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Abstract

Insurance data provides a rich environment for data mining, with

large real world data sets. The master thesis is the result of a study

on customer behaviour in a real world insurance data set, focussed on

associations between products, and sequential product purchase patterns.

We tried to get insight into the data set and to extract rules describing the

characteristics of the insurance products, for which we used the Apriori

and Generalized Sequential Pattern algorithms. As an extension to

the purchase orders we took the interval between the purchase of multiple

products into account. To do so, we defined two extensions. First, we used

fixed length intervals as extra constraints to the patterns. Second, we used

a variety of weighting functions to calculate a weighting of each customer

based on the length of the purchase intervals.
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1 Introduction

Data mining is a very broad field of study, with a lot of possible applications in
a large number of areas. The recent renewed interest in “Big Data” — which is
actually just data mining and data management of very large data sets and has
been around for years — has made companies look into their production data
and archives with renewed interest. One field for which data mining has a lot
to offer is the insurance business. The data on customers, policies and claims is
the very heart of an insurance company. Digging up new information, such as
customer behaviour, claim frequency and fraud patterns, from this data, can be
promising for marketing purposes.

This thesis aims to be a small part of this field of study. Given a real world
data set with insurance data, our goal is to find and interpret patterns in the
data, with a focus on customer-product relations. To do so, we will search for
association rules and sequential patterns in the purchase history of insurance
products. With these results, we will look into ways to integrate the time aspect
into the evaluation, by introducing time intervals and support weighting.

This report is the final result of a Master Thesis project for the Master
Computer Science at Leiden University. The project is done as an internship
with Quinity, a Utrecht based manufacturer of insurance administration systems.
The data set is kindly provided by one of Quinity’s customers.

The remainder of this thesis is structured as follows. Section 2 gives a short
overview of the ways data mining can be used in insurance. Section 3 gives
the formal definitions of associations, patterns and transactions, defines quality
evaluation metrics, explains the theory and pseudocode of the algorithms used
and introduces some extensions of the algorithms to handle time intervals.
Section 4 starts with an introduction to the data set and discusses the results of
the application of the algorithms on the data set. Finally, Section 5 will draw
some conclusions and give directions for further research.
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2 Insurance data mining

A lot of research has been done on the application of data mining techniques
in insurance. Insurance data provides a rich environment for data mining and
has many real world applications. For example, insurance data can be used in
market basket analysis, fraud detection, customer clustering and insurance risk
modelling. This section will give a quick overview of the most important fields
of study in insurance data mining.

2.1 Claim prediction

For insurance firms, it is very important to have an accurate prediction of the
claim rate on its policies, in order to determine reasonable prices. It is equally
important to have an estimate of the risk on new policies. These risks can be
modelled using, for example, classification algorithms or regression (see [8] for
more examples).

Classification algorithms are used to divide the data instances, presumably
customers or policies, into two classes, positive or negative, depending on profit or
loss for the instance. Input can be everything that is known about the customers.
Many classification algorithms exist, using various approaches. Decision trees use
a tree structure to classify instances, where each node tests for a specific attribute.
Näıve Bayes classifiers calculate a claim profit probability assuming independent
variables, using Bayes’ theorem. Clustering algorithms group similar instances
together, so the risk on new instances can be predicted from its neighbourhood,
for example in [21]. Neural Networks use a self adapting network to classify
instances into groups. The quality of this classification depends on the training of
the network. There are various types of neural networks, such as back propagation
networks and Self-Organizing Maps, that are useful for claim rate prediction.
See [22] for examples.

Regression algorithms aim to estimate the value of a continuous output
variable based on a number of independent input variables by using a function
to map the input variables to an output. The function can be a simple linear
function for linear regression or a more sophisticated one, for example a logistic
function. The weights of the function are obtained using a training set. This
resulting function can be used to make accurate predictions of claim rates or
claim cost.

2.2 Fraud detection

Detecting fraud in insurance data is a challenging topic. Fraud patterns are
rare and they are not easy to find. A number of approaches has been suggested,
mainly focussing on the development of models to recognize possibly fraudu-
lent claims, each having advantages and disadvantages. The predictive models
of logistic regression, a C4.5 decision tree, k-nearest neighbour clustering, a
Bayesian learning neural network, a support vector machine, Näıve Bayes and
tree augmented Näıve Bayes are discussed and compared in [19]. Brockett [6]
suggests Kohonen’s Self-Organizing Feature Map to detect automobile claim
fraud and automated fraud detection with Bayesian learning neural networks is
proposed in [18].
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2.3 Marketing

Data mining techniques are also being used extensively for marketing purposes,
for example to find patterns in customer purchases, or to identify target groups
for ad campaigns. In the insurance industry, data mining can help companies to
respond to customer behaviour, acquire new customers and develop new insur-
ance products, as suggested in [9]. To model sales return, customer segmentation
has been used, for example in [3, 17]. Segmentation tries to divide the customer
database into groups of somehow related customers, which can then be addressed
with focussed ad campaigns. This can be done based on predefined criteria or
by clustering based on similarities and analysing the resulting segments after-
wards [11]. Commonly used for market segmentation are clustering algorithms
such as K-means [10].

Another much applied technique for marketing is Market Basket Analysis.
This technique looks into sets of products that are purchased together and
tries to find relations. These relations can be frequent itemsets (products that
are often sold together), association rules (relations describing products that
often lead to the purchase of other products) or sequential patterns, describing
frequently appearing orders in which products are sold. Sequential patterns can
be expanded with time interval information.

In this thesis we will focus on the application of association rule mining on
the purchase of insurance products. We want to find a way to describe temporal
patterns in purchase behavior. It is straightforward to find associations between
products, but we get much more information from a sequential order between
these products, i.e., knowing that a certain product is generally bought after
another certain product. It would be even more useful to have some quantitative
expression of the time between these purchases. The goal of this thesis is to find
a way to derive these quantitative temporal patterns from the dataset.
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3 Market Basket Analysis in insurance data

The most general and most common systematical approach to Market Basket
Analysis is the search for association rules, which describe strong relations
between products, hidden in large datasets. A (fictional) example of an association
rule is

〈iPad⇒ iPad case〉

This rule suggest a relationship between the sale of iPads and the sale of iPad
cases, because many customers who buy an iPad will also buy a protective
case. It states, with a certain probability, that the action of buying an iPad
implicates the buying of a case. Marketing divisions can use this kind of rules for
the placement of products in stores, or for targeted marketing campaigns. Note
that this relation is unidirectional only, the example above does not imply that
buying an iPad case leads to buying an iPad. However, this connection might
even be more likely. Also note that the order of the purchases is not an issue
here.

Although association rules can be very useful, they contain limited information
on the relation between items. To increase their usefulness, associations can be
expanded into sequential patterns. Sequential patterns describe the chronological
order between items, for example

〈(iPad), (iPad case), (iPad charger)〉

This pattern states that it is a common purchase order to first buy an iPad, then
buy a case for it, and after some time buy a new charger. With this knowledge,
a marketing division can, for example, present iPad buyers with a combination
discount on cases and chargers, thereby maximizing the number of customers
who behave like this pattern.

The process of finding association rules and sequential patterns in a dataset
is commonly done in two steps [1]:

1. Frequent itemset generation, aiming at finding all itemsets (groups
of items) that are found frequent enough to satisfy a minimum support
threshold.

2. Rule or pattern generation, which aims at extracting from the frequent
itemsets all rules or patterns with a confidence that is above a confidence
threshold.

