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Abstract

In this thesis, we present a methodology for the automated generation of complete hardware imple-

mentations from C input specifications. Our methodology is based on the Kahn Process Network

(KPN) Model of Computation (MoC). By leveraging previous research, we can automatically

obtain a parallel KPN representation of sequential C input code. Next, we synthesize RTL imple-

mentations of the KPN nodes, by making use of PICO, a high level synthesis tool, to automatically

obtain an RTL implementation of the node functionality. An important benefit of our approach is

that source code annotations that indicate parallelism or influence low-level implementation deci-

sions are not required for efficient results. This allows foran efficient software engineering design

flow to program FPGAs. We show that by applying transformations to KPNs, one can obtain

different application instances with improved throughputof the resulting hardware implementa-

tions. We also show that the distributed memory model inherent to the KPN MoC suits well to

customizable hardware target platforms like FPGAs.
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Chapter 1
Introduction

Currently, electronic devices are used on a very large scalein many different fields. Examples

include consumer electronics, like cell phones or DVD players for example. Also the industry

and scientific fields depend heavily on modern electronics: in virtually all industrial and scientific

environments where automation is involved, microchips play an important role.

In almost all of these areas, the demand for compute power is continuously increasing. There

are several reasons for this. Users require more functionality and applications get more complex.

Advances in other fields increase this demand even more. For example, think of new high res-

olution Magnetic Resonance Imaging (MRI) scanners, telescope arrays, exploration geophysics

equipment and meteorological systems. New generations of these devices produce much more

raw data than their predecessors. These vast amounts of raw data must be processed into some

human-intelligible form, which is a compute intensive job.

In many of the aforementioned applications, time plays a crucial role. Data processing should

take place within a reasonable amount of time, such that the field expert can obtain the required

information on time and respond accordingly if necessary. This means the system should have

a high throughputand must meet performance targets. For a typical compute intensive job, a

microprocessor based solution will not be satisfactory. This is partly due to its lower execution

speeds, in exchange for ease of programming, but also due to its sequential nature. Particularly

when a great portion of the compute job can be performed in parallel, as is typically the case with

data processing applications, a single thread of executionwill still yield a very low throughput.

To achieve a high throughput, one should switch to a platformthat offers possibilities to ex-

1



CHAPTER 1. INTRODUCTION 1.1. PROBLEM DEFINITION

ploit the available parallelism. This could be a multi-coremicroprocessor system, like the Cell

Broadband Engine [1], or a grid of multiple compute nodes. However, whenstreaming dataap-

plications are considered, communicating data to the various cores or nodes is a critical factor.

A core or node that does not receive data on time will stall, leading to a suboptimal utilization

of resources and decreased performance. Hence, expensive high-bandwidth interconnections are

required to make sure the cores or nodes can operate without having to wait for data communica-

tion. Unfortunately, this is not always possible. Because clock frequencies of modern processing

units have increased much faster than the throughput of the interconnections between them, stalls

are sometimes inevitable. This prevents the system from running at its maximal speed, reducing

throughput.

By going to a smaller implementation scale, communication constructs are typically less com-

plex. Particularly if all data communication takes places on the same chip in a neighbour-to-

neighbour fashion for example, fast communication is easily realized using plain wires and logic

gates. Such implementations are obtained by creating a low level hardware description of the de-

sired functionality. This description can then be used to create anApplication Specific Integrated

Circuit (ASIC) or to program reconfigurable hardware like aField Programmable Gate Array

(FPGA). This hardware based approach offers several other advantages. A dedicated hardware

implementation does not come with the overhead of an implementation on a generic platform. For

example, only the functional units that are required are included in the design, data bus widths

can be chosen as necessary and control is significantly less complex than that of a microproces-

sor. The hardware implementation can be built to precisely fit the needs of the application. These

differences lead to increased performance and a reduced number of gates needed for a physical

hardware product. However, implementing algorithms in hardware is not a trivial task. The way

of programming or configuring such platforms does not match atypical algorithm specification

written in a high level language like C for example.

1.1 Problem Definition

Due to the mismatch of the algorithm specification and the target platform, most of the hard-

ware implementations of algorithms are currently developed manually. This is a complex, time-

consuming and error-prone process. Extensive knowledge about platform characteristics is re-

quired to get to an efficient implementation that satisfies performance and cost constraints. Usu-

ally, an algorithm designer or software engineer does not possess this knowledge. Thus, the hard-
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CHAPTER 1. INTRODUCTION 1.1. PROBLEM DEFINITION

ware platforms often remain out of reach for them.

Maintaining hardware designs is another issue. Because of the low level of abstraction of

hardware designs, which are usually written at theRegister Transfer Level(RTL) in hardware

design languages (HDLs) like VHDL or Verilog, the hardware design quickly becomes complex.

When the requirements of the application change, updating the hardware design accordingly is

again a difficult and time-consuming task.

From a software engineering point of view it would be interesting if a high-level algorithm

specification could be directly translated into a hardware implementation. From a hardware en-

gineering point of view it would be interesting to specify a system at a high level of abstraction,

enabling easy maintenance, while automated synthesis of this high level design still results in a

cost and performance equal or close to a manually constructed low level design.

Unfortunately, most high level languages are based on a single sequential thread of control

while, on the other hand, custom hardware offers many opportunities to exploit parallelism. This

means we need to automatically search for parallelism in thesequential input specification and

subsequently exploit the obtained parallelism in an efficient way by taking advantage of the

flexibility of custom hardware. This is not straightforwardand is still subject of ongoing re-

search [2, 3, 4, 5, 6]. To complicate matters, the established high level programming languages

like C or C++ are tightly coupled to the von Neumann architecture [7]. This perfectly matches the

shared memory architecture of generic microprocessor systems, but mapping such code to custom

hardware poses an additional challenge, because a distributed memory layout is in general more

efficient on such a platform.

b) Intra-task parallelism:

(pipeline of subtasks)

Task 1 Task 2

T
im

e

c) Instruction level parallelism:

(pipeline of instructions)

a) Task level parallelism:

(pipeline of tasks)

T
im

e
T

im
e

Task 3

Figure 1.1: Different levels of parallelism.
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In order to attack the problem sketched above, it is important to realize that different levels of

parallelism are available to be exploited. In Figure 1.1a,task level parallelismis depicted, where

multiple instances of the same task operating on different input data run in parallel. In Figure 1.1b,

intra-task parallelismis depicted, where parallelism inside a task is exploited bydecomposing the

task into different subtasks and pipelining the execution of those subtasks. In Figure 1.1c,instruc-

tion level parallelismis depicted, where the low level operations of each subtask are scheduled in

parallel.

Taking these observations into account, we want to address the following problem. How can

we automatically derive efficient FPGA implementations from a sequential C specification, taking

into account the fact that we can exploit various levels of parallelism and the fact that we can adapt

the platform to precisely fit our needs?

1.2 Solution Approach

To get from sequential code to an efficient hardware realization, we have developed the approach

that is depicted in Figure 1.2. As a first step, depicted by the“Compiler” block, we extract coarse-

grained parallelism from the sequential input specification. This results in a network of multiple

smaller units of execution which we callprocesses, which allows us to easily exploit task level

parallelism as depicted in Figure 1.1a. Next, we synthesizea hardware implementation for each

of these processes and connect the RTL cores according to thenetwork topology. This is depicted

by the “Synthesis” block of Figure 1.2. During this phase, finer-grained levels of parallelism are

extracted and exploited, which are shown in Figures 1.1b and1.1c.

Sequential 

code
Compiler

MB
PICO

HWN

... PPC

Code

SynthesisKPN
Hardware

Implementation

Code...

“IP”Code

Figure 1.2: A high level overview of our solution.

4



CHAPTER 1. INTRODUCTION 1.3. RELATED WORK

In order to describe the network of processes and their behaviour, we use theKahn Process

Network(KPN) Model of Computation (MoC) [8], which has proven to be appropriate in similar

cases [9, 10]. This model is discussed in Section 2.1. An advantage of this MoC is that high level

transformations [11] can be applied to a KPN, like unrollingand skewing, offering the possibility

to explore various alternative implementations of the sameapplication.

To partition the sequential C input specification into a parallel KPN representation, we use the

KPNGEN tool. This tool is discussed in Section 2.2. Next, we feed theobtained KPN to ESPAM-

PICO, which is an extended version of ESPAM. Based on a platform and mapping specification,

ESPAM generates a synthesizable hardware implementation of the KPN. ESPAM is discussed in

Section 2.3. Both KPNGENand ESPAM are part of the Daedalus framework [12, 13], a collection

of open-source tools intended for system-level architectural exploration and high-level synthesis.

ESPAM relies on a library of IP cores in order to deliver a complete hardware implementation

of a given KPN. Our extension to ESPAM, which we describe in Chapter 4, does not require this

IP core library anymore. Instead, ESPAM-PICO invokes another tool which generates custom IP

cores from C code that implement the functional behaviour ofthe various nodes of the KPN. This

is depicted in the upper right corner of Figure 1.2. The functional behaviour is taken from the

original input specification, which is written in a subset ofC.

To generate IP cores from C code, various tools are available, both commercial and non-

commercial. These tools are capable of generating a hardware implementation from a high(er)

level language input specification. See Section 1.3 for an overview of such tools. In general, these

tools accept a subset of the C language and produce an RTL implementation. An example of such

a tool is Synfora PICO [2], a commercial product of Synfora, Inc. This tool exploits parallelism at

the various levels shown in Figure 1.1 and applies sophisticated scheduling techniques to obtain an

efficient RTL implementation in terms of area and performance. PICO is invoked by our ESPAM-

PICO tool to generate the custom IP cores. PICO offers streaming interfaces for the generated

cores. These streaming interfaces have FIFO semantics, which makes the cores fit well in our

network of communicating processes.

1.3 Related Work

In this section, we give an overview of work related to automated hardware generation from a

high-level input specification. Many tools and techniques have been developed over the years

to convert a specification in a high level language into a (synthesizable) representation closer to
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the hardware level. These tools typically restrict the set of accepted input specifications to a

class of specifications for which the tool can derive efficient implementations. Moreover, special

annotations or code restructuring is often required to obtain efficient results.

The Handel-C language [14] is a small subset of C, extended with some constructs to influ-

ence the efficiency of generated hardware. The SpecC language [15, 16] is intended for specifi-

cation and design of embedded systems, including hardware and software portions. The Alpha

language [17, 18] is a functional language intended for systolic array synthesis research. The lan-

guage is based on systems of affine recurrence equations, which makes it quite a different language

compared to the other (C based) high level languages discussed in this section. Using a series of

transformations, an Alpha program can be converted into a netlist, as described in [19]. The

ROCCC compiler [3] generates VHDL from a subset of the C language. ROCCC targets applica-

tions that have a high computational density and a low control density. It employs a sophisticated

sliding window approach for off-chip memory accesses, although this only improves performance

for particular (consecutive) memory access patterns. Our distributed memory based approach can

be applied to more irregular access patterns as well. SPARK [20, 21] accepts a subset of ANSI-C

as input, applies optimization and scheduling techniques and generates VHDL. However, it does

not support multi-dimension array accesses, which are typical in image processing applications

for example. Trident [22] is a C-to-VHDL compiler that particularly focuses on floating point

arithmetic. SA-C (Single Assignment C) [23, 24] is a single assignment variant of a subset of the

C language. After various optimizations, VHDL components are generated from data flow graph

representations. The SA-C language aims at image processing applications in particular. Streams-

C [25, 26] is an extension to C by means of source code annotations and library functions. This

way, a Communicating Sequential Processes (CSP) parallel programming model based on C-like

syntax is offered. The project supports both VHDL generation and functional simulation of ap-

plications written in the Streams-C language. Impulse C [27] is a commercial tool that is similar

to Streams-C, in terms of programming model and operation. DWARV [6] is a C-to-VHDL tool

targeted towards the MOLEN [28] polymorphic processor paradigm. No C syntax extensions are

used, but pragma annotations are necessary.

The PARO [29, 30] design flow accepts sequential nested loop programs written in a subset of

C. The loop nests are parallelized, loop transformations are applied and design space exploration

is performed. Finally, VHDL code representing an array of processing elements is generated,

including communication and control components.

The Catapult Synthesis [4] tool suite accepts unannotated ANSI C/C++ as input and generates an

6
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RTL implementation. However, the C code has to be written according to the Catapult-C coding

guidelines in order to obtain efficient results.

‘Machines’ [31] is a programming model that requires the user to specify medium-grained paral-

lelism. The compiler takes object oriented C++ code that is specified according to the program-

ming model and translates this into Predicated Static Single Assignment code (PSSA). Optimiza-

tions are applied and finally a bitstream is generated that can directly be used on an FPGA.

Disydent/UGH [32, 33] is a set of tools that translates a KPN-based program specification into syn-

thesizable VHDL descriptions. The tool set expects the userto provide a C program, partitioned

using POSIX threads, and a high level description of the KPN.The UGH tool then generates the

hardware implementation. As the name UGH (User Guided High level synthesis) suggests, the

compilation process depends heavily on decisions of the user. Hence, the designer should have

thorough knowledge of the underlying techniques in order toobtain efficient hardware implemen-

tations.

CLooGVHDL [34] is an extension to CLooG [35], a tool that generates code for traversing the

integral points of parameterized polyhedra. Currently, the set of acceptable input programs is re-

stricted because of the use of the polyhedral model. CLooGVHDL first calculates reuse distances

of the memory references in the input program. With this information, a set of loop transforma-

tions is determined that improve temporal data locality. The transformed polyhedral representation

of the program is then converted into hardware. This hardware implementation consists of two en-

tities: the implementation of the statements, typically assignment statements, and the controller

that updates the iterators and triggers the statements at the right moment. At this point, a purely

sequential hardware implementation of the program is realized. Now, dependence analysis can

indicate which loops and/or statements can be executed in parallel. By duplicating parts of the

controller, different loops can be executed in parallel. Byduplicating the implementation of a

statement, multiple instances of this statement can be executed in parallel. Clearly, this involves

a trade-off between execution speed and chip area. The final output is presented in the form of

VHDL code. Unfortunately, this tool does not produce fully functional implementations, as the

VHDL implementations of non-control statements are not generated automatically.

A different approach is to create new hardware design languages that try to combine constructs

from high level languages (like C or C++) with constructs from hardware description languages.

This provides a very versatile language, but there are some disadvantages: existing code needs

to be translated into the new language and the programmer often needs to indicate parallelism to

some extent.

