
Robocop Components

‘Trust and Simulation’

Edwin Rikkers

Master’s Thesis

May 2007

Mentors: Andries Stam and Marcello Bonsangue

Foundations of Software Technology Group

Faculty of Mathematics and Natural Sciences

LIACS Institute
University of Leiden

Contents

1 Introduction 5

2 Background 7
2.1 The Robocop project . 7
2.2 The Space4U Project . 8
2.3 The Trust4All project . 9
2.4 Robocop Architecture . 9
2.5 Trust in Trust4All . 13

3 Modes of Operation 16
3.1 Basic Idea . 16
3.2 Trust by Modes of Operation . 19

4 The Robocop Simulation Component 21
4.1 Basic Idea . 21
4.2 State Transition Diagram . 22
4.3 XML Simulation File . 22
4.4 Generation . 23
4.5 Simulation . 24
4.6 Simulating Modes of Operation 25
4.7 Advantages and Disadvantages 25

5 A Robocop case study: Car Infotainment System 27
5.1 Architecture . 27
5.2 The Components . 31
5.3 The Main Function . 40
5.4 Evaluation . 40

6 Conclusions and Future Work 42

A Example XML file 46

B Route Calculator XML file 47

C Voice Synthesizer XML file 50

2

D Graphics Renderer XML file 52

E Video XML Simulation File 54

F The Main function 56

3

Foreword

I was looking for a thesis project which had something to do with software
development. Marcello Bonsangue and Andries Stam, members of the ‘Founda-
tions of Software Technology’ group at the LIACS Institute Leiden, introduced
me with the Robocop framework for embedded devices. They explained what
Robocop was all about and it looked very interesting to build an application on
top of the Robocop framework.

The Robocop framework is part of the Trust4All project which develops a frame-
work for building component based software on embedded devices. The frame-
work provides mechanisms to obtain trust in the software application and its
components. Because the Robocop framework is still under development and
there is not much documentation about it, I was warned it would be quite a
challenge to do a project about this. But the challenge did it for me and also
the potential for this kind of middleware framework, since nowadays it is quite
normal to take components developed by third parties and integrate them into
a software system.

The main idea was to develop an application on top of the Robocop frame-
work and to implement a mechanism to obtain trust in this application and its
components. First I had to come up with an idea for such an application. After
some thinking and looking at existing case studies I came up with the idea to
build a ‘Car Infotainment System’ and extend this with my own ideas of how a
such a system should look like.

Because it was not feasible to build a Car Infotainment System into a real
car, to develop a working GPS system or to build a whole media system, I de-
cided to simulate some of these components. The idea of a ‘Robocop Simulation
Component’ was born. In this simulation component a mechanism to obtain
trust had to be implemented as well. The result can be found in this thesis.

4

Chapter 1

Introduction

Components play a very important role in many software systems. Nowadays
it is quite common to develop components of software systems separately and
to integrate them at some point to build the complete software system. This is
called the ‘black box’ representation of components, where only the functionality
of the components is known to the developer, and not its implementation. Using
software components makes upgrading and extending the software a lot easier.
Often a middleware layer is responsible for providing mechanisms for extension
and upgrading. A main problem with this kind of component based software
development is the issue of trust. According to [1][2], trust is roughly defined as
the degree of confidence users have in a software system and its components . A
software system and its components must confirm to a certain quality to obtain
trustworthiness. Components can have different kinds of quality to conform to,
depending on the kind of component and its functionality. Research in this area,
as in a lot of other areas, has only touched a few main issues [3].

Nowadays a lot of projects exist involving component based software devel-
opment. One of them currently being carried out in the EU is the Trust4All
project which concentrates on the development of open component based soft-
ware on embedded devices. The Trust4All project is the latest project in a
series of three projects, it extends the Space4U project [5], which extends the
Robocop project [4]. The framework developed in these three projects for cre-
ating open component based for embedded devices is called Robocop. Robocop
stands for ‘Robust Open Component Based Software Architecture for Config-
urable Devices’.

In this thesis project we developed an application on top of the Robocop frame-
work and defined a new kind of mechanism to obtain trust. This new kind of
mechanism is called ‘Modes of Operation’; the ability to change the properties
of a component during runtime to obtain trust in the application and its com-
ponents.

5

The case study we have implemented is a ‘Car Infotainment System’, which
consists out of different components for features like driver information, naviga-
tion and media. Because of time contraints on the project it was not feasible to
really build these components. The idea was to build a simulation component,
which is able to simulate the Modes of Operation mechanism to obtain trust in
a simulated component.

The background, details and main goals of the Trust4All project are described
in Chapter 2 including the trust issue. The Modes of Operation mechanism
is described in Chapter 3. This mechanism is implemented in the ‘Robocop
Simulation Component’, which is described in Chapter 4. In Chapter 5 the Car
Infotainment System is described including its architecture, the different com-
ponents and how trust is obtained in this system. Conclusions about this thesis
project are drawn in Chapter 6. Future work is recommended in Chapter 6 as
well.

6

Chapter 2

Background

The Trust4All, Space4U and Robocop projects are a set of three EU-ITEA
[7] projects which concentrate on defining an open component-based architec-
ture for the middleware layer in high-volume embedded appliances. The focus
on high volume devices means that the software frameworks developed have
to be resource efficient and lightweight, which has been the primary challenge
within these projects. The goal of the projects is to enable the construction of
open configurable middleware for consumer devices, focusing on the provision of
extra-functional properties, such as power awareness, resource awareness, fault
management, software management and trust.

All three of these projects are examples of open innovation involving Nokia
Research Center, Philips Research, Fagor, IKERLAN, academia and research
institutes. The Robocop project started in 2001 and ended in 2003, when the
Space4U project started. The current project is the Trust4All project, which
started in July 2005, when the Space4U project ended.

Each project has been structured into three work packages, corresponding to
the phases of a standard project life-cycle: requirements and specification, de-
sign and implementation, and, validation and evaluation. Within each work
package there are tasks which are focused on the topics required to achieve the
project goals. An explanation of the three projects [8] is given Sections 2.1 to
2.3. In Section 2.4 the architecture of the Robocop framework is described.
Finally the trust issue of the Trust4All project is explained in Section 2.5.

2.1 The Robocop project

The Robocop project concentrated on building a proof-of-concept system that
showed how configurable middleware could be made for high-volume devices. Its
primary topics were resource awareness and software upgrade. It also studied
the issue of business models for component based software. The Robocop tasks

7

were:

• Core architecture: in this task, support for a common software component
was designed and implemented.

• Secure download: in this task, a framework for inserting software into a
device was created.

• Resource awareness: in this task, a framework allowed the management
of resource usage within the middleware platform.

• Trading and IPR support: in this task, support for software trading, com-
ponent modelling and supporting business oriented activities have been
studied.

Robocop ended with 14 demonstrators running on a diverse set of platforms,
such as Symbian, Linux, and PsOS.

2.2 The Space4U Project

Space4U was built on the result of Robocop, extending the scope of the frame-
work and the system. It sought to address the issues relating to consequences
of the system created in Robocop. The main questions were: How to handle
externally provided software, how to protect a system from poor software, how
to use resource usage to provide power awareness, and how can external systems
improve the software inside devices? The task list for Space4U included:

• Core architecture: in this task, the Robocop core architecture and com-
ponent model were extended and improved.

• Fault management: in this task, a framework and tooling to build systems
that can respond effectively to a certain range of faults, were provided.

• Power awareness: in this task, a framework for power aware software was
built on the Robocop resource awareness framework.

• Terminal software management: in this task, the Robocop download pro-
cess and supporting tools to allow software integrity management, software
visualization and resource usage prediction, were extended.

Space4U ended with 11 demonstrators showing the use of all frameworks.
These demonstrators ran on several platforms, and interoperated (e.g. remote
television control on a mobile phone).

8

2.3 The Trust4All project

While Space4U helped companies build reliable, managed software there are
some aspects that must be addressed to enable widespread use of component
based middleware in devices. The most important issue is to get user trust in
the technical platforms provided by manufacturers. This involves interaction
between application domains, security, availability and system awareness. The
Trust4All project tasks are:

• Core architecture: in this task, the Space4U architecture is extended and
adapted to incorporate trust characteristics.

• Trust model: in this task, trust as perceived by users and how it relates
to system properties is modeled.

• Resource awareness: in this task is investigated, how components can be
combined into trusted systems.

• Standardization: in this task is investigated, how to disseminate the project
results through standard setting bodies.

The Trust4All project started in July 2005 and is still running. The Robo-
cop framework for creating component based software for embedded devices
developed in these projects is described in the next section.

2.4 Robocop Architecture

In the Robocop architecture the following entities and sub-entities are distin-
guished [9].

• Computer systems

– Hosts are the systems where components are developed, certified,
tailored and integrated.

– Repositories are hosts where components are published.

– Devices are systems that host and execute the software that provides
the total functionality of the appliance.

• Components embody a subset of the functionality of the middleware
layer of an appliance.

– Models: anything that conveys information about the software arte-
fact that realizes the functionality of the component and perform
the actual computations. A Robocop component consists of a set of
models.

– The manifest: a table of contents for a component.

– Package: the visual representation of a component on a host.

9

– Service: The functionality offered by a component is logically mod-
eled as a set of services.

– Service Instance: the instantiated service at runtime.

– Service Manager: creates service instances dynamically.

– Interface: provides the means for applications and components to
invoke operation on a service instance through function calls.

– Interface reference: the identification of a specific interface on a spe-
cific service instance at run time.

• Robocop Runtime Environment (RRE) is the embodiment of the
Robocop component framework on a device.

– Component Support: implements the Robocop component model on
a given platform.

– Registry: maintains information about the registered entities.

– Download support: optional part of the RRE implements the Robo-
cop download facility.

– OS abstraction layer: optional part of the RRE that implements
a basic set of kernel type functions that allow a component to be
written in an OS or kernel independent way.

• UUID stands for a Universal Unique Identifier. Any and all Robocop
objects needing unique identification are assigned an UUID.

The development framework of Robocop defines the roles of and the re-
lations between the various entities in the development, certification, trading,
tailoring and integration of Robocop components and the Robocop Runtime
Environment. Component builders develop components, the development con-
sists of developing the constituent models and the associated manifest. How
components are developed is left unspecified in Robocop (‘black box’ principle).

A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can be
deployed independently and is subject to composition by third parties. Spec-
ifying a component as a set of models is a key innovation in Robocop. There
are various usages for this concept including trading, composition and execution
time inspection of properties of components.

