to parse and ambiguity is hard to avoid.
Furthermore, the references are not readily accessible and first need to be
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Title First name Article Last name Role

Roger of Hyde

sherrif of Oxfordshire
Roger of Hyde knight
Roger

Table 1.2.1: A possible segmentation of the paragraph taken from Fine Roll C
60/33.

extracted from text. We will describe a simple generic rule-based method
that can be used to both extract references from text and segment it into a
record consisting of attributes. Note that the use of a schema imposes a fixed
length on the records, even though it might often happen that one or more
attributes are not present. This becomes more clear with an example. The
following is a section taken from Fine Roll C 60/33[3] from the Fine Rolls
of King Henry III, a dataset consisting of transcribed medieval calendars.

Concerning the corn of Roger of Hyde. Order to the sheriff of Ox-
fordshire to make the king’s advantage without delay, by the view
of law-worthy men, from all of the corn of Roger of Hyde, knight,
in Hyde, who is with the Earl Marshal, and to put in gage etc.
all those who he will find threshing that corn and intermeddling
with the land of the same Roger without warrant, to be before
the king at his command to answer for it.

It is not always clear in which way the various properties that are mentioned
should be treated. For example, is “sherrif of Oxfordshire” one role or is
“sherrif” a role and should “Oxfordshire” therefore be treated as a provenance?
The output of the occurrence extraction process therefore depends on various
decisions that are made beforehand. When such decisions are made, the
decisions can be captured in a grammar that is used by a parser to segment
the input text into records. This is what we will call a rule-based system.

An example of the tabular output can be seen in Table 1.2.1. The nouns
that refer to people through their jobs, such as king and Earl Marshal, are
left out in this example. The important thing to note is that there are a lot
of missing values that have to be dealt with appropriately.

While text in natural language may lack a well-defined structure, it obvi-
ously does not mean it lacks information. Most of the time the text contains
a lot of details and a person is referenced within that context, so it might
be interesting to look at ways to extract this information. A problem with a
rule-based system in this case is that it does not generalize very well. It is
fast and can make good use of regularities in the text, such as the ordering
of names, but it is unclear how to apply such rules to extract more general
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Figure 1.2.1: John William Smith has a reasonably high confidence score with
both John Smith and William Smith. Inferring from this that also John Smith and
William Smith should be matched is however dangerous.

information from the text. We will therefore study the application of more
generic techniques and their impact on the accuracy of the system.

The core of any record linkage system is the step in which references are
classified into matches and non-matches. In order to do so, a similarity-based
approach is often used. Based on the assumption that references to the same
entity are themselves similar, we can start comparing their segmented records.
However, this requires a means of comparing records, which is not a trivial
task. There are many different approaches, such as counting the number of
edit operations required to turn one string into the other, and each comes
with their own quirks and advantages. One of the challenges here is to select
a similarity metric and another is to deal with the missing data, such as
exemplified in Table 1.2.1.

Another issue arises when we take the property of transitivity into account,
i.e., if @ and b are a match and a and ¢ are a match, then it is reasonable to
assume that also b should be a match with ¢. However, in some situations,
it might occur that this property does not hold, thus we find that there
is an inconsistency in the matching status of the pairs under consideration.
Matches can also chain together in which case the ends of the chain are clearly
not matches, though intuitively, and by applying the property of transitivity,
we could argue that these records should also be matched. Fig. 1.2.1 shows
an example of such an uncertain situation. We could argue that the same
person was referenced once with his first name and another time with middle
name, yet we could also say that there is an inconsistency and perhaps
only one pair should be matched. However, we could also argue that the
transitivity property can aid us in the efficient linking of records as it can
in fact provide evidence in a similar way that the content of the records do.
Namely, instead of comparing references based on their textual representation
we could compare them based on graph similarity. We will look at methods
to leverage this property to increase performance while reducing the number
of inconsistencies.

The record linkage methods described in this thesis rely on the com-
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parison of references based on their attributes. Assuming we have no prior
knowledge of the match status of each reference pair, and the goal is to link
references within a single dataset, the comparison of all possible pairs takes
time O(n?). On the other hand, the number of true matches can be expected
to increase only linearly with the size of the dataset, thus relatively more
time is spent on unpromising pairs. For larger datasets this problem rapidly
becomes too expensive. Several solutions have been proposed to partially
resolve this problem at the expense of decreased sensitivity of the system.
It is not the main focus of this thesis to address this issue, but since it is
fairly standard step in the record linkage pipeline, we will shortly discuss it
in Section 2.2.

The last hurdle is that of evaluation. Since the data is concerned with
people that have all deceased, it is impossible to be certain about the results
as produced by a record linkage procedure. The best we can do is to have
an expert historian establish for each pair of references whether they are the
same person or not. Obviously this requires a lot of manual work, and even if
such an assessment can be carried out, it will certainly include a fair amount
of errors. Evaluations can therefore prove to be quite a challenge and it is
one of the objectives of this thesis to study various approaches of evaluating
the results. The outcomes should be both scientific, in the sense that they
are comparable, and insightful, in that they provide historians with new ways
of looking at the data that was not possible before.

1.3 Problem definition

The goal of the Traces Through Time project was to develop a system that
could aid historical research of individuals. This thesis comprises both a
report of the development of the system in this project and an overview
of record linkage with an emphasis on historical documents. We will also
address the problems that were taken up in Section 1.2. Before we proceed,
let us first give a more formal introduction to the concepts discussed in this
thesis.

For several decades, record linkage has seen a lot of interest in many
different disciplines, which, ironically, led to a large number of synonymic
names for the same process, such as data linkage, entity resolution, object
identification, or field matching [13]. Since two slightly different, but strongly
related, problems are addressed, two different naming conventions are taken
up in this thesis, in order to distinguish them. We will denote entity resolution
and record linkage as two distinct tasks, such that we can distinguish between
the main objective of aggregating personal information and linking structured
records, respectively. Before defining these concepts more formally, we first
define their constituents.

In order to define what we mean with entity resolution, let us first define
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what we mean with entities and how their descriptions are defined. Since
it is hard to define a domain that will be suited for any entity, we will
use references to entities in an unknown domain E. Assume we can obtain
information about entities through an ‘oracle’ function @, defined on an
entity e € E and a property key k € X* that maps to a proper value if
the entity possesses the property and a ‘missing value’ € otherwise. Using
alphabetic characters as keys, we can for example obtain the number of
corners of a cube: Q(dcype, “corners”) = 8.

A description § consists of a tuple of keys K and values V', e.g. dcube =
((“corners”, “sides”), (8,6)). We denote with the |§| the description length,
defined as |K| = |V, thus |dcupe|] = 2 in the previous example. A description
6 = (K, V) is said to describe an entity e, denoted with & ~gesc €, whenever
the properties of the description match that of the entity, i.e., Q(k;, e) = v;
with ¢ = 1,2,...,|d]. To allow for small mistakes and variation in the data,
we will describe more precisely how to compare properties in Section 2.3.

We can now describe the process of entity resolution as follows:

Definition 1 (Entity resolution).

Entity resolution is the process of deriving from a set of descriptions A
another set of descriptions A s.t. each of the described entities e € E are
described by at most one description (injective, non-surjective) and no in-
formation is lost, i.e.,

A~

A= {m ~desc € | T Rdesc € N\ Y Ndesc € = :U:y,V:I:,y}

Note that even in the presence of an oracle ), we could never know if
a description truly references an entity, since the non-surjective property
implies that a description can describe several elements in £. What makes
matters even more complicated is that we also lack knowledge of the set E.
The best we can do is assume that descriptions describe at least one entity
in E and ‘ground’ the oracle to it, i.e., we treat descriptions as incomplete
entities. This allows us to do pairwise comparisons of descriptions as the
core component of the entity resolution process. Whenever a query involves
an unknown property, an € is returned.

Also note that from the fact that there is an injective, non-surjective de-
scribes-relation between A and E and that no information is lost, it is implied
that descriptions in the original set A are merged during the record linkage
process. Entity resolution therefore focuses on the construction of a set of
unique descriptions, which involves the aggregation of information whenever
two partial descriptions exist for the same (real-world) entity. Record linkage,
however, is only concerned with the detection of the latter and not with the
aggregation itself.

Definition 2 (Record linkage).
Given a set of (partial) descriptions A, record linkage is the process of

6
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Predicted label

Positive Negative
~ true false
8 Positive .. .
= positive negative
S false true
S Negative o ]
positive negative

Figure 1.3.1: A confusion matrix shows the performance of a system using the
frequencies of the four possible outcomes.

determining the set of matching pairs M, or simply matches, defined as:

M = {(w7y) | T Rdesc €\ Y Rdesc €,de € BV, y € A}

Again, by grounding the oracle to a specific description, we can do pair-
wise comparisons between descriptions. Note that the relation defined in
Definition 2 is symmetric, which limits the total number of possible matches
to n(n — 1)/2, if we do not compare descriptions with themselves.

Note that we assume that, in practice, it is impossible to verify whether
both « and y are partial descriptions of e since this would require knowledge
of their match status — a “chicken-and-egg” problem. This shows an important
problem in record linkage, namely that there is often a lack of a ground truth.
Even if expert knowledge is available, it can be argued that it is impossible
to verify any links that are made, since it requires complete knowledge of
the set of unique objects, which would invalidate the need to perform entity
resolution in the first place.

The record linkage problem can be viewed as a binary classification
problem in which to goal is to distinguish between matches and non-matches,
respectively labeled as 1 and 0. When the ground truth about the data is
known, i.e., the actual labels are available, the outcome of classification can
be evaluated. Fig. 1.3.1 shows the organization of a confusion matriz that can
be used for evaluation. The cells contain the frequencies for the four possible
outcomes of a classified pair: true positive (TP), false negative (FN), false
positive (FP) and true negative (TN). These frequencies can be aggregated
using metrics that describe different aspects of the results.