7
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HardwareC [36] is such a “new” hardware description language that has a C-like syntax. The

language is extended with concepts like concurrent processes, message passing, timing constraints

and resource constraints. The Olympus Synthesis System [37] takes input specifications written

in HardwareC and offers chip level synthesis or simulation of designs.

In [38], Superlog is proposed. This language tries to combine the hardware description features of

Verilog and the general purpose programming constructs of C, like structures and pointers, into a

single language.

SystemC [39] is a C++-based hardware/system description language aimed at system design and

verification. SystemC designs can be simulated and synthesized to an RTL description or netlist,

although verification currently seems to be the most widespread use of the language. In [40],

a method for SystemC code generation from Unified Modelling Language (UML) diagrams is

described.

It is also possible to develop a new platform and design a highlevel programming language

specific to that platform. This provides a fast way to accelerate an application using hardware and

prevents the user from having to deal with low level constructs. However, applications need to be

rewritten in the appropriate language and designs for such aplatform are not directly portable to

other platforms.

The Mitrion platform [41] is based on such an approach. Applications have to be written in the

Mitrion-C language. A compiler then instantiates a MitrionVirtual Processor and adapts it to

the needs of the application. This Mitrion Virtual Processor is a soft-core processor that can be

instantiated on an FPGA for example.

The Carte Programming Environment [42, 43] of SRC Computersaccepts plain, unannotated For-

tran or C code and generates a so called “unified executable” for use with a MAP Processor. This

is a reconfigurable platform that has also been developed by SRC Computers, Inc. Although the

input code can be kept free of tool-specific annotations, theresult is subject to the constraints of

the MAP processor. This limits flexibility and scalability.

1.4 Thesis Organization

The remainder of this thesis is structured as follows: In Chapter 2, we explain the model of com-

putation being used, as well as some existing tools that are used in our approach. In Chapter 3,

we propose two new hardware node models and in Chapter 4, we show how we can automatically

generate hardware implementations of an application usingthese models. In Chapter 5, we explain

8
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the experiments that we have conducted with our approach andshow the obtained results. Finally,

in Chapter 6, we mention possible future work and in Chapter 7, we summarize our work and our

findings.
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Chapter 2
Background

In this chapter, we discuss the KPN model of computation and we give an overview of three

existing tools that we use in our approach.

2.1 The Kahn Process Network Model of Computation

A Kahn Process Network, or KPN, is defined as a directed graphG = (V,E), whereV =

{p1, . . . , pN} is a set of concurrently executing processes, represented by the vertices or nodes

of the graph, andE = {e1, . . . , eM} is a set ofFIFO (First In, First Out) channels, represented

by the edges of the graph. The KPN model of computation is deterministic: the result(s) of the

computation, that is, the data transferred on the FIFO channels, will be the same for all possible

firing sequences of the network.

P1 P2 P3

ED_1 ED_2

Figure 2.1: An example of a Kahn Process Network, consistingof three nodes and two FIFO
channels.

In Figure 2.1, an example of a KPN is shown, which consists of aproducer nodeP1, a trans-

form nodeP2and a consumer nodeP3. ProcessP1can send data to processP2via FIFO channel

10



CHAPTER 2. BACKGROUND 2.1. KPN MODEL

ED 1 and processP2can send data to processP3via FIFO channelED 2.

Each of the processes in a KPN is sequential and follows a fixedinternal execution schedule.

However, there is no global execution schedule. Communication between processes is accom-

plished by means of unbounded FIFO channels. Each node has zero or more incoming FIFO

channels, and zero or more outgoing FIFO channels. The incoming channels are connected to

the input portsof a node; the outgoing channels are connected to theoutput portsof a node. A

process can sendtokensto its outgoing channels and receive tokens from its incoming channels

by means of atomic write and read operations. The write operation is non-blocking, meaning that

it always succeeds without delay. The read operation is blocking, meaning that execution of the

entire process halts if the channel on which the read operation was performed is empty. Once data

becomes available again, execution is resumed.

The unboundedness of the FIFO channels does not allow an implementation on a platform with

a finite amount of memory. Hence, for a real implementation each FIFOi is bounded by some

value Si and the non-blocking write operation is changed into a blocking write operation that

blocks when the channel written to is full. However, when oneor more buffer sizes are chosen

too small, anartificial deadlockmay occur [44]. In such a case, none of the processes can make

progress anymore because they are directly or indirectly waiting on one or more processes that

are blocking on a write operation. In the remainder of this thesis, we assume that buffer sizes are

chosen large enough to prevent such artificial deadlocks.

2.1.1 Transformations

A strong point of the KPN model is that we can explore alternative instances of an application by

applying high level transformations to the application source code. By translating the transformed

source code into a KPN, this new KPN exhibits the characteristics that were intended by the

transformation. Transforming the application source codecan be automated, as illustrated in [11,

45]. In this thesis, we consider two transformations, namely unrolling andskewing.

Unrolling

The unrolling or “process splitting” transformation is applied to one node of a KPN at a time.

This node is replaced byU adjusted copies of the node. Here,U is called theunroll factor. The

functionality of these new nodes is modified such that each node performs a different portion of

the computational workload of the original node. This may bedone by adding if-statements to

11
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P1 P2 P3 P1

P2_1

P3

P2_2
for (i = 0; i < N; i++) {

  .. loop body ..

} for (i = 1; i < N; i += 2) {

  .. loop body ..

}

for (i = 0; i < N; i += 2) {

  .. loop body ..

}

Figure 2.2: An example of an unrolling transformation with afactor of 2 applied to nodeP2.

the process code, or by directly changing the loop bounds andstep sizes, as we did in Figure 2.2.

In the ideal case, the new nodes can now operate in parallel and finish the entire computation

in less time than the unmodified network would need. The unrolling transformation leads to an

increased number of nodes and edges in the network, but the functionality remains the same.

The predecessor and successor nodes of the transformed nodealso need to be adapted, because

the predecessor nodes now need to select the right destination node for each token they send

and the successor nodes need to collect tokens from the rightinput channels. This can be seen

in Figure 2.2, where the amount of outgoing channels of nodeP1 and the amount of incoming

channels of nodeP3differ for the original and the transformed network. Additional edges between

the unrolled nodes may be required, depending on the presence of loop-carried dependencies in

the original process code.

Skewing

The skewing transformation can be used to make potential parallelism of the input application

explicit. This is done by adjusting the loop bounds and (array) variable indices of the code that

belongs to a node. After applying the skewing transformation, iterations that could not run in

parallel in the original application may now execute in parallel. The skewing transformation might

lead to improved pipeline efficiency of the operations inside a node because there are less data

dependencies that could cause stalls. By combining this with the unrolling transformation, even

12



CHAPTER 2. BACKGROUND 2.2. KPNGEN

end
end

for j = 1:1:4,
for i = 1:1:3,

[y(i), x(j)] = F(y(i), x(j));

end
end

for j = 
for i = 

[y(i), x( j−i )] = F(y(i), x( j−i ));

 2:1:4+3,
max(1,j−4):1:min(j−1,3),

i

j

y(1)

y(2)

y(3)

x(1) x(2) x(3) x(4)

F F F

F

F

F F

F

F

F F F

y(2) FF F F

y(3) FF F F

i

j
x(1) x(2) x(3) x(4)

y(1) F FFF

b) Same program with its i−loop skewed.

a) Application program and its dependence graph.

Figure 2.3: An example of a skewing transformation.

shorter execution times can be obtained.

In Figure 2.3, an example of a skewing transformation is shown. In Figure 2.3a, the original

input is shown on the left, and the corresponding DependenceGraph (DG) is shown on the right.

In this DG, the nodes represent the workload of the iterations, that is, the function calls, and the

edges represent the data dependencies between the functioncalls of the iterations. In Figure 2.3b, a

version of the application with its i-loop skewed is shown. Now, the DG graph explicitly indicates

which iterations can be executed in parallel due to the absence of data dependencies between their

nodes. Such sets of iterations are placed inside a dashed box.

2.2 KPNGen

KPNGEN [46] is a chain of tools that takes a C or C++ file as input and generates a KPN de-

scription, as depicted in Figure 2.4. Currently, the input to KPNGEN is restricted to Static Affine

Nested Loop Programs (SANLPs). This means control must be static and expressions in loop

bounds, array accesses and if-statements must be affine combinations of iterators and parameters.

13
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KPNGen Tool A

CB

Application Specification

KPN
  for (j=1; j<N; j++) {

    B(in[i][j], &(out[i][j]));

  }

}

for (i=1; i<M; i++) {

Sequential C code

...

...

Figure 2.4: The KPNGEN tool flow.

First, the input source code is converted intoSingle Assignment Code(SAC) which resembles

theDependence Graph(DG) of the original program. This SAC is then converted intoa Polyhedral

Reduced Dependence Graph (PRDG). This is a compact mathematical representation of the DG,

based on the polyhedral model. Finally, the PRDG is converted into a KPN. The nodes of the

PRDG correspond to the processes of the KPN. The data dependencies of the PRDG correspond

to the communication channels of the KPN. For each channel, abuffer size is computed based

on a deadlock-free schedule. Note that this particular deadlock-free schedule may not be optimal,

and thus the computed buffer sizes may not be valid for the optimal schedule. However, a valid

schedule exists for the computed buffer sizes.

2.2.1 Input

We illustrate the flow of KPNGENby means of an example. In Figure 2.5, an example of a SANLP

written in the C language is shown.

On lines 3 & 4, the parameterN is defined. Starting at line 6, the top level procedure that isto be

converted into a KPN is declared. Lines 10–12 initialize array a by means of function calls to the

source function. Here, the “addressOf” operator (&) is used in the argument expression to allow

elementa[i] to be written. At lines 14–16, thetransform function is called for each element

of arraya. This function writes its results to arrayb. Finally, at lines 18–20, the elements of array

b are consumed by thesink function.

2.2.2 Tool invocation

The Daedalus framework provides a script which invokes the appropriate tools in the correct order.

Thepn subtool is controlled using thePN_OPTIONSenvironment variable. This allows one to

influence the characteristics of the network. For example, the --no-reuse option generates

14
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

#include "funcs.h" // Contains function prototypes

#define N 16
#pragma parameter N 16 100

int main() {
int i;
int a[N+1], b[N+1];

for (i = 1; i <= N; i++) {
source( &(a[i]) );

}

for (i = 1; i <= N; i++) {
transform( a[i], &(b[i]) );

}

for (i = 1; i <= N; i++) {
sink( b[i] );

}

return 0;
}

Figure 2.5: Example input to KPNGEN.

a network that does not contain reuse channels. Enabling this option generally leads to a lower

number of channels, but might lead to an increased number of the more expensive reordering

channels.

2.2.3 Output

After invocation of the KPNGENscript, a KPN of the input specification is produced. The KPN is

offered in both an YAML and XML format. Because we pass the KPNGEN output on to ESPAM,

we are only interested in the XML output. In the following paragraphs, we highlight the most

important features of the XML representation of the generated KPN for the input program of

Figure 2.5.

The XML output file begins with the following lines, defining the document type and the start of

the Approximated Dependence Graph (ADG):

1

2

3

4

5

<?xml version="1.0"?>

<!DOCTYPE sadg PUBLIC "-//LIACS//DTD ESPAM 1//EN"

"http://www.liacs.nl/˜cserc/dtd/espam_1.dtd">

<sadg>

<adg name="example" levelUpNode="">

15
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Next, for each node of the KPN, anode element is given. Below is the corresponding declaration

of nodeND_1, which corresponds to thetrans function call in the example.

6

7

8

9

10

11

12

13

14

<node name="ND_1" levelUpNode="">

<inport name="ND_1IP_ED_0_0_V_0" node="ND_1" edge="ED_ 0">

<bindvariable name="in_0" dataType="int"/>

<domain type="LBS">

<linearbound index="c0" staticControl="" dynamicContro l="" parameter="">

<constraint matrix="[1, 1, -1; 1, -1, 16]"/>

</linearbound>

</domain>

</inport>

The inport element defines an input port of the current node. This input port operation corre-

sponds to the read operation of array elementa[i] in line 15 of Figure 2.5. The variable that is

bound to this input port isin_0 , as defined by thebindvariable tag. Thedomain element in

lines 9–13 contains information about the iteration space of the input port. The constraint matrix

that is given in line 11 looks as follows:

Mc =

[

1 1 −1

1 −1 16

]

Each row ofMc represents a constraint. If the first element of a row equals zero then the constraint

is an equality (= 0); if the first element equals one then the constraint is an inequality (≥ 0). The

next columns ofMc contain the coefficients of the (control) variables. In thisexample there is

only one variable, namely thec0 index variable which is declared in line 10 of the XML. The

last column contains the constant of the constraint. By interpreting Mc accordingly, we get the

following constraints on the iteration space of the currentinput port statement:

IND 1IP 0 =

{

c0 |
c0 − 1 ≥ 0

−c0 + 16 ≥ 0

}

= {c0 | 1 ≤ c0 ≤ 16}

Note that this set of integers exactly matches the iterationspace of the second for-loop in Fig-

ure 2.5. Similarly, an output port is defined, correspondingto the write operation to array element

b[i] , in line 15 of Figure 2.5. The iteration space of this output port is equal to that of the input

port discussed above; hence we have omitted thedomain element in the following fragment:

16
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15

16

17

18

<outport name="ND_1OP_ED_1_0_V_1" node="ND_1" edge="ED _1">

<bindvariable name="out_1" dataType="int"/>

...

</outport>

Next, the parameter signature of the function associated tothis node is described:

19

20

21

22

23

24

<function name="trans">

<inargument name="in_0" dataType="int"/>

<outargument name="out_1" dataType="int"/>

</function>

...

</node>

Finally, adomain element describing the iteration space of the node is given.Again, this one

is omitted in the fragment above because it is equal to the other domain elements. For the

source andsink function calls, nodesND_0andND_2, respectively, are created. The XML

data describing these nodes is similar to the description ofND_1, with some obvious differences:

ND_0does not possess anyinport elements, because there is no valid data being read by the

source function call. Likewise,ND_2 does not possess anyoutport elements, because the

sink function does not produce any data.

After the list of nodes, the edges of the KPN are listed. For each edge, anedge element is

given. Our example KPN contains two edges. The fragment below shows how the type, size and

connections of these edges are described. Both edges are of the FIFO type, with buffer sizes of

one. ThefromPort andtoPort attributes connect the edge to the specified output and input

port, respectively. ThefromNode and toNode attributes show from which node the directed

edge is coming and to which node it is connected.

