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Chapter 1

Introduction

Nowadays, single processor embedded system architectures fail to reach modern perfor-
mance requirements. It no longer suffices to simply increase the amount of gigahertzes
to improve performance efficiency. Multiprocessor Systems are therefore increasingly
becoming important, as it is much easier to increase the quantity of processors than the
quality, in terms of performance. In contrast to singleprocessor architectures, multi-
processor systems allow to exploit parallelism between tasks and data flows. Any two
operations of an application running in parallel saves execution time, and thus increases
performance efficiency.

Figure 1.1 illustrates the shortcoming of single processors when comparing per-
formance to modern market requirements. The amount of 8-bit Multiply-Accumulate
operations per second (MAC/s) required by modern applications such as Video over IP
and wireless telephony systems increases at a higher rate than the performance of gen-
eral purpose singleprocessor systems. This causes an increasing gap, which can only
be closed by using multiprocessor systems.

Multiprocessor hardware is becoming increasingly complex to allow for even greater
performance. However, programming efforts fall behind to exploit this increased com-
plexity. This is called the productivity gap, as shown in Figure 1.2. One of the reasons
that programming multiprocessor systems is much more troublesome than program-
ming single processor systems, is that designing the parallel application specification is
extremely hard. First of all, parallel programming languages hardly exist or fall short.
Secondly, a good and easy to use programming language will probably never exist, as
the human mind is hardly capable of easily conceiving parallel fine-grained tasks to
efficiently operate together. Only well-trained experts might be able to do so, yet the
amount of required programming efforts worldwide vastly supersizes the capacity of all
available experts.

A more realistic approach is to use a translator to convert a sequentially specified
application to a parallel specification. Such a translator would automatically reveal the
parallelism within the data flow of the sequentially specified application. Luckily, such

1



2 Chapter 1. Introduction

a translator exists in the form of the Compaan [1] compiler. It transforms sequentially
specified Matlab [2] code into an equivalent parallel specification.

Still needed is a way to map the parallel specification onto the platform of choice.
Various back-ends have been developed for the Compaan compiler to target different
platforms. Both Laura [3] and Espam [4] convert the parallel specification produced by
Compaan to an fpga1 platform.
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Figure 1.1: Market requirements
The trend is that there is a ferocious appetite for more computing power.

Source: TI, Xilinx 1 MAC = 8 bit Multiply-Accumulate

Of course, many more multiprocessor systems exist. In the field of network data
processing, such systems are being developed to cope with high network speeds. For
example, the Intel IXP network processor product line [5] was designed for this purpose,
being programmable to do whatever task is needed in the network. It has a higher clock
frequency than for example an fpga (currently up to 1.4 GHz instead of about 150 MHz
for a MicroBlaze processor on the Xilinx [6] Virtex Pro II fpga). Another advantage
is that computer network hardware is much more common than hardware traditionally
used for signal processing applications, leading to favourable pricing of the hardware.
In the case of the Intel IXP network processor series, a relatively straight-forward map-
ping from a parallel application specification to the platform seems possible, making it
interesting to explore this possibility.

1Field Programmable Gate Array
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Figure 1.2: Productivity gap
Efficient tooling is required to close the productivity gap.

1.1 Problem Description

Streaming applications like dsp 2, software-defined radio, aerospace and defence sys-
tems, medical imaging, computer vision, speech recognition, cryptography, and bioin-
formatics, usually consist of a variety of complex algorithms. They perform highly
repetitive arithmetic tasks and require high throughput rates. Examples are fft 3, dct 4,
and audio/video decoders. Multiprocessor platforms are well-suited for this domain
of computing, as they provide the required performance. Also, being programmable or
(re)configurable, the application designs are more maintainable than dedicated designed
hardware.

When using ‘off the shelf’ hardware to save costs, choice is often made for hardware
specifically designed for this realm of computing, like an fpga. However, the world of
network data processing has come up with their own multiprocessor hardware suiting
their own needs, but not often being used in the domain sketched above. For example,
the Intel IXP Network Processor product line offers high-speed and high-throughput
multiprocessor processing of network data. It is designed to process streaming data,
which is also a typical aspect of the signal processing application domain. This feature
forms an advantage in comparison with fpga hardware, where all the streaming process-
ing structures still have to be implemented in relatively slow programmable logic.

2Digital Signal Processing
3Fast Fourier Transform
4Discrete Cosine Transform
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Figure 1.3: Overview

This is exactly where the challenge lies: effectively using an Intel IXP Network
Processor for the domain of signal processing applications. An example of how an Intel
IXP Network Processor can be used for streaming applications, is illustrated in Fig-
ure 1.3. An application sends data over a network connection to the network processor.
There, it is processed and sent back to the application over the network.

The real problem is that Intels IXP Network Processors are hard to program, much
like other complex multiprocessor systems. Very specific and detailed knowledge of the
hardware is needed to be able to program the device, such that only platform experts
will be able to do so. Intel does take measures to ease IXP programming, like offering
the IXA 5 Portability framework[7]. In this way, functionality can be constructed more
modular. This functionality is however mostly targeted at network-specific tasks. As
we experienced, programming the IXP is still hard, slow and error-prone, even when
not taking into account the difficulty of modeling concurrency in an application. Many
assumptions from the world of general-purpose programming do not apply; for exam-
ple, there is no unified memory model or automatic caching of data and alignment has
to be constantly checked by the programmer. Therefore, a higher level of programming
is required.

5Internet Exchange Architecture
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for j = 1:1:5,
 for i = j:1:5,
  [r(j,i)] = ReadMatrix_Zeros_64x64();
 end
end
for k = 1:1:6,
 for j = 1:1:5,
  [r(j,j), x(k,j), t ] = Vectorize( r(j,j), x(k,j) );
  for i = j+1:1:5,
   [r(j,i), x(k,i), t] = Rotate( r(j,i), x(k,i), t );
  end
 end
end

Sequential Application 
Specification

Application

P1 P3

P2 P4

P5

Parallel Application 
Specification

IXP2400

ME
0:1

ME
0:0

ME
0:3
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1:0
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1:2 DRAMSRAM

Translator

EASY to specify DIFFICULT to specify

DIFFICULT to map EASY to map

Figure 1.4: The mapping challenge.

Both for easing the modeling of concurrency in an application, as for mapping the
concurrent model to an Intel IXP Network Processor platform, methodologies are devel-
oped. These methodologies together provide a high level of programming the Intel IXP
Network Processor. The challenge of mapping an application specification to a multi-
processor platform is shown in Figure 1.4. The specification of an application is easy
to specify and to reason about, because of the single line of control. It can be expressed
with a sequential programming language like Matlab. Such sequential programming
languages do not reveal the parallelism in the application due to their sequential nature.
Therefore, mapping this specification directly onto multiprocessor hardware like the
IXP2400 is useless, as only a fragment of the hardware will be effectively used.

Mapping an application specification with concurrent processes onto the hardware is
more useful, as each concurrent process can be mapped onto a programmable process-
ing unit of the hardware. However, it is difficult to specify such a parallel specification
‘by hand’.

It is more effective to combine the easy application specification using sequential
programming languages, and the straightforward and efficient mapping of concurrent
processes onto multi-processor hardware. To do so, sequential application specifica-
tions need to be translated into equivalent parallel specifications. For example, the
Compaan compiler will reveal the concurrency of the data flows in the sequential speci-
fication and generate a network of concurrent processes.
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The last step is the mapping and implementation of the concurrent processes onto
the platform of the IXP2400 Network Processor. The goal for this thesis is to investigate
the platform hardware and the programming environment, and to use this knowledge for
producing and implementing a mapping strategies of parallel applications generated by
Compaan. Hereby we investigate whether the mapping can be performed automatically
onto the IXP. Furthermore, we measure the performance of a mapped result.

1.2 Solution Approach

In this section, we provide an overview of our solution approach with the techniques we
have developed to map a parallel application specification onto the IXP2400 hardware.

Application described in Matlab

COMPAAN compiler

 Application
 specification
 as KPN

 Mapping
 specification

Platform
specification

P1 P3

P2 P4
P5

P

IMCA tool

Common function 
libraries for 

microengines

Configuration files 
for microengines

Program code
for microengines

Intel IXP C-compiler

ME

P
ME

IXP2400

ME 0:1
P2

ME 0:0
P1

ME 0:3
P4

ME 0:2
P3

ME 1:1
-

ME 1:0
P5

ME 1:3
-

ME 1:2
- DRAMSRAM

Figure 1.5: Design flow
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A general overview of the mapping process is given in Figure 1.5. The design flow
consists of three elements: Compaan, imca (IXP Mapper for Compaan Applications)
and the Intel C Compiler for Intel Network Processors. Together, they form a fully
automated process for converting sequential Matlab code into an implementation that
runs on the IXP2400 Network Processor platform. Our contribution is the imca tool,
which links the Compaan data flow to that of the Intel compiler.

In the first step, the Compaan compiler translates a sequential application specifica-
tion in Matlab to an equivalent specification in the form of a Kahn Process Network
(kpn). This is the main input for the imca tool. Other input needed are the platform
specification and the mapping specification.

• The application specification describes how concurrent processes operate together
using fifo channels for communication. The application is specified as a kpn, in
the format as is generated by Compaan. More information about the kpnmodel of
computation is given in chapter 2.

• The platform specification describes the hardware components of the IXP Net-
work Processor platform. The most important variable is the number of micro-
engines. Other variables, such as the number of hardware-assisted fifo queues
and the size of the scratchpad memory, are in practice the same for all current
models of Intel’s IXP Network Processors. Nevertheless, they are configurable
too. A detailed overview of the hardware is provided in chapter 3.

• The mapping specification describes how the elements of the kpn specification
should be mapped on the hardware of an IXP Network Processor. Several map-
ping strategies are possible. For example, the processes of the kpn can be mapped
onto the threads of the microengines in some round-robin order, or special consid-
erations such as the next-neighbour order of the engines can be taken into account
to provide extra fifo implementation options. Chapter 4 deals with the subject of
mapping strategies.

The imca tool will map the application specification onto the specified platform,
using the strategies provided in the mapping specification. This mapping is used to
generate code and other files implementing the application on the hardware. More on
the subject of the code generation process is described in chapter 5. The files that are
generated by imca are as follows:

• Common function libraries for microengines are not generated based on input of
the imca tool, but are essential to implement common functionality needed by
all microengines. For example, implementations of the various fifo types on the
IXP2400 hardware, as well as a general interface for accessing these fifo types
are included. The code is written in the microengine C language.
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• Program code for microengines consists of microengine C files, one file per mi-
croengine on which processes from the kpn have been mapped. This code imple-
ments the selection and usage of all incoming and outgoing fifo channels as well
as the assign statements and function calls of the mapped processes. This code
makes use of the common function libraries.

• Configuration files for microengines provide additional data for each microengine,
such as which microengine C files are mapped onto which microengine and the
number of threads that should be active. The extension of these files is .list.

These input files will be compiled and linked into a single executable .uof file using
the Intel C Compiler for Intel Network Processors. This file can be used with either the
platform simulator provided by Intel or on the hardware itself.

1.3 Related Work

There are two types of related work to our research. First, there are Espam and Laura,
which also serve as back-ends to the Compaan compiler, but are targeted at different
platforms. Second, there are other programming methodologies for Intel IXP Network
Processor platforms.

1.3.1 Tools Using Compaan

The most closely related work to ours is that of Espam [4]. Like imca, Espam uses
Compaan and converts kpn specifications into a multiprocessor implementation. The
output of Espam is a so called rtl-level 6 implementation, which can be converted to an
fpga implementation by a commercial synthesizer tool. The rtl-level specification is in
essence a synthesized heterogeneous multiprocessor platform specification. This is in
contrast to our work, as our mapping is targeted at a fixed homogenous multiprocessor
platform specification.

The Compaan/Laura design flow is also similar to that of Espam and that of our
work as described Figure 1.5 on page 6. It uses Compaan to generate a kpn specifica-
tion, which is converted to an fpga implementation. The reported results are only for
processor-coprocessor architectures and not for multi-processor architectures.

The benefit of our work with relation to Laura and Espam is that fpga platforms
typically operate at much lower clock frequencies than the IXP2400 or the IXP2800.

6Register Transfer Language
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1.3.2 Alternative Programming Models

Most programming efforts for the Intel IXP Network Processors is done using the mi-
croengine assembly programming language. It allows for very efficient use of the hard-
ware and offers an enormous flexibility to the programmer. However, programming
using the microengine assembly language is very complex, time-consuming and error-
prone. Designing applications generally takes months. This is partially due to the fact
that the programmer has to design all concurrency manually. Using the Intel C com-
piler for Intel Network Processors offers a higher level of programming, but still most of
the hardware specific knowledge is required. An adaptation of the C language is used,
called microengine C. An example of an application implemented using microengine
assembly and microengine C is the FFPF/Streamline application [8].

To improve programming efforts for the Intel IXP Network Processors, other pro-
gramming models have been developed. One of such programming models is NP-
Click [9]. It offers a higher level of abstraction of the underlying hardware of the
IXP1200 network processor. It is mainly targeted at network processing applications,
offering support for header verification, route table lookup, and so on. Programming is
mainly done by ‘clicking’ data flow streams together.

Another effort for improving programming simplicity on Intel network processors
is the µL programming language and the µC compiler by Network Speed Technolo-
gies [10][11]. Like NP-Click, it offers a high level of abstraction to the hardware, where
the programmer focuses on the data streams of network processing applications.

One aspect in common between NP-Click, µL/µC and our work is that all three seek
for effective tooling for closing the implementation gap by providing a programming
model with a high abstraction level. All three tools are suitable for defining streaming
data processing applications on Intel IXP Network Processors, but NP-Click and µL/µC
are much more focused on network data processing.

NP-Click and µL/µC require the programmer to specify the concurrency in the ap-
plication by defining all data streams, whereas we make use of the Compaan compiler
to do this work for the programmer automatically. Therefore, we are able to make use
of an even more natural way of specification of the application, namely the sequential
Matlab language.

Summarizing, using our work no new programming languages and methodologies
need to be learned by the programmer. Programming is done using a simple imperative
language, and all conversion is done automatically making use of Compaan.

