
Universiteit Leiden

Opleiding Informatica

Describing heaps using Kleene algebra with tests

Name: Ulbe van der Werf
Studentnr: 1166328

Date: June 29, 2016

1st supervisor: Marcello Bonsangue
2nd supervisor: Frank de Boer

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)

Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

Describing heaps using Kleene Algebra with tests

Ulbe van der Werf

Abstract

We explore a method for describing heaps using Kleene algebra with tests by reinterpreting heaps as KAT-

automata. Using this reinterpretation we test the inclusion of a heap in a KAT-expression, explore the minimal

conditions for a KAT-expression to accept any heaps, and weaken the used method of testing inclusion to

simplify the expressions needed to describe a heap. We provide a tool to generate automata from KAT-

expressions, and to test whether a given heap is accepted by a given expression.

Contents

Abstract 2

1 Introduction 1

1.0.1 Overview . 2

2 Definitions 3

2.1 Kleene algebra with tests [ABM12] [Joc13] [Koz00] . 3

2.1.1 Constructing non-deterministic finite automata for KAT 4

2.2 Heaps [Joc13] . 8

2.2.1 Definition . 8

2.2.2 Interpreting heaps as NFA . 9

2.3 Bisimulations for Kleene algebra with tests . 9

3 Related Work 11

3.1 Partial derivatives for KAT expressions [Joc13] . 11

3.2 Automated Verification of Recursive Programs with Pointers [FdBR12] 11

4 Contributions 12

4.1 Parsing boolean expressions in δ . 12

4.1.1 Incorrect transitions in δ . 12

4.1.2 Testing for satisfaction in δ . 14

4.2 KAT-automata that do not specify any heaps . 15

4.3 Automating automaton generation . 18

4.4 Testing whether a heap satisfies an expression . 19

4.5 Loosening the interpretation of KAT-expressions . 23

4.5.1 Accepting all substrings . 23

4.5.2 Accepting arbitrary continuations . 24

5 Conclusions and further work 26

5.0.1 Conclusions . 26

5.0.2 Further work . 26

3

Appendices 27

A Prolog code 28

Bibliography 33

4

Chapter 1

Introduction

Heaps are powerful data structures where objects may hold the location of other objects in their properties. A

linked list can be constructed by having each object point to the next object in line or a tree structure could be

constructed by having each object point to a number of child objects. Large sections of such structures can be

moved by changing the target of one pointer. The power of heap structures also poses a risk when it becomes

unclear which object is being altered. After several steps across pointers it becomes possible to inadvertently

create loops or detach a subheap from the main structure. To mitigate these problems we propose a way to

specify heaps using Kleene algebra with tests. This method could be a first step to creating correctness proofs

for programs on heaps.

Kleene algebra with tests

Kleene algebra with tests (KAT) is an extension to Kleene algebra. Kleene algebra is a method for defining

languages using operators as choice, concatenation and repetition. An expression of Kleene algebra is also

called a regular expression. KAT expands on this system by adding boolean tests. In a KAT-expression, each

transition is guarded by a boolean test which must be satisfied by the input to continue along that path. KAT

is more commonly used to model Hoare logic in program correctness proofs. An example of this is [Koz00].

Testing KAT acceptance

We use the method to reinterpret heaps as KAT-automata proposed by [Joc13] and implement their method

for deciding inclusion of such a heap in a given KAT-expression. This method uses bisimulation up to con-

gruence. A method which creates a relation between sets of nodes that produce the same output in different

1

2 Chapter 1. Introduction

automata. We will expand this interpretation of acceptance to create more workable KAT-expressions to

denote heaps.

1.0.1 Overview

Chapter 2 provides definitions for Kleene algebra with tests, heaps and bisimulations of KAT-expressions.

Chapter 3 discusses several publications which inspired this work. Chapter 4 proposes a modification to

[Joc13]; introduces a tool we wrote to automate automaton generation and testing of heap inclusion; explores

the minimum requirements for a KAT-expression to denote a heap; and explores two looser ways to check

whether a heap satisfies an automaton. Chapter 5 concludes.

Chapter 2

Definitions

2.1 Kleene algebra with tests [ABM12] [Joc13] [Koz00]

A Kleene algebra with tests is a Kleene algebra K = (Σ, ·,+, 0, 1) such that there is a subset B of K for which

there exists a boolean algebra B = (Υ, ·,+,¬, 0, 1) . Here ¬ represents negation. We will interpret elements of

Υ as statements on the identity of the current object, and elements of Σ as navigation expressions that move

us from an object to another object.

Given a finite set Σ = {p1, p2, ..., pn} of primitive actions and a finite set Υ = {t1, t2, ..., tm} of primitive tests,

the set BExp of boolean expressions generated by Υ is

b ::= 0 | 1 | t ∈ Υ | b̄ | b + b | b · b .

The set Exp of regular expressions extended with boolean tests is given by

e ::= p ∈ Σ | b ∈ BExp | e + e | e · e | e∗ .

In addition, we define the set of atoms, At, of all possible valuations of the tests in Y. Because each atom

must assign true or false to each test, its size is 2Y. Because each expression in BExp must either accept or

not accept each atom, the number of logically distinct boolean expressions is 2|At| = 22Y
. We say that an atom

a ∈ At proves a boolean expression b ∈ BExp if, and only if, a � b. We write a ` b.

We define the semantics of KAT-expressions in terms of guarded strings. These are strings of the form

α1 p1α2 p2...αn pnαn+1. More formally the set of guarded strings GS is given by GS = (At× Σ)∗ × At. Using

the interpretation given earlier these strings can be considered to describe walks through a heap. We define

3

4 Chapter 2. Definitions

the guarded language G(e) ⊆ GS generated by e inductively as

G(p) = {α1 pα2|α1, α2 ∈ At}

G(b) = {α|α ∈ At ∧ α ` b}

G(e1 + e2) = G(e1) ∪ G(e2)

G(e1 · e2) = G(e1) ? G(e2)

G(e∗) = ∪n∈NG(e)n

Where we define G1 ? G2 as {vαw|va ∈ G1 ∧ aw ∈ G2}, G0 = At, and G n = G n−1 ? G for n ∈N>0 . A guarded

language G ⊆ GS is said to be regular if and only if there exists a KAT-expression such that G(e) = G.