Definition 3 (Precision).
Precision, E),, is the fraction of pairs that are correctly classified as true
matches, i.e.,
B |TP|
P |TP| + |FP|
Definition 4 (Recall).
Recall, E,, is the fraction of true matches that are detected by the system,

7
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i.e.,
B |TP|
" |TP| + |FN|

In general, it holds that a system that yields results of high precision often
scores low on recall, and vice versa. Indeed, a maximum precision of 1 can
be achieved when no pairs are classified as matches, though this would yield
a very low recall. Similarly, classifying all pairs as matches would yield the
maximum recall of 1, but the precision would be very low. This shows that
choices have to be made according to the cost associated with lower precision
or recall, based on the context in which record linkage is applied, and it is
beneficial to study both aspects. There exist metrics that also include the
number of true negatives, but in record linkage these are problematic, since
this number is often very high, making it dominate the equation [13].

It is also possible to aggregate precision and recall into a single metric,
such as the F-measure.

Definition 5 (F-measure).

The general F-measure measures the effectiveness of retrieval with respect
to a user who attaches  times as much importance to recall as precision
[29] in the following way:

2F, E,

where § > 0.

Commonly used values for 5 are 1, 2 and 0.5. The F; weighs precision
and recall evenly, while the Fo and Fg5 put more emphasis on recall and
precision, respectively. The class of F-measures is interesting because it gives
a higher penalty to extreme values when compared to the arithmetic mean,
which is in many cases desirable. As mentioned, scoring very high on either
precision or recall is easy to achieve and should generally be avoided.

Now that we have a formal definition of record linkage we will pose the
the research question that will be leading throughout this thesis:

Research question.
How can we perform entity resolution to aid the historical research in the
absence of tabular structured archive material?

This question is divided into several sub-questions:

1. How do we transform the source data into a format that can be used
by traditional record linkage techniques?

77. What methods can be used to extract information from documents to
improve the performance of entity resolution?

8
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1.4 Related work

The Traces Through Time project started as a continuation of the Chartkx
[1] project that had the goal of developing new ways of analyzing historical
documents in an integrated fashion and reconstructing medieval social net-
works. In ChartEx the focus was on medieval charters, which are records of
legal transactions of property, while Traces Through Time considered only
people. This thesis gives an overview of the work that was done in the latter,
meaning that the focus will also be on people.

The goal of these projects is not much different from the one proposed in
[16], namely to aggregate all significant information about a person from birth
to death into a single record. In [27] the probabilistic record linkage method
was proposed as a solution to this problem, which was later formalized in [17].
This method is based on attaining evidence that supports the hypothesis
that two distinct records are descriptions of the same real-world entity. In
Section 2.4 we will describe a procedure that is based on the same principle
and differences in the way statistics about the various fields are incorporated.

The research done in [15] and [12] is similar to that conducted in this
thesis, although the domain is different. Their goal is also to perform record
linkage in text and both use Wikipedia as a source of evidence. Linking
“out-of-Wikipedia”[12] entities is achieved by introducing a special entity
eout that has all its attributes set to null values. Experimental evaluation of
these systems has shown that using external knowledge from Wikipedia, i.e.,
information not present in the data that contains the references that are to
be matched, enhances the accuracy.

The work described in [33] is interesting since it is one of the earliest
mentions of record linkage in a historical setting and executed in close col-
laboration with historians. The involvement of historians resulted in some re-
quirements that computer scientists might miss, such as allowing researchers
to document the information that guided the decision making process. This
is something that was also requested by the historians that we cooperated
with during the Traces Through Time project. The paper also reports some
of the major difficulties found during manual linkage of two censuses that
took five months, most notably the high discrepancy between the way names
and occupations were written.

In the recent work of [11], the entity resolution problem is studied in a
historical context. The goal of this work is to link mentions of ship names in
news paper articles with a curated list of ship names and crew members. The
research is similar to that conducted as part of this thesis in that entities
in natural language are disambiguated. The most important difference is
that the researchers obtained a labeled dataset through careful inspection of
the text by domain experts, which was used to train a classifier. The work
proposed in this thesis aims to provide methods for unsupervised learning
instead.
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1.5 Outline

The next chapters describe the research that has been conducted to answer
the research question posed in the previous section. The theory of record
linkage is first discussed in Chapter 2, which will lay the foundation for further
research. In it, the various steps involved in their order of appearance as is
common in a record linkage pipeline, is studied. Chapter 3 explores methods
for extracting information from unannotated text in an unsupervised way
with the aim of improving the results in the presence of common names. The
results of experimental evaluation that was conducted will then be described
in Chapter 4, followed by our conclusions in Chapter 5.

10



—No matter what he does, every person on earth plays a
central role in the history of the world. And normally
he doesn’t know it.

Paulo Coelho, The Alchemist

Record Linkage Pipeline

N THIS CHAPTER, we will give an overview of the record linkage
system that was developed to solve issues that were discussed in Sec-
tion 1.3. It is also the basis for the experiments described in Chapter 4.
The methodology described is not much different from techniques that
historians would use in a non-automated manner. Conceptually, it involves
the extraction of occurrences of names, the grouping of promising candidate
pairs, the comparison of the records therein, followed by tagging each candi-
date pair as a match or non-match. This chapter describes how these steps
are performed in an automated fashion in the order they are processed in
the pipeline. The strength of an automated system lies in its ability to both
extract the required statistics from the data easily and use it to its advantage
rapidly in the classification step. Viewing the dataset as a whole can provide
further insight, whereas this would be infeasible for humans to perform.

As we will see, the record linkage procedure is constructed around the idea
that matching records should be similar, i.e., they contain similar values. The
classification step utilizes this assumption by attempting to cluster records
that are similar with respect to their individual fields. However, since the
data is assumed to be unannotated, the references must first be extracted
from text and segmented. After the classification of record pairs the final
results are analyzed in order to find more links and resolve inconsistencies.

Many choices can be made regarding the individual components and
their parameters, causing a combinatorial explosion of possible settings. To
keep things in perspective, we have chosen to give an overview of methods

11
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that are fundamentally different in their approach. These methods are then
evaluated in isolation in Chapter 4 so as to study their applicability for entity
disambiguation in a historical context.

2.1 Named-entity extraction

Traditional record linkage techniques naturally assume that the input consist
of structured records (i.e. tuples). Our goal, however, is to perform entity
resolution in documents consisting of natural language. The first step is
therefore to extract structured records from the input data.

We have considered using existing tools from the field of Natural Lan-
guage Processing (NLP), but these posed several issues. The task is often
referred to as Named-Entity Recognition (NER) and is usually solved with
either grammars or statistical (machine learning) approaches. One of the
problems with existing grammar-based approaches is that they often assume
modern English and have problems with older English, making them less
suitable for a generic system. Statistical techniques generally rely on the
availability of labeled data for training, which is often not the case. Luckily,
the variant of NER we are trying to achieve here is rather simple as it only in-
volves the detection of people in text and not, for example, place names. Also,
person names have a well-defined structure and use capitalization, making
it a lot easier to detect them.

The method that we settled on is a simplified version of a context-free
grammar-based approach and mainly requires a list of first names as a seed.
The input is processed as a sequence of tokens, which is generated simply by
splitting the text on spaces after removing punctuation; no further processing
on the tokens is performed. After that, tokens can be searched for first names,
ignoring tokens that are not recognized as such. First names are used as
anchor points in the grammar by applying rules that try to match tokens
based on their relative position to the names. By applying grammar rules in
this way, surnames can effectively be learned. These in turn could be used
as an anchor point, similar to the first names, which yields a new set of first
names that were unknown before. Repeated application of this procedure
can consequently be used to expand a relatively small list of known names
into a bigger one in a process called bootstrapping. Caution should be taken,
however, to prevent errors made in one iteration of the bootstrapping, since
they can propagate to a next iteration. It is therefore best to manually
inspect the learned names after each iteration if the size of the list allows for
it.

An advantage of a manually crafted grammar, like the one proposed, is
that tokens are classified as part of the parsing, which effectively segments
the references into structured records. These can then be further processed
using traditional record linkage techniques.

12
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2.2 Blocking

As stated in Section 1.2, for larger datasets it becomes rapidly infeasible to
compare all possible pairs of records within a single database, since it grows
quadratically. The total number of possible record links, and thus comparisons
in a naive setting, within a dataset of size n is equal to n x (n—1)/2. Because
the similarity between records that we are computing is symmetric, it only
needs to be computed once.

Since the comparison step is often the most expensive step of the record
linkage pipeline, a technique called blocking is often deployed. The goal of
blocking is to efficiently partition the set of all possible pairs into several
mutually exclusive sets. Only the records within a set are compared, effec-
tively reducing the number of comparisons that is required. Note that even
though the goal of record linkage itself is to create such a partitioning, in
blocking this process is rather coarse-grained, and involves computationally
cheap operations.

The effectiveness of blocking depends on its ability to partition the ref-
erences in blocks of roughly equal size, which is often a problem. Another
problem arises when the blocking function is unable to group records to-
gether that should have been grouped. In this case the records will not be
compared and are therefore incorrectly classified as non-matches and there-
fore reduces the system’s recall. Blocking also indirectly affects the precision
of the system since it allows for more expensive, and thus more thorough,
candidate pair comparisons, which in theory yield more accurate results [9].

