Automated Synthesis of Hardware
Process Networks from
Sequential C Code

M.Sc. thesis of

Sven van Haastregt

August 25, 2008
LIACS, Leiden University

Supervisors: Dr. ir. A.C.J. Kienhuis
Prof. dr. E.F. Deprettere
Student ID: 0308862

Abstract

In this thesis, we present a methodology for the automatedrgtion of complete hardware imple-
mentations from C input specifications. Our methodologyaisdal on the Kahn Process Network
(KPN) Model of Computation (MoC). By leveraging previousearch, we can automatically
obtain a parallel KPN representation of sequential C inpdiec Next, we synthesize RTL imple-
mentations of the KPN nodes, by making use @fd® a high level synthesis tool, to automatically
obtain an RTL implementation of the node functionality. Ampiortant benefit of our approach is
that source code annotations that indicate parallelismflrance low-level implementation deci-
sions are not required for efficient results. This allowsdnrefficient software engineering design
flow to program FPGAs. We show that by applying transfornretidto KPNs, one can obtain
different application instances with improved throughptithe resulting hardware implementa-
tions. We also show that the distributed memory model infitet@ the KPN MoC suits well to
customizable hardware target platforms like FPGAs.

Acknowledgements

I would like to thank everyone who has contributed to thistheSpecial thanks go to the people
of the Leiden Embedded Research Center (LERC) of the Leidgtitdte of Advanced Computer
Science (LIACS), in particular my supervisor dr. ir. Bartelhuis, and prof. dr. ir. Ed Deprettere,
Sjoerd Meijer, Hristo Nikolov and Todor Stefanov. | wouldallike to thank dr. Vinod Kathail,
Pradeep Thiruchelvam and Fernando Martinez at Synfora, fimooffering me the opportunity to
use the Rco tool and getting me familiar with it. Also, | would like to thl Kees Vissers and
Stephen Neuendorffer at Xilinx, Inc. for their technicapport and the useful discussions we had
at Xilinx Headquarters in San Jose (CA). Finally, | woulcelito thank my parents for providing a
great living and working environment, thereby enabling méutly concentrate on this work.

Contents

1 Introduction 1
1.1 Problem Definition 2
1.2 Solution Approach 4
1.3 RelatedWork e 5
1.4 ThesisOrganization e e 8

2 Background 10
21 KPNModel 10

2.1.1 Transformations 11
2.2 KPNGEN. 13
221 Input . .. 14
2.2.2 Toolinvocation 41
223 0Output 15
2.3 ESPAM . . 18
23.1 Input . . . 19
2.3.2 Toolinvocation 22
2.3.3 0Output 22
2.4 PICO . . . 23
24.1 GlobalFlow 24
242 ClnputFile 27
2.4.3 Implementation Settingso e 29

CONTENTS CONTENTS

244 RTLOUtpUt 31
245 \Verification 33
2.4.6 Tightly Coupled AcceleratorBlocks 33
3 Hardware Node Models 36
3.1 PPAHardware Node 6 3
3.1.1 Model Description 63
3.1.2 Restrictions 93
3.2 TCABHardwareNode e 93
3.2.1 Model Description 04
3.22 Restrictions 54
4 Hardware Node Generation a7
4.1 The ESPAM-PICOTool e 7 4
4.1.1 Input e 47
4.1.2 ESPAM-PICOInternals 94
4.1.3 Output 50
4.2 Memory Model e 51
4.2.1 Conventional Memory Model 52
4.2.2 Distributed Memory Model 52
5 Experiments 55
5.1 ExperimentSetup 55
5.1.1 TargetArchitecture 55
5.1.2 EXperiments 56
5.2 Applications 57
5.2.1 SobelEdgeDetection. 57
5.2.2 QRDecomposition e e 59
5.3 Results. e 26
5.3.1 Sobel 62
532 QR . .. e 65
5.4 Design & Implementation Timesc... 69
6 Future Work 72

CONTENTS CONTENTS

7 Conclusions 74

Vi

Chapter

Introduction

Currently, electronic devices are used on a very large soateany different fields. Examples
include consumer electronics, like cell phones or DVD piayfer example. Also the industry
and scientific fields depend heavily on modern electronitsirtually all industrial and scientific
environments where automation is involved, microchipy @la important role.

In almost all of these areas, the demand for compute powemninuiously increasing. There
are several reasons for this. Users require more funciigread applications get more complex.
Advances in other fields increase this demand even more. ¥aon@e, think of new high res-
olution Magnetic Resonance Imaging (MRI) scanners, tef@sarrays, exploration geophysics
equipment and meteorological systems. New generationBesktdevices produce much more
raw data than their predecessors. These vast amounts ofat@ndist be processed into some
human-intelligible form, which is a compute intensive job.

In many of the aforementioned applications, time plays aiatuole. Data processing should
take place within a reasonable amount of time, such that ¢he dixpert can obtain the required
information on time and respond accordingly if necessaryis Tneans the system should have
a highthroughputand must meet performance targets. For a typical compuémsive job, a
microprocessor based solution will not be satisfactoryisTé partly due to its lower execution
speeds, in exchange for ease of programming, but also dug sequential nature. Particularly
when a great portion of the compute job can be performed iallegiras is typically the case with
data processing applications, a single thread of executilbstill yield a very low throughput.

To achieve a high throughput, one should switch to a platftirat offers possibilities to ex-

CHAPTER 1. INTRODUCTION 1.1. PROBLEM DEFINITION

ploit the available parallelism. This could be a multi-conécroprocessor system, like the Cell
Broadband Engine [1], or a grid of multiple compute nodesweher, whenstreaming dataap-
plications are considered, communicating data to the varaores or nodes is a critical factor.
A core or node that does not receive data on time will statidieg to a suboptimal utilization
of resources and decreased performance. Hence, expeigivbdndwidth interconnections are
required to make sure the cores or nodes can operate withwirtghto wait for data communica-
tion. Unfortunately, this is not always possible. Becauselcfrequencies of modern processing
units have increased much faster than the throughput ofhteeconnections between them, stalls
are sometimes inevitable. This prevents the system fromimgnat its maximal speed, reducing
throughput.

By going to a smaller implementation scale, communicatmmstructs are typically less com-
plex. Particularly if all data communication takes placestioe same chip in a neighbour-to-
neighbour fashion for example, fast communication is gasiflized using plain wires and logic
gates. Such implementations are obtained by creating ages¥ hardware description of the de-
sired functionality. This description can then be used &at# amApplication Specific Integrated
Circuit (ASIC) or to program reconfigurable hardware like~eeld Programmable Gate Array
(FPGA). This hardware based approach offers several othexngages. A dedicated hardware
implementation does not come with the overhead of an impheatien on a generic platform. For
example, only the functional units that are required aréushed in the design, data bus widths
can be chosen as necessary and control is significantly éesplex than that of a microproces-
sor. The hardware implementation can be built to precisethé needs of the application. These
differences lead to increased performance and a reduceteruoh gates needed for a physical
hardware product. However, implementing algorithms indiagre is not a trivial task. The way
of programming or configuring such platforms does not mattypaal algorithm specification
written in a high level language like C for example.

1.1 Problem Definition

Due to the mismatch of the algorithm specification and thgetaplatform, most of the hard-
ware implementations of algorithms are currently devetbpenually. This is a complex, time-
consuming and error-prone process. Extensive knowledgetgtiatform characteristics is re-
quired to get to an efficient implementation that satisfie$opmance and cost constraints. Usu-
ally, an algorithm designer or software engineer does nss@ss this knowledge. Thus, the hard-

CHAPTER 1. INTRODUCTION 1.1. PROBLEM DEFINITION

ware platforms often remain out of reach for them.

Maintaining hardware designs is another issue. Becauskeolotv level of abstraction of
hardware designs, which are usually written at Begister Transfer LevgRTL) in hardware
design languaged1DLs) like VHDL or Verilog, the hardware design quickly becomesrplex.
When the requirements of the application change, updatiaghairdware design accordingly is
again a difficult and time-consuming task.

From a software engineering point of view it would be intéres if a high-level algorithm
specification could be directly translated into a hardwamplementation. From a hardware en-
gineering point of view it would be interesting to specifyyst®m at a high level of abstraction,
enabling easy maintenance, while automated synthesissohigih level design still results in a
cost and performance equal or close to a manually constrlimielevel design.

Unfortunately, most high level languages are based on dessegjuential thread of control
while, on the other hand, custom hardware offers many oppities to exploit parallelism. This
means we need to automatically search for parallelism irsdgiential input specification and
subsequently exploit the obtained parallelism in an efficiway by taking advantage of the
flexibility of custom hardware. This is not straightforwaasd is still subject of ongoing re-
search [2, 3, 4, 5, 6]. To complicate matters, the estatdistigh level programming languages
like C or C++ are tightly coupled to the von Neumann architecture [7].sTperfectly matches the
shared memory architecture of generic microprocessoesystbut mapping such code to custom
hardware poses an additional challenge, because a disttiibbemory layout is in general more
efficient on such a platform.

a) Task level parallelism: Task 1/ rask 2|, 2 L%'
as
(pipeline of tasks)

b) Intra-task parallelism: 4:!:7 E'

(pipeline of subtasks)

C) Instruction level parallelism:
(pipeline of instructions)

T

Figure 1.1: Different levels of parallelism.

CHAPTER 1. INTRODUCTION 1.2. SOLUTION APPROACH

In order to attack the problem sketched above, it is impotimnealize that different levels of
parallelism are available to be exploited. In Figure 1taak level parallelisnis depicted, where
multiple instances of the same task operating on differgmitidata run in parallel. In Figure 1.1b,
intra-task parallelisnis depicted, where parallelism inside a task is exploiteddsyomposing the
task into different subtasks and pipelining the executibimase subtasks. In Figure 1.1ostruc-
tion level parallelismis depicted, where the low level operations of each subteskcheduled in
parallel.

Taking these observations into account, we want to addnestotlowing problem. How can
we automatically derive efficient FPGA implementationgrira sequential C specification, taking
into account the fact that we can exploit various levels oéjpelism and the fact that we can adapt
the platform to precisely fit our needs?

1.2 Solution Approach

To get from sequential code to an efficient hardware reatizatve have developed the approach
that is depicted in Figure 1.2. As a first step, depicted by @wmnpiler’ block, we extract coarse-
grained parallelism from the sequential input specifigatidhis results in a network of multiple
smaller units of execution which we cadfocesseswhich allows us to easily exploit task level
parallelism as depicted in Figure 1.1a. Next, we synthesihardware implementation for each
of these processes and connect the RTL cores according netwerk topology. This is depicted
by the “Synthesis” block of Figure 1.2. During this phaseefigrained levels of parallelism are
extracted and exploited, which are shown in Figures 1.1blabcl

. . Hardware
Compiler KPN Synthesis Implementation

Figure 1.2: A high level overview of our solution.

CHAPTER 1. INTRODUCTION 1.3. RELATED WORK

In order to describe the network of processes and their behawe use théahn Process
Network(KPN) Model of Computation (MoC) [8], which has proven to be agpiate in similar
cases [9, 10]. This model is discussed in Section 2.1. Anradga of this MoC is that high level
transformations [11] can be applied to a KPN, like unrollargl skewing, offering the possibility
to explore various alternative implementations of the sapmication.

To partition the sequential C input specification into a flak& PN representation, we use the
KPNGENtool. This tool is discussed in Section 2.2. Next, we feeddigmined KPN to EPAM-
Pico, which is an extended version ofSEAM. Based on a platform and mapping specification,
EsPAM generates a synthesizable hardware implementation of B¢, ESPAM is discussed in
Section 2.3. Both RNGENand EspAM are part of the Daedalus framework [12, 13], a collection
of open-source tools intended for system-level architattxploration and high-level synthesis.

EspAM relies on a library of IP cores in order to deliver a compleaedware implementation
of a given KPN. Our extension todeAM, which we describe in Chapter 4, does not require this
IP core library anymore. Instead,SBEAM-PicO invokes another tool which generates custom IP
cores from C code that implement the functional behaviouhefvarious nodes of the KPN. This
is depicted in the upper right corner of Figure 1.2. The fiomal behaviour is taken from the
original input specification, which is written in a subseit®f

To generate IP cores from C code, various tools are avajldddéh commercial and non-
commercial. These tools are capable of generating a haedinglementation from a high(er)
level language input specification. See Section 1.3 for @&mew of such tools. In general, these
tools accept a subset of the C language and produce an RTerimepkation. An example of such
atool is Synfora RC0 [2], a commercial product of Synfora, Inc. This tool expéaitarallelism at
the various levels shown in Figure 1.1 and applies sophigtitscheduling techniques to obtain an
efficient RTL implementation in terms of area and perfornear@co is invoked by our BpPAM-
Pico tool to generate the custom IP coresic® offers streaming interfaces for the generated
cores. These streaming interfaces have FIFO semanticshwiakes the cores fit well in our
network of communicating processes.

1.3 Related Work

In this section, we give an overview of work related to auttedahardware generation from a
high-level input specification. Many tools and techniquesehbeen developed over the years
to convert a specification in a high level language into at{sssizable) representation closer to

CHAPTER 1. INTRODUCTION 1.3. RELATED WORK

the hardware level. These tools typically restrict the deaarepted input specifications to a
class of specifications for which the tool can derive effitiemplementations. Moreover, special
annotations or code restructuring is often required toiokaficient results.

The Handel-C language [14] is a small subset of C, extend#d seime constructs to influ-
ence the efficiency of generated hardware. The SpecC lapdiag 16] is intended for specifi-
cation and design of embedded systems, including hardwattesaftware portions. The Alpha
language [17, 18] is a functional language intended foradigsarray synthesis research. The lan-
guage is based on systems of affine recurrence equationsh wiaikes it quite a different language
compared to the other (C based) high level languages dsgusghis section. Using a series of
transformations, an Alpha program can be converted intotéisheas described in [19]. The
ROCCC compiler [3] generates VHDL from a subset of the C laggu ROCCC targets applica-
tions that have a high computational density and a low cbdgosity. It employs a sophisticated
sliding window approach for off-chip memory accesses,aalth this only improves performance
for particular (consecutive) memory access patterns. @Girilstited memory based approach can
be applied to more irregular access patterns as well. SPARKZ1] accepts a subset of ANSI-C
as input, applies optimization and scheduling techniquesgenerates VHDL. However, it does
not support multi-dimension array accesses, which aregypn image processing applications
for example. Trident [22] is a C-to-VHDL compiler that patlarly focuses on floating point
arithmetic. SA-C (Single Assignment C) [23, 24] is a singésignment variant of a subset of the
C language. After various optimizations, VHDL componernts generated from data flow graph
representations. The SA-C language aims at image progeagplications in particular. Streams-
C [25, 26] is an extension to C by means of source code anangaéind library functions. This
way, a Communicating Sequential Processes (CSP) paredigtgmming model based on C-like
syntax is offered. The project supports both VHDL generatimd functional simulation of ap-
plications written in the Streams-C language. Impulse ¢ {2 commercial tool that is similar
to Streams-C, in terms of programming model and operatio’WARV [6] is a C-to-VHDL tool
targeted towards the MOLEN [28] polymorphic processor giaa. No C syntax extensions are
used, but pragma annotations are necessary.

The PARO [29, 30] design flow accepts sequential nested loogrgms written in a subset of
C. The loop nests are parallelized, loop transformatioesagplied and design space exploration
is performed. Finally, VHDL code representing an array afqassing elements is generated,
including communication and control components.

The Catapult Synthesis [4] tool suite accepts unannotatd8IA/C++ as input and generates an

CHAPTER 1. INTRODUCTION 1.3. RELATED WORK

RTL implementation. However, the C code has to be writteroating to the Catapult-C coding
guidelines in order to obtain efficient results.

‘Machines’ [31] is a programming model that requires therusespecify medium-grained paral-
lelism. The compiler takes object oriented-€code that is specified according to the program-
ming model and translates this into Predicated Static 8iAgkignment code (PSSA). Optimiza-
tions are applied and finally a bitstream is generated thatgactly be used on an FPGA.
Disydent/UGH [32, 33] is a set of tools that translates a Kiiided program specification into syn-
thesizable VHDL descriptions. The tool set expects the tssprovide a C program, partitioned
using POSIX threads, and a high level description of the KP: UGH tool then generates the
hardware implementation. As the name UGH (User Guided HigblIsynthesis) suggests, the
compilation process depends heavily on decisions of the w$ence, the designer should have
thorough knowledge of the underlying techniques in ordestttain efficient hardware implemen-
tations.

CLooGVHDL [34] is an extension to CLooG [35], a tool that geates code for traversing the
integral points of parameterized polyhedra. Currentlg, $bt of acceptable input programs is re-
stricted because of the use of the polyhedral model. CLooBWNFrst calculates reuse distances
of the memory references in the input program. With this iimfation, a set of loop transforma-
tions is determined that improve temporal data localitye Tlansformed polyhedral representation
of the program is then converted into hardware. This hardwaplementation consists of two en-
tities: the implementation of the statements, typicallgigisment statements, and the controller
that updates the iterators and triggers the statement® aight moment. At this point, a purely
sequential hardware implementation of the program is zedli Now, dependence analysis can
indicate which loops and/or statements can be executedradlgla By duplicating parts of the
controller, different loops can be executed in parallel. daplicating the implementation of a
statement, multiple instances of this statement can beug@dn parallel. Clearly, this involves
a trade-off between execution speed and chip area. The fijilibis presented in the form of
VHDL code. Unfortunately, this tool does not produce fullyn€tional implementations, as the
VHDL implementations of non-control statements are notegated automatically.