1.4 Thesis Organization

First, we provide background information on the front-end of the imca tool in chapter 2.
This includes the format of the sequential application, the Compaan compiler and the
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parallel kpn specification. Next, we present the target platform in chapter 3. Details
on the architecture and the programming model are provided. In chapter 4 is shown
how to assign hardware resources to the elements of the parallel kpn specification. The
next step, the generation of code for each hardware resource to implement the parallel
kpn specification, is discussed in chapter 5. Chapter 6 deals with the process of han-
dling incoming and outgoing data, as to provide an interface with the implemented kpn
specification. Some experiments and results are provided in chapter 7. Suggestions for
future work are discussed in chapter 8. Finally we provide conclusions in chapter 9.

1.5 Workload Partitioning

As this thesis is written by two individuals, we provide an overview of the partitioning
of the total workload for the realisation of this thesis.

In the initial phase of the project, both authors familiarized themselves with the
platform and with the programming of the platform. This required a fair amount of ini-
tial reading and experimenting with the Developer’s Workbench. The implementation
of the mapping and code generation is done by Johan Walters. Implementation of the
process of receiving and transmitting data is done by David Snuijf. The design of both
implemented parts is a result of cooperation and discussion between the two authors.
As for writing the thesis, chapters 2 and 6 are the work of David, and chapters 3, 4
and 5 the work of Johan. The introduction, experiments and results, future work and
conclusions are the shared results of both authors.



Chapter 2

Application Modeling

In this chapter we provide an introduction on the modelling of applications for our
design flow as described in Figure 1.5 on page 6. It involves the specification of the
initial sequential Matlab application and the conversion to a parallel specification by
using the Compaan compiler. The sequential and the parallel specifications as well as
the Compaan compiler are described, along with a transformation example.

2.1 Static Affine Nested Loop Programs

One restriction on using Compaan, is that applications have to be specified as static
affine nested loop programs. This model is required to extract the data-level parallelism
in the application, which cannot be computed otherwise. The specifications of this for-
mat is best described using an example as is shown in Figure 2.1.

01 int i,j;

02 matrix A;

03 for (i = 1, i < 5, i++) {

04 for (j = i, j < 12, j++) {

05 A[i,j] = 3*(i+j) - 3;

06 if (j > 3)

07 A[i,j+1] = i+j;

08 }

09 }

Figure 2.1: Example code describing Static Affine Nested Loops

11
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In lines 5 – 9, all expressions are in the affine form of ax+b, where x can only consist
of the variables specified in de loops wherein it is nested. All expressions in lines 5–9
are consecutively i, j, 3*(i+j) - 3, j, 3, i, j+1 and i+j. All expressions match the
format ax+b and are thus affine. All expressions only make use of variables specified
by the loops they are in, thus form an affine nested loop program. Since the flow of the
program can be determined at compile time, it is also static. For example, a statement
like if(a[i,j] == 0) makes the control flow unpredictable at compile time. Such
predictability is required for finding the exact dependencies between statements using
Parametric Integer Linear Programming (pilp). Therefore, all conditions need to be
known at compile time. The provided application is a so called perfect nested loop
programs, as all statements are within the inner loop. If there were statements between
line 3 and 4, it would have been an imperfect nested loop program. Using pilp, both
versions can be handled.

Matching all criteria, the provided application is a static affine nested loop program
and can thus be transformed using for the Compaan compiler.

2.2 Kahn Process Networks

A Kahn Process Network [12] (kpn) is a theoretic model of computation, consisting of
a set of processes which communicate in a network through unidirectional communi-
cation channels. Processes can run concurrently as long as input data conditions are
satisfied.

The processes communicate via unbounded fifo1 queues (of tokens). The processes
use a blocking-read primitive on the fifo queues to ensure correct synchronization be-
tween the processes. The fifo queue channels are point-to-point, meaning that only one
process can write to each channel, and only one process can read from it.

An example of a kpn network topology is shown in Figure 2.2. This example has
three processes: A, B and C. The processes communicate using three fifo channels:
fifo 1, fifo 2 and fifo 3. Process A can write to fifo 1 and fifo 2. Process B reads from
fifo 2 and writes to fifo 3. Finally, process C reads from fifo 1 and from fifo 3.

Every process in a kpn is implemented as a sequential application, and executes
concurrently with other processes. When a process reads from the queue, the process
will suspend reading if the queue is empty, until there is enough data in the queue. This
blocking-read characteristic leads to a deterministic behaviour of the model.

Writing to the queue is non-blocking, because the queue size is infinite in the theo-
retic model. However, in practical implementations of a kpn, unbounded fifo queues are
not possible. Therefore, these implementations also provide a blocking-write primitive.
Whenever data has to be written to a queue which is full, the process will block until

1First-In-First-Out
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A

B

C
FIFO 1

FIFO 2
FIFO 3

Figure 2.2: Simple Kahn Process Network

data is read from the queue by the process on the other side, after which the data can
be successfully written and the process can resume. When the fifo sizes are too small,
this may lead to dead-lock behaviour. The minimum queue sizes has to be computed to
avoid this situation [13]. If queue sizes are set sufficiently large, no blocking writes will
occur.

Each fifo channel is passive, and is controlled by the processes that perform opera-
tions on the fifo channel. All fifo channels are independent of each other.

The kpn model of computation is well suited for the application domain as the ones
sketched in section 1.1, because of their streaming nature. A kpn model describes this
streaming aspect well, as data is ‘streamed’ through the fifo channels, being processed
on the way. Because of the deterministic nature of the kpn model the output of the
network is fully predictable. Lastly, the kpn model specifies an application in terms of
distributed memory and distributed control. This enables us to map an application onto
any multiprocessor platform systematically and efficiently.

2.3 The Compaan Compiler

The kpn model is well suited for mapping applications on a multiprocessor platform,
as each process of the kpn can run on one processor of the multiprocessor platform.
However, specifying an application using the kpn model by hand is very time consum-
ing, difficult and error-prone. Luckily, the Compaan compiler translates sequentially
specified applications into an equivalent kpn specification.

Leiden Embedded Research Centre [14], located in the Netherlands, developed a
tool called the Compaan compiler. The Compaan compiler transforms dsp applications
written in Matlab into Kahn Process Networks. Its framework consists of three tools,
we’ll explain step by step:
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1. MatParser. This tool converts Matlab code into single assignment code (sac).
This will resemble the dependence graph (dg) of the initial nested loop program.

2. DgParser. This tool converts sac into a Reduced Dependence Graph (prdg) data
structure. In terms of polyhedra this is a compact mathematical representation of
the dg.

3. Panda. This tool converts the prdg into a process network. It does so by gen-
erating a process for each node and a fifo channel for each edge in the prdg.
Each parallel process will communicate with one another according to the data-
dependency given in the dg.

The Compaan compiler transforms the Matlab application into a kpn specification in
a fast and completely automatic manner. The applications that the Compaan compiler
can transform correctly are parameterized static affine nested loop programs written in
the Matlab language.

2.4 Example Transformation

In this section, we show how the Compaan compiler transforms the QRvr algorithm,
specified as a sequential Matlab application, into an equivalent kpn specification. We
choose QRvr because the program is not trivial and it is being used in the field of dsp.
Another reason is that is not too complicated either.

The Matlab code for the QRvr is given in Figure 2.3 on page 16. It is written as
an affine nested loop program. In lines 1 to 5, matrix R is filled with zeros. Lines 7
to 11 fill matrix X, using a function Read() which obtains data from the source. This
function reads incoming data that is to be processed. Line 13 to 20 perform the actual
algorithm using matrix R and matrix X as input for the cordic functions Vectorize()
and Rotate(). Lines 22 to 26 pass the result in matrix R to the sink, i.e. the output.
The functional correctness can easily be verified, but is outside the scope of this thesis.

Since the Matlab program in Figure 2.3 does not reveal the inherent data-level paral-
lelism which is available in the application, we need to convert this sequential program
into an executable parallel specification. For this we use the Compaan compiler in order
to convert the program automatically into a the kpn specification.

Figure 2.4 on page 17 shows a schematic representation of the kpn specification
of the QRvr algorithm as generated by Compaan. In this example, Compaan has cre-
ated five processes, one for each assignment statement in the original Matlab program.
In this case, these are calls to the functions ReadMatrix_Zeros_64x64(), Read(),
Vectorize(), Rotate() and Pass(). The processes explicit the availability of the
data-level parallelism in the application. The data dependencies and the communica-
tion between the processes are expressed in the kpn via the distributed fifo channels.
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ND 1 will execute the ReadMatrix_Zeros_64x64() function and send every ele-
ment to processes ND 3 and ND 4. ND 2 will execute the Read() function and send
elements to processes ND 3 and ND 4. ND 3 will execute the Vectorize() function
and send the necessary output elements to itself, ND 4 and ND 5. ND 4 will execute
the Rotate() function and send the necessary output elements to itself, ND 3 and
ND 5. Finally the ND 5 will process the Pass() function and outputs the results as
they would be stored in matrix R in the original Matlab code. ND 1 and ND 2 are
called source nodes, as they provide data ‘from outside’. ND 5 is called a sink node, as
it outputs the data ‘to outside’. Not shown in this representation is the order in which
each process reads from incoming fifo channels and outputs to outgoing fifo channels.
This information is stored as syntax trees in the xml formatted kpn file outputted by
Compaan. Section 5.2 provides information on these syntax trees and the conversion of
these syntax trees into program code.
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%% Copyright (c) 2001 Leiden University (LIACS)

%% All rights reserved.

%%

%% Permission is hereby granted, written agreement and without

%% license or royalty fees, to use, copy, modify, and distribute

%% this software and its documentation for any purpose, provided

%% that the above copyright notice appears in all copies of this

%% software. The software provided hereunder is on an "as is"

%% basis, and the copyright holder has no obligation to provide

%% maintenance, support, updates, enhancements, or modifications.

%%

%% $Id$

%% @author Edwin Rijpkema

1 for j = 1:1:5,

2 for i = j:1:5,

3 [r(j,i)] = ReadMatrix_Zeros_64x64();

4 end

5 end

6

7 for k = 1:1:6,

8 for j = 1:1:5,

9 [x(k,j)] = Read();

10 end

11 end

12

13 for k = 1:1:6,

14 for j = 1:1:5,

15 [r(j,j), x(k,j), t ] = Vectorize( r(j,j), x(k,j) );

16 for i = j+1:1:5,

17 [r(j,i), x(k,i), t] = Rotate( r(j,i), x(k,i), t );

18 end

19 end

20 end

21

22 for j = 1:1:5,

23 for i = j:1:5,

24 [ Sink(j,i) ] = Pass( r(j,i) );

25 end

26 end

Figure 2.3: Matlab QRvr code
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Figure 2.4: The KPN of QRvr





Chapter 3

The Intel IXP Network Processor

Intel has created over time a complete family of IXP network processors in the field
of high performance computing. In this chapter, we first motivate our chose to use an
IXP network processor. Then the Intel IXP2XXX network processor family is shortly
discussed, and our choice for the IXP2400. We continue with a hardware architecture
overview of the IXP2400. Programming the IXP, with all its pitfalls and difficulties, are
discussed subsequently.

3.1 Choosing the Intel IXP Network Processor

The IXP2XXX network processor family is specifically designed and built to accom-
modate high speed network processing tasks. High throughput is achieved using fast
gigabit interfaces and multiple parallel programmable processing units. The IXP is
therefore well-suited for applications such as routing, network address translation and
as a firewall. More complex functions can also be implemented, such as a voip1-server.
Another common use is traffic analysis and monitoring. An IXP is fast enough to serve
fairly large businesses for such functionality.

Clearly, the traditional application domain is network processing. Whatever data is
sent over the network, some protocol is used for transportation. All networking proto-
cols partition the data in packets. Numerous protocols are supported by the different
IXP versions. Incoming packets are quickly stored into memory, after which the mul-
tiple processing units apply some clever function to the data. In router-like scenarios,
calculation and modifications are done to the packet header(s). With traffic analysis,
the packets are left intact. When a packet has been processed, it is ready to be sent out
again.

From an streaming application point of view, such hardware is extremely interesting.
Running a dsp application requires high-speed connections and multiple processors to

1Voice Over Internet Protocol
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process the incoming data at real-time. The IXP precisely provides such a platform.
Using the IXP platform for dsp applications moves the focus from calculation on the
packet header to the payload of a packet. Widening the perspective of usage for the
IXP would be beneficial both for Intel as for people in need for fast and affordable
computing power. Exploring the potential of this new perspective of the IXP is one of
the goals for this thesis, as is shown in chapter 7.

It seems incredible that the IXP is hardly being used for dsp related applications.
A reason to account for this peculiarity is that the Intel’s IXP range seems not to be
well-known, as little references exist both on scientific work as on the internet. Another
reason, probably maintaining this low fame, is that the IXP is pretty hard to program.
More on this subject is covered in section 3.6. By building a tool facilitating easy pro-
gram specification and automated mapping to the IXP platform, we hope to overcome
these issues and provide a means for effectively using the hardware on a greater domain
of applications than it is used for today.

3.2 The Intel IXP Network Processor Family

The Intel IXP product line of network processors include the IXP12XX, IXP4XX and
IXP2XXX families. The older IXP12XXX range is replaced by the IXP2XXX series.
The IXP4XX series do not include multiple processors and are thus not of interest for
our research.

This leaves our focus to the IXP2XXX range, including the IXP2325, the IXP2350,
the IXP2400, the IXP2805 and the IXP2855. The number of included processing units
range from two to sixteen microengines, always plus one Intel R© XScaleTM core. Other
differences are the supported memory sizes and protocols, and inclusion of a crypto-
graphic unit. An overview of the differences in processing units and memory sizes is
provided in Table 3.1.

Ultimately, our research is applicable to all members of the IXP2XXX family, as
the hardware differences are easily parameterized. However, for building the tool we
needed a hardware platform for generating test results. Also, one starting point is help-
ful for an initial programming effort. On liacs [15], systems supporting the IXP2400
and IXP2855 are at our disposal. Having 8 microengines, using an IXP2400 system
was sufficient for testing our research goals. This, along with practical reasons like
other researchers using the available hardware, determined our choice for the IXP2400.
As a result, we use the characteristics of the IXP2400 in this chapter to clarify the
architecture of the network processor family in general.
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Feature IXP2325 IXP2400 IXP2855
XScale core 900 MHz max. 600 MHz max. 750 MHz max.