2.4.1 Object and Interfaces

The programming model offered by the Robocop architecture is based upon
objects and interfaces. It is only possible to interact with objects through inter-
faces. Interfaces to objects can be obtained by creating service instances or can
be returned by functions or operations. The functionality of services is mapped
onto interface definitions. These specify the operations supported by the inter-
face and the semantics of those operations. Interface definitions are identified
by an Interface ID.

10

2.4.2 Services

Objects and interfaces give a fine-grained level op programming. Services pro-
vide a higher level of programming. Services specify which interface instances
are supported when the service is instantiated. There are two types of interfaces:

• Provides interfaces: the interfaces the service provides, which are imple-
mented by the component itself.

• Requires interfaces: the interfaces a service requires which are provided
other components in the system. A requires interface is a binding point
for interfaces.

The service also provides a framework for setting properties and a framework
for creation. Services have a unique ID.

2.4.3 Components

From a programming perspective, services are the largest structure that is
clearly identifiable. The components almost play no role in the programming
model as seen by the client of the RRE. It is the responsibility of the RRE
to determine the appropriate executable component when a service instance is
requested. Therefore a component also needs a unique ID. The conceptual view
of a component can be found in Figure 2.1. The component contains services
which contain the provides and requires interfaces. The provides interfaces are
the white dots and the requires interfaces the black dots coming out of the
services.

Components, services and interfaces are defined in a RIDL-file. The RIDL-
compiler takes this RIDL-file to generate the ANSI-C [12] files needed for this
component and its service. The compiler is part of the Robocop framework.
RIDL stands for ‘Robocop Interface Description Language’, it is used to express
the conceptual elements of the Robocop framework.

The development of a component will be described by using the following
RIDL-file. This example is taken from the ‘Component Model Tutorial’ [10].

interface IMemInfo { 49ead10b-823a-4105-a087-08fc9883f080 }

{

long getTotal();

long getFree();

};

service SvcSysInfo { 9fcdf688-e294-4a28-ba74-a237d879ac45 }

{

provides {

IMemInfo mem;

};

attributes {

short memSig;

};

};

11

Executable Component

Service 1 Service 2

Provides Interface

Service Interface

Requires Interface

Figure 2.1: Conceptual view of a Robocop Executable Component

component CSysInfo { 702c7427-38bf-4092-a08b-fd2c14ce9871 }

{

contains SvcSysInfo;

};

The RIDL-file defines one component CSysInfo, which contains one service
SvcSysInfo. The service has one attribute memSig and it provides one interface
IMemInfo. The IMemInfo interface contains two functions: getTotal() and
getFree() to query the total and available memory. The RIDL-file is named
sysinfo.ridl.

To generate the C-files needed for the component use the RIDL-compiler:

ridl -debug -skel sysinfo.ridl

The skel parameter tells the compiler to generate the skeleton files needed
for the component and the service. Here is a simplified description of the gen-
erated files:

• sysinfo.h and sysinfo.c: These files contain the UUIDs and accessor
functions for the interfaces and the services.

• sysinfo Impl.h and sysinfo Impl.c: In these files the IUnknown and
IService interfaces are implemented.

• CSysInfo Impl.h and CSysInfo Impl.c: These files contain the im-
plementation of the CSysInfo component.

12

• SvcSysInfo Impl.h and SvcSysInfo Impl.c: These files contain the
implementation of the SvcSysInfo service.

The component can be built using Automake and Autoconf. To register
the component to the Robocop Runtime Environment a regscript.in file is
needed which contains the UUIDs of the component and its services. Details
of this procedure can be read in the Component Model Tutorial [10]. After
this, the functions getTotal() and getFree() have to be implemented to add
functionality to the component. As can be seen, a developer only has to write
the code for the implementation of the interfaces of the components defined.
When using the RIDL-compiler almost no work is required from a developer.

2.5 Trust in Trust4All

The aim of Trust4All is to establish robust and reliable operation, upgrading
and extension, and component trading within an open component based soft-
ware application in such a way the user gets trust and keeps on having trust in
the software system. But what properties do influence the trust of a software
system? In this section these properties will be called quality attributes. Note
that quality is a term which can have different meanings for different stakehold-
ers (developers, users...); in this document the term quality will be used in its
widest sense.

In the Trust4All project it is inadequate to just specify quality attributes on
a high level, to simply state that an application should be secure and dependable
is a too coarse grained requirement. The term quality is therefore divided into
attributes and sub-attributes.

2.5.1 Quality Attributes

In Figure 2.2 a taxonomy of quality of attributes of the Trust4All project is
shown. There are five main quality attributes: dependability, security, perfor-
mance, robustness and interoperability [11]:

• Dependability is the ability to avoid service failures that are more fre-
quent and more severe than is acceptable. The sub-attributes of depend-
ability are:

– Availability is readiness for correct service. Simply put, availability
is the proportion of time a system is in a functioning condition.

– Reliability is continuity of correct service. In general, reliability
is the ability of a system to perform and maintain its functions in
routine circumstances, as well as hostile or unexpected circumstances.

– Maintainability is the ability to undergo modifications and repairs.

– Safety is the absence of catastrophic consequences on the users and
the environment.

13

Availability

Reliability

Integrity

Safety

Maintainability

Confidentiality

Performance

Dependability

Robustness

Security

Interoperability

consists of consists of

Figure 2.2: Taxonomy of quality attributes

– Integrity is the absence of improper system alterations. In the con-
text of security improper means unauthorized.

.

• Security is the absence of unauthorized acces, or handling of, to system
state. Security quality attributes are confidentiality, availabilty and in-
tegrity. Availability and integrity are also part of depandability and are
described there.

• Performance is the degree to which timing characteristics are adequate.

• Robustness is the degree to which an executable work product continues
to work properly even under abnormal conditions or circumstances.

• Interoperability is the degree to which a system or one of its components
is properly connected to and operates with something else.

2.5.2 Quality Attribute Control

In order to get a grip on quality attributes we need mechanisms to control them.
Some of these mechanisms are described below [11]:

• Containment can be used to prevent propagation of errors from one
subsystem to another to increase the reliability. Containment can also be
used to provide confidentiality if the containment prevents access except
via channels that require authorization.

14

• Redundancy can be used to increase both availability and reliability.
Redundancy, in general terms, refers to the quality or state of being re-
dundant, that is: exceeding what is necessary or normal; or duplication.
Duplicates can be used for both availability and reliability of a system.

• State transition improves reliability by changing the system state to a
different state that does not lead to a failure, or reduces the severity of a
failure.

• Guaranteed Resources to provide the correct service.

• Encryption is used to prevent unauthorized disclosure of information to
improve confidentiality.

• Identification is the degree to which the system identifies its externals
before interacting with them.

• Authentication is the degree to which the system verifies the claimed
identities of its externals before interacting with them. Thus, authentica-
tion verifies if a claimed identity is legitimate and belongs to the claimant.

• Authorization is the degree to which access and usage privileges of au-
thenticated externals are properly granted and enforced.

• Feature reduction Functionality can be traded for quality attributes in
a large number of situations. Quality attributes are improved by reduc-
ing the functionality provided. This also holds for the quality attributes
related to trustworthiness. For example confidentiality can be improved
by reducing the number of unauthorized entities in the system and avail-
ability can be improved by removing entities that use resources that are
required for providing the correct service.

• Modes of Operation is the ability to change the set of conditions of a
component during runtime to maintain trust in the software system and
its components. A condition is a property of a component (e.g. ‘security
mode’) and its value (e.g. ‘high’). By changing the condition, the value is
changed in such a way that trust in the system is maintained. This new
mechanism is one of the main subjects of this thesis.

15

Chapter 3

Modes of Operation

In this chapter, a new mechanism to obtain trust in a system is explained:
‘Modes of Operation’. In the first section the basic idea behind the Modes of
Operation mechanism will be explained. The various quality attributes this
mechanism can control will be described in the last section.

3.1 Basic Idea

A mode of operation is a set of conditions a component operates in. A condition
can be things like:

• Security mode ‘high’.

• Video quality ‘low’.

• Text to speech conversion ‘off’.

A condition has a name called the ‘service property’ and a value called the
‘property value’. The mode of operation of a component is a set of conditions,
and a condition is a service property with its property value.

The behavior of a process of some system can be described in an UML State
Transition Diagram (STD) [13]. An STD is a behavorial model that describes
the behavior of a process with states and transitions. A state is some state of a
process and a transition is an action of a process to go from one state to another.
The starting state of an STD is indicated by an initial state (black dot) with
a transition to the starting state. To describe the behavior of a service of a
component and the Modes of Operation mechanism involving this behavior, we
use an extended version of the standard STDs. We extend the STDs with two
notions of Paradigm [14]. Paradigm is a coordination specification language.
Through Paradigm one can reformulate the sequential behaviour within various
STDs in a more global phase-like manner. The STDs are divided into sub-STDs
which each represent part of the total behavior of these STDs. In this way the

16

A B

C

FromAtoB

FromBtoC
FromAtoC

[Quality ‘low’]

[Quality ‘high’]

FromCtoA

Figure 3.1: State Transition Diagram of process A of component A

modeling perspective can be lifted from detailed behavior to more abstract be-
havior in terms of going from one sub-STD to another.

The Paradigm notions of subprocesses and traps are used to describe the Modes
of Operation mechanism in the STDs. A subprocess is an STD, restricted to
a subset of the state and action spaces of the original STD, with the actions
having the same behavioural effect. This means, any behaviour of a subprocess
is a subsequence of some behaviour of the original STD. This is the reason a
subprocess is informally referred to as a model of a certain phase within the set
of possible behaviours of the original STD. A trap, being a subset of the subpro-
cess’ statespace, models a kind of final stage of the subprocess, once entered it
cannot be left within that subprocess. It is only through the behaviours of the
next phase, i.e. in another subprocess, that a trap can be left. We informally
refer to such traps as overlaps between two subprocesses. If a trap contains all
the states of a subprocess the trap is called trivial.

The STD of Figure 3.1 is a very simple STD with 3 states. It describes a
very simple process with one service property called quality which can have
two property values; high and low. In state A it can either go to state B with
the transition FromAtoB or to state C with the transition FromAtoC. Transition
FromAtoB has the label Quality "high", which can only occur when the value
of the service property quality is set on high. Transition FromAtoC has the
label Quality "low", which can only occur when the value of the service prop-
erty quality is set on low. The service property quality divides the STD
into the two subprocesses of Figures 3.3 and 3.2. If the property value is set
to high, control takes the subprocess in Figure 3.3 which uses more resources.