A different approach is to create new hardware design lagggighat try to combine constructs
from high level languages (like C or#3) with constructs from hardware description languages.
This provides a very versatile language, but there are sdsagldhntages: existing code needs
to be translated into the new language and the programmanm ofteds to indicate parallelism to
some extent.

CHAPTER 1. INTRODUCTION 1.4. THESIS ORGANIZATION

HardwareC [36] is such a “new” hardware description languttat has a C-like syntax. The
language is extended with concepts like concurrent presgssessage passing, timing constraints
and resource constraints. The Olympus Synthesis Systepidldds input specifications written
in HardwareC and offers chip level synthesis or simulatibdesigns.

In [38], Superlog is proposed. This language tries to comktie hardware description features of
Verilog and the general purpose programming constructs, k€ structures and pointers, into a
single language.

SystemC [39] is a €+-based hardware/system description language aimed ansyssign and
verification. SystemC designs can be simulated and syatw$d an RTL description or netlist,
although verification currently seems to be the most widempruse of the language. In [40],
a method for SystemC code generation from Unified Modellimgppduage (UML) diagrams is
described.

It is also possible to develop a new platform and design a leigél programming language
specific to that platform. This provides a fast way to aceteran application using hardware and
prevents the user from having to deal with low level congguElowever, applications need to be
rewritten in the appropriate language and designs for syaatéorm are not directly portable to
other platforms.

The Mitrion platform [41] is based on such an approach. Aggilons have to be written in the

Mitrion-C language. A compiler then instantiates a Mitrivirtual Processor and adapts it to
the needs of the application. This Mitrion Virtual Procassoa soft-core processor that can be
instantiated on an FPGA for example.

The Carte Programming Environment [42, 43] of SRC Compudecgpts plain, unannotated For-
tran or C code and generates a so called “unified executadreise with a MAP Processor. This

is a reconfigurable platform that has also been developedRey Somputers, Inc. Although the

input code can be kept free of tool-specific annotationsyékalt is subject to the constraints of
the MAP processor. This limits flexibility and scalability.

1.4 Thesis Organization

The remainder of this thesis is structured as follows: Infiiha2, we explain the model of com-
putation being used, as well as some existing tools thatsed in our approach. In Chapter 3,
we propose two new hardware node models and in Chapter 4,avelsbw we can automatically
generate hardware implementations of an application ubkigge models. In Chapter 5, we explain

CHAPTER 1. INTRODUCTION 1.4. THESIS ORGANIZATION

the experiments that we have conducted with our approackslamd the obtained results. Finally,
in Chapter 6, we mention possible future work and in Chaptere’summarize our work and our

findings.

Chapter

Background

In this chapter, we discuss the KPN model of computation aadgive an overview of three
existing tools that we use in our approach.

2.1 The Kahn Process Network Model of Computation

A Kahn Process Network, or KPN, is defined as a directed g@pk (V. E), whereV =
{p1, ..., pn} IS @ set of concurrently executing processes, represerntéldebvertices or nodes
of the graph, and? = {ey, ..., ey} is a set ofFIFO (First In, First Out) channels, represented
by the edges of the graph. The KPN model of computation ishétéstic: the result(s) of the
computation, that is, the data transferred on the FIFO atlanwill be the same for all possible
firing sequences of the network.

Figure 2.1: An example of a Kahn Process Network, consisbinthree nodes and two FIFO
channels.

In Figure 2.1, an example of a KPN is shown, which consistsmbducer nodé’1, a trans-
form nodeP2and a consumer node3. Proces$1 can send data to proceB& via FIFO channel

10

CHAPTER 2. BACKGROUND 2.1. KPN MODEL

ED_1 and proces®2 can send data to proceB8 via FIFO channeED_2.

Each of the processes in a KPN is sequential and follows a fitethal execution schedule.
However, there is no global execution schedule. Communbitdietween processes is accom-
plished by means of unbounded FIFO channels. Each node ha®zenore incoming FIFO
channels, and zero or more outgoing FIFO channels. The imgoohannels are connected to
theinput portsof a node; the outgoing channels are connected tmtitput portsof a node. A
process can senkensto its outgoing channels and receive tokens from its incgnainannels
by means of atomic write and read operations. The write ¢jperss non-blocking, meaning that
it always succeeds without delay. The read operation iskbigc meaning that execution of the
entire process halts if the channel on which the read operatas performed is empty. Once data
becomes available again, execution is resumed.

The unboundedness of the FIFO channels does not allow aannepitation on a platform with
a finite amount of memory. Hence, for a real implementatiochdaFO1 is bounded by some
value S; and the non-blocking write operation is changed into a blagkvrite operation that
blocks when the channel written to is full. However, when onénore buffer sizes are chosen
too small, arartificial deadlockmay occur [44]. In such a case, none of the processes can make
progress anymore because they are directly or indirectlyimgaon one or more processes that
are blocking on a write operation. In the remainder of thesth, we assume that buffer sizes are
chosen large enough to prevent such artificial deadlocks.

2.1.1 Transformations

A strong point of the KPN model is that we can explore alteweainstances of an application by
applying high level transformations to the applicationrsewcode. By translating the transformed
source code into a KPN, this new KPN exhibits the charatiesighat were intended by the
transformation. Transforming the application source ccale be automated, as illustrated in [11,
45]. In this thesis, we consider two transformations, ngmaerolling andskewing

Unrolling

The unrolling or “process splitting” transformation is dippl to one node of a KPN at a time.
This node is replaced by adjusted copies of the node. Heté,s called theunroll factor. The

functionality of these new nodes is modified such that eacte m@rforms a different portion of
the computational workload of the original node. This maydbee by adding if-statements to

11

CHAPTER 2. BACKGROUND 2.1. KPN MODEL

for (i=0;i<N;i+=2){
.. loop body ..

for (i=0;i<N;i++) {

.. loop body ..
} for(i=1;i<N;i+=2){

.. loop body ..
}

Figure 2.2: An example of an unrolling transformation witfaator of 2 applied to nod2.

the process code, or by directly changing the loop boundstemsizes, as we did in Figure 2.2.
In the ideal case, the new nodes can now operate in paraliefimish the entire computation
in less time than the unmodified network would need. The lingptransformation leads to an
increased number of nodes and edges in the network, but tieidnality remains the same.
The predecessor and successor nodes of the transformedalsodeeed to be adapted, because
the predecessor nodes now need to select the right destinatide for each token they send
and the successor nodes need to collect tokens from theimight channels. This can be seen
in Figure 2.2, where the amount of outgoing channels of rdtland the amount of incoming
channels of nodB3differ for the original and the transformed network. Addital edges between
the unrolled nodes may be required, depending on the presafroop-carried dependencies in
the original process code.

Skewing

The skewing transformation can be used to make potentialllpism of the input application
explicit. This is done by adjusting the loop bounds and {grrariable indices of the code that
belongs to a node. After applying the skewing transfornmatiterations that could not run in
parallel in the original application may now execute in flafaThe skewing transformation might
lead to improved pipeline efficiency of the operations iesednode because there are less data
dependencies that could cause stalls. By combining this thvé unrolling transformation, even

12

CHAPTER 2. BACKGROUND 2.2. KPNGEN

j
1 2 3 4
forj = 114, i X(1) x(@2) x(3) x(4)
fori=1:1:3, y(l)ﬁéﬂ (B (B)
[y(@, x()] = F(y(), x()); Lol
000e
y(SH@»(?»@»(?Q
a) Application program and its dependence graph.
j
X(1) x(2) x(@3) x(4)
forj= 2:1:4+3, i |

fori =max(1,j-4):1:min(j-1,3),
en[é/(i)' X(j=i)] = F(y(@), x(j=i));

end

b) Same program with its i—loop skewed.

Figure 2.3: An example of a skewing transformation.

shorter execution times can be obtained.

In Figure 2.3, an example of a skewing transformation is sholw Figure 2.3a, the original
input is shown on the left, and the corresponding Depend@maph (DG) is shown on the right.
In this DG, the nodes represent the workload of the iteratidimat is, the function calls, and the
edges represent the data dependencies between the furadt®of the iterations. In Figure 2.3b, a
version of the application with its i-loop skewed is showraw\the DG graph explicitly indicates
which iterations can be executed in parallel due to the atesehdata dependencies between their
nodes. Such sets of iterations are placed inside a dashed box

2.2 KPNGen

KPNGEN [46] is a chain of tools that takes a C or-€ file as input and generates a KPN de-
scription, as depicted in Figure 2.4. Currently, the inmuKIPNGEN is restricted to Static Affine
Nested Loop Programs (SANLPs). This means control must diec sind expressions in loop
bounds, array accesses and if-statements must be affingr@imbs of iterators and parameters.

13

CHAPTER 2. BACKGROUND 2.2. KPNGEN

Sequential C code

Application Specification

e G e ¢ KPNGen Tool — (A)
B[], &outlillil));: KPN
> %

}

Figure 2.4: The KNGENtool flow.

First, the input source code is converted iingle Assignment Cod8AC) which resembles
theDependence Grap{DG) of the original program. This SAC is then converted iat®olyhedral
Reduced Dependence Graph (PRDG). This is a compact maibahrapresentation of the DG,
based on the polyhedral model. Finally, the PRDG is congerieo a KPN. The nodes of the
PRDG correspond to the processes of the KPN. The data depsesi®f the PRDG correspond
to the communication channels of the KPN. For each channaliffar size is computed based
on a deadlock-free schedule. Note that this particular ldekeree schedule may not be optimal,
and thus the computed buffer sizes may not be valid for thengptschedule. However, a valid
schedule exists for the computed buffer sizes.

2.2.1 Input

We illustrate the flow of KNGENDby means of an example. In Figure 2.5, an example of a SANLP
written in the C language is shown.

Onlines 3 & 4, the parametéY is defined. Starting at line 6, the top level procedure thai tse
converted into a KPN is declared. Lines 10-12 initializexger by means of function calls to the
source function. Here, the “addressOf” operat&)(s used in the argument expression to allow
elementai] to be written. At lines 14-16, theansform function is called for each element
of arraya. This function writes its results to array Finally, at lines 18—20, the elements of array
b are consumed by thgink function.

2.2.2 Tool invocation

The Daedalus framework provides a script which invokes gpe@priate tools in the correct order.
The pn subtool is controlled using theN_OPTIONSenvironment variable. This allows one to
influence the characteristics of the network. For example-io-reuse option generates

14

CHAPTER 2. BACKGROUND 2.2. KPNGEN

1 #include "funcs.h" /I Contains function prototypes
2

3 #define N 16

4 #pragma parameter N 16 100
5

6 int main() {

7 int i

8 int a[N+1], b[N+1];

9

10 for (i = 1; i <= N; i++) {
11 source(&(a[il));

12 }

13

14 for (i = 1; i <= N; i++) {
15 transform(a[i], &(bli]));
16 }

17

18 for (i = 1, i <= N; i++) {
19 sink(b[i]);

20 }

21

22 return O;

23 }

Figure 2.5: Example input to KNGEN

a network that does not contain reuse channels. Enablisgotition generally leads to a lower
number of channels, but might lead to an increased numbeneofrtore expensive reordering
channels.

2.2.3 Output

After invocation of the KNGENscript, a KPN of the input specification is produced. The KBEN i
offered in both an YAML and XML format. Because we pass theNGEN output on to ESPAM,
we are only interested in the XML output. In the following agraphs, we highlight the most
important features of the XML representation of the geretedk PN for the input program of
Figure 2.5.
The XML output file begins with the following lines, defininge document type and the start of
the Approximated Dependence Graph (ADG):
<?xml version="1.0"?>
<IDOCTYPE sadg PUBLIC "-//LIACS//DTD ESPAM 1//EN"

"http://www.liacs.nl/"cserc/dtd/espam_1.dtd">

<sadg>
<adg name="example" levelUpNode="">

a b~ wWw DN

15

CHAPTER 2. BACKGROUND 2.2. KPNGEN

Next, for each node of the KPNjende element is given. Below is the corresponding declaration
of nodeND_1, which corresponds to thteans function call in the example.

6 <node name="ND_1" levelUpNode="">

7 <inport name="ND_1IP_ED_0_0_V_0" node="ND_1" edge="ED_ 0">

8 <bindvariable name="in_0" dataType="int"/>

9 <domain type="LBS">

10 <linearbound index="c0" staticControl="" dynamicContro |="" parameter="">
11 <constraint matrix="[1, 1, -1; 1, -1, 16]'/>

12 </linearbound>

13 </domain>

14 <[inport>

Theinport element defines an input port of the current node. This input gperation corre-
sponds to the read operation of array elengdijt in line 15 of Figure 2.5. The variable that is
bound to this input portis1_0 , as defined by theindvariable tag. Thedomain elementin
lines 9-13 contains information about the iteration spddeinput port. The constraint matrix
that is given in line 11 looks as follows:

M, = l 11 -1 1
1 -1 16
Each row ofM, represents a constraint. If the first element of a row equats then the constraint
is an equality € 0); if the first element equals one then the constraint is aguabty (> 0). The
next columns ofM,. contain the coefficients of the (control) variables. In teiemple there is
only one variable, namely th& index variable which is declared in line 10 of the XML. The

last column contains the constant of the constraint. Byrpméging M. accordingly, we get the
following constraints on the iteration space of the curiaptut port statement:

00—120

={c|1 <o <16
—c0+1620} teo[1< e <16}

IND1IP.O = {Co |

Note that this set of integers exactly matches the iteradjpece of the second for-loop in Fig-
ure 2.5. Similarly, an output port is defined, correspondmthe write operation to array element
b[i] ,inline 15 of Figure 2.5. The iteration space of this outport fis equal to that of the input

port discussed above; hence we have omitteditmeain element in the following fragment:

16

CHAPTER 2. BACKGROUND 2.2. KPNGEN

15 <outport name="ND_10P_ED_1_0_V_1" node="ND_1" edge="ED 1>
16 <bindvariable name="out_1" dataType="int"/>

17

18 </outport>

Next, the parameter signature of the function associatétigaode is described:

19 <function name="trans">

20 <inargument name="in_0" dataType="int"/>
21 <outargument name="out_1" dataType="int"/>
22 </function>

23

24 </node>

Finally, adomain element describing the iteration space of the node is giveain, this one

is omitted in the fragment above because it is equal to thera@bmain elements. For the
source andsink function calls, node®\D_0andND_2, respectively, are created. The XML
data describing these nodes is similar to the descriptidddf1, with some obvious differences:
ND_0Odoes not possess aimport elements, because there is no valid data being read by the
source function call. Likewise,ND_2does not possess aoytport elements, because the
sink function does not produce any data.

After the list of nodes, the edges of the KPN are listed. Faheadge, aredge element is
given. Our example KPN contains two edges. The fragmentbshmws how the type, size and
connections of these edges are described. Both edges dre BfRO type, with buffer sizes of
one. ThefromPort andtoPort attributes connect the edge to the specified output and input
port, respectively. ThéromNode andtoNode attributes show from which node the directed
edge is coming and to which node it is connected.

25 <edge name="ED_0" fromPort="ND_OOP_ED_0_0_V_0" fromNod e="ND_0"
26 toPort="ND_1IP_ED_0_0_V_0" toNode="ND_1" size="1">
27 <linearization type="fifo"/>

28 <mapping matrix="[1, 0, 0; 0, 0, 0]"/>

29 </edge>

30 <edge name="ED_1" fromPort="ND_10OP_ED_1_0_V_1" fromNod e="ND_1"
31 toPort="ND_2IP_ED_1 0_V_0" toNode="ND_2" size="1">
32 <linearization type="fifo"/>

33 <mapping matrix="[1, 0, 0; 0, 0, 1]'/>

34 </edge>

35 </adg>

Also, a graph in the Graphviz DOT format [47] is produced. STiniovides a visual representation
of the network topology to the user. The graph produced feretkample discussed in this section

17

CHAPTER 2. BACKGROUND 2.3. ESPAM

is shown in Figure 2.6. In this figure, the node labels showiihetion name of the corresponding
KPN process. The edges are labelled with the name of theblaiiathe original input associated
to the data dependence, followed by the recommended minibufier size.

a:l b:l

Figure 2.6: Automatically generated graph for the exammpbei.

2.3 ESPAM

EspamM (Embedded System-level Platform synthesis and Applinatiapping) [48] is a tool in-
tended for automated multiprocessor system design anceimgitation. The design flow is de-

[Platform Specification Mapping Specification Application Specification

System-Level ‘_“,‘,,_f’ >
| Specification CB - , - KPN A
- &

—_ = - - - - = = - - - - = = = = =

[
| ET:‘;;(?;;}:)” Program code HW description Platform topology Auxiliary ‘
| P for processors of IP Cores description information |

‘ Commercial Synthesizer and Compiler (XPS) ‘

Gate-Level
Specification

[
[
\
\

Figure 2.7: The ErPAaM design flow.