Though it is not the main focus of this thesis to study blocking techniques,
it is often an important step in the process and we will therefore discuss
it shortly. As we shall see in Section 2.2.1, simple blocking techniques can
easily be implemented with often only a slight reduction in recall while vastly
reducing the number of required comparisons.

2.2.1 Standard blocking

A straight-forward approach to blocking has already been touched on and is
often referred to as standard blocking. This method of blocking is comparable
to a hash function that maps a set of elements to distinct partitions indexed
with a key. In the case of standard blocking, the function is based on the
value that is contained in a field. For example, we can consider the very
simple function that takes the first k characters of a first name field and
uses it as key. The operation executed by the function is inexpensive and will
map first names to a fairly large number of blocks. Assuming that the least
errors occur at the beginning of a name, it may also exclude a large number
of relevant records when a high setting for k is chosen. If this is not the case,
however, it may result in a lower specificity. Depending on the content and
quality of the data and the cost of a missing a true match, the user of the
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The effects of blocking on the number of comparisons

T T 1] T T T 1T 1 T 117 1 T 1] 1 T 117
—— Without blocking

—— With blocking (optimistic)
—— With blocking (realistic)

109

10°

10*
103
102

10!

Number of comparisons
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10° 10! 10? 10°
Number of records

Figure 2.2.1: The number of comparisons grows quadratically with the number of
records and can greatly be reduced using a blocking technique. The red curve shows
theoretical optimum of blocking technique that uses the first letter of the first name
as a key if it results in equally sized blocks. The black curve is computed using a
realistic dataset of the same size.

system should therefore make a decision on the setting of k. Various blocking
techniques can be parametrized as to allow a user to choose an appropriate
trade-off between sensitivity and specificity.

In Fig. 2.2.1 the number of candidate pair comparisons is plotted against
the number of input records on a logarithmic scale. If no blocking scheme
is utilized, the number of required comparisons quickly grows, resulting in
the blue line. Even with the very simple blocking scheme that uses the first
character of the name, we can expect the number of comparisons to be much
less than without a blocking method. In the case of a uniform spread of
starting characters, which is rather optimistic, we obtain the red line. The
black line shows the number of comparisons against the total number of input
records as computed using an empirical distribution of starting characters
derived from the Gascon Rolls [4]. It can be seen that for moderately large
to large datasets, even with this simple blocking scheme, the number of
comparisons are reduced by an order of magnitude.

Blocking keys can also be combined into more specific keys by concate-
nating them [13] or by using different keys in multiple passes [9]. Parameter
settings for the individual functions can be set to more conservative so that
larger blocks are obtained. The idea is that by looking at various aspects
of the records in such a way, errors caused by too specific blocking settings
can be mitigated. A disadvantage is that many different combinations are
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often possible, making it hard to decide on a setting. Trying too many set-
tings defeats the purpose of blocking, so other strategies might have to be
considered.

2.2.2 Sorted neighborhood

The previously described blocking strategy relies on a mapping function that
maps records that are “close enough” to the same key. Constructing such a
function can be hard to accomplish and alternatives may be required.

Consider, for example, a function that is to map age values to a key, and
assume that there is an error caused by the submitter of the data caused by
the guessing of the age. In this case it is natural to compare records that
contain approximately the same age value, but constructing a single key is
not a solution. The sorted neighborhood blocking technique [18] makes use of
the fact that it is much easier to detect records of approximately the same
age if the records are first sorted on this field. Constructing blocks of records
of similar ages can then be achieved by moving a window of size w over the
sorted records. After each iteration, the window moves one record further,
requiring only the newly observed record to be compared with the previous
w—1 records. Completing a full pass thus requires O(wn) comparisons. Since
for large databases it holds that w < n, the computational complexity of
this process is O(n). Sorting of the databases can be achieved in O(nlogn).

A problem with the sorted neighborhood approach is that some values
may occur very frequently, causing records that have the same sorting key to
fall outside the window and are therefore not matched. An example of this is
given in Table 2.2.1, where the first row containing the last name “Asimov’
falls outside the window that contains the last mention. One simple solution
to overcome this problem is to group records that have the same sorting
key together using an inversed index. The window is then moved over the
inverted index instead [13]. In this case the value of w must be reconsidered,
because many more records are now covered within a window. Experimental
evaluation of this modification has shown that it can lead to more true
matches being included in the set of candidate record pairs and thus to a
higher recall [13].

?

2.3 Field-based comparisons

The fundamental principle of the entity resolution techniques described in
this thesis are based on the assumption that references to the same entity
are relatively similar. Naturally, if the references are exactly the same we
are confident that indeed the references refer to the same real-world entity.
In practice, however, it is not always this obvious, since there are many
circumstances in which the references differ, even though the pair should
be classified as a match. There are a number of reasons that cause these
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Table 2.2.1: Graphical illustration of the sorted neighborhood blocking method.
Here, the records were first sorted by last name and then a window of length three
was moved across them.

First name Middle name(s) Last name Birth year

Douglas Noel Adams 1952
Franklin Robert Adams 1932
Robert Adams
Isaac Asimov 1920
Isaak Asimov

Window}  janet Asimov 1926
I Asimov 1926
Elizabeth Bear 1971
Gregory Dale Bear 1951
Philip Kindred Dick 1928
William Ford Gibson 1948
Robert Anson Heinlein 1907
Aldous Leonard Huxley 1894
Ann Leckie 1966
Isaak Yudovich Ozimov
Sarah Bear Elizabeth Wishnevsky 1971

differences, e.g. an error was made during transcription or a name was ab-
breviated. To be able to perform entity resolution under such conditions we
can make use of approximate string matching techniques. These work by
measuring the proximity of one string to another which gives an intuition
about the likeliness of the equivalence of the string.

A distance function d(-,-) maps a pair of strings o1 and oy to a real
number 7, with a greater value of r indicating a smaller similarity between o
and o9 [14]. Conversely, a similarity function s(-, -) outputs numbers r with a
greater value indicating a larger similarity. These values are often normalized
such that their value is between 0 < r < 1. Distance and similarity functions
for strings must intuitively have a number of properties, which are in general
[13]:

o s(o1,01) = 1: the similarity is maximal when a string is compared to
itself.

o s(o1,092) = 0: the strings are ‘completely different’; meaning that o
and o9 have no characters in common, resulting in the minimum simi-
larity value of 0.

e 0 < s(01,02) < 1: a value between the two extremes indicates that the
strings are ‘somewhat similar’.
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With similarity values between 0 and 1, it is easy to convert to distance
values by subtracting them from 1, and vice versa. It depends on the calcu-
lation of the proximity measure whether it makes more sense to talk about
one or the other. For the record linker it does not make a huge difference,
as the interpretation of the numbers is simply inversed. We will see that a
threshold can then be set for each component, mapping the scores to binary
values, or used as-is in the classification of references which will be further
discussed in Section 2.4.

The remaining section describes a number of distance metrics that were
used in our record linkage system to perform pairwise comparisons between
the fields of a pair of records, which we assume to be of the string data type.
We denote with o some string constructed from individual literals taken
from an alphabet X, and use the superscript notation, e.g. o, to refer to its
constituent parts. The notation |-| is used to refer to the length of a string.
Note that we are now considering the field strings in isolation and not the
records as a whole, hence a match in this context means that the fields are
‘similar enough’.

2.3.1 Edit and Levenshtein distance

As stated, misspellings and typographical errors are a common source of
errors and often turn up as a single character being replaced or perhaps
an additional being added. A natural way to compute a distance between
two strings is therefore to use the smallest number of modifications that is
needed to turn one string into the other. This is the underlying principle of
the class of edit distances.

In its simplest form, three operations are considered: substitutions, inser-
tions and deletions, each of them associated with a cost of 1. This variant
of the edit distance is often called the Levenshtein distance [23]. The edit
distance can efficiently be computed in time O(|o1| X |o2|) using a dynamic
programming approach. It breaks up the computation into smaller subprob-
lems, namely the computation of the edit distance between all possible pre-
fixes of one string and all possible prefixes of the second. The algorithm for
computing edit distances is given in Algorithm 1. First thing to note is that
the first row of the matrix keeps track of the cost of deleting literals from o9
while the first column keeps track of deleting literals from o;. These can be
filled in without requiring any knowledge of the strings themselves, except
for their length. A cell D[i,j] in the matrix corresponds to the number of
edits required to convert the first ¢ characters of the string o7 (shown in the
first column of a matrix) into the string comprised of the first j characters
of string o9 (shown in top row of a matrix) [13].

If we look at the example as depicted in Figure 2.3.1, we can see how
the algorithm computes the Levenshtein distance (i.e. the edit distance
with equal cost of all edit operations) between Owen (British) and Owain
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O|lwla|i|n
0|12 (3|45
O[1]o0[1[2]3]4 o |O]wla|i]|n
wi|2|1]0|1]|2]3 O'Q“O‘W‘e‘i‘n
e |32 |1]1]2]3
n| 4|32 |2|2)|2

Figure 2.3.1: The matrix in the left shows the computation of the edit distance
between Owen and Owain. The construction path, presented in bold, can be seen as
substituting the ‘a’ for an ‘e’ and removing the ‘i’ from Owain as to obtain Owen,
as depicted on the right.

(Welsh). The computation starts in the top left corner with an initial score
of 0. Aligning the literal ‘O’ of Owain with the empty string results in a
mismatch and induces a cost of 1, therefore D[0,1] = 1. A vertical move
down requires similar reasoning and also results in a cost of 1. Aligning
both starting letters results in a match and the diagonal move introduces
no cost, therefore D[1,1] = 0. This process is repeated until all cells of the
matrix have been computed. The edit distance can be found in the lower
right corner and is 2 in this case. Shown in bold is a construction path that
shows one of the possible alignments associated with the computed distance.
It is constructed by backtracking from the lower right corner to the top left
each of the steps that led to the minimum value, i.e. the lowest value of the
vertical, horizontal and diagonal moves must be selected. From the example
it can be seen that a choice sometimes occurs, since multiple alignments can
exist for a certain edit distance.