Microengines, 2 at 600 MHz max. 8 at 600 MHz max. 16 at 1.5 GHz max.
organized into one cluster two clusters of 4 two clusters of 8

sram 16 MB 128 MB 256 MB
(1 channel) (2 channels) (4 channels)

dram 2 GB 1 GB 2 GB
(2 channels) (1 channel) (3 channels)

Table 3.1: The Overview of the components of the IXP2325, IXP2400, and IXP2855
Processors

3.3 Architecture Overview of the IXP2400

To understand the operation of the IXP2400, it is needed to have knowledge of the ar-
chitecture. It is moreover important to be able to program the hardware, as is discussed
in section 3.6. Therefore, a relatively short overview of the IXP2400 is given in this
section. A schematic block diagram overview of the most important functional units of
the IXP2400 is visualized in Figure 3.1. The elements of interest for this thesis are dis-
cussed subsequently. Details like the many special status registers and some functional
units are omitted in the figure as well as in this discussion. For further reading, see the
Hardware Reference Manual of the IXP2400 [16].

3.3.1 Programmable Processing Units

Central to the design are the programmable processing units. The IXP2400 is equipped
with one XScale core and eight microengines, all on the same die. The XScale core
is a RISC2 general-purpose processor, which is compliant with ARM 3 Architecture
V5TE [17]. The microengines are RISC-processors which are optimized for typical
fast-path packet processing tasks.

2Reduced Instruction Set Computer
3Advanced Risc Machines Ltd.
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Figure 3.1: IXP2400

Intel XScale Core

The Intel XScale core is similar to the processing units found in many other hardware,
including other embedded platforms, computers, handhelds and cell phones. The in-
tended use on the network processors is controlling and supporting processes on the
microengines, where needed. For example, if some exceptional packet is to be pro-
cessed what would be troublesome to implement in the nicely streamlined packet flow
designed on the microengines, the XScale core can handle that packet. The XScale core
is, in contrast to the microengines, easy to program. Lots of tools, compilers and oper-
ating systems are available for the Intel XScale processor. For the scope of this thesis,
we found no special use for the XScale core.

Microengines

The instruction sets in the microengines are specifically tuned for processing network
data. It consists of over 50 different instructions including arithmetic and logical opera-



3.3. Architecture Overview of the IXP2400 23

tions that operate at bit, byte, and long-word levels, and can be combined with shift and
rotate operations in a single instruction. Integer multiplication is supported, but float-
ing point operations are not. The pipeline consists of six stages in which instructions
take on average one clock cycle to execute. Figure 3.2 on page 23 shows the functional
blocks in each microengine. On the top side of the figure, registers are used to store
incoming data. These are next-neighbour registers, dram read transfer registers and
sram read transfer registers. The read transfer registers store data from sram memory
and from dram memory. On the bottom side of the figure, dram write transfer registers
and sram write transfer registers are used to move data out of the microengine, to dram
memory and to sram memory. The third data output option is to the next-neighbour
register bank of the next microengine in line. There are two general purpose register
banks. The register types are discussed in more detail in section 3.3.3. Other elements
of interest are the instruction store with a size of 4 K instructions, the local memory
with a size of 640 longwords of data and the execution datapath.
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Figure 3.2: IXP2400 Microengine Block Diagram
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3.3.2 Threads and Thread Arbitration

An important feature of the microengines is hardware-assisted thread execution. Each
microengine has 8 threads. Switching contexts between threads cost no more overhead
than aborting an execution due to a branch instruction, 4 clock cycles on average. This
is possible by each of the eight threads per microengine having its own set of registers
and program counters. Thus, instead of storing all register contents of the latest run-
ning thread into memory and retrieve the register contents for the next one, all taking
hundreds of cycles, simply a different set of registers is activated. Threads can quickly
switch to another thread on the same microengine, within 4 clock cycles. Whenever
a thread needs to wait for data, the next thread immediately takes over. This way, by
executing code of other threads while waiting for data, memory latencies are hidden.

The IXP2400 processor also contains a thread arbiter that swaps between threads in
a microengine in round-robin order. Only threads that are ready to run, e.g. threads no
longer waiting for data to arrive, are activated. When a thread is waiting for data, the
ready state will be set as soon as the data has arrived. The round-robin schedule of 4
running threads is illustrated in Figure 3.3. It is clear that two threads cannot run at the
same time.

Thread 0
Thread 1
Thread 2
Thread 3

Figure 3.3: Threads

Each thread has its own register set and program counter. Registers can also be set
to be shared between all contexts of the microengine. The 4 K 40-bit instruction store
is always shared between contexts. This means that all threads execute the same code.
However, code can branch based on the thread number of the current executing context,
thus allowing threads to execute their ’own’ code. Still, 4 K is not much to share.

Cooperative Threading Example

Consider the following packet-processing scenario to illustrate the purpose of the de-
sign of threads. Suppose a packet stream is recorded on a place in memory (visible to
all microengines). Further, a specific task has to be applied to all packets, and this task
is to be done by one microengine. The algorithm for the task fits in the total instruction
store of the microengine. Now, all threads take turns in executing the task on subse-
quent packets, each thread doing the next packet in line, one at a time. An example
implementation of this process is illustrated in the pseudo-code in Figure 3.4.
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1 int (shared) packetCounter = 0;

2 int (private) myPacketCounter;

3

4 main () {

5 myPacketCounter = packetCounter;

6 packetCounter ++;

7

8 data = getDataFromMemory(myPacketCounter);

9

10 swap out;

11 wait for data to arrive; // if not arrived, swap out again

12

12 applyTask(data);

14 }

Figure 3.4: Cooperative Threads Pseudocode

Every thread uses it’s own copy of the packet counter (line 5). To hide latencies,
whenever a thread swaps out it will still remember what packet it was working on, while
other threads can continue working on subsequent packets.

When the program starts running the first thread will process packet number 0. In
line 8, it must first retrieve the data from memory. Therefore, it will swap out on line
10. At that moment, the second thread will start processing packet number 1. By
the time the first thread is allowed to run by the round-robin schedule of the thread
arbiter, depending on whether the data has arrived, it will continue processing packet
number 0. Meanwhile other threads are waiting for their data to arrive. In this way
eight packets can be processed in parallel with as little memory latencies possible. That
the two variables are declared private or shared is essential for the correct working with
multiple threads.

The threading model is non-preemptive, meaning that the thread will only swap out
if the code tells it to do so. For a programmer, it is important to keep control over
the order in which things happen. For example, no context switch will be done between
lines 5 and 8. If the thread would swap out between lines 5 and 6, two threads would end
up processing the same packet. By not placing any code that could cause switching of
the context provides a form of mutual exclusion. This implies that no other threads will
see chance to execute. The programmer must manually ensure that context switching
occasionally occurs to give all threads opportunity to run.
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3.3.3 Registers

Each microengine has four different types of registers: general purpose (gp), sram trans-
fer, dram transfer and next-neighbour registers. Microengines do not need to be flushed
into memory when the context switches. An equal portion of the registers is assigned
to each thread. Therefore a context switch can be done within 4 clock cycles.

Each microengine has 256 32-bit gp registers, separated in two banks of 128. These
can either be used for thread-local communication (the equal share portion) or can be
shared between all contexts for inter-thread communication For example, this means
that when no gp registers are shared, each thread will have 16 private gp registers.

Each microengine has 256 sram transfer registers, divided into 128 sram read reg-
isters and 128 sram write registers. These registers are used to read from and write to
all functional units on the network processor except for the dram memory. Therefore
these registers form the main means of communication for the microengine. When data
stored in sram is to be read, it is first placed in a sram read register. Once data arrives
there, it can be used in the microengine. When data needs to be stored into sram, it first
has to be placed in an sram write register after which it can be stored into sram.

An equal amount of dram transfer registers is present on each microengine and is
organized in the same fashion as sram transfer registers. While the dram read registers
can be used to read from all hardware on the network processor, the write registers can
only be used for dram memory access.

The last type of registers are the next-neighbour registers, of which each micro-
engine has 128 of 32-bit. These can be used to send data to the next microengine in
number. The first microengine cannot read data from a previous microengine, and the
8th microengine cannot write data to a next. All 128 registers can be used as one big
hardware assisted ring with atomic get and put operations, or be partitioned between
the threads. Lastly it can also be used as a set of slower extra gp registers, instead of
using it as inter-thread communication. Any data put in the registers can then only be
read by the same microengine.

3.3.4 Memory

Except for the registers, memory is also present on each microengine. Most important
is the local memory, with a size of 640 long-words. It has a latency of 3 cycles. Another
form of memory local to the microengine is the content addressable memory, which is
a lookup table consisting of 16 entries.

Still on the network processor chip, but outside the microengines, memory is present
called scratchpad memory. It has a size of 64 K 32-bit values. It is has longer access
latency times than the local memory, but still is much faster than the off-chip memory.
Scratchpad and the off-chip memory are shared between all microengines. It supports
atomic operations like add and subtract, and 16 fifo rings with atomic get and put op-
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erations. These rings are implemented using special hardware registers functioning as
base, head and tail pointers. The content of the rings are on the scratchpad memory
itself.

Outside the network processor chip, sram and dram memory banks are present. Up
to 1 GB of dram and up to 128 MB of sram are supported. These memory banks are
accessed using the sram and dram transfer registers. sram also offers atomic operations
and fifo rings.

Please note that the hardware supported rings on scratchpad and in sram memory,
as well as the next neighbour ring, are fifo implementations. This is an important
clue for mapping fifo specifications from a kpn onto the platform. It is possible to
implement more fifo buffers in the various memory types than there are rings available
in the scratchpad memory and sram memory, albeit slower because the get and put
operations will not be atomic. The mapping of fifo channels onto the memory hardware
is discussed in section 4.2.2.

An overview of the properties of the memory types is provided in Table 3.2 on
page 27.

Approx.
Logical unloaded
width Size latency Special

Memory (in bytes) (in bytes) (in clks) operations

Local memory 4 2560 (per 3 Indexed addressing with
microengine) post increment and decrement.

Scratchpad 4 16K 60 Atomic operations including
(on-chip) atomic subtract. 16 rings, with

atomic get and put operations.

sram (qdr) 4 128M 90 Atomic operations, excluding
(addressable, atomic subtract. 64-element
64M per queue array with atomic enqueue,
channel) dequeue, get and put operations.

dram (Rambus/ 8 1G 120 Direct path to and from the msf,
ddr) (addressable) which allows data to be moved

between the two without first going
through one of the processors.

Table 3.2: Properties of the four IXP2400 Processor Memories
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3.4 Media and Switch Fabric Interface

For communication with the outside world, two hardware units are present: the pci
controller and the Media and Switch Fabric Interface (msf). The pci controller connects
to nearby hardware, where the msf connects to a physical layer device and/or a Switch
Fabric Interface (in other words: the network).

Packet reception and transmission on the IXP2400 using the msf is a complex act of
segmenting and reassembling small partial-packet data, called mpackets. Basically, the
msf contains two buffers for mpacket storage, one for inbound data (rbuf) and one for
outbound data (tbuf). An mpacket is configurable to be either 64, 128 or 256 bytes of
size.

Incoming packets are partitioned into mpacket size, and stored into rbuf. To be able
to restore the original packets, Start of Packet (sop) and End of Packet (eop) flags can
be set per mpacket. The presence of an mpacket is recorded on a waiting list.

At least one thread of one microengine should be assigned to handle incoming data
on the msf. It does so by placing its thread number on another waiting list on the msf.
When both an mpacket and a waiting thread are available, the mpacket is assigned to
that thread4. The thread can now either read the mpacket data itself, or instruct the msf
that the data is to be stored to some address in dram, as there exists a direct link between
the msf and dram. Packets are reassembled in dram this way. Using a single thread to
do this work, is in practice too slow. Typical IXP applications use all eight threads on
one microengine, and so does our implementation.

The other way around, threads can instruct the msf to accept mpacket-sized data
stored in dram into the tbuf of the msf. sop and eop flags need to be set at the first and
the last mpacket, respectively. The msf will reassemble and transmit the packet onto the
network.

This might all sound confusing. To put it more simply, threads assist the msf in
storing incoming packets into dram, and transmit outbound packets stored in dram.

3.5 Signals

One more important feature of the IXP2400 is the unified signalling model. Signals can
be generated by almost all parts of the hardware. Microengines can test for presence
of absence of certain signals. This allows for conditional branching upon presence or
absence of a signal, or to tell the thread arbiter not to swap until a certain signal is
raised. It is also possible to have multiple outstanding signals at the same time, even
at the same hardware. Many of the processes running on the IXP2400, are controlled
using signals.

4Actually, when either a thread or an mpacket is already waiting, and the other arrives, the latter is
not put on its waiting list, but assigned directly.
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01 __declspec(sram_read_reg) x; SIGNAL sig;

02 __declspec(scratch)* addr = 0x400;

03

04 main () {

05 scratch_read(&x, addr, 1, sig_done, sig);

06 do_other_work();

07 __wait_for_all(&sig);

08 y = x;

09 }

Figure 3.5: Signal to wait for memory operation

A code example of the use of signals is given in Figure 3.5. In line 5, a memory
operation is issued. The contents of memory address 0x400 in scratchpad memory are
transferred to the sram read register x. The command sig_done indicates that the
microengine can continue processing. Line 6 will be executed directly after line 5. Line
7 indicates that the thread may only continue after the memory operation completed.
When the memory operation of line 5 completes, a signal sig is raised. This signal
is what line 7 checks for. Between line 5 and 7 no use of the variable x can be made.
After line 7, x will be guaranteed to contain the value read from scratchpad memory.
The option of executing code between the issuing and the completion of the memory
operation allows is a form of hiding the memory latency.

// Microengine 1 // Microengine 2

01 __declspec(remote) SIGNAL sig1; 10 __declspec(visible)SIGNAL sig1;

02 __declspec(visible)SIGNAL sig2; 11 __declspec(remote) SIGNAL sig2;

03 12

04 main () { 13 main () {

05 signal_next_ME(sig1); 14

06 15 __wait_for_all(&sig1);

07 16 signal_previous_ME(sig2);

08 __wait_for_all(&sig2); 17

09 } 18 }

Figure 3.6: Synchronisation between microengines using signals
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Another code example of the use of signals is given in Figure 3.6. Lines 1 – 9 are
executed on microengine 1, lines 10 – 18 on microengine 2. In line 5, a signal is sent to
microengine 2. In line 15, microengine 2 waits for that signal to arrive. In this example
microengine 2 sends a signal back to microengine 1, in lines 16 and 8. This way, the
microengines are synchronized to each other. In our work, this type of synchronisation
is used after initialization of the fifo structures. All microengines are synchronized
with each other, such that each microengine is guaranteed that all fifo structures are
initialized properly. Another use is described in section 6.5.