17

A B

C

FromAtoB

FromBtoC

[Quality ‘low’]

Quality = low

FromCtoA

Figure 3.2: Subprocess of process A of component A with quality on ‘low’.

A

C

FromAtoC

[Quality ‘high’]

Quality = high

FromCtoA

Figure 3.3: Subprocess of process A of component A with quality on ‘high’

18

If the property value is set to low, control takes the subprocess in Figure 3.2.
which uses less resources. As one can see, the mode of operation, in this case
consisting of one service property, decides what subprocess to take. In this way
the Paradigm notion of subprocesses is used. When the property value changes,
control must go from one subprocess to the other. According to the definition
of traps, this can only happen in a trap. Since the traps of both subprocesses
are trivial, this can happen in all the states of the subprocesses. Trivial traps
are very important in the Modes of Operation mechanism, because it enables
the user or system to change the mode of operation during runtime.

The difference between the property values is the amount of resources they
use. In this way, trust in the system can be influenced. The property value low

of the service property quality needs less resources than the property value
high. If the system runs in an ideal situation, the property value of quality is
high. The ideal situation must be changed to a less ideal situation if by some
influence of the environment, which can be some part of the system or the en-
vironment the system runs in, the property value of quality is set to low. For
example, a more important component of the application needs resources that
are not available while the value of the service property quality is high. The
application now changes the mode of operation of the less important component
by changing the value of the service property quality to low, to make more re-
sources available for the more important part to run properly. This increases the
availability of components to increase trustworthiness in the application. The
Modes of Operation mechanism can influence a lot of other quality attributes
as well.

3.2 Trust by Modes of Operation

One major quality attribute the Modes of Operation mechanism can control, is
dependability. Some of the dependability sub-attributes it can control are:

• Availability: Turn to a lighter mode of operation so another component
can be executed and the system stays ready for correct service. For ex-
ample if a component wants to run its service but there are not enough
resources available, another component may switch its mode of operation
so more resources become available.

• Reliability: Turn to a lighter mode to maintain correct service. For
example if a component is about to enter a critical state and switches to
a lighter mode to maintain correct service.

• Maintainability: Turn to a mode where only the important components
keep on running so the application is able to undergo repairs and modifi-
cations.

• Safety: Turn to a mode that tightens safety issues. For example when a
critical state is entered the modes of operation of some components turn

19

to safer modes so there will not occur harmful events to the user or the
environment.

• Integrity: turn to a mode that tightens authorization, so integrity of the
system is secured.

The Modes of Operation mechanism can also control the security and robustness
quality attributes. An example of controlling security is when the application is
in some critical state and the security of some components must be tightened,
the mode of operation can switch to a more heavy security mode only allowing
the most privileged users. An example of controlling robustness is when the
conditions or circumstances of the application change to abnormal, the appli-
cation switches to another mode of operation in order to keep the application
running during these abnormal conditions or circumstances.

The Modes of Operation mechanism has two important characteristics, one
of these is that it can change the property values during runtime. The soft-
ware system decides, during runtime, how to change the Mode of Operation to
maintain trustworthiness in the software system and its components. This is
quite an innovative characteristic. The other charateristic is that the Modes of
Operation mechanism is able to control quite a lot of quality attributes. These
two characteristics make the Modes of Operation mechanism a powerful tool to
obtain trust in software system.

20

Chapter 4

The Robocop Simulation

Component

In this chapter, the Robocop Simulation Component (RSC) for a Car Infotain-
ment System (CIS) is described. The RSC has been built to prototype some
components of the CIS system. The RSC can be used to simulate components
in other Robocop software systems as well. With the RSC a user can test a
component before it is really implemented or test an already developed compo-
nent in a software system, before really integrating it into the system. The RSC
simulates a component by simulating the behaviors of the component and their
resource usage.

In Section 4.1 the basic idea of the Robocop Simulation Component is described.
How to use the RSC is explained in Sections 4.2 to 4.5. How the Modes of Op-
eration mechanism is implemented in the RSC to obtain trust in a simulated
component is explained in Section 4.6. In Section 4.7 conclusions are drawn by
describing the major advantages and disadvantages of this kind of simulation.

4.1 Basic Idea

The basic idea is to describe the behaviors of a component in extended STDs.
For each service a component provides, there is one STD to describe the be-
haviour of that service. Once the STDs have been built, they must be converted
into a type that can be read more easily by an application. The Extensible
Markup Language (XML) [15] is chosen, because this is quite easy to use and
understand. Each STD has to be converted to a XML-file. The RSC takes this
XML-file and simulates the behaviour described in the STD.

21

4.2 State Transition Diagram

The behavior of each service of a simulated component has to be described
in a UML State Transition Diagram (STD). To add the Modes of Operation
mechanism to the behavior described in the STD, the extended version of the
STD, described in Chapter 3, is used.

4.3 XML Simulation File

The STDs have to be converted into XML-files conform some standard to make
the XML simulator able to use the XML-files. This standard is called the ‘XML
Simulation Standard’ (XSS) and will be described in this section. For the actual
simulation of the process just converting the behavior described in the STD to
an XML-file is not enough. The amount of resources a process needs also have to
be simulated. The user should think about the amount of resources a particular
transition (action of the process) needs, the variables that should be allocated
and when they should be freed again. This is quite important because this
simulates the resources a service needs, by which one can see how the software
system reacts to it. Only the CPU and memory usage of a process is simulated.

To explain how to convert an STD and to add the resource usage into an XML-
file conform the XSS, the STD of Figure 3.1 will be used. The name of the
process of the component and the initial state name is contained in the tag
processes, to let the simulator know where to start . In this case the process
is called ProcessA and the inititial state name is A:

<processes name="ProcessA" initialStateName="A">

The next lines contain the transitions of the STD with all its information.
A transition looks this:

<rules name="FromAtoB" cpu="5" mem="100">

<sourceStateNames>A</sourceStateNames>

<targetStateNames>B</targetStateNames>

<property name="quality" value="high">

<malloc name="var" size="200"/>

<free name="temp"/>

</rules>

A transition contains the following:

• A tag rules with the unique name of the transition, CPU usage and
memory space of that transition. The CPU usage stands for how many
times the CPU simulation function has to be called. The CPU simulation
function just that takes up some CPU-time. In this case the CPU function
generates the first 1000 prime numbers, but the function can be changed
to the user’s preferences. The memory space is the amount of temporary
space the transition needs in bytes. The memory space is allocated before

22

taking the transition and freed directly after the transition reaches its
target state. In case the transition takes up no CPU and memory space,
then it is possible to simply fill in 0 here. In this case the name of the
transition is FromAtoB, the cpu usage is 5 and the memory usage is 100kB.

• A tag sourceStateNames with the name of the source state. There can
be multiple source states per transition, but in this implementation there
can be only one to make things easier. In this case the source state is A.

• A tag targetStateNameswith the names of the target states. A transition
can have multiple target states. In this case the only target state is B.

• A tag property with the allowed property {name,value}-pair of the tran-
sition. If the property value is the same as the property value of the
component, the transition is allowed, else it is forbidden. In this case
the transition is allowed if the service property quality of the compo-
nent has the property value high. This tag adds the Modes of Operation
mechanism to the XML simulation file. A transition can contain multiple
property tags.

• A tag malloc with the name and the size of a non-temporary variable.
Memory for this variable is allocated when the transition reaches its target
state and is freed if some other transition has this variable in its free field.
A transition can contain multiple malloc tags, because a transition can
have multiple non-temporary variables to allocate. In this case there is
one non-temporary variable var and there must be 200 bytes of memory
allocated for this variable.

• A tag free which contains a variable name to be freed from memory. A
transition can contain multiple free tags. In this case there is one variable
temp to be freed.

The XML-file must be conform to the XML Simulation Standard, else the Robo-
cop Simulator is not able to read the XML-file. The complete XML-code for
the State Transition Diagram of Figure 3.1 can be found in Appendix A.

4.4 Generation

After converting the STDs into XML-files, the XML-files must be parsed into
ANSI C-code, because the Robocop Simulation Component is programmed in
ANSI C. This is done with a small XML parsing library called Mini-XML [16].
Mini-XML is an XML parsing library which one can use to read XML and XML-
like data files in an application without requiring large non-standard libraries.
Mini-XML only requires an ANSI C compatible compiler and a ‘make’ program.

The generator function (part of the Robocop Simulator) will make a call to
the mxmlLoadFile function (part of the mini-XML library) with the appropriate
XML-file as parameter. This function returns a tree which contains all the

23

information of the XML-file in a mini-XML tree structure. After the tree is
generated the generator will convert this mini-XML tree into a linked list of
transitions. Each transition contains the same information as a transition in
the XML-file. The root of the linked list represents the initial state in the STD.
The initial state in an STD is a pseudo-state to indicate the transition to the
start state. The root contains the name of the target state (the start state) of
the root transition. The RSC uses this linked list of transitions for the actual
simulation of the service.

4.5 Simulation

For each simulated service of a component an instantiation of the Robocop Sim-
ulation interface is required. This interface is instantiated by the service of the
component that needs simulation of some process. It is advised to name the
instantiation after the simulated service. This instantiation has to be initialized
by calling init sim with the service instantiation and the appropriate name of
the XML-file as parameters.

The initialization function calls the generate xml function with the name of
the XML-file as parameter. The generate xml function produces the linked
list of transitions and returns it to the initialization function. After initializa-
tion the current transition is the root transition, which is the transition to the
start state. In the STD of Figure 3.1 this will be the transition from the initial
state to the state A.

The simulation continues by calling the simulate function with the service
instantiation as parameter. The simulate function simulates one step in the
STD. When the simulate function is called and the CPU counter cpu count

has become 0 the transition has reached the target-state and the following things
are done in the given order:

• Temporary memory space used for the transition is freed.

• Memory space for the non-temporary variables is allocated for the transi-
tion (the malloc field in the XML-file).

• Memory space for the non-temporary variables which are in de free list
are freed (the free field in the XML-file).

• By calling the get Transition function the next transition is chosen. The
get Transition function returns a legal transition from the chosen target
state, which has now become the source state for the next transition.

• Temporary memory space for the new transition is allocated.

• The next target state is chosen randomly from the list of target states and
put in the variable chosen target of the newly returned transition.

24

If the CPU counter is not yet zero, the transition is still not finished; the
action to go from one state to the next is still being done. To simulate this
behaviour the CPU simulation function is called.

4.6 Simulating Modes of Operation

The Robocop Simulation Component also simulates the Modes of Operation
mechanism to obtain trust in a simulated component. The services of a sim-
ulated component contain property-lists with the service property names and
their property values. Just after initialization of the simulated service, service
properties can be added with their initial property values. These lists of service
properties represent the Modes of Operation of that component.