In this chapter, the algorithms to generate associations and patterns are
discussed in Section 3.3 and 3.4, but before that we will first discuss the formal
definitions and evaluation metrics in Section 3.1 and 3.2.

3.1 Definitions

Both association rules and sequential patterns are defined over items and trans-
actions. Let I = {i1, i2, . . . , in} be a set of items, ordered by i1 < i2 < . . . < in.
An itemset is a non-empty subset of I. Let D = {t1, t2, . . . , tm} be a set of
transactions. A transaction t contains a unique identifier, a number of items and
one or more transaction dates.

A rule is an implication of the form X ⇒ Y , with itemsets X,Y ⊆ I and
X ∩Y = ∅. They are defined over I. Each rule consists of an antecedent X and a
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consequent Y , and reads as “if X is true, then Y must also be true”. In Market
Basket Analysis, a proposition being true usually means the purchase of one or
more products. Both X and Y can consist of multiple items. If I consists of tens
or hundreds of items, a large number of rules can be constructed. To identify
interesting or strong rules, we can calculate measurements of the quality of rules,
as defined in Section 3.2 [1].

We define a pattern or sequence s = (s1, s2, . . . , sn) as an ordered set of
itemsets. Each itemset sj , also called an element , contains a non-zero number of
items. An item can occur only once in an element, but can occur multiple times
in different elements. A sequence reads as “first the items of s1 are bought, then
the items of s2, then the items of s3, etc.” In the initial setup, sequential patterns
only say something about the order of purchases. However, it is straightforward
to come up with all kinds of time constraints, such as a minimum or maximum
gap between transactions [2].

3.2 Quality evaluation

With most association rule algorithms, it is quite easy to generate a large number
of valid associations or patterns. Therefore we need a method to distinguish
the useful rules from useless results. To do this in a measurable way, a set of
metrics is necessary. In this section we will discuss support, confidence and lift
as quantitative measurements of the quality of the results. We define [1]:

Support : s(X ⇒ Y ) =
σ(X ∪ Y )

N

Frequency count : σ(Y ) =
∑

t∈D,Y⊆t

1

In these definitions, σ(Y ) means the frequency count of Y . The frequency count
is the number of transactions t ∈ D where Y ⊆ t, i.e., where all items of Y
appear in t and N is the total number of transactions in the dataset. Thus,
s(X ⇒ Y ) is defined as the proportion of transactions in D which contain X ∪Y .
Note that s(X ⇒ Y ) = s(Y ⇒ X), so for the support metric, it is sufficient to
see a rule as a union of two itemsets. We define:

Confidence : c(X ⇒ Y ) =
σ(X ∪ Y )

σ(X)

The confidence c(X ⇒ Y ) is defined as the frequency count of X ∪ Y divided
by the frequency count of X, thereby determining how frequently items in Y

appear in transactions which contain X. Finally we define [20]:

Lift : ℓ(X ⇒ Y ) =
s(X ⇒ Y )

s(X)× s(Y )
=

c(X ⇒ Y )

s(Y )

Both support and confidence are biased towards very frequent itemsets. If a
certain itemset occurs much more than every other itemset, it will appear in
almost every generated association rule. Lift gives a measure of how much a rule
deviates from the expected confidence. The expected confidence is the confidence
calculated with the assumption that X and Y are statistically independent, as
denoted by s(X)× s(Y ). Note that ℓ(X ⇒ Y ) = ℓ(Y ⇒ X). The lift of a rule
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expresses the deviation from this expected confidence. Values can be within the
range [0,∞) and can be divided into three ranges:

• ℓ(X ⇒ Y ) = 1 indicates that the confidence is equal to the expected
confidence and that the occurrence of X has no effect on the occurrence of
Y .

• ℓ(X ⇒ Y ) > 1 indicates that the occurrence of X has a positive effect on
the occurrence of Y .

• ℓ(X ⇒ Y ) < 1 indicates that the occurrence of X has a negative effect on
the occurrence of Y , they are mutually exclusive.

The previously defined quality metrics can be used for both associations and
patterns. Confidence and lift can still be useful for patterns of two elements,
but are not very relevant for higher order patterns. Support needs to be defined
carefully to handle the order of a pattern. Therefore, we define the frequency
count as:

Frequency count : σ(Y ) =
∑

t∈D,Y⊆t

1

where a pattern sequence Y = (y1, y2, . . . , yn) is a subset of a transaction
t = (t1, t2, . . . , tk), denoted by Y ⊆ t, if there exist integers i1 < i2 < . . . <

in such that y1 ⊆ ti1 , y2 ⊆ ti2 , . . . , yn ⊆ tin . Notice that we use the same
notation as on the previous page. For example, the sequence ({3}, {4, 5}, {8}) ⊆
({7}, {3, 8}, {9}, {4, 5, 6}, {8}), because {3} ⊆ {3, 8}, {4, 5} ⊆ {4, 5, 6} and {8} ⊆
{8}. Sequence ({3}, {5}) however, is not a subsequence of ({3, 5}). See [2] and [15]
for further explanation.

3.3 Association rules

The generation of association rules can be done with a brute force approach, by
enumerating all possible combinations of items in the antecedent and consequent
and evaluating the resulting rules. However, for an itemset of k items, there
are 2k − 1 possible rules, so this quickly becomes infeasible. The computational
complexity of association rule generation can be reduced by limiting the number of
candidate itemsets. An effective way of doing this is using the Apriori principle [1]:

Apriori principle. If an itemset is frequent, then all of its
subsets must also be frequent.

This principle states that if, for example, itemset {a, b, c} is frequent, the
subsets {a, b}, {b, c}, {a, c}, {a}, {b}, {c} are frequent too. Conversely, if an item-
set is infrequent, all its supersets will be infrequent. So, if {c} is infrequent, all
itemsets containing c will be infrequent, as shown in Figure 1. This property,
known as anti-monotonicity [14], gives us the possibility to discard large parts
of the search space and is the main principle of the Apriori algorithm.
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Figure 1: Anti-monotonicity example.

3.3.1 Frequent itemsets

The Apriori algorithm uses the Apriori principle by creating frequent itemsets in
an iterative way, as shown in Algorithm 1. A frequent itemset f is an itemset for
which the support count in the set of transactions D is above a certain treshold.
The set of frequent itemsets with k items is denoted by Fk. The algorithm starts
by making a single pass over the dataset to count the support for each individual
item. This is done in step 2 of the algorithm. With this set of 1-item frequent
itemsets F1, a new set of 2-item candidate itemsets C2 is generated with the
AprioriGenerate function, as descried in Algorithm 2 and explained later on.
For each candidate itemset, the support is calculated. The brute force approach
is to make a pass over the dataset for each candidate itemset. There is, however,
a better approach using a hashmap of the set of candidate itemsets. With this
approach, the support of all candidates can be calculated in a single pass over
the dataset (see [16, Chapter 6]). At the end of the iteration, the candidates
with enough support are stored as frequent itemsets and used as input for the
next iteration. In each iteration, the size of the candidate itemsets is increased
with one. The algorithm halts when the resulting set of frequent itemsets is ∅,
that is, when there are no frequent itemsets of size k, where k is defined as the
number of items in the itemset. The set of frequent itemsets F now contains all
frequent itemsets from sizes 1 to k, and F is used as input to create association
rules, as explained in Section 3.3.2.