3.6 Programming the IXP

The programming model of the IXP2400 processor differs from traditional program-
ming models, such as those used on Windows or Linux-based environments. In those
traditional programming models, most hardware aspects of the platform are virtualized,
abstracting the concepts of threads, memory and signals to the programmer. Such a
virtualization was not developed for the IXP programming model.

Instead, programmers need to have understanding of all the hardware concepts
as most are controlled directly by the programming language. There are no memory
caches. When used improperly, memory accesses will cause corrupted data usage. For
each variable, the programmer has to specify (and remember) in what memory or which
register it resides, whether it is shared between threads or not and whether it is used by
multiple microengines or not. For each memory operation, signals are generated and
have to be handled properly. Memory access latencies have to be hidden as efficient
as possible. Thread swapping is not done automatically, but has to be enforced by the
programmer. Synchronization between concurrent processes in the application needs to
be modelled manually. The many special status registers need to be used correctly with
specific bitpatterns.

The lack of virtualization and abstraction is by design, as it was felt that complete
understanding of the hardware is needed to produce optimal code. Otherwise, it would
supposedly not be possible to let the hardware fully do what it was designed for. True,
writing optimal code is possible, however the process is time-consuming, error prone
and difficult.

3.6.1 Programming Languages and Environment

Intel provides several programming tools combined in the Intel IXA Software Develop-
ment Kit. These tools include an assembler for the microengine assembly language, a
compiler for the microengine C language, as well as an integrated desktop environment
(ide) called the Developer’s Workbench.
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Microengine Assembly

The microengines have a rich instruction set, designed to support operations particularly
useful for networking applications. Therefore, an assembly language to support the
instruction set, but also all other hardware on the IXP, was developed. As with most
assembly languages, it provides means of creating low level code as optimal as possible,
but is not necessarily easy to program.

Microengine C

Intel also created a C variant for programming the IXP called the microengine C lan-
guage. The syntax is ansi C, with the exception of no support for function pointers and
recursion. Type safety, pointers to memory, functions, enums, structures and arrays are
supported. Because of the many exposed memory and register types, variable decla-
rations usually include an extra modifier, __declspec, to inform the compiler where
to store the given variable. For example, __declspec(scratch) int x defines an
integer variable x stored in scratchpad memory.

Not all features of the IXP2400 hardware can be expressed in ansi C, such as asyn-
chronous memory access, waiting for signals and special memory operations. There-
fore, a library of intrinsics is provided. In essence, the compiler replaces an intrinsic
function call with well-known assembly code, implementing the special operation. For
example, to read a value from scratchpad memory and increase the value afterward in
one atomic operation, the intrinsic scratch_test_and_incr() is provided.

Developer’s Workbench

With the Developer’s Workbench, it is possible to develop and debug programs using
both the microengine assembly language as the microengine C language. It provides a
graphical environment running on Microsoft Windows with a syntax-highlighting edi-
tor. The assembler, microengine C compiler and linker are controlled from the Devel-
oper’s Workbench.

Included is a simulator to emulate the IXP2XXX hardware. The simulator also
provides a packet stream generator to provide incoming data. Using the simulator, it is
possible to debug every process on the platform, as every hardware detail is simulated.
All ’current’ data in all memories and registers can be watched, as well as variables.
Per thread, the current executed instruction is given. Breakpoints can be set per line of
code and per thread. Breakpoints can also be set on changes in memory locations and
variables.

To support the debugging process further, a history collector can store all memory
and variable data per executed clock cycle, as well as the point of execution per thread.
An annotated graphical representation of the thread’s execution history is also provided.
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Despite the numerous debugging tools, debugging is still a painful task. This is
partly due to the complexity of the hardware which remains hard to oversee, but mostly
because the compiler optimizes as much code away as possible. Sometimes, this results
in not being able to see the contents of variables that are optimized away. Also variables
often appear to be out of scope even in the lines where they are actually used. When the
programmer wants to see the contents of such variables, it is needed to add extra code
that will not be optimized away to be able to see the contents. An even worse, a side
effect of the optimization by the compiler is that sometimes lines of code will not be
executed at all. For example, when a variable is written of which the compiler thinks
it is not used afterwards. In such cases the programmer must add an implicit_read
statement for these variables to avoid being optimized away.

The simulator is slow, as it has to emulate and store every state of the hardware per
clock cycle. Debugging using hardware does not suffer from the simulator’s slowness,
but provides much less detail.
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Mapping

The conversion from a kpn specification to an IXP Network Processor implementation
consists of two stages. First, all elements of the kpn have to be mapped onto the hard-
ware resources of the platform. Second, code has to be generated for each hardware
resource. The latter is described in chapter 5.

In this chapter we propose several techniques to map a kpn specification onto the
IXP2400 platform. The elements of the kpn that are to be mapped, are processes and
fifo queues. The mapping target is the hardware described in chapter 3.

4.1 Process Mapping

4.1.1 Processes to Processors

When mapping process networks to multiprocessor platforms, processes are generally
mapped onto processors. An exception to this is the Laura[3] tool, as it uses recon-
figurable logic on fpga boards for processing power, and not necessarily the embedded
general purpose processors if these are available. This comparison is somewhat insipid,
as fpga hardware is not always a multiprocessor platform. For example, microproces-
sors can be implemented in reconfigurable logic and general purpose processors can be
embedded in the hardware, but both can be absent. In the context of multiprocessor
platforms a comparison to the Espam[4] tool is more valid, as it implements Micro-
Blaze [18] processors and the interconnects onto the fpga logic, which renders the fpga
a multiprocessor platform.

In the case of the IXP2400, the only processing power is available in the micro-
engines and the XScale core. Processes from the kpn will be mapped onto processors.
The imca tool does not map processes onto the XScale core, as it is a completely dif-
ferent type of processor than the microengines. It lacks the threading model and has a
different communication structure with the other hardware on the platform. We found
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it infeasible to implement a completely different mapping solution just for this single
processor as there are many more microengines. Therefore, we leave this matter for
future implementations (see in chapter 8).

The microengines on the IXP2400 have a special hardware assisted threading model.
The remainder of this section discusses how to map processes effectively using these
threads. Therefore we first discuss the subject of cardinality in the mapping process.

4.1.2 Cardinality

Input to the mapping process is a kpnwith a certain amount of processes, and a platform
with a certain fixed amount of processors. The amount of processes in the kpn is variable
to a certain degree. Using algorithmic transformation techniques [19] different nodes
of a kpn can be merged into a single node, or the workload of a single node can be
split into two nodes, with half the workload. This allows for a variable number of
nodes ranging from one (all nodes merged together) to an amount related to the number
of loop iterations available in an application (all loops unrolled or unfolded). Thus,
Compaan can generate a less, an equal or a greater amount of processes than the number
of processors on the platform, depending on the application. Each situation would
require a different cardinality for the mapping strategy, i.e. the relation between the
amount of processes and the processors to map the processes onto.

Choosing the cardinality of the mapping of kpn processes onto processing units is
important for both guaranteeing the deterministic behaviour of the application, as well
as the performance of the mapping result. Most intuitive is a one-to-one mapping, but
many-to-one and one-to-many should be considered as well.

• A one-to-one mapping means that each process is mapped onto one processor,
and that on each processor one process has been mapped.

• With a many-to-one mapping, one or more processes are mapped onto each pro-
cessor (but not limiting the amount of processors to one).

• A one-to-many mapping means that duplicates of one process are mapped onto
multiple processors on the platform.

• A many-to-many mapping implies that duplicates of processes are allowed, and
multiple processes on each processor as well.

First, let us rule out one-to-many and many-to-many mapping of processes onto pro-
cesses: one process should be mapped only once to a processor. This is an important
aspect of the mapping process to not disturb the correct working of a process network.
If one process were to be mapped on two different processors, correct deterministic
behaviour would be no longer guaranteed. The problem lies in how to split the corre-
sponding fifo channels. The interesting part is that Compaan can split one process into
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two processes, creating the fifo channels correctly. Therefore, the mapper should not
undertake such efforts leaving the splitting process to Compaan and map one process
only once.

This leaves us to one-to-one and many-to-one mapping. The question is how many
processes we should let Compaan generate for our platform, one for each processor or
multiple for each processor? If there were enough processors available to match the
number of possible parallelizations in an application, the maximum amount of perfor-
mance increase, due to parallelization, is reached. In practice, the amount of proces-
sors is limited to a smaller amount, thus limiting the amount of tasks that can be truly
performed concurrently. If Compaan would create more processes than processors by
splitting one existing process into two, these two new processes would be mapped onto
the same processor again (if the other processes would be mapped onto the same micro-
engines as they were before, i.e. ceteris paribus). If the latencies of accessing the fifo
channels and swapping between processes were neglected, the situation will stay the
same.

The presence of these latencies implies that mapping multiple processes onto a sin-
gle processor cause a loss of performance. However, we will show that in the case of
the IXP2400 this also has beneficial aspects.

4.1.3 Latencies

In the general case of a multiprocessor platform, two types of latencies are to be con-
sidered on each processor: swapping latency and memory access latency1. Depending
on these latencies, it can be decided whether it is wise to map multiple processes onto
one processor or not.

Swapping Latency

Most processors suffer from a latency when switching from one task or thread to an-
other. All register contents have to be saved into memory, and a new set of contents have
to be loaded into the registers. When swapping latencies are costly, it forms a penalty
for mapping multiple processes onto a single processor. In the case of the IXP2400,
swapping latencies are negligible due to the hardware assisted threading model. As far
as swapping latencies are concerned, mapping a process to each of the eight threads of
the microengine is as costly as mapping only one process to the whole microengine.

1In general purpose processors swapping latencies are partially caused by memory access latencies.
For this discussion a distinction is necessary.
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Memory Latency

Considering everything outside the processor as ‘memory’, the latencies for accessing
these memories are also an important factor. fifo channels are also considered memory.
Every process communicates through fifo channels, and thus suffers from latencies of
accessing the hardware outside the processor. One strategy to keep this penalty to a
minimum is to minimize the number of fifo channels that have to be accessed on a
single processor. This is achieved by not letting Compaan split any node into multiple
nodes. Less duplicated processes means less fifo channels, and thus the number of
memory access latencies.

A better strategy is to hide the memory access latencies altogether. This is exactly
what the IXP2400 was designed to do, as described in section 3.3.2. Every time the
microengine needs to access a fifo channel, another task can take over the microengine.
The more processes mapped on the microengine, the bigger the chance that another
process is ready to run. This way, all memory accesses can be hidden as much as
possible. If all memory accesses are truly hidden, a better result is achieved than when
using only as little memory accesses as possible.

There is one downside: the microengines on the IXP2400 only have a limited
amount of instruction store, so it may not be possible to map any eight processes onto
one microengine, depending on the code size. Parallelizations obtained via loop un-
rolling have this problem in less extend as the corresponding processes share the same
function code and can be mapped onto the same microengine without causing a large
increase of code size.

A remark is that in our mapping implementation, all fifo channels are mapped onto
hardware outside the processors. When mapping fifo channels that connect processes
mapped onto a single microengine inside the microengines, e.g. in the local memory,
memory latencies would further be reduced.

4.1.4 Processes to Threads

Concluding from the previous section, a many-to-one mapping is best practice on the
IXP2400. When mapping more processes onto each microengine, memory latencies
are better hidden. Each microengine has eight threads. In our mapping implementation,
five of the eight microengines are available for mapping processes onto. The other three
microengines are used for transmitting and receiving data. This means that in theory
5 × 8 = 40 processes can be mapped onto an IXP2400. However, if each process
requires an algorithm with a large code size, mapping 8 functions would not fit in the 4
K instruction store, which is shared by all threads. In practice, most process functions
are quite small and together easily fit the instruction store. Per microengine about 3K
instruction store is available for process algorithms, as 1K is used for implementing the
kpn syntax trees and fifo queues.
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We have used the term ‘many-to-one mapping’ for mapping multiple processes onto
each microengine. It is also valid to say we use a one-to-one mapping of processes to
threads. Each thread could be seen as a separate processor, as it has its own set of
registers. This would mean we have a one-to-one mapping of processes to processors
after all. We will not adopt this terminology of naming threads as separate processors,
as it is confusing.

4.1.5 Resources

Having mapped a process to a thread, what resources are available to the process? In-
cluded are at least an equal share of the registers of the microengine for each thread.
This is default behaviour for the IXP2400. A portion of instruction store is also used to
implement the algorithm of the process. A set of registers may not be sufficient storage
space. It is therefore logical to allow usage of local memory by each thread, as it has a
short access time.

Usage of scratchpad memory, sram memory and dram memory should be disal-
lowed, as it would harm the streaming character of the application by introducing new
memory access latencies aside from the required fifo queue accesses.

Another reason only to use registers and local memory is that programming for the
IXP2400 then is almost as easy as regular C programming. Usage of hardware outside
the microengines makes programming much harder by needing special programming
constructs specific to the IXP, such as signals and intrinsic functions. Process algorithms
are usually not included in the kpn specification, so they still have to be implemented.
The imca tool will generate an empty function for the programmer to implement.

4.1.6 Strategies

The question of how many processes should be mapped onto the threads is closely re-
lated to where each process should be mapped. There is no difference between the
threads of the microengines, so when mapping a process to a thread of a microengine,
it does not matter which thread will be assigned. Furthermore, the only difference be-
tween the microengines is the topology of the next-neighbour communication channels.

Based on this information, three distinctions can be made when considering map-
ping a process to a specific thread:

1. Which processes are mapped onto the previous microengine?

2. Which processes are mapped onto the next microengine?

3. Which processes are mapped onto the same microengine?
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The first two distinctions are related to the next-neighbour communication channels.
When mapping fifo channels onto these next-neighbour channels, receiving processes
should be mapped on the next neighbour microengine of the microengine of the sending
processes. Our mapping implementation does not use next-neighbour communication
channels, but it should be implemented in the future as described in chapter 8. More on
the subject of mapping fifo channels is found in section 4.2.

The third distinction is the most important one. It is of significance for three reasons.
First, the total load of each microengine (the combined execution time needed by the
processes) should be kept as equal as possible. To spread the load, it is important to
consider which processes should be mapped together onto the same microengine. A
simple heuristic to implement this strategy, is to assume that every process has an equal
load, thus each microengine should have an equal number of process mapped onto it.
To do so, first map one process onto each microengine, then a second, and so on – until
there are no more processes to map.