Algorithm 1 Computes the edit distance between two strings o1 and o9
1: function EDITDISTANCE(07,02)

2 DI[0,0]:=0

3 for i :==1to |B| do DJ[i,0] := D[i — 1,0] + 1 end for
4: for j:=1to |A] do DJ0,j] := D[0,j — 1] + 1 end for
5: for i :=1to |A| do
6

7

8

9

for j:=1to |B| do
my=D[i—1,j—1]+1
mo Z:D[i—l,j]—i-l
ms = D[i,j — 1]+ 1
10: DJi, j] := min(my, ma, ms)
11: return D[ |A|, |B|]
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2.3.2 Q-gram string matching

Another class of approximate string similarity functions are based on ¢-
grams[32], sometimes called n-grams. A g-gram is a sub-sequence of ¢ char-
acters. Often selected values for ¢ are ¢ = 2 (called bigrams or digrams)
and ¢ = 3 (called trigrams). They can be obtained from an input string by
moving a sliding window of width ¢ over the string and counting occurrences
of each g-gram encountered, effectively computing a multiset of g-grams. The
general approach of g-gram string matching is to measure similarity of the
obtained multisets using the number of ¢g-grams that they have in common.
Many of ways exist for comparing multisets, but three are most often used.

. ) c
Overlap coefficient: simoyeriap(o1,02) = _common __ (2.3.1)
min(cy, c2)
. . c
Jaccard coefficient: simjqccara(o1,02) = common (2.3.2)
€1 + €2 — Ccommon
. . . 2 X Ceommon
Dice coefficient: simgice(01,02) = ————— (2.3.3)
c1+c2

A comprehensive overview of multiset distances can be found in [21].

An advantage of ¢g-gram based functions is that they are efficiently com-
putable. Computation involves the extraction of ¢-grams from both strings,
which can be computed in time O(|o1| + |o2|), followed by the computation
of the intersection, computed in O. Compared to the time complexity of
O(|o1| % |o2]) of the edit distance this an improvement. A disadvantage is
that, due to the nature of a set, information is lost about the ordering of
the g-grams in the string. For example, the strings “abc” and “bca” both
include the bigram “bc”, but in a different place. While a method based on
edit distance would penalize accordingly, a g-gram based method will simply
disregard this fact.

2.3.3 Jaro and Jaro-Winkler similarity

The family of Jaro similarity functions[19] combine some of the advantages of
both the edit distance and g-gram similarity. It counts the number of charac-
ters c that are in common within a window that is of size LWJ -1
Moreover, the Jaro similarity function also accounts for the number of trans-
positions t, i.e., adjacent characters that are swapped in the two strings. Put
together, the metric is defined as follows:

1 c c c— .
T+ —+— ifm=0

Sjaro(ala 02) =<3 ‘01’ ’02| ¢ (234)
0 otherwise

In the context of record linkage it makes sense to spend time on improving
approximate similarity functions on a specific use case, namely for names.
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Index 0112|8456

o1 jlo|nle]|s
Matches | O | 1 |4 |- |3 |- | -
09 jlo|lh|s|n|o|n

Table 2.3.1: This table shows the matching of individual characters between string
“jones” and “johsnon”. The longest sequence of matching starting characters is 2
and is printed in bold face.

Names regularly appear abbreviated in text, but this does not change the
prefix. The Jaro-Winkler[34] similarity function takes this into account by
increasing the similarity value based on the number of agreeing characters
at the beginning of the two strings. It is computed as follows:

Swinkler (01, 02) = Sjaro (01, 02) + (1 — Sjaro (01, m%) (2.3.5)

with p € {0,...,4} being the length of the longest common prefix of at most
4.

Table 2.3.1 shows how individual characters in the strings “jones” and
“johsnon” are matched. We can see that four characters can be matches and
there is one transposition, since one character must be swapped to turn the
list of indexes into a sorted array. The Jaro similarity can be computed as
follows.

1/4 4 3
Sjaro(“jones”, “johsnon”) = 3 (5 + - + 4> =0.70714
The number of matching starting character is 2, which is used by the Jaro-

Winker distance to increase the similarity as follows:

bE 13

Swinkler (“jones”, “johsnon”) = sjaro(“jones”, “johsnon”)+

+ (1 — Sjaro(“jones”, “jOhSnon”))l%

2
= 0.70714 + (1 — 0.70714) x -
= 0.76571

2.3.4 Soundex and Editex phonetic similarity

Another class of approximate string similarities is the Soundez[6] phonetic
similarity. It aims to take into account the phonetics, i.e., the auditory prop-
erties of the strings, with emphasis on the homophones. These are words
that are pronounced in the same way, but are written differently, such as
road/rode/rowed or seas/sees/seize. Ambiguity caused by homophones in
conversation are often resolved because of context. This does not apply to
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names, however, which may cause a name to be misspelled. An illustrative
example of a special case of homophones can be found in datasets SC8 [5]
and C53 [2]. In C53 there is a mentioned of “Walter de Gloucestre” and in
SC8 a mention of “Walter de Gloucester”. If these are indeed the same people
— this is unfortunately impossible to know for certain — then this misspelling
was probably caused by a cross-language homophone. Such differences in
spelling can be dealt with by devising a phonetic string comparison function,
such as soundex.

A soundex encoding of a string consists of the first character of the string,
followed by three digits that encode the remaining consonants. Consonants
that are often pronounced similarly are mapped to the same character. In
total, procedure is as follows:

1. The starting character of the string is used as the first character of the
encoding.

AP A B T B

2. Remove all occurrences of ‘a’, ‘e’, ‘i’, ‘o’, ‘v’, ‘y’, ‘h’ and ‘w’.

3. Substitute consonants after the first character with digits as follows:

b, f,p,v—1

¢ 9,5k, q,8,,2— 2
d,t — 3

l—4

m,n — 5

r—6

Additionally, the following rules are applied [6]:

e Names with double letters: whenever the surname has any double
letters, they should be treated as one letter.

e Names with letters side-by-side that have the same soundex
code number: if the surname has different letters side-by-side that
have the same number in the soundex coding guide, they should be
treated as one letter.

e« Names with prefixes: if a surname has a prefix, such as ‘van’, ‘con’,

‘de’, ‘di’, ‘la’, or ‘le’, code both with and without the prefix because the
surname might be listed under either code.

o Consonant separators: if a vowel separates two consonants that
have the same soundex code, the consonant to the right of the vowel
is coded.
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A drawback of the Soundex encoding is that the rules are specifically
geared towards a certain language, English, in this case. To capture the
phonetics of another language a different mapping must be developed and
tested. Variants for the Indian language are available [31].

Soundex encodings can be used in approximate string matching by check-
ing the encodings of the input strings for equality, resulting in a binary
number. A different approach is to apply the idea of treating phonetically
similar values equivalently in way comparable to the edit distance. The
similarity function FEditer modifies the cost function of the edit distance
slightly.

0 if a; = aj
ceditm(ai, aj) =41 ifa;# a; \a; =5 aj (2.3.6)
2 otherwise

where = is the relation that two characters belong to the same equivalence
class in Soundex, i.e., they map to the same character, such as ‘b’ and ‘f’. This
approach has proven to be quite successful for matching names[35]. Since
it is computed analogous to the edit distance it is also computed in time
O(lo1| x |oz]).

2.4 Candidate pair classification

The last step in the pipeline is to classify candidates pairs, i.e., pairs of
occurrences within the same block, into matches and non-matches. The
classifier bases its decision on roughly two criteria.

First, the equivalence of the values of each attribute is established in a
pair-wise fashion, using the output of a string distance function. An example
of this is shown in Fig. 2.4.1a where the references “John de Engelfield” and
“John Englefield” are compared. The first name matches exactly, while the
last name is a partial match, with a distance of 0.13. By setting a threshold
on the distance, an equivalence function is obtained that outputs 1 if the
values are considered equivalent and 0 otherwise, while empty strings are
never considered equivalent. This is shown in Fig. 2.4.1b, where the threshold
has been set at 0.2, resulting in a binary vector of length 3. Note that different
equivalence functions could be set for each of the individual fields, depending
on the type of value, such as string, categorical and ordinal, and the thresholds
could be varied.

Secondly, if the values are equivalent, then the prior probabilities of these
value occurring is retrieved. In these best case, these statistics are readily
available, for example from a similar dataset or as computed on a census.
In many cases, these statistics are not available and the statistics can be
computed from the occurrences in the dataset itself. This is however sub-
optimal, since it introduces bias, based on how many times a person was
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First name | Article | Last name
P 0.182 0.917 0.00214
01 John de Engelfield
0.07 0.133
02 John Englefield
P 0.182 0.00321
First name | Article | Last name
(a)
First name | Article | Last name
P’ 0.182 0.0535
E, 1 0 1
(b)

Figure 2.4.1: (a) shows the pairwise comparison of two occurrences, o1 and o3,
based on three fields. The probability p of each value is given if it is known, and
the string distance is shown next to the arrow. The first names match exactly and
the last names are quite similar, with a distance of 0.13. (b) shows the aggregated
probabilities p’ and the equivalence status E,.

referenced in the dataset. If the values were not equal, however, this leaves a
choice whether to choose the probability of the value from either the first or
second occurrence, or both. Since the equivalence function determined that
the values are equivalent, we decided to therefore sum the two probabilities,
effectively treating the two values as if they were equivalent. In the same
example it can be seen that the probabilities of “Engelfield” and “Englefield”
have been summed to a value of 0.0535.