2.1.1 Constructing non-deterministic finite automata for KAT

Automata on guarded strings

We construct non-deterministic finite automata for Kleene Algebra with Tests (KAT) according to the method

described by [Joc13]. We have been helped in understanding this method by similar constructions in [Sil12]

and [ABM12]. This method defines a partial derivative function for KAT-expressions and constructs automata

for them in which each partial derivative of the original expression is a node. We will propose a modification

to this method in 4.1.

Given an alphabet of actions Σ, and a set of atomic tests τ we define a non-deterministic automaton over

guarded strings as a tuple M =< Q, ∆, θ, I > consisting of a set Q of states, a transition function ∆, an

immediate output function θ, and a set of initial states I with I ⊆ Q.

The function ∆ is of the form:

∆ : Q→ P(Q)BExp×Σ (2.1)

where BExp denotes the set of boolean expressions over τ. ∆ defines the transitions that are available from a

node while reading an element of BExp and an element of Σ. Note that each transition goes to a set of states.

Because of this, it is possible for an NFA to be in multiple states simultaneously.

The function θ, which assigns a boolean expression to elements of Q takes the form:

θ : Q→ BExp (2.2)

A state q accepts while reading input a if, and only if, a ` θ(q). Note that the set BExp is technically infinite

but we will only consider its normalized, logically distinct members here.

2.1. Kleene algebra with tests [ABM12] [Joc13] [Koz00] 5

We define the recursive function G(M)(q) for a, w ∈ At and p ∈ Σ, which determines the input accepted by

the automaton M from state q ∈ Q as:

a ∈ G(M)(q)⇔ a ` θ(q) (2.3)

apw ∈ G(M)(q)⇔ ∃b : (a ` b ∧ ∃q
b,p−→ q′ ∧ w ∈ G(M)(q′)) (2.4)

We may then define the set G(M) of guarded strings accepted by M as:

G(M) =
⋃
q∈I

G(M)(q) (2.5)

Transforming KAT-expressions to NFA

To transform KAT-expressions to NFA we first define two functions, out(e) and f irst(e), that define the

immediate output and the first continuation of an expression e respectively. We will use out(e) to determine

whether the current node is accepting and, if it is accepting, with what output we can terminate. We will use

f irst(e) to generate the transitions in our automaton.

out(b) = b (2.6)

out(p) = 0 (2.7)

out(e1 + e2) = out(e1) + out(e2) (2.8)

out(e1e2) = out(e1) · out(e2) (2.9)

out(e∗) = 1 (2.10)

Using out we define that for each e ∈ Exp, B ∈ BExp and p ∈ Σ, the partial derivatives δbp(e) of e are:

δbp(b) = ∅ (2.11)

δbp(q) =


1 if p = q

∅ otherwise
(2.12)

δbp(e1 + e2) = δbp(e1) ∪ δbp(e2) (2.13)

δbp(e1 · e2) =


δbp(e1) · e2 ∪ δbp(e2) if out(e1) 6= 0

δbp(e1) · e2 otherwise
(2.14)

δbp(e∗) = δbp(e) · e∗ (2.15)

Where X · e′ = {ee′|e ∈ X} (2.16)

6 Chapter 2. Definitions

To prevent the generation of unneeded states, we will only generate partial derivatives with regard to the

first possible continuation of a guarded string from an expression e. To determine what these are we define

the function f irst(e) as follows:

f irst(b) = ∅ (2.17)

f irst(1, p) = (1, p) (2.18)

f irst(e1 + e2) = f irst(e1) + f irst(e2) (2.19)

f irst(e1e2) = f irst(e1) ∪ out(e1) . f irst(e2) (2.20)

f irst(e∗) = f irst(e) (2.21)

Using these functions we can define the automaton M(e) =< Q, ∆, θ, I > as follows:

Q =
⋃
{δw(e)|w ∈ (BExp ∗ Σ)∗} (2.22)

∆(q)(b, p) =


δbp(q) if (b, p) ∈ f irst(q)

{} otherwise
(2.23)

θ(q) = out(q) (2.24)

I = e (2.25)

2.1. Kleene algebra with tests [ABM12] [Joc13] [Koz00] 7

An example

To demonstrate we will generate an automaton Me for the KAT-expression e = (x + y) f x according to 2.1.1.

We first generate e’s partial derivatives.

f irst((x + y) f x) = f irst(x + y) ∪ out(x + y) . f irst(f x)

= ∅ ∪ (x + y) . (f irst(f) ∪ out(f) . f irst(x))

= (x + y) . ({(1, f)} ∪ 0 . ∅)

= {(x + y, f)}

out((x + y) f x) = out(x + y) · out(f x)

= (x + y) · out(f) · out(x)

= (x + y) · 0 · x

= 0

δ(x+y) f ((x + y) f x) = δ(x+y) f (x + y) · f x ∪ δ(x+y) f (f x)

= (δ(x+y) f (x + y) · f x ∪ δ(x+y) f (f) · x

= ∅ · f x ∪ 1 · x

= x

f irst(x) = ∅

out(x) = x

Note that because f irst(x) is empty, we do not need to calculate the derivative of x as it will not be a state in

our automaton. We can now construct Me:

Qe = {e, x}

∆e =


(e,< x, f >)→ x

(e,< y, f >)→ x

θe =


e→ 0

x → x

Ie = {e}

Represented graphically:

8 Chapter 2. Definitions

(x + y) f x

x

[x + y, f] 0

x

2.2 Heaps [Joc13]

2.2.1 Definition

A heap is a structure consisting of a set of objects. Each object has a number of fields which refer to objects

in the heap. Note that this does not need to be a different object. We represent the object being pointed to by

an object x over a field next by x.next. Using these fields it is possible to create complex structures inside a

heap. A common example is a linked list, in which each object points to the next object in line. Using such

a structure a program only needs to keep track of the first object in line. Accessing all the following objects

is done by repeatedly following the next pointer (or whatever the pointer being used is called). Inserting an

object y into such a list, after object x, is done as follows: y.next := x.next; x.next := y;. This provides an

advantage over inserting items into an array where all items after the inserted item need to be moved to make

room for the new item.