18

CHAPTER 2. BACKGROUND 2.3. ESPAM

picted in Figure 2.7. Starting from a high level system sfeaiion, the tool synthesizes and
programs a multiprocessor system. The current versioriadlaiat the time of writing targets
Xilinx Virtex-1l Pro FPGASs, by producing a Xilinx Platformt8dio (XPS) project. It relies on the
XPS tool to generate the final bitstream with which an FPGAlmoonfigured. It should be noted
that the XPS project is generated by therEm back-end. In order to target a different platform,
only the back-end has to be adapted.

2.3.1 Input

EsPAaM requires three different XML files as input. First, application specificatioris needed.
The application is specified as a KPN in the format alreadgrifesd in Section 2.2.3. The output
of the KPNGENtool can be directly passed on tsBaM as an application specification. Next, a
platform specifications needed, which contains information about the processmigeripherals
in a system and the interconnections between them. Firaltyapping specificatios needed,
which maps the different processes of the application dméoprocessors of the system. The
platform and mapping specifications are discussed below &gns of an example that builds
further upon the example of Section 2.2.1.

Platform Specification

In the platform specification, the various components oklystem are specified. For an extensive
discussion of the platform model used bg#am, we refer to [48]. In this section we only highlight
the elements that are relevant to the remainder of thisghdsiFigure 2.8, an example platform
specification is given.

A platform is composed of different components. The praogssomponents are calldero-
cessors In Figure 2.8, these are found on lines 2-10, identified lypttocessor XML ele-
ments. Each processor should be given a uniqgue name sudch ¢hatbe referred to. Next, the
type of a processor should be provided. Currently, threfemdift processor types are supported:

e MB: A 32-bit Xilinx MicroBlaze processor. This is a “soft prog®or core”, that is syn-
thesized out of the regular configurable logic of an FPGAlltves some features, e.g.,
the presence of a hardware multiplier, to be configured byuer, thereby offering the
option to reduce slice utilization in exchange for lowerfpenance. EPAM generates C
code for the MicroBlaze processors, which is compiled usir@compiler during the final
implementation phase.

19

CHAPTER 2. BACKGROUND 2.3. ESPAM

1 <platform name="examplePlatform">

2 <processor name="MB_0" type="MB" data_memory="16384" pr ogram_memory="16384">
3 </processor>

4

5 <processor name="MB_1" type="MB" data_memory="16384" pr ogram_memory="16384">
6 </processor>

7

8 <processor name="MB_2" type="MB" data_memory="16384" pr ogram_memory="16384">
9 <port name="OPB_2" type="OPBPort"/>

10 </processor>

11

12 <peripheral name="UART_1" type="UART" size="256">

13 <port name="I0_1" type="OPBPort"/>

14 </peripheral>

15

16 <link name="mb_opb_2">

17 <resource name="MB_2" port="OPB_2"/>

18 <resource name="UART_1" port="10_1"/>

19 </link>

20 </platform>

Figure 2.8: An example platform specification for thefam tool.

e PPC: A 32-bit PowerPC processor. A Xilinx Virtex-1l Pro FPGA pides up to two inte-
grated PowerPC 405 cores. Agairs#AM generates C code for this processor type which
is compiled during the final implementation phase.

e CompaanHWNode A processor similar to a node generated by the Compaan/aLaur
chain [5]. EsPAM generates all necessary control logic for this processoe,tput it re-
lies on an IP core library to fill in the remaining functionarpof the node.

For the MicroBlaze and PowerPC processor types, the sizéseadata and program memories
should also be specified. For each processor, external caiation ports can be specified. In
line 9 of Figure 2.8, an On-chip Peripheral Bus (OPB) porpiscified for processdviB_2

Additional peripherals can be defined using pgexipheral element. On lines 12-14 of
Figure 2.8, a Universal Asynchronous Receiver/Transmitl&RT) is instantiated. This compo-
nent can be used as a low-bandwidth communication link Etveeprocessor on the FPGA and
an external host, for example. Like the other componentsUART should be given a unique
name; in this case it is callddART_1 On line 13, it is connected to the OPB bus using an OPB
port.

In order to connect different components to each otlikeks can be used. A link connects
exactly two components. On lines 16-19 of Figure 2.8, a Ismkised to connect MicroBlaze

20

CHAPTER 2. BACKGROUND 2.3. ESPAM

processoMB2to the UART peripheraUART _1 This way, the MicroBlaze and the UART can
exchange data via the On-chip Peripheral Bus. For the FIFDirads that are present in the
application specification, #°2AM automatically instantiates appropriately configured Sasiplex
Link (FSL) components. This is a data exchange interface RIFO semantics available on Xilinx
platforms. Any processor type can read data from and write tiean FSL component.

Mapping Specification

The mapping specification maps the processes of the applhicgtecification onto the processors
of the platform specification. In some cases, the mappingifspegtion can be left empty such that
EspPAM automatically derives a mapping. This is allowed when, f@meple, no links are present
and the platform consists of only one processor. If the mapppecification can not be left empty,
the user has to provide it in the form of an XML file.

1 <mapping name="exampleMapping">
2

3 <processor name="MB_0">

4 <process name="ND_0" />
5 </processor>

6

7 <processor name="MB_1">

8 <process name="ND_1" />
9 </processor>

10

11 <processor name="MB_2">

12 <process name="ND_2" />
13 </processor>

14
15 </mapping>

Figure 2.9: An example mapping specification for thePEM tool.

In Figure 2.9, an example mapping specification in XML is showhis mapping maps the
different processes of our example application discussesection 2.2.3 onto the processors of
our example platform discussed earlier in this section.hgmocessor element contains a list
of process elements, indicating which processes are mapped onto tuegsor. It is possible
to map multiple processes on the same processor. In the éxafpigure 2.9, processD_0is
mapped on processdB_Q ND_1onMB_landND_2onMB_2

21

CHAPTER 2. BACKGROUND 2.3. ESPAM

2.3.2 Tool invocation

Once the application, platform and mapping specificati@naarilable, invoking EPAM is pretty
straightforward. The following command launchesHam, which then generates an XPS project
according to the input specifications.

espam --platform example.pla --adg example.kpn --mapping example.map \
--xps --libxps $ESPAM_LIBXPS_directory

Using the first three pairs of command line arguments, thégosta, application and mapping
specification files are selected, respectively. THx@s switch turns on XPS project generation
and the--libxps argument specifies the location of the XPS library, whichasded during
XPS project generation.

2.3.3 Output

The result of running EPAM using the command line described earlier is an XPS projdut. tdp
level project directory contains the following subdirets and files:

e code/ : This subdirectory contains the (C) source code files th&ingeto the various
microprocessors in the design.

e data/ : This subdirectory contains platform-specific data, susiUaer Constraint Files
(UCF).

e etc/ : This subdirectory contains implementation settings amibts.

e pcores/ : This subdirectory contains data for the various IP cored #re used in the
design. For each IP core a separate subdirectory is cre&tach a subdirectory typically
contains the following items:

— hdl/ : The HDL files belonging to the IP core, usually written in VHDr Verilog.

— data/core.mpd : The Microprocessor Peripheral Definition (MPD) file. Thifi
defines the characteristics of the IP core, such as exteonts. p

— data/core.pao : The Peripheral Analyze Order (PAO) file. This files lists HiBL
files belonging to the IP core and the order in which they nedktanalyzed.

22

CHAPTER 2. BACKGROUND 2.4. PICO

e system.mhs : The Microprocessor Hardware Specification (MHS) file. Tiesdescribes
the different components of the system, such as the prasgssiher peripherals and the
interconnections between the various components.

e system.mss : The Microprocessor Software Specification (MSS) file. THesdescribes
software-related aspects of the system, such as the dtivatsare needed for a certain
component.

e system.xmp : The Xilinx Microprocessor Project (XMP) file, containingeigeral infor-
mation about the project.

Assuming that all IP cores needed by the design are presensystem can be synthesized into
a bitstream using the XPS tool. Subsequently, the resuttitsfyeam can be used to configure an
FPGA such that the original application can be executeds Thinpletes the KNGENESPAM
design flow.

2.4 PICO

The Rco [2] tool generates an RTL implementation from a specificatigitten in a subset of
ANSI C. It allows one to evaluate multiple alternative implentations and can provide the de-
signer with a list of Pareto optimal implementations, inrierof area and performance. Between
various stages of the synthesis process, the intermedisitdts can be verified using simulations.
The final result is typically a Pipeline of Processing Arrély®A), which implements the function-
ality of the original input specification. This PPA is compd®f a set of configurable architectural
IP cores.

A PPA consists of a configurable amount of Processor Arrays)(fhat are placed in a
pipeline, interconnected using FIFO buffers. Each PA siaf one or more Processing Ele-
ments (PEs). A processing element consists of a variablebauwf different functional units,
such as adders and multipliers. In Figure 2.10, the typiahihchy of a PPA is shown. Each PA
originates from a loop (nest) at the top level of the C spestiii.

Pico tries to exploit parallelism at various levels. Using Fig:11, we illustrate the various
levels of parallelism for the application code fragmentvghan the upper right corner. The three
for-loops of this code fragment are mapped to separate PAgefer to them by means of the
associated function call inside the loop. In Figure 2.1f&eritask parallelism, or task overlap, is
depicted. In this context, taskis one entire execution of the application code. A new task ca

23

CHAPTER 2. BACKGROUND 2.4. PICO

PPA control Input stream(s) Input
interface
A 3
v Y —| PE || PE
PA 1
PA | |
‘ control f— PE [—| PE
unit | |
PA 2
PPA N gL
Controller 3
¥

PAN

Output stream(s)

Figure 2.10: Overview of thelBo PPA hierarchy.

be started while the previous task is still running, tydicavhen the first loop nest has finished.
Task overlap is not obtained automatically: the user hasdwigle the appropriate input to the tool
and/or the RTL result. In Figure 2.11b, intra-task levelgbiatism, or parallelism inside a single
task, is depicted. Different portions of a task can typichk executed in a pipelined fashion. This
is automatically exploited by thel®o tool. In Figure 2.11c, inter-iteration level paralleliss i
illustrated. Depending on the loop-carried dependenciesloop (nest), iterations may also be
executed in a pipelined fashion. Using software pipeliftiechniques, .0 obtains a schedule
for the iterations. In Figure 2.11d, instruction level ghaigsm (ILP) is depicted. The low level
operations of an iteration are scheduled in such a way thallpbexecution is possible, while
data dependencies of the original code are still respected.

2.4.1 Global Flow

First, we give a general overview of thed® synthesis flow in this subsection. Subsequently, in
the next subsections, we discuss the different key aspeatsie detail.
The Rco Express application offers both a graphical and a commaneduser interface. Since

24

CHAPTER 2. BACKGROUND 2.4. PICO

glg for (i=1; i<=N;, i++)
5 % HEilt(...);
glg for (i=1;, i<=N; i++)
- > > _ VEilt(...);
% | Hfilt 2|2 3 | Hit _ : _
< ° iy for (i=1; i<=N; i++)
2 Viilt conb(...):
N Y comb
g % | Hiilt |«
i e comb % | Hiil 1
|~ Vilt 413
Vil | comb 61 viit 2
comb
v |
a) Inter-task | b) Intra-task ¢) Inter-iteration d) Instruction level
parallelism parallelism parallelism parallelism
(task overlap) | (software pipelining)

Figure 2.11: Different levels of parallelism that are taketo account by RCo.

the command line interface fits better in an automated defkign we focus on the commands
with which a certain operation can be performed.

Environment

For each design, project has to be created. One possible way to achieve this is byirogeat
new directory, entering this directory and then launchimg Bco Express tool from within this
directory. Rco treats its initial working directory as project directosg now one can configure
the project. This is done using tlset_project_params command, which accepts several
arguments. Suppose we want to add a C source file aalfedunc.c to the project. The content
of this C file is discussed in more detail in Section 2.4.2. filewing command can be used to
add the file to the project. Here we assume that this file ajreesldes in the project directory.

set_project_params -sources my_func.c

The same command can be used to add C header fileaders argument), input data files
(-data argument) and result filesrésults argument).

The next step is to create axperiment An experiment represents one particular imple-
mentation of the project. Several experiments can be aeat@ch with a different parameter

25

CHAPTER 2. BACKGROUND 2.4. PICO

configuration. In order to create a new experiment, the Walg command is used:
create_experiment myexp

This command creates a new experiment called “myexp”. liptbgct directory, a new directory
myexp/ is created. This directory is used to store a copy of the ifipeg, the experiment con-
figuration and, after synthesis, the generated output.cféate_experiment command also
sets the new experiment as the current experiment. In oodgwitch to a different experiment,
one uses theelect_experiment command.

Configuring the current experiment is done using sie¢ experiment_params com-
mand. This command accepts a considerable amount of argsimém this section, we only
discuss the two arguments that are essential to the systfiesi In Section 2.4.3, we discuss
some more arguments to this command. Suppose the top lemeidn we want to synthesize into
RTL resides in the fileny_func.c and is called “func”. The following command can be used to
configure the experiment accordingly:

set_experiment_params -appfile my_func.c -proc func

Synthesis

After configuring the experiment, the®o synthesis process can be initiated. In order to convert
the top level function to ailRo PPA core, several steps are required. These steps areatkjict
Figure 2.12.

package

Figure 2.12: Global R0 Express flow.

First, the C file has to be preprocessed bg® using thepreprocess command. During
preprocessing, several source code transformations take.g~or example, all function calls are
inlined, such that the result of this phase consists of onetfon representing the entire function-
ality of the PPA. Also, statements that are not part of a loegt iare either moved to the nearest
loop above or below, or placed inside a new loop with only deeation. These restructurings

26

CHAPTER 2. BACKGROUND 2.4. PICO

facilitate the construction of the PA pipeline in subsedqu#teps. In addition, syntactic checks are
performed to make sure the input complies with the syntakefRICO-C language.

The next step is the scheduling phase, which is invoked ubegchedule command. Dur-
ing this phase, high level optimizations and loop optimaeg are performed and loops are sched-
uled. The scheduling step is followed by the synthesis phageked using thesynthesize
command. In this phase, instructions are scheduled, sigirulevel optimizations are performed
and resources are allocated. Finally, the RTL implemegriais written in the form of Verilog
files. These files can be put into an RTL “package” usingdieate rtl_package com-
mand. This command collects the Verilog files as well as mspdog files and simulation stubs,
and places them in a conveniently arranged directory hibgeon the file system.

Instead of issuing thpreprocess ,schedule andsynthesize separately, théuild
command can be used to perform these operations sequentiall

2.4.2 ClnputFile

The (top level) C file that is provided to ttemt_experiment_params command using the
-appfile argument is the starting point in ad® design. The top level function in this file is
synthesized to RTL. The structure of this file is similar teegular C file, although there are some
differences. In addition, IR0 offers some constructs used for optimization and commtinita

Communication Constructs

In order to allow data exchange between the PPA and its emmient, several communication
constructs are provided. A main distinction is made betwstezam interfacesnd live scalar
and array variables. Stream interfaces act as FIFO chaandlsan be internal, to communicate
data between different loops, as well as external, to exginaata with the PPA environment. An
internal stream is defined using tRéFO macro, which generates two access functions that can
be called from within the PPA function:

1 FIFO(myFifo, int);

2

3 pico_stream_output_myFifo(y);
4

5

X = pico_stream_input_myFifo();

At line 1, an internal stream “myFifo” is defined, which tréms data of thent type. At line 3,
data is written into the stream; at line 5, data is read froendtneam. The access functions for the

27

CHAPTER 2. BACKGROUND 2.4. PICO

external streams are similar to those for internal streahine declaration is somewhat different.
Instead of using th&IFO macro, one has to declare the access functions manuallyarnFHoput
stream, thepico_stream_input_xxx function has to be declared, whexgx should be
replaced by the stream name. Similarly, for an output stréhepico_stream_output_xxx
function has to be declared. 1IGb automatically recognizes these functions as externaarstre
interfaces and adds the appropriate external ports to tAdRHR.

The global variables of a PPA file are treated as live varabl@riables that communicate in-
put data to the PPA function are referred tdiesins variables that communicate output data from
the PPA function are referred to ieouts Scalar variables are bound to livein and liveout scalars,
while arrays are bound to livein and liveout memories. THatien between the communication
constructs and their RTL equivalent is discussed in Se&idri.

Input Restrictions

Because the target architecture of thee® tool set is very different from a regular von Neu-
mann architecture, several restrictions are posed on timp@@.i Additional restrictions may arise
from the fact that development is still going on, eventusiading to a relaxation of this class of
restrictions.

For example, pointers are not allowed, as there is no notfogladbal memory. Recursive
procedure calls and floating point operations are also rngpated. The C input should be self-
contained: all functions that are called have to be fullyridiin the same or a directly included
C file. In Pico Express version 08.01, that has been used during our réseammposite data
structures (using C’struct keyword) were not allowed, although the next release dopgsti
them. The loop nest structure of the top level function i® @isnstrained: onlyperfectly nested
loopsare allowed. Note that this restriction applies to the C calolained after preprocessing and
function call inlining. Effectively, this restriction dgenot allow multiple loop statements inside
another loop, as shown in the following example:

1 for () { /I Outer loop
2 for () { /I Inner loop 1
3 S10);

4 }

5 for () { /I Inner loop 2
6 S2();

7 }

8 }

28

CHAPTER 2. BACKGROUND 2.4. PICO

Note that other non-loop statements are still allowed irbitdies of the loops. In this example, the
second inner loop violates the loop structure restrictlorsuch a case, the user has to restructure
the code to conform to the structural requirements agairhdfiteration domains of both inner
loops are equal and no data dependencies exist betweemestda®l and S2, the loops can be
merged. Another option is to unroll one of the inner loopth@ligh this quickly leads to increased
hardware costs.