In the interface of the Robocop Simulation service there are two functions for
controlling the mode of operation of a simulated process; the add property and
the set property function. To add a service property to a simulated compo-
nent the function add property has to be called with as parameter the service
instantiation, the name of the service property and the property value. In the
STD of Figure 3.1 the property quality with the value high or low (depending
on what the property value has to be initialized) should be added to the prop-
erty list.

When simulation has begun, the property values can be changer by calling the
set property function with the same parameters as the add poperty function,
but the value parameter containing the new property value. In the STD of Fig-
ure 3.1 the value of the property quality will be set to low if resources become
too low and to high if enough resources become available again. This should
be controlled by some sort of resource manager which controls the resources.

A transition in the STD of Figure 3.1 is legal if the property {name,value}-pair
of the transition matches the {name,value}-pair in the property of the simu-
lated service. For example when the service poperty quality in the simulated
process of 3.1 is high and the source state is A, the transition FromAtoB will not
be chosen, instead the transition FromAtoC will be chosen.

4.7 Advantages and Disadvantages

The goal of simulation is to see how a software system reacts to a component,
before the component is really developed or deployed. If the software system
reacts improperly to the component, the design of the component may be al-
tered before it is really implemented or the component may be discarded at all,
because it is not suitable for the software system. There are advantages and
disadvantages of simulating components. The advantages are:

• Test how the application reacts to the integrated simulated component in

25

advance and see how feasible it is for the system to build the component
and integrate it. This can diminish the costs of the overall development
of the component.

• Designers and users can determine the correctness and efficiency of the
component before it is actually designed.

• Test how a software system reacts to an already developed component
before really integrating that component. Integrating a Robocop Compo-
nent can be quite a task because the component should be converted into
a Robocop component conform some standards. In the case of my Robo-
cop Simulation Component integration of a simulated component is a lot
easier because it is not nessecary to convert it into a Robocop component,
because it already is a Robocop component.

The disadvantages are:

• It is hard to estimate things like cpu usage and memory usage in advance,
if the component has not been developed yet.

• The simulation model simplifies the component, so some key elements
may be missing in the simulation. For example in the Robocop Simulation
Component the simulation of operation calls, data exchange and bus-usage
is missing.

26

Chapter 5

A Robocop case study: Car

Infotainment System

The application developed on top of the Robocop Framework is a Car Infotain-
ment System (CIS). A CIS is a software system in a car that gives information
such as driver info (speed, fuel etc.), navigation and entertaiment (e.g. mu-
sic and video) to the users of a car. The information and entertainment the
CIS system of this project provides is displayed on 3 displays; one in the front
and two in the back. The system consists out of several components such as a
FrontDisplay, DriverInfo, GPS and Media component. The architecture of this
system is described in Section 5.1. The components of the CIS system are de-
scribed in Section 5.2. The main function is described in Section 5.3. In Section
5.4 an evaluation of the system is given with 3 scenarios.

5.1 Architecture

The CIS system is built on top of the Robocop 2.0 framework, and uses the
GTK 2.0 library [17] for the graphical user interface. The architecture of the
the CIS system can be found in the component diagram of Figure 5.1.

The CIS System consists of six components:

• The Car component simulates the behaviour of a car. The component
does not use the Robocop Simulation Component (RSC), but has been
programmed statically.

• The DriverInfo component takes the driver information from the Car com-
ponent and puts the driver information in a GTK-box. The GTK-box is
part of the GTK 2.0 library.

• The GPS component is a simulated component which uses the RSC. The
component simulates three services: a Route Calculator, a Voice Synthe-

27

FrontDisplay BackDisplay

DriverInfo

Car

GPS

Media

IDriverInfo

ICar

IGPS

IMedia

Figure 5.1: CIS Component Diagram

sizer and a Graphics Renderer. A GTK-box is created with the simulated
behaviour of these services.

• The Media component is also a simulated component which uses the RSC.
The Media component simulates the entertainment part of the CIS sys-
tem. For purposes of demonstration and evaluation we have restricted
the implementation of the Media component only with a simulation of the
video system.

• The FrontDisplay component displays the driver information provided by
the DriverInfo component, the navigation information provided by the
GPS component and the media menu provided by the Media component.
(Figure 5.2). The component also displays an options menu (Figure 5.3)
to control certain properties of the CIS system.

• The BackDisplay component displays the media menu provided by the
Media component (Figure 5.4).

The directory structure of the CIS system looks as follows:

• CIS: The top directory; contains the overal configure file and makefile.

– backdisplay: Backdisplay Component.

– car: Car Simulation Component.

– CIStestapp: contains the main function.

– driverinfo: Driverinfo Component.

– frontdisplay: Frontdisplay Component.

– gps: GPS Component (simulated).

28

Figure 5.2: Front Display showing the driver information, gps system and the
media menu.

Figure 5.3: Options menu for controlling the diverse options of the CIS system.

29

Figure 5.4: Back Display showing the media menu

– media: Media Component (music, video and games).

– xmlsim: Robocop Simulation Component.

The Robocop 2.0 framework does not provide multi-threading facilities,
therefore we have chosen to implement the CIS as a single-threaded system.
Because the State Transition model contains infinite loops, which is not com-
mon in Robocop, we have implemented a Round Robin scheduling strategy
for the simulated services of the simulated components. Round-Robin (RR)
is a scheduling algorithm, which assigns time slices to each process in equal
portions and in order, handling all processes without priority. The CIS is a
multi-process system, because it contains multiple processes running in parallel,
which are scheduled by the RR scheduling algorithm.

Shortly described the system runs like this: The Frontdisplay component dis-
plays the driver information by passing an empty GTK-box to the Driverinfo
interface. First it needs to initialize the Driverinfo box by calling the init DI

function:

CIS_IDriverInfo_init_DI(data->driverinfo, driverinfo_box);

After that the Driver Information is automatically updated by calling the
update DI function:

CIS_IDriverInfo_update_DI(data, driverinfo_box);

Both these functions get the driver information from the Car component by
calling diverse functions such as get Speed, get Fuel etc. When the Frontdis-
play calls the GPS system for the first time, it calls the init GPS function and
passes an empty GTK-box to initialize the system:

30

CIS_IGPS_init_gps(data->gps, gps_box);

After the initialization of the GPS system the Frontdisplay updates the GPS
system by calling the update GPS function of the GPS Interface:

the \texttt{get_Menu} function from the Media Interface

CIS_IGPS_update_gps(data, gps_box);

The update GPS function calls the simulate function to update the states
of the simulated services.

The Frontdisplay component calls the get Menu function from the Media In-
terface to get the media menu. The get Menu function fills up the box with
three buttons; Music, Video, Games. The two Backdisplays components dis-
play the Media Menu in the same way (Figure 5.4).

The Frontdisplay component also shows an options menu for controlling di-
verse options, such as turning the car on or off and diverse options for the GPS
system such as calculation mode, speech-to-text, travel & traffic and rendering
modes (Figure 5.3). This controls the mode of operation of the GPS System
manually. By changing the mode of operation manually you can see the con-
sequences directly, but in a real system this should be done by the Robocop
Runtime Environment automatically.

5.2 The Components

In this section the components and give their RIDL-files are explained.

5.2.1 Car

The Car component (CCar) simulates the behavior of the car. It simulates
the speed, current gear, fuel level, battery power and engine temperature. The
RIDL-file of the car looks as follows:

#ifndef car_ridl_def

#define car_ridl_def

namespace CIS{ deb3b600-3147-43be-9a28-a361d4218593 }

{

interface ICar{ c743c15d-af7f-45d2-b394-4a125aca6380 }

{

void StartCar();

void StopCar();

short get_Speed();

short get_Fuel();

short get_Gear();

short get_Battery();

short get_temperature();

};

31

service SCar{ 22d96db6-ec61-48c8-973f-fb3c124c40e9 }

{

provides{

ICar car;

};

attributes{

short speed;

short fuel;

short gear;

short battery;

short temperature;

boolean caron;

};

};

component CCar{ 137b71ca-ce00-4496-811a-a1584d2887f5 }

{

provides SCar;

};

};

#endif

The Car component has a service called SCar which provides an interface
ICar. The ICar interface has functions where you can access the simulated car
information. There are also functions to turn the car on or off. The attributes
of the service are the ‘parameters’ of the car.

5.2.2 Driver Information

The DriverInfo component gets the driver information from the Car component
by calling the functions of the ICar interface. The DriverInfo component puts
this information in a GTK-box which is displayed on the front display. The
RIDL-file of the DriverInfo component looks like this:

#ifndef driverinfo_ridl_def

#define driverinfo_ridl_def

#include "car.ridl"

namespace CIS{ deb3b600-3147-43be-9a28-a361d4218593 }

{

interface IDriverInfo{ f02131ab-da63-41c0-95da-ecc499ec8413 }

{

native init_DI();

native update_DI();

};

service SDriverInfo{ e11e2c5d-bd85-4dbe-bbd0-cf3597f1175c }

{

provides{

IDriverInfo driverinfo;

32

};

requires{

ICar car;

};

};

component CDriverInfo{ 2ec8d2fd-342a-4641-a772-cc51139a9777 }

{

provides SDriverInfo;

};

};

#endif

The component provides an service called SDriverInfo. The service provides
an interface called IDriverInfo which has functions to initialize and update the
driverinfo GTK-box shown on the front display. The service requires the Car
interface to get the driver information from.

5.2.3 GPS

The GPS (Global Positioning System) component fills up a GTK-box with navi-
gation information for the user. This GTK-box is displayed on the front display.
The three services of the GPS component are simulated by the Robocop Simu-
lation Component: the Route Calculator, the Graphics Renderer and the Voice
Synthesizer. The GPS component has one service called SGPS, and this service
requires 3 IXmlSim Interfaces for the simulated services. The RIDL-file of the
GPS component looks like this:

#ifndef gps_ridl_def

#define gps_ridl_def

#include "xmlsim.ridl"

namespace CIS{ deb3b600-3147-43be-9a28-a361d4218593 }

{

interface IGPS{ 32b07b6d-1d5a-4e2c-bac6-4b0bde0b7305 }

{

native init_gps();

native update_gps();

};

service SGPS{ 87ae75f1-d9b3-48d4-8e58-d14b73b02587 }

{

provides{

IGPS gps;

};

requires{

IXmlSim rc_sim;

IXmlSim vs_sim;

IXmlSim gr_sim;

};

33

};

component CGPS{ 43e53c10-2f7e-4413-8a21-43ec65edd141 }

{

provides SGPS;

};

};

#endif

The service SGPS provides one interface IGPS which has functions to initial-
ize and update the navigation information. The initialize and update functions
are used by the Frontdisplay component.