To compute an overall confidence score, the probabilities are aggregated
into a single number. One way of doing this is by assuming that the at-
tributes are independent and multiplying the probabilities in order to obtain
the posterior probability given the attribute values. When multiplied with
a population size estimate «, the estimate number of people having the
described properties can be found.

er(P) = aﬁpi (2.4.1)
=0

with m the number of fields considered.

Even though the population size of certain areas might be retrievable
from other historical sources, it can be assumed that the number of people
contained within a document « is unknown, since determining this is one of
the goals of entity disambiguation. For the purposes of entity disambiguation
it is not relevant, however, as it is simply a scaling factor, i.e., if candidate
pairs are ranked based on their score, omitting o does not influence the
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Algorithm 2 Classifies candidate pair (a;, a;) as a match or non-match

1: function CLASSIFYPAIR(a;,a4,0,T,0,t)
2 for k:=1tom do

3 d:= E[k‘](ai,aj)

4: if d < 7[k] then

5: if a; == a; then

6 p:= olk](a;)

7 else

8 p = olkl(ai) + o[k](a;)
9: else

10: p:=0

11: plk] :==p

12: ¢ = Clog(P)

13: if ¢ >t then

14: return 1
15: else

16: return 0
ranking.

Instead of multiplying probabilities, the sum of logarithms can also be
used.

m
Clog(P) = — Zlogpi (2.4.2)
=0

While the o parameter makes the ¢, score easier to interpret, here it is of
no use and simply omitted. The ¢y score has the advantage that it is more
efficient to compute and has a better numerical stability. Multiplying a large
amount of small numbers can lead to underflow errors, which is resolved
by instead summing the logarithms. Another advantage is of more practical
nature: they are much easier to display in tables and plots, which is why all
confidence scores will be presented as cj,g scores in this thesis.

To classify candidate pairs, a threshold value is set on the confidence
score. All candidate pairs that have a confidence score greater than or equal
to the threshold are classified as matches, and all others as non-matches. The
complete algorithm is shown in Algorithm 2.
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—Handle a book as a bee does a flower, extract its
sweetness but do not damage it.

John Muir

Feature Extraction

N THE PREVIOUS CHAPTER, we described how to obtain references
from documents and how confidence scores are computed that reflect
how certain we are that they refer to the same entity. During the link
classification step we assumed that records consisted only of informa-

tion directly relating to a reference, e.g. first names, last names, roles, titles,
etc. If the probability mass function of values for a property is known it can
be incorporated, but it does not extend the records themselves. When we con-
sider the case of a reference containing a common name, however, it becomes
apparent that more information is required. The confidence score is inversely
proportional to the frequency of the reference’s components, yielding a low
score in the case of a common name. This can merely improve the fraction of
correctly classified matches (precision), but it cannot avoid missing matches
because of a low score (recall). In order to achieve that, more information
is required. Looking at the documents from which references are extracted,
we see that more data is available that could potentially be useful in aiding
classification.

In this chapter, we will look at two complementary approaches that
extract contextual information. The first is based on modeling the content of
a section of text in which a reference appears, while the second is based on
co-occurrence of other people. The goal is to extract information from the
text such that ambiguous cases, such as “John Smith”, can still be linked.
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3.1 Maximally informative k-itemsets

The primary targets for the methods studied in this thesis are historical
documents. Often these documents comprise the proceedings of a meeting or
a summarized version thereof. They contain a description of events that took
place on a specific date, who was present, etc. When looking more closely
at the contents it is often possible to extract a few interesting words. As an
example, consider the following sections taken from “Officials of the Boards
of Trade and Plantations” [7].

A letter from the Secretary to Mr. Carkesse, desiring him to move
the Commissioners of the Customs, that their Officers in the Out
Ports may give this Board an Account of the quantities of Salt
that is necessary and used in curing several species of Fish, was
agreed and ordered to be sent.

Ordered that Mr. Carkesse be desired to let this Board have on
Tuesday next, if possible, the Account of Fish exported, which
was desired the 17th of the last month.

In both cases, there is a reference to a “Mr. Carkesse”, which might be
the same person. Both texts discuss matter that is related to the export
of fish, so we could say the overarching topic is “fish”. The fact that Mr.
Carkesse is mentioned twice in the context of this topic gives us additional
information that we can exploit to determine whether these references should
be matched. Note that if there would have been multiple people called Mr.
Carkesse, probably additional information would have been provided to avoid
confusion. It is therefore unlikely that two different persons are being referred
to. However, it is a good example of the kind of ‘circumstantial evidence’
that we want to extract from the documents.

Any word from the text may potentially be used as a topic for the text; in
fact, we could select all of them. However, this would lead to topics, treated
as features of the text, to be highly correlated. If we were to select “fish” as
a topic and decide to also include “fishing”, it is easy to see that probably
not much additional information is included. Besides trying to decide on a
topic by looking at a single document, we can instead look at the complete
set of documents under consideration and construct a set of uncorrelated, or
orthogonal, topics. This is very much related to the process of feature selection
[20], that strives to select a subset of features with the purpose of reducing
problems caused when too many features are used, such as overfitting.

In our case, we aim for the selection of a set of topics that provide as
good a distinction between texts as possible. This is exactly what mazimally
informative k-itemsets [20], or miki’s in short, provide. As the name suggests,
a miki is an itemset (equivalent to the mathematical set) of size k that
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provides maximum information to distinguish between the entities considered.
The amount of information of the itemset is measured as the joint entropy
of the itemset in Shannon bits (or just bits), which is defined as follows [20]:

Definition 6 (Joint entropy).
Suppose that X = {x1,...,z;} is an itemset, and B = (by,...,b) € {0, 1}k
is a tuple of binary values. The joint entropy of X is defined as

HX)=—= > pla=by,....xp=bp)lgp(x1 =b1,...,xp = by)
Be{0,1}*

Definition 7 (Maximally informative k-itemset).
Suppose that I is a collection of n items. An itemset X C I of cardinality k
is a maximally informative k-itemset, iff for all itemsets Y C I of cardinality
k,

H(Y)< H(X) (3.1.1)

We will write a k-element subset of I as a list of integers that refer to
the elements of I.

A:[xl,...,xk]

where
1 <...<2g

Entropy can also be explained as a measure of disorder or uncertainty, i.e.,
the higher the entropy of an item the more unpredictable it is. For example,
a toss of a fair coin is maximally unpredictable and has an entropy of 1, since
its two outcomes “heads” and “tails” are equally likely.

Analogous to the coin toss example, an itemset I of maximum entropy
consists of elements that are uniformly distributed over the data,i.e., a sample
contains an item, or combination of items, of I with equal probability. This
is best illustrated with an example.

Table 3.1.1 shows a small example dataset of size 8 and cardinality 4.
Items A, B and C are uniformly distributed over the dataset, so they are
1-miki’s of entropy 1. It can be seen that item A and D are mostly com-
plementary, i.e., if a sample includes A, it is unlikely that it will include D.
Another way of stating this fact is that D becomes predictable given A, thus
the itemset {A, D} is of low entropy (see Table 3.1.1).

The itemset {A, C'} is uniformly spread over the database and therefore
has the maximum entropy of 2 and is a 2-miki.
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A B C D

1 1 1 0 L I, H

1 1 0 0 I H A B 1811
1 1 1 0 A 1.000 A C 2000
1 0 0 0 B 1.000 A D 1.406
0 1 1 0 C 1000 B B 1811
0 0 0 1 D 0.954 B D 1406
0 0 1 1 C D 1.906
0 0 0 1

Table 3.1.1: An example dataset of size 8 and cardinality 4.

Algorithm 3 Computes the lexicographic successor of itemset X of size k

1: function LEXICOGRAPHICSUCCESSOR(X, k, n)
2 Y =X

3 1=k

4: while7>1and z; =n—k+i do
5: 1:=1—1

6 if 1 =0 then

7 return “undefined”

8 else

9: for j:=itok do

10: yi==zi+1+7—1

11: return Y

12: return Y

Algorithm 4 Computes an exact MIKI by exhaustive search

1: function EXHAUSTIVEMIKI(k, n)

2 X :=[1,...,k

3 himaz = JointEntropy (X)

4: Y =X

5: while LexicographicSuccessor(X,n) # “undefined” do
6 X := LexicographicSuccessor(X, n)

7 h := JointEntropy(X)

8 if h > hpyee then

9

: h = hmaz
10: Y =X
11: return Y
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Algorithm 5 Computes an approximate MIKI

1: function FORWARDSELECTION(k, n)
2 X =0

3 fori:=1tok do

4 hmaz := 0

5: for j:=1ton do

6 h := JointEntropy(X U {j})

7 if j ¢ X and h > hje, then
8 h = hpmae

9: m:i=j

10: X =X U{m}

11: return X

3.2 Algorithms for computing MIKIs

To compute a MIKI from a set of itemsets Y of size n, an exhaustive search
algorithm, as given in Algorithm 4, can be employed [20]. This algorithm
computes the joint entropy for all itemsets of given size k and outputs the
one for which this value is maximized. The order in which the itemsets
are processed is determined by the function LexicographicSuccessor (see
Algorithm 3).