We define heaps over a finite set of variables Var, and a finite set of fields Fld. A heap H is given by a tuple

H =< X, h, s >. In this tuple, X = {x1, x2, ...} is the set of all objects in our heap. It contains one distinguished

element nil. The function h is used to model the fields. The function s maps our program variables to objects

in the heap. Formally: h is an assignment h : Fld → (X → X), and s is an assignment s : Var → X. We also

require that h(f)(s(nil)) = s(nil), that is, all fields of the nil object point to itself.

Note that we have implicitly defined two properties of heaps because proper functions have exactly one

output for each input. Firstly, because s(v) yields exactly one object x ∈ X, each label refers to exactly one

object. Secondly, because the functions produced by h have this property, each field of each object points to

exactly one object. For convenience sake, we will sometimes omit defining some labels or fields that point

to nil. Note that these properties do not imply that each object has exactly one label, or that each object is

2.3. Bisimulations for Kleene algebra with tests 9

pointed to by exactly one field. Each object may have any number of labels and may be pointed to by any

number of fields.

2.2.2 Interpreting heaps as NFA

Because heaps and non-deterministic automata for KAT-expressions are both essentially automata with states

and labeled transitions it is possible to interpret one as the other. Specifically, we can interpret heaps as KAT-

automata. Intuitively, we will consider the states of our heap as the states of an automaton. The transitions

in this automaton will be the fields of our heap, guarded by the label of the node we are departing from.

We can interpret a heap H =< X, s, h > as a guarded string automaton M =< Q, δ, θ, I > as follows:

1. The set of atomic tests At is the set of variables Var,

2. the set of actions Σ is the set of fields Fld,

3. the set of states Q is the set of objects X,

4. the set of initial states I is the set I = {x ∈ X|∃v∈Var : s(v) = x}.

5. The functions θ and δ are given by:

v ∈ θ(x)⇔ s(v) = x (2.26)

x′ ∈ δ(x)(b, f)⇔ ∀v∈θ(x) : v ` b ∧ h(f)(x) = x′ (2.27)

2.3 Bisimulations for Kleene algebra with tests

A bisimulation between sets of states in one automaton and sets of states in another automaton. For each pair,

the set of states in the first automaton will produce the same output as the set of states in the second automa-

ton. Generating a bisimulation is done by choosing a starting node in the first automaton and attempting to

find a set of states that produces the same output in the second automaton. Usually, two sets of states will

only be bisimilar if two other sets of states are bisimilar. This recursion will traverse the possible paths from

the starting node to some set of states that has already been proven to be bisimilar. Our implementation is

similar to [Joc13] and [Pou14].

We keep track of two lists, Todo and Done. To decide whether the language G(H)(q) of a heap H from a state

q is included in the language G(e) of a KAT-expression e we insert [q, e] into Todo. We then iteratively take a

pair [Q, E] from Todo and perform the following steps on it until Todo is empty or a test fails.

10 Chapter 2. Definitions

1. Test that out(Q) ` out(E).

2. For each transition f from Q add [Q. f , δ f (E)] to Todo if it is not already in Done

3. Add [Q, E] to Done

If a test fails, the heap is not included in the automaton. If the process terminates because Todo is empty,

there is a bisimulation between the heap and automaton. The sets of bisimilar states is contained in Done.

Chapter 3

Related Work

3.1 Partial derivatives for KAT expressions [Joc13]

This paper sets out to construct an efficient method for proving equivalence between KAT expressions. They

use partial derivatives to construct non-deterministic finite automata for KAT expressions. Their equivalence

proofs depend on bisimulation up to congruence. We borrow many of the methods described in this paper

and suggest adaptations to improve its suitability for our purpose.

3.2 Automated Verification of Recursive Programs with Pointers [FdBR12]

This paper develops a dialect of propositional dynamic logic for describing heap structures. Using this logic

they formulate a systematic way of generating the strongest postcondition belonging to a precondition and

an assignment. This method is used to prove the correctness of annotated recursive programs with pointers.

A possible continuation of our work would be to adapt the methods described in this paper to work with

KAT-expression rather than propositional dynamic logic.

11

Chapter 4

Contributions

4.1 Parsing boolean expressions in δ

4.1.1 Incorrect transitions in δ

Before we proceed to automating the generation of automata for KAT-expressions we must first make a

modification to the definition provided in 2.1.1. The current definition of δ does not take into account the

boolean expression with which we are taking a derivative. This causes our automaton to have undesirable

transitions. To demonstrate we will generate the derivatives of e = x f y + y f z:

First we generate f irst(e):

f irst(x f y + y f z) = f irst(x f y) ∪ f irst(y f z)

f irst(x f y) = f irst(x) ∪ out(x) . f irst(f y)

= ∅ ∪ x . (f irst(f) ∪ out(f) . f irst(y))

= x . ({[1, f]} ∪ 0 . ∅)

= x . {[1, f]}

= {[x, f]}

f irst(y f z) = . . . = {[y, f]}

f irst(x f y + y f z) = {[x, f], [y, f]}

12

4.1. Parsing boolean expressions in δ 13

Before we generate δ(x f y + y f z) We reproduce the definition of δ here for convenience:

δbp(b) = ∅ (4.1)

δbp(q) =


1 if p = q

∅ otherwise
(4.2)

δbp(e1 + e2) = δbp(e1) ∪ δbp(e2) (4.3)

δbp(e1 · e2) =


δbp(e1) · e2 ∪ δbp(e2) if out(e1) 6= 0

δbp(e1) · e2 otherwise
(4.4)

δbp(e∗) = δbp(e) · e∗ (4.5)

Where X · e′ = {ee′|e ∈ X} (4.6)

We will now generate δb f (x f y) with b some boolean expression. Problematically, we do not need to specify

whether b ` x or b 0 x.

δb f (x f y) = δb f (x) · f y ∪ δb f (f y) because out(b) 6= 0 (4.7)

= ∅ · f y ∪ δb f (f) · y because out(f) = 0 (4.8)

= {1} · y (4.9)

= {y} (4.10)

Because we did not specify the actual value of b we similarly have that:

δx f (x f y) = {y} (4.11)

δx f (y f z) = {z} (4.12)

δy f (x f y) = {y} (4.13)

δy f (y f z) = {z}. (4.14)

And therefore:

δx f (x f y + y f z) = {y, z} (4.15)

δy f (x f y + y f z) = {y, z}. (4.16)

If we construct an automaton using these results we get the following:

14 Chapter 4. Contributions

y z

x f y + y f z

y z

0[x, f] [y, f][x, f] [y, f]

This automaton correctly accepts x f y and y f z, but it also incorrectly accepts x f z and y f y. This is caused by

the missing check in δ.