25

26

27

28

29

30

31

32

33

34

35

<edge name="ED_0" fromPort="ND_0OP_ED_0_0_V_0" fromNod e="ND_0"

toPort="ND_1IP_ED_0_0_V_0" toNode="ND_1" size="1">

<linearization type="fifo"/>

<mapping matrix="[1, 0, 0; 0, 0, 0]"/>

</edge>

<edge name="ED_1" fromPort="ND_1OP_ED_1_0_V_1" fromNod e="ND_1"

toPort="ND_2IP_ED_1_0_V_0" toNode="ND_2" size="1">

<linearization type="fifo"/>

<mapping matrix="[1, 0, 0; 0, 0, 1]"/>

</edge>

</adg>

Also, a graph in the Graphviz DOT format [47] is produced. This provides a visual representation

of the network topology to the user. The graph produced for the example discussed in this section
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is shown in Figure 2.6. In this figure, the node labels show thefunction name of the corresponding

KPN process. The edges are labelled with the name of the variable in the original input associated

to the data dependence, followed by the recommended minimumbuffer size.

a: 1 b: 1
trans sinksource

Figure 2.6: Automatically generated graph for the example input.

2.3 ESPAM

ESPAM (Embedded System-level Platform synthesis and Application Mapping) [48] is a tool in-

tended for automated multiprocessor system design and implementation. The design flow is de-

Program code
for processors

HW description
of IP Cores

Platform topology
description

Auxiliary
information

P2

P1
CB

Platform Specification

A

CB

Application Specification

KPN
P2

P1
CB

A

CB

Mapping Specification

Hardware
Impl.

Specification

Specification

Specification
Gate−Level

RTL−Level

System−Level

ESPAM ToolIP Core
Library

Commercial Synthesizer and Compiler (XPS)

Figure 2.7: The ESPAM design flow.
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picted in Figure 2.7. Starting from a high level system specification, the tool synthesizes and

programs a multiprocessor system. The current version available at the time of writing targets

Xilinx Virtex-II Pro FPGAs, by producing a Xilinx Platform Studio (XPS) project. It relies on the

XPS tool to generate the final bitstream with which an FPGA canbe configured. It should be noted

that the XPS project is generated by the ESPAM back-end. In order to target a different platform,

only the back-end has to be adapted.

2.3.1 Input

ESPAM requires three different XML files as input. First, anapplication specificationis needed.

The application is specified as a KPN in the format already described in Section 2.2.3. The output

of the KPNGEN tool can be directly passed on to ESPAM as an application specification. Next, a

platform specificationis needed, which contains information about the processorsand peripherals

in a system and the interconnections between them. Finally,a mapping specificationis needed,

which maps the different processes of the application onto the processors of the system. The

platform and mapping specifications are discussed below by means of an example that builds

further upon the example of Section 2.2.1.

Platform Specification

In the platform specification, the various components of thesystem are specified. For an extensive

discussion of the platform model used by ESPAM, we refer to [48]. In this section we only highlight

the elements that are relevant to the remainder of this thesis. In Figure 2.8, an example platform

specification is given.

A platform is composed of different components. The processing components are calledPro-

cessors. In Figure 2.8, these are found on lines 2–10, identified by the processor XML ele-

ments. Each processor should be given a unique name such thatit can be referred to. Next, the

type of a processor should be provided. Currently, three different processor types are supported:

• MB : A 32-bit Xilinx MicroBlaze processor. This is a “soft processor core”, that is syn-

thesized out of the regular configurable logic of an FPGA. It allows some features, e.g.,

the presence of a hardware multiplier, to be configured by theuser, thereby offering the

option to reduce slice utilization in exchange for lower performance. ESPAM generates C

code for the MicroBlaze processors, which is compiled usinga C compiler during the final

implementation phase.
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1
2
3
4
5
6
7
8
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10
11
12
13
14
15
16
17
18
19
20

<platform name="examplePlatform">
<processor name="MB_0" type="MB" data_memory="16384" pr ogram_memory="16384">
</processor>

<processor name="MB_1" type="MB" data_memory="16384" pr ogram_memory="16384">
</processor>

<processor name="MB_2" type="MB" data_memory="16384" pr ogram_memory="16384">
<port name="OPB_2" type="OPBPort"/>

</processor>

<peripheral name="UART_1" type="UART" size="256">
<port name="IO_1" type="OPBPort"/>

</peripheral>

<link name="mb_opb_2">
<resource name="MB_2" port="OPB_2"/>
<resource name="UART_1" port="IO_1"/>

</link>
</platform>

Figure 2.8: An example platform specification for the ESPAM tool.

• PPC: A 32-bit PowerPC processor. A Xilinx Virtex-II Pro FPGA provides up to two inte-

grated PowerPC 405 cores. Again, ESPAM generates C code for this processor type which

is compiled during the final implementation phase.

• CompaanHWNode: A processor similar to a node generated by the Compaan/ Laura

chain [5]. ESPAM generates all necessary control logic for this processor type, but it re-

lies on an IP core library to fill in the remaining functional part of the node.

For the MicroBlaze and PowerPC processor types, the sizes ofthe data and program memories

should also be specified. For each processor, external communication ports can be specified. In

line 9 of Figure 2.8, an On-chip Peripheral Bus (OPB) port is specified for processorMB_2.

Additional peripherals can be defined using theperipheral element. On lines 12–14 of

Figure 2.8, a Universal Asynchronous Receiver/Transmitter (UART) is instantiated. This compo-

nent can be used as a low-bandwidth communication link between a processor on the FPGA and

an external host, for example. Like the other components, the UART should be given a unique

name; in this case it is calledUART_1. On line 13, it is connected to the OPB bus using an OPB

port.

In order to connect different components to each other,links can be used. A link connects

exactly two components. On lines 16–19 of Figure 2.8, a link is used to connect MicroBlaze
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processorMB2to the UART peripheralUART_1. This way, the MicroBlaze and the UART can

exchange data via the On-chip Peripheral Bus. For the FIFO channels that are present in the

application specification, ESPAM automatically instantiates appropriately configured FastSimplex

Link (FSL) components. This is a data exchange interface with FIFO semantics available on Xilinx

platforms. Any processor type can read data from and write data to an FSL component.

Mapping Specification

The mapping specification maps the processes of the application specification onto the processors

of the platform specification. In some cases, the mapping specification can be left empty such that

ESPAM automatically derives a mapping. This is allowed when, for example, no links are present

and the platform consists of only one processor. If the mapping specification can not be left empty,

the user has to provide it in the form of an XML file.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

<mapping name="exampleMapping">

<processor name="MB_0">
<process name="ND_0" />

</processor>

<processor name="MB_1">
<process name="ND_1" />

</processor>

<processor name="MB_2">
<process name="ND_2" />

</processor>

</mapping>

Figure 2.9: An example mapping specification for the ESPAM tool.

In Figure 2.9, an example mapping specification in XML is shown. This mapping maps the

different processes of our example application discussed in Section 2.2.3 onto the processors of

our example platform discussed earlier in this section. Each processor element contains a list

of process elements, indicating which processes are mapped onto the processor. It is possible

to map multiple processes on the same processor. In the example of Figure 2.9, processND_0 is

mapped on processorMB_0, ND_1onMB_1andND_2on MB_2.
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2.3.2 Tool invocation

Once the application, platform and mapping specification are available, invoking ESPAM is pretty

straightforward. The following command launches ESPAM, which then generates an XPS project

according to the input specifications.

espam --platform example.pla --adg example.kpn --mapping example.map \

--xps --libxps $ESPAM_LIBXPS_directory

Using the first three pairs of command line arguments, the platform, application and mapping

specification files are selected, respectively. The--xps switch turns on XPS project generation

and the--libxps argument specifies the location of the XPS library, which is needed during

XPS project generation.

2.3.3 Output

The result of running ESPAM using the command line described earlier is an XPS project. The top

level project directory contains the following subdirectories and files:

• code/ : This subdirectory contains the (C) source code files that belong to the various

microprocessors in the design.

• data/ : This subdirectory contains platform-specific data, such as User Constraint Files

(UCF).

• etc/ : This subdirectory contains implementation settings and scripts.

• pcores/ : This subdirectory contains data for the various IP cores that are used in the

design. For each IP core a separate subdirectory is created.Such a subdirectory typically

contains the following items:

– hdl/ : The HDL files belonging to the IP core, usually written in VHDL or Verilog.

– data/core.mpd : The Microprocessor Peripheral Definition (MPD) file. This file

defines the characteristics of the IP core, such as external ports.

– data/core.pao : The Peripheral Analyze Order (PAO) file. This files lists theHDL

files belonging to the IP core and the order in which they need to be analyzed.
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• system.mhs : The Microprocessor Hardware Specification (MHS) file. Thisfile describes

the different components of the system, such as the processors, other peripherals and the

interconnections between the various components.

• system.mss : The Microprocessor Software Specification (MSS) file. Thisfile describes

software-related aspects of the system, such as the driversthat are needed for a certain

component.

• system.xmp : The Xilinx Microprocessor Project (XMP) file, containing general infor-

mation about the project.

Assuming that all IP cores needed by the design are present, the system can be synthesized into

a bitstream using the XPS tool. Subsequently, the resultingbitstream can be used to configure an

FPGA such that the original application can be executed. This completes the KPNGEN/ESPAM

design flow.

2.4 PICO

The PICO [2] tool generates an RTL implementation from a specification written in a subset of

ANSI C. It allows one to evaluate multiple alternative implementations and can provide the de-

signer with a list of Pareto optimal implementations, in terms of area and performance. Between

various stages of the synthesis process, the intermediate results can be verified using simulations.

The final result is typically a Pipeline of Processing Arrays(PPA), which implements the function-

ality of the original input specification. This PPA is composed of a set of configurable architectural

IP cores.

A PPA consists of a configurable amount of Processor Arrays (PAs) that are placed in a

pipeline, interconnected using FIFO buffers. Each PA consists of one or more Processing Ele-

ments (PEs). A processing element consists of a variable number of different functional units,

such as adders and multipliers. In Figure 2.10, the typical hierarchy of a PPA is shown. Each PA

originates from a loop (nest) at the top level of the C specification.

PICO tries to exploit parallelism at various levels. Using Figure 2.11, we illustrate the various

levels of parallelism for the application code fragment shown in the upper right corner. The three

for-loops of this code fragment are mapped to separate PAs; we refer to them by means of the

associated function call inside the loop. In Figure 2.11a, inter-task parallelism, or task overlap, is

depicted. In this context, atask is one entire execution of the application code. A new task can
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Figure 2.10: Overview of the PICO PPA hierarchy.

be started while the previous task is still running, typically when the first loop nest has finished.

Task overlap is not obtained automatically: the user has to provide the appropriate input to the tool

and/or the RTL result. In Figure 2.11b, intra-task level parallelism, or parallelism inside a single

task, is depicted. Different portions of a task can typically be executed in a pipelined fashion. This

is automatically exploited by the PICO tool. In Figure 2.11c, inter-iteration level parallelism is

illustrated. Depending on the loop-carried dependencies of a loop (nest), iterations may also be

executed in a pipelined fashion. Using software pipeliningtechniques, PICO obtains a schedule

for the iterations. In Figure 2.11d, instruction level parallelism (ILP) is depicted. The low level

operations of an iteration are scheduled in such a way that parallel execution is possible, while

data dependencies of the original code are still respected.

2.4.1 Global Flow

First, we give a general overview of the PICO synthesis flow in this subsection. Subsequently, in

the next subsections, we discuss the different key aspects in more detail.

The PICO Express application offers both a graphical and a command line user interface. Since
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Figure 2.11: Different levels of parallelism that are takeninto account by PICO.

the command line interface fits better in an automated designflow, we focus on the commands

with which a certain operation can be performed.

Environment

For each design, aproject has to be created. One possible way to achieve this is by creating a

new directory, entering this directory and then launching the PICO Express tool from within this

directory. PICO treats its initial working directory as project directory,so now one can configure

the project. This is done using theset_project_params command, which accepts several

arguments. Suppose we want to add a C source file calledmy_func.c to the project. The content

of this C file is discussed in more detail in Section 2.4.2. Thefollowing command can be used to

add the file to the project. Here we assume that this file already resides in the project directory.

set_project_params -sources my_func.c

The same command can be used to add C header files (-headers argument), input data files

(-data argument) and result files (-results argument).

The next step is to create anexperiment. An experiment represents one particular imple-

mentation of the project. Several experiments can be created, each with a different parameter
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configuration. In order to create a new experiment, the following command is used:

create_experiment myexp

This command creates a new experiment called “myexp”. In theproject directory, a new directory

myexp/ is created. This directory is used to store a copy of the inputfiles, the experiment con-

figuration and, after synthesis, the generated output. Thecreate_experiment command also

sets the new experiment as the current experiment. In order to switch to a different experiment,

one uses theselect_experiment command.

Configuring the current experiment is done using theset_experiment_params com-

mand. This command accepts a considerable amount of arguments. In this section, we only

discuss the two arguments that are essential to the synthesis flow. In Section 2.4.3, we discuss

some more arguments to this command. Suppose the top level function we want to synthesize into

RTL resides in the filemy_func.c and is called “func”. The following command can be used to

configure the experiment accordingly:

set_experiment_params -appfile my_func.c -proc func

Synthesis

After configuring the experiment, the PICO synthesis process can be initiated. In order to convert

the top level function to a PICO PPA core, several steps are required. These steps are depicted in

Figure 2.12.

synthesizeschedule package
package

RTLpreprocessinput.c

Figure 2.12: Global PICO Express flow.

First, the C file has to be preprocessed by PICO, using thepreprocess command. During

preprocessing, several source code transformations take place. For example, all function calls are

inlined, such that the result of this phase consists of one function representing the entire function-

ality of the PPA. Also, statements that are not part of a loop nest are either moved to the nearest

loop above or below, or placed inside a new loop with only one iteration. These restructurings
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facilitate the construction of the PA pipeline in subsequent steps. In addition, syntactic checks are

performed to make sure the input complies with the syntax of the PICO-C language.

The next step is the scheduling phase, which is invoked usingtheschedule command. Dur-

ing this phase, high level optimizations and loop optimizations are performed and loops are sched-

uled. The scheduling step is followed by the synthesis phase, invoked using thesynthesize

command. In this phase, instructions are scheduled, instruction level optimizations are performed

and resources are allocated. Finally, the RTL implementation is written in the form of Verilog

files. These files can be put into an RTL “package” using thecreate_rtl_package com-

mand. This command collects the Verilog files as well as reports, log files and simulation stubs,

and places them in a conveniently arranged directory hierarchy on the file system.