Note that for the intended purpose of computing a MIKI out of a vo-
cabulary of n words, it quickly becomes infeasible to perform an exhaustive
search, since the number of candidate itemsets is equal to Z . Knobbe et
al. have defined various bounds on the joint entropy of an itemset, which
can be utilized to reduce the number of candidate itemsets significantly [20].
They provide four algorithms that are guaranteed to find a MIKI and one
called ForwardSelection (see Algorithm 5), that may or may not find a
MIKI, but reduces the complexity to O(kn).

While the exact algorithms are considering all possible itemsets and
skipping portions of the search space whenever possible, the approximation
algorithm computes a MIKI by constructing it incrementally. It starts by
selecting the item with the highest entropy, resulting in the 1-MIKI. An
(approximate) MIKI of size 2 is then found by computing the joint entropy of
the union of the current MIKI with one of the remaining items, while keeping
track of the maximum value. This process is repeated until an itemset of size
k is found.
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3.3 Utilizing MIKIs for entity resolution

By computing the MIKI for a given corpus we aim to capture distinct topics
that occur in it. In order to incorporate this information in the record linker,
as described in the previous chapter, we treat each of the chosen words in the
MIKI as a new binary attribute. This is achieved by extending each reference
with k& new attributes, each of which is 1 if the corresponding word did occur
in the section that the reference appeared in, and 0 otherwise. To classify
candidate record pairs, the same procedure as described in Section 2.4 can
be used if a suitable similarity function for the binary attributes is provided.
For this purpose, the logical and function can be used: probability values
are only retrieved if the values in both records are 1, i.e., the intersection of
words in both references are used. The probabilities are equal to the fraction
of sections that the word appears in. The classification procedure remains
unchanged: each attribute pair is tested for approximate equality and the
probability of the value is obtained and fed into an aggregation function
whenever this is the case, resulting in a confidence score. The only addition
on the part of the classification algorithm is the inclusion of the logical and
function.
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That which can be asserted without evidence, can be
dismissed without evidence.

Christopher Hitchens

Experimental Evaluation

INCE the aim of this project is to aid historians in their research,

we found it important to evaluate the described techniques on a

dataset that is exemplary of historical research in which entity dis-

ambiguation plays an important role. To this extent, our methods

were applied to a dataset that was made available to us by The National

Archives. In this chapter, the followed procedure is described and the results

are compared to the ones that were manually obtained by historians. With

the experiments, we try to point out the advantages and difficulties of the
system and provide a basis for future research.

As has been pointed out in Section 1.2, it is impossible to be certain
about the results because of a lack of a “golden standard”, i.e., a dataset that
can be assumed to be absolutely correct. The experiments must be seen as
a best effort approach to assess the validity of the system. Errors have been
discovered both on the part of the record linkage system and the data as
provided by the historians, some of which will be investigated in this chapter.

4.1 Overview of the dataset

The dataset that has been used for validation of the system is that of The
Gascon Rolls project [4]. The Gascon Rolls are records that were drawn up
by the English royal administration of Aquitaine-Gascony (south-western
France) between 1273 and 1468 and contain grants of land, oaths of treaties
and other important documents. Until 1453, the region of Aquitaine was
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<text>
<group xml:id="it033_13_16f_006-007">
<head>
For Master Per-Arnaut de Taller.
</head>
<text xml:id="it033_13_16f_006" type="appointment_to_office">
<body>
<opener sameAs="#it033_13_16f_005_opener"/>
<ab>

Grant during pleasure to <name key="entity-005051"

— type="person'"><name key="entity-001064"

— type="status'">Master</name> Per-Arnaut de

— Taller<orig>Teller</orig></name> of the office that <name

— key="entity-005052" type="person'"><name key="entity-001064"

— type="status">Master</name> Bernat de

— Rions<orig>Aruncio</orig></name>,<note>The name has been

— written over an erasure.</note> who is dead, held in the duchy.
</ab>
<closer>

By K. by the information of <name key="entity-001378"
— type="person">0liver<supplied> de Bordeaux</supplied></name>.
</closer>
</body>
</text>
</group>
</text>

Listing 1: An extract from the Gascon Rolls XML source data.

under English rule and the rolls served as a means of communicating the
situation to the government in England. This tradition continued until 1468
even though the French annexed it at the end of the Hundred Year’s War in
1453. The rolls are considered to be of high historical importance because the
detailed descriptions of events prove an invaluable basis for the biographies of
people mentioned. People have a central role, since most of the text concerns
agreements, making it an ideal candidate for record linkage.

In 2009, a project began to produce an on-line calendar, i.e., a descriptive
summary of an original archive document in which all elements that can be of
historical importance are recorded, of the rolls. The project aims to provide
an easy to access substitute of the rolls, opening up research to anyone who
might be interested. The data thus consists of a translated and summarized
extract of the original parchment rolls in digital XML format. Historians
have thoroughly annotated this data to supply additional information and
correct errors, while also providing most of the original text. The documents
were mostly written in Latin, with only a few parts in French, and have been
translated to modern English.
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Table 4.1.1: Overview of the size of the Gascon Rolls dataset.

Size
Number of rolls 66
Number of membranes 943
Number of sections 1153
Number of occurrences 30426
Sum of file sizes 27 MB

An example of this is given in Listing 1, where an extract of the original
data in XML format can be seen. The text concerns a grant of the office,
that was formerly held by a Master Bernat de Rions, who had deceased, to
Master Per-Arnaut de Taller. The text has been split into three sections using
separate tags: head, body and closer. The header usually includes the the
recipient, while the closer contains the phrase “By K.”, which originally stated
“per ipsum regem”, indicating the letter was sent under the authority of the
reigning king. Within the opener tag, the date and location from which the
letter was signed are usually included. The example also shows most of the
different styles of annotations that were provided by the historians. Person
names are enclosed within a name tag of type person, while 53 other types
exist for names of things such as places, castles and titles. Each of these is also
accompanied with a key that uniquely identifies them throughout the dataset.
Other tags that might be of use to a human reader are: orig, that displays
the original spelling of a word; supplied, that gives more information than
was originally present; and note, which gives additional information about
something present on the original document that might be of interest to the
reader, such as a note in the margin or a reference to another text.

Even though the annotations provided in the data are invaluable for the
evaluation of the record linker, they were not used in the linkage itself. Since
the goal is to develop a system that can automatically provide these tags, we
have proceeded as if no information were present except for the plain text.
This ensures the tools developed can be applied to a wide range of datasets.

Not all 112 existing Gascon rolls are yet available in XML format, but 66
of them are. Out of the 1053 membranes, 943 are made available, although
some of them appear to be unfinished. To give an impression of the size
of the dataset, some of its characteristics are displayed in Table 4.1.1. The
elements were counted using the provided annotations, e.g., the number of
occurrences were computed by counting the XML name elements of type
person. The size of the data is quite modest compared to typical record
linkage tasks that can often involve millions of records. However, there are
over 30 thousand occurrences that were not only identified in text, but also
disambiguated, i.e., each of them has a unique identifier. This makes the
Gascon rolls dataset an invaluable resource for the task at hand.
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Table 4.2.1: Overview of the occurrence fields as extracted from the source text.

Field Description Example
id As provided in the source document. 5603
forename John
article Word(s) between the forename and sur- de la
name.

surname Somerby
provenance Origin of a person. England
title Used to address a person. Master
role Ascribed to person. esquire
regnal_number Used to distinguish monarchs. I
fileld Filename C61_33.xml
sectionld Section identifier. it082 43 07f 074-2
pos Start position in section. 104
endpos End position in section. 120
words Words and their frequencies in section.

orig Original text. John of France, knight

4.2 QOccurrence extraction

The record linkage system works on a list of person references, while the
source data is in XML format. The first step, therefore, is to remove the
provided XML tags and parse the data using the methods described in
Section 2.1. The identifiers that were contained within the original tags were
stored by their starting and ending position in text, so that they could be
copied to the corresponding occurrences after segmentation. Only occurrences
in paragraphs enclosed in ab tags were considered, to make sure the calendar
itself was parsed, and not the additional text provided by researchers, such
as introductory text. The amount of annotated occurrences contained herein
is 25 836. Using a compact grammar, we were able to find 22 206 occurrences.
Note that this is not necessarily a subset of the larger set, as not all names
were annotated and the grammar is likely to return some errors. In total, we
were unable to match 1684 occurrences found by the parser with annotated
occurrences, so these were removed as to obtain 20522 occurrences, each
with a unique identifier.

In Table 4.2.1, an overview of the occurrence fields can be found. Some of
the fields are the result of applying the grammar to the plain text, while other
fields contain metadata such as the name of the file in which the occurrence
was found. The words field contains a set of words that appear in the section
of the text in which the occurrence appears, along with their frequencies.
These are used by the record linker to determine whether an element of a
miki was mentioned in the same section as the occurrence.
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4.3 Miki extraction

In Section 3.1 it was discussed how the inclusion of contextual information
might improve the performance of the record linker. Assuming that a per-
son appears within a similar context, the goal is to determine the “topics”
discussed therein using miki’s. The first question that arises is what the con-
text of the occurrence is. The level was chosen to be at that of the sections,
because topics are very consistent throughout them and can naturally be
regarded as the context. One alternative is the sentence level, but this would
greatly reduce the probability of an item of a MIKI occurring in the same
sentence as an occurrence. Another option is to capture information on a
membrane or roll level, but since most of the information contained therein
is unrelated, it unlikely to be of relevance to an occurrence.

To compute a MIKI for the Gascon rolls corpus, the sections are first
tokenized by splitting sentences on the whitespace character and converting
all words to lowercase. The latter step ensures no distinction is made be-
tween capitalized and non-capitalized tokens. These lists of tokens are then
converted to multisets by computing the frequency of each token, and stored
in the words field of each occurrence that occurs in the same section, for
reference.