Source Code Annotations

To allow the user to provide IBO with additional information during synthesis, various sm
code annotation constructs are offered. Most of these atians are specified via pragma direc-
tives. For example, to unroll a loop, the following pragmaliced directly before the loop that is
to be unrolled:

#pragma unroll

Of course, the iteration count of the loop needs to be knoweoatpile time if this pragma is
applied. If the iteration count cannot be statically defeed, thenum_iterations pragma
can be used to specify this number.

Pico already performs value analysis and bit width optimizatomeduce the amount of bits
needed for a variable. Using thésize pragma, the user can manually influence the amount of
bits allocated to a certain variable, making more efficiemtable sizing possible. Sizes of internal
FIFOs can be controlled using tfiéo_length pragma.

Typically, arrays are converted into local memories. Basedhe size of an array, the local
memory is either implemented using registers, or definednaextéernal SRAM. The user can
override the default behaviour on a per-array basis. Inrai@isynthesize an array as an internal
register-based RAM, thaternal_fast pragma can be used. Theer_supplied pragma
can be used if the user wantecl to generate an external SRAM interface for a particulanarra

Many other pragmas exist, which are described in tteoRDeveloper’s Guide [49].

2.4.3 Implementation Settings

To influence the performance and behaviour of the resultif, Rarious settings can be config-
ured and performance targets can be specified.

29

CHAPTER 2. BACKGROUND 2.4. PICO

For RTL synthesis, a target clock frequency has to be choBeis.way, Rco will make sure
the generated RTL meets timing constraints when processkxhdevel synthesis and implemen-
tation tools. To obtain such RTL, sophisticated constrapitmization algorithms are employed.
If timing closure for a given clock speed can not be guaraht®eco RTL generation fails. Using
the following command, one can set the target clock frequémd 00 MHz:

set_experiment_params -clock_freq 100

Using the Minimum Inter-Task Interval (MITI), one can infhee the application performance.
It represents the minimum number of cycles between two Sgoee starts of a task, as depicted
in Figure 2.13. co treats the specified MITI as a performargmal;, the performance delivered
by the hardware may be different. If a MITI value is specifi@d;0 computes loop Initiation
Intervals (lIs) such that the rates of production and consion are matched, resulting in small
internal FIFO buffer sizes. This is known ee matching The user may specify some or all loop
Il values.

MITI L

L > Task latency

L1

awiL

L3

L2

L3

Figure 2.13: Execution of two tasks, illustrating the MITdrcept.

If no liveins are present, the PPA can be configured to autioailgt restart itself after a task
is completed. This has the advantage that no external PR#olenis needed to start each task.
The auto-restart setting is turned on by passingaato_start_npa argument to either the
synthesis or build command. It is also possible to let the PPA run its first taskeVer”.
This may be useful for real time streaming applications. sTéption is enabled by passing an
infinite_run_npa argument to either theynthesis orbuild command.

30

CHAPTER 2. BACKGROUND 2.4. PICO

2.4.4 RTL Output

As mentioned earlier, thereate_rtl_package command creates a directory containing the
RTL implementation of the PPA together with synthesis ré&pand simulation stubs. The follow-
ing subdirectories which are relevant to our work can be foumthe RTL package directory:

e Logs/ : This subdirectory contains the log files of the preprocesbedule and synthesis
steps.

e macrocells/ : This subdirectory contains the “macrocells” such as asldewltipliers
and selectors that are instantiated by the PPA subcompriEme macrocells are provided
as Verilog files.

e Reports/ : This subdirectory contains various reports, like the ltesiithe rate matching
steps, as well as detailed scheduling reports. répert_summary.txt report contains
a summary of the most important PPA features, such as pgpdépth.

e rtl/ : This subdirectory contains the modules of which the PPAdimposed. The top level
file is identified by the ppa file name suffix. The PPA instantiates wrapped PA components
(PAWSs) which can be found in the files with @aw_N suffix, wherelN is the corresponding
PA number. The actual PAs reside in files identified bypa_N suffix. Likewise, each PE
file is identified by a_pe_N suffix. All of the PPA components are provided as Verilog
files.

The top level file contains the PPA module. This module haswainput and output ports that are
used for control and data communication purposes. A pas$IBIA module definition of an ex-
ample auto-restart PPA, synthesized from a C specificatithame input and one output stream,
is shown in Figure 2.14. Lines 2-15 define the general costgrials that are characteristic of
a PPA. Theclk , reset andenable signals are common system signals, expected to respec-
tively provide a pulsating clock signal, a system resetaligmd a signal enabling or disabling the
component. Some of the remaining control signals providentanface to the internal Processor
Status Word (PSW), which is used to keep track of the PPA.st&teh signals typically have
apsw_ prefix. For the first sixteen loops of a design, a stall sigeavailable which becomes
high when the corresponding loop is forced to stall, due @vaflable inputs for example. In this
example, we have only one loop of which the stall signal isashon line 12. Thepsw_busy
signal on line 13 indicates if the first stage of the PPA is barsyot. Thepsw_init_done and

31

CHAPTER 2. BACKGROUND 2.4. PICO

psw_task_done ports become high when task initialization and task exeautiespectively,
have finished. Using thelear_init_done andclear_task_done ports, these status sig-
nals can be reset again. Because we solely use PPAs withtiheestart feature turned on, the
remaining signals on lines 5,6 and 9—11 are not relevant.

Lines 16-21 define the input and output stream interfaceg. fEmes and amounts of these
ports depend on the number of streams used in the applicaiaoh stream interface typically
consists of three ports. On lines 16-18, the interface feritiput streammyinis defined. This
interface consists of a data bimstream_myin_di_0 , a signalinstream_myin_req_0
which is raised when the PPA requests data, and a sigsiaéam_myin_ready 0 which is
high when data is available on the incoming data bus. On i8e21, the interface for the output
streammyoutis defined. This interface consists of a data butstream_myout do 0 , an
outstream_myout_req_0 signal which is raised if the PPA requests to write data, and a
outstream_myout_ready 0 signal indicating if the target of the output stream is re&mly
receive data. The protocol of the stream interfaces is ratnaightforward. In order to read one
element from an input stream, theq signal is held high for one clock cycle. If tmeady signal
is high at the rising edge of this clock cycle, the contenthetli bus are fetched. Otherwise, if

1 module myfunc_ppa(

2 clk, /I input clk;

3 reset, /I input reset;

4 enable, /I input enable;

5 start_task_init, /I input start_task_init;

6 start_task_final, /I input start_task_final;

7 clear_init_done, /I input clear_init_done;

8 clear_task_done, /I input clear_task_done;

9 psw_livein_frames_in_use, /I output [3 : O] psw_livein_fr ames_in_use;
10 psw_liveout_frames_in_use, /I output [3 : 0] psw_liveout_ frames_in_use;
11 psw_released, /I output psw_released;

12 psw_sa_0_stalling, /I output psw_sa_0_stalling;

13 psw_busy, /I output psw_busy;

14 psw_init_done, /I output psw_init_done;

15 psw_task_done, /I output psw_task_done;

16 instream_myin_di_0, /I input [31 : 0] instream_myin_0;

17 instream_myin_req_0, /I output instream_myin_req_O0;

18 instream_myin_ready_0, /I input instream_myin_ready_O;

19 outstream_myout_do_0, /I output [31 : O] outstream_myout_ do_O0;
20 outstream_myout_req_0, /I output outstream_myout_req_0 ;

21 outstream_myout_ready_0 /I input outstream_myout_ready _0;

22);

Figure 2.14: The Verilog module definition of a PPA.

32

CHAPTER 2. BACKGROUND 2.4. PICO

theready is low during this clock cycle, theeq signal is held high and the PA stalls until the
ready signal becomes high. The output stream interface works imées way.

2.4.5 \Verification

At several points of the synthesis flowd® offers the possibility to verify the intermediate results,
by means of simulations. This way, programming mistakesbeaaliminated early in the design
flow and the user can verify that the produced results betmdesired. In order to run the various
simulations, a driver file written in C is needed. This filecfeds input data, invokes the PPA
procedure and reads back the resulting data. Input datpitsatly specified usinglatafiles and
output data is specified usimgsultfiles. For each simulation, B0 provides the data files to the
driver code and compares the simulation result with theifipdaesult files.

The first verification step is thgolden simulation This simulation is performed prior to any
synthesis steps and is meant to verify the correctness ointheé specification. In particular,
the input/output relation is verified and a reference panestablished. The next step after the
preprocessing stage, is the linting simulation. This is aentborough check, which checks the
semantics of the C code and looks for undesirable runtimebetr such as out of bound array
accesses and uninitialized value usage. Also, a “bit ateBgstemC simulation” can be run at
this point, for functional verification at the transactibfevel.

After the scheduling step, a “thread accurate SystemC siioal’ can be performed. This
simulation models the parallel behaviour of the hardwanelémentation allowing more accurate
performance estimates. After RTL synthesis and packad®d, simulation can be performed
in order to verify the behaviour of the resulting RTL. It issalpossible to perform an RTL co-
simulation such that one can study the interaction betwleeiRTL and a host processor based on
the driver code.

2.4.6 Tightly Coupled Accelerator Blocks

Pico also offers the possibility to synthesize a procedure infmhtly Coupled Accelerator Block
(TCAB). Such a TCAB can be integrated into a PPA or anotheyelalf CAB. It allows for im-
proved hardware sharing, leading to reduced hardware.db#tie entire TCAB procedure can be
scheduled in one clock cycle, a purely combinational TCA8isthesized. Otherwise, a pipelined
TCAB is created.

Building a TCAB is done in the same way as a PPA is built, thatii® creates an experiment

33

CHAPTER 2. BACKGROUND 2.4. PICO

1 module mytcab_paw_0(

2 clk, /I input clk;

3 reset, /I input reset;

4 enable, /I input enable;

5 stallbar_in, /I input stallbar_in;

6 stallbar_out, /I output stallbar_out;

7 op, /I input op;

8 pred, /I input pred;

9 instream_myin_di_0, /[input [31 : 0] instream_myin_di_0;

10 instream_myin_req_0, /I output instream_myin_req_O;

11 instream_myin_ready_0, /I input instream_myin_ready_O;

12 outstream_myout_do_0, /I output [31 : 0] outstream_myout_ do_0;
13 outstream_myout_req_0, /I output outstream_myout_req_0 ;
14 outstream_myout_ready 0 /Il input outstream_myout_ready _0;
15);

Figure 2.15: The Verilog PAW module definition of a TCAB.

and synthesizes this experiment. The procedure that hasgprithesized into a TCAB is selected
using the-proc argument of theset _experiment_params . An additional command is
needed, to indicate that a TCAB should be built instead ofA PP

set_experiment_params -build_tcab

In order to use this TCAB inside a PPA or another TCAB, no cleantp the source code are
needed: the TCAB procedure is invoked like any other C famctiTo build a component that
makes use of a TCAB, a new experiment has to be created and_tAB Thould be imported as
follows:

set_experiment_params -import_tcab "mytcab”

Because multiple loop nests are not allowed in a TCAB proeedody, only a single processor
array will be created. Hence, the RTL implementation of a B3#nsists of a single Processor
Array Wrapper (PAW) component at the top level. A PAW moduds h port definition similar to a
PPA, although the control interface is different. A possiBAW module definition for a pipelined
TCAB with one input stream and one output stream is shownguiiei 2.15. The generic system
signals on lines 2—4 and the stream interface signals og 8ré&4 are similar to those of a regular
PPA module. The main differences are found in the contrahagyon lines 5-8. Using the
stallbar_in andstallbar_out ports, stalls of the PAW can be controlled. Ttye and
pred signals need to be raised in order to start PAW operation.

34

CHAPTER 2. BACKGROUND 2.4. PICO

Output/Release Latencies:

+ + + + >
| Architectural Latency | Physical Latency | Type | Item |
| Adjusted[Specified] | Adjusted[Initial]| | |

+ + >
1	1[1]	Stream	instream_in_1
30	3[3]	Stream	instream_in_2
6[]	6[6]	Stream	outstream_out_1
11]]	11[11]	Stream	outstream_out_2
+ + S S >

Figure 2.16: An excerpt of the report showing the streammizites.

A basic pipelined TCAB typically has a fixed pipeline depthhigh is specified in the report
file report_summary.txt . If the TCAB has more than one input stream, data from those
streams is not necessarily fetched during the same cycle. siime applies to output streams.
For example, consider a TCAB with a pipeline depthlaf two input streams and two output
streams. Data from the first input stream may be read imnegiatvhile data from the second
input stream is read during the third cycle. Likewise, datthe first output stream may already be
written during the sixth cycle, while the second outputatngs written during the last cycle of the
pipeline. These latencies are specified inrdgygort_summary.txt report file. In Figure 2.16,
an excerpt of this file is shown, illustrating the scenarietsked above. In this figure, the Adjusted
Physical Latency values correspond to the final latencieseRTL. In Figure 2.17, we illustrate
how this information is used when launching two successigks on the TCAB. For input stream
in_1 , data for the first task has to be available onithel data bus at cycle 1. Data for the
second task has to be available on this bus at cycle 2. Fotthiee imput and output streams, the
appropriate clock cycles are marked in a similar way.

1 2 3 4 5 6 7 8 9 [10| 11 |12
o

. . =task 1
e

out 1 = task 2
out 2 .

Figure 2.17: Timing diagram for successive execution of tagks on the example TCAB dis-
cussed in this section.

35

Chapter

Hardware Node Models

In this chapter, we propose two hardware node models. Bottelaanake use of IBO in a dif-
ferent way. Using these models, a KPN node can be synthesite@d completely functional
hardware implementation. The first model is fairly strafghtvard, but its applicability is lim-
ited. The second model supports a broader input domain amdbeapplied to a larger set of
applications.

3.1 Approach 1: PPA Hardware Node

The first model is based on ad® PPA encapsulated in a small wrapper. The goal of this wrapper
is to allow the PPA to be integrated into the existinggf&M) KPN hardware infrastructure. The
PPA is responsible for loop nest control, data input andwiusperations and the actual computa-
tion of the node.

3.1.1 Model Description

In Figure 3.1, the structure of a PPA hardware node is shovewer@al generic “control” signals
enter the PPA hardware node. Based on these control siginalspntroller drives the appropriate
control ports of the PPA. Because the PPAs are generatedthvdthuto-restart option, the con-
troller size is kept to a minimum. Its only purpose is to cotkedrive the reset and enable signals.
The different nodes of a KPN hardware implementation aerdaannected via the FSL bus. These
connections are made via the input and output ports of the.ndde FSL communication inter-

36

CHAPTER 3. HARDWARE NODE MODELS 3.1. PPA HARDWARE NODE

Control - Controller j
p—{
Input Output
channels > @ — PICOPPA channels
—{
P Status

Figure 3.1: The REo Hardware Node model, consisting of a PPA with additionalppex logic.

face is very close to thelo stream interface, although there are some minor diffeieniosing
some additional logic, the FSL signals are appropriatelynected to the 0 input and output
stream ports. This is depicted by the dark squares that taehad to each channel. Finally, a
status signal is provided, indicating if the computatiothaf node is completed. This status signal
is driven by thepsw_task_done signal of the PPA.

PPA Synthesis

The PPA of the hardware node is synthesized from an autoafigtipenerated R.0O-C file. This

C file consists of several parts, as depicted in Figure 3.#:eS&lently, this file conforms to the
Pico-C syntax and contains the top level function that is to belsgized. In Figure 3.2, the
different parts of the top level function are labelled wittnmbersl to 5. First, loop iterators and
data variables are declaret) (Next, the for-statements that iterate over the iteraspace of the
node are provided?). In order to prevent synthesis problems, the bounds okthmsps should
be constant expressions that can be evaluated at compée Because of the SANLP nature of
a KPN node process, only a single loop nest of a certain deggthichbe synthesized usingd®.
This fully conforms to the input that can be handled bg®.

The loop nest body consists of three different stages, nametad stage which reads data
from the input channels, an execute stage which performad¢hel computational workload of
the node, and a write stage which writes the calculated dathet output channels. First, the
input operations are specifie@)(For each input port of the node,paco_stream_input

37

CHAPTER 3. HARDWARE NODE MODELS 3.1. PPA HARDWARE NODE

PICO C Input

#i ncl ude "funcs. h"

void ppa_func() {

1 int c0, ci;
int in0O, outO;

2{ for (cO =...) { N 1
for (el =) H i> PICO i> — PICOPPA T
3{ in0 = stream.input(); T T
4{ transform(in0, &out0);
5 { st ream out put (out 0);
}
}

Figure 3.2: Generating ai®o PPA for integration in the PPA Hardware Node model.

call is generated. The results of these calls are storecdeimibut data variables. The input port
operations are optionally guarded using if-statements asarsure they are issued during the
appropriate iterations. The exact conditions of thesedygtatements are extracted from the KPN
specification. Next, the node function call is performéll (The implementation of this function
has to be directly “visible” to the caller and will be inlindxy the Rco preprocessor. All input
and output data is transferred via the function argumentse ifiput arguments are listed first,
which are the data variables with an prefix. Each iteration, each of those variables is assigned
a value by one of the previous input port operations. For timetion output, the addresses of the
output data variables (which are prefixed witht) are passed as arguments. At first, the use of
the address-of operato&) might seem inconsistent with thed®»-C syntax, but during function
call inlining the address-of operator is eliminated anditii@ed function body can directly write
its output to the output data variables. Finally, the outérations are performe8)(This step is
similar to the input operations step. For each output patti@hode, gico_stream_output

call is generated, which outputs an output data variableaighese statements can be guarded
using if-statements to make sure data is written during fpeapriate iterations.