The GPS component is a simulated component. The development of the
simulated services is described by starting from the design of the UML State
Transition Diagrams. The component has three services to be simulated: the
Route Calculator, the Voice Synthesizer and the Graphics Renderer. The be-
haviors of these services are described in the UML State Transition Diagrams
of Figures 5.5, 5.6 and 5.7.

In Figure 5.5 you can see that in some states ‘get T&T info’ (Travel and
Traffic information) transition can be chosen. If the T&T is on, it chooses that
transition else it takes the other transition. For the Calculation Mode there
are two options: Quickest Route (QR) and Shortest Route (SR). This gives the
following mode of operation set for the Route Calculator:

• Service property: T&T, property values: on, off

• Service property: Calculation Mode, property values: sr, qr

As can be seen in Figure 5.6 there is an option to do a text-to-speech con-
version, so the voice synthesizer has the following mode of operation set:

• Service property: Text-to-Speech, property values: on, off

As can be seen in Figure 5.7 there is an option to choose between 2D and
3D rendering, so the graphics renderer has the following mode of operation set:

• Service property: Rendering Mode, property values: 2d, 3d

Now that the UML State Transition Diagrams are finished and the service
properties are identified, the diagrams are converted into XML-files following
the XML Simulation Standard described in Chapter 4. The XML-files can be
found in Appendices B, C and D. Before simulation can begin, we must initialize
the GPS component, this is done by the IGPS interface. After initialization the
service properties with their initial property values are added to the property
lists of the services.

//route calculator

CIS_IXmlSim_init_sim(data->rc_sim, "routecalculator.xml",

&trans_RC);

CIS_IXmlSim_add_moo(data->rc_sim, "travelandtraffic", "off");

CIS_IXmlSim_add_moo(data->rc_sim, "calculationmode", "sr");

34

Location

received

T&T info

received

Action required
Destination

received

Location

received

Start of route

calculation

Route calculated

Destination

reached

get T&T

info

check current situation

get new

destination

get current

location

get T&T

info

send action info

T&T info

received

[to start of route

(re)calculation]

Route recalc.

required

Start of route

determination

Start of situation

check

perform QR

calculation

perform SR

calculation

send end of tour info

[to start of

situation check]send route

info

Start of route

traversal

New destination

entered

Route info sent

Situation stable

[to start of route

determination]

[to start of route

traversal]

End of tour info

sent

get current

location

Action info sent

Figure 5.5: UML State Transition Diagram for the Route Calculator service of
the GPS Component

35

Idle
Action info

received

perform

text-to-

speech

conversion

TTS conversion

performedConstruct

message and

send to DAC

Message sent

receive action info

[to idle]

Figure 5.6: UML State Transition Diagram for the Voice Synthesizer service of
the GPS Component

//voice synthesizer

CIS_IXmlSim_init_sim(data->vs_sim, "voicesynthesizer.xml",

&trans_VS);

CIS_IXmlSim_add_moo(data->vs_sim, "texttospeech", "off");

//graphics renderer

CIS_IXmlSim_init_sim(data->gr_sim, "graphicsrenderer.xml",

&trans_GR);

CIS_IXmlSim_add_moo(data->gr_sim, "3d", "off");

The trans RC, trans VS and trans GR parameters are pointers to one of the
transitions in the linked list of transitions of the simulated service. The names
of these transitions are put into a GTK-box which is shown by the FrontDisplay
component. After the simulated services have been set up, simulation can begin
by calling the simulate function:

CIS_IXmlSim_simulate(data->rc_sim, &trans_RC);

CIS_IXmlSim_simulate(data->vs_sim, &trans_VS);

CIS_IXmlSim_simulate(data->gr_sim, &trans_GR);

The simulate function simulates one step in the UML State Transition Dia-
gram of the simulated service. How this works has been described in Chapter 4.

5.2.4 Media

The Media component (CMedia) is the entertainment part of the CIS System.
The RIDL-file of the Media component looks like this:

36

Idle

check if new

action info

available
New action info

available

No action info

available

get current

locationCurrent location

received

perform 3D

rendering

perform 2D

rendering

Area rendered

create action

visualization

Action visualized

Start of

rendering

[to start of

rendering]

[to idle]

check if new

route info

available
New route info

available

No route info

available

create route

visualization

Route vis.

created

Visualizations

removed

remove

additional

visualizations

Figure 5.7: UML State Transition Diagram for the Graphics Renderer service
of the GPS Component

37

Idle
High resolution

frame read

Decoded to

highres

read highres

frame decode all layers

Decoded to

lowres

decode lowres layer

Frame rendered

render lowres frame

render highres frame

Figure 5.8: UML State Transition Diagram for the simulated Video System of
the Media component

#ifndef media_ridl_ref

#define media_ridl_def

#include "xmlsim.ridl"

namespace CIS{ deb3b600-3147-43be-9a28-a361d4218593 }

{

interface IMedia { 3eec37e0-da0d-4503-ac03-3509b5dd9457 }

{

native get_Menu();

};

service SMedia { 9b8c50ab-9f06-4cc5-8f1a-689d20c79330 }

{

provides{

IMedia media;

};

requires{

IXmlSim video;

};

};

component CMedia { 6b81d6e8-1916-4cf0-b13b-3fd93fc8683e }

{

provides SMedia;

};

};

#endif

The Media component provides a service called SMedia. This service pro-
vides an interface IMedia which has a function to get the Media Menu. The
Media service requires a IXmlSim interface for the video system simulation.
The behavior of the video system is described in the State Transition Diagram
(STD) of Figure 5.8.

The STD is converted into the XML-file of Appendix E. The Robocop
Simulation Component simulates the video system using the XML-file. The
Media component displays the simulation of the video system. The video system
has one service property resolution with can have the value high or low.

38

5.2.5 FrontDisplay

The Frontdisplay component (CFrontDisplay) represents the front display of
the CIS system. The component provides a service called SFrontDisplay which
requires the IDriverInfo interface to show the Driverinfo, the IGPS interface to
show the behaviour of the GPS Sytem, the IMedia interface to show the media
menu and the ICar interface to turn the car on or off. The RIDL-file looks like
this:

#ifndef frontdisplay_ridl_def

#define frontdisplay_ridl_def

#include "driverinfo.ridl"

#include "gps.ridl"

#include "media.ridl"

namespace CIS{ deb3b600-3147-43be-9a28-a361d4218593 }

{

service SFrontDisplay { 619db924-caf5-4803-8edd-6be4c29e7fe5 }

{

requires{

ICar car;

IDriverInfo driverinfo;

IGPS gps;

IXmlSim rc_sim;

IXmlSim vs_sim;

IXmlSim gr_sim;

IMedia media;

};

};

component CFrontDisplay { 65c51828-ea00-4e78-9a4d-218ff155d3c6 }

{

provides SFrontDisplay;

};

};

#endif

The front display is displayed from the main function by the following call:

result = CIS_SFrontDisplay_start(s_fd);

This function calls another function that implements the front display.

5.2.6 BackDisplay

The BackDisplay component shows the back display of the CIS system. This is
the RIDL-file of the BackDisplay:

#ifndef backdisplay_ridl_def

#define backdisplay_ridl_def

#include "media.ridl"

39

namespace CIS{ deb3b600-3147-43be-9a28-a361d4218593 }

{

interface IBackDisplay { b097845c-9f1f-4918-8e32-e3c0eb24c68d }

{

void show_BackDisplay();

};

service SBackDisplay { cb1e74d6-b613-461f-9484-d8e77d919f4d }

{

provides{

IBackDisplay backdisplay;

};

requires{

IMedia media;

};

};

component CBackDisplay { 2785c22e-c4b0-4b8e-b994-a7c77177122b }

{

provides SBackDisplay;

};

};

#endif

The component provides a service called SBackDisplay which requires the
IMedia interface to show the media menu.

5.3 The Main Function

The implementation of the main function can be found in Appendix E. As a
first step, all the services have to be created. After this, all the interfaces the
services provide and require have to be created. Then, the services that require
interfaces have to be bound to the interfaces they require. When this is all done,
the Car service is started, this initializes the Car component. Then the system
boots by starting the front display and the two back displays.

5.4 Evaluation

To test the CIS system and especially how it reacts to the simulated components
3 scenarios are tested. These scenarios were tested on a normal Desktop PC
with 512 MB of main memory.

- SCENARIO 1: ‘The video component needs more memory than is avail-
able when running in high quality mode.’
The video system needs 800 MB of main memory if the video quality is set on
high. In this case when running the application and starting the video, setting
the video quality on high will cause an OUT OF MEMORY-warning. When the
video quality is set back to low again, the simulation continues normally.

40

- SCENARIO 2: ‘A component does not work properly, because another
component takes up too many resources.’
In this scenario the video system needs 400 MB of main memory if the video
quality is set on high. The GPS System is running with all its options on:

• Travel and Traffic (T&T) on.

• Calculation mode SR (see page 31).

• Text-to-speech conversion on.

• Rendering mode 3d.

If the quality of the video system is set on high, the video system and the GPS
system will give OUT OF MEMORY-warnings. By switching the video quality back
to low, the OUT OF MEMORY-warnings will disappear and the system will run
properly again.

- SCENARIO 3: ‘Three video systems running in high quality mode requiring
600MB of memory per video system.’
All three systems give an OUT OF MEMORY-warning beginning with the system
last started. When switching back to low quality, needing 100MB of memory
per video system, the video systems run properly again.

Which component of the system gives an OUT OF MEMORY-warning depends on
when the component is started and at what point in time it needs to allocate
memory. Memory will be allocated to a component only when it is available,
else it will give an OUT OF MEMORY-warning and it will retry to allocate the same
amount of memory in the next run of the simulation. By changing the mode
of operation of the component, it can happen that the component needs less
memory and runs properly again.

To add realistic resource usage to the XML-files is quite a challenge if the
component is not developed yet. Good simulation depends on realistic resource
usage. It looks like simulation of an already developed component is better,
because more realistic behaviors and values of resource usage are known.

41

Chapter 6

Conclusions and Future

Work

The main goal of this thesis project was developing a Car Infotainment System
(CIS) and the Modes of Operation mechanism to obtain trustworthiness in it.
Already during the design phase it did not seem feasible to build all actual
components of the CIS system. Because of this, the idea came up to develop a
Robocop Simulation Component (RSC) which can simulate the behaviours of a
component using XML-files. Now the main goal was building the RSC-tool and
implementing the Modes of Operation mechanism to obtain trust and demon-
strating this using the CIS system.