The second reason is the matter of code size. If several processes use the same
function code, it is wise to map these processes onto the same microengine to save total
code size.

The third reason is that fifo channels between processes can be implemented inside
the memory of a microengine. When mapping processes with a lot of mutual fifo
channels onto the same processor, communication overhead (memory latency) is saved.
This heuristic may conflict with the heuristic of load balancing, as the processes with
the most mutual fifo channels often are the processes with the biggest load.

Due to the period of time available for this thesis, only the described heuristic of
load balancing is implemented in the mapper for our imca tool. An example of this
mapping strategy is illustrated in Table 4.1. It represents the mapping of the fdwt
algorithm, of which the corresponding process network is illustrated in Figure 4.1 on
page 45. Microengine 0:0, microengine 0:1 and microengine 1:3 are reserved for I/O
operations as described in section 6. Nodes are mapped in a round-robin order onto the
available microengines. The mapping strategy is once more visualized in Figure 4.2 on
page 46.

4.2 Channel Mapping

After mapping the processes of the kpn to the threads of the microengines, the next
step is mapping the kpn fifo channels onto the IXP2400 hardware. We assume that the
tokens used for these channels are 32 bit integer values.
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Microengine
Thread 0:0 0:1 0:2 0:3 1:0 1:1 1:2 1:3

1 RX read pkt Node 1 Node 2 Node 3 Node 4 Node 5 TX
2 RX read pkt Node 6 Node 7 Node 8 Node 9 Node 10 TX
3 RX read pkt Node 11 Node 12 Node 13 Node 14 Node 15 TX
4 RX read pkt Node 16 Node 17 Node 18 Node 19 Node 20 TX
5 RX write pkt Node 21 Node 22 Node 23 - - TX
6 RX write pkt - - - - - TX
7 RX write pkt - - - - - TX
8 RX write pkt - - - - - TX

Table 4.1: Mapping of nodes from Figure 4.1 onto IXP2400

4.2.1 FIFO Characteristics

In essence any fifo queue implementation is an amount of memory with special char-
acteristics with regard to how data is written into the memory and is retrieved from the
memory. The most important aspect of any fifo queue, as the name suggests, that the
data that was first written, will be the first to be send out. To ensure this behaviour,
fifo implementations typically support two special operations: get() and put(). The
implementation of the fifo queue should ensure that the elements inside are kept sorted,
and that these functions operate on the correct elements inside the queue. A common
implementation is that two pointer values are maintained, containing the memory ad-
dresses of the first free element to read (the head) and the first element to write at (the
tail).

When multiple instances write to or read from the same port2, the get() and put()
functions need to be atomic operations. It may not happen that two functions use the
put() operation, yet both values are written to the same element inside the queue as
a result of using twice the same head pointer value. Thus, writing a new element and
raising the head pointer should be performed atomically to avoid race conditions.

When only one instance can read from or write to a single fifo queue, a race condi-
tion caused by multiple instances trying to use the same operation will not occur, even
when the operations are not atomic. To avoid a race condition between the writing and
reading instances, the operations implementing get() and put() should be executed
in the correct order. For example, for a put() operation the order will be: read the head
value, write to that position, raise the head value.

A kpn uses point-to-point fifo channels. Every fifo channel can be written by only
one process, and only one process can read from it. Using a one-to-one mapping of

2This is not the case for point-to-point fifo usage as with the kpn model.
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processes to threads on the microengines, each fifo channel should also be mapped
once. The kpn topology is kept intact by the mapping and the point-to-point aspects
are maintained. Ergo: for the mapping, atomic get() and put() operations are not
required.

4.2.2 Hardware Options

The IXP Network Processors were created for streaming applications. In such appli-
cations, fifo queues are very common. It is not by accident that several structures
implementing fifo queues are available in hardware. Intel calls these hardware fifo im-
plementations rings. Rings available in the IXP2400 are next-neighbour rings, scratch-
pad rings and sram rings. These rings all support atomic get() and put() operations,
by using dedicated head and tail pointer registers for each ring. These registers are also
called ring descriptors. Next-neighbour rings have the shortest access times, sram rings
the longest. Sadly, there are only 7 next-neighbour rings (because there are 8 micro-
engines on the IXP2400) and there are only ring descriptor registers available for 16
scratchpad rings. For sram rings there are 64 ring descriptors available per sram con-
troller, of which ring descriptor values can be cached into sram itself. This means that
the number of sram rings is only limited by the amount of sram memory available.

As we are not specifically interested in the atomic operations but merely in fast
access times, more fifo implementations were thought of. These include the use of
local memory, reflect-write operations (microengines directly writing data into each
others transfer registers), scratchpad memory without ring support, and dram memory.
The idea is to assign two memory addresses as head and tail pointers and a series of
memory addresses as queue. Interpretation and updating of the memory addresses of
the head and tail pointers are implemented on the microengine instead of in the memory
ring hardware. Since all fifo channels are point-to-point, the status of the fifo channels
can be cached in the microengines. This saves memory accesses when it is already
known from a previous access that there is plenty room to put tokens into, or there are
enough tokens to read.

Each hardware mapping option is described subsequently in order of memory access
times. These access times are based on Table 3.2 on page 27. Our mapping implemen-
tation supports both the hardware and software supported scratch rings, and sram rings.
Implementations of dram fifo queues would be too slow. Use of Next-neighbour rings,
reflect-write operations and local memory is left for future implementations. A topolog-
ical overview of the various implementations on the hardware is provided in Figure 4.3
on page 47.
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Local Memory Rings

Each microengine has a fast accessible local memory of 640 longwords that is shared
between all threads. This makes this memory an ideal candidate for usage as fifo queue
for all channels that have a single process both as source as destination, and channels
between processes mapped onto threads of the same microengine. Figure 4.3 shows
local memory fifo s as number 1.

The local memory cannot be exclusively used for fifo queues. Depending on the
algorithms, processes might also need sufficient storage room for storing temporary
results when not enough registers are available. In the current implementation, 8 long-
words are reserved for each fifo queue accessed on each microengine (this is the port
struct, described on page 49). Therefore the mapper is limited in the amount of local
memory available to use for fifo queues.

Next-neighbour Rings

The next-neighbour registers on each microengine can be used in three modes: an extra
set of general purpose registers, one fifo channel with a size of 128 longwords between
neighbouring microengines, or as 128 separate registers readable by the neighbouring
microengine. When using the registers as one fifo queue, atomic get() and put() op-
erations are provided, but it might be a waste of space as there are only 7 next-neighbour
channels available and not all channels need to be 128 elements long. Instead, the space
of 128 longwords can be divided into multiple fifo channels, with self-implemented
head and tail pointers.

Either way, the mapping of the processes to threads is crucial when selecting fifo
channels that should be mapped onto these next-neighbour channels. In such a mapping
source nodes are placed on the lower microengine numbers, and sink nodes on the
higher microengine numbers, as most communication flows from the source nodes to
the sink nodes. Next-neighbour rings are illustrated in Figure 4.3 as number 2.

Reflector Rings

Each microengine has 128 sram read registers and 128 dram read registers. It is possible
to let one microengine write data to the read registers of another microengine. This is
called a reflector operation. This provides a similar solution to using the next-neighbour
register banks as multiple self-implemented fifo queues. The difference is that the next-
neighbour registers have dedicated data paths to the microengines, whereas reflector
operations must use the standard bus between all the elements of the network processor.
Therefore it is slower. The data flow of reflector operations is shown as number 3 in
Figure 4.3.

The dram read register banks of the microengines used for mapping processes onto,
are not used in any way and can be completely used for this purpose. sram read registers
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are used for communication with all other fifo implementations, so these should be used
more economical for this purpose.

Hardware Assisted Scratch Rings

On the scratchpad unit 16 sets of special registers (rings) are available, serving as fifo
head and tail pointers for memory allocated onto scratchpad memory. The minimum
size of such a fifo is 128 longwords, which is in most cases more than enough. When
using all 16 scratchpad rings with the minimum size, half of the scratchpad memory is
thereby allocated. On all 16 rings atomical get() and put() are provided. For the first
12 rings, a hardware assisted test for either fullness or emptiness is provided, but not
both simultaneously. We only make use of the emptiness tests. The scratchpad rings
are illustrated as number 4 in Figure 4.3.

A requirement of hardware assisted scratch ring data memory, is that its allocation
needs to be aligned to the size of the ring. This means that a ring of size 128 can be
allocated at longwords 0 – 127, 128 – 255, etc. A ring of size 1024 can only be assigned
to longwords 0 – 1023, 1024 – 2047, etc. All hardware assisted scratch rings are sorted
by the mapper on descending size, and mapped to the beginning of scratch memory in
that order. This way, all rings will be correctly aligned according to their ring sizes.

Self Implemented Scratch Rings

When not all scratchpad memory is used by the hardware assisted scratch rings, the
remaining part can be used by self implemented rings, assigning head and tail pointers.
This is illustrated as number 5 in Figure 4.3. This implementation is also used for com-
munication of sink nodes with the microengine responsible for transmitting data to the
msf, as an extra pointer is implemented to provide synchronisation. This synchronisa-
tion is needed when one run of the process network has completed. The transmitting
microengine needs to know which value on the ring is the last value for that that run,
such that it can wrap up and transmit a network packet. This process is described in
section 6.5

SRAM Rings

sram rings are the third hardware supported fifo implementation. Each sram memory
channel has a queue descriptor table which can hold 64 values. As the IXP2400 has two
srammemory channels, a total of 128 rings is readily available. The values of the queue
descriptor tables can be cached into sram memory. This way, queue descriptors can be
swapped between the queue descriptor table and sram memory, allowing for a number
of sram rings only limited by the amount of available sram memory. The caching of
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queue descriptors is however a costly operation, so it should be avoided. sram rings are
shown in Figure 4.3 as number 6.

DRAM Rings

Theoretically it would be possible to also implement rings on dram memory. It is how-
ever so slow that this is not feasible. It is better to use more sram rings instead.

4.2.3 Strategies

Despite the many mapping options for fifo queues, the basic rule is to map the most
frequently used fifo channels on the fastest hardware options, if the minimum size
of the fifo channel permits such a mapping. There is a trade-off between mapping a
few large frequently used fifo channels on fast memory, or putting many small less
frequently used fifo channels onto the same memory. At the moment, Compaan does
not provide information about size or frequency of use, so optimizing this trade-off can
not be done automatically yet.

Instead, our mapper assumes all fifo channels are equal in terms of frequency of
use. Mapping is done based on first-come-first-serve, where hardware assisted scratch
rings are used first, and after that the self implemented scratch rings.

When next neighbour rings are implemented, the mapping is mostly a matter of the
process mapping strategy. The fifo channel mapper still should assign these rings when
the processes are mapped for this purpose.

Using local memory rings is of course restricted to self-loop fifo channels and fifo
channels between processes that are mapped onto the same microengine.

Memory Allocation

A common issue for using scratch memory and sram memory, is preventing the com-
piler to use the portion of memory assigned to ring data for other variables. For each
memory type, the compiler can be informed to only use a portion of that memory type,
starting at a specified memory address. When all ring data is assigned as one contigu-
ous block of memory starting at address 0, and the compiler is provided with the first
address following the ring data block, this issue is solved.

For scratch memory, it is important that first all hardware assisted rings are mapped
in descending size order, and the self implemented scratch rings thereafter. This ensures
correct alignment of the hardware assisted scratch rings.
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4.3 Implementation

The imca tool as described in section 1.2 is implemented using the Java programming
language. The mapping stage requires three input elements: the kpn specification, a set
of mapping strategies and a platform specification.

The kpn is specified in an xml formatted file with information about the nodes and
fifo channels. This specification is parsed and converted into a set of Java objects,
implemented by the classes ixppn.datamodel.kpn.*. Example classes are Link,
Entity (for Nodes), WritePort and ReadPort.

The platform is also specified as a set of objects, which are implemented by the
classes ixppn.datamodel.platform.*. An uml diagram of these classes is provided
in Figure 4.4 on page 47. All method and property details are omitted in this figure.
The platform object structure is generated using default constructor values, but will be
made configurable using an xml specification as well.

The class ixppn.operations.Kpn2Ixp.java performs the mapping process. The
strategies are implemented as member functions of this class. One example is the
Links2FifosGreedy() function. It takes all Link objects, and assigns them to avail-
able objects extending the FIFO class, such as ScratchRingHW. Other member func-
tions implement more fine-grained mapping tasks. The Entity2Thread() function is
used when a node is to be mapped on a thread. This function will copy all necessary
information from the node object into the thread object. It is best practice to copy all
information instead of just linking to the mapped object. This way the code generation
step will not be dependant on the kpn class specification.

The next step, converting the platform objects into microengine C, is described in
the next chapter.
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Code Generation

When all processes and fifo channels are mapped onto hardware resources, code has
to be generated for each hardware element, using the available information of the pro-
cesses and fifo channels. All operations on the IXP2400 hardware are directed by the
microengines (and by the XScale core we don’t use). Thus, all mapping information
has to be expressed in microengine instructions.

5.1 FIFO code

For implementing the various fifo options, the imca mapper tool provides a library with
a common interface for all available fifo implementations. Having this uniform model,
all fifo queues are equal with regard to how processes interact with the fifos. Code
generation for the processes is therefore independent of the chosen mappings for the
fifo queues.

The interface consists of two layers. The first layer (ports.h) only includes get()
and put() functions. This layer shields the process code from the fifo queue imple-
mentations. Each fifo implementation has its own set of functions, together forming
the second layer. Such functions include tests for emptiness and fullness, as well as the
actual get() and put() functions. These fifo specific functions are operated by the
first layer. For example, a value will only be placed onto a ring when it is first asserted
that the ring is not full.

Communication between the process code and the first layer is done through a C
struct called port. The port struct contains information about which fifo implementation
is used, the ring number (in case of hardware assisted scratch rings or sram rings), the
base, head and tail pointer locations, the size and the amount of room that is available.
Not all struct members are needed for all implementation types. Each microengine that
is to use a certain fifo queue will be provided with the same struct information. The
port struct is needed as an argument to the get() and put() functions to specify the
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fifo. The first layer will perform a switch operation on the fifo type specified in the port
struct. From there the necessary steps, specific to the implementation type, are taken to
perform the requested operation.

The port structs also act as a local cache of the state of a fifo, using the room
variable. If a process writes to a queue and the first layer determines there is room for
another 10 tokens, it will not need to check the queues status until another 10 tokens are
written as it there is only one process writing to that queue. Similarly, when a process
that reads from a queue and the first layer finds out there are 10 more tokens waiting, it
can read those before checking the fullness of the queue again. This saves access time.