38

CHAPTER 3. HARDWARE NODE MODELS 3.2. TCAB HARDWARE NODE

3.1.2 Restrictions

The PPA hardware node model is strongly dependent oniite ®ol, because both control flow
and functionality of the node are generated usingd® This implies that the applicability of this
model is restricted by the set of input specifications that loa handled by theIBo tool. For
example, the perfectly nested loop requirement that is ioead in Section 2.4.2 makes it almost
impossible to use loop statements in the node function imefgations. This is due to the fact
that the function call itself is already inside a loop nestnely the loop nest that iterates over the
iteration space of the node.

Another drawback is that a perfectly validd®-C program may still turn out to be unsynthe-
sizable. This may happen whend® can not guarantee timing closure for the implementation
at a specified clock frequency. KPN nodes with more complextfans that result in an RTL
implementation requiring multiple clock cycles per itépatoften lead to synthesis failure.

The model is also not suitable for KPNs that include feedbagfs or nodes with self-loops.
This is caused by the pipeline behaviour ofla® PPA. To illustrate this problem, consider a node
P1that sends a token to nodR2 every iteration and then reads a token back fiegh Assume
that nodeP2reads a token, performs an operation on this token and thigitsuthe transformed
token. Effectively, there is an anti-dependence betweemitlite and read operation of noée.
Unfortunately, expressing this anti-dependence Iind”C is not trivial and our attempts to do
so resulted in synthesis failure. If the anti-dependenceotsmade explicit in the 0O input,

a deadlock occurs in the resulting network. This happensiiss; when the pipelines of the
nodes are deep enough, the read operation of Rddsalls while the previous write operation is
still pending in the pipeline. The stall of a single read @ien typically leads to a stall of the
entire PA, so none of the pending operations of nBdevill make progress until the stalled read
operation succeeds. Since the (pending) write operatid?ilag not yet completed, node2 will
not receive data and thus cannot produce a token that alfdws continue. At this point, none of
the nodes can make progress anymore.

3.2 Approach 2: TCAB Hardware Node

For the second model, we build further upon theUrA processor model that was proposed
in [50]. This processor model consists of a part that handéa communication and other control
tasks, and an IP core insertion point where the actual camtipas of the node take place. Using

39

CHAPTER 3. HARDWARE NODE MODELS 3.2. TCAB HARDWARE NODE

Pico, we generate a TCAB which implements the desired functignaf the node. This TCAB
is then placed in the IP core insertion point. This resuli imrdware node that is fully functional.
Moreover, the TCAB hardware node model is more robust thanPBA hardware node model,
as the different pipeline behaviour does not lead to undédsirode stalls in the case of input
unavailability.

3.2.1 Model Description

Read unit Execute unit Write unit
Incoming _| Read | Ve i | Write Outgoing
data mux " " | demux data
TCAB

Eval. logic Eval. logic

A A A
L/ \

Control > Control unit Status

Figure 3.3: The TCAB Hardware Node model, consisting of a BOAtegrated in a bBURA
processor.

In Figure 3.3, we show a schematic overview of a TCAB hardwade. The node can be broken
down into four different components, namely a read unit,>@tate unit, a write unit and a control
unit. The read unit is responsible for accepting the incgmokens and passing the appropriate
data at the right clock cycle to the execute unit. To do soeéps track of the current iteration
by means of counters. Depending on the current iteratiotovedata from the appropriate input
ports is selected and forwarded to the execute unit. Theutxemit implements the functionality
of the KPN node function. Using its input data port, the inptguments are transferred to the
hardware implementation of the function. Similarly, thepu data port corresponds to the output
arguments of the node function. The data produced by theutxemit is sent to the write unit.

40

CHAPTER 3. HARDWARE NODE MODELS 3.2. TCAB HARDWARE NODE

The write unit is implemented in a way similar to the read ubBiepending on the current iteration
vector, the data is written to the appropriate output pofth® hardware node.

Pipeline Model

Our TCAB hardware node model makes use of a pipelined exatutiodel. In Figure 3.4, this
execution model is visualized. Figure 3.4a shows a thragespipeline, which consists of a read
stage R), an execute stager|) and a write stagelt’). Figure 3.4b shows a five-stage pipeline,
which consists of a read and write stage and three execesdia, £> and E5. This execution
scheme applies to a situation where the TCAB is implemenseta three-stage pipeline.

The previous pipeline figures assume that for each read opreréhe required data is already
available. This leads to the optimal scheme, where a newatiber is initiated every clock cycle.
However, this is not always the case, because the presersmdf-ddops or dependence on other
nodes might lead to a situation where data is not yet availabthe start of a new iteration. In
such a case, the read operation should block until the datanies available, while the operations
already in the pipeline should be allowed to complete. Téiadhieved by inserting “bubbles”
in the pipeline as illustrated in Figure 3.5. First, iteoatil is started successfully. Now assume
iteration 2 depends on the output data of iteration 1. Thiputudata becomes available after the
write stage of iteration 1. Hence, iteration 2 cannot betasthimmediately at the next cycle, and
is delayed until after the write stage of iteration 1. Meaitytdummy data is sent to the execute
unit, in order to keep the pipeline of the TCAB filled, theredtiowing the pending iterations to

Ti Ti
ime > ime >

Iteration 1 Iteration 1

eration R E|W eration R E1 E2 E3 W
Iteration 2 Iteration 2

eration R E|W eration R E1 E2 E3 w
I i I i

teration 3 R E|W teration 3 R E1 E2 E3 W

a) The optimal execution scheme of a b) The optimal execution scheme of a hardware

hardware node with a three-stage node with a five-stage pipeline.

pipeline.

Figure 3.4: The TCAB Hardware Node execution pipeline.

41

CHAPTER 3. HARDWARE NODE MODELS 3.2. TCAB HARDWARE NODE

Time -
teraton 1| R | E, E, E, W
SHAR
R
R
R
lteration 2 R|E E, E W
Iteration 3 R|E E E, W

Figure 3.5: A TCAB hardware node pipeline scheme with bubbiserted to account for unavail-
able data.

complete. The output data that is produced from the dumnegy idatiscarded as soon as it leaves
the execution unit. Thatis, once such a dummy token has n&dey through all of the execution
unit pipeline stages, it is discarded and no channel writgaipns take place.

Control Unit

The control unit is a key component for correct operationhef pipeline. A schematic overview
of this unit and its connectivity with the other units is shoim Figure 3.6.

The read unit provides two signals to the control unit, ngntikeé EXIST signal, which is high

if all data needed for the current iteration is available] #me DONEsignal, which is raised once
the read unit has completed all iterations. Based on thgsalsi the control unit raises tiREAD
signal in order to start a new iteration. TlR&EADsignal is passed to the read unit, thereby enabling
the read unit to actually start reading the desired toket® READsignal is also transferred to a
register, such that on the next rising edge of the clock $igha execute unit is enabled via the
ENABLE_EXsignal. If theENABLE_EXsignal is high, the execute unit takes the data at its input
port and passes it to the (pipelined) TCAB. For a TCAB with pefine depth ofV, it takes N
cycles before the result of the computation appears at ttubport of the execute unit. This
means that afteV cycles, the data at the output port of the execute unit hag fagalssed to the
write unit, which should subsequently write the data to thprapriate output channels. In order

42

CHAPTER 3. HARDWARE NODE MODELS 3.2. TCAB HARDWARE NODE

EXI|ST DONE READ ENABLE_EX FULL E WRITE

Shift register:
—»{r——»[r[rlr[rlr[r}—

Control unit

Figure 3.6: Schematic overview of the control unit of a TCA®Bdware node.

to keep track of the iterations pending in the execute umlpie, a shift register oV bits is
used. When a new operation is started on the execute unig &quushed into the first position
of the shift register. Otherwise, when no new operationustded on the execute unit during the
current cycle, a zero is inserted. At every clock cycle, thift segister contents are shifted one
position. Consequently, at the other end of the shift regist value is shifted out every clock
cycle. Depending on this value, théRITEsignal is either kept low, in case of a zero, or raised,
in case of a one. When thWWRITEsignal is high, the write unit writes the data coming from the
execute unit to the appropriate output channels. After @aitk operation, the write unit updates
its internal iteration counter(s). When all iterations ddneen completed, the write unit raises its
DONEsignal, which effectively means that execution of the entiode has finished. The write
unit also provides &ULL signal, which becomes high if one or more output channeldwdke
The node does not accept new tokens if this signal is highctfely realizing a blocking write
condition.

Execute Unit

The execute unit contains the TCAB that implements the fanatity of the node function. The
pipeline depth\V of this TCAB should be known after TCAB synthesis. The exeautit “con-
sumes” the data at its input port(s) at clock cycnd produces the result of the computation with
this data at its output port(s) at clock cyele- N. However, as we mentioned in Section 2.4.6,
a TCAB does not necessarily take its input data at clock cyeled produce the corresponding

43

CHAPTER 3. HARDWARE NODE MODELS 3.2. TCAB HARDWARE NODE

Execute unit
| | | | 1 |

o —r—#h . 3
in1 > L>

out0

—»
TCAB

enable : : : ml

out1

1 1 1 1 1 1
jcycle1 ,cycle2 | cycle3 |cycle4 |cycle5 |cycle 6
1 1 1 1 1 1

clocksignal: | | || || L L LJ L

Figure 3.7: Schematic overview of an example execute uitit an integrated TCAB.

output at clock cycleé + N. Hence, the execute unit should account for these difféenguit and
output latencies in order to keep the execute unit congistéh the hardware node model. This
is done by adding shift registers, as illustrated in Figuie Assume the TCAB fetches argument
in0 at cycle 2 and argumeintl at cycle 1. Argumeninl is fetched immediately at the start of the
TCAB, so no additional actions are required. Argumi@Bthowever, is fetched one cycle after the
TCAB is started, so we need to insert a transfer delay of onkecyrhis is achieved by inserting a
register, as indicated by the gray square in the upper Ifigiire 3.7. For the output arguments,
the problem is solved in a similar fashion. Assume argunoeit®is written at cycle 6, when the
TCAB finishes its task, and argumentitl is already written at cycle 3. For argumemtt0, no
additional logic is needed. Transferring argumeutl to the output port of the execute unit needs
to be delayed three cycles to make it arrive exactly at cycl€lss is achieved by inserting three
registers after each other, as indicated by the three gnagreg in the figure.

TCAB Generation

The PPA of the hardware node is synthesized from an autoafigtgenerated -o-C file. This
C file consists of several parts, as depicted in Figure 3.8 amdains the top level function
that is to be synthesized as a TCAB. In Figure 3.8, the diffeparts of the top level function

44

CHAPTER 3. HARDWARE NODE MODELS 3.2. TCAB HARDWARE NODE

are labelled with number% to 4. First, data variables are declarel).(Next, the input argu-
ments to the function are obtained fromcP input streamsd). For each input argument, a
pico_stream_input call is generated. The node function ca) (s specified similarly as
with the PPA hardware node model, as discussed in Sectioh. 3-nally, the output produced
by the function is written the thelBo output streams usingico_stream_output calls @).
Unlike the PPA of a PPA hardware node, a TCAB that is integrittea TCAB hardware node
has no notion of the node iterations. This results in a leagpticated Pco-C top level function,
which has no global loop nest or if-statements guardingripatiand output operations.

PICO C Input

#i ncl ude "funcs. h"

void tcab_func() {

1 { int in0, outO; T T
2 { in0 = stream.input(); d> PICO :> T PICO TCAB::
3{ transform(in0, &outo); - il
4 { st ream out put (out 0) ;

}

Figure 3.8: Generating a®o TCAB for integration in the TCAB Hardware Node model.

3.2.2 Restrictions

Like the PPA hardware node model, the TCAB hardware node hu@pends on the IBO tool.

This means the C specification of the node function is stiljestt to the restrictions of thei®o-C

language, like lack of floating point arithmetic support.eTHRCAB hardware model presented in
this section currently only supports TCABs with a constaipefine depth that must be known
before the HDL descriptions of the execute and control wariéscreated. Furthermore, the TCAB
must have an initiation rate of one, allowing a new task tothetesd every clock cycle. These
limitations restrict the set of allowable C specificatioosthe node function. However, the TCAB
hardware node model provides room for extension, at theresgpef more complex control logic,

45

CHAPTER 3. HARDWARE NODE MODELS 3.2. TCAB HARDWARE NODE

allowing TCABs with different characteristics to be intatgd as well.

46

Chapter

Hardware Node Generation

In this chapter, we present thesBAM-PIC0 tool. Using this tool, which is an extension t@EaM,
one can generate a hardware implementation of a KPN thatiosrine or more nodes of the types
that have been discussed in the previous chapter. The keyibeithese new node types is that an
external IP core library is no longer necessary, becausddbieed functionality can be generated
directly from the C input specification.

4.1 The ESPAM-PICO Tool

Like the original ESPAM tool, ESPAM-PICO takes an application, platform and mapping specifica-
tion and produces an XPS project. Additionally, a C file conitey the node function implemen-
tations is needed, referred to as twe functiondile.

4.1.1 Input

In Figure 4.1, the typical design flow of thePKIGEN and ESPAM-PICO tools is shown. In the
upper part of the diagram, the four input files that have togeeiied by the user are shown. The
application is specified in a C file. This C file is processed IRNKEN, resulting in an XML file
containing the KPN specification of the application. The € fieeds to conform to the syntax
accepted by IRNGEN, that has been illustrated in Section 2.2.1. Of course ilde possible
to bypass the KNGENtool, by providing a KPN specification directly to theseam-Pico tool.
Such a KPN specification can be written manually, or obtafred a different tool, like Compaan.

47

CHAPTER 4. HARDWARE NODE GENERATION

4.1. THE ESPAM-PICO TQO

Top level

Platform

PICO
PPA/TCAB

C Input provided
C file XML functions by user
/ / A
PICO-C PICO
file script
Synfora PICO ESPAM-PICO

XPS Visitor / back end

A

Hardware
implementation

Output, ready
for synthesis

Figure 4.1: The KNGENESPAM-PICO design flow.

48

CHAPTER 4. HARDWARE NODE GENERATION 4.1. THE ESPAM-PICO TQO

The mapping and platform specification formats f@PaM-PiCco are identical to those of &AM,
which have been discussed in Section 2.3 .4p&\-Pico supports two additional processor types
in the platform specification:

e PicoPpaHWNode A PPA Hardware Node, according to the model discussed in Sec
tion 3.1.

e PicoTcabHWNode A TCAB Hardware Node, according to the model discussed it+ Se
tion 3.2.

For each processor of ticoPpaHWNoder PicoTcabHWNodéy/pe, a C implementation of the
function that is called by the node has to be provided. Thitoize by means of the core functions
file, which is a separate C file that is directly given teHAM-PicoO.

4.1.2 ESPAM-PICO Internals

In the middle part of Figure 4.1, the internal flow of the®AM-PIcoO tool is shown. The appli-
cation, platform and mapping specifications are procesgdtidoparser and internally modelled
using abstract data structures. The traditional proceypes like MicroBlaze and PowerPC are
handled in the same way asBam would handle them. ThBicoPpaHWNodandPicoTcabH-
WNodeprocessor types are handled differently. For each node efabrihese types, pico/
directory is generated, which contains the following items

e aux_func.h : A header file, containing macro definitions for e.g. minimana maximum
functions which might be used in loop bound or if-conditiofpressions.

e core_funcs.c : A copy of the core functions C file that was provided by theruse

e genrtl.tcl : A TCL script containing lRco commands. Using this script, ad® project
is created, configured and synthesized. The following isxamgle of a script with which
a PPA can be built:

set_project_params -sources "HWN.c core_funcs.c”
set_project_params -headers “"aux_func.h"
create_experiment imp000

set_experiment_params -appfile HWN.c -proc hwn_func
set_experiment_params -clock_freq 100

build -auto_start_npa

create_rtl_package

~N o g b~ wN e

49

CHAPTER 4. HARDWARE NODE GENERATION 4.1. THE ESPAM-PICO TQO

On lines 1 and 2, the source and header files are added tac¢lwepPoject. On line 3, an
experiment is created, which is configured on lines 4 and 5t,Nie PPA is synthesized
using line 6 and an RTL package is created using line 7. ForABrGardware node, the
script is slightly different: an additional command is nedd

set_experiment_params -build_tcab

Furthermore, theauto_start_npa argument is removed from thmiild command.

e HWN.c The top level co-C file that is to be synthesized. Thix_func.h and
core_funcs.c files are included at the beginning of this file. The remainafethis
file follows the structure according to the desired hardwawde model, as discussed in
Chapter 3.

e launcher.sh : A small launcher script which initializes the environmemd invokes the
genrtl.tcl script.