4.1.2 Testing for satisfaction in δ

The problem described in the previous section occurs because 4.4 only tests whether the expression has an

output. Not whether that output satisfies the boolean expression with regard to which we are taking the

derivative. However, it is also incorrect to demand that out(e1) ` b as can be seen in the following example:

δxy f (x(y f z)) = δxy f (x) · y f z because out(x) 0 xy

= ∅ · y f z

= ∅

We propose to modify two lines of δ. Firstly the recursive case for δbp(e1 · e2) should keep track of the tests

that have already been satisfied since the last navigation expression by replacing them with 1. Secondly, the

derivative of f should only be 1 if the boolean guard is a tautology. Formulaically:

δbp(q) =


1 if p = q ∧ b ≡ 1

∅ otherwise
(4.17)

δbp(e1 · e2) =


δb′p(e1) · e2 ∪ δb′p(e2) if out(e1) 6= 0

δb′p(e1) · e2 otherwise
(4.18)

Where b′ = b[e1/1] (4.19)

4.2. KAT-automata that do not specify any heaps 15

Using this modified definition we can calculate the following values for δx f (x f y) and δx f (y f z):

δx f (x f y) = δx[x/1] f (x) · f y ∪ δx[x/1] f (f y)

= ∅ · f y ∪ δ1 f (f) · y

= 1 · y

= y

δy f (x f y) = δy[x/1] f (x) · f y ∪ δy[x/1] f (f y)

= ∅ · f y ∪ δy f (f) · y

= ∅ · y

= ∅.

4.2 KAT-automata that do not specify any heaps

Since it is possible to interpret heaps as KAT-automata we can evaluate whether the language of a given heap

and a given label is accepted by a KAT-automaton. Although a KAT-automaton can be generated for every

heap, it is not possible to find an accepted heap for every KAT-automaton. We will investigate some of the

properties of a KAT-automaton which make it impossible to find a heap which produces a sublanguage of it.

Automata that do not accept their own substrings

In a heap, every intermediate object is a valid point to terminate a walk. It is impossible for a transition to

only be valid if it is followed by another one. Because of this a heap will always accept all substrings of

strings it accepts. KAT-automata do not have this restriction. Automata which do not satisfy this restriction

can never be matched to a heap. For example, the expression x f y accepts the string x f y, but not its substring

x. A heap in which x f y is a valid walk, would also accept x.

16 Chapter 4. Contributions

y

x + x f y

[x, f] x

y

y

x

f

Multiply occurring labels

In KAT-automata, each boolean expression exists in isolation. If a boolean expression does not contain a

contradiction it can validate guarded expressions. In heaps the boolean expressions are interpreted as labels

that indicate a specific object globally. Each labeling in a single object applies restrictions to the labels that

can occur in all other objects. For example, a KAT-automaton can accept a string that contains the valuations

xy and xy. This simply indicates that both x and y are true at one point in the string and only x is true

at another point. In a heap the first substring indicates that the current object is labeled both x and y. The

second substring indicates the current object is labeled x, but not labeled y. Since labels are global, this entails

that this object is labeled y and y which is a contradiction.

x¬y

xy + xy f x¬y

[xy, f]

x¬y

xy

x¬y

xy

f

4.2. KAT-automata that do not specify any heaps 17

Missing transitions

In a heap, each object has a, possibly null, object indicated in each of its fields. This means that a heap always

has a possible continuation over each field from each object. KAT-automata which fail to specify a target for

each combination of transition and node cannot accept the same language as a heap. All the heaps shown in

this section suffer from this problem.

Finite KAT-automata

As stated, all fields of all objects in a heap must point somewhere. Because heaps are finite structures, the

fields cannot point forward in an infinite regression. This means that every heap must contain at least one

loop. For some heaps this will only be the loop the null object has to itself over all fields, but for others

more complex loops may exist. Regardless, because of this loop the language accepted by a heap is always

infinite. It does not matter that this infinite language may consist of strings of the form ∅ f ∅ f ∅ . . . Any KAT-

automaton that does not accept an infinite language cannot be a heap. All the heaps shown in this section

suffer from this problem as well.

KAT-automata that can be satisfied

We finish this section with some examples of KAT-automata which do have heaps that satisfy them.

x¬y + x¬y f¬xy(1 + f¬xy)∗

¬xy(1 + f¬xy)∗

[x¬y, f]

¬xy

x¬y

[¬xy, f]
x¬y

¬xy

f

f

We see that, starting from xy both the automaton and the heap presented here can terminate, or they can

continue while reading f . If they do this they go to a state where they can terminate with xy, or continue

while reading another f and returning to the same node.

18 Chapter 4. Contributions

z(f z)∗

y(f z)∗

x(1 + f y(f z)∗)

[z, f]

x

[y, f]

z

[x, f]

y

z

y

x

f

f

f

These automata, starting from x, can terminate or read f to transition to y. From y they can terminate or

transition over f to z. Note that the automaton given here could accept strings which the heap could not

accept, such as xy f xy. This is not a problem since all strings accepted in the heap from x are accepted by the

automaton.

4.3 Automating automaton generation

To simplify the process of generating heaps we have implemented the automaton generation technique out-

lined in 2.1.1 in a Prolog tool. The next section makes extensive use of this tool. Because some symbols

are reserved by Prolog, and others simply cannot be input easily we convert our KAT-expressions in the

following way:

• xy or x · y becomes x*y

• e∗ becomes e**.

• ¬x becomes ~x.

• It is sometimes necessary to add spaces to delimit terms. e.g. x+ y** rather than x+y**.

4.4. Testing whether a heap satisfies an expression 19

4.4 Testing whether a heap satisfies an expression

We have seen several examples of expressions that cannot be satisfied by any heap. To further explore the

relationship between heaps and expressions we will investigate a number of expressions and heaps that may

satisfy them. We will use the program described in the previous section to decide whether a heap satisfies an

automaton. Before we investigate specific cases we will describe the syntax of a program call.