The AprioriGenerate function is used to generate candidate itemsets with
k items for an iteration of the Apriori algorithm. As input it needs the set of
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Algorithm 1 Apriori algorithm

1: k ← 1
2: Fk ← {i | i ∈ I ∧ σ({i}) ≥ N ×minimumSupport}
3: while Fk 6= ∅ do
4: k ← k + 1
5: Ck ← AprioriGenerate(Fk−1)
6: for each t ∈ D do

7: for each f ∈ Ck do

8: if f ⊆ t then

9: σ(f)← σ(f) + 1
10: end if

11: end for

12: end for

13: Fk ← {c | c ∈ Ck ∧ σ(c) ≥ N ×minimumSupport}
14: end while

frequent itemsets obtained in the last iteration, Fk−1. The output of the function
is a set of candidate frequent itemsets with k items. Naturally, this set should
be as small as possible, to prevent unnecessary evaluations. There is a number
of methods to generate candidates. The simplest one is a brute force method,
which, given a set of (frequent) items, generates all possible subsets of size k.
That approach generates a large number of candidates, where most of them
can be pruned due to the anti-monotonicity property. A smarter approach is to
generate all combinations of Fk−1 and F1. This gives a shorter list of candidates,
but it still contains itemsets that could be left out due to anti-monotonicity,
for every subset of Fk must be frequent, not only Fk−1 and Fk. For example,
with {a, b} and {c}, subset {a, c} must also be frequent. The smallest complete
candidate set can be reached by combining Fk−1 with Fk−1 itself, as explained in
Algorithm 2. This algorithm generates candidates Fk by joining Fk−1 with Fk−1

where all items except the last one are equal. For each candidate fnew of size k,
all subsets with k − 1 itemsets are checked and only if all subsets are frequent
itemsets, fnew is accepted as a candidate. We define the function Last(Y ) to
return the last element in the ordered set Y , where ∅ 6= Y ⊆ I.

3.3.2 Association rules

With the frequent itemsets generated with Algorithm 1, association rules can
be generated quite easily. For each itemset, the algorithm generates all possible
combinations of two non-empty disjoint sets that contain all items from the
itemset. One of the sets serves as antecedent, the other as consequent. This is
done recursively, starting with all 1-item antecedents. For these antecedents, the
consequent is known, because it must contain the remainder of the itemset. For
each candidate rule, the confidence is calculated using the already computed
support values. If the confidence is above the threshold, the rule is stored. If all
1-item antecedents are evaluated, all possible 2-item antecedents are generated
and evaluated, etc. The pseudocode of the algorithm is given in Algorithms 3
and 4. See [16, Chapter 6] for a detailled explanation.
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Algorithm 2 AprioriGenerate(Fk) algorithm

1: C ← ∅
2: for each f1 ∈ Fk and f2 ∈ Fk do

3: if f1\{Last(f1)} = f2\{Last(f2) and Last(f1) < Last(f2) then
4: fnew ← f1 ∪ f2
5: validCandidate← true
6: for each k-subset s of fnew do

7: if s 6∈ Fk then

8: validCandidate← false
9: end if

10: end for

11: if validCandidate then

12: C ← C ∪ {fnew}
13: end if

14: end if

15: end for

16: return C

Algorithm 3 AprioriAssociations algorithm

1: for each fk ∈ Fk, k ≥ 2 do

2: H1 ← {i | i ∈ fk}
3: AprioriGenerateRules(fk, H1, k,m)
4: end for

Algorithm 4 AprioriGenerateRules(fk, H1, k,m) algorithm

1: if k > m+ 1 then

2: Hm+1 ← AprioriGenerate(Hm)
3: for each h ∈ Hm+1 do

4: c←
σ(fk)

σ(fk\{h})
5: if c ≥ minimumConfidence then

6: output fk\{h} ⇒ {h}
7: else

8: Hm+1 ← Hm+1\{h}
9: end if

10: end for

11: AprioriGenerateRules(fk, Hm+1, k,m+ 1)
12: end if

11



3.4 Sequential patterns

The generation of sequential patterns is an extension of the process of gener-
ating association rules. A common algorithm to do this is the Generalized

Sequential Pattern (GSP) algorithm, as proposed in [2] and [15]. The GSP
algorithm has the same structure as the Apriori algorithm. They both start
with the counting of frequent items in the dataset, which form the basis for the
rest of the algorithm. As described in Algorithm 5, the GSP algorithm takes the
same iterative approach as Apriori, where in each step a number of candidate
patterns is generated and evaluated. The generation of candidate patterns is
almost identical to the generation of frequent itemsets and is explained in Algo-
rithm 6. The only difference lies in the join of f1 and f2, where we denote the
elements of a pattern as f = (f1, f2, . . . , fk). The new candidate fnew is created
by appending the last item of f2 to f1. If the last element of f2 contains more
than one item, the item is added to the last itemset of f1. If the last element of
f2 has only one item, it is added to f1 as a new element. In the special case where
two frequent items are joined into a candidate with two items, three versions of
the candidate are generated, one with both items in one element and two with
each item in a separate element, in both possible orders. So for example, the
patterns ({a}) and ({b}) will result in three candidates ({a, b}), ({a}, {b}) and
({b}, {a}).

With the resulting candidate set, support for all candidates is calculated by
making a single pass over the transaction database. For each transaction, all
candidates that are subsets of the transaction have their support count increased
with the GspSubset procedure. At the end of each iteration of the main loop,
the candidate patterns with enough support are stored and used as a seed set
for the next iteration.

Algorithm 5 Generalized Sequential Pattern algorithm

1: F1 ← all frequent items
2: k ← 2
3: while Fk−1 6= 0 do

4: Ck ← GspGenerate(Fk−1, k)
5: for each t ∈ D do

6: for each f ∈ Ck do

7: σ(f)← σ(f) +GspSubset(t, f)
8: end for

9: end for

10: Fk ← {c | c ∈ Ck ∧ σ(c) ≥ N ×minimumSupport}
11: k ← k + 1
12: end while

For Algorithm 6, we define the function Last(Y ) for a pattern Y to return
the last item of the last element of Y and we define:

GspSubset(t, f) =

{

1 if f ⊆ t

0 otherwise

The GspSubset function checks, for a given transaction t and a pattern f , if the
pattern is a subset of the transaction, and if so, returns a support share for t. In
the general setup, support is increased by 1 if all elements of the pattern appear

12



Algorithm 6 GspGenerate(Fk, k) algorithm

1: C ← 0
2: for each f1 ∈ Fk and f2 ∈ Fk do

3: if f1\{Last(f1)} = f2\{Last(f2)} and Last(f1) < Last(f2) then
4: if k = 1 then

5: fa ← ({Last(f1),Last(f2)})
6: fb ← ({Last(f1)}, {Last(f2)})
7: fc ← ({Last(f2)}, {Last(f1)})
8: C ← C ∪ {fa, fb, fc}
9: else

10: fa ← (f1
1 , f

2
1 , . . . , f

k
1 , {Last(f2)})

11: fb ← (f1
1 , f

2
1 , . . . , f

k−1
1 , fk

1 ∪ {Last(f2)})
12: C ← C ∪ {fa, fb}
13: if |fk

1 | = 1 then

14: fc ← (f1
1 , f

2
1 , . . . , f

k−1
1 , {Last(f2)}, f

k
1 )

15: C ← C ∪ {fc}
16: end if

17: end if

18: end if

19: end for

20: return C

in the same order in the transaction. This can be narrowed down with time
constraints, as discussed in Section 3.5. We define that a pattern appears in a
transaction, as denoted by f ⊆ t for a pattern f = (f1, f2, . . . , fk) and a customer
t = (id, 〈a1, t1〉, 〈a2, t2〉, . . . , 〈an, tn〉), if there exist integers i1 < i2 < . . . < ik
such that f1 ⊆ ai1 , f2 ⊆ ai2 , . . . , fk ⊆ aik .