Instead of issuing thepreprocess , schedule andsynthesize separately, thebuild

command can be used to perform these operations sequentially.

2.4.2 C Input File

The (top level) C file that is provided to theset_experiment_params command using the

-appfile argument is the starting point in a PICO design. The top level function in this file is

synthesized to RTL. The structure of this file is similar to a regular C file, although there are some

differences. In addition, PICO offers some constructs used for optimization and communication.

Communication Constructs

In order to allow data exchange between the PPA and its environment, several communication

constructs are provided. A main distinction is made betweenstream interfacesand live scalar

and array variables. Stream interfaces act as FIFO channelsand can be internal, to communicate

data between different loops, as well as external, to exchange data with the PPA environment. An

internal stream is defined using theFIFO macro, which generates two access functions that can

be called from within the PPA function:

1

2

3

4

5

FIFO(myFifo, int);

pico_stream_output_myFifo(y);

...

x = pico_stream_input_myFifo();

At line 1, an internal stream “myFifo” is defined, which transfers data of theint type. At line 3,

data is written into the stream; at line 5, data is read from the stream. The access functions for the
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external streams are similar to those for internal streams.The declaration is somewhat different.

Instead of using theFIFO macro, one has to declare the access functions manually. Foran input

stream, thepico_stream_input_xxx function has to be declared, wherexxx should be

replaced by the stream name. Similarly, for an output stream, thepico_stream_output_xxx

function has to be declared. PICO automatically recognizes these functions as external stream

interfaces and adds the appropriate external ports to the PPA RTL.

The global variables of a PPA file are treated as live variables. Variables that communicate in-

put data to the PPA function are referred to asliveins; variables that communicate output data from

the PPA function are referred to asliveouts. Scalar variables are bound to livein and liveout scalars,

while arrays are bound to livein and liveout memories. The relation between the communication

constructs and their RTL equivalent is discussed in Section2.4.4.

Input Restrictions

Because the target architecture of the PICO tool set is very different from a regular von Neu-

mann architecture, several restrictions are posed on the C input. Additional restrictions may arise

from the fact that development is still going on, eventuallyleading to a relaxation of this class of

restrictions.

For example, pointers are not allowed, as there is no notion of global memory. Recursive

procedure calls and floating point operations are also not supported. The C input should be self-

contained: all functions that are called have to be fully defined in the same or a directly included

C file. In PICO Express version 08.01, that has been used during our research, composite data

structures (using C’sstruct keyword) were not allowed, although the next release does support

them. The loop nest structure of the top level function is also constrained: onlyperfectly nested

loopsare allowed. Note that this restriction applies to the C codeobtained after preprocessing and

function call inlining. Effectively, this restriction does not allow multiple loop statements inside

another loop, as shown in the following example:

1

2

3

4

5

6

7

8

for () { // Outer loop

for () { // Inner loop 1

S1();

}

for () { // Inner loop 2

S2();

}

}
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Note that other non-loop statements are still allowed in thebodies of the loops. In this example, the

second inner loop violates the loop structure restriction.In such a case, the user has to restructure

the code to conform to the structural requirements again. Ifthe iteration domains of both inner

loops are equal and no data dependencies exist between statementS1 andS2, the loops can be

merged. Another option is to unroll one of the inner loops, although this quickly leads to increased

hardware costs.

Source Code Annotations

To allow the user to provide PICO with additional information during synthesis, various source

code annotation constructs are offered. Most of these annotations are specified via pragma direc-

tives. For example, to unroll a loop, the following pragma isplaced directly before the loop that is

to be unrolled:

#pragma unroll

Of course, the iteration count of the loop needs to be known atcompile time if this pragma is

applied. If the iteration count cannot be statically determined, thenum_iterations pragma

can be used to specify this number.

PICO already performs value analysis and bit width optimizationto reduce the amount of bits

needed for a variable. Using thebitsize pragma, the user can manually influence the amount of

bits allocated to a certain variable, making more efficient variable sizing possible. Sizes of internal

FIFOs can be controlled using thefifo_length pragma.

Typically, arrays are converted into local memories. Basedon the size of an array, the local

memory is either implemented using registers, or defined as an external SRAM. The user can

override the default behaviour on a per-array basis. In order to synthesize an array as an internal

register-based RAM, theinternal_fast pragma can be used. Theuser_supplied pragma

can be used if the user wants PICO to generate an external SRAM interface for a particular array.

Many other pragmas exist, which are described in the PICO Developer’s Guide [49].

2.4.3 Implementation Settings

To influence the performance and behaviour of the resulting RTL, various settings can be config-

ured and performance targets can be specified.
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For RTL synthesis, a target clock frequency has to be chosen.This way, PICO will make sure

the generated RTL meets timing constraints when processed by low level synthesis and implemen-

tation tools. To obtain such RTL, sophisticated constraintoptimization algorithms are employed.

If timing closure for a given clock speed can not be guaranteed, PICO RTL generation fails. Using

the following command, one can set the target clock frequency to 100 MHz:

set_experiment_params -clock_freq 100

Using the Minimum Inter-Task Interval (MITI), one can influence the application performance.

It represents the minimum number of cycles between two successive starts of a task, as depicted

in Figure 2.13. PICO treats the specified MITI as a performancegoal; the performance delivered

by the hardware may be different. If a MITI value is specified,PICO computes loop Initiation

Intervals (IIs) such that the rates of production and consumption are matched, resulting in small

internal FIFO buffer sizes. This is known asrate matching. The user may specify some or all loop

II values.

L1

L2

L3

L1

L2

L3

MITI

Task latency

T
im

e

Figure 2.13: Execution of two tasks, illustrating the MITI concept.

If no liveins are present, the PPA can be configured to automatically restart itself after a task

is completed. This has the advantage that no external PPA controller is needed to start each task.

The auto-restart setting is turned on by passing anauto_start_npa argument to either the

synthesis or build command. It is also possible to let the PPA run its first task “forever”.

This may be useful for real time streaming applications. This option is enabled by passing an

infinite_run_npa argument to either thesynthesis or build command.
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2.4.4 RTL Output

As mentioned earlier, thecreate_rtl_package command creates a directory containing the

RTL implementation of the PPA together with synthesis reports and simulation stubs. The follow-

ing subdirectories which are relevant to our work can be found in the RTL package directory:

• Logs/ : This subdirectory contains the log files of the preprocess,schedule and synthesis

steps.

• macrocells/ : This subdirectory contains the “macrocells” such as adders, multipliers

and selectors that are instantiated by the PPA subcomponents. The macrocells are provided

as Verilog files.

• Reports/ : This subdirectory contains various reports, like the result of the rate matching

steps, as well as detailed scheduling reports. Thereport_summary.txt report contains

a summary of the most important PPA features, such as pipeline depth.

• rtl/ : This subdirectory contains the modules of which the PPA is composed. The top level

file is identified by the_ppa file name suffix. The PPA instantiates wrapped PA components

(PAWs) which can be found in the files with a_paw_Nsuffix, whereN is the corresponding

PA number. The actual PAs reside in files identified by a_pa_N suffix. Likewise, each PE

file is identified by a_pe_N suffix. All of the PPA components are provided as Verilog

files.

The top level file contains the PPA module. This module has various input and output ports that are

used for control and data communication purposes. A possible PPA module definition of an ex-

ample auto-restart PPA, synthesized from a C specification with one input and one output stream,

is shown in Figure 2.14. Lines 2–15 define the general controlsignals that are characteristic of

a PPA. Theclk , reset andenable signals are common system signals, expected to respec-

tively provide a pulsating clock signal, a system reset signal and a signal enabling or disabling the

component. Some of the remaining control signals provide aninterface to the internal Processor

Status Word (PSW), which is used to keep track of the PPA state. Such signals typically have

a psw_ prefix. For the first sixteen loops of a design, a stall signal is available which becomes

high when the corresponding loop is forced to stall, due to unavailable inputs for example. In this

example, we have only one loop of which the stall signal is shown on line 12. Thepsw_busy

signal on line 13 indicates if the first stage of the PPA is busyor not. Thepsw_init_done and
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psw_task_done ports become high when task initialization and task execution, respectively,

have finished. Using theclear_init_done andclear_task_done ports, these status sig-

nals can be reset again. Because we solely use PPAs with the auto-restart feature turned on, the

remaining signals on lines 5,6 and 9–11 are not relevant.

Lines 16–21 define the input and output stream interfaces. The names and amounts of these

ports depend on the number of streams used in the application. Each stream interface typically

consists of three ports. On lines 16–18, the interface for the input streammyin is defined. This

interface consists of a data businstream_myin_di_0 , a signalinstream_myin_req_0

which is raised when the PPA requests data, and a signalinstream_myin_ready_0 which is

high when data is available on the incoming data bus. On lines19–21, the interface for the output

streammyout is defined. This interface consists of a data busoutstream_myout_do_0 , an

outstream_myout_req_0 signal which is raised if the PPA requests to write data, and an

outstream_myout_ready_0 signal indicating if the target of the output stream is readyto

receive data. The protocol of the stream interfaces is rather straightforward. In order to read one

element from an input stream, thereq signal is held high for one clock cycle. If theready signal

is high at the rising edge of this clock cycle, the contents ofthedi bus are fetched. Otherwise, if

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

module myfunc_ppa(
clk, // input clk;
reset, // input reset;
enable, // input enable;
start_task_init, // input start_task_init;
start_task_final, // input start_task_final;
clear_init_done, // input clear_init_done;
clear_task_done, // input clear_task_done;
psw_livein_frames_in_use, // output [3 : 0] psw_livein_fr ames_in_use;
psw_liveout_frames_in_use, // output [3 : 0] psw_liveout_ frames_in_use;
psw_released, // output psw_released;
psw_sa_0_stalling, // output psw_sa_0_stalling;
psw_busy, // output psw_busy;
psw_init_done, // output psw_init_done;
psw_task_done, // output psw_task_done;
instream_myin_di_0, // input [31 : 0] instream_myin_0;
instream_myin_req_0, // output instream_myin_req_0;
instream_myin_ready_0, // input instream_myin_ready_0;
outstream_myout_do_0, // output [31 : 0] outstream_myout_ do_0;
outstream_myout_req_0, // output outstream_myout_req_0 ;
outstream_myout_ready_0 // input outstream_myout_ready _0;

);

Figure 2.14: The Verilog module definition of a PPA.
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the ready is low during this clock cycle, thereq signal is held high and the PA stalls until the

ready signal becomes high. The output stream interface works in a similar way.

2.4.5 Verification

At several points of the synthesis flow, PICO offers the possibility to verify the intermediate results,

by means of simulations. This way, programming mistakes canbe eliminated early in the design

flow and the user can verify that the produced results behave as desired. In order to run the various

simulations, a driver file written in C is needed. This file fetches input data, invokes the PPA

procedure and reads back the resulting data. Input data is typically specified usingdatafiles and

output data is specified usingresultfiles. For each simulation, PICO provides the data files to the

driver code and compares the simulation result with the specified result files.

The first verification step is thegolden simulation. This simulation is performed prior to any

synthesis steps and is meant to verify the correctness of theinput specification. In particular,

the input/output relation is verified and a reference point is established. The next step after the

preprocessing stage, is the linting simulation. This is a more thorough check, which checks the

semantics of the C code and looks for undesirable runtime behaviour such as out of bound array

accesses and uninitialized value usage. Also, a “bit accurate SystemC simulation” can be run at

this point, for functional verification at the transactional level.

After the scheduling step, a “thread accurate SystemC simulation” can be performed. This

simulation models the parallel behaviour of the hardware implementation allowing more accurate

performance estimates. After RTL synthesis and packaging,RTL simulation can be performed

in order to verify the behaviour of the resulting RTL. It is also possible to perform an RTL co-

simulation such that one can study the interaction between the RTL and a host processor based on

the driver code.

2.4.6 Tightly Coupled Accelerator Blocks

PICO also offers the possibility to synthesize a procedure into aTightly Coupled Accelerator Block

(TCAB). Such a TCAB can be integrated into a PPA or another larger TCAB. It allows for im-

proved hardware sharing, leading to reduced hardware costs. If the entire TCAB procedure can be

scheduled in one clock cycle, a purely combinational TCAB issynthesized. Otherwise, a pipelined

TCAB is created.

Building a TCAB is done in the same way as a PPA is built, that is, one creates an experiment
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1
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module mytcab_paw_0(
clk, // input clk;
reset, // input reset;
enable, // input enable;
stallbar_in, // input stallbar_in;
stallbar_out, // output stallbar_out;
op, // input op;
pred, // input pred;
instream_myin_di_0, // input [31 : 0] instream_myin_di_0;
instream_myin_req_0, // output instream_myin_req_0;
instream_myin_ready_0, // input instream_myin_ready_0;
outstream_myout_do_0, // output [31 : 0] outstream_myout_ do_0;
outstream_myout_req_0, // output outstream_myout_req_0 ;
outstream_myout_ready_0 // input outstream_myout_ready _0;

);

Figure 2.15: The Verilog PAW module definition of a TCAB.

and synthesizes this experiment. The procedure that has to be synthesized into a TCAB is selected

using the-proc argument of theset_experiment_params . An additional command is

needed, to indicate that a TCAB should be built instead of a PPA:

set_experiment_params -build_tcab

In order to use this TCAB inside a PPA or another TCAB, no changes to the source code are

needed: the TCAB procedure is invoked like any other C function. To build a component that

makes use of a TCAB, a new experiment has to be created and the TCAB should be imported as

follows:

set_experiment_params -import_tcab "mytcab"

Because multiple loop nests are not allowed in a TCAB procedure body, only a single processor

array will be created. Hence, the RTL implementation of a TCAB consists of a single Processor

Array Wrapper (PAW) component at the top level. A PAW module has a port definition similar to a

PPA, although the control interface is different. A possible PAW module definition for a pipelined

TCAB with one input stream and one output stream is shown in Figure 2.15. The generic system

signals on lines 2–4 and the stream interface signals on lines 9–14 are similar to those of a regular

PPA module. The main differences are found in the control signals on lines 5–8. Using the

stallbar_in andstallbar_out ports, stalls of the PAW can be controlled. Theop and

pred signals need to be raised in order to start PAW operation.
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Output/Release Latencies:
+-----------------------+------------------+------- -+------------------------->
| Architectural Latency | Physical Latency | Type | Item |
| Adjusted[Specified] | Adjusted[Initial]| | |
+-----------------------+------------------+------- -+------------------------->
| 1[] | 1[1] | Stream | instream_in_1 |
| 3[] | 3[3] | Stream | instream_in_2 |
| 6[] | 6[6] | Stream | outstream_out_1 |
| 11[] | 11[11] | Stream | outstream_out_2 |
+-----------------------+------------------+------- -+------------------------->

Figure 2.16: An excerpt of the report showing the stream latencies.