Syntax of sat()

A call to sat() takes the following form: sat(States, Transitions, Labels, Start, E). Where States

is the set of states X in our heap, Transitions is the transition function h, Labels is the labeling function θ,

Start is the starting object in our heap, and E is the expression for which we are testing inclusion. If the call

is successful it will print the bisimulation that was constructed to satisfy our expression. Recall that we use

a different syntax (* for product, ** for Kleene star, and ~b for negation) to accommodate the syntax of the

Prolog programming language.

In some examples we will omit some transitions from a heap so we can use a simpler expression and obtain

a simpler result. It is important to note that these heaps are technically invalid because a heap must always

have exactly one target for each transition of each object. Because sat() interprets the given heap as a

nondeterministic automaton it does not check these restrictions.

Example of a call to sat()

We will show a call to sat() to decide whether node x of the following heap satisfies the following automaton:

yx f f

20 Chapter 4. Contributions

x(f x)∗ + y(f y)∗

y(f y)∗x(f x)∗

[x, f]

x

[x, f]

[y, f] x + y

[y, f]

y

The call to test this inclusion is:

sat([q1,q2], [[q1,f,q1],[q2,f,q2]], [[q1,x],[q2,y]], q1, (x* (f*x)**) + (y* (f*y)**)).

In this call our states are given by [q1, q2]. We have two transitions from a node to itself, given by:

[q1, f, q1] and [q2, f, q2]. We have two valuations which are given by [q1, x] and [q2, y]. We start

our bisimulation in node q1 and we test acceptance by the expression x* (f*x)**) + (y* (f*y)**. The

result of this call will be:

[[q1,x* (f*x)**],[q1,x* (f*x)** + y* (f*y)**]]

true.

This indicates that a bisimulation was possible. The behavior of q1 in our heap is replicated by the com-

bination of x* (f*x)** and (f*x)** + y* (f*y)** in our automaton. This bisimulation can be verified

intuitively by considering the languages that the parts of this bisimulation will accept. The node q1 in our

heap will accept strings of the form x, x f x, x f x f x, . . . The node (f*x)** + y* (f*y)** in our automaton

will accept either x followed by x* (f*x)** or y followed by y* (f*y)**. Following the path [x, f] in our

automaton leads to x* (f*x)** which also accepts strings of the form x, x f x, x f x f x, Note that the node

y* (f*y)** was never actually generated by our program because it is not necessary to simulate the behav-

ior of our heap. If we had chosen q2, which accepts strings of the form y, y f y, . . ., as our starting node our

program would not have generated x* (f*x)**.

Testing the behavior of sat()

To demonstrate how sat() handles heaps and expressions that do not match perfectly we will investigate

three different calls using the following heap:

4.4. Testing whether a heap satisfies an expression 21

x y

f

f

First we show that this heap is accepted by the expression x* (f*y*f*x)** * (f*y + 1):

sat([q1,q2], [[q1,f,q2],[q2,f,q1]], [[q1,x],[q2,y]], q1, x* (f*y*f*x)** * (f*y + 1)).

[[q2,[y*f*x* (f*y*f*x)** * (f*y+1),y]],[q1,[x* (f*y*f*x)** * (f*y+1)]]]

true.

We see that a bisimulation is possible with the following simulations: node q2 is simulated by the nodes

y*f*x* (f*y*f*x)** * (f*y+1) and y. Node q1 is simulated by x* (f*y*f*x)** * (f*y+1).

We will now add a choice to our expression to demonstrate that the bisimulation is not affected. We substitute

f*y*f*x in our expression with f*y*f*x + f*z*f*x yielding the expression x* (f*y*f*x + f*z*f*x)** * (f*y + 1).

sat([q1,q2], [[q1,f,q2],[q2,f,q1]], [[q1,x],[q2,y]], q1, x* (f*y*f*x + f*z*f*x)** * (f*y + 1)).

[[q2,[y*f*x* (f*y*f*x+f*z*f*x)** * (f*y+1),z*f*x* (f*y*f*x+f*z*f*x)** * (f*y+1),y]],

[q1,[x* (f*y*f*x+f*z*f*x)** * (f*y+1)]]]

true ;

We see that the bisimulation that is produced is similar to the previous example. The only difference is that

in the second example node q2 is simulated by three automaton nodes, rather than two.

We will now remove the path f*y*f*x from our expression to verify that our system recognizes that no

acceptable paths exist.

sat([q1,q2], [[q1,f,q2],[q2,f,q1]], [[q1,x],[q2,y]], q1, x* (f*z*f*x)** * (f*y + 1)).

false.

If we inspect the path Prolog followed to attempt to solve this call we see that an important failure occurs at

Fail: proves(y, z) ?

This demonstrates that our call failed because of the mismatch between y and z we introduced.

Anonymous nodes in sat()

As stated an important feature of heaps is that it is possible to have anonymous nodes. We will demonstrate

that sat() is capable of testing the inclusion of heaps with anonymous nodes. We will use the expression

x+x*((f)**) *(1+y), which accepts x, x f , x f y, x f f , x f f y, We will use the following heaps:

22 Chapter 4. Contributions

x y

f f

x y

f f f

To simplify the example we omit the transition f from node y in both heaps.

sat([q1,q2,q3], [[q1,f,q2],[q2,f,q3]], [[q1,x],[q3,y]], q1, x+x*((f)**) *(1+y)).

[[q3,[f** * (1+y)]],[q2,[f** * (1+y)]],[q1,[x+x*f** * (1+y)]]]

true.

sat([q1,q2,q3,q4], [[q1,f,q2],[q2,f,q3],[q3,f,q4]], [[q1,x],[q4,y]], q1, x+x*((f)**) *(1+y)).

[[q4,[f** * (1+y)]],[q3,[f** * (1+y)]],[q2,[f** * (1+y)]],[q1,[x+x*f** * (1+y)]]]

true.

Both heaps are accepted by our expression. Importantly, all our anonymous nodes are simulated by f** * (1+y)

which accepts transitions over f with any input.

The null object in sat()

Thus far we have not dealt with the null object. Our implementation performs no validation of the heap so

it expects the input to contain a valid null object if it is needed. For example, the following heap is invalid

because all fields of the null object must point to itself:

x null

f

f

sat([q1, q2], [[q1,f,q2], [q2,f,q1]], [[q1,x],[q2,null]], q1, x* (f*null*f*x)** * (1+f*null)).