3.5 Time constraints

There are many approaches to the evaluation of sequential patterns. In the
simplest case, we can set a minimum support value and discard all patterns that
fail to reach this level of support, or use the same approach for one of the other
quality evaluation metrics defined in Section 3.2 that can be used as a minimum
threshold value. However, this approach limits the results to often occurring
combinations, which does not always mean the resulting patterns are interesting.

To refine the resulting set of patterns, time constraints can be used. It can
be very insightful to make a distinction between patterns that occur within and
outside certain time windows. For example, a maximum gap between items can
be specified, such that for each two subsequent elements of itemset f found in
transaction t, the time gap between them may not exceed the specified maximum.
In the same manner, a minimum gap can be defined. These gaps can be extended
into intervals, as discussed in Section 3.5.1. We can think of special cases such
as contracting all transactions within one week like they happened on the same
day. Apart from these discrete evaluations where support is either 0 or 1, a
continuous evaluation can be defined, for example resulting in a support value
between 0 and 1 based on the time gaps between transaction elements. This
time-dependent support weighting will be discussed in Section 3.5.2.
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3.5.1 Time-intervals

It is straightforward to add a number of time-intervals of predefined length to
a sequential pattern algorithm, as is proposed in [7] and [23]. We can think of
them as a series of extra products, such as “one month” or “80 days”, that are
placed between products. Every pattern consists of a number of products and
a number of intervals defining the elapsed time between the purchase of two
products, so intervals are defined as part of a pattern. In the initial definition of
a sequential patterns, an element of a pattern can be a set of products. However,
in this section we will assume that each element contains one product, because
that is sufficient for our data set. It is straightforward to extend the definition to
patterns with multi-item-elements. The support calculation needs to be extended
to take into account time-intervals. The time-interval modification can be defined
as follows.

A customer is defined as an ordered set of pairs and a unique identifier

c = (id, 〈a1, t1〉, 〈a2, t2〉, . . . , 〈an, tn〉)

where 〈ai, ti〉 is an item ai with corresponding transaction date ti, with t1 ≤ t2 ≤
. . . ≤ tn. A customer can be handled as one transaction with multiple transaction
dates, so we will use the terms customer and transaction interchangeably. A
customer can buy the same item multiple times, as long as the transaction
dates are different. Let t be the time interval between two successive items in
a transaction c. For example, t = |t2 − t1| for a customer c = (〈a1, t1〉, 〈a2, t2〉).
We define an ordered set of points in time B as

B = (b0, b1, b2, . . . , br)

where b0 ≤ b1 ≤ . . . ≤ br and b0 = 0. We define a set of intervals I =
(I1, I2, . . . , Ir) over B, where an interval Ij = (bj−1, bj ]. Furthermore, we define
a left-open interval I∞ = (br,∞). Thus, we get a list of intervals that exactly
contains the interval (0,∞).

• I1 with b0 = 0 < t ≤ b1

• I2 with b1 < t ≤ b2

• . . .

• Ir with br−1 < t ≤ br

• I∞ with br < t.

For a pattern p = (p1, p2, . . . , pk), we define a sequence of intervals Ip =
(Ip1

, Ip2
, . . . , Ipk−1

), with Ipi
∈ I and Ipi

as the interval between pi and pi+1. A
pattern p appears in a customer c = (id, 〈a1, t1〉, 〈a2, t2〉, . . . , 〈an, tn〉), denoted
as p ⊆ c, if there exist integers i1 < i2 < . . . < ik such that p1 ⊆ ai1 , p2 ⊆
ai2 , . . . , pk ⊆ aik and |ti2 − ti1 | ∈ Ip1

, |ti3 − ti2 | ∈ Ip2
, . . . , |tik − tik−1

| ∈ Ipk−1
,

where tj ∈ Ipj
is defined as bpj−1

< tj ≤ bpj
. A pattern with an interval is

denoted as a pair 〈p, Ip〉.
The set of points in time B is given, so the set of available intervals I is

predefined. For the generation of candidate patterns with intervals, the intervals
have to be handled as an extra set of products. For every pair of subsequent
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items in a pattern, an interval must be defined, so for every generated candidate
pattern and for every interval, a new candidate is generated. For the combination
of two items in a pattern, r+1 versions will be generated, each having one of the
r + 1 intervals. For example for the set of points in time B = (0, 7, 31, 365) and
a pattern with two items (a, b), the intervals for B are I = (0, 7], (7, 31], (31, 365]
and I∞ = (365,∞). These intervals are shown in Figure 2 and the candidate
generation results in 4 pairs 〈p, Ip〉:

• 〈(a, b), (0, 7]〉

• 〈(a, b), (7, 31]〉

• 〈(a, b), (31, 365]〉

• 〈(a, b), (365,∞)〉

Figure 2: Time intervals example

To handle intervals, the support calculation needs an extra constraint. A
pattern p is only considered to occur in transaction c if, for every successive pair
of items in c to which the pattern is matched, the gap between the transaction
dates lies within the interval specified for the pair in p. We define the frequency
count for a pattern-interval-pair 〈p, Ip〉 and the set of customers D:

Frequency count : σ(〈p, Ip〉) =
∑

c∈D,〈p,Ip〉⊆c

1

where a pattern-interval-pair 〈p, Ip〉 appears in a customer c, denoted as 〈p, Ip〉 ⊆
c, if there exist integers i1 < i2 < . . . < ik such that p1 ⊆ ai1 , p2 ⊆ ai2 , . . . , pk ⊆
aik and |ti2 − ti1 | ∈ Ip1

, |ti3 − ti2 | ∈ Ip2
, . . . , |tik − tik−1

| ∈ Ipk−1
, where tj ∈ Ipj

is defined as bpj−1
< tj ≤ bpj

.
To expand the example above, we consider a transaction c = 〈(a, 15), (b, 20)〉.

The interval t between a and b is |20 − 15| = 5, so it falls within interval I1
and counts as support for candidate (a, 7, b). Note that a pair of items in a
transaction can occur in exactly one interval.

3.5.2 Time-dependent support weighting

The main concept of time-dependent weighting is that the support value for
transaction-pattern pairs is not limited to 0 or 1, but can have a value between
these borders where the weighting value is determined by the time between
transactions. We will first give a more formal definition, then we will discuss
some weighting functions.

To handle variable weighting, the support function needs to be extended.
Again we define a pattern as p = (p1, p2, . . . , pk) where every pi is a unique item,
and a customer (or transaction) c = (id, 〈a1, t1〉, 〈a2, t2〉, . . . , 〈an, tn〉). We define
the support function s for a pattern p as:
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s(p) =
1

N

∑

c∈D

F (c, p)

which is the sum of all transactions c in the set of transactions D. For each of
these transactions, a weighting function F (c, p) is calculated. We define:

F (c, p) =











1

k − 1

k−1
∑

j=1

f(|tij+1
− tij |) if p ⊆ c

0 otherwise

where (i1, i2, . . . , ik) is the ordered set of integers as defined before and f(t) is a
weighting function which gives a result in the interval [0, 1]. Again, p ⊆ c if there
exist unique integers i1 < i2 < . . . < ik such that p1 = ai1 , p2 = ai2 , . . . , pk = aik .