A basic pipelined TCAB typically has a fixed pipeline depth, which is specified in the report

file report_summary.txt . If the TCAB has more than one input stream, data from those

streams is not necessarily fetched during the same cycle. The same applies to output streams.

For example, consider a TCAB with a pipeline depth of11, two input streams and two output

streams. Data from the first input stream may be read immediately, while data from the second

input stream is read during the third cycle. Likewise, data to the first output stream may already be

written during the sixth cycle, while the second output stream is written during the last cycle of the

pipeline. These latencies are specified in thereport_summary.txt report file. In Figure 2.16,

an excerpt of this file is shown, illustrating the scenario sketched above. In this figure, the Adjusted

Physical Latency values correspond to the final latencies ofthe RTL. In Figure 2.17, we illustrate

how this information is used when launching two successive tasks on the TCAB. For input stream

in_1 , data for the first task has to be available on thein_1 data bus at cycle 1. Data for the

second task has to be available on this bus at cycle 2. For the other input and output streams, the

appropriate clock cycles are marked in a similar way.

in_1

in_2

1 2 3 4 5

out_1

out_2

6 7 8 9 10 11 12

= task 1

= task 2

Figure 2.17: Timing diagram for successive execution of twotasks on the example TCAB dis-
cussed in this section.
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Chapter 3
Hardware Node Models

In this chapter, we propose two hardware node models. Both models make use of PICO in a dif-

ferent way. Using these models, a KPN node can be synthesizedinto a completely functional

hardware implementation. The first model is fairly straightforward, but its applicability is lim-

ited. The second model supports a broader input domain and can be applied to a larger set of

applications.

3.1 Approach 1: PPA Hardware Node

The first model is based on a PICO PPA encapsulated in a small wrapper. The goal of this wrapper

is to allow the PPA to be integrated into the existing (ESPAM) KPN hardware infrastructure. The

PPA is responsible for loop nest control, data input and output operations and the actual computa-

tion of the node.

3.1.1 Model Description

In Figure 3.1, the structure of a PPA hardware node is shown. Several generic “control” signals

enter the PPA hardware node. Based on these control signals,the controller drives the appropriate

control ports of the PPA. Because the PPAs are generated withthe auto-restart option, the con-

troller size is kept to a minimum. Its only purpose is to correctly drive the reset and enable signals.

The different nodes of a KPN hardware implementation are interconnected via the FSL bus. These

connections are made via the input and output ports of the node. The FSL communication inter-
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PICO PPA
Input 

channels

Output 

channels

Control Controller

Status

Figure 3.1: The PICO Hardware Node model, consisting of a PPA with additional wrapper logic.

face is very close to the PICO stream interface, although there are some minor differences. Using

some additional logic, the FSL signals are appropriately connected to the PICO input and output

stream ports. This is depicted by the dark squares that are attached to each channel. Finally, a

status signal is provided, indicating if the computation ofthe node is completed. This status signal

is driven by thepsw_task_done signal of the PPA.

PPA Synthesis

The PPA of the hardware node is synthesized from an automatically generated PICO-C file. This

C file consists of several parts, as depicted in Figure 3.2. Self-evidently, this file conforms to the

PICO-C syntax and contains the top level function that is to be synthesized. In Figure 3.2, the

different parts of the top level function are labelled with numbers1 to 5. First, loop iterators and

data variables are declared (1). Next, the for-statements that iterate over the iterationspace of the

node are provided (2). In order to prevent synthesis problems, the bounds of these loops should

be constant expressions that can be evaluated at compile time. Because of the SANLP nature of

a KPN node process, only a single loop nest of a certain depth has to be synthesized using PICO.

This fully conforms to the input that can be handled by PICO.

The loop nest body consists of three different stages, namely a read stage which reads data

from the input channels, an execute stage which performs theactual computational workload of

the node, and a write stage which writes the calculated data to the output channels. First, the

input operations are specified (3). For each input port of the node, apico_stream_input
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PICO PPAPICO

#include "funcs.h"

void ppa_func() {
  int c0, c1;
  int in0, out0;

  for (c0 = ...) {
    for (c1 = ...) {

      in0 = stream_input();
    
      transform(in0, &out0);

      stream_output(out0);

    }
  }
}

PICO C Input

1

2

3

4

5

Figure 3.2: Generating a PICO PPA for integration in the PPA Hardware Node model.

call is generated. The results of these calls are stored in the input data variables. The input port

operations are optionally guarded using if-statements to make sure they are issued during the

appropriate iterations. The exact conditions of these guard statements are extracted from the KPN

specification. Next, the node function call is performed (4). The implementation of this function

has to be directly “visible” to the caller and will be inlinedby the PICO preprocessor. All input

and output data is transferred via the function arguments. The input arguments are listed first,

which are the data variables with anin prefix. Each iteration, each of those variables is assigned

a value by one of the previous input port operations. For the function output, the addresses of the

output data variables (which are prefixed without ) are passed as arguments. At first, the use of

the address-of operator (&) might seem inconsistent with the PICO-C syntax, but during function

call inlining the address-of operator is eliminated and theinlined function body can directly write

its output to the output data variables. Finally, the outputoperations are performed (5). This step is

similar to the input operations step. For each output port ofthe node, apico_stream_output

call is generated, which outputs an output data variable. Again, these statements can be guarded

using if-statements to make sure data is written during the appropriate iterations.
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3.1.2 Restrictions

The PPA hardware node model is strongly dependent on the PICO tool, because both control flow

and functionality of the node are generated using PICO. This implies that the applicability of this

model is restricted by the set of input specifications that can be handled by the PICO tool. For

example, the perfectly nested loop requirement that is mentioned in Section 2.4.2 makes it almost

impossible to use loop statements in the node function implementations. This is due to the fact

that the function call itself is already inside a loop nest, namely the loop nest that iterates over the

iteration space of the node.

Another drawback is that a perfectly valid PICO-C program may still turn out to be unsynthe-

sizable. This may happen when PICO can not guarantee timing closure for the implementation

at a specified clock frequency. KPN nodes with more complex functions that result in an RTL

implementation requiring multiple clock cycles per iteration often lead to synthesis failure.

The model is also not suitable for KPNs that include feedbackloops or nodes with self-loops.

This is caused by the pipeline behaviour of a PICO PPA. To illustrate this problem, consider a node

P1 that sends a token to nodeP2 every iteration and then reads a token back fromP2. Assume

that nodeP2 reads a token, performs an operation on this token and then outputs the transformed

token. Effectively, there is an anti-dependence between the write and read operation of nodeP1.

Unfortunately, expressing this anti-dependence in PICO-C is not trivial and our attempts to do

so resulted in synthesis failure. If the anti-dependence isnot made explicit in the PICO input,

a deadlock occurs in the resulting network. This happens because, when the pipelines of the

nodes are deep enough, the read operation of nodeP1stalls while the previous write operation is

still pending in the pipeline. The stall of a single read operation typically leads to a stall of the

entire PA, so none of the pending operations of nodeP1 will make progress until the stalled read

operation succeeds. Since the (pending) write operation ofP1 is not yet completed, nodeP2 will

not receive data and thus cannot produce a token that allowsP1 to continue. At this point, none of

the nodes can make progress anymore.

3.2 Approach 2: TCAB Hardware Node

For the second model, we build further upon the LAURA processor model that was proposed

in [50]. This processor model consists of a part that handlesdata communication and other control

tasks, and an IP core insertion point where the actual computations of the node take place. Using
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PICO, we generate a TCAB which implements the desired functionality of the node. This TCAB

is then placed in the IP core insertion point. This results ina hardware node that is fully functional.

Moreover, the TCAB hardware node model is more robust than the PPA hardware node model,

as the different pipeline behaviour does not lead to undesired node stalls in the case of input

unavailability.

3.2.1 Model Description

Read unit

Read 

mux

Eval. logic

Write unit

Write 

demux

Eval. logic

Execute unit

TCAB Wrapper

TCAB

Control unitControl

Incoming

data

Status

Outgoing 

data

Figure 3.3: The TCAB Hardware Node model, consisting of a TCAB integrated in a LAURA

processor.

In Figure 3.3, we show a schematic overview of a TCAB hardwarenode. The node can be broken

down into four different components, namely a read unit, an execute unit, a write unit and a control

unit. The read unit is responsible for accepting the incoming tokens and passing the appropriate

data at the right clock cycle to the execute unit. To do so, it keeps track of the current iteration

by means of counters. Depending on the current iteration vector, data from the appropriate input

ports is selected and forwarded to the execute unit. The execute unit implements the functionality

of the KPN node function. Using its input data port, the inputarguments are transferred to the

hardware implementation of the function. Similarly, the output data port corresponds to the output

arguments of the node function. The data produced by the execute unit is sent to the write unit.
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The write unit is implemented in a way similar to the read unit. Depending on the current iteration

vector, the data is written to the appropriate output ports of the hardware node.

Pipeline Model

Our TCAB hardware node model makes use of a pipelined execution model. In Figure 3.4, this

execution model is visualized. Figure 3.4a shows a three-stage pipeline, which consists of a read

stage (R), an execute stage (E) and a write stage (W ). Figure 3.4b shows a five-stage pipeline,

which consists of a read and write stage and three execute stagesE1, E2 andE3. This execution

scheme applies to a situation where the TCAB is implemented using a three-stage pipeline.

The previous pipeline figures assume that for each read operation, the required data is already

available. This leads to the optimal scheme, where a new iteration is initiated every clock cycle.

However, this is not always the case, because the presence ofself-loops or dependence on other

nodes might lead to a situation where data is not yet available at the start of a new iteration. In

such a case, the read operation should block until the data becomes available, while the operations

already in the pipeline should be allowed to complete. This is achieved by inserting “bubbles”

in the pipeline as illustrated in Figure 3.5. First, iteration 1 is started successfully. Now assume

iteration 2 depends on the output data of iteration 1. This output data becomes available after the

write stage of iteration 1. Hence, iteration 2 cannot be started immediately at the next cycle, and

is delayed until after the write stage of iteration 1. Meanwhile, dummy data is sent to the execute

unit, in order to keep the pipeline of the TCAB filled, therebyallowing the pending iterations to
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Time
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Iteration 2

Iteration 3

a) The optimal execution scheme of a

hardware node with a three-stage

pipeline.
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b) The optimal execution scheme of a hardware

node with a five-stage pipeline.

Figure 3.4: The TCAB Hardware Node execution pipeline.
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Figure 3.5: A TCAB hardware node pipeline scheme with bubbles inserted to account for unavail-
able data.

complete. The output data that is produced from the dummy data is discarded as soon as it leaves

the execution unit. That is, once such a dummy token has made its way through all of the execution

unit pipeline stages, it is discarded and no channel write operations take place.

Control Unit

The control unit is a key component for correct operation of the pipeline. A schematic overview

of this unit and its connectivity with the other units is shown in Figure 3.6.

The read unit provides two signals to the control unit, namely the EXIST signal, which is high

if all data needed for the current iteration is available, and theDONEsignal, which is raised once

the read unit has completed all iterations. Based on these signals, the control unit raises theREAD

signal in order to start a new iteration. ThisREADsignal is passed to the read unit, thereby enabling

the read unit to actually start reading the desired tokens. TheREADsignal is also transferred to a

register, such that on the next rising edge of the clock signal, the execute unit is enabled via the

ENABLE_EXsignal. If theENABLE_EXsignal is high, the execute unit takes the data at its input

port and passes it to the (pipelined) TCAB. For a TCAB with a pipeline depth ofN , it takesN

cycles before the result of the computation appears at the output port of the execute unit. This

means that afterN cycles, the data at the output port of the execute unit has to be passed to the

write unit, which should subsequently write the data to the appropriate output channels. In order
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Control unit

Read unit Execute unit Write unit

EXIST DONE READ FULL DONE WRITEENABLE_EX

R R R R R R R

IN OUT

Shift register:

Figure 3.6: Schematic overview of the control unit of a TCAB hardware node.

to keep track of the iterations pending in the execute unit pipeline, a shift register ofN bits is

used. When a new operation is started on the execute unit, a one is pushed into the first position

of the shift register. Otherwise, when no new operation is launched on the execute unit during the

current cycle, a zero is inserted. At every clock cycle, the shift register contents are shifted one

position. Consequently, at the other end of the shift register, a value is shifted out every clock

cycle. Depending on this value, theWRITEsignal is either kept low, in case of a zero, or raised,

in case of a one. When theWRITEsignal is high, the write unit writes the data coming from the

execute unit to the appropriate output channels. After eachwrite operation, the write unit updates

its internal iteration counter(s). When all iterations have been completed, the write unit raises its

DONEsignal, which effectively means that execution of the entire node has finished. The write

unit also provides aFULL signal, which becomes high if one or more output channels arefull.

The node does not accept new tokens if this signal is high, effectively realizing a blocking write

condition.

Execute Unit

The execute unit contains the TCAB that implements the functionality of the node function. The

pipeline depthN of this TCAB should be known after TCAB synthesis. The execute unit “con-

sumes” the data at its input port(s) at clock cyclet and produces the result of the computation with

this data at its output port(s) at clock cyclet + N . However, as we mentioned in Section 2.4.6,

a TCAB does not necessarily take its input data at clock cyclet and produce the corresponding
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Figure 3.7: Schematic overview of an example execute unit with an integrated TCAB.

output at clock cyclet + N . Hence, the execute unit should account for these differentinput and

output latencies in order to keep the execute unit consistent with the hardware node model. This

is done by adding shift registers, as illustrated in Figure 3.7. Assume the TCAB fetches argument

in0 at cycle 2 and argumentin1 at cycle 1. Argumentin1 is fetched immediately at the start of the

TCAB, so no additional actions are required. Argumentin0 however, is fetched one cycle after the

TCAB is started, so we need to insert a transfer delay of one cycle. This is achieved by inserting a

register, as indicated by the gray square in the upper left ofFigure 3.7. For the output arguments,

the problem is solved in a similar fashion. Assume argumentout0 is written at cycle 6, when the

TCAB finishes its task, and argumentout1 is already written at cycle 3. For argumentout0, no

additional logic is needed. Transferring argumentout1 to the output port of the execute unit needs

to be delayed three cycles to make it arrive exactly at cycle 6. This is achieved by inserting three

registers after each other, as indicated by the three gray squares in the figure.