[[q2,[null*f*x* (f*null*f*x)** * (1+f*null),null]],[q1,[x* (f*null*f*x)** * (1+f*null)]]]

true.

yet it is accepted by sat().

If the input does not contain an invalid null object the behavior of sat() is as expected. For example:

x y null

f f

f

tested in the following call to sat():

4.5. Loosening the interpretation of KAT-expressions 23

sat([q1, q2, q3], [[q1,f,q2], [q2,f,q3], [q3,f,q3]], [[q1,x],[q2,y],[q3,null]], q1, x + x*f*y* (f*null)**).

[[q3,[null* (f*null)**]],[q2,[y* (f*null)**]],[q1,[x+x*f*y* (f*null)**]]]

true.

Succeeds as expected.

4.5 Loosening the interpretation of KAT-expressions

Because of the limitations we examined in 4.2 it is not trivial to craft KAT-expressions in such a way that they

can accept automata. Because the purpose of this research is to construct a simpler method for describing

heaps we will propose two ways of reinterpreting KAT-expressions that make them more permissive. This

should make it more straightforward to write KAT-expressions that can be satisfied by a heap.

4.5.1 Accepting all substrings

Currently, all expressions we use accept all their own substrings. This is achieved using constructions such as

x+ x f y, and x(1+ f y+ f y f z). These constructions are necessary because any path through a KAT-automaton

that contains a non-accepting state is unproductive. To remove the implicit requirement that the provided

KAT-expressions accept their own substrings we will redefine the function θ.

Recall that θ was defined as θ(q) = out(q) in 2.22. We will expand this definition to also accept the boolean

guard of any of the continuations from the current node as follows:

θ(q) = out(q) ∨
∨

(b,p)∈ f irst(q)

b

We have implemented this looser interpretation in Prolog as sat_sub(). The following example shows how

it simplifies the KAT-expression needed to accept the following heap:

x y z a

f f f

f

The original successful call using this heap:

sat([q1,q2,q3,q4],[[q1,f,q2],[q2,f,q3],[q3,f,q4],[q4,f,q4]],[[q1,x],[q2,y],[q3,z],[q4,a]],q1,

x+x*f*y+x*f*y*f*z* (f*a)**).

24 Chapter 4. Contributions

[[q4,[a* (f*a)**]],[q3,[z* (f*a)**]],[q2,[y,y*f*z* (f*a)**]],[q1,[x+x*f*y+x*f*y*f*z* (f*a)**]]]

true.

The new successful call using this heap:

sat_sub([q1,q2,q3,q4],[[q1,f,q2],[q2,f,q3],[q3,f,q4],[q4,f,q4]],[[q1,x],[q2,y],[q3,z],[q4,a]],q1,

x*f*y*f*z* (f*a)**).

[[q4,[a* (f*a)**]],[q3,[z* (f*a)**]],[q2,[y*f*z* (f*a)**]],[q1,[x*f*y*f*z* (f*a)**]]]

true .

Note that sat() fails on this input:

sat([q1,q2,q3,q4],[[q1,f,q2],[q2,f,q3],[q3,f,q4],[q4,f,q4]],[[q1,x],[q2,y],[q3,z],[q4,a]],

q1,x*f*y*f*z* (f*a)**).

false.

4.5.2 Accepting arbitrary continuations

In KAT-expressions, loops must be explicitly created using the Kleene star. In heaps these loops are created

implicitly when a path exists from a node back to itself. Explicilty specifying these loops makes KAT-

expressions more complex. To reduce the need to include loops in KAT-expressions we propose to further

weaken the definition of sat(). by accepting all heaps that start with strings that are accepted by the au-

tomaton. In practice, we test for inclusion by e · (At · Σ)∗ rather than e. Programatically this is implemented

by:

sat_tail(X, Delta, Theta, Start, Exp) :-

sat_sub(X, Delta, Theta, Start, Exp * (a + b + c + x + y + z + f + g + h)**).

Note that we still make use of the simplification provided by sat_sub().

Using this procedure we can test the inclusion of the following heap and KAT-expression:

x y

f

f

sat_tail([q1, q2], [[q1, f, q2],[q2,f,q1]], [[q1,x],[q2,y]], q1, x*f*y).

[[q2,[tail]],[q1,[tail]],[q2,[y* tail]],[q1,[x*f*y* tail]]]

true ;

We see that the addition of tail allows our expression to accept a heap which it would not accept under

4.5. Loosening the interpretation of KAT-expressions 25

sat() or sat_sub(). This does not mean that any heap will be accepted. For example the expression we used

above will not accept the following heap:

x y

f

f

g g

sat_tail([q1, q2], [[q1, f, q2],[q2,f,q1], [q1, g, q1], [q2, g, q2]], [[q1,x],[q2,y]],

q1, x*f*y).

false.

It is accepted by:

sat_tail([q1, q2], [[q1, f, q2],[q2,f,q1], [q1, g, q1], [q2, g, q2]], [[q1,x],[q2,y]], q1,

x*f*y+x*g*x+x*f*y*g*x).

[[q1,[x* tail]],[q2,[tail,x* tail]],[q2,[tail]],[q1,[tail]],

[q2,[y* tail,y*g*x* tail]],[q1,[(x*f*y+x*g*x+x*f*y*g*x)* tail]]]

true .

Chapter 5

Conclusions and further work

5.0.1 Conclusions

We have shown a method for describing structures in heaps using a modification of Kleene algebra with

tests. Our method simplifies the expressions needed to include a heap in two ways. Firstly, we remove

the requirement that an expression include all substrings of acceptable strings. Secondly, we remove the

requirement that an expression generate an infinite language. In addition to these simplifications, we provide

a tool to test the inclusion of a heap in a KAT-automaton. We also refine an existing method for creating

automata for KAT-expressions by eliminating incorrect transitions when a derivative is taken with regard to

a non-matching boolean expression.

5.0.2 Further work

The most obvious avenue for further work is to generate a system that allows correctness proofs for programs

with pointers using the methods described here. This system would probably be similar to propositional

Hoare logic for sequential programs. One possible approach to this would be to translate the methods using

propositional dynamic logic described in [FdBR12].

Another avenue for expanding on this work would be to devise a method to generate heaps that would

be accepted by a given KAT-expression. A potential method to do this was explored during this research.