This function sums, for all subsequent pairs of items in p and their corre-
sponding items in c, the result of f(t) for this pair. The result of the sum is
divided by k−1, resulting in an average support value in the interval [0, 1] for all
subsequent pairs in p. Note that f(t) is undefined for k = 1, because an interval
can be only be defined between at least two items and has no meaning for a
single product. Therefore, this support count can only be used on sequential
patterns with two or more items. For the inital phase of the GSP, the counting
of frequent items, we use the original support count as defined in section 3.2.

With this formal support weighting framework, we can create variation by
defining various weighting functions f(t). The general idea behind this weighting
function is that it returns an output based on the gap in days between the
transaction dates of two products. This function is required to give valid output in
the range [0,m], where m is a predefined maximum gap between two transactions.
Outside of this interval, the function can be undefined and in that case, the
output is handled as 0. The most trivial case is is the function f1, which returns
1 for every input.

f1(t) = 1

Another simple function is the linear f2,

f2(t) = 1−
t

m

which returns a value that is linearly dependent on t, where f2(m) = 0. The
next function, f3, is a quadratic relationship where weighting decreases squared
to the gap. As it is a part of a negative parabola, the weighting decrease starts
slowly for small gaps and increases as the size of the gap reaches m.

f3(t) = 1−

(

t

m

)2

Then, f4 is another quadratic function which is part of a positive parabola, so
the weighting decrease starts quickly for small gaps and decreases as the size of
the gap reaches m.

f4(t) =

(

t

m
− 1

)2
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Another weighting function has a stepwise weighting, defined by the number of
steps n

f5(t) = 1− ⌊
x× n

m
⌋ ×

1

n− 1

All of these functions focus on shorter intervals. However, f6 is a mirrored version
of f2 with its maximum at m.

f6(t) =
t

m

To get a focus on the intervals around m
2
, another quadratic function f7 is

defined.

f7(t) = 1−

(

2t

m
− 1

)2

The plots of these functions, where the maximum gap m is set to one month,
can be found in Figure 3.
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Figure 3: Weighting functions for m = 31; n(f5) = 5.

For example we consider a pattern p = (x, y) with two products x and y and
two customers c1 = (〈x, 1〉, 〈y, 5〉, 〈z, 10〉) and c2 = (〈w, 7〉, 〈x, 10〉, 〈z, 13〉, 〈y, 16〉).
Calculating s(p), we get s(p) = 1

2
(F (c1, p) + F (c2, p)), as both c1 and c2 contain

p. Then, F (c1, p) =
1

2
(f(|5− 1|)) and F (c2, p) =

1

2
(f(|16− 10|)).

The final result of the support value depends on the weighting function f(t)
and maximum interval m we choose. For example, with m = 15 for f4, we get

f4(|5−1|) =
(

4

15
− 1

)2
= 121

225
≃ 0.538 and f4(|16−10|) =

(

6

15
− 1

)2
= 81

225
= 0.36.

So, for f4, we get s(p) = 1

2

(

1

2
× 0.538 + 1

2
× 0.36)

)

= 1

4
× 0.898 = 0.2245.

Using one of these weighted support functions will obviously have an influence
on the results. However, this is strongly dependent on the value of m. In the
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case of m→∞, the weighting functions f2 to f5 will converge into the trivial
function f1 and f6 and f7 will converge to 0. A useful value for m depends on
the data set. If, for example, the maximum gap in the dataset is 3 years, m
should be 3 years or less. An even lower value might be better, depending on
the distribution in the data set.

An important remark has to be made on the effects of the weighting function
F (c, p) that is defined in this section. The weighting function calculates an
average over the fitness of all subsequent pairs in the sequence. This creates the
possibility that, for certain cases, the support score goes up for longer sequences.
This breaks the anti-monotonicity principle, which states that if an itemset is
infrequent, all its supersets must also be infrequent. For example, consider a
pattern of two items p1 = (a, b), a pattern of three items p2 = (a, b, c), weighting
function f2 and a data set where product b is usually sold after a, with a long
interval between them, and c after b, with a short interval between them. As f2
is focussed on short intervals, the support for the sequence (a, b) will be small
and the support for (b, c) will be large. As the support for p2 is an average of
the support of (a, b) and (b, c), this can result in a higher support value for p2
than for p1. Now, if the predefined minimum support is more than the support
of p1 and less than the support of p1, the anti-monotonicity principle no longer
holds, as (a, b) ⊆ (a, b, c), but (a, b, c) is frequent and (a, b) is not. Therefore,
the anti-monotonicity principle can not be used for weighted patterns if the
patterns contain three or more items. This means that the candidate generation
phase of the GSP-algorithm can no longer assume that certain candidates can
be pruned only because there is a subset which is infrequent. So instead of
the AprioriGenerate candidate generation algorithm, we need a brute force
candidate generation approach which generates all possible subsets of a given
length for a set of frequent items. This means that all possible orderings of
products of length 2 to k have to be generated, which can be very expensive, as
generating all permutations of k items result in k! permutations. For example,
with k = 10 we already get 3628800 candidates of 10 items to evaluate. Therefore,
this is only feasible for a small number of products. In our implementation, we
used a maximum length of 3 items to limit the number of candidates, which is
consistent with our data set.

3.5.3 Complexity

The algorithms and improvements that are presented are all very straightforward,
with little or no focus on computational complexity. It would be easy to come up
with a number of ways to improve complexity, or even to switch to a completely
different, faster algorithm. However, in this study there is no reason to do so.
The present data set, as is discussed in Section 4.1, has a limited size and
complexity. Only 13% of the customers purchased more than one product, and
less than 5% of the customers purchased more than two products. So, what we
can expect is a very sparse data set, associations and patterns with small support
percentages and only short patterns of two, or sometimes three products. Besides
that, the data set only contains a very small number of products, so exhaustive
generation of all subsets upto a given size is feasable. Therefore, there is no need
to implement a more sophisticated algorithm.

Larger data sets with more products or data sets with many more relations
would give more candidates and longer patterns. As the complexity of the
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candidate generation phase in Apriori algorithms is O(n2) in the number n

of items for 2-itemsets and O(n3) for 3-itemsets, candidate generation quickly
becomes infeasible. For longer patterns, the number of passes over the data set
increases, which can lead to performance problems for large data sets. To handle
this type of data sets, a more efficient algorithm should be used. A commonly
used algorithm in these cases is FP-tree, proposed by Han and Pei [12]. To
omit the candidate generation phase, this algorithm generates a prefix tree by
creating and extending pattern fragments. This results in a summary of the data
set, the avoidance of candidate generation and reduced search space due to a
divide-and-conquer approach of the evaluation phase. An extended explanation
can be found in [12]. Another optimized algorithm for the generation of larger
itemsets is Dynamic Itemset Counting, as suggested by Brin [5].

Another way to extract useful information for a large, rich database is to use
Subgroup Discovery. This approach goes beyond finding the relations with the
highest support and focusses on more detailed links within these relations. For
example, a data set may contain a large number of travel insurances, mostly
for customers in the age between 20 and 50. A subgroup of the owners of a
travel insurance policy, might consist of elderly people in the age between 60
and 70 who happen to own an RV. These subgroups are typically overlooked
by general pattern mining algorithms, but can be found with more specified
subgroup discovery algorithms, for example the algorithm proposed in [13].
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4 Experimental Results

In the previous chapter we have described the algorithms, quality evaluations
and interval-related extensions, so now they can be tested with real world data.
The Market Basket Analysis algorithms are applied to an insurance data set, as
explained in Section 4.1. In the following sections, the results for each algorithm
and extension are presented and discussed.