After generating the R0-C file and the script files, &AM-Pico invokes thelauncher.sh
script and waits until R0 has finished RTL synthesis of either the PPA or the TCABpAV-
Pico then parses the port list of the generated PPA or TCAB modutecannects the relevant
control and data ports to the appropriate wires of the nédkwdtis way, the PPA or TCAB is
integrated into the HDL specification of the node.

4.1.3 Output

The output of the EPAM-PICO tool is a Xilinx Platform Studio (XPS) project, containint files
necessary for synthesis of a bitstream that can be dowrdoate an FPGA. The output is placed
in a directory hierarchy which is structured similar to theHam output directory hierarchy that is
discussed in Section 2.3.3. Like the other node typefiatiPpaHWNodandPicoTcabHWNode
nodes get their own subdirectory in theores/ subdirectory. The HDL files for each node are
placed in thepcores/<corename>/hdl/ subdirectory. In the next subsections, we discuss
the contents of this subdirectory for the new node types.

PPA Hardware Node

Thehdl/ directory contains both aerilog/ and avhdl/ subdirectory. The output gener-
ated by Pco, which consists of macrocells and the PPA RTL implementatis placed in the

50

CHAPTER 4. HARDWARE NODE GENERATION 4.2. MEMORY MODEL

verilog/ directory. Thevhdl/ directory contains a single VHDL file, in which the PPA wrap-
per that has been discussed in Section 3.1.1 is specified.

TCAB Hardware Node

Thehdl/ directory contains both aerilog/ and avhdl/ subdirectory. The output gener-
ated by FPco, which consists of macrocells and the TCAB RTL implemenptatis placed in the
verilog/ directory. Thevhdl/ directory contains the other components of the TCAB hard-
ware node. These components, which have been depictedrearkigure 3.3, are placed in the
following files:

e controller.vhd : Defines the control unit.

e counter.vhd : Defines a counter that is used by the read and write unitsap kack of
the current iteration.

e eval_logic_rd.vhd andread_mux.vhd : Together, these files define the read unit.

e eval _logic_wr.vhd andwrite_demux.vhd : Together, these files define the write
unit.

e execution_unit.vhd : Defines the execution unit.

¢ function.vhd : Instantiates the TCAB and buffers input and output wheressary due

to TCAB stream latencies. This component is instantiatethbyexecution unit.
e hw_node_pack.vhd : Contains common type and function definitions.

e parameters.vhd : Contains a mechanism that allows for run time adjustmen<fR
parameters, as discussed in [51].

e HWN.vhd: Contains the top level component, which instantiates #aelr execute, write
and control units, and connects them accordingly.

4.2 Memory Model

In this section, we discuss two different memory models tzett be used to communicate data
between the nodes of a network.

51

CHAPTER 4. HARDWARE NODE GENERATION 4.2. MEMORY MODEL

@ int data[N;

for (i =0; i <N i++) {
data[i] = source();

for (i =0; i <N i++) {
/ \ hfilter(datali]);
viilter(data[i]);

}

Figure 4.2: lllustration of a shared memory model. Tada array is translated into a memory
block of N words.

4.2.1 Conventional Memory Model

A straightforward hardware implementation of an arbitrargay in the input specification would
be to instantiate a block of memory, as illustrated in Figi2 In such an implementation, each
element of the array is mapped to an address inside the mdrtumly. The nodes that require ac-
cess to the array are then connected to this memory block asidress and data buses and control
lines. Although this shared memory approach is easy to imete because of the close relation
to the input specification, it is not an optimal method. Meie®that are used for intermediate
storage of computation results are often large and thug&ser hardware cost. Particularly due
to the array access patterns of stream processing applhisaii is often unnecessary to keep the
entire array available for arbitrary access all the timertti@rmore, a single memory block has
a limited bandwidth, depending on the amount of read ancevpdtrts available. Increasing the
amount of memory ports results in increased complexity asf of the memory component.

4.2.2 Distributed Memory Model

Our KPNGENESPAM-PICO tool flow makes use of a distributed memory model, which issalte
of using the KPN model discussed in Section 2.1. Insteadstdumiating a block of memory that
is shared between multiple nodes, communication is impheeakin a point-to-point fashion, as
illustrated in Figure 4.3. This effectively means that ag® of the array elements is distributed
across the network. With the regular FIFO linearization elp@d node writes array elements
to an output channel in the same order as the successor nadg tleem. This way, only an

52

CHAPTER 4. HARDWARE NODE GENERATION 4.2. MEMORY MODEL

for (i =0; i <N i++) {
X = source();
fifoA put(x);
fifoB. put(x);
}
for (i =0; i <N, i++) {

hfilter(fifoA get());
@ @ viilter(fifoB.get());
}

Figure 4.3: lllustration of a distributed memory model. Tdaa array is replaced by two FIFO
channeldifoA andfifoB

appropriately sized FIFO buffer is needed, which usualtyunees only a fraction of the amount of

memory needed to store the entire array. When the same deraget is read by multiple nodes,

the element is effectively duplicated, as each consumeives the data in one of its FIFO buffers.
Although this “duplicated storage” increases overall mgmeage, memory requirements are in
most cases still considerably lower than with a shared mgingplementation.

In some cases, when data is produced in an order differemt fih@ order in which it is con-
sumed, the FIFO linearization model is not sufficient. Fasth cases, the approach described
in [52] can be used, although this has not (yet) been implésdan ESPAM-PICO. In most cases,
this approach still does not result in storage of the entir@yan a large block of memory.

The difference between both memory models is illustratedrigure 4.4. In Figure 4.4a,

source %

source

viilter

Time

hfilter FRG{lI

viilter

Time

viilter

Vilter
a) Shared memory model: b) Distributed memory model:
hfilter & vfilter nodes executing in hfilter & vfilter nodes executing

an alternating fashion, due to accesses fully independent of each other.
to a shared memory.

Figure 4.4: Execution schemes for both memory models.

53

CHAPTER 4. HARDWARE NODE GENERATION 4.2. MEMORY MODEL

which corresponds to the scenario of Figure 4.2, lfiker and vfilter nodes are executing in
an alternating fashion. This is because the shdegd memory from which they read can only
handle one access at a time. When one node accesses the mismather node is stalled. In
Figure 4.4b, which corresponds to the scenario of Figurelbth nodes run fully in parallel, as
they do not have to share access todatga memory anymore. Instead, each node receives the
desired data directly from theourcenode. Due to the absence of stall cycles, shorter execution
times are obtained.

High level languages like C typically assume a shared memmagel. Deriving a distributed
memory based implementation from such a high level inputifipation is not a trivial task. How-
ever, previous research has lead to systematic approdifee€ompaan [53] and KNGEN[46],
of which the latter is used in our tool chain.

In the XPS hardware implementation of the KPN, the nodeseoh#twork are interconnected
according to the application specification using Xilinx Fasnplex Links (FSL) [54]. This com-
ponent provides a flexible data communication channel wiFOFsemantics between any two
processors or nodes. Based on component configuration paensuch as FIFO depth and im-
plementation method, the FSL component is efficiently sgsited using logic blocks only, or
using a combination of logic and block RAMs (BRAMS).

54

Chapter

Experiments and Results

We have applied the approach described in the previous eh&pttwo different applications,
namely Sobel edge detection and QR decomposition. In tlapteh we discuss those applica-
tions, describe the setup of the experiments, and show tiaéneld results.

5.1 Experiment Setup

For both of the applications that we describe in the nexti@ectve have made several hard-
ware implementations using our methodology. In order tosueaperformance and verify the
behaviour of those implementations we have used the Actbk B.1 simulator from Aldec, as
well as a physical platform.

5.1.1 Target Architecture

We have used the Xilinx XUP-V2P development board as our ipayplatform. This board
contains a Virtex-l1l Pro 30 FPGA (XC2VP30), together witlvesal peripherals. The Virtex-II
Pro device has the following characteristics:

e Contains 2 integrated PowerPC 405 cores.
e Contains 136 BRAMSs of 16 kbit each.

e Contains 13696 slices, available for logic synthesis.

55

CHAPTER 5. EXPERIMENTS 5.1. EXPERIMENT SETUP

Some key features of the XUP-V2P development board are:

e Provides a 100 MHz system clock.

e Contains three Serial ATA (SATA) ports.

Supports up to 2 GB of Double Data Rate (DDR) SDRAM.

Contains one 10/100 Ethernet port.

Contains one RS-232 serial port.

The FPGA is programmed from an Intel Pentium D machine rumaifredora GNU/Linux oper-
ating system, referred to as thest systemUsing the Xilinx IMPACT tool and a Xilinx Parallel
Cable 1V, bitstreams are downloaded onto the FPGA using TA&Jnterface. For verification
and performance measurement purposes, we use a UART patipléich is connected to the
RS-232 serial port. Using a serial-to-USB cable, a low-l@dth communication link is estab-
lished between the FPGA and the host system. To actuallgratethe FPGA in a larger system
for streaming data processing, one can use one or more ofghesheed interfaces available on
the XUP-V2P board.

5.1.2 Experiments

We have applied our KNGENESPAM-PICO approach to various realizations of the Sobel and
QR applications. In order to obtain a communication indeleemn performance metric, we make
a distinction between a functional verification experimantl a performance experiment of each
realization. The first is the unmodified output produced biyKWBNGENESPAM-PICO tool chain.
This is done to verify whether the functional behaviour of thardware result is equal to the
behaviour of the original software specification. That isr & given input, both the original
application and the generated hardware implementationl@hoduce exactly the same output.
Communicating input data to the hardware implementatiahraading output data back requires a
high-bandwidth communication interface. Otherwise, thedivare implementation will not run at
its maximal speed. In order to obtain the execution time efttardware implementation without
any external communication overhead, we perform a secopdrement where “dummy” input
data is generated by the hardware implementation itselfthedutput data is discarded. This
way, the hardware implementation can run at its maximalgpee

56

CHAPTER 5. EXPERIMENTS 5.2. APPLICATIONS

In order to measure execution time, the final sink node of guticgdion is instrumented with
a small fragment of VHDL code. This code keeps track of the amof clock cycles passed
since the last reset signal by incrementing a counter on esiolg edge of the clock signal. The
clock counter updates cease as soon as the final node irgdibatet has completed its task, that
is, it has received all data from its predecessor node(sg. obtlained clock counter value is then
communicated to the host system.

Using the Xilinx EDK tools, we have generated design repiatgach experiment in order to
collect device utilization data. In particular, we have sw@ad the amount of slices and BRAMs
that were needed to implement the various components ofutoematically generated designs.
These two numbers provide an indication of the amount ofsgaéeded for a physical IC imple-
mentation. In the device utilization statistics showndate, we do not take the source and sink
nodes into account. We do, however, include the FIFO charfingin the source nodes and to
the sink nodes in our statistics, as the amount and sizeosé tbhannels vary depending on the
approach used.

5.2 Applications

In this section we describe two applications with which wendastrate our approach. The first
application (Sobel) results in a relatively straightfordigprocess network with uncomplicated
procedures inside the processes, while the second apphic@R) leads to a process network
which contains self-loops and more complex process praesdu

5.2.1 Sobel Edge Detection

Sobel edge detection is a common image processing operésquurpose is to detect “features”
in an image, that are typically found at locations where thage intensity changes abruptly. In
Figure 5.1, a monochrome image is shown on the left. On ti#,rige result of the Sobel edge
detection operation is shown. One can see that objectstrat sut against the background, such
as the pillars of the bridge, result in a “bright” output, wias the smoother areas, such as the sky,
remain dark in the result.

The Sobel operation consists of a convolution of two 3x3 &kxmwvith the original image to
determine approximations of the horizontal and verticaldignt of the image intensity function.
This is done by sliding the corresponding kernel over thegena the horizontal and vertical

57

CHAPTER 5. EXPERIMENTS 5.2. APPLICATIONS

Figure 5.1: Original image (left) and the result of the Safygdration applied to it (right).

direction, respectively. Assumingis the original image and denotes the convolution operator,
the gradient approximations, (horizontal) and/, (vertical) are computed as follows:

1 0 -1 1 2 1
Jy=12 0 -2 |*I and J,=| 0 0 0 |=xI
1 0 -1 -1 -2 -1
For each pixel, the resulting gradient approximations araltined into an approximated gradient
magnitudev:
_ e[+ 1y
YTy

To visualize the result of the Sobel operation, thelues are usually plotted as a grayscale image,
like the right half of Figure 5.1. In Figure 5.2, a C implematiin of the steps discussed above is
shown. This code is taken as the basis for our experimentstiagt Sobel application.

In our experiments with the Sobel application, we have ubedchtonochrome image of Fig-
ure 5.1. The image has a width of 280 pixels and a height of 2@flg) accounting for a total of
56000 pixels. As we do not compute the gradient at the borafeifse image, the result consists
of 278 x 198 = 55044 pixels. In Figure 5.3, we show the KPN that was generated fifoen
sequential input specification. The nodes that implementtttual Sobel operation are labelled
with gradientX, gradientY andabsVal As can be seen from the network, tgedientX and
gradientY nodes can operate in parallel, since there are no depergdneiween them.

58

CHAPTER 5. EXPERIMENTS 5.2. APPLICATIONS

1 for (=1; j < M-1; j++) {

2 for (i=1; i < N-1; i++) {

3 gradient(imagelj-1][i-1], imagel[j][i-1], image[j+1][i -1],
4 image[j-1][i+1], image[j][i+1], image[j+1][i+1], &Jx);

5 gradient(imagelj-1][i-1], imagelj-1][i], image[j-1][i +1],
6 image[j+1][i-1], image[j+1][i], image[j+1][i+1], &Jy);

7 absVal(Jx, Jy, &av);

8 /I send av

9 }

10 }

Figure 5.2: The source code of the Sobel application kernel.

gradient_X

\;

gradient_Y

Figure 5.3: The automatically generated KPN for the Sobpliegtion. The numbers next to the
edges indicate the recommended minimum FIFO sizes.

5.2.2 QR Decomposition

The QR decomposition algorithm can be used to decompdse<aN matrix X into an orthogo-

nal matrixQ and an upper triangular matrRR. This operation can be used to find a least-squares
solution for an over-specified set of linear equations, WHinds applications in adaptive beam-
forming systems [55] for example. In our experiments, we 2ise& 7 matrices, that isK' = 21

59

CHAPTER 5. EXPERIMENTS 5.2. APPLICATIONS

andN = 7. A QR decomposition can be computed using various methdus nfethod we use is
based on a series of Givens rotations [55].

The kernel code of our C implementation to compRtes shown in Figure 5.4. Theectorize
function on line 3 computes an anglend rotates a vector consisting of an elemenf@nd an
element ofR through this angle. This way, the elemendofs forced to zero. Theotate function
on line 5 rotates a similar vector through an angleomputed earlier by theectorizefunction.
Using these operations, tleandR matrices are transformed unfid Givens rotations have been
performed. In the application mentioned above, the obthRecan then be used to obtain the
least-squares weights.

for (k = 1; k <= K; k++) {
for = 1; j <= N; j++) {
vectorize(1]l x[KI[], &(I0D), &(x[KIGD, &t)

1

2

3

4 for (i = j+1; i <= N; i++) {

g } rotate(rfi]{il, x[kIfil, t. &({{i), &(xKIMI));
7

8

Figure 5.4: The source code of the QR application kernel.

1 vectorize(int r_in, int x_in, int * r_out, int * X_out, int * tout) {
2 int theta;

3 theta = -arctan2(x_in, r_in);

4 xr_out = r_in + cos(theta) * Xx_in - sin(theta) * r_in;

5 *t out = theta;

6 *Xx_out = 0O;

7}

8

9 rotate(int r_in, int x_in, int t_in, int * r_out, int * x_out) {
10 int cost = cos(t_in);

11 int sint = sin(t_in);

12 *X_out = cost * x_in - sint * r_in;

13 *r_out = sint * x_in + cost * r_in;

14 }

Figure 5.5: The integer-based source code ofvéetorizeandrotate functions.

The implementations of theectorizeand rotate functions are shown in Figure 5.5. Both
functions invoke (a subset of) the trigonometric functieis, cos andarctan. In order to im-
plement these trigonometric functions, we have createddifferent implementations. The first
implementation uses lookup tables to obtain an interpdlagsult of the functions. The second

60

CHAPTER 5. EXPERIMENTS 5.2. APPLICATIONS

Figure 5.6: The automatically generated KPN for the QR apfibtn. The numbers next to the
edges indicate the recommended minimum FIFO sizes.

implementation uses Taylor series to approximate the ivgeetric functions. For these Taylor
series based approximations, the following formulae haenhused:

. B L s 1 5
sin(z) = T =5 +@$
1 1
1121
cos(z) 5% +24:1:
tan(z) Loty Lo
arctan(z) = = — -2’ + —x
3)

That is, for each function, we compute the first three termthefcorresponding Taylor series
expansion about 0. Such expansions are also known as Miactasies. Due to 0 lacking
support for floating point arithmetic, we use integer ogderat for all computations. However, the
structure of the C code remains equal if floating point openatare to be used.

In Figure 5.6, the KPN generated from the QR input specifoais shown. ThesourceX
andsourceR nodes provide th&X andR matrices, respectively. Theectorizeandrotate nodes
perform the actual computations and 8iek node receives the fin&® matrix. Thevectorizeand

61

CHAPTER 5. EXPERIMENTS 5.3. RESULTS

rotate nodes both contain self loops and both nodes are mutuallgrdismt on each other. As
mentioned in Section 3.1.2, these characteristics makaddes unsuitable for implementation
using the PPA hardware node model.