TCAB Generation

The PPA of the hardware node is synthesized from an automatically generated PICO-C file. This

C file consists of several parts, as depicted in Figure 3.8 andcontains the top level function

that is to be synthesized as a TCAB. In Figure 3.8, the different parts of the top level function
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are labelled with numbers1 to 4. First, data variables are declared (1). Next, the input argu-

ments to the function are obtained from PICO input streams (2). For each input argument, a

pico_stream_input call is generated. The node function call (3) is specified similarly as

with the PPA hardware node model, as discussed in Section 3.1.1. Finally, the output produced

by the function is written the the PICO output streams usingpico_stream_output calls (4).

Unlike the PPA of a PPA hardware node, a TCAB that is integrated in a TCAB hardware node

has no notion of the node iterations. This results in a less complicated PICO-C top level function,

which has no global loop nest or if-statements guarding the input and output operations.

PICO TCABPICO

#include "funcs.h"

void tcab_func() {

  int in0, out0;

  in0 = stream_input();
    
  transform(in0, &out0);

  stream_output(out0);

}

PICO C Input

1

2

3

4

Figure 3.8: Generating a PICO TCAB for integration in the TCAB Hardware Node model.

3.2.2 Restrictions

Like the PPA hardware node model, the TCAB hardware node model depends on the PICO tool.

This means the C specification of the node function is still subject to the restrictions of the PICO-C

language, like lack of floating point arithmetic support. The TCAB hardware model presented in

this section currently only supports TCABs with a constant pipeline depth that must be known

before the HDL descriptions of the execute and control unitsare created. Furthermore, the TCAB

must have an initiation rate of one, allowing a new task to be started every clock cycle. These

limitations restrict the set of allowable C specifications for the node function. However, the TCAB

hardware node model provides room for extension, at the expense of more complex control logic,
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allowing TCABs with different characteristics to be integrated as well.
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Chapter 4
Hardware Node Generation

In this chapter, we present the ESPAM-PICO tool. Using this tool, which is an extension to ESPAM,

one can generate a hardware implementation of a KPN that contains one or more nodes of the types

that have been discussed in the previous chapter. The key benefit of these new node types is that an

external IP core library is no longer necessary, because thedesired functionality can be generated

directly from the C input specification.

4.1 The ESPAM-PICO Tool

Like the original ESPAM tool, ESPAM-PICO takes an application, platform and mapping specifica-

tion and produces an XPS project. Additionally, a C file containing the node function implemen-

tations is needed, referred to as thecore functionsfile.

4.1.1 Input

In Figure 4.1, the typical design flow of the KPNGEN and ESPAM-PICO tools is shown. In the

upper part of the diagram, the four input files that have to be specified by the user are shown. The

application is specified in a C file. This C file is processed by KPNGEN, resulting in an XML file

containing the KPN specification of the application. The C file needs to conform to the syntax

accepted by KPNGEN, that has been illustrated in Section 2.2.1. Of course it is also possible

to bypass the KPNGEN tool, by providing a KPN specification directly to the ESPAM-PICO tool.

Such a KPN specification can be written manually, or obtainedfrom a different tool, like Compaan.

47



CHAPTER 4. HARDWARE NODE GENERATION 4.1. THE ESPAM-PICO TOOL

Top level

C file

C

functions

KPNGen

Mapping

XML

Platform

XML

KPN

XML

Hardware

implementation

Synfora PICO

PICO

PPA/TCAB

Input provided

by user

Output, ready

for synthesis

ESPAM-PICO

Parser / front end

XPS Visitor / back end

PICO-C

file

PICO

script

auxiliary

files

Figure 4.1: The KPNGEN/ESPAM-PICO design flow.
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The mapping and platform specification formats for ESPAM-PICO are identical to those of ESPAM,

which have been discussed in Section 2.3.1. ESPAM-PICO supports two additional processor types

in the platform specification:

• PicoPpaHWNode: A PPA Hardware Node, according to the model discussed in Sec-

tion 3.1.

• PicoTcabHWNode: A TCAB Hardware Node, according to the model discussed in Sec-

tion 3.2.

For each processor of thePicoPpaHWNodeor PicoTcabHWNodetype, a C implementation of the

function that is called by the node has to be provided. This isdone by means of the core functions

file, which is a separate C file that is directly given to ESPAM-PICO.

4.1.2 ESPAM-PICO Internals

In the middle part of Figure 4.1, the internal flow of the ESPAM-PICO tool is shown. The appli-

cation, platform and mapping specifications are processed by the parser and internally modelled

using abstract data structures. The traditional processortypes like MicroBlaze and PowerPC are

handled in the same way as ESPAM would handle them. ThePicoPpaHWNodeandPicoTcabH-

WNodeprocessor types are handled differently. For each node of one of these types, apico/

directory is generated, which contains the following items:

• aux_func.h : A header file, containing macro definitions for e.g. minimumand maximum

functions which might be used in loop bound or if-condition expressions.

• core_funcs.c : A copy of the core functions C file that was provided by the user.

• genrtl.tcl : A TCL script containing PICO commands. Using this script, a PICO project

is created, configured and synthesized. The following is an example of a script with which

a PPA can be built:

1

2

3

4

5

6

7

set_project_params -sources "HWN.c core_funcs.c"

set_project_params -headers "aux_func.h"

create_experiment imp000

set_experiment_params -appfile HWN.c -proc hwn_func

set_experiment_params -clock_freq 100

build -auto_start_npa

create_rtl_package
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On lines 1 and 2, the source and header files are added to the PICO project. On line 3, an

experiment is created, which is configured on lines 4 and 5. Next, the PPA is synthesized

using line 6 and an RTL package is created using line 7. For a TCAB hardware node, the

script is slightly different: an additional command is needed:

set_experiment_params -build_tcab

Furthermore, the-auto_start_npa argument is removed from thebuild command.

• HWN.c: The top level PICO-C file that is to be synthesized. Theaux_func.h and

core_funcs.c files are included at the beginning of this file. The remainderof this

file follows the structure according to the desired hardwarenode model, as discussed in

Chapter 3.

• launcher.sh : A small launcher script which initializes the environmentand invokes the

genrtl.tcl script.

After generating the PICO-C file and the script files, ESPAM-PICO invokes thelauncher.sh

script and waits until PICO has finished RTL synthesis of either the PPA or the TCAB. ESPAM-

PICO then parses the port list of the generated PPA or TCAB module and connects the relevant

control and data ports to the appropriate wires of the network. This way, the PPA or TCAB is

integrated into the HDL specification of the node.

4.1.3 Output

The output of the ESPAM-PICO tool is a Xilinx Platform Studio (XPS) project, containing all files

necessary for synthesis of a bitstream that can be downloaded onto an FPGA. The output is placed

in a directory hierarchy which is structured similar to the ESPAM output directory hierarchy that is

discussed in Section 2.3.3. Like the other node types, allPicoPpaHWNodeandPicoTcabHWNode

nodes get their own subdirectory in thepcores/ subdirectory. The HDL files for each node are

placed in thepcores/<corename>/hdl/ subdirectory. In the next subsections, we discuss

the contents of this subdirectory for the new node types.

PPA Hardware Node

The hdl/ directory contains both averilog/ and avhdl/ subdirectory. The output gener-

ated by PICO, which consists of macrocells and the PPA RTL implementation, is placed in the
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verilog/ directory. Thevhdl/ directory contains a single VHDL file, in which the PPA wrap-

per that has been discussed in Section 3.1.1 is specified.

TCAB Hardware Node

The hdl/ directory contains both averilog/ and avhdl/ subdirectory. The output gener-

ated by PICO, which consists of macrocells and the TCAB RTL implementation, is placed in the

verilog/ directory. Thevhdl/ directory contains the other components of the TCAB hard-

ware node. These components, which have been depicted earlier in Figure 3.3, are placed in the

following files:

• controller.vhd : Defines the control unit.

• counter.vhd : Defines a counter that is used by the read and write units to keep track of

the current iteration.

• eval_logic_rd.vhd andread_mux.vhd : Together, these files define the read unit.

• eval_logic_wr.vhd andwrite_demux.vhd : Together, these files define the write

unit.

• execution_unit.vhd : Defines the execution unit.

• function.vhd : Instantiates the TCAB and buffers input and output where necessary due

to TCAB stream latencies. This component is instantiated bythe execution unit.

• hw_node_pack.vhd : Contains common type and function definitions.

• parameters.vhd : Contains a mechanism that allows for run time adjustment ofKPN

parameters, as discussed in [51].

• HWN.vhd: Contains the top level component, which instantiates the read, execute, write

and control units, and connects them accordingly.

4.2 Memory Model

In this section, we discuss two different memory models thatcan be used to communicate data

between the nodes of a network.
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source

hfilter vfilter

data[]

int data[N];

for (i = 0; i < N; i++) {
  data[i] = source();
}

for (i = 0; i < N; i++) {
  hfilter(data[i]);
  vfilter(data[i]);
}

Figure 4.2: Illustration of a shared memory model. Thedata array is translated into a memory
block ofN words.

4.2.1 Conventional Memory Model

A straightforward hardware implementation of an arbitraryarray in the input specification would

be to instantiate a block of memory, as illustrated in Figure4.2. In such an implementation, each

element of the array is mapped to an address inside the memoryblock. The nodes that require ac-

cess to the array are then connected to this memory block using address and data buses and control

lines. Although this shared memory approach is easy to implement because of the close relation

to the input specification, it is not an optimal method. Memories that are used for intermediate

storage of computation results are often large and thus increase hardware cost. Particularly due

to the array access patterns of stream processing applications, it is often unnecessary to keep the

entire array available for arbitrary access all the time. Furthermore, a single memory block has

a limited bandwidth, depending on the amount of read and write ports available. Increasing the

amount of memory ports results in increased complexity and cost of the memory component.

4.2.2 Distributed Memory Model

Our KPNGEN/ESPAM-PICO tool flow makes use of a distributed memory model, which is a result

of using the KPN model discussed in Section 2.1. Instead of instantiating a block of memory that

is shared between multiple nodes, communication is implemented in a point-to-point fashion, as

illustrated in Figure 4.3. This effectively means that storage of the array elements is distributed

across the network. With the regular FIFO linearization model, a node writes array elements

to an output channel in the same order as the successor node reads them. This way, only an
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source

hfilter vfilter

fifoBfif
oA

for (i = 0; i < N; i++) {
  x = source();
  fifoA.put(x);
  fifoB.put(x);
}

for (i = 0; i < N; i++) {
  hfilter(fifoA.get());
  vfilter(fifoB.get());
}

Figure 4.3: Illustration of a distributed memory model. Thedata array is replaced by two FIFO
channelsfifoA andfifoB .

appropriately sized FIFO buffer is needed, which usually requires only a fraction of the amount of

memory needed to store the entire array. When the same array element is read by multiple nodes,

the element is effectively duplicated, as each consumer receives the data in one of its FIFO buffers.

Although this “duplicated storage” increases overall memory usage, memory requirements are in

most cases still considerably lower than with a shared memory implementation.

In some cases, when data is produced in an order different from the order in which it is con-

sumed, the FIFO linearization model is not sufficient. For these cases, the approach described

in [52] can be used, although this has not (yet) been implemented in ESPAM-PICO. In most cases,

this approach still does not result in storage of the entire array in a large block of memory.

The difference between both memory models is illustrated inFigure 4.4. In Figure 4.4a,

source
hfilter

vfilter

hfilter

hfilter

hfilter

source

hfilter vfilter

vfilter

vfilter

vfilter

a) Shared memory model:

hfilter & vfilter nodes executing in

an alternating fashion, due to accesses

to a shared memory.

b) Distributed memory model:

hfilter & vfilter nodes executing

fully independent of each other.

T
im

e

T
im

e

Figure 4.4: Execution schemes for both memory models.
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which corresponds to the scenario of Figure 4.2, thehfilter and vfilter nodes are executing in

an alternating fashion. This is because the shareddata memory from which they read can only

handle one access at a time. When one node accesses the memory, the other node is stalled. In

Figure 4.4b, which corresponds to the scenario of Figure 4.3, both nodes run fully in parallel, as

they do not have to share access to thedata memory anymore. Instead, each node receives the

desired data directly from thesourcenode. Due to the absence of stall cycles, shorter execution

times are obtained.

High level languages like C typically assume a shared memorymodel. Deriving a distributed

memory based implementation from such a high level input specification is not a trivial task. How-

ever, previous research has lead to systematic approaches,like Compaan [53] and KPNGEN [46],

of which the latter is used in our tool chain.

In the XPS hardware implementation of the KPN, the nodes of the network are interconnected

according to the application specification using Xilinx Fast Simplex Links (FSL) [54]. This com-

ponent provides a flexible data communication channel with FIFO semantics between any two

processors or nodes. Based on component configuration parameters such as FIFO depth and im-

plementation method, the FSL component is efficiently synthesized using logic blocks only, or

using a combination of logic and block RAMs (BRAMs).
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Chapter 5
Experiments and Results

We have applied the approach described in the previous chapter to two different applications,

namely Sobel edge detection and QR decomposition. In this chapter, we discuss those applica-

tions, describe the setup of the experiments, and show the obtained results.

5.1 Experiment Setup

For both of the applications that we describe in the next section, we have made several hard-

ware implementations using our methodology. In order to measure performance and verify the

behaviour of those implementations we have used the Active HDL 6.1 simulator from Aldec, as

well as a physical platform.

5.1.1 Target Architecture

We have used the Xilinx XUP-V2P development board as our physical platform. This board

contains a Virtex-II Pro 30 FPGA (XC2VP30), together with several peripherals. The Virtex-II

Pro device has the following characteristics:

• Contains 2 integrated PowerPC 405 cores.

• Contains 136 BRAMs of 16 kbit each.

• Contains 13696 slices, available for logic synthesis.
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Some key features of the XUP-V2P development board are:

• Provides a 100 MHz system clock.

• Contains three Serial ATA (SATA) ports.

• Supports up to 2 GB of Double Data Rate (DDR) SDRAM.

• Contains one 10/100 Ethernet port.

• Contains one RS-232 serial port.

The FPGA is programmed from an Intel Pentium D machine running a Fedora GNU/Linux oper-

ating system, referred to as thehost system. Using the Xilinx iMPACT tool and a Xilinx Parallel

Cable IV, bitstreams are downloaded onto the FPGA using the JTAG interface. For verification

and performance measurement purposes, we use a UART peripheral, which is connected to the

RS-232 serial port. Using a serial-to-USB cable, a low-bandwidth communication link is estab-

lished between the FPGA and the host system. To actually integrate the FPGA in a larger system

for streaming data processing, one can use one or more of the high speed interfaces available on

the XUP-V2P board.