For self implemented fifo options (currently only the scratchpad memory version),
the port struct also caches the head pointer for processes reading from a fifo and the
tail pointer for processes reading from a fifoṪhis way, the process does not have to read
the pointer from memory, as it can predict the contents by using the cache; the process
is the only process of altering that specific pointer value.

5.2 Process code

Each process in the kpn specification consists of a sequential application that runs con-
currently to the other processes. The sequential application is specified as a syntax tree
for each node. This syntax tree is an deterministic description of the operations that
have to be performed inside the process, and the order in which they are executed. A
syntax tree is easily converted into any programming language specification.

The elements of the syntax tree are for statement nodes, if statement nodes and
code statement nodes. An example of a syntax tree is given in Figure 5.1. It is the syn-
tax tree of ND_3 of the QRvr algorithm kpn (see Figure 2.4 on page 17). A conversion
of this syntax tree to C code is given in Figure 5.2 on page 53. We use this C code
conversion to explain the semantics of the syntax tree.

The for loops iterate over the domain of the process. The outer loop iterates over
domain parameter k (lines 03 – 30) and one inner loop iterates over domain parameter
j (lines 04 – 29). The loops correspond to for statement nodes of the syntax tree. Each
iteration of the inner loop processes one element of the domain.

Each domain element uses the same function call to the function Vectorize()
(line 18). The function has two input parameters and two output parameters. The two
input values are obtained from two of the input fifo channels. The two output values
are written to two of the output fifo channels.

Which input fifo channels and which output fifo channels to use, is dependant on the
current domain element. The selection of these channels is done by if statements (lines
05, 08, 11, 14, 20, 23 and 26) based on the domain parameters. Inside the if statement,
input variables are popped from the fifo channel using the GetPort() function and
output variables are pushed onto the fifo channels using the PutPort() function.
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For-Statement

LoopIterator = “k”
LowerBound = 1
UpperBound = 6
Step = 1

For-Statement

LoopIterator = “j”
LowerBound = 1
UpperBound = 5
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ListOfChildren
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Condition = 
     “k-2 >= 0”

ListOfChildren
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     “k-1 == 0”
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If-Statement

Condition = 
     “-k+5 >= 0”
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If-Statement
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     “-j+4 >= 0”
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Figure 5.1: Syntax Tree

5.2.1 Microengine Code Example

Each microengine may have multiple process mapped onto its threads. For each pro-
cess, program code like that of Figure 5.2 has to be generated, running it its own thread.
An example of microengine C code with multiple processes running on the separate
threads is provided in Appendix A. Also shown are functions and port initializations.

Lines 1 – 5 provide necessary files to include. Lines 7 – 9 are signals used for
synchronizing all microengines after all fifo structures are initialized. The signalling
process is shown in lines 121 – 131. It is similar to the code shown in Figure 3.6
at the left hand side, on page 29. At line 122, a signal is sent to a central micro-
engine. All microengines running mapped processes send the signal init_ready_sig
to the central microengine, after all fifo structures are initialized. When the central
microengine has received the init_ready_sig signal from all microengines running
mapped processes, it sends the signal ring_ready_sig back to the first thread of
these microengines. This signal is caught at line 125. Now, thread 0 sends the sig-
nal thread_0_ring_ready_sig to the next thread at line 126. Thread 1 wakes up
at line 129, and signals the next thread at line 130. Subsequent threads use the same
mechanism as thread 1.

Lines 11 – 24 declare all port structs. Lines 32 – 119 initialize the port structs.
Inside the main() function, each thread has private instruction code, separated by if
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statements with ctx() conditions which branch on the current thread number (0 – 7).
In the current mapping situation any application will run once. By placing an extra

while loop around the for loops for each process, the application will run continu-
ously. This was done to obtain results for chapter 7.

5.3 Implementation

For conversion of kpn specifications into microengine C, imca makes use of the Visi-
tor [20] design pattern implemented in Java. This design pattern is a way of separating
an algorithm from an object structure. A Visitor class is an interface that that has a
visit() method for each class of the object structure. Each class of the object struc-
ture has an accept() function, which simply calls back to the visit() function of the
calling visitor. A benefit of this system is that new operations can be added to a struc-
ture by adding a new Visistor class, without modifying the structure itself. Another
benefit is that the result of a computation can depend on the runtime types of its argu-
ments. For example, when specific code needs to be generated for each fifo channel, it
suffices to call Fifo.accept(theVisitor) for each fifo. The exact runtime type of
the fifo will determine whether visit(ScratchRingHW), visit(ScratchRingSW)
or visit(SramRing) will be run. Each function will provide some functionality spe-
cific to the object type it operates on. In the case of code generation, each function will
output the code used to implement the object, based on the properties of the object.

An overview of the Visitor classes used for imca is provided in Figure 5.3 on page 54.
The abstract IXPPlatformVisitor class describes the traversion options for the platform
objects. The IXPCodeGenVisitor extends IXPPlatformVisitor, and implements the code
generation for each platform object, as obtained from the mapping step of section 4.3.

The result of using the code generator visitor, is a microengine C file for each mi-
croengine, like the file provided in Appendix A. These files, together with a set of fixed
library functions, provide the input to the Intel C Compiler for Network Processors.

We provide a brief explanation of the working of the code generator visitor. The
starting point is an IXP platform object, and a CodeGenVisitor object. The accept()
function is called on the platform object, with the visitor as parameter. The accept()
function returns a call to the visitStructure(IXP) function. This function invokes
accept() on each microengine. A call to visitStructure(MicroEngine) for each
microengine is the result. This function creates a new file for the current microengine,
and produce lines of code like main() { and other lines that only occur once for
the microengine. For each thread, accept() is invoked. This results in the function
visitStructure(IXPThread) producing code for each thread (lines 136 – 165, etc).
The initialization code of each port (lines 32 – 36, etc) is created by invoking accept()
on each fifo, resulting in a visitStructure() call to either ScratchRingHW, to
ScratchRingSW or to SramRing, each generating the initialization code for that fifo.
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01 main{} {

02 int k, j, in_1, in_0, out_2, out_0;

03 for (k=1 ; k <= 6 ; k += 1) {

04 for (j=1 ; j <= 5 ; j += 1) {

05 if (k-2 >= 0) {

06 GetPort(&ND_3IP_1, &in_0);

07 }

08 if (k-1 == 0) {

09 GetPort(&ND_3IP_2, &in_0);

10 }

11 if (j-2 >= 0) {

12 GetPort(&ND_3IP_3, &in_1);

13 }

14 if (j-1 == 0) {

15 GetPort(&ND_3IP_4, &in_1);

16 }

17

18 Vectorize(&out_2,&out_0,&in_1,&in_0);

19

20 if (-k+5 >= 0) {

21 PutPort(&ND_3OP_1, &out_0);

22 }

23 if (k-6 == 0) {

24 PutPort(&ND_3OP_1_d1, &out_0);

25 }

26 if (-j+4 >= 0) {

27 PutPort(&ND_3OP_3, &out_2);

28 }

29 }

30 }

31 }

Figure 5.2: Process C Code
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Visitor

+visitStructure(in IXP)
+visitStructure(in MicroEngine)
+visitStructure(in IXPThread)
+visitStructure(in Fifo)
+visitStructure(in ScratchRingHW)
+visitStructure(in ScratchRingSW)
+visitStructure(in SramRingHW)
+visitStructure(in SramRingSW)

#_prefix : String
#_prefixDec
#_prefixDec(int)
#_prefixInc
#_prefixInc(int)
#_offset : String
#_printStream : PrintStream
#_createFile(String)
#_writeInstallfile
#_writeMakefile

IXPPlatformVisitor

+visitStructure(in IXP)
+visitStructure(in MicroEngine)
+visitStructure(in IXPThread)
+visitStructure(in Fifo)
+visitStructure(in ScratchRingHw)
+visitStructure(in ScratchRingSW)
+visitStructure(in SramRingHW)
+visitStructure(in SramRingSW)

-_stream : PrintStream
-FifoState : enum
-FifoState : FifoState
-_writeRead ( IXPThread)
-_writeWrite (IXPThread)
-_openFile (String, String)
-_writeIncludes

IXPCodeGenVisitor

Figure 5.3: UML of Visitor
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Receive and Transmit

Not explicitly denoted by a kpn specification is the need for interaction of the source and
sink nodes with the outside world. To guarantee a fast throughput of data, all threads
of three microengines are used by imca. One microengine is used to transport incoming
network packets from the msf device into drammemory. The second microengine reads
the payload information from these packets and places it onto fifo queues to be read
by source node processes. It also reads from fifo queues coming from the sink node
processes and creates new packets in dram memory using this data as payload infor-
mation. The third microengine is used for transmitting these newly assembled packets
from dram memory to the msf device where it will be send out again. This type of
operation is typical for Network Processor applications. A consequence for using three
microengines is that only five will be available for mapping application processes.

In this section the process of receiving, reading, assembling and transmitting packets
is described. The whole flow, with its mapping onto the microengines, is represented in
Figure 6.1 on page 56. In this figure is represented how data is being transferred by all
eight microengine (ME) 0:0 from the msf onto the dram rbuf. The first four threads of
microengine 0:1 will then transfer the data onto the first fifo which will be read out by
the first node planted on one of the treads on microengine 0:2 - 1:2 and represents the
sourcenode of the kpn of the application. The data will be processed through the kpn.
At the right of the kpn the last thread which represents the sinknode, will put the data
onto a fifo which will be read by the last four threads of microengine 0:1. The data will
be put onto dram tbuf. All eight threads of microengine 1:3 will get the data from the
tbuf and put it onto the msf.

6.1 Receiving packets

Network packets arrive at the msf interface of the IXP2400 as described in section 3.4.
These network packets contain the data which forms the input of the application which
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Figure 6.1: Flow

will be executed. To make the network packet data available, the complete network
packets are copied and stored into dram. For this copy process we make use of a stan-
dard mechanism which is also being used by most of the network applications for the
IXP. There is a direct physical link between msf and dram, so data doesn’t have to go
through the microengines. The microengines control the copying process. This pro-
cess of receiving and copying the data on the msf device and from there onto dram is
done by eight cooperating threads of one single microengine, therefore this process is
quick and smooth. As seen in Figure 6.1, this process is handled by microengine 0:0.
Because this process of receiving and copying the data works independent of the appli-
cation which uses the data and runs on a different microengine, this mechanism is very
flexible. Taking these advantages into account, we decided to adapt the existing code
and use it for our purposes.

As described in section 3.4, network packets are divided into small partial packets,
called mpackets. The receivebuffer (rbuf) of the msf is in fact an array of mpackets.
These mpackets will be copied into dram in the correct order, thus making the original
network packets available to the next processing step. The result is a ringbuffer of
packets in dram of 32 MB in size in total. For every packet there is an equal size
reserved of 2048 byte which includes 8 byte for a header. In this header the length
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of the packet is written. This results in a simple and structured array with fixed size
elements, irrespective whether the element is full or not, rather than allowing variable
sizes to be written into dram.

All eight threads of the microengine do in principle exactly the same work, inde-
pendent from one another. Each thread will processes an mpacket in a consecutive way,
one thread after another. This makes it possible that eight mpackets are being processed
concurrently. In Figure 6.2 is shown how each thread works.

Start

Check for 
availability 
mpacket

None yet

Read mpacket 
descriptor

yes

SOP ?
yes

Move mpacket to 
DRAM

no

Update reassembly 
state (current 

mpacket, pkt length)

Initialize 
reassembly state EOP ?

no

Update packet 
availability pointer

yes

Free RBUF element

Figure 6.2: Flowchart of a packet reassembly from mpackets

Figure 6.2 is an abstraction of the process because error situations are not included.
As soon as the process has started, it will check for availability of mpackets, for as long
as there are none available. When one mpacket becomes available, the descriptor of the
mpacket will be read. The descriptor can be one of the following:

• sop: This mpacket is the start of a new packet. A new reassembly state in a new
buffer element has to be initialized and the data can be moved there.

• eop: This mpackets is the end of the packet.

• Both eop and sop, this means that this single mpacket is the whole packet.
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• err: An error has occurred with this mpacket; if needed, the assigned buffer
element will be freed.

• empty: This mpacket is neither the start, nor the end of the packet, but an mpacket
somewhere in-between the start and end of the packet.

Updating the reassembly state means updating the pointers and counters to the new
mpackets and the packet length. After an eop occurrence the general packet availability
pointer can be updated and this will mean that the application can read the data of the
packet from the rbuf.

This mechanism can run for ever. For now, our whole application only runs one time
and for many applications all input data for one run fits in one packet with a maximum
size of 2 KB. This means only one thread will copy one mpacket. As soon as our
mapping is suitable for running applications repeatedly, this process does not need to
be adapted; at it endlessly handles subsequent packets already.

The data throughput speed obtained by the implementation discussed in this section,
is provided in section 6.4.

6.2 Reading and Assembling Packets

Now that the packets are aligned in dram, the contents of the payload of the packets
have to be imported to the implemented kpn network sequentially. The output of the
sink-nodes will have to be partitioned into sendable packets. This functionality has also
been implemented by us.

In order not to use too many resources, these two functions have been mapped onto
one microengine. This will save us one microengine and specific data which is neces-
sary for both processors (such as the header information of the packets) can be stored
locally. The two functions of reading and writing the packets will each use 4 threads of
one microengine.

6.2.1 Reading Packets

The algorithm of section 6.1 uses a variable in sram (fast_wi, fast write index) to spec-
ify which packets in the packetbuffer are ready to be used. By reading this variable the
program knows which packets from dram can be used. In the current implementation
there is a restriction that no more than one source-node can accept input data, however
it is possible to have multiple source-nodes which generate data themselves. In order to
allow for multiple source nodes accepting input data, the packet reading process would
need to discriminate between packets. For example, each source node can have a pri-
vate ip address, which needs to be read by the packet reading process. Based on that
information, the packet data will be sent to the correct source node.
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As soon as a packet is ready in dram, the payload needs to be read. This begins
on integer number 54 (an integer is 32 bit, each of 4 byte) after the header. With the
packetlength stored in the header, the program can deduct how many integers need to be
read. The memorywidth of dram is 4 integers, so per memory read instruction there are
directly 4 integers available. Figure 6.3 illustrates how the data will be put on a fifo by
making use of the put() code described in section 5.1. This fifo will act as the source
where the source-nodes can get their data from.
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Figure 6.3: Receiving on one sourcenode

As soon as the fist packet is being read, a copy of the header is saved into local
memory. This copy will serve as a template to make new packets.