The RSC seems to be quite a powerful tool for simulating Robocop components.
In the RSC the quality of the simulation depends very much on how realistic the
values of the resource usage are. Simulating an already developed component
looks easier than simulating a non-existing component, because the behaviors
and resource usage of the developed component are already known. The RSC
is suitable for simulating Robocop components in every Robocop application.

Once the XML-files have been produced, using the RSC-tool is quite simple.
Only the appropriate function calls and service properties have to be added
by the user. The service properties implement the actual Modes of Operation
mechanism in the RSC. Changing the mode of operation is done manually, in
this way a user can see directly how a change in the mode of operation influences
the system. In real embedded systems this should be done automatically.

The innovative Modes of Operation mechanism developed to obtain trustwor-
thiness in a component based software system is also quite powerful, because it
can change the mode of operation of the system during runtime to obtain trust
in the system. Also it can control quite a lot of quality attributes to obtain
trust in a software system and its components.

42

Understanding the Robocop framework and its features was quite a challenge,
because the framework is still under development and there is not much doc-
umentation available. Before developing a Robocop component or integrating
an already developed component, it can be useful to test how the Robocop ap-
plication reacts to the integration of a simulation of that component using the
RSC-tool. In such a way a user can see if it is useful to develop the component
for the Robocop application or to integrate the already developed component
in the Robocop application. This is both cost and time effective.

Here are recommendations for future work on the subject of this thesis:

• During the project a new version of the Robocop framework was released
with support for multi-threading. The RSC-tool must be adapted so it can
run on the new Robocop framework in such a way the new multi-threading
facilities can be exploited.

• The RSC-tool can be extended with a a protocol to send messages between
simulated services. This makes it possible that services can communicate
with each other which allows new features to be implemented.

• Develop a Resource Manager Component (RMC) that can switch the mode
of operation during runtime automatically. This is more realistic than the
current manual switching of the mode of operation.

• Adapt the CIS application in such a way that it compiles and runs on the
new Robocop framework.

• In the CIS application the Music and Games buttons don’t have function-
ality. Functionality can be added by simulating both components using
the RSC-tool.

• Implement other mechanisms to obtain trust in the RSC-tool. Some of
these mechanisms are mentioned in section 2.5.2

43

Bibliography

[1] I. Crnkovic and M. Larssons (Eds.): Building Reusable Component Based
Software Systems. Aktech House Publisher, 2002.

[2] F.B. Schneider, S.M. Belovin and A.S. Inovye: Building Trustworthy Sys-
tems. IEEE Internet Computing 3(6): 64-72, 1999.

[3] C. Szypersky: Component Software - Beyond Object Oriented Program-
ming. 2nd Edition, Addision Wesley, 2002.

[4] ITEA Robocop Project: Robust Open Component Based Software Archi-
tecture for Configurable Devices Project,
http://www.hitech-projects.com/euprojects/robocop/ (23-04-2007).

[5] ITEA Space4U Project: Software platform and component environment 4
you,
http://www.hitech-projects.com/euprojects/space4u/ (23-04-2007).

[6] ITEA Trust4All Project: Trustworthiness in embedded software,
http://www.hitech-projects.com/euprojects/trust4all/ (23-04-2007).

[7] ITEA: Information Technology for European Advancement,
http://www.itea-office.org/ (27-04-2007).

[8] Nokia Research website: Trust4All / Robocop / Space4U,
http://research.nokia.com/research/projects/trust4all/index.html (23-04-
2007).

[9] Space4U Deliverable 1.2: Report on the concept of framework with func-
tionality extensions. ITEA Space4U Consortium Confidential.

[10] Arnaud Gouder: Component Model Tutorial Version 1.0.

[11] Johan Muskens, Ruben Alonso, Zhen Yhang, Koen Egelink, Arantxa Lar-
ranaga and Arnaud Gouder: Trust4All Trust Framework and Mechanisms.
Version 1.0.

[12] Dennis Ritchie: The C programming language. Prentice Hall, 1988.

[13] Jason T. Roff: UML ‘A Beginners Guide’. Osborne Publishing, 2002.

44

[14] L. Groenewegen and E. de Vink: Operational Semantics for Coordination
in Paradigm. In F. Arbab and C. Talcott, editors, Proc. Coordination 2002,
volume 2315 of LNCS, pages 191-206, 2002.

[15] Robert B. Mellor: XML ‘Learning by Example’. Franklin Beedle & Asso-
ciates, 2002.

[16] Michael Sweet: Mini-XML, a small XML parsing library,
http://www.easysw.com/ mike/mxml/ (23-04-2007).

[17] Syd Logan: Gtk+ Programming In C. Prentice Hall, 2001.

45

Appendix A

Example XML file

Here you can find the complete XML-file for the UML statechart diagram of figure 3.1.

<?xml version="1.0" encoding="UTF-8"?>

<ParADE:ParadeModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:ParADE="http://www.liacs.nl/ParADE/core"

name="Simulation Example">

<processes name="Example" initialStateName="A">

<rules name="FromAtoB" cpu="5" mem="100">

<sourceStateNames>A</sourceStateNames>

<targetStateNames>B</targetStateNames>

<property name="quality" value="high">

<malloc name="var" size="200"/>

<free name="temp"/>

</rules>

<rules name="FromAtoC" cpu="10" mem="200">

<sourceStateNames>A</sourceStateNames>

<targetStateNames>C</targetStateNames>

<property name="quality" value="low">

<malloc name="temp" size="200000"/>

</rules>

<rules name="FromBtoC" cpu="5" mem="100">

<sourceStateNames>B</sourceStateNames>

<targetStateNames>C</targetStateNames>

<free name="var" size="200"/>

</rules>

</processes>

</ParADE:ParadeModel>

46

Appendix B

Route Calculator XML file

<?xml version="1.0" encoding="UTF-8"?>

<ParADE:ParadeModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:ParADE="http://www.liacs.nl/ParADE/core"

name="Global Positioning System">

<processes name="Route Calculator"