The process might work as follows: 1) generate a subautomaton of the automaton belonging to the KAT-

expression; 2) merge the immediate output and the boolean guard of any transition from the node into the

label of the node; 3) merge nodes that can be reached with the same transition from the same node; 4) check

the produced heap for consistency; 5) check whether the produced heap is accepted by the given expression.

26

Appendices

27

Appendix A

Prolog code

use_module(library(lists)).

:- op(100, fy, ~).

:- op(200, yf, **).

bool(a).

bool(b).

bool(c).

bool(x).

bool(y).

bool(z).

bool(1).

bool(0).

bool(null).

bool(anon).

bool(~E) :- bool(E).

bool(E1+E2) :- bool(E1), bool(E2).

bool(E1*E2) :- bool(E1), bool(E2).

nav(f).

nav(g).

nav(h).

28

29

plus(0, 0, 0) :- !.

plus(_, 1, 1) :- !.

plus(1, _, 1) :- !.

plus(E, ~E, 1) :- !.

plus(E, 0, E) :- !.

plus(0, E, E) :- !.

plus(E1, E2,E1+E2) :- !.

times(0, _, 0) :- !.

times(_, 0, 0) :- !.

times(E, ~E, 0) :- !.

times(1, E, E) :- !.

times(E, 1, E) :- !.

times(E, E, E) :- !.

times(E1, E2,E1*E2) :- !.

out([], []).

out([H|T], Out) :- !, out(H, Out_head), out(T, Out_tail), union([Out_head], Out_tail, Out).

out(E1 + E2, Out) :- out(E1, Out_1), out(E2, Out_2), plus(Out_1, Out_2, Out), !.

out(E1 * E2, Out) :- out(E1, Out_1), out(E2, Out_2), times(Out_1, Out_2, Out), !.

out(_**, 1):- !.

out(E, E) :- bool(E), !.

out(E, 0) :- nav(E), !.

tri(_, [], []) :- !.

tri(0, _, []) :- !.

tri(B, [[Bprime, Nav]|Tail], L) :- times(B, Bprime, Bresult),

tri(B, Tail, Lprime), union([[Bresult, Nav]], Lprime, L).

first([], []).

first([H|T], First) :- !, first(H, First_head),

first(T, First_tail), union(First_head, First_tail, First).

first(E1 + E2, L) :- first(E1, L1), first(E2, L2), union(L1, L2, L), !.

first(E1 * E2, L) :- first(E1, First_E1), out(E1, Out_E1),

first(E2, First_E2), tri(Out_E1, First_E2, Tri), union(First_E1, Tri, L), !.

30 Chapter A. Prolog code

first(E**, L) :- first(E, L), !.

first(E, []) :- bool(E).

first(E, [[1, E]]) :- nav(E).

set_times([], _, []).

set_times(_, 0, []).

set_times([1], E, [E]) :- !.

set_times([0], _, []) :- !.

set_times([E1|Tail], E2, L) :- !, set_times(Tail, E2, Set_times_tail),

times(E1, E2, Times), union([Times], Set_times_tail, L).

delta(E, L) :- first(E, First), delta(First, E, L).

delta(_, [], []).

delta(Nav, [H|T], Delta) :- delta(Nav, H, Delta_head),

delta(Nav, T, Delta_tail), union(Delta_head, Delta_tail, Delta).

delta([[Bool, Nav]|Tail], E, L) :- !, delta([Bool, Nav], E, Delta_head),

delta(Tail, E, Delta_tail), union(Delta_head, Delta_tail, L).

delta([], _, []).

delta([Bool, Nav], E1 + E2, L) :- \+is_list(Nav),

delta([Bool, Nav], E1, Delta_1),

delta([Bool, Nav], E2, Delta_2),

union(Delta_1, Delta_2, L).

delta([Bool, Nav], E1 * E2, L) :- \+is_list(Nav),

out(E1, Out), Out == 0,

delta([Bool, Nav], E1, Delta_1),

set_times(Delta_1, E2, Set_times),

union(Set_times, [], L), !.

delta([Bool, Nav], E1 * E2, L) :- \+is_list(Nav),

out(E1, Out), Out \== 0, substitute(E1, Bool, Bool_sub),

delta([Bool_sub, Nav], E1, Delta_1), delta([Bool_sub, Nav], E2, Delta_2),

set_times(Delta_1, E2, Set_times), union(Set_times, Delta_2, L).

delta([Bool, Nav], E**, L) :- \+is_list(Nav), delta([Bool, Nav], E, Delta),

31

set_times(Delta, E**, Set_times), union(Set_times, [], L).

delta([_, Nav], E, []) :- \+is_list(Nav), bool(E).

delta([Bool, Nav], E, [1]) :- \+is_list(Nav), proves(1, Bool), nav(E), Nav == E, !.

delta([_, Nav], E, []) :- \+is_list(Nav), nav(E).

substitute(~A, A, 0) :- !.

substitute(A, A, 1) :- !.

substitute(A, ~E, ~E_sub) :- substitute(A, E, E_sub), !.

substitute(A + B, E, E_sub) :- replace(A, replace, E, E_sub1),

replace(B, (~A + B), E_sub1, E_sub2), replace(replace, (A + ~B), E_sub2, E_sub), !.

substitute(A * B, E, E_sub) :- substitute(A, E, E_mid), substitute(B, E_mid, E_sub), !.

substitute(A, E1 * E2, E1_sub * E2_sub) :- substitute(A, E1, E1_sub), substitute(A, E2, E2_sub), !.

substitute(A, E1 + E2, E1_sub + E2_sub) :- substitute(A, E1, E1_sub), substitute(A, E2, E2_sub), !.

substitute(_, E, E).

replace(A, Sub, A, Sub) :- !.

replace(A, Sub, ~E, ~E_sub) :- replace(A, Sub, E, E_sub), !.

replace(A, Sub, E1 + E2, E1_sub + E2_sub) :- replace(A, Sub, E1, E1_sub), replace(A, Sub, E2, E2_sub), !.

replace(A, Sub, E1 * E2, E1_sub * E2_sub) :- replace(A, Sub, E1, E1_sub), replace(A, Sub, E2, E2_sub), !.

replace(_, _, E, E).

transitions(E, First, [Delta|Tail], Trans) :- !,

transitions(E, First, Tail, Trans_rest), union([[E, First, Delta]], Trans_rest, Trans).

transitions(_, _, [], []).

transitions(E, [First|Tail], Trans) :- !,

delta([First], E, Delta), transitions(E, First, Delta, Trans_1),

transitions(E, Tail, Trans_rest), union(Trans_1, Trans_rest, Trans).

transitions(_, [], []).

automaton([E|Tail], Q, Delta, Theta, Done) :- automaton(E, Q_1, Delta_1, Theta_1, Done),

automaton(Tail, Q_rest, Delta_rest, Theta_rest, [E|Done]), union(Q_1, Q_rest, Q),

union(Delta_1, Delta_rest, Delta), union(Theta_1, Theta_rest, Theta).

automaton([], [], [], [], _).

automaton(E, [], [], [], Done) :- member(E, Done), !.