4.1 Data set

The original data set used for this thesis resides in the Quinity Data Mart, the
data warehousing environment of the Quinity Insurance Solution. It contains a
copy of all production data on clients, policies and claims. This data is mainly
used for management reporting, giving insight in, for example, revenues per
period, product or intermediary. The database has a size of about 7 TB, but
most of that is not very useful for this study, as it contains a history of all
changes made to customer profiles, policies and claims, logging of all automated
processing of the data and large tables with atomic financial data for reporting
purposes.

The complete database contains about 6.3 million customers with a total of
3.9 million policies and 630.000 claims. A policy is a connection of one customer
and one product, documenting that the customer purchases this product, possibly
with small changes to fit the product to the customers wishes. The database has
about 150 products, but some of them are old or obsolete. Our data set uses
a subset of this data, because we focus on only one of the insurance brands of
the company, having about 1.6 million policies for 50 products. As the ratio
between customers and policies shows, customers usually do not purchase a large
number of policies. In the resulting data set, about 87% of the customers has
one policy, 8.6% owns two policies and less than 5% of the customers has three
or more policies. Therefore, we should expect low support and confidence rates
and mainly combinations of two products.

In order to abstract a usable data set from the database, some preprocessing
is required. First, an SQL query with a number of constraints gives the basic
transaction data. The constraints are constructed using the definitions and
requests from the insurance company, so we are only interested in users who
still have at least one active policy and sparsely occurring products can be
omitted. Some of these constraints are handled in a preprocessing script written
in Python. This script handles the expanded products, normalization of customer-
IDs and policy-IDs and the correct input format for the Java program. After
preprocessing, the only remaining data is a list of normalized triples containing

〈customer, product, timestamp〉

These triples, with a list of product names, are used as input for the Apriori

and GSP algorithms. The results can be found in the next sections.
To protect the commercial interests of the insurance company, product names

are omitted from the results and insurance products are enumerated with A, B,
C, etc. However, because we deal with real world data, there are some relevant
characteristics of the products that have an influence on the results.

• Product A appears very often in the data set, so it can be expected to
occur a lot in the results.
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• Product B appears very often in the data set, but significantly less than
Product A.

• Product C is actually a group of products that are often sold together, so
they will appear together a lot. The products of the group are defined as
C1, C2, C3, etc.

• Products D to L do not appear in the data set very frequently, because
they are either old products which are no longer actively sold or they are
niche products.

Beside the commercial interests in the data set, there is also the privacy of the
customers that has to be taken into account. Privacy is a general issue in data
mining on real world data. To ensure the privacy of the cusomers involved, the
results are completely anonymized. The only customer information extracted
from the database is the customer-ID, and in the preprocessing phase, this ID is
substituted for a normalized ID.

4.2 Implementation

Implementation of the Apriori and GSP algorithms was done in Java. Altough
many implementations are available, we decided to create our own implemen-
tation, because of the limitations of the secure environment in which the data
set was available and as a hands-on study of the algorithms. Because of the
nature of the dataset, as explained in Section 4.1, a few modifications were made.
According to the definition of a sequential pattern in Section 3.4, a pattern
contains a series of groups of items called elements, where all items of a group
have to have the same transaction date. In the implementation however, the
size of an element is limited to one product, because the purchase of multiple
items on the same day is very rare. In fact it almost only occurs for items of
Product group C. However, items with the same purchase date are analysed in
Section 4.5.

4.3 Association Rules

As a first step in mining the data set, we generate a set of association rules, using
our own implementation of the Apriori algorithm presented in Section 3.3. The
Apriori algorithm gives a number of associations, which are shown in Table 1.

As input for the algorithm, a selection of the data set is used, because all
transactions with only one item are omitted. The resulting data set consists of
95.719 customers with two or more policies. The confidence and lift percentages
are relative to this number. To limit the number of rules, support and confidence
have to be set to a useful value. With minimal support set to 10% and minimal
confidence set to 1%, we get a limited list of results, containing only the often
occurring products A, B and C. This results in only a few associations, each
consisting of two or, in some cases, three items, as shown in Table 1. Lowering
the minima leads to an explosion of new rules. Since the dataset has about
100.000 customers, a support of 10% means 10.000 policies, so these results
are still quite significant. A graphical representation of the associations can be
found in Figure 4, where the weight of the edges is specified by the confidence
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Table 1 Association rules as found with Apriori, with support, confidence and
lift.

Association rule Support Confidence Lift
A ⇒ B 32.082% 47.848% 0.928
B ⇒ A 32.082% 62.216% 0.928
A ⇒ C1 11.051% 16.482% 0.657
C1 ⇒ A 11.051% 44.020% 0.657
A ⇒ C2 10.529% 15.703% 0.638
C2 ⇒ A 10.529% 42.789% 0.638
B ⇒ C1 13.734% 26.633% 1.061
C1 ⇒ B 13.734% 54.707% 1.061
B ⇒ C2 13.517% 26.212% 1.065
C2 ⇒ B 13.517% 54.931% 1.065
C1 ⇒ C2 22.281% 88.752% 3.607
C2 ⇒ C1 22.281% 90.549% 3.607
C4 ⇒ C2 10.712% 96.781% 3.933
C2 ⇒ C4 10.712% 43.532% 3.933
C2 ⇒ B, C1 12.337% 50.138% 3.651
C1 ⇒ B, C2 12.337% 49.143% 3.636
B ⇒ C1, C2 12.337% 23.925% 1.074

Figure 4: Two-item associationrules with confidence. Figure created with
Gephi [4].
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percentage. The relations have to be read clockwise, so the rule (C2⇒ C4) has
confidence 96.8% and the rule (C4⇒ C2) has confidence 43.5%.

In this diagram, we see strong relations within the product group C, and
Table 1 shows that the lift of these rules is quite high. This is no surprise, as these
products are closely coupled and often sold together. There also are relations
between A and B and C products, for example 〈C1 ⇒ B〉 and 〈B ⇒ A〉, but
when we look at the lift of these rules (1.061 and 0.928), their values are very
close to 1, so while these rules have a strong confidence, this is only because these
products appear very frequent in the data set and their confidence is expected
to be high.

In general we see that the association rules we have found are consistent with
our knowledge of the data set. They give insight into the relations between the
products, but the results are not very surprising. To gain a deeper knowledge
of the data set and the relations, the purchase date of the products has to be
taken into account. This is done with the GSP algorithm, whose results will be
discussed in the next section.

Figure 5: Two-item sequential patterns with support. Figure created with
Gephi [4].

4.4 Sequential patterns

To gain a more detailed insight into the data set, sequential patterns can be very
helpful, as they take into account the purchase order and the temporal relationship
between products. With the GSP algorithm, as explained in Section 3.4, a set
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of sequential patterns is generated. These patterns have more constraints than
the association rules of the previous section, as the order of the purchases is
taken into account, so a lower support percentage has to be expected. To get
a significant number of patterns, the support minimum is lowered to 2%. The
resulting patterns are shown in Table 2.

Table 2 Sequential pattern as found with GSP, with support ≥ 2% en minimum
interval 0.