5.3 Results

In this section, we describe for each application the irtanve have evaluated. Next, we discuss
performance and device utilization statistics.

5.3.1 Sobel

We have generated hardware implementations and colleeddrmance and device utilization
data for the following instances of the Sobel application:

e Sobel-MBseq: The sequential code, implemented on a singimBlaze.

e Sobel-MBpar: Implemented usingseAam as a network of MicroBlazes.

e Sobel-PICO: Implemented usingd® as sequential code. The input code is similar to
the code we have sent through theMGENESPAM flow. This means no IR o-specific
annotations or constructs were used, hence one should m&itleo this as the most efficient
Pico implementation.

e Sobel-HWN: Implemented usingdeAm-PICcO as a network of PPA Hardware Nodes.

e Sobel-HWN-2: Implemented usingsEAamM-Pico as a network of PPA Hardware Nodes.
An unrolling transformation with a factor of 2 is applied twetsource gradient absValand
sinknodes.

e Sobel-HWN-4: Implemented usingsEamM-Pico as a network of PPA Hardware Nodes.
An unrolling transformation with a factor of 4 is applied tetsource gradient absValand
sinknodes.

e Sobel-TCAB: Implemented usingdeAM-PIco as a network of TCAB Hardware Nodes.

We have also compared the experiments described above watlexperiments that have been
conducted during previous research, using different nologies:

e Sobel-ESPAM: Implemented usingsBam with hardware nodes that use custom IP cores.
This experiment originates from the work of [50].

62

CHAPTER 5. EXPERIMENTS 5.3. RESULTS

e Sobel-LAURA: Implemented using LAURA with hardware nodkattuse custom IP cores.
This experiment is described in [51].

Both designs were implemented on an ADM XRC-Il board, whiohtains a Virtex-Il FPGA
(XC2Vv6000). The maximum clock frequency provided by thiatsbis 66 MHz, which is different
from the 100 MHz clock frequency offered by the XUP-V2P board

The results for all implementations are shown in Table 5.he Tirst column contains the name
of the experiment. Next, the amount of FPGA slices and BRAKEded for implementation are
given. The fourth column contains the amount of clock cydesded to process the 56000-pixel
image. The fifth column contains the amount of images (“frsiththat could be processed in one
second by the particular implementation.

Setup Device utilization Execution time | Throughput

Slices| 2kB BRAMs (cycles)| (frames/sec
Sobel-MBseq 956 32 4717832 21
Sobel-MBpar | 3397 55 2981813 33
Sobel-PICO 665 27 552385 181
Sobel-HWN 1226 7 56025 1784
Sobel-HWN-2 | 2768 14 28027 3567
Sobel-HWN-4 | 5860 28 14027 7129
Sobel-TCAB 1507 7 56030 1784
Sobel-ESPAM| 1641 7 111440 897
Sobel-LAURA | 1710 7 223440 447

Table 5.1: Synthesis and performance statistics for Satugd detection on 280 x 200 grayscale
image. An* in the throughput column indicates the value was scaled @oMB8z.

Discussion

As we expected, the Sobel-MBseq experiment yields the lothesughput. Execution times are
large, because of the single thread of execution, the RIS@eaaf the MicroBlaze instruction
set architecture and the general characteristics of mioogssors, which includes overhead of
instruction fetching and decoding. Besides the processastruction pipeline, no other forms of
parallelism are exploited. In the Sobel-MBseq experimtrd,array containing the entire image
is stored in the processor’s local memory. Besides thedidhiiandwidth of 1 word per cycle of
such a memory-based implementation, a considerable anbdBRAM components is heeded to
implement the local memory.

63

CHAPTER 5. EXPERIMENTS 5.3. RESULTS

The Sobel-MBpar experiment yields a rather low throughpuat @ high device utilization. At
the coarse-grained level, part of the computation can ngpebfermed in parallel, which increases
throughput by a factor of approximately 57 percent compdaeoethe Sobel-MBseq implementa-
tion. However, each MicroBlaze processor still executesgles sequential thread of instructions,
exploiting little or no fine-grained instruction level pHedism. Each node of the KPN results in
the instantiation of a MicroBlaze core, which requires asidarable amount of slices. Moreover,
for each MicroBlaze processor a memory is instantiatedciwig composed of BRAMs. This
leads to a high amount of BRAMs needed for the design. AlthcudylicroBlaze processor pro-
vides great flexibility in programming, the MicroBlaze ingphentation of the KPN is not the most
efficient one.

By synthesizing the entire application usingcB, as we did in the Sobel-PICO experiment,
the smallest implementation in terms of slice count is olgdi However, this implementation
requires the user to provide an additional memory compof@nthe array of the application
code. For our implementation and input data, a memory ofagprately 56000 bytes is required,
equivalent to 27 BRAMSs of 2 kilobytes. Moreover, the membased RTL result seems to limit
throughput of the implementation significantly. This isipably caused by the use of 1-port mem-
ories, allowing only one read operation per cycle for a gimgmory. It should be noted that the
code provided to .0 does not adhere to thad® coding recommendations and does not make
use of any Rco specific constructs such as internal streams. Hence, assaqaence, the exper-
iment does not expose the full potential o£B. A Pico hand design created by an expert user is
likely to achieve a higher throughput and lower memory regmients.

Among the first four experiments, the Sobel-HWN experimarttich makes use of the PPA
hardware node model, yields the highest throughput. H¥felgt once buffers and pipelines are
filled, the Sobel-HWN implementation is delivering one piger clock cycle. The implementa-
tion requires less than two times the amount of slices coetpaith the Sobel-PICO experiment.
Due to the sizes of the FIFO channels of the KPN generated o)X NGEN tool, memory re-
quirements of the implementation are relatively high. @notly, we can not derive a KPN using
KPNGEN which requires less than 7 BRAM components. A manually eckdihe buffer based
implementation created by an expertcB user would require at most one BRAM for our input
data, because at most approximately two lines of the image ttebe stored. However, it should
be noted that the Sobel-HWN implementation was autométicgdnerated from plain C code
containing no sophisticated constructs to expose pasatiel

Using the Sobel-HWN2 and Sobel-HWN4 experiments, we detratesthe unrolling trans-

64

CHAPTER 5. EXPERIMENTS 5.3. RESULTS

formation that was discussed in Section 2.1.1. In the dauitization statistics, we include source
and sink nodes that are additionally needed for the ungpliiansformation. As one can see in
Table 5.1, device utilization roughly increases with adaeigual to the unrolling factor. The same
holds for the throughput of an unrolled application ins&n@hus, using the unrolling transfor-
mation one can increase throughput at the expense of irctdesdware resource costs.

Using the Sobel-TCAB experiment, we compare both hardwademodels that have been
discussed in Chapter 3. Both models achieve the same thpatdr the Sobel application. From
the slice count statistics, we can see that for the Sobeicapipin, the TCAB hardware node model
is approximately 23 percent more expensive than the PPAl@mednode model. Part of this can be
attributed to the presence of infrastructure for runtimeapeeter adjustment, which is not present
in a regular PPA. Also, the extensions added to support a fletible pipeline behaviour lead to
an increase in slice count.

By comparing the Sobel-HWN and Sobel-TCAB experiments whil Sobel-ESPAM and
Sobel-LAURA reference points, we show the relation to otiygoroaches. The network topology
is equal for these four implementations, resulting in ed®@IAM usage. The Sobel-HWN ex-
periment requires significantly less slices, but this caart{glly) be attributed to the absence of
infrastructure for dynamic parameter modification. In thieeo three implementations, this infras-
tructure is included, leading to higher slice usage. TheeBBISPAM and Sobel-LAURA imple-
mentations require respectively about two and four timesenstock cycles than the Sobel-HWN
and Sobel-TCAB implementations. This is because of sediffaiences in the implementation
at the system level. The Sobel-ESPAM and Sobel-LAURA imgetations include an off-chip
memory which stores the image. As delivering a pixel evegteys hard to realize in such imple-
mentations, longer execution times are the result. AlseCORthannels were implemented using
different components instead of FSL components, which triggdd to differences in slice usage.
Because of the lower clock frequency of the Sobel-ESPAM aieBLAURA platform, through-
put is lower for these implementations, respectively 592 285 frames per second. In Table 5.1,
we have scaled those values to resemble an implementatid©dfiHz.

53.2 QR

We have generated hardware implementations and colleeddrmance and device utilization
data for the following instances of the QR application:

e QR-LUT: Implemented using our $PAM-PICO approach as a network ofi@ TCAB IP

65

CHAPTER 5. EXPERIMENTS

5.3. RESULTS

Hardware Nodes. The trigonometric functions are implem@nising lookup tables.

e QR-LUT skewed: Implemented using ousBamM-Pico approach as a network ofi€o
TCAB IP Hardware Nodes. A skewing transformation has begiieg to the algorithm.

The trigonometric functions are implemented using loolalgéds.

e QR-TA: Implemented using our $PAM-PicO approach as a network ofi®o TCAB IP
Hardware Nodes. The trigonometric functions are impleme@ntsing Taylor series based

approximations.

e QR-TA skewed: Implemented using oulsBAM-PIcO approach as a network ofi€o
TCAB IP Hardware Nodes. A skewing transformation has begqiieg to the algorithm.
The trigonometric functions are implemented using Taytres based approximations.

Attempts to synthesize the original sequential code usitagpRvere unsuccessful due to timing
closure problems. In such a case, the designer typicallgseemanually rewrite the input code
in order to relax timing constraints. Because the QR KPNaiostselfloops and backedges, an
implementation using IO PPA hardware nodes is not possible, as mentioned in Sectiah 3

In Table 5.2, the results of our experiments with the QR @agpibn are shown. Again, the
first three columns contain the experiment name, slice candtBRAM usage, respectively. The
fourth column contains the amount of clock cycles neededotoputeR for one21 x 7 input
matrix. The fifth column contains the number of such operetithat can be performed in one

second.
Setup Device utilization Execution time | Throughput
Slices| 2kB BRAMs (cycles) (tasks/sec
QR-LUT 1417 0 2306 43365
QR-LUT skewed| 1798 0 522 191570
QR-TA 2705 0 4205 23781
QR-TA skewed | 3075 0 798 125313

Table 5.2: Synthesis and performance statistics for QR.

Implementation vectorize| rotate
Lookup Tables (LUT) 11 5
Taylor based Approximations (TA 20 11

Table 5.3: Pipeline depths for the QR TCABs.

66

CHAPTER 5. EXPERIMENTS 5.3. RESULTS

Discussion

Due to the small FIFO sizes, all FSL components are impleetensing logic only. Hence, all
implementations have zero BRAM usage. A first observatighdsthe lookup table based imple-
mentation is more efficient than the Taylor series basedeamphtation, both in terms of device
utilization and throughput. This is due to the higher comityeof the vectorizeandrotate TCABs
for the QR-TA implementation. As shown in Table 5.3, the @ased function complexity results
in a deeper pipeline for both TCABs. These higher pipelingtitie of the QR-TA implementation
can be considered as a closer match to a true floating poirémgntation.

The skewed QR-LUT implementation requires about 27 pememe slices than the unskewed
QR-LUT implementation. This can be attributed to more campbop control and larger FIFO
sizes. Throughput of the skewed implementation is incityea factor ofd.4. This increase can
be explained by looking at the signals that allow the read¢cete and write unit of theotate node
to advance, which arel_read ,sl_execute andsl_write ,respectively. In Figure 5.7a, a
fragment of the simulation waveform containing these dgyisashown for the QR-LUT experi-
ment. First, thesl_read signal is raised in order to read the input data. In the negkegall
data is read and thel_execute signal is raised in order to start the execute unit. At thé fift
cycle after the enabling of the execute unit, giewrite signal is raised, as the execute unit
containing theotate TCAB has produced data that is ready to be written. Meanyslileead
is kept high for another few cycles, as long as input dataillsastilable. Unfortunately, at some
point therotate node sends data back to thectorizenode and requires new data from thec-
torize node. Thevectorizehas to compute this new data using the data it just received the
rotate node. Because this occurs during two successive iteratioastate node will not receive
the data immediately and is forced to wait until the data bez® available again. This point is
visible in Figure 5.7a where thel_read signal is dropped. Once the data is written to the
vectorizenode, this node performs its computation and sends new al#te totate node. Mean-
while, therotate node is completely idle, waiting for new data to arrive. Oitgeceives new data
from thevectorizenode, thesl_read signal is raised again, although only for a few iterations.
Throughout execution of the application, this situatiottvgtalls occurs, resulting in considerable
underutilization of the pipeline.

In Figure 5.7b, the same signals are shown for the skewed QRimplementation. In this
waveform, the three signals remain high for almost all theeti In fact, besides some troughs dur-
ing the first and last iterations, the signals remain highrduexecution of the entire application.

67

CHAPTER 5. EXPERIMENTS 5.3. RESULTS

Ol AR A AR A AR AR AR LA
gl read J—| [] [
gl execute _|—| |_| |_|
rog|_warite 4|—| |—| |_|_
(@) QR-LUT
= CLK Ty
gl read J
rog| execute —|_|
ool wirite |_|
(b) QR-LUT skewed
= CLK R Ty
g read J—| |—|—
gl esecute _I—l I—l—
g write [] [
(c) QR-TA
Ol R AR R A AR A A AT AR A
wied [1 T 1 1 T 1
orog| emecute] L
rog|_warite l—l—l |_|

(d) QR-TA skewed

Figure 5.7: Fragments of the simulation waveforms of thealrexecute and write unit enable
signals for theotate node of four different QR application instances.

This is caused by the high level skewing transformation @enctbmplete KPN of the application,
which leads to a different iteration execution order. Ndverbtate node executes other iterations
while thevectorizenode computes new data for thaate node. This leads to a better utilization
of therotate node pipeline and a larger throughput.

For the QR-TA implementation, the skewed implementatiaquires about fourteen percent
more slices than the unskewed implementation. Throughptheskewed implementation is
increased by a factor &f.3. In Figure 5.7c, thesl_read ,sl_execute andsl_write sig-

68

CHAPTER 5. EXPERIMENTS 5.4. DESIGN & IMPLEMENTATION TIMES

nals are shown for the unskewed QR-TA implementation. Duinéodeeper TCAB pipelines,
overall pipeline utilization of this QR-TA implementatidras become worse than the QR-LUT
implementation because thetate node is now stalled for longer periods. In Figure 5.7d, simu-
lation waveforms are shown for the skewed QR-TA implemémtat The lengths of the troughs
are much shorter than those in Figure 5.7¢, indicating arrorga pipeline utilization for the
skewed QR-TA implementation. However, maximum pipelinézattion is not achieved, as the
three signals are not kept high for long continuous periddgnte, like we saw in Figure 5.7b.
This is because the different iteration schedule can nate'hihe higher pipeline latency between
the dependent iterations anymore. In order to further emeethroughput, one could increase the
problem dimensions or operate on multiple QR instanceseasdime time, as suggested in [56].

5.4 Design & Implementation Times

In this section, we show the amount of time needed to obtaiongptete implementation of an

application. We have measured this “design time” for bothhed@nd QR. The results can be
found in Table 5.4. All tools have been run on the same syséenintel Pentium D at 3.4 GHz

with 2 GB of RAM, and no workload other than the tools themeelwas present during execution
time measurement.

Step Design time Manual /
Sobel-HWN| QR (LUT) | Automatic

1. Writing C file(s) 5 min. 10 min. | Manual

2. Writing .pla, .map 5 min. 5 min. | Manual

3. KPNGEN 5 sec. 5 sec.| Automatic

4. EspAM-PICO 6:50 min.| 5:05 min. | Automatic

5. Synthesis using XP$ 12:45 min.| 16:25 min.| Automatic

6. FPGA Configuration 90 sec. 90 sec.| Automatic

| Total | 31:10 min.| 38:05 min. | \

Table 5.4: Time needed to generate a bitstream starting &r@input specification.

The first step in the design flow is to write the top level C filetloé application and the C
file containing the implementations of the called procedurgor both applications, a sequential
implementation of the top level C file was already availalsler Sobel, the procedure implemen-
tations were already available. For QR, we have written aloelup table based implementation

69

CHAPTER 5. EXPERIMENTS 5.4. DESIGN & IMPLEMENTATION TIMES

of the procedures. Because this step only involves C progiiamy only little time was needed.

For each application, platform and mapping specificatiamsetio be created. In general, this
is a trivial task, so for both applications no more than 5 rnesuvere needed to accomplish this
task. For a straightforward one-to-one mapping of KPN nadd3PA or TCAB hardware nodes,
this step could be automated as well, although such furadttgns currently not yet implemented.
At this point, the required manual actions have been comglefhe next steps are all automated
and no user actions are required anymore.

As a third step, the RNGEN tool is invoked. For both applications, the translationnire
sequential to a parallel specification takes no more tharséigends. Next, the€PAM-Pico tool
is invoked. The running time of this tool strongly dependgtomamount of times RO needs to
be invoked, which directly depends on the amount iafd®nodes in the platform specification.

Once the XPS project is complete, the Xilinx synthesis taals be invoked to generate a
bitstream. Of all steps, this fifth step typically consumesstrof the time, since it includes the
application of sophisticated place and route algorithnisally, the generated bitstream is down-
loaded onto the FPGA and results are read back. This taked @0seconds.