The time required to compute a MIKI can be reduced by discarding
uninformative tokens beforehand. Three strategies were used:

1. Infrequent tokens are of low entropy, hence they are unlikely to con-
tribute much to the joint entropy of a MIKI. Therefore, any tokens
that appear less than 5 times are discarded.

2. Conversely, stop words, such as “the” and “and”, are highly frequent to-
kens that are of low entropy. They are unrelated to the topics discussed
in text and are very likely to appear, thus not contributing much to
the joint entropy of an itemset. All tokens appearing in a fixed list of
319 stop words were ignored.

3. Tokens that are part of occurrences, such as first names, were ignored.
The aim is to extract tokens that represent a certain topic and relate
them to occurrences. The constituent parts of an occurrence directly
relate to the person, instead of capturing contextual information, and
are used in the field-based comparisons described in Section 2.3.

An index is constructed by scanning over the entire corpus once and
taking note of the token frequencies. Infrequent tokens were then removed
using the previously mentioned condition and stop words were simply ignored,
resulting in an index consisting of 3221 entries. The multisets of tokens were
then converted into regular sets by including only tokens that are within
the index. Following the representation used in Section 3.1, the bags were
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k  Word Cum. Entr. p

1  king 0.94 0.36
2 letters 1.83 0.30
3 order 2.55 0.29
4  service 3.15 0.16
5  bordeaux 3.71 0.17
6  gascony 4.24 0.15
7  duchy 4.71 0.14
8  ordered 5.14 0.12
9 granted 5.54 0.12
10 grant 5.89 0.11
11  seneschal 6.22 0.17
12 according 6.50 0.10
13  nominating 6.78 0.09
14 year 7.04 0.10
15 office 7.27 0.07
16 men 7.48 0.07
17 son 7.68 0.05
18 constable 7.86 0.18
19 going 8.04 0.09
20 castle 8.19 0.06

Table 4.3.1: The words of the 20-MIKI found in the Gascon Rolls dataset are
shown in the order that they were found in, accompanied with their cumulative
entropy and document frequency.

transformed into a matrix of size 1153 x 3221 on which the MIKIs were
computed using the Forward Selection algorithm [20].

In Table 4.3.1 the resulting MIKI of size 20 is shown, along with the
cumulative joint entropy of the set of size k and the probability of a token
appearing in a section, comparable to the inverse document frequency. The
first item found is the token “king”, which naturally appears frequently in
texts, because many of the texts concern oaths to or grants by the king.
However, since the presence and absence of an item are treated equally in
the computation of the entropy, the token would be of low entropy if were to
occur to frequently. In the same table, it can be seen that it occurs in 36 %
of the sections, resulting in a decent entropy of 0.94. The second item is the
token “letters”, which appears in texts that contain the phrase “letters of
general attorney”, which indicates that the people mentioned thereafter were
joining the principality of the king. This fact could be used to tell something
about the status of a person, though it is unlikely that an occurrence appears
twice in contexts containing this phrase.

Thus, a problem with the usage of miki’s becomes apparent: although it
makes sense to model the topics in a section using miki’s, their usefulness
is far from guaranteed. The computation of the miki and the record linkage
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Figure 4.3.1: The cumulative entropy of the MIKI obtained from the Gascon Rolls
dataset has a weak slope, indicating that the items contained within them are less
orthogonal than would be ideal for the purpose of context modelling.

procedure are treated as two separate processes, so in the current setting
it is impossible to communicate findings of one process to the other. If a
person is likely to be mentioned in relation to a certain topic only once, that
topic is not useful for entity disambiguation and should not be considered.
However, this implies that the match status of some of the candidate pairs
is known, which is not the case in the current set-up, suggesting that an
iterative approach might be useful.

In Fig. 4.3.1 the cumulative entropy is shown as it increases with size k
of the miki. It is compared to the cumulative entropy of the miki of a subset
of pages of Wikipedia. A similar approach to the construction of the Gascon
rolls dataset was taken to construct it, though the sections in this case consist
of entire pages. The subset was created by starting at the page of Albert
Einstein and following links on pages in a breadth-first fashion until a set of
1000 pages was collected. From the figure, it can be seen that the convergence
behavior is quite different from that of the Gascon Rolls miki. The slope of
the latter is weaker, indicating that the items found are less orthogonal, or,
similarly, there is higher mutual information between the items. Shown as a
black dashes line is the theoretical optimal slope that occurs when the items
of the MIKI are completely orthogonal (mutual information is 0). It is hard
to determine whether this is caused by the contents of the dataset or the
difference in the definition of a section that was chosen.

The length of Wikipedia pages is usually a lot longer than the length
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of the section in the Gascon Rolls (respectively 2511 vs. 60 average words
per page) and the vocabulary of words is much larger (respectively 52 320
vs. 9411). A shorter section length decreases the probability of a certain
word occurring in that section. Infrequent words will therefore appear in
fewer texts, reducing their contribution to the joint entropy of an itemsets.
This is the reason that words that appear in only one text are removed
from the vocabulary before the computation of the MIKI. We can see that
the section length determines the size of the effective vocabulary, i.e., the
vocabulary after removal of frequent (stop) words and infrequent words. The
vocabulary of the Gascon Rolls is thus further reduced, making it less likely
that combinations of uncorrelated words are found, which would result in a
MIKI with a high joint entropy.

Luckily, however, the MIKI is computed as part of an unsupervised learn-
ing strategy and its influence can be controlled by limiting its size. The
cumulative joint entropy, as shown in Fig. 4.3.1, can be kept track of by
storing the joint entropy of each subsequently larger MIKI and can aid in
setting this parameter. While for the Gascon Rolls we might want to limit
the size of the MIKI to perhaps 4, the joint entropy of the MIKI found for
the Wikipedia dataset can be deemed sufficiently large at 8.

4.4 Linking entities

The record linker uses the data as described in the previous two sections to
classify presented candidate pairs. We will denote with P the set of “truly
matching pairs” (or positives) and with N the set of “truly non-matching
pairs” (negatives), according to the annotations. Note that even though the
used dataset was created with a lot of effort, it can never be regarded as a
“ground truth” since the entities were linked with only limited information and
will certainly contain errors. Since the dataset was parsed and occurrences
were segmented, more errors have likely been introduced, so the results of
evaluation using the dataset can not be considered as truly reflecting the
performance of the linker. The dataset provides a realistic use case, however,
and findings will certainly help in understanding better the problems faced
and provide the information needed to improve the linker.

The simple attributes, such as first names, are processed as described in
Section 2.4: if two attributes in the two records are considered equivalent,
the logarithm of the probabilities are summed to obtain a confidence score.
The contextual information residing in the words attribute is mapped to k
additional binary fields, one for each item in the MIKI. These attributes are
1 whenever the corresponding word is contained in the words attribute and
0 otherwise. This allows these attributes to be treated in a similar fashion
to the other attributes, as described in Section 3.3. Using the logical and
function as a similarity function, only the probabilities of the words that
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Kernel density estimation of candidate pair scores
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Figure 4.4.1: A kernel density plot was created using pairs having score > 0.5. The
y-axis has been normalized, such that the maximum is 1. The plot shows that there
is a major overlap between the scores of truly positive and truly negative candidate
pairs, suggesting that the linker is unable to clearly distinguish the two classes.

appear in both references are retrieved and aggregated using the cj,z function
to obtain a confidence score.

However, in our experiments we noticed that the use of a MIKI did not
prove useful to increase the score of candidate pairs with very low confidence
scores. It might happen, for example, that a candidate record pair contains
only the first name “John”, which occurs frequently and thus results in a rel-
atively low confidence score. When a MIKI is incorporated in the confidence
score computation in these cases, the score is boosted too much, resulting
in a lot of false positives. Therefore we use the MIKI as a booster: it is only
addressed when the confidence score up until that point is greater than the
threshold. This focuses the application of the MIKI on the more promising
pairs, i.e., those with a higher probability of being a truly matching pair.

The aim of the linker is to give elements of the set of truly matching pairs
P a relatively higher score than the set non-matching pairs N. Fig. 4.4.1
shows the distribution (computed by a kernel density estimation (KDE) [30])
based on the scores of truly matching and truly non-matching candidate
pairs using the attributes title, forename, article, surname, role and no
MIKI. Only candidate pairs with a score higher than 0.5 have been taken
into account; the other pairs are most likely negatives. Note that the two
curves have been normalized and are plotted on a different scale, allowing us
to plot both curves in one figure, even though there are many more negatives
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Figure 4.4.2: The ROC curve shows that the trade-off is able to retrieve a large
number of truly matching pairs if compared to the number of truly negative pairs
that is retrieved. However, this gives an overly optimistic view on the performance
of the linker, since the number of truly negative pairs is almost three orders of
magnitude larger.

than positives. It can be seen that there is a considerable area related to the
negatives, that is overlapping with that of the positives. The plot suggests
that the threshold should be set at a confidence score of approximately 2 to
avoid capturing a lot of negatives, but only a small fraction of the positives
can be retrieved this way. Lowering the threshold, however, will quickly
reduce the precision as more and more negatives are retrieved, which might
not be acceptable in many cases.