initialStateName="Start of route determination">

<rules name="get new destination" cpu="5" mem="1000000">

<sourceStateNames>Start of route determination</sourceStateNames>

<targetStateNames>Destination received</targetStateNames>

<malloc name="dest" size="1000000"/>

</rules>

<rules name="get current location" cpu="5" mem="1000000">

<sourceStateNames>Destination received</sourceStateNames>

<targetStateNames>Location received</targetStateNames>

<malloc name="loc" size="1000000"/>

</rules>

<rules name="get T&T info" cpu="30" mem="400000000">

<sourceStateNames>Location received</sourceStateNames>

<targetStateNames>T&T info received</targetStateNames>

<malloc name="tt" size="400000000"/>

<property name="travelandtraffic" value="on"/>

</rules>

<rules name="[to start of route (re)calculation]" cpu="0" mem="0">

<sourceStateNames>T&T info received</sourceStateNames>

<targetStateNames>Start of route calculation</targetStateNames>

</rules>

<rules name="[to start of route (re)calculation]" cpu="0" mem="0">

<sourceStateNames>Location received</sourceStateNames>

<targetStateNames>Start of route calculation</targetStateNames>

<property name="travelandtraffic" value="off"/>

</rules>

<rules name="[to start of route (re)calculation]" cpu="0" mem="0">

<sourceStateNames>Route recalc. required</sourceStateNames>

<targetStateNames>Start of route calculation</targetStateNames>

</rules>

<rules name="perform SR calculation" cpu="75" mem="400000000">

<sourceStateNames>Start of route calculation</sourceStateNames>

<targetStateNames>Route calculated</targetStateNames>

<malloc name="route" size="400000000"/>

47

<property name="calculationmode" value="sr"/>

</rules>

<rules name="perform QR calculation" cpu="50" mem="100000000">

<sourceStateNames>Start of route calculation</sourceStateNames>

<targetStateNames>Route calculated</targetStateNames>

<malloc name="route" size="100000000"/>

<property name="calculationmode" value="qr"/>

</rules>

<rules name="send route info" cpu="5" mem="1000000">

<sourceStateNames>Route calculated</sourceStateNames>

<targetStateNames>Route info sent</targetStateNames>

</rules>

<rules name="[to start of situation check]" cpu="0" mem="0">

<sourceStateNames>Route info sent</sourceStateNames>

<targetStateNames>Start of situation check</targetStateNames>

</rules>

<rules name="[to start of situation check]" cpu="0" mem="0">

<sourceStateNames>T&T info received while traversing</sourceStateNames>

<targetStateNames>Start of situation check</targetStateNames>

</rules>

<rules name="[to start of situation check]" cpu="0" mem="0">

<sourceStateNames>Location received while traversing</sourceStateNames>

<targetStateNames>Start of situation check</targetStateNames>

<property name="travelandtraffic" value="off"/>

</rules>

<rules name="check current situation" cpu="5" mem="1000000">

<sourceStateNames>Start of situation check</sourceStateNames>

<targetStateNames>Situation stable</targetStateNames>

<targetStateNames>Action required</targetStateNames>

<targetStateNames>Route recalc. required</targetStateNames>

<targetStateNames>New destination entered</targetStateNames>

<targetStateNames>Destination reached</targetStateNames>

</rules>

<rules name="[to start of route traversal]" cpu="0" mem="0">

<sourceStateNames>Situation stable</sourceStateNames>

<targetStateNames>Start of route traversal</targetStateNames>

<free name="tt"/>

<free name="loc"/>

</rules>

<rules name="[to start of route traversal]" cpu="0" mem="0">

<sourceStateNames>Action info sent</sourceStateNames>

<targetStateNames>Start of route traversal</targetStateNames>

<free name="tt"/>

<free name="loc"/>

</rules>

<rules name="get current location" cpu="5" mem="1000000">

<sourceStateNames>Start of route traversal</sourceStateNames>

<targetStateNames>Location received while traversing</targetStateNames>

<malloc name="loc" size="1000000"/>

</rules>

<rules name="get T&T info" cpu="5" mem="100000000">

<sourceStateNames>Location received while traversing</sourceStateNames>

<targetStateNames>T&T info received while traversing</targetStateNames>

<property name="travelandtraffic" value="on"/>

<malloc name="tt" size="100000000"/>

</rules>

<rules name="send action info" cpu="5" mem="500">

48

<sourceStateNames>Action required</sourceStateNames>

<targetStateNames>Action info sent</targetStateNames>

</rules>

<rules name="[to start of route determination]" cpu="0" mem="0">

<sourceStateNames>New destination entered</sourceStateNames>

<targetStateNames>Start of route determination</targetStateNames>

<free name="dest"/>

<free name="loc"/>

<free name="route"/>

<free name="tt"/>

</rules>

<rules name="[to start of route determination]" cpu="0" mem="0">

<sourceStateNames>End of tour info sent</sourceStateNames>

<targetStateNames>Start of route determination</targetStateNames>

<free name="dest"/>

<free name="loc"/>

<free name="route"/>

<free name="tt"/>

</rules>

<rules name="[to start of route determination]" cpu="0" mem="0">

<sourceStateNames>Start of route calculation</sourceStateNames>

<targetStateNames>Start of route determination</targetStateNames>

<free name="dest"/>

<free name="loc"/>

<free name="route"/>

<free name="tt"/>

</rules>

<rules name="[to start of route determination]" cpu="0" mem="0">

<sourceStateNames>Start of situation check</sourceStateNames>

<targetStateNames>Start of route determination</targetStateNames>

<free name="dest"/>

<free name="loc"/>

<free name="route"/>

<free name="tt"/>

</rules>

<rules name="send end of tour info" cpu="5" mem="100">

<sourceStateNames>Destination reached</sourceStateNames>

<targetStateNames>End of tour info sent</targetStateNames>

</rules>

</processes>

</ParADE:ParadeModel>

49

Appendix C

Voice Synthesizer XML file

<?xml version="1.0" encoding="UTF-8"?>

<ParADE:ParadeModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:ParADE="http://www.liacs.nl/ParADE/core" name="Global Positioning System">

<processes name="Voice Synthesizer" initialStateName="Idle">

<rules name="receive action info" cpu="5" mem="100">

<sourceStateNames>Idle</sourceStateNames>

<targetStateNames>Action info received</targetStateNames>

<malloc name="info" size="1000000"/>

</rules>

<rules name="perform text-to-speech conversion" cpu="40" mem="100000000">

<sourceStateNames>Action info received</sourceStateNames>

<targetStateNames>TTS conversion performed</targetStateNames>

<property name="texttospeech" value="on"/>

<malloc name="speech" size="500000000"/>

<free name="info"/>

</rules>

<rules name="Construct message and send to DAC" cpu="10" mem="10000">

<sourceStateNames>TTS conversion performed</sourceStateNames>

<targetStateNames>Message sent</targetStateNames>

<free name="speech"/>

</rules>

<rules name="Construct message and send to DAC" cpu="10" mem="10000">

<sourceStateNames>Action info received</sourceStateNames>

<targetStateNames>Message sent</targetStateNames>

<property name="texttospeech" value="off"/>

<free name="info"/>

</rules>

<rules name="[to idle]" cpu="1" mem="0">

<sourceStateNames>Action info received</sourceStateNames>

<targetStateNames>Idle</targetStateNames>

</rules>

<rules name="[to idle]" cpu="1" mem="0">

<sourceStateNames>TTS conversion performed</sourceStateNames>

<targetStateNames>Idle</targetStateNames>

</rules>

<rules name="[to idle]" cpu="1" mem="0">

<sourceStateNames>Message sent</sourceStateNames>

<targetStateNames>Idle</targetStateNames>

</rules>

50

</processes>

</ParADE:ParadeModel>

51

Appendix D

Graphics Renderer XML

file

<?xml version="1.0" encoding="UTF-8"?>

<ParADE:ParadeModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:ParADE="http://www.liacs.nl/ParADE/core" name="Global Positioning System">

<processes name="Graphics Renderer" initialStateName="Idle">

<rules name="get current location" cpu="5" mem="100">

<sourceStateNames>Idle</sourceStateNames>

<targetStateNames>Current location received</targetStateNames>

<malloc name="location" size="1000000"/>

</rules>

<rules name="check if new route info available" cpu="5" mem="100">

<sourceStateNames>Current location received</sourceStateNames>

<targetStateNames>No route info available</targetStateNames>

<targetStateNames>New route info available</targetStateNames>

</rules>

<rules name="create route visualization" cpu="100" mem="1000000">

<sourceStateNames>New route info available</sourceStateNames>

<targetStateNames>Route visualization created</targetStateNames>

<malloc name="routevis" size="5000000"/>

</rules>

<rules name="check if new action info available" cpu="5" mem="100">

<sourceStateNames>Route visualization created</sourceStateNames>

<targetStateNames>No action info available</targetStateNames>

<targetStateNames>New action info available</targetStateNames>

</rules>

<rules name="check if new action info available" cpu="5" mem="100">

<sourceStateNames>No route info available</sourceStateNames>

<targetStateNames>No action info available</targetStateNames>

<targetStateNames>New action info available</targetStateNames>

</rules>

<rules name="create action visualization" cpu="10" mem="100">

<sourceStateNames>New action info available</sourceStateNames>

<targetStateNames>Action visualized</targetStateNames>

<malloc name="actionvis" size="5000000"/>

</rules>

<rules name="[to start of rendering]" cpu="0" mem="0">

<sourceStateNames>Current location received</sourceStateNames>

52

<targetStateNames>Start of rendering</targetStateNames>

</rules>

<rules name="[to start of rendering]" cpu="0" mem="0">

<sourceStateNames>No route info available</sourceStateNames>

<targetStateNames>Start of rendering</targetStateNames>

</rules>

<rules name="[to start of rendering]" cpu="0" mem="0">

<sourceStateNames>New route info available</sourceStateNames>

<targetStateNames>Start of rendering</targetStateNames>

</rules>

<rules name="[to start of rendering]" cpu="0" mem="0">

<sourceStateNames>Route visualization created</sourceStateNames>

<targetStateNames>Start of rendering</targetStateNames>

</rules>

<rules name="[to start of rendering]" cpu="0" mem="0">

<sourceStateNames>No action info available</sourceStateNames>

<targetStateNames>Start of rendering</targetStateNames>

</rules>

<rules name="[to start of rendering]" cpu="0" mem="0">

<sourceStateNames>New action info available</sourceStateNames>

<targetStateNames>Start of rendering</targetStateNames>

</rules>

<rules name="[to start of rendering]" cpu="0" mem="0">

<sourceStateNames>Action visualized</sourceStateNames>

<targetStateNames>Start of rendering</targetStateNames>

</rules>

<rules name="[to start of rendering]" cpu="0" mem="0">

<sourceStateNames>Visualizations removed</sourceStateNames>

<targetStateNames>Start of rendering</targetStateNames>

</rules>

<rules name="perform 2d rendering" cpu="50" mem="100000000">

<sourceStateNames>Start of rendering</sourceStateNames>

<targetStateNames>Area rendered</targetStateNames>

<targetStateNames>Visualizations removed</targetStateNames>

<property name="3d" value="off"/>

<free name="routevis"/>

<free name="actionvis"/>

<free name="location"/>

</rules>

<rules name="perform 3d rendering" cpu="100" mem="400000000">

<sourceStateNames>Start of rendering</sourceStateNames>

<targetStateNames>Area rendered</targetStateNames>

<targetStateNames>Visualizations removed</targetStateNames>

<property name="3d" value="on"/>

<free name="routevis"/>

<free name="actionvis"/>

<free name="location"/>

</rules>

<rules name="[to idle]" cpu="0" mem="0">

<sourceStateNames>Area rendered</sourceStateNames>

<targetStateNames>Idle</targetStateNames>

</rules>

</processes>

</ParADE:ParadeModel>

53

Appendix E

Video XML Simulation File

<?xml version="1.0" encoding="UTF-8"?>

<ParADE:ParadeModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:ParADE="http://www.liacs.nl/ParADE/core" name="Video System">

<processes name="Video" initialStateName="Idle">

<rules name="read highres frames" cpu="10" mem="1000">

<sourceStateNames>Idle</sourceStateNames>

<targetStateNames>High resolution frame read

</targetStateNames>

<malloc name="frames" size="5000000"/>

</rules>

<rules name="decode all layers" cpu="100" mem="600000000">

<sourceStateNames>High resolution frame read

</sourceStateNames>

<targetStateNames>Decoded to highres</targetStateNames>

<property name="resolution" value="high"/>

<malloc name="layers" size="100000000"/>

<free name="frames"/>

</rules>

<rules name="decode lowres layers" cpu="50" mem="100000000">

<sourceStateNames>High resolution frame read</sourceStateNames>

<targetStateNames>Decoded to lowres</targetStateNames>

<property name="resolution" value="low"/>

<malloc name="layers" size="100000000"/>

<free name="frames"/>

</rules>

<rules name="render highres frames" cpu="10" mem="500000">

<sourceStateNames>Decoded to highres</sourceStateNames>

<targetStateNames>Frame rendered</targetStateNames>

<malloc name="frames" size="1000000"/>

</rules>

<rules name="render lowres frames" cpu="5" mem="100000">

<sourceStateNames>Decoded to lowres</sourceStateNames>

<targetStateNames>Frame rendered</targetStateNames>

<malloc name="frames" size="100000"/>

</rules>

<rules name="to idle" cpu="0" mem="0">

<sourceStateNames>Frame rendered</sourceStateNames>

<targetStateNames>Idle</targetStateNames>

<free name="layers"/>

54

<free name="frames"/>

</rules>

</processes>

</ParADE:ParadeModel>

55

Appendix F

The Main function

#include <stdlib.h>

#include <rre.h>

#include "gtk/gtk.h"

#include "login.h"

#include "car.h"

#include "driverinfo.h"

#include "media.h"

#include "backdisplay.h"

#include "xmlsim.h"

#include "gps.h"

#include "frontdisplay.h"

#include "video.h"

int main(int argc, char *argv[])

{

gtk_init (&argc, &argv);

/* Define a standard result catcher */

RcResult result=RC_OK;

/* Define a RcIServiceRef variable */

RcIServiceRef svc=NULL;

//the interface references

CIS_ILoginRef i_login;

CIS_ICarRef i_car;

CIS_IDriverInfoRef i_di;

CIS_IMediaRef i_media1;

CIS_IMediaRef i_media2;

CIS_IMediaRef i_media3;

CIS_IVideoRef i_video1;

CIS_IVideoRef i_video2;

CIS_IVideoRef i_video3;

CIS_IXmlSimRef i_rc_sim;

CIS_IXmlSimRef i_vs_sim;

CIS_IXmlSimRef i_gr_sim;

CIS_IXmlSimRef i_reader;

56

CIS_IXmlSimRef i_decoder;

CIS_IXmlSimRef i_renderer;