32 Chapter A. Prolog code

automaton(E, Q, Trans, Theta, Done) :- \+is_list(E),

first(E, First), delta(First, E, Delta), transitions(E, First, Trans_1), out(E, Out),

subtract(Delta, [E], Filtered),

automaton(Filtered, Q_rest, Trans_rest, Theta_rest, [E|Done]),

union([E], Delta, Q_1), union(Q_1, Q_rest, Q),

union(Trans_1, Trans_rest, Trans), union([[E, Out]], Theta_rest, Theta).

automaton(E, Q, Trans, Theta) :- automaton(E, Q, Trans, Theta, []).

proves(A, [H|T]) :- proves(A, H); proves(A, T).

proves(_, 1).

proves(_, 0) :- !, fail.

proves(A, A).

proves(~A, B) :- \+proves(A, B).

proves(A, ~B) :- \+proves(A, B).

proves(A, B + C) :- proves(A, B); proves(A, C).

proves(A, B * C) :- proves(A, B), proves(A, C).

proves(A * B, C) :- proves(A, C); proves(B, C).

proves(A + B, C) :- proves(A, C), proves(B, C).

member_or_anon([Node, Id], Label) :- member([Node, Id], Label), !.

member_or_anon([_, anon], _).

sat(X, Trans, Label, Start, E) :- bisim(X, Trans, Label, [[Start, [E]]], []).

bisim(_, _, _, [], Done) :- print(Done).

bisim(X, Trans, Label, [[Node, E]|Todo_rest], Done) :-

member_or_anon([Node, Id], Label), out(E, Out), proves(Id, Out),

match(X, Trans, Label, Node, E, Todo_new),

Done_new = [[Node, E]|Done], union(Todo_new, Todo_rest, Todo_sum),

subtract(Todo_sum, Done_new, Todo), bisim(X, Trans, Label, Todo, Done_new).

match(_, [], _, _, _, []) :- !.

match(X, [[Node, Nav, Target]|Trans_rest], Label, Node, E, Todo) :-

33

first(E, First), member([Bool, Nav], First),

member_or_anon([Node, Id], Label), proves(Id, Bool),

delta([Bool, Nav], E, Delta),

match(X, Trans_rest, Label, Node, E, Todo_rest),

union([[Target, Delta]], Todo_rest, Todo).

match(X, [[Origin, _, _]|Trans_rest], Label, Node, E, Todo) :-

Origin \== Node, match(X, Trans_rest, Label, Node, E, Todo).

%% --

get_bool_from_nav([[Bool_head|_]|Nav_rest], Bool) :-

get_bool_from_nav(Nav_rest, Bool_rest), union([Bool_head], Bool_rest, Bool).

get_bool_from_nav([], []).

out_with_first(E, Out_sum) :- out(E, Out), first(E, First),

get_bool_from_nav(First, Out_first), union(Out, Out_first, Out_sum).

bisim_no_substring(_, _, _, [], Done) :- print(Done).

bisim_no_substring(X, Trans, Label, [[Node, E]|Todo_rest], Done) :-

member_or_anon([Node, Id], Label), out_with_first(E, Out), proves(Id, Out),

match(X, Trans, Label, Node, E, Todo_new), Done_new = [[Node, E]|Done],

union(Todo_new, Todo_rest, Todo_sum), subtract(Todo_sum, Done_new, Todo),

bisim_no_substring(X, Trans, Label, Todo, Done_new).

sat_sub(X, Trans, Label, Start, E) :- bisim_no_substring(X, Trans, Label, [[Start, [E]]], []).

%% ---

sat_tail(X, Trans, Label, Start, E) :-

sat_sub(X, Trans, Label, Start, (E)* (a+b+c+x+y+z+f+g+h+null+anon+0+1)**).

Bibliography

[ABM12] Ricardo Almeida, Sabine Broda, and Nelma Moreira. Deciding kat and hoare logic with derivatives.

2012.

[FdBR12] Marcello Bonsangue Frank de Boer and Jurriaan Rot. Automated verification of recursive programs

with pointers. proceedings of IJCAR, 2012.

[Joc13] Jennifer Jochems. Partial derivatives for kat expressions. LIACS Bachelor thesis, 2013.

[Koz00] Dexter Kozen. On hoare logic and kleene algebra with tests. Proc. IEEE Conf. Logic in Computer

Science, 2000.

[Pou14] Damien Pous. Symbolic algorithms for language equivalence and kleene algebra with tests, 2014.

[Sil12] Alexandra Silva. Position automata for kleene algebra with tests. Scientific Annals of Computer

Science, 22(2):367–394, 2012.

34

	Abstract
	Introduction
	Overview

	Definitions
	Kleene algebra with tests AlmeidaPDKATKOZEN
	Constructing non-deterministic finite automata for KAT

	HeapsPDKAT
	Definition
	Interpreting heaps as NFA

	Bisimulations for Kleene algebra with tests

	Related Work
	Partial derivatives for KAT expressionsPDKAT
	Automated Verification of Recursive Programs with PointersAVRPP

	Contributions
	Parsing boolean expressions in
	Incorrect transitions in
	Testing for satisfaction in

	KAT-automata that do not specify any heaps
	Automating automaton generation
	Testing whether a heap satisfies an expression
	Loosening the interpretation of KAT-expressions
	Accepting all substrings
	Accepting arbitrary continuations

	Conclusions and further work
	Conclusions
	Further work

	Appendices
	Prolog code
	Bibliography