Fig. 4.4.2 shows the receiver operating characteristic (ROC) curve of
the system using various thresholds at which MIKIs are used to boost the
score, e.g., a threshold of 0.0 always uses MIKIs, while a threshold of 3.0
starts taking information from the MIKI into account if the confidence score
without use of MIKIs is at least 3.0. It appears as if the trade-off between
the true positive rate and the false positive rate is not affected by the use
of a MIKI, since the ROC curves are identical. The area under the ROC
curve is quite large, meaning a large fraction of the truly matching pairs
are found while retrieving only a small fraction of the truly non-matching
pairs. However, as explained in Section 1.3, since the false positive rate is
based on the number of truly non-matching pairs, it is not a very informative
number, since P << N. In the same figure, it can be seen that there is a
very steep slope in which most of the truly matching pairs are retrieved. The
long diagonal moving to the upper left corner is associated with candidates
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Precision-Recall Curve
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Figure 4.4.3: The precision-recall curve shows that only a small portion of the
truly postive pairs can be retrieved with reasonable precision. The steep decline
suggests that the scores of truly matching and non-matching pairs is very similar,
which prohibits the retrieval of truly matching pairs without also retrieving a large
number of truly non-matching pairs, explaining the low precision.

pairs that have a low confidence score, of which many are truly non-matching
pairs.

A more informative plot is perhaps the precision-recall curve shown in
Fig. 4.4.3. Tt shows a trade-off between the number of truly matching pairs
that are matched by the linker (recall) and the fraction of the pairs retrieved
that are indeed truly matching pairs (precision). A linker that has a maximum
recall of 1 can easily be devised by classifying all candidate pairs as matches,
but this results in a very low precision. The area under the precision-recall
curve can be used as a measure of the system’s ability to optimize both
these aspects. About 30% of the truly matching pairs can be found without
too much difficulty, indicating that these pairs have a relatively high score
compared to the truly non-matching pairs, making them easy to distinguish
by setting the threshold to a high confidence score, as could also be seen
in the KDE plot. For the remaining part, the linker has more problems,
suggesting that truly matching and non-matching pairs start to get more
similar scores at that point.

Using the Fl-measure of Definition 5 with 8 = 1, we aggregate the
precision and recall in a single metric in which both aspects are weighted
equally. The latter is a rather arbitrary decision and any weighting could
be achieved by varying 8. The resulting F1-measure is plotted against the
various thresholds settings in Fig. 4.4.4. A clear peak can be seen around a
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The Fl-measure at varying confidence thresholds
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Figure 4.4.4: The Fl-measure is optimal at a confidence value of approximately
4 with a value of 0.35. Varying the threshold value at which the MIKI is taken
into does not affect the curve much, although the curve is wider, indicating that
F1-measure score is more stable.

confidence score of 4 for all different settings of the threshold at which point
the MIKT is taken into account. When related to the precision-recall curve
of Fig. 4.4.3, we know that at this threshold, most of the negatives are not
retrieved and the precision is high, but the recall is low, explaining the low
F1 value of only 0.35 at the peak.
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—Learn from yesterday, live for today, hope for tomor-
row. The important thing is to not stop questioning.

Albert Einstein, Relativity: The Special and the
General Theory

Conclusions and future
work

HE results presented in the previous chapter show that there are
aspects of the methods described that work quite reliably, though
some parts should still be improved. In this chapter, we will take
another look at the pipeline and discuss the strong and weak

points and give some directions for future research.

We started out by extracting named entities from text using a grammar-
based approach. The Gascon Rolls dataset was already annotated, enabling
us to zoom in solely on the named entities and evaluating the precision and
recall of the grammar. It is not common that these annotations are readily
available, since it takes a lot of effort to annotate a dataset. However, because
the grammar captures structures that appear throughout many documents,
even spanning different time periods, it is likely that the constructed grammar
can be applied on other datasets as well. Indeed, we have done a short test
on the Fine Rolls of King Henry III, which showed reasonable results, though
a more thorough study should be done to be conclusive.

One of the problems with manually constructing a grammar is that rules
are heavily entangled, requiring parsing the entire corpus again to verify no
regression happened after a change. Another problem is the use of pre-defined
first names as anchor points in the text. Even though new first names can be
discovered using a bootstrapping procedure, the first names can also cause
problems when they appear in names that do not belong to people, such
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as organizations. In our study, we saw the name “Mary” appearing often
as part of the name of a church, triggering a false positive. We provide two
suggestions for further improvement of the entity extraction step.

First, the grammar-based approach could be combined with techniques
from natural language processing (NLP). Named-entity recognition (NER)
not only detects entities in text, but classifies them into categories such as
“person”, “organization” and “place”. In recent years, supervised and semi-
supervised machine learning techniques have successfully been employed for
this task [26]. A difficulty with supervised methods is that they are usually
not good at dealing with unseen data. This becomes more of a problem
when many items are very unlikely to appear, such as in the case of natural
language. This is also called the “long tail” or sparsity problem. It can be
circumvented by clustering words together in an unsupervised fashion first
and using the resulting clusters as features in a supervised learning algorithm
such as presented in Miller et al. [26]. Extracting only occurrences contained
within a “person” segment, as classified by NER, would solve problems similar
to that of “Mary” in the name of a church.

Secondly, a supervised or semi-supervised machine learning method could
also prove useful for the segmentation of occurrences. It can often be difficult
to determine in what order certain attributes can appear, while it is easy to
determine the attributes within a given sentence. It should be straightforward,
though laborious, to construct a training set in which all significant attributes
have been annotated. Hidden Markov Models (HHM) have since long been
used in NLP for part-of-speech tagging [22], the process in which the words
in a sentence are assigned to word categories, such as noun, verb, adjective,
etc. In these models, the part-of-speech categories are represented as states
with transitions weighted in accordance to the probability of transitioning
to the state, given the current state, as was learned from a training set. A
first-order HMM uses one word as its context, but the model can be extended
to use more context and capture more complex data. Attribute tagging is
similar to part-of-speech tagging in the sense that words can only appear in
certain categories and their actual meaning is dependant on the surrounding
words, a property that was exploited in our grammar. Thus HMMs might
prove useful for automatic learning of grammars if a sufficiently large training
dataset can be obtained.

The use of a MIKI in the linking procedure has not shown a significant
impact on the performance of the record linker, indicating that the use of
MIKT as a method of capturing contextual informative is insufficient. One
explanation is that the length of the sections, that were taken as the context,
was insufficiently large. Assume that two tokens t; and to often appear
together in documents of corpus, then they have a high mutual entropy
and are unlikely to both be present in the MIKI of that corpus. If ¢; is
present in the MIKI, and ¢, is found in a text, then it is likely that ¢; is also
found, but its probability is reduced if the text in which it occurs is short. A
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possible enhancement could be to compute for each “representative” item of
the MIKI a ranking of the remaining items based on their mutual entropy.
Depending on the length of the text under consideration, more or fewer items
are considered equivalent with the representative, i.e., they model the same
topic. Another possibility is an approach similar to phrase-based modelling
[24] in which not single tokens but sequences of tokens are used to model
context. An advantage of this method is that the number of items can be
greatly reduced if infrequent phrases are discarded, as was done during the
preprocessing of the itemsets described in Chapter 4.

Depending on the requirements of the user, the results of the linker
can be interpreted in various ways. The method can retrieve about 30% of
the truly positive pairs with reasonable precision. However, the remaining
part is hard to distinguish from the truly negative pairs, since pairs from
both classes occur frequently with lower confidence scores. Retrieving these
truly positive pairs results in a precision that would be unacceptable in
many circumstances. MIKIs have been investigated as a means of providing
contextual information, but they have proven unable to accomplish this. It
must be noted that if a person is mentioned several times in the same text,
they usually would be regarded as the same person. This has not been taken
into account, because we set out to construct a general purpose linker for
plain text, yet it would have been more pragmatic to utilize this knowledge
and possibly obtain less pessimistic results.

The entity-disambiguation task can be viewed as an optimization problem
in which the properties of the set of disambiguated entities should reflect
those of the bigger population, from which the statistics were computed, as
closely as possible. One major drawback of the system as it was presented
here, is that it considers the candidate pairs in isolation, i.e., it does not take
into account what the set of disambiguated entities looks like. An alternative
approach is to start linking the more “promising” pairs, that have a high
confidence score first, and consider the other pairs later. Because of the
high cost of computing confidence scores, heuristics can be used to avoid
the number of comparisons. Pairs that have more non-empty attributes are
more likely to have a high confidence score if they are a true match and can
be processed first. Blocking could be applied to further reduce the number
of promising pairs. Knowledge obtained about the network formed by the
disambiguated pairs can then be used in the computation of confidence scores.
This could be done by penalizing the confidence scores of pairs that alter the
network of disambiguated pairs in a way that is inconsistent with that of the
global population. Note that this approach relies heavily on the knowledge
of the global population, as reflected in the statistics, and this might often
not be the case.

For much larger datasets, it might be beneficial to take into account
the relational and social aspect of the population. There is a hidden social
network reflecting the connections that people had with each other. People
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are indirectly connected to other people through the connections that they
have. Two persons can be considered as being “close” if the number of people
in between them is small. Assuming that two people are more likely to have
been in contact if they are close, they are also more likely to be mentioned
within the same context. However, incorporating this information requires a
radically different approach to the one presented in this thesis.

We set out to develop a system for the disambiguation of entities in
historical documents. Using a manually constructed grammar we were able
to identify references to people in text and segment the information associated
to them. It has proven to be a laborious task to construct such a grammar, but
it leads to satisfying results. The usage of maximally informative k-itemsets
have been suggested as means of capturing contextual information with the
aim of improving the performance of the linker, though its benefits could not
be established. The proposed linker was able to rapidly retrieve a portion of
the matching occurrences from the data with acceptable precision. Because
of the unsupervised nature of the proposed techniques and the overall generic
setup, it should be straightforward to apply the developed system to other
datasets. However, when a high recall is required, the linker is not yet able
to achieve satisfiable results and more effort should be taken as to improve
it.
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