CIS_IXmlSimRef i_interpolator;

CIS_IGPSRef i_gps;

//the service references

CIS_SLoginRef s_login;

CIS_SFrontDisplayRef s_fd;

CIS_SCarRef s_car;

CIS_SDriverInfoRef s_di;

CIS_SBackDisplayRef s_bd1;

CIS_SBackDisplayRef s_bd2;

CIS_SMediaRef s_media1;

CIS_SMediaRef s_media2;

CIS_SMediaRef s_media3;

CIS_SVideoRef s_video1;

CIS_SVideoRef s_video2;

CIS_SVideoRef s_video3;

CIS_SXmlSimRef s_rc_sim;

CIS_SXmlSimRef s_vs_sim;

CIS_SXmlSimRef s_gr_sim;

CIS_SXmlSimRef s_reader;

CIS_SXmlSimRef s_decoder;

CIS_SXmlSimRef s_renderer;

CIS_SXmlSimRef s_interpolator;

CIS_SGPSRef s_gps;

//integer to check if there has been logged in

int logged_in = 0;

/* CREATING THE SERVICES */

//Create the Login Service

result = rre_getServiceInstance(&CIS_SLogin_GUID, &svc);

//Cast to SLogin

result = RcIService_QueryInterface(svc, &CIS_SLogin_GUID,

(void **) &s_login);

//Create the FrontDisplay Service

result = rre_getServiceInstance(&CIS_SFrontDisplay_GUID, &svc);

//Cast to SFrontDisplay

result = RcIService_QueryInterface(svc, &CIS_SFrontDisplay_GUID,

(void **) &s_fd);

//Create the Car Service

result = rre_getServiceInstance(&CIS_SCar_GUID, &svc);

//Cast to SCar

result = RcIService_QueryInterface(svc, &CIS_SCar_GUID,

(void **) &s_car);

;

//Create the DriverInfo Service

result = rre_getServiceInstance(&CIS_SDriverInfo_GUID, &svc);

57

//Cast to SDriverInfo

result = RcIService_QueryInterface(svc, &CIS_SDriverInfo_GUID,

(void **) &s_di);

//create the BackDisplay service 1

result = rre_getServiceInstance(&CIS_SBackDisplay_GUID, &svc);

//cast to SBackDisplay 1

result = RcIService_QueryInterface(svc, &CIS_SBackDisplay_GUID,

(void **) &s_bd1);

//create the BackDisplay service 2

result = rre_getServiceInstance(&CIS_SBackDisplay_GUID, &svc);

//cast to SBackDisplay 2

result = RcIService_QueryInterface(svc, &CIS_SBackDisplay_GUID,

(void **) &s_bd2);

//create the Media Service

result = rre_getServiceInstance(&CIS_SMedia_GUID, &svc);

//cast to SMedia;

result = RcIService_QueryInterface(svc, &CIS_SMedia_GUID,

(void **) &s_media1);

//create the Media Service

result = rre_getServiceInstance(&CIS_SMedia_GUID, &svc);

//cast to SMedia;

result = RcIService_QueryInterface(svc, &CIS_SMedia_GUID,

(void **) &s_media2);

//create the Media Service

result = rre_getServiceInstance(&CIS_SMedia_GUID, &svc);

//cast to SMedia

result = RcIService_QueryInterface(svc, &CIS_SMedia_GUID,

(void **) &s_media3);

//create the Video Service

result = rre_getServiceInstance(&CIS_SVideo_GUID, &svc);

//cast to SMedia;

result = RcIService_QueryInterface(svc, &CIS_SVideo_GUID,

(void **) &s_video1);

//create the Video Service

result = rre_getServiceInstance(&CIS_SVideo_GUID, &svc);

//cast to SMedia;

result = RcIService_QueryInterface(svc, &CIS_SVideo_GUID,

(void **) &s_video2);

//create the Video Service

result = rre_getServiceInstance(&CIS_SVideo_GUID, &svc);

//cast to SMedia

result = RcIService_QueryInterface(svc, &CIS_SVideo_GUID,

(void **) &s_video3);

//cerating the xml simulation services and casting them to SXmlSim

//create the xml simulation service

result = rre_getServiceInstance(&CIS_SXmlSim_GUID, &svc);

result = RcIService_QueryInterface(svc, &CIS_SXmlSim_GUID,

(void **) &s_rc_sim);

result = rre_getServiceInstance(&CIS_SXmlSim_GUID, &svc);

result = RcIService_QueryInterface(svc, &CIS_SXmlSim_GUID,

58

(void **) &s_vs_sim);

result = rre_getServiceInstance(&CIS_SXmlSim_GUID, &svc);

result = RcIService_QueryInterface(svc, &CIS_SXmlSim_GUID,

(void **) &s_gr_sim);

result = rre_getServiceInstance(&CIS_SXmlSim_GUID, &svc);

result = RcIService_QueryInterface(svc, &CIS_SXmlSim_GUID,

(void **) &s_reader);

result = rre_getServiceInstance(&CIS_SXmlSim_GUID, &svc);

result = RcIService_QueryInterface(svc, &CIS_SXmlSim_GUID,

(void **) &s_decoder);

result = rre_getServiceInstance(&CIS_SXmlSim_GUID, &svc);

result = RcIService_QueryInterface(svc, &CIS_SXmlSim_GUID,

(void **) &s_renderer);

result = rre_getServiceInstance(&CIS_SXmlSim_GUID, &svc);

result = RcIService_QueryInterface(svc, &CIS_SXmlSim_GUID,

(void **) &s_interpolator);

//create the GPS Service

result = rre_getServiceInstance(&CIS_SGPS_GUID, &svc);

//cast to GPS Service

result = RcIService_QueryInterface(svc, &CIS_SGPS_GUID,

(void **) &s_gps);

/* GETTING THE INTERFACES */

//get the Login Interface

result = CIS_SLogin_getProvides_login(s_login, &i_login);

//get the Media interfaces

result = CIS_SMedia_getProvides_media(s_media1, &i_media1);

result = CIS_SMedia_getProvides_media(s_media2, &i_media2);

result = CIS_SMedia_getProvides_media(s_media3, &i_media3);

//get the Video interfaces

result = CIS_SVideo_getProvides_video(s_video1, &i_video1);

result = CIS_SVideo_getProvides_video(s_video2, &i_video2);

result = CIS_SVideo_getProvides_video(s_video3, &i_video3);

//get the xml simulation interfaces

result = CIS_SXmlSim_getProvides_xmlsim(s_rc_sim, &i_rc_sim);

result = CIS_SXmlSim_getProvides_xmlsim(s_vs_sim, &i_vs_sim);

result = CIS_SXmlSim_getProvides_xmlsim(s_gr_sim, &i_gr_sim);

result = CIS_SXmlSim_getProvides_xmlsim(s_reader, &i_reader);

result = CIS_SXmlSim_getProvides_xmlsim(s_decoder, &i_decoder);

result = CIS_SXmlSim_getProvides_xmlsim(s_renderer, &i_renderer);

result = CIS_SXmlSim_getProvides_xmlsim(s_interpolator, &i_interpolator);

//get the GPS interface

result = CIS_SGPS_getProvides_gps(s_gps, &i_gps);

59

//get the driver info interface

result = CIS_SDriverInfo_getProvides_driverinfo(s_di, &i_di);

//get the car interface

result = CIS_SCar_getProvides_car(s_car, &i_car);

/* BINDING */

//set de car interface to the driverinfo service

result = CIS_SDriverInfo_bindTo_car(s_di, i_car);

//set the driverinfo interface to the frontdisplay service

result = CIS_SFrontDisplay_bindTo_driverinfo(s_fd, i_di);

//set the media interface to the backdisplay service

result = CIS_SBackDisplay_bindTo_media(s_bd1, i_media1);

result = CIS_SBackDisplay_bindTo_media(s_bd2, i_media2);

//set the xml simulation interface to the gps service

result = CIS_SGPS_bindTo_rc_sim(s_gps, i_rc_sim);

//set the xml simulation interface to the gps service

result = CIS_SGPS_bindTo_vs_sim(s_gps, i_vs_sim);

//set the xml simulation interface to the gps service

result = CIS_SGPS_bindTo_gr_sim(s_gps, i_gr_sim);

//set the media interface to the fron display service

result = CIS_SFrontDisplay_bindTo_media(s_fd, i_media3);

//set the car interface to the front display service

result = CIS_SFrontDisplay_bindTo_car(s_fd, i_car);

//set the gps interface to the front display service

result = CIS_SFrontDisplay_bindTo_gps(s_fd, i_gps);

//set the xml simulation interface to the front display service

result = CIS_SFrontDisplay_bindTo_rc_sim(s_fd, i_rc_sim);

result = CIS_SFrontDisplay_bindTo_vs_sim(s_fd, i_vs_sim);

result = CIS_SFrontDisplay_bindTo_gr_sim(s_fd, i_gr_sim);

//set the simulation interfaces to the video service

result = CIS_SVideo_bindTo_reader(s_video1, i_reader);

result = CIS_SVideo_bindTo_reader(s_video2, i_reader);

result = CIS_SVideo_bindTo_reader(s_video3, i_reader);

result = CIS_SVideo_bindTo_reader(s_video1, i_decoder);

result = CIS_SVideo_bindTo_reader(s_video2, i_decoder);

result = CIS_SVideo_bindTo_reader(s_video3, i_decoder);

result = CIS_SVideo_bindTo_reader(s_video1, i_renderer);

result = CIS_SVideo_bindTo_reader(s_video2, i_renderer);

result = CIS_SVideo_bindTo_reader(s_video3, i_renderer);

result = CIS_SVideo_bindTo_reader(s_video1, i_interpolator);

result = CIS_SVideo_bindTo_reader(s_video2, i_interpolator);

result = CIS_SVideo_bindTo_reader(s_video3, i_interpolator);

60

//set the video interface to the media service

result = CIS_SMedia_bindTo_video(s_media1, i_video1);

result = CIS_SMedia_bindTo_video(s_media2, i_video2);

result = CIS_SMedia_bindTo_video(s_media3, i_video3);

/*STARTING SERVICES*/

//CIS_ILogin_login(i_login, &logged_in);

//if(logged_in == 1){

//start the car service

result = CIS_SCar_start(s_car);

//start the frontdisplay service

result = CIS_SFrontDisplay_start(s_fd);

//start the backdisplay services

result = CIS_SBackDisplay_start(s_bd1);

result = CIS_SBackDisplay_start(s_bd2);

//}

gtk_main();

return (EXIT_SUCCESS);

};

61