5.1.2 Experiments

We have applied our KPNGEN/ESPAM-PICO approach to various realizations of the Sobel and

QR applications. In order to obtain a communication independent performance metric, we make

a distinction between a functional verification experimentand a performance experiment of each

realization. The first is the unmodified output produced by our KPNGEN/ESPAM-PICO tool chain.

This is done to verify whether the functional behaviour of the hardware result is equal to the

behaviour of the original software specification. That is: for a given input, both the original

application and the generated hardware implementation should produce exactly the same output.

Communicating input data to the hardware implementation and reading output data back requires a

high-bandwidth communication interface. Otherwise, the hardware implementation will not run at

its maximal speed. In order to obtain the execution time of the hardware implementation without

any external communication overhead, we perform a second experiment where “dummy” input

data is generated by the hardware implementation itself andthe output data is discarded. This

way, the hardware implementation can run at its maximal speed.
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In order to measure execution time, the final sink node of an application is instrumented with

a small fragment of VHDL code. This code keeps track of the amount of clock cycles passed

since the last reset signal by incrementing a counter on eachrising edge of the clock signal. The

clock counter updates cease as soon as the final node indicates that it has completed its task, that

is, it has received all data from its predecessor node(s). The obtained clock counter value is then

communicated to the host system.

Using the Xilinx EDK tools, we have generated design reportsfor each experiment in order to

collect device utilization data. In particular, we have measured the amount of slices and BRAMs

that were needed to implement the various components of the automatically generated designs.

These two numbers provide an indication of the amount of gates needed for a physical IC imple-

mentation. In the device utilization statistics shown later on, we do not take the source and sink

nodes into account. We do, however, include the FIFO channels from the source nodes and to

the sink nodes in our statistics, as the amount and sizes of those channels vary depending on the

approach used.

5.2 Applications

In this section we describe two applications with which we demonstrate our approach. The first

application (Sobel) results in a relatively straightforward process network with uncomplicated

procedures inside the processes, while the second application (QR) leads to a process network

which contains self-loops and more complex process procedures.

5.2.1 Sobel Edge Detection

Sobel edge detection is a common image processing operation. Its purpose is to detect “features”

in an image, that are typically found at locations where the image intensity changes abruptly. In

Figure 5.1, a monochrome image is shown on the left. On the right, the result of the Sobel edge

detection operation is shown. One can see that objects that stand out against the background, such

as the pillars of the bridge, result in a “bright” output, whereas the smoother areas, such as the sky,

remain dark in the result.

The Sobel operation consists of a convolution of two 3x3 kernels with the original image to

determine approximations of the horizontal and vertical gradient of the image intensity function.

This is done by sliding the corresponding kernel over the image in the horizontal and vertical
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Figure 5.1: Original image (left) and the result of the Sobeloperation applied to it (right).

direction, respectively. AssumingI is the original image and∗ denotes the convolution operator,

the gradient approximationsJx (horizontal) andJy (vertical) are computed as follows:

Jx =
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For each pixel, the resulting gradient approximations are combined into an approximated gradient

magnitudev:

v =
|Jx| + |Jy |

4

To visualize the result of the Sobel operation, thev values are usually plotted as a grayscale image,

like the right half of Figure 5.1. In Figure 5.2, a C implementation of the steps discussed above is

shown. This code is taken as the basis for our experiments with the Sobel application.

In our experiments with the Sobel application, we have used the monochrome image of Fig-

ure 5.1. The image has a width of 280 pixels and a height of 200 pixels, accounting for a total of

56000 pixels. As we do not compute the gradient at the bordersof the image, the result consists

of 278 × 198 = 55044 pixels. In Figure 5.3, we show the KPN that was generated fromthe

sequential input specification. The nodes that implement the actual Sobel operation are labelled

with gradient X, gradient Y andabsVal. As can be seen from the network, thegradient X and

gradient Y nodes can operate in parallel, since there are no dependencies between them.
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for (j=1; j < M-1; j++) {
for (i=1; i < N-1; i++) {

gradient( image[j-1][i-1], image[j][i-1], image[j+1][i -1],
image[j-1][i+1], image[j][i+1], image[j+1][i+1], &Jx );

gradient( image[j-1][i-1], image[j-1][i], image[j-1][i +1],
image[j+1][i-1], image[j+1][i], image[j+1][i+1], &Jy );

absVal( Jx, Jy, &av );
// send av

}
}

Figure 5.2: The source code of the Sobel application kernel.
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Figure 5.3: The automatically generated KPN for the Sobel application. The numbers next to the
edges indicate the recommended minimum FIFO sizes.

5.2.2 QR Decomposition

The QR decomposition algorithm can be used to decompose aK × N matrix X into an orthogo-

nal matrixQ and an upper triangular matrixR. This operation can be used to find a least-squares

solution for an over-specified set of linear equations, which finds applications in adaptive beam-

forming systems [55] for example. In our experiments, we use21 × 7 matrices, that is,K = 21
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andN = 7. A QR decomposition can be computed using various methods. The method we use is

based on a series of Givens rotations [55].

The kernel code of our C implementation to computeR is shown in Figure 5.4. Thevectorize

function on line 3 computes an anglet and rotates a vector consisting of an element ofX and an

element ofR through this angle. This way, the element ofX is forced to zero. Therotate function

on line 5 rotates a similar vector through an anglet computed earlier by thevectorizefunction.

Using these operations, theX andR matrices are transformed untilK Givens rotations have been

performed. In the application mentioned above, the obtained R can then be used to obtain the

least-squares weights.

1
2
3
4
5
6
7
8

for (k = 1; k <= K; k++) {
for (j = 1; j <= N; j++) {

vectorize( r[j][j], x[k][j], &(r[j][j]), &(x[k][j]), &t ) ;
for (i = j+1; i <= N; i++) {

rotate( r[j][i], x[k][i], t, &(r[j][i]), &(x[k][i]) );
}

}
}

Figure 5.4: The source code of the QR application kernel.
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vectorize(int r_in, int x_in, int * r_out, int * x_out, int * t_out) {
int theta;
theta = -arctan2(x_in, r_in);

* r_out = r_in + cos(theta) * x_in - sin(theta) * r_in;

* t_out = theta;

* x_out = 0;
}

rotate(int r_in, int x_in, int t_in, int * r_out, int * x_out) {
int cost = cos(t_in);
int sint = sin(t_in);

* x_out = cost * x_in - sint * r_in;

* r_out = sint * x_in + cost * r_in;
}

Figure 5.5: The integer-based source code of thevectorizeandrotate functions.

The implementations of thevectorizeand rotate functions are shown in Figure 5.5. Both

functions invoke (a subset of) the trigonometric functionssin, cos andarctan. In order to im-

plement these trigonometric functions, we have created twodifferent implementations. The first

implementation uses lookup tables to obtain an interpolated result of the functions. The second
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Figure 5.6: The automatically generated KPN for the QR application. The numbers next to the
edges indicate the recommended minimum FIFO sizes.

implementation uses Taylor series to approximate the trigonometric functions. For these Taylor

series based approximations, the following formulae have been used:

sin(x) = x −
1

6
x3 +

1

120
x5

cos(x) = 1 −
1

2
x2 +

1

24
x4

arctan(x) = x −
1

3
x3 +

1

5
x5

That is, for each function, we compute the first three terms ofthe corresponding Taylor series

expansion about 0. Such expansions are also known as Maclaurin series. Due to PICO lacking

support for floating point arithmetic, we use integer operations for all computations. However, the

structure of the C code remains equal if floating point operations are to be used.

In Figure 5.6, the KPN generated from the QR input specification is shown. ThesourceX

andsourceR nodes provide theX andR matrices, respectively. Thevectorizeand rotate nodes

perform the actual computations and thesinknode receives the finalR matrix. Thevectorizeand
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rotate nodes both contain self loops and both nodes are mutually dependent on each other. As

mentioned in Section 3.1.2, these characteristics make thenodes unsuitable for implementation

using the PPA hardware node model.

5.3 Results

In this section, we describe for each application the instances we have evaluated. Next, we discuss

performance and device utilization statistics.

5.3.1 Sobel

We have generated hardware implementations and collected performance and device utilization

data for the following instances of the Sobel application:

• Sobel-MBseq: The sequential code, implemented on a single MicroBlaze.

• Sobel-MBpar: Implemented using ESPAM as a network of MicroBlazes.

• Sobel-PICO: Implemented using PICO as sequential code. The input code is similar to

the code we have sent through the KPNGEN/ESPAM flow. This means no PICO-specific

annotations or constructs were used, hence one should not consider this as the most efficient

PICO implementation.

• Sobel-HWN: Implemented using ESPAM-PICO as a network of PPA Hardware Nodes.

• Sobel-HWN-2: Implemented using ESPAM-PICO as a network of PPA Hardware Nodes.

An unrolling transformation with a factor of 2 is applied to thesource, gradient, absValand

sinknodes.

• Sobel-HWN-4: Implemented using ESPAM-PICO as a network of PPA Hardware Nodes.

An unrolling transformation with a factor of 4 is applied to thesource, gradient, absValand

sinknodes.

• Sobel-TCAB: Implemented using ESPAM-PICO as a network of TCAB Hardware Nodes.

We have also compared the experiments described above with two experiments that have been

conducted during previous research, using different methodologies:

• Sobel-ESPAM: Implemented using ESPAM with hardware nodes that use custom IP cores.

This experiment originates from the work of [50].
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• Sobel-LAURA: Implemented using LAURA with hardware nodes that use custom IP cores.

This experiment is described in [51].

Both designs were implemented on an ADM XRC-II board, which contains a Virtex-II FPGA

(XC2V6000). The maximum clock frequency provided by this board is 66 MHz, which is different

from the 100 MHz clock frequency offered by the XUP-V2P board.

The results for all implementations are shown in Table 5.1. The first column contains the name

of the experiment. Next, the amount of FPGA slices and BRAMs needed for implementation are

given. The fourth column contains the amount of clock cyclesneeded to process the 56000-pixel

image. The fifth column contains the amount of images (“frames”) that could be processed in one

second by the particular implementation.

Setup
Device utilization Execution time Throughput

Slices 2kB BRAMs (cycles) (frames/sec)
Sobel-MBseq 956 32 4717832 21
Sobel-MBpar 3397 55 2981813 33
Sobel-PICO 665 27 552385 181
Sobel-HWN 1226 7 56025 1784
Sobel-HWN-2 2768 14 28027 3567
Sobel-HWN-4 5860 28 14027 7129
Sobel-TCAB 1507 7 56030 1784
Sobel-ESPAM 1641 7 111440 897∗

Sobel-LAURA 1710 7 223440 447∗

Table 5.1: Synthesis and performance statistics for Sobel edge detection on a280× 200 grayscale
image. An∗ in the throughput column indicates the value was scaled to 100 MHz.

Discussion

As we expected, the Sobel-MBseq experiment yields the lowest throughput. Execution times are

large, because of the single thread of execution, the RISC nature of the MicroBlaze instruction

set architecture and the general characteristics of microprocessors, which includes overhead of

instruction fetching and decoding. Besides the processor’s instruction pipeline, no other forms of

parallelism are exploited. In the Sobel-MBseq experiment,the array containing the entire image

is stored in the processor’s local memory. Besides the limited bandwidth of 1 word per cycle of

such a memory-based implementation, a considerable amountof BRAM components is needed to

implement the local memory.
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The Sobel-MBpar experiment yields a rather low throughput and a high device utilization. At

the coarse-grained level, part of the computation can now beperformed in parallel, which increases

throughput by a factor of approximately 57 percent comparedto the Sobel-MBseq implementa-

tion. However, each MicroBlaze processor still executes a single sequential thread of instructions,

exploiting little or no fine-grained instruction level parallelism. Each node of the KPN results in

the instantiation of a MicroBlaze core, which requires a considerable amount of slices. Moreover,

for each MicroBlaze processor a memory is instantiated, which is composed of BRAMs. This

leads to a high amount of BRAMs needed for the design. Although a MicroBlaze processor pro-

vides great flexibility in programming, the MicroBlaze implementation of the KPN is not the most

efficient one.

By synthesizing the entire application using PICO, as we did in the Sobel-PICO experiment,

the smallest implementation in terms of slice count is obtained. However, this implementation

requires the user to provide an additional memory componentfor the array of the application

code. For our implementation and input data, a memory of approximately 56000 bytes is required,

equivalent to 27 BRAMs of 2 kilobytes. Moreover, the memory-based RTL result seems to limit

throughput of the implementation significantly. This is probably caused by the use of 1-port mem-

ories, allowing only one read operation per cycle for a givenmemory. It should be noted that the

code provided to PICO does not adhere to the PICO coding recommendations and does not make

use of any PICO specific constructs such as internal streams. Hence, as a consequence, the exper-

iment does not expose the full potential of PICO. A PICO hand design created by an expert user is

likely to achieve a higher throughput and lower memory requirements.

Among the first four experiments, the Sobel-HWN experiment,which makes use of the PPA

hardware node model, yields the highest throughput. Effectively, once buffers and pipelines are

filled, the Sobel-HWN implementation is delivering one pixel per clock cycle. The implementa-

tion requires less than two times the amount of slices compared with the Sobel-PICO experiment.

Due to the sizes of the FIFO channels of the KPN generated by the KPNGEN tool, memory re-

quirements of the implementation are relatively high. Currently, we can not derive a KPN using

KPNGEN which requires less than 7 BRAM components. A manually created line buffer based

implementation created by an expert PICO user would require at most one BRAM for our input

data, because at most approximately two lines of the image need to be stored. However, it should

be noted that the Sobel-HWN implementation was automatically generated from plain C code

containing no sophisticated constructs to expose parallelism.

Using the Sobel-HWN2 and Sobel-HWN4 experiments, we demonstrate the unrolling trans-
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formation that was discussed in Section 2.1.1. In the deviceutilization statistics, we include source

and sink nodes that are additionally needed for the unrolling transformation. As one can see in

Table 5.1, device utilization roughly increases with a factor equal to the unrolling factor. The same

holds for the throughput of an unrolled application instance. Thus, using the unrolling transfor-

mation one can increase throughput at the expense of increased hardware resource costs.

Using the Sobel-TCAB experiment, we compare both hardware node models that have been

discussed in Chapter 3. Both models achieve the same throughput for the Sobel application. From

the slice count statistics, we can see that for the Sobel application, the TCAB hardware node model

is approximately 23 percent more expensive than the PPA hardware node model. Part of this can be

attributed to the presence of infrastructure for runtime parameter adjustment, which is not present

in a regular PPA. Also, the extensions added to support a moreflexible pipeline behaviour lead to

an increase in slice count.