6.2.2 Creating Packets

As soon as results arrive from the sink-nodes, they will be stored in packets which will
be send out. These packets are stored in dram. The format in which they are stored
is the same as that of the packets which are being received, with the same fixed size
packet length, but they are stored in their own buffer: tbuf. The current implementation
has the restriction that there is only one sink-node from which data can be send.

The begin of each new packet will be filled with the header as it was stored in local
memory. Attributes like the mac- and ip-address will be changed and are fixed. For
future work we can advice to make these configurable (see chapter 8). The packet will
then be filled with data from the fifo originating from the sink-node as illustrated in
Figure 6.4 on page 60. A packet is ready to be send out as soon as either the maximum
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Figure 6.4: Sending one mpacket

packet size is reached (by tbuf) or as soon as the last value of a run of the application has
been taken from the fifo. This last action (the synchronization between sink and send-
ing) is being described in section 6.5. The final and correct packetlength in the header
will be corrected later. At this moment an index variable in sram (global_counter) is
being increased, to inform the sending microengine that the next packet is ready to be
send out.

6.3 Transmitting Packets

As soon as the packets are assembled in dram, they are ready to be transmitted out on
the network. This is done via the msf. The data packets in dram need to be partitioned
into mpackets to meet the msf requirements. The first mpacket of the assembled data-
packet will get a sop-flag, and subsequently the last mpacket will get a eop-flag. As soon
as all mpackets of one packet have been placed onto the msf, they will be transmitted
onto the network. A visualization of the process of transmitting the packets is shown in
Figure 6.5 on page 63.

6.4 Speed

The Intel IXP2400 can receive and transmit data at a speed of 2.5 Gbps. The imple-
mentation of the receive and transmit processes we use, operates roughly at a speed of
1 Gbps. All received data has to be put on one fifo queue (section 6.2.1), one integer of
32 bit at a time. In ideal circumstances (only one thread active, immediate availability
of data, using hardware assisted scratch rings) it takes about 150 clock cycles to put one
integer on the fifo queue. Running at a speed of 600 MHz, this results in a throughput of
128 Mbps. Compared to the current receive speed of 1 Gbps, this fifo queue is roughly
8 times slower. Compared to the maximum receive speed of 2.5 Gbps, it is roughly
20 times slower. Speeds similar to 150 clock cycles are obtained for reading data from
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a fifo queue. We assume the throughput speed of the whole kpn implementation is at
most as slow as one fifo queue.

The current speed available by the receiving and transmitting processes is an overkill,
as the current fifo implementations form a bottleneck. A solution to is to speed op fifo
implementations. Chapter 8 suggests a solution, where per fifo access multiple integers
can be written. Another option is to slow down the receiving and transmitting processes,
by using less than eight threads per process. For example, the receive and transmit pro-
cesses could be mapped to run on 4 threads of a microengine each. This will result in
saving one microengine which can be used for mapping kpn processes onto.

6.5 Stop Signals

As soon as the sink node has completed outputting all data for one run of the appli-
cation, the packet generating process needs to know what data element on the fifo is
the last from that run. This information cannot be transferred using the existing fifo
synchronisation of blocking read and blocking write. Therefore, we created an extra
status pointer in the software implemented scratch rings. This stop-pointer refers to
the last data element in the fifo belonging to the latest completed run (it is only used
between the sink node and the packet creating process). Furthermore, the sink process
will synchronize with the packet generating process using signals, to inform the packet
generating process that the stop-pointer is about to be set. The process is described as
follows:

1. The tread performing the sink node functionality detects that the last token for a
run of the application is about to be put on the fifo channel. The stop pointer is set
equal to the tail pointer value. The thread sends a signal to the packet generating
microengine, and waits for a signal in return.

2. The packet generator receives the signal, and sends a signal in return. This is
similar to the process described in Figure 3.6. From now on, it will check for
every read operation on the fifo channel whether the stop pointer is equal to the
head pointer.

3. The sink receives the return signal, and finally puts the last token on the fifo.

4. If there were more tokens on the fifo, these will be consumed by the packet gen-
erator by putting them in the packet currently being built, as their fifo positions
are not equal to the stop pointer.

5. The head pointer is equal to the stop pointer. The packet generator will consume
this last token too, placing it in the packet. The packet will be finished up and the
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transmitting microengine will be informed that it is ready to be sent out. A new
packet will be prepared in tbuf.

This procedure ensures that the packet generating process will not try to read the
final token of a run, before it knows it is the final token. Without this type of synchro-
nisation, it cannot be ensured that too many tokens (i.e. the first tokens from the next
run of the application) are put in the result packet of the last completed run. If there
are no subsequent runs, without this synchronization it cannot not be ensured that the
packet generating process will not deadlock, trying to read the next token while having
consumed the last token already.
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Figure 6.5: Flowchart assembling an mpacket into a packet to be transmitted





Chapter 7

Experiments and Results

In this chapter we present performance measurements from implementations obtained
via the imca tool. We measure two aspects of the performance: the throughput of in-
bound data of the implementation expressed in megabits per second (Mpbs) and the
computing power expressed in millions operations per second (mops). These values
heavily depend on the algorithm which is used. We used two algorithms, QRvr and
fdwt. Both are discussed in this chapter.

The goal for this thesis is to investigate whether the mapping of a kpn specification
onto the IXP hardware can be performed automatically, not to provide a better per-
formance than existing solutions. Therefore, we do not compare our results with other
implementations. Instead, we provide these figures to show that our solution is valid and
to provide an affirmative answer for the research question. We have provided an initial
implementation of the imca tool, thus these are initial performance results; additional
research efforts will undoubtedly provide improved performance. Some suggestions for
improving performance are provided in chapter 8.

We had to overcome many difficulties for implementing all work presented in this
thesis. All elements had to work correctly together to be able to conduct performance
measurements. Therefore, only at a late stage of our research efforts we were able to
obtain the results we present in this chapter.

7.1 Method

In this section, we explain which methods we use to obtain results expressed in Mbps
and mops from our measurements.

Per process, we measure the amount of clockcycles it takes to complete one run of
the application. The first clockcycle is when the first for-loop is entered, and the last
clockcycle is when the process exits the last for-loop. Given that the hardware runs at
a clockfrequency of 600 Mhz, the amount of time spent in each process is calculated.
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The amount of operations performed per run per process is the amount of opera-
tions needed for each assignment statement inside the process, times the frequency in
which the assignment statement has been used. Division of the amount of operations
by the amount of time spent in a process, results in the amount of operations per second
per process (mops). Adding up the mops information of all processes together, as all
processes run in parallel, results in the mops information for the whole implementation.

As all processes start together for the first run, the duration of the process that takes
the longest time to complete, is the duration of one run for the whole implementation.
When the application is run several times consecutively, again the duration of the pro-
cess that takes the longest time to complete, is the duration of the whole implementation.
This process is the bottleneck for the application.

For each application the size of the input for each source node per run is known.
Combined with the duration of one run of the application, the amount of data that is
processed per second (Mbps) is computed.

7.2 QRvr

The QRvr algorithm is a relatively simple algorithm. The kpn version produced by
Compaan, contains only 5 nodes and 12 fifo channels. Each node is mapped onto a
different microengine (as there are 5 available for mapping) and all fifo channels are
mapped onto fast hardware assisted scratchpad memory rings. Needing such few re-
sources, we were able to execute an implementation in a relatively early stage of the
development of the imca tool. The downside for using this application, is that we do
not have a full implementation of the algorithm to our avail. For these experiments, the
functions Vectorize() and Rotate() thus perform only dummy operations.

A figure of the kpn specification is provided in Figure 2.4 on page 17. For this
discussion, it is of interest that both source nodes (1 and 2) perform simple operations
of providing data and only execute as often as there are tokens in the input data, whereas
nodes 3 and 4 execute more often as they repeatedly process each others data.

Node Clockcycles Seconds Operations MOPS
1 1671 0,0028 15 5,39
2 3262 0,0054 30 5,52
3 40183 0,0670 30 0,45
4 39912 0,0665 60 0,90
5 40247 0,0671 15 0,22

Total 12,48

Table 7.1: Performance results QRvr, 1 run

Table 7.1 shows the results for a single run of the QRvr implementation provided
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Figure 7.1: Conformation of processes to bottleneck speed in QRvr

by the imca tool. Nodes 1 and 2 are finished much more quickly than the other nodes,
resulting in a high performance statistic for these nodes, as they spend only a small
amount of time on processing all their data. However, this does not provide a realistic
figure for two reasons. First of all, we use dummy functions which only perform one
operation. Secondly, in a realistic usage the application runs continuously. The effect
of running the algorithm multiple times, is shown in Figure 7.1. The horizontal axis
shows the number of runs performed consecutively. The vertical axis represents the
amount of clockcycles each node takes to complete for that run. For each process node,
a graph is shown. At first, nodes 1 and 2 are quickly finished, while the other nodes
take more time (about 40.000 cycles). After a few runs, the fifo channels between the
source nodes and the other nodes become full, as the reading processes are slower than
the writing processes. Now, nodes 1 and 2 have to wait for enough room to become
available on the fifo, before they can put new data onto it. The result is that with the
chosen fifo channel sizes, all processes become as slow as the bottleneck process after
about 15 runs. Therefore, if clockcycle values of 40.000 are used in Table 7.1 for nodes
1 and 2, the total performance results in a value of 2 mops.

However, the figure results of 12.5 mops and 2 mops are generated with dummy
functions which only count 1 operation per function call. A fair estimation for a real
implementation is that both functions Vectorize() and Rotate() each perform 20
operations per function call. In that case, a single run of QRvr results in a total perfor-
mance of 38 mops, and when ran multiple times still 28 mops.
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Frame Frame size Bits Frames/s Mbps
Input 15 480 14908 7.15
Output 30 960 14908 14.31

Table 7.2: Speed results QRvr

Table 7.2 shows the throughput results for the QRvr algorithm. In our experiments,
the highest amount of clockcycles we measured for a process, was 41247. Supposed
that each run takes 41247 cycles to complete, the algorithm can run 14908 times a
second; or the algorithm processes 14908 frames per second. Each input frame consists
of 15 tokens, and each output frame consists of 30 tokens for the QRvr implementation
we used. Now, if each token is represented as an integer of 32 bits, a throughput of 7.15
Mpbs is achieved for incoming data, and 14.31 Mbps for outgoing data.

7.3 FDWT

A more defying mapping effort is that of the fdwt algorithm. The kpn version of fdwt
consists of 23 nodes and 41 fifo channels. Therefore, a successful mapping has been
much more troublesome to achieve than for the QRvr algorithm. The combined mem-
ory space required for all fifo channels to guarantee deadlock-free operation exceeds
the amount of scratchpad memory available on the IXP2400. A successful fifo channel
mapping was dependent on our sram ring implementation, which took long to become
bug-free. Therefore, we are proud of being able to perform an operational mapping
for the fdwt algorithm after all. Moreover, we have a full implementation for this
algorithm, such that the result figures are more representative that that of the QRvr al-
gorithm. The only aspect of the fdwt algorithm that is not implemented by our solution,
is that the algorithm has 4 sink nodes, whereas our implementation only supports actual
output for one sink node. This issue is described in chapter 8.

Runs MOPS Frames/s Input Mbps
1 25 1043 34.18
> 1 26 1048 35.55

Table 7.3: Results FDWT

The results of the fdwt algorithm are shown in Table 7.3. Since there are no less
than 23 nodes, we only present the final results for the whole implementation, and not
per process. The particular implementation of fdwt we used processes images with a
size of 32 by 32 pixels; thus each input frame consists of 1024 tokens.

In contrast to QRvr, the fdwt algorithm increases speed after the first run. The dif-
ference is that the bottleneck of QRvr is found in back-end nodes of the kpn, such that
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the front-end nodes finish quickly as long as there is plenty room in the fifo channels.
In contrast, with fdwt the bottleneck resides in the front-end nodes. fdwt is an image
processing algorithm, where two pixel rows must be buffered completely into fifo chan-
nels before other nodes perform operations on vertically neighbouring pixel values. In
the first run, the whole network remains idle before two pixel rows are buffered. In con-
secutive runs, new pixel rows are buffered while the rest of the network is processing
previous pixel rows. Therefore, the back-end of the kpn network then does no longer
have to wait for the buffering of pixel rows, as it has already been done during previous
runs. The speedup is only small, as after the first run 26 mops are achieved compared
to 25 mops for the first run. The number of input frames processed per second changes
from 1043 to 1048, which results in a throughput on the input node changing from 34.18
to 35.55 Mbps.





Chapter 8

Improvement Suggestions

The process of creating methodologies like we created for the imca tool, is rather time
consuming when starting from scratch. This is largely due to the fact that mastering the
programming skills required for IXP platform requires a lot of time and practice. Even
after months, mistakes are still easily made. Implementing all ideas we present in this
thesis, turned out to be impossible for the amount of time available. Our implementation
works; but not really optimal yet. Therefore, we provide an overview of issues we find
worth improving. Some have been mentioned already, some have not. For those who
continue research based on our results, we strongly encourage to take these suggestions
as a starting point for further implementation efforts.

• Using local caches for fifo channel data. This has multiple reasons. First, a larger
class of kpn applications can be used, as there exist variations that need to read
a token multiple times, or need to read a token at a certain position in the fifo
queue. Secondly, the whole data flow can be speeded up by a significant factor.
Memory operations on the IXP allow for multiple integers to be read or written
simultaneously, up to 8 without speed penalty or up to 16 with a slight speed
penalty. If there are 8 integers waiting on the queue, these can be read at once,
eliminating the need for 7 other slow memory operations. Of course, these values
need to be cached into local memory. The port struct can be adapted to do so.
As for writing data to a fifo channel, a process might choose to buffer outbound
tokens locally, before sending multiple tokens at once. This requires carefulness,
for not to cause deadlocks. A solution to prevent deadlocks is flushing this out-
bound buffer when a time restriction is violated, i.e. after a certain amount of
time in which no new tokens are put in the buffer.