Simulation

1&2.
Writing input

Physical implementation

Figure 5.8: Feedback loops in theseam-Pico design flow.

In a typical design flow, multiple iterations of the stepsatdmed above are needed before a
final implementation is obtained. The output produced byldakestep is used by the engineer to
adjust the input specification in order to correct programgnmnistakes or achieve better perfor-
mance. For productivity reasons, a short iteration timeesired; that is, the engineer should get
feedback from the tools within a reasonable amount of tinmstelad of synthesizing the design
into an FPGA bitstream each time, it is also possible to perfsimulations at the HDL level.

70

CHAPTER 5. EXPERIMENTS 5.4. DESIGN & IMPLEMENTATION TIMES

The HDL of the design is available after running®am-Pico, as illustrated in Figure 5.8 by
the “simulation” backedge. Simulation allows the engin®eskip the time-consuming bitstream
synthesis step, leading to shorter feedback times. Pkntiguwvhen no physical implementation is
required, during application behaviour verification foraexple, simulation may already provide
the information needed for input specification adjustm&imulation is also especially useful to
decide which high level transformations to apply.

71

Chapter

Future Work

The approach that has been discussed in the previous ch#ptert a final and complete solution
to the problem mentioned in the beginning of this thesistelms, our approach provides a foun-
dation, that can be extended in order to support a wider rahgpplications and further increase
performance and efficiency of the obtained implementations

For example, consider the different channel types. Rightwe are solely using IR0 streams
for data communication, but this is not always the most efficgolution. It might be interesting to
use shift registers and live variables as well, which are affered by Pco. Also, implementing
self loops as regular FIFOs is not the most efficient methgdniplementing self loops in a more
sophisticated way, device utilization may improve siguifity. The memory requirements are an-
other point of concern, as KPNs with many and/or large FIF@nakels result in large FIFO buffer
memories. Reducing these memory requirements is impadxtatitain efficient implementations
of larger applications or larger input data dimensions. sTiight be achieved by investigating
how to increase self-reuse and reduce data duplication.

In terms of power efficiency, the TCAB hardware node modebisthe most favourable solu-
tion. The integrated TCAB is always operating at full fuocidlity, due to the insertion of dummy
data when the node has to wait for new data. Unfortunatehhawakto choose for this solution, as
we have no control over the pipeline behaviour of ® generated components. A better solution
would be to stall the TCAB as well, after allowing the pendoperations to complete.

At the front end, other improvements can be made. Curretiily,designer has to separate
the top level function and other functions in different files more robust front end eliminates

72

CHAPTER 6. FUTURE WORK

this issue. The relatively long running times of theHAM-Pico tool are caused by subsequent
invocations of Rco. However, during design iterations, the input specificai®often modified
only slightly. In such a case, complete resynthesis of aliilvare nodes is not always necessary.
By employing a caching system, unnecessargycRnvocations can be avoided, leading to a shorter
overall design cycle.

As new features are added to thecB tool, the possibilities of the EAm-Pico tool also
increase. For example, C struct support that was recendgditb Pco could be added to &PAMm-
Pico as well, in order to allow convenient handling of larger daitacks. Other relaxations of the
Pico input restrictions might become directly available for usé¢he core functions file. In such
a case, little or no adaptations tesBam-PICO are needed.

Selecting the appropriate transformations for a particafgplication is not trivial. Currently,
the user has to specify these transformations manually.ederyour flow is closed, meaning that
once the appropriate input specifications are written itreanfully automated. This allows us to
perform automated Design Space Exploration (DSE), whereuws instances of an application
are generated and evaluated.

73

Chapter

Conclusions

In the previous chapters, we have presented a new approaclutamated generation of RTL
implementations from sequentially specified static affiestad loop programs written in the C
language. This is achieved by combining theNGEN and ESPAM tools resulting from previous
research with the commercial & tool of Synfora Inc. The resulting tool, which we calBAam-
Pico, is capable of producing a complete RTL implementation efdpplication specification.
This implementation is immediately ready for synthesiscamtrast to the regular $2AM flow
which requires the user to provide additional IP cores.

By using a distributed memory model, we can achieve sigmfisaeedups, compared to im-
plementations that employ a shared memory model. Due toltheacteristics of FPGAs, this
distributed memory model fits particularly well to such pdains. Coarse-grained partitioning of
the input leads to a set of smaller and less complex input#subsequent fine-grained imple-
mentation stage. This allows our tool flow to accept a widegesof applications without the need
of manual application code restructuring.

Also, by using the KPN model of computation, we can autorafiyi@pply transformations to
the application, which allows us to generate various appbo instances with increased through-
put at the cost of additional hardware resource usage. Wedtawn that by applying an unrolling
transformation to the Sobel application, we can doubleutinput, at the cost of doubled hardware
resource requirements. By applying a skewing transfonat two different implementations of
the QR application, we can achieve throughput increasesctdifs of 4.4 and 5.3, at the expense
of only 27 and 14 percent increases in hardware cost.

74

CHAPTER 7. CONCLUSIONS

Currently, an important concern of our methodology are tleenory requirements. Depending
on the amounts and sizes of FIFO channels in a KPN, memoryreagents can increase quickly.
Further investigation of self-reuse and possible improsenof the KPNGEN tool may lead to
reduced memory requirements for implementations gergaiin our ESPAM-PICO tool flow.

75

Bibliography

[1]

2]

D. Pham et al. The Design and Implementation of a First€Bation CELL Processor. In
ISSCC Digest of Technical Papemages 184-5, 2005.

Synfora Inc. PICO Technology.
http://www.synfora.com/ , last accessed: 2008-06-11.

[3] Z. Guo, B. Buyukkurt, W. Najjar, and K. Vissers. Optimiz&eneration of Data-Path from

[4]

[5]

C Codes. IrDesign Automation and Test Europe (DATE’'09garch 2005.

Mentor Graphics. Catapult Synthesis.
http://www.mentor.com/products/esl/high Jdevel _synthesis/
catapult _synthesis/ ,last accessed: 2008-08-08.

C. Zissulescu, T.P. Stefanov, A.C.J. Kienhuis, and Bé&prettere. LAURA: Leiden Ar-
chitecture Research and Exploration Tool. Rroc. of the 13th Int. Conference on Field
Programmable Logic and Applications (FPL'Q3jages 911-920, September 2003.

[6] Y.D. Yankova, G.K. Kuzmanov, K.L.M. Bertels, G.N. Gayji@v, J. Lu, and S. Vassiliadis.

DWARYV: DelftWorkbench Automated Reconfigurable VHDL Gegr. InProc. of the 17th
International Conference on Field Programmable Logic armapbkcations (FPL'07) pages
697-701, 2007.

[7] J.L. Hennessy and D.A. Patterscd@omputer Architecture: A Quantitative Approadior-

gan Kaufmann, 2003.

76

BIBLIOGRAPHY BIBLIOGRAPHY

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Gilles Kahn. The Semantics of a Simple Language for Rar@fogramming. IrProc. of the
IFIP Congress 74North-Holland Publishing Co., 1974.

E.A. de Kock. Multiprocessor Mapping of Process NetworRk JPEG Decoding Case Study.
In Proc. of the 15th International Symposium on System Syat{i&SS’02) pages 68-73.
ACM Press, 2002.

T.P. Stefanov, C. Zissulescu, A. Turjan, A.C.J. Kieishand E.F. Deprettere. System De-
sign using Kahn Process Networks: The Compaan/Laura Approdn Proc. of the Int.
Conference Design, Automation and Test in Europe (DATE[tejes 340-345, 2004.

T.P. Stefanov, A.C.J. Kienhuis, and E.F. Deprettergofthmic Transformation Techniques
for Efficient Exploration of Alternative Application Instaes. InProc. of the tenth inter-
national symposium on Hardware/software codesign (CODESpages 7-12. ACM Press,
2002.

H. Nikolov, M. Thompson, T.P. Stefanov, A.D. Piment8l,Polstra, R. Bose, C. Zissulescu,
and E.F. Deprettere. Daedalus: Toward Composable Mulisrd&-SoC Design. IfProc.
of the ACM/IEEE Int. Design Automation Conference (DAC’ @8)08.

Daedalus home.
http://daedalus.liacs.nl/ , last accessed: 2008-06-11.

|. Page. Hardware-Software Co-synthesis Researchxfar@ In Proc. of the IEE Vacation
School on Hardware/Software Co-desi¢figaE, July 1997.

SpecC Technology Open Consortium. SpecC.
http://www.specc.org/ , last accessed: 2008-01-08.

R. Domer, A. Gerstlauer, and D. GajskBpecC Language Reference Manuaecember
2002.

D.K. Wilde. The ALPHA language. Technical Report 99R|$A, January 1994.

T. Risset et al. Alpha homepage.
http://www.irisa.fr/cosi/ALPHA/ , last accessed: 2008-01-17.

D.K. Wilde and O. Sié. Regular Array Synthesis usingi#d. Ininternational Conference
on Application-Specific Array Processpsugust 1994,

77

BIBLIOGRAPHY BIBLIOGRAPHY

[20] S. Gupta, N.D. Dutt, R.K. Gupta, and A. Nicolau. SPARK HAgh-Level Synthesis Frame-
work For Applying Parallelizing Compiler Transformationis International Conference on
VLSI DesignJanuary 2003.

[21] S. Gupta et al. SPARK: High-Level Synthesis using Pelizing Compiler Techniques.
http://mesl.ucsd.edu/spark/ , last accessed: 2008-01-10.

[22] Los Alamos National Laboratory. Trident Compiler.
http://trident.sourceforge.net/ , last accessed: 2008-01-10.

[23] W. Bohm, J. Hammes, B. Draper, M. Chawathe, C. Ross,ikdR and W. Najjar. Mapping
a Single Assignment Programming Language to Reconfigu@ystems.Supercomputing
21(2):117-130, 2002.

[24] B.A. Draper, A.P.W. Bohm, J. Hammes, W.A. Najjar, J.sRoBeveridge, C. Ross,
M. Chawathe, M. Desai, and J. Bins. Compiling SA-C PrograntRGAs: Performance Re-
sults. InProc. of the Second International Workshop on ComputeokiSystems (ICVS'01)
pages 220-235. Springer-Verlag, 2001.

[25] M.B. Gokhale, J.M. Stone, J. Arnold, and M. Kalinowskstream-Oriented FPGA Com-
puting in the Streams-C High Level Language. Aroc. of the IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM 202000.

[26] M.B. Gokhale. Streams-C: Stream-Oriented C Programgnior FPGAs.
http://www.streams-c.lanl.gov , last accessed: 2008-01-08.

[27] Impulse Accelerated Technologies. Impulse C.
http://www.impulsec.com/ , last accessed: 2008-01-07.

[28] S. Vassiliadis, S. Wong, G.N. Gaydadijiev, K. Bertels, Kiizmanov, and E.M. Panainte.
The MOLEN Polymorphic ProcessdEEE Transactions on Computes3(11):1363—-1375,
2004.

[29] M. Bednara and J. Teich. Synthesis of FPGA Implemematifrom Loop Algorithms. In
Proc. of the First International Conference on EngineerfgReconfigurable Systems and
Algorithms (ERSAO1pages 1-7, June 2001.

78

BIBLIOGRAPHY BIBLIOGRAPHY

[30] F. Hannig, H. Dutta, and J. Teich. Mapping a Class of Deleace Algorithms to Coarse-
Grained Reconfigurable Arrays: Architectural Parameters lethodology. International
Journal of Embedded Systerd$1/2):114-127, 2006.

[31] G. Snider, B. Shackleford, and R.J. Carter. Attackimg$emantic Gap between Application
Programming Languages and Configurable Hardwar@rda. of the 2001 ACM/SIGDA 9th
International Symposium on Field Programmable Gate Arragges 115-124, 2001.

[32] ASIM department of Laboratoire d’Informatique de Rai (LIP6). Dlgital SYstem Design
ENviromenT.
http://www-asim.lip6.fr/recherche/disydent/ , last accessed: 2008-08-
08.

[33] M. Diaby, M. Tuna, J-L. Desbarbieux, and F. WajsburtghlLevel Synthesis Methodology
from C to FPGA Used for a Network Protocol Communication.Pioc. of the 15th IEEE
international Workshop on Rapid System Prototyping (RSP J4#)e 2004.

[34] H. Devos, K. Beyls, M. Christiaens, J. van CampenhoutH.ED’Hollander, and
D. Stroobandt. Finding and Applying Loop Transformatioms Generating Optimized
FPGA Implementations.Transactions on High Performance Embedded Architectures a
Compilers | 4050:159-178, July 2007.

[35] C. Bastoul. Code Generation in the Polyhedral Modeldsi& Than You Think. IfProc.
of the 13th International Conference on Parallel Architeetand Compilation Techniques
(PACT) pages 7-16, September 2004.

[36] D. Ku and G. De Micheli. HardwareC — A Language for Hardev®esign (Version 2.0).
Technical Report CSL-TR-90-419, Stanford University, Asg1990.

[37] G. De Micheli, D. Ku, F. Mailhot, and T. Truong. The Olynmp Synthesis SystemEEE
Design & Test7(5):37-53, 1990.

[38] P.L. Flake and S.J. Davidmann. Superlog, a Unified Dek@nguage for System-on-chip.
In Asia and South Pacific Design Automation Conference (ASe@, 2000.

[39] Open SystemC Initiative. SystemC.
http://www.systemc.org/ , last accessed: 2008-01-08.

79

BIBLIOGRAPHY BIBLIOGRAPHY

[40] K.D. Nguyen, Z. Sun, P.S. Thiagarajan, and W.F. Wong. d&lairiven SoC Design Via
Executable UML to SystemC. IRroc. of the 25th IEEE International Real-Time Systems
Symposium (RTS$)ages 459-468, December 2004.

[41] Mitrionics. Mitrion Platform.
http://www.mitrionics.com/ , last accessed: 2008-07-07.

[42] SRC Computers. Carte Programming Environment.
http://www.srccomp.com/techpubs/carte.asp , last accessed: 2008-01-08.

[43] P. Buxa, L. Gorham, M. Lukacs, and D. Caliga. Mapping dtx SAR Backprojection
Algorithm to an SRC Reconfigurable Computing MAP Processhr.Proc. of the High
Performance Embedded Computing workshop (HPEC 2@¥ptember 2005.

[44] M. Geilen and T. Basten. Requirements on the Executiokatin Process Networks. In
Proc. of the 12th European Symposium on Programming (ES©B),28003.

[45] S. Meijer, A.C.J. Kienhuis, A. Turjan, and E. de Kock. AoPess Splitting Transforma-
tion For Kahn Process Networks. Proc. of the Design Automation and Test in Europe
conference (DATE’'O7pages 17-19, April 2007.

[46] S. Verdoolaege, H. Nikolov, and T.P. Stefanov. PN: alToolmproved Derivation of Pro-
cess NetworksEURASIP Journal on Embedded SysteRi7.

[47] AT&T Research. Graphviz - Graph Visualization Softear
http://www.graphviz.org/ , last accessed: 2008-06-19.

[48] H. Nikolov, T.P. Stefanov, and E.F. Deprettere. Myltbcessor System Design with ESPAM.
In Proc. of the 4th IEEE/ACM/IFIP Int. Conf. on HW/SW Codesigidl &ystem Synthesis
(CODES-ISSS'06pages 211-216, October 2006.

[49] Synfora inc.PICO Express — Writing C Applications: Developer's Gyidé07.

[50] Y. Tao, H. Nikolov, T.P. Stefanov, and E.F. Depretteketerogeneous Multiprocessor Sys-
tem Design with ESPAM: Integration of Hardware IP Cores. Hfecal Report 06-21, LI-
ACS, Leiden University, December 2006.

80

BIBLIOGRAPHY BIBLIOGRAPHY

[51] H. Nikolov, T.P. Stefanov, and E.F. Deprettere. Modgland FPGA Implementation of Ap-
plications using Parameterized Process Networks with Staic Parameters. Froc. of the
13th IEEE Symposium on Field-Programmable Custom CongWiachines (FCCM'05)
pages 255-263, April 2005.

[52] C. Zissulescu, A. Turjan, A.C.J. Kienhuis, and E.F. Bxjere. Solving Out of Order com-
munication using CAM memory; an implementation.Rroc. of the 13th Annual Workshop
on Circuits, Systems and Signal Processing (ProRISC 2062)ember 2002.

[53] A.C.J. Kienhuis, E. Rijpkema, and E.F. Deprettere. @aan: Deriving Process Networks
from Matlab for Embedded Signal Processing ArchitectutasBth International Workshop
on Hardware/Software Codesign (CODES’200@pay 2000.

[54] Xilinx inc. Fast Simplex Link (FSL) Bus (v2.10a) — Product Specificatimvember 2006.

[55] T.J. Shepherd and J.G. McWhirte8ystolic Adaptive Beamforming — Radar Array Process-
ing, volume 25 ofSpringer Series in Information Science&pringer-Verlag, 1993.

[56] C. Zissulescu, A.C.J. Kienhuis, and E.F. Deprettenerdasing pipelined IP core utilization
in Process Networks using Exploration. Pnoc. of Field-Programmable Logic and Applica-
tions (FPL'04) pages 690-699, 2004.

81