By comparing the Sobel-HWN and Sobel-TCAB experiments withthe Sobel-ESPAM and

Sobel-LAURA reference points, we show the relation to otherapproaches. The network topology

is equal for these four implementations, resulting in equalBRAM usage. The Sobel-HWN ex-

periment requires significantly less slices, but this can (partially) be attributed to the absence of

infrastructure for dynamic parameter modification. In the other three implementations, this infras-

tructure is included, leading to higher slice usage. The Sobel-ESPAM and Sobel-LAURA imple-

mentations require respectively about two and four times more clock cycles than the Sobel-HWN

and Sobel-TCAB implementations. This is because of severaldifferences in the implementation

at the system level. The Sobel-ESPAM and Sobel-LAURA implementations include an off-chip

memory which stores the image. As delivering a pixel every cycle is hard to realize in such imple-

mentations, longer execution times are the result. Also, FIFO channels were implemented using

different components instead of FSL components, which might lead to differences in slice usage.

Because of the lower clock frequency of the Sobel-ESPAM and Sobel-LAURA platform, through-

put is lower for these implementations, respectively 592 and 295 frames per second. In Table 5.1,

we have scaled those values to resemble an implementation at100 MHz.

5.3.2 QR

We have generated hardware implementations and collected performance and device utilization

data for the following instances of the QR application:

• QR-LUT: Implemented using our ESPAM-PICO approach as a network of PICO TCAB IP

65



CHAPTER 5. EXPERIMENTS 5.3. RESULTS

Hardware Nodes. The trigonometric functions are implemented using lookup tables.

• QR-LUT skewed: Implemented using our ESPAM-PICO approach as a network of PICO

TCAB IP Hardware Nodes. A skewing transformation has been applied to the algorithm.

The trigonometric functions are implemented using lookup tables.

• QR-TA: Implemented using our ESPAM-PICO approach as a network of PICO TCAB IP

Hardware Nodes. The trigonometric functions are implemented using Taylor series based

approximations.

• QR-TA skewed: Implemented using our ESPAM-PICO approach as a network of PICO

TCAB IP Hardware Nodes. A skewing transformation has been applied to the algorithm.

The trigonometric functions are implemented using Taylor series based approximations.

Attempts to synthesize the original sequential code using PICO were unsuccessful due to timing

closure problems. In such a case, the designer typically needs to manually rewrite the input code

in order to relax timing constraints. Because the QR KPN contains selfloops and backedges, an

implementation using PICO PPA hardware nodes is not possible, as mentioned in Section 3.1.2.

In Table 5.2, the results of our experiments with the QR application are shown. Again, the

first three columns contain the experiment name, slice countand BRAM usage, respectively. The

fourth column contains the amount of clock cycles needed to computeR for one21 × 7 input

matrix. The fifth column contains the number of such operations that can be performed in one

second.

Setup
Device utilization Execution time Throughput

Slices 2kB BRAMs (cycles) (tasks/sec)
QR-LUT 1417 0 2306 43365
QR-LUT skewed 1798 0 522 191570
QR-TA 2705 0 4205 23781
QR-TA skewed 3075 0 798 125313

Table 5.2: Synthesis and performance statistics for QR.

Implementation vectorize rotate
Lookup Tables (LUT) 11 5
Taylor based Approximations (TA) 20 11

Table 5.3: Pipeline depths for the QR TCABs.
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Discussion

Due to the small FIFO sizes, all FSL components are implemented using logic only. Hence, all

implementations have zero BRAM usage. A first observation isthat the lookup table based imple-

mentation is more efficient than the Taylor series based implementation, both in terms of device

utilization and throughput. This is due to the higher complexity of thevectorizeandrotateTCABs

for the QR-TA implementation. As shown in Table 5.3, the increased function complexity results

in a deeper pipeline for both TCABs. These higher pipeline depths of the QR-TA implementation

can be considered as a closer match to a true floating point implementation.

The skewed QR-LUT implementation requires about 27 percentmore slices than the unskewed

QR-LUT implementation. This can be attributed to more complex loop control and larger FIFO

sizes. Throughput of the skewed implementation is increased by a factor of4.4. This increase can

be explained by looking at the signals that allow the read, execute and write unit of therotatenode

to advance, which aresl_read , sl_execute andsl_write , respectively. In Figure 5.7a, a

fragment of the simulation waveform containing these signals is shown for the QR-LUT experi-

ment. First, thesl_read signal is raised in order to read the input data. In the next cycle, all

data is read and thesl_execute signal is raised in order to start the execute unit. At the fifth

cycle after the enabling of the execute unit, thesl_write signal is raised, as the execute unit

containing therotateTCAB has produced data that is ready to be written. Meanwhile, sl_read

is kept high for another few cycles, as long as input data is still available. Unfortunately, at some

point therotate node sends data back to thevectorizenode and requires new data from thevec-

torize node. Thevectorizehas to compute this new data using the data it just received from the

rotatenode. Because this occurs during two successive iterations, therotatenode will not receive

the data immediately and is forced to wait until the data becomes available again. This point is

visible in Figure 5.7a where thesl_read signal is dropped. Once the data is written to the

vectorizenode, this node performs its computation and sends new data to therotatenode. Mean-

while, therotatenode is completely idle, waiting for new data to arrive. Onceit receives new data

from thevectorizenode, thesl_read signal is raised again, although only for a few iterations.

Throughout execution of the application, this situation with stalls occurs, resulting in considerable

underutilization of the pipeline.

In Figure 5.7b, the same signals are shown for the skewed QR-LUT implementation. In this

waveform, the three signals remain high for almost all the time. In fact, besides some troughs dur-

ing the first and last iterations, the signals remain high during execution of the entire application.
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(a) QR-LUT

(b) QR-LUT skewed

(c) QR-TA

(d) QR-TA skewed

Figure 5.7: Fragments of the simulation waveforms of the read, execute and write unit enable
signals for therotatenode of four different QR application instances.

This is caused by the high level skewing transformation on the complete KPN of the application,

which leads to a different iteration execution order. Now, therotatenode executes other iterations

while thevectorizenode computes new data for therotatenode. This leads to a better utilization

of therotatenode pipeline and a larger throughput.

For the QR-TA implementation, the skewed implementation requires about fourteen percent

more slices than the unskewed implementation. Throughput of the skewed implementation is

increased by a factor of5.3. In Figure 5.7c, thesl_read , sl_execute andsl_write sig-
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nals are shown for the unskewed QR-TA implementation. Due tothe deeper TCAB pipelines,

overall pipeline utilization of this QR-TA implementationhas become worse than the QR-LUT

implementation because therotate node is now stalled for longer periods. In Figure 5.7d, simu-

lation waveforms are shown for the skewed QR-TA implementation. The lengths of the troughs

are much shorter than those in Figure 5.7c, indicating an improved pipeline utilization for the

skewed QR-TA implementation. However, maximum pipeline utilization is not achieved, as the

three signals are not kept high for long continuous periods of time, like we saw in Figure 5.7b.

This is because the different iteration schedule can not “hide” the higher pipeline latency between

the dependent iterations anymore. In order to further increase throughput, one could increase the

problem dimensions or operate on multiple QR instances at the same time, as suggested in [56].

5.4 Design & Implementation Times

In this section, we show the amount of time needed to obtain a complete implementation of an

application. We have measured this “design time” for both Sobel and QR. The results can be

found in Table 5.4. All tools have been run on the same system,an Intel Pentium D at 3.4 GHz

with 2 GB of RAM, and no workload other than the tools themselves was present during execution

time measurement.

Step
Design time Manual /

Sobel-HWN QR (LUT) Automatic

1. Writing C file(s) 5 min. 10 min. Manual
2. Writing .pla, .map 5 min. 5 min. Manual
3. KPNGEN 5 sec. 5 sec. Automatic
4. ESPAM-PICO 6:50 min. 5:05 min. Automatic
5. Synthesis using XPS 12:45 min. 16:25 min. Automatic
6. FPGA Configuration 90 sec. 90 sec. Automatic

Total 31:10 min. 38:05 min.

Table 5.4: Time needed to generate a bitstream starting froma C input specification.

The first step in the design flow is to write the top level C file ofthe application and the C

file containing the implementations of the called procedures. For both applications, a sequential

implementation of the top level C file was already available.For Sobel, the procedure implemen-

tations were already available. For QR, we have written a newlookup table based implementation
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of the procedures. Because this step only involves C programming, only little time was needed.

For each application, platform and mapping specifications have to be created. In general, this

is a trivial task, so for both applications no more than 5 minutes were needed to accomplish this

task. For a straightforward one-to-one mapping of KPN nodesto PPA or TCAB hardware nodes,

this step could be automated as well, although such functionality is currently not yet implemented.

At this point, the required manual actions have been completed. The next steps are all automated

and no user actions are required anymore.

As a third step, the KPNGEN tool is invoked. For both applications, the translation from a

sequential to a parallel specification takes no more than fiveseconds. Next, the ESPAM-PICO tool

is invoked. The running time of this tool strongly depends onthe amount of times PICO needs to

be invoked, which directly depends on the amount of PICO nodes in the platform specification.

Once the XPS project is complete, the Xilinx synthesis toolscan be invoked to generate a

bitstream. Of all steps, this fifth step typically consumes most of the time, since it includes the

application of sophisticated place and route algorithms. Finally, the generated bitstream is down-

loaded onto the FPGA and results are read back. This takes about 90 seconds.

1 & 2.

 Writing input

3.

KPNGen

4.

ESPAM-PICO

5 & 6.

Synthesis & FPGA

config.

Physical implementation

Simulation

Figure 5.8: Feedback loops in the ESPAM-PICO design flow.

In a typical design flow, multiple iterations of the steps described above are needed before a

final implementation is obtained. The output produced by thelast step is used by the engineer to

adjust the input specification in order to correct programming mistakes or achieve better perfor-

mance. For productivity reasons, a short iteration time is desired; that is, the engineer should get

feedback from the tools within a reasonable amount of time. Instead of synthesizing the design

into an FPGA bitstream each time, it is also possible to perform simulations at the HDL level.
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The HDL of the design is available after running ESPAM-PICO, as illustrated in Figure 5.8 by

the “simulation” backedge. Simulation allows the engineerto skip the time-consuming bitstream

synthesis step, leading to shorter feedback times. Particularly when no physical implementation is

required, during application behaviour verification for example, simulation may already provide

the information needed for input specification adjustment.Simulation is also especially useful to

decide which high level transformations to apply.
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Future Work

The approach that has been discussed in the previous chapters is not a final and complete solution

to the problem mentioned in the beginning of this thesis. Instead, our approach provides a foun-

dation, that can be extended in order to support a wider rangeof applications and further increase

performance and efficiency of the obtained implementations.

For example, consider the different channel types. Right now we are solely using PICO streams

for data communication, but this is not always the most efficient solution. It might be interesting to

use shift registers and live variables as well, which are also offered by PICO. Also, implementing

self loops as regular FIFOs is not the most efficient method. By implementing self loops in a more

sophisticated way, device utilization may improve significantly. The memory requirements are an-

other point of concern, as KPNs with many and/or large FIFO channels result in large FIFO buffer

memories. Reducing these memory requirements is importantto obtain efficient implementations

of larger applications or larger input data dimensions. This might be achieved by investigating

how to increase self-reuse and reduce data duplication.

In terms of power efficiency, the TCAB hardware node model is not the most favourable solu-

tion. The integrated TCAB is always operating at full functionality, due to the insertion of dummy

data when the node has to wait for new data. Unfortunately, wehad to choose for this solution, as

we have no control over the pipeline behaviour of PICO generated components. A better solution

would be to stall the TCAB as well, after allowing the pendingoperations to complete.

At the front end, other improvements can be made. Currently,the designer has to separate

the top level function and other functions in different files. A more robust front end eliminates
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this issue. The relatively long running times of the ESPAM-PICO tool are caused by subsequent

invocations of PICO. However, during design iterations, the input specification is often modified

only slightly. In such a case, complete resynthesis of all hardware nodes is not always necessary.

By employing a caching system, unnecessary PICO invocations can be avoided, leading to a shorter

overall design cycle.

As new features are added to the PICO tool, the possibilities of the ESPAM-PICO tool also

increase. For example, C struct support that was recently added to PICO could be added to ESPAM-

PICO as well, in order to allow convenient handling of larger datablocks. Other relaxations of the

PICO input restrictions might become directly available for usein the core functions file. In such

a case, little or no adaptations to ESPAM-PICO are needed.

Selecting the appropriate transformations for a particular application is not trivial. Currently,

the user has to specify these transformations manually. However, our flow is closed, meaning that

once the appropriate input specifications are written it canrun fully automated. This allows us to

perform automated Design Space Exploration (DSE), where various instances of an application

are generated and evaluated.
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Conclusions

In the previous chapters, we have presented a new approach for automated generation of RTL

implementations from sequentially specified static affine nested loop programs written in the C

language. This is achieved by combining the KPNGEN and ESPAM tools resulting from previous

research with the commercial PICO tool of Synfora Inc. The resulting tool, which we call ESPAM-

PICO, is capable of producing a complete RTL implementation of the application specification.

This implementation is immediately ready for synthesis, incontrast to the regular ESPAM flow

which requires the user to provide additional IP cores.

By using a distributed memory model, we can achieve significant speedups, compared to im-

plementations that employ a shared memory model. Due to the characteristics of FPGAs, this

distributed memory model fits particularly well to such platforms. Coarse-grained partitioning of

the input leads to a set of smaller and less complex inputs forthe subsequent fine-grained imple-

mentation stage. This allows our tool flow to accept a wider range of applications without the need

of manual application code restructuring.

Also, by using the KPN model of computation, we can automatically apply transformations to

the application, which allows us to generate various application instances with increased through-

put at the cost of additional hardware resource usage. We have shown that by applying an unrolling

transformation to the Sobel application, we can double throughput, at the cost of doubled hardware

resource requirements. By applying a skewing transformation to two different implementations of

the QR application, we can achieve throughput increases of factors of 4.4 and 5.3, at the expense

of only 27 and 14 percent increases in hardware cost.
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Currently, an important concern of our methodology are the memory requirements. Depending

on the amounts and sizes of FIFO channels in a KPN, memory requirements can increase quickly.

Further investigation of self-reuse and possible improvement of the KPNGEN tool may lead to

reduced memory requirements for implementations generated with our ESPAM-PICO tool flow.
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