Sequential pattern Support
C1 → C2 20.657%
B → A 19.650%
A → B 12.433%
B → C1 11.880%
B → C2 11.679%
B → C1 → C2 9.862%
C4 → C2 9.833%
C1 → C4 8.944%
A → C1 8.837%
A → C2 8.389%
C1 → C3 8.298%
C1 → C4 → C2 8.104%
C3 → C2 7.887%
B → C3 7.249%
A → C1 → C2 7.027%
C1 → C3 → C2 6.788%
A → C3 5.959%
B → C4 5.734%
A → D 5.666%
B → C4 → C2 5.056%
B → C1 → C4 4.791%
C3 → C4 4.776%
F → A 4.690%
A → C4 4.640%
A → E 4.470%
B → C1 → C3 4.392%
B → C1 → C4 → C2 4.368%
B → C3 → C2 4.363%
C3 → C4 → C2 4.331%
C1 → C3 → C4 4.181%
A → C4 → C2 4.097%
A → G 4.073%
E → A 3.954%
A → H 3.886%

Sequential pattern Support
C1 → C3 → C4 → C2 3.871%
A → C1 → C4 3.848%
B → I 3.741%
B → C1 → C3 → C2 3.701%
A → C1 → C4 → C2 3.512%
A → C1 → C3 3.424%
B → G 3.416%
A → C3 → C2 3.390%
C1 → C5 3.381%
C2 → C5 3.161%
B → A → C1 3.066%
C1 → C2 → C5 3.032%
B → A → C2 2.977%
A → C1 → C3 → C2 2.886%
B → C3 → C4 2.722%
B → A → C1 → C2 2.529%
B → C3 → C4 → C2 2.469%
C3 → C5 2.422%
B → E 2.356%
G → A 2.355%
B → C1 → C3 → C4 2.351%
A → C3 → C4 2.302%
B → D 2.267%
C1 → A 2.215%
C1 → C3 → C5 2.215%
A → B → C1 2.186%
B → C1 → C3 → C4 → C2 2.180%
A → B → C2 2.154%
C2 → A 2.141%
C3 → C2 → C5 2.125%
A → C3 → C4 → C2 2.098%
C1 → C3 → C2 → C5 2.040%
A → C1 → C3 → C4 2.002%

A more intuitive representation of the patterns of two items with support
at least 5% is shown in Figure 5, where the weight of the patterns is given by
the support percentage. In this diagram we see very strong relations between C1
and C2, and B and A. Both of these relations have a significantly higher support
in one direction, so apparently, the product purchase order 〈B → A〉 appears a
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lot more often than 〈A→ B〉. However, we can define the order of the product
purchases in two ways. In a general approach, two products purchased on the
same day are counted for the support percentage, and in a stricter approach, we
require a minimum interval of one day. Note that this does not involve the time-
intervals we defined previously, as their results are presented in the next section.
The results in Figure 5 are generated with the less strict approach. When a set
of results is generated with the stricter approach, the diagram changes, as shown
in Figure 6. There are some notable differences between the two diagrams. The
strongest pattern 〈C1→ C2〉 has disappeared and all other relations between
C products are gone as well. Apparently, their support for intervals of length 1
and higher is lower than the minimum support threshold. This means that the
products of group C are usually sold together at the same time, but the case
where a customer with a C product purchases another C product after some
time is very rare. On the other hand, the patterns with A or B and a C product
are still there, so these relations are more distributed in terms of intervals. In
the next sections, we will study these intervals with more detail.

Figure 6: Two-item sequential patterns with support, with minimum interval 1.
Figure created with Gephi [4].

4.5 Time-intervals

Now we have seen the general relations and order between the items in the data
set, we can look into the purchase orders with a higher detail. For this purpose,
the time interval extensions of the GSP algorithm, as defined in Section 3.5.1,
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will be used. We will focus on the relations between A, B and one of the C
products. The relations between C products are omitted, because they are mainly
purchased on the same day. Note that, altough each pattern can have its own
interval, in this section we compare various patterns for the same intervals, in
order to gain insight into the temporal behavior of the patterns.

To explore the high level relation between the length of the interval and the
number of matching transactions, we define a series of intervals, each with the
length of one year, with the ordered set of points in time B = (0, 365, 730, . . .)
which gives us a list of intervals I:

• I1 for 0 < t ≤ 1 year

• I2 for 1 year < t ≤ 2 years

• I3 for 2 years < t ≤ 3 years

• Etc.
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Figure 7: Number of transactions per year-long interval for the most important
patterns.

When we plot the frequency of the patterns for these intervals, we get Figure 7,
which plots the number of transactions per interval for all found combinations of
A, B and C. In general, we see the same behaviour for all patterns. For the first
interval, where t = 0, a small number of transactions is counted. The peak of
all patterns is in the second interval, between one day and one year. The height
of the peak is dependent of the frequency of the product in the data set. The
number of transactions per interval decreases in the intervals 2 to 8. All patterns
that start with B have a remarkable characteristic, as for all of them, the interval
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3 contains more transactions than interval 2. The patterns that start with A
decrease faster for longer intervals than patterns that start with B.

According to the previous diagram, the intervals from one day to three years
have the most corresponding transactions for all patterns, so we will take a
more detailed look at them. Figure 8 shows the number of transactions per one-
week-interval for all patterns of the previous diagram. The results are scattered
and vary greatly for every interval, but three peaks show up. For the patterns
〈B → C〉, there are significantly more transactions for the intervals around
t = 52, t = 104 and t = 156. When only the 〈B → C〉 patterns are plotted, the
peak becomes even clearer, as is shown in Figure 9. These results clearly indicate
a correlation between the number of matching transactions and the interval
being (more or less) a multiple of 52 weeks.
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Figure 9: Number of transactions per week-long interval for the patterns 〈A→ C〉.

The time-interval extension gives a clear overview of the behaviour of the
sequential patterns in different intervals and it shows some remarkable temporal
patterns in the data set. However, it only shows the behaviour of the patterns,
given a certain interval. The next step would be to use the temporal data in
order to weigh the value of a transaction for a pattern. This will be covered in
the next section.

4.6 Time-dependent support weighting

In the previous section, the intervals between purchases were used as a way
to distinguish results, where the interval was a static constraint, only used
to determine whether a transaction should be counted or not, so the support
contribution of a transaction is either 0 or 1. This approach can be extended to a
continuous support contribution value in the interval [0, 1] by the time-dependent
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support weighting as defined in Section 3.5.2.
With this extension of the GSP algorithm, the number and order of the

results can be influenced by choosing a weighting function and maximum interval
corresponding to the expected results. For example, when taking the global
interval length as presented in Figure 7 into account, we can decide to focus on
shorter intervals, as they contain the most transactions. In that case, support
weighting functions f2 or f3 could be a good choice. The weighting functions are
defined with respect to a maximum interval which has to be chosen as well.

An overview of the behaviour of all weighting functions is given in Figure 10.
This diagram shows the support functions from Section 3.5.2 in the horizontal
axis. The function f5 has an extra parameter n, defining the number of steps,
and the results for four values {2, 4, 6, 8} are given. The vertical axis shows the
order of the plotted patterns in the range [1, 15]. Location 1 for f1 contains the
pattern with the highest support for this weighting function, location 2 contains
the pattern with the next highest support, etc. The plotted points are the set
of sequential patterns for all weighting functions, where the 15 patterns with
highest support for every function are shown. The plots give an insight in the
relation between the weighting function and the support value for a pattern. It
might have been more intuitive to use the support results for each pattern and
weighting function on the vertical axis, but this would make the diagram much
more difficult to read, as the support value for often occurring patterns would be
a lot higher than the support value of other patterns, no matter what weighting
function we would choose. By using the location on the ordered list of results,
this bias is omitted.