This buffering technique is especially useful for buffers that need to process large
amounts of data. The packet reading process would benefit enormously, as the
network packet payload can be put onto the fifo in much less costly memory
operations. The sink nodes would also benefit from buffering outbound tokens,
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as the packet generation process will certainly not cause deadlocks and only be
happy to accept larger amounts of tokens at once. There are no negative side
effects on buffering inbound data, except for the use of more local memory re-
sources. When also using local buffers for outbound data, in combination with
automatic flushing at timeouts, there is a negative side effect on fifo channels that
never can exceed a certain size smaller than the buffer size. These fifo channels
will only be filled when a timeout occurs. The smaller the maximum channel us-
age size, the worse the problem is. Sadly, many fifo channels never exceed a size
of 1. Setting the timeout value not too high reduces the problem. The trade-off
between causing extra delays for not forwarding available data the next process
is waiting on, and the elimination of slow memory operations by reading/writing
multiple values at once, is the key question in this matter.

• Using the XScale core. At least one process could be mapped onto the XScale
core. It may not seem much to be able to map one extra process, but it doesn’t
need to share processing time with other threads. Therefore a process with a
high workload can be mapped onto the XScale core. There are probably ways of
running multiple processes on the XScale too.

• Implementing next-neighbour fifos. The hardware is there, and our code is flexi-
ble in terms of adding new fifo options.

• Implementing local memory fifos. This would save a lot of time for fifo channels
with both ends on the same microengine. This is only an option for fifo channels
with a small minimum size. In practice most fifo channels have a minimum size
of 1.

• Creating mapping strategies to make optimal use of the next-neighbour and local
memory fifo channels.

• Making use of the Strategy design pattern, to allow for different mapping strate-
gies more easily.

• Making attributes configurable, such as the ip address and mac address to which
packets are to be sent.

• Making the platform specification configurable, using xml formatted files.

• Adding tools in the design flow that calculate the minimum fifo sizes for the
network not to deadlock.

• Tuning the receive, transmit and packet reading/creating processes. In the current
implementation three microengines are used for these processes together. It is
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probably possible to use less resources without introducing a bottleneck for the
streaming data flow.

• Allowing for more source nodes which provide data from outside. Each source
node should be addressed by some property in the network packets, or some
header in the payload of the packet. Based on this information, the packet reading
function could decide on what fifo the contents of the packet should be put. This
is illustrated in Figure 8.1.
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Figure 8.1: Receiving on two sourcenodes

• Allowing for more sink nodes to transmit data. The packet generating threads
should assemble multiple packets together in tbuf, one for each sink node. A
simple solution is to assign one packet generating thread to each sink node. The
amount of allowed sink nodes is then equal to the amount of packet generating
threads.

• Real automatization of the design flow. At the moment, the mapper generates a
set of .c files, which need to be inserted manually inside a standard project using
the Developer Workbench. In this standard project, most configuration is already
correct, such that configuration .list files do not need to be created. Instead, all
files should be created by the imca tool, and the compilation should be performed
using the command line version of the Intel C compiler for Network Processors.





Chapter 9

Conclusions

The world is becoming multiprocessor oriented, as it is the only option to match modern
performance requirements. Multiprocessor systems are becoming increasingly com-
plex, with an increasing amount of transistors. Programming efficiency also increases,
but at a lower rate than the increase of the platform complexity. Therefore, the so called
productivity gap is growing. Programmers need more efficient tools to match their pro-
ductivity to a level which is required by the hardware design.

An example of multiprocessor systems are the Intel IXP Network Processors. Our
hypothesis is that these network processors are an ideal platform for execution of stream-
based applications like digital signal processing and image processing. However, these
network processors are hard to program and require a steep learning curve. Moreover,
programming multiple tasks running concurrently is a hard task for the human mind.
This prevents high productivity for this platform and is in essence an example of a pro-
ductivity gap. If the hypothesis is true, low productivity rates would still prevent many
applications being implemented on the hardware, despite the hardware benefits.

To circumvent the need for complicated programming, a tool is required that allows
for simple application specification for applications targeted at the IXP platform. Our
research question is whether it is possible to perform an automated mapping of a simple
application specification onto the platform of the Intel IXP2400 Network Processor.
The possibility of such an automated mapping allows developers to make use of the
IXP2400 network processor for streaming applications with a short development time.

We have shown that the combination of Compaan and imca exactly provide the tools
needed for an automated mapping of an easily sequentially specified application onto
the multiprocessor IXP hardware. The developer writes algorithms in Matlab as static
affine nested loop programs, which have a single line of control and are thus much more
easy to specify than concurrent specifications of the same algorithm. The Compaan
compiler transforms this specification into an equivalent kpn specification. The imca
tool transforms the kpn specification into an implementation which is executable on the
IXP2400 platform. The process of receiving input data from an ethernet connection,
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and the process of transmitting output data onto the ethernet connection, are also imple-
mented. Therefore, we conclude that our research question is answered affirmatively.

With regard to the performance results, we think that the actual use of Intel IXP
Network Processor hardware is at least an interesting option for running streaming ap-
plications, especially as there is room for performance speedups by making more use
of the hardware capabilities. We feel that the performance results are encouraging to
perform further research, which should exploit the optimizations proposed in chapter 8
and perform comparisons with implementations on other hardware.



Appendix A

Example Microengine C File

001 #include "ixp.h"

002 #include "util.h"

003 #include "scratch_rings.h"

004 #include "ports.h"

005 #include "functions.c"

006

007 __declspec(visible) SIGNAL ring_ready_sig;

008 __declspec(remote) SIGNAL init_ready_sig3;

009 SIGNAL thread_0_ring_ready_sig;

010

011 __declspec (shared local_mem aligned(4)) port_type ND_3IP_2;

012 __declspec (shared local_mem aligned(4)) port_type ND_3OP_1;

013 __declspec (shared local_mem aligned(4)) port_type ND_8IP_12;

014 __declspec (shared local_mem aligned(4)) port_type ND_8OP_1;

015 __declspec (shared local_mem aligned(4)) port_type ND_13IP_20;

016 __declspec (shared local_mem aligned(4)) port_type ND_13IP_21;

017 __declspec (shared local_mem aligned(4)) port_type ND_13IP_22;

018 __declspec (shared local_mem aligned(4)) port_type ND_13IP_23;

019 __declspec (shared local_mem aligned(4)) port_type ND_13IP_24;

020 __declspec (shared local_mem aligned(4)) port_type ND_13OP_2;

021 __declspec (shared local_mem aligned(4)) port_type ND_18IP_32;

022 __declspec (shared local_mem aligned(4)) port_type ND_18OP_1;

023 __declspec (shared local_mem aligned(4)) port_type ND_18OP_1_d1;

024 __declspec (shared local_mem aligned(4)) port_type ND_23IP_41;

025

026 void ports_init() {

027 __assign_relative_register((void *)&thread_0_ring_ready_sig, 7);

028 if (ctx() == 0) {

029 __assign_relative_register((void *)&ring_ready_sig, 6);

030 __assign_relative_register((void *)&init_ready_sig3, 3);

031

032 ND_3IP_2.type = SRAM_RING;

033 ND_3IP_2.ring_nr = 60;

034 ND_3IP_2.size = 1024;

035 ND_3IP_2.room = 1024;

036 ND_3IP_2.base = 12288;

037

038 ND_3OP_1.type = SRAM_RING;

039 ND_3OP_1.ring_nr = 53;

040 ND_3OP_1.size = 1024;

041 ND_3OP_1.room = 1024;

042 ND_3OP_1.base = 40960;

043 InitPort(&ND_3OP_1);
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044

045 ND_8IP_12.type = SRAM_RING;

046 ND_8IP_12.ring_nr = 52;

047 ND_8IP_12.size = 1024;

048 ND_8IP_12.room = 1024;

049 ND_8IP_12.base = 45056;

050

051 ND_8OP_1.type = SRAM_RING;

052 ND_8OP_1.ring_nr = 51;

053 ND_8OP_1.size = 1024;

054 ND_8OP_1.room = 1024;

055 ND_8OP_1.base = 49152;

056 InitPort(&ND_8OP_1);

057

058 ND_13IP_20.type = SRAM_RING;

059 ND_13IP_20.ring_nr = 48;

060 ND_13IP_20.size = 1024;

061 ND_13IP_20.room = 1024;

062 ND_13IP_20.base = 61440;

063

064 ND_13IP_21.type = SRAM_RING;

065 ND_13IP_21.ring_nr = 47;

066 ND_13IP_21.size = 1024;

067 ND_13IP_21.room = 1024;

068 ND_13IP_21.base = 65536;

069

070 ND_13IP_22.type = SRAM_RING;

071 ND_13IP_22.ring_nr = 46;

072 ND_13IP_22.size = 1024;

073 ND_13IP_22.room = 1024;

074 ND_13IP_22.base = 69632;

075

076 ND_13IP_23.type = SCRATCH_RING_HW;

077 ND_13IP_23.ring_nr = 4;

078 ND_13IP_23.size = 128;

079 ND_13IP_23.room = 128;

080 ND_13IP_23.base = 11776;

081

082 ND_13IP_24.type = SRAM_RING;

083 ND_13IP_24.ring_nr = 57;

084 ND_13IP_24.size = 1024;

085 ND_13IP_24.room = 1024;

086 ND_13IP_24.base = 24576;

087

088 ND_13OP_2.type = SCRATCH_RING_HW;

089 ND_13OP_2.ring_nr = 15;

090 ND_13OP_2.size = 512;

091 ND_13OP_2.room = 512;

092 ND_13OP_2.base = 0;

093 InitPort(&ND_13OP_2);

094

095 ND_18IP_32.type = SRAM_RING;

096 ND_18IP_32.ring_nr = 56;

097 ND_18IP_32.size = 1024;

098 ND_18IP_32.room = 1024;

099 ND_18IP_32.base = 28672;

100

101 ND_18OP_1.type = SRAM_RING;

102 ND_18OP_1.ring_nr = 41;

103 ND_18OP_1.size = 1024;

104 ND_18OP_1.room = 1024;

105 ND_18OP_1.base = 90112;
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106 InitPort(&ND_18OP_1);

107

108 ND_18OP_1_d1.type = SRAM_RING;

109 ND_18OP_1_d1.ring_nr = 40;

110 ND_18OP_1_d1.size = 1024;

111 ND_18OP_1_d1.room = 1024;

112 ND_18OP_1_d1.base = 94208;

113 InitPort(&ND_18OP_1_d1);

114

115 ND_23IP_41.type = SCRATCH_RING_HW;

116 ND_23IP_41.ring_nr = 12;

117 ND_23IP_41.size = 512;

118 ND_23IP_41.room = 512;

119 ND_23IP_41.base = 6144;

120

121 // Signal filter that initialization is done

122 cap_fast_write((0<<4) | (__signal_number(& init_ready_sig3, 0x01)) |

(0x01 <<7), csr_interthread_sig);

123

124 // Wait for filter that all initializations are done

125 wait_for_all(&ring_ready_sig);

126 signal_same_ME_next_ctx(__signal_number(&thread_0_ring_ready_sig));

127 __implicit_read(&thread_0_ring_ready_sig);

128 } else {

129 wait_for_all(&thread_0_ring_ready_sig);

130 signal_same_ME_next_ctx(__signal_number(&thread_0_ring_ready_sig));

131 }

132 }

133

134 main() {

135 ports_init();

136 if (ctx() == 0 ) {

137 __declspec(gp_reg) int i;

138 __declspec(gp_reg) int j;

139 __declspec(gp_reg) int in_0;

140 __declspec(gp_reg) int out_0;

141 for (i=0 ; i <= 14 ; i += 1) {

142 for (j=0 ; j <= 31 ; j += 1) {

143 in_0 = GetPort(&ND_3IP_2);

144

145 copy(&out_0,in_0);

146

147 PutPort(&ND_3OP_1, &out_0);

148 }

149 }

150 }

151 if (ctx() == 1 ) {

152 __declspec(gp_reg) int i;

153 __declspec(gp_reg) int j;

154 __declspec(gp_reg) int in_0;

155 __declspec(gp_reg) int out_0;

156 for (i=0 ; i <= 15 ; i += 1) {

157 for (j=15 ; j <= 15 ; j += 1) {

158 in_0 = GetPort(&ND_8IP_12);

159

160 copy(&out_0,in_0);

161

162 PutPort(&ND_8OP_1, &out_0);

163 }

164 }

165 }

166 if (ctx() == 2 ) {
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167 __declspec(gp_reg) int i;

168 __declspec(gp_reg) int j;

169 __declspec(gp_reg) int in_1;

170 __declspec(gp_reg) int in_2;

171 __declspec(gp_reg) int in_0;

172 __declspec(gp_reg) int out_1;

173 __declspec(gp_reg) int out_0;

174 for (i=0 ; i <= 15 ; i += 1) {

175 for (j=0 ; j <= 15 ; j += 1) {

176 if (j-15 == 0)

177 in_0 = GetPort(&ND_13IP_20);

178 if (j-1 >= 0)

179 if (-j+14 >= 0)

180 in_0 = GetPort(&ND_13IP_21);

181 if (j == 0)

182 in_0 = GetPort(&ND_13IP_22);

183 in_1 = GetPort(&ND_13IP_23);

184 in_2 = GetPort(&ND_13IP_24);

185

186 my_low_flt_hor(&out_0,&out_1,in_0,in_1,in_2);

187

188 PutPort(&ND_13OP_2, &out_1);

189 }

190 }

191 }

192 if (ctx() == 3 ) {

193 __declspec(gp_reg) int i;

194 __declspec(gp_reg) int j;

195 __declspec(gp_reg) int in_0;

196 __declspec(gp_reg) int out_0;

197 for (i=0 ; i <= 15 ; i += 1) {

198 for (j=1 ; j <= 15 ; j += 1) {

199 in_0 = GetPort(&ND_18IP_32);

200

201 copy(&out_0,in_0);

202

203 if (j-15 == 0)

204 PutPort(&ND_18OP_1, &out_0);

205 if (-j+14 >= 0)

206 PutPort(&ND_18OP_1_d1, &out_0);

207 }

208 }

209 }

210 if (ctx() == 4 ) {

211 __declspec(gp_reg) int i;

212 __declspec(gp_reg) int j;

213 __declspec(gp_reg) int in_0;

214 __declspec(gp_reg) int out_0;

215 for (i=0 ; i <= 15 ; i += 1) {

216 for (j=0 ; j <= 15 ; j += 1) {

217 in_0 = GetPort(&ND_23IP_41);

218

219 sink(&out_0,in_0);

220 }

221 }

222 }

223 }
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