This diagram shows a clear relation between the order of the patterns and
the weighting functions. There is a large difference between f1 to f5 and f6 and
f7. This is as expected, because the last two functions are the only ones not
focussed on the transactions with shorter intervals. The results for f5 with various
values for n are remarkable similar to each other. The reason for this might be
because all of the instances of f5 handle the very short intervals with t → 0
identical, returning the maximum support contribution. The rules which had a
high support in earlier results get a large part of this support from transactions
with very short intervals and a higher number of steps n for f5 should therefore
have limited influence on the support for these rules.

For the other weighting functions f1 to f4, there is a lot of variation in the
order of the patterns, but some clear overall trends are visible. First of all, the
rule with the highest support, 〈C1→ C2〉, is on position 1 for all these rules. On
the second position for most rules is 〈B → A〉, and it is on position 1 for the last
two rules. The overall position of 〈B → A〉, even for f6 and f7, shows that this
pattern is a very general occurring one, regardless of the length of the interval.
The only different position is for f4, a weighting function with a very strong
focus on the really short intervals, where support contribution drops sharply
for longer intervals. Therefore, we see that for f4, most high positions are for C
products, who typically have a lot of intervals with t = 0, so for practical cases
where the focus is strongly one same-day-purchases, f4 is a good choice.

The results for the last functions f6 and f7 really deviate from the others,
but together they are very alike, especially for the higher positions. However,
both functions focus on different intervals, as f7 focusses on the mean of the
interval between 0 and the maximum, where f6 has a strong focus on the highest
intervals. Therefore, we can conclude that the rules on the first four positions for
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Figure 10: Patterns ordered by suppport per weighting function. Picture created
with MS Excel.
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f6 and f7 appear quite evenly distributed over all intervals. However, the results
of these functions are strongly dependent on the defined maximum interval. If
the maximum interval is very short, the results will be similar to f4 or f5, but for
larger maxima, there will eventually be no results left, as there is a transaction
that has the largest interval in the dataset. If the defined maximum interval
is much larger than the largest found interval, the support result will close to
0. For certain practical cases, such as the discovery of outliers with very long
intervals, this can be useful, but in general the maximum interval should be
chosen carefully and kept as small as possible.

In order to gain a deeper insight in the results of f7 over longer intervals,
we investigated the behaviour of the function for a series of intervals, for the
intervals (0, 365] to (0, 3650], where each interval is one year longer than the
previous one, as is depicted in Figure 11.
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Figure 11: Behaviour of f7 for longer intervals.

The results of this experiment are shown in Figures 12 and 13. Figure 12
shows the support values for the listed patterns for each of the intervals. As
each interval is larger than the previous one, the support value for all patterns
gets higher for larger intervals, as there are simply more transactions that fit
within the interval. The often occurring products A and B appear in many of the
intervals, and especially the pattern (A,B) has a very high support value, which
is consistent with previous findings. For the largest intervals, however, we can see
that the support values for most patterns have a maximum and start to decrease.
Clear examples are (B,C3) and (C1, A) which both have their maximum for the
interval (0, 6] years, where the focus of the weighting function is around 3 years.
This decrease is due to the fact that the data set contains a lot of transactions
with purchase intervals under 4 years. Therefore, if the focus of the weighting
function is on larger intervals, the effect of the short-interval-transactions will
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Figure 12: Patterns for f7 per interval. Picture created with MS Excel.
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be less and there be few transactions with larger purchase intervals, so overal
the support value will decrease.

In Figure 13 the real support values are omitted. The diagrams shows the
same patterns for each of the intervals, but instead of the support values there
is a ranking for the patterns. The pattern on location 1 is the pattern with the
highest support, location 2 has the second highest support, etc. This diagram
gives a better picture of the relative behaviour of the patterns. As we can see,
the pattern (A,B) is on location 1 for all intervals, but other patterns show more
interesting behaviour. Some of the patterns get lower positions for larger intervals,
for example (A,C3), (A,C1) and (A,B). Apparently these patterns occur often
in shorter intervals, but less in larger intervals. There also are patterns with high
support for large intervals, who appear a lot less often in shorter intervals, for
example (B,C2), (B,C3) and (A,H).

In conclusion, using weighted support functions for the evaluation of sequential
patterns can be very useful, but it is strongly dependent on what are considered
good results. Support weightings can be used to improve results when substantial
knowledge of the dataset is already available from previous experiments. In these
cases, a proper weighting function and maximum interval can be defined, in
order to filter on important intervals, while keeping the effect of the support a
pattern has in the unfiltered database.
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Figure 13: Patterns for f7 ordered by suppport per interval. Picture created with
MS Excel.
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5 Conclusions

This report has given an overview of the application of association and pattern
generating algorithms on real world insurance data. First, the Apriori-algorithm
was introduced to analyse association rules in the data set, then the GSP-
algorithm was presented, extending the first algorithm in order to analyse
sequential patterns and gain insight into the purchase order of the products.
Finally, the GSP-algorithm was extended to handle time-intervals for patterns.
As first extension, fixed size time intervals were introduced, in order to expose
the distribution of the patterns over time-intervals of various length. As a second
extension, a weighted support calculation was introduced, in order to filter the
patterns on predefined constraints, such as a focus on short or very long intervals.

The results as presented in this report give a clear impression of the data set.
We have seen that working with real world data, can be challenging. Starting
from the association rules and sequential patterns, we learned that although de
data set is large, it still is quite sparse. The number of products is limited and
some of the products are tightly coupled. This behaviour is clearly visible in the
associations and patterns that were generated. The use of fixed time intervals
shows the validity of the obtained patterns over intervals of various length and
can give valuable insight in the behaviour of patterns over longer periods of time.
Finally, the support weighting functions provide us with a method to focus the
results on patterns or intervals that are considered interesting from the point of
view of the user. The use of time-intervals is clearly dependent on the history
that is available in the data set. For our data set, the oldest policies are about
10 years old, so that gives a clear limit on the intervals.

5.1 Future work

Beyond this thesis, a lot can be improved. A case study always is a limited
experiment and behaviour might be different for other data sets. The Apriori-
and GSP-algorithms are proven and trusted algorithms, but the time interval and
support weighting extensions should be evaluated on other data sets. The current
study only gives the results for one very sparse data set and the behaviour for
data sets with other characteristics might be a very different.

Beside that, in order for the support weighting to have a practical value,
a set of standard weighting functions for particular patterns or desired results
should be composed. In this study, a number of candidate weighting functions is
proposed and evaluated, but it is easy to come up with very different weighting
functions. Therefore, a framework of weighting functions should be developed,
providing links between desired result, for example a focus on short intervals, or
a focus on intervals of exactly one year, and corresponding weighting functions.

Another direction for future work, from a more general Data Mining perspec-
tive, is the use of more information about the customer. In this study, the only
things we know about the customer are what products he or she purchased at
what time. However, usually much more information is available, for example the
age and sex of the customer. It can be very useful for insurance companies who
want to put the generated sequential patterns to practical use, to have a general
profile of the customer and thus to know which group of customers should be
targeted with ads or special offers.

As a last remark, the algorithms and extensions used in this study are not
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the most efficient or sophisticated available. For our data set, performance and
efficiency where no key issues, but for other data sets or real world applications,
this might be a problem. Therefore, the presented extensions should be applied to
other, more efficient association and pattern generation algorithms. Apart from
that, the extension itself can be probably be improved in terms of performance
or efficiency as well. Especially the weighted time-interval extension can be
improved, as the candidate generation step is very unefficient, due to the fact
that anti-monotonicity cannot be used for the pruning of candidates. Therefore,
another way of efficient candidate generation should be constructed.
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