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Abstract. This thesis is about the numerical solution of multiobjective opti-
mization problems in continuous spaces. The problem is to define a search direction
and dynamical adaptation scheme for sets of vectors that serve as approximation
sets. The dynamics of such algorithms will be visualized by a set of tools that is de-
veloped in this project. In this thesis two new algorithmic concepts are compared; a
novel stochastic optimization algorithm based on cooperative particle swarms, and
a deterministic optimization algorithm based on set-based gradients. Both approxi-
mate the Pareto front dynamically. Comparisons will be made on the efficiency and
effectiveness. The results show that the approaches are both capable to produce
approximations of the Pareto front, each of which is diverse. This research provides
interesting new directions for developing algorithms for set-oriented optimization.
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1 Introduction

Multi-Objective Optimization (MOO) is a class of optimization problems where the
ideal solution should optimize multiple objectives simultaneously. In typical MOO
problems, the objectives are conflicting. Thus, an optimal solution for one objective
is necessarily not optimal for the others. With conflicting objectives, there is no
single optimal solution for the problem. Instead, there is a whole set of solutions in
the decision space that could be considered optimal. We call this set the efficient
set. The image by the objective function is called the Pareto front. In MOO we
strive to obtain close approximations of the efficient set in order to approximate the
Pareto front.

MOO problems are common in numerous fields including engineering, science,
industry, finance and logistics [6, 17, 15]. MOO algorithms are for example already
extensively used in supply chain management [1]. Given this broad range of appli-
cation areas, there is a big need for reliable MOO algorithms.

For this we will introduce new algorithmic concepts in this thesis for multi-
objective optimization, namely aMulti-Objective COoperative Particle Swarm (MO-
COPS) algorithm and a Multi-Objective Gradient based Optimization (MOGO) al-
gorithm. In this thesis we will elaborate on the dynamics of these algorithms.

The specific contribution of this research is three-fold. We will analyze the ef-
fectiveness and efficiency of the new algorithmic concepts by using the hypervol-
ume indicator as quality measurement. Furthermore we will compare the MOCOPS
and MOGO algorithm. Thirdly this research will focus on a dynamic visualization
of the algorithms.

This thesis is structured as follows. In Section 2 we will first introduce the defini-
tions and notation that are used in the remainder of the thesis. Next in this section
we will state the problem definition. Lastly in Section 2 there will be a subsection
dedicated to related work. In Section 3 different variant of the multi-objective op-
timization algorithms are presented. In Section 4 the proposed algorithms will be
tested with several benchmarks. First of all the test problems, and secondly the
experiments setup will be defined. After defining the experiment, the results will
subsequently be described and discussed. We sum up the conclusions in Section 5.
Following the conclusion is the bibliography. Lastly the thesis ends with the appen-
dices. These will consist of a manual of the application, and a section describing the
code directory.

2 Background

2.1 Definitions and notation

The space of candidate solutions is called the decision space. The space of objective
function values with the decision space as domain is called the objective space [8].

For optimization, it is desirable to have an unambiguous way of determining
whether an arbitrary vector is considered better than another. For this reason, you
can define the relations weakly-Pareto-dominance and strictly-Pareto-dominance be-
tween two vectors ~x, ~y ∈ Rm. Weakly-Pareto-dominance is a relation between two
vectors where one vector is considered better or equal than another. We will assume
that our objective is minimization. Vector ~x weakly-Pareto-dominates vector ~y if
and only if Equation 1 holds.

∀i∈{1,2,...,m−1,m} ~xi ≤ ~yi (1)

A vector ~y is considered strictly-Pareto-dominated by ~x if and only if Equation 2
holds [11, 5, 16].
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∀i∈{1,2,...,m−1,m} ~xi ≤ ~yi ∧ ∃i∈{1,2,...,m−1,m} ~xi < ~yi (2)

In the remainder of this thesis we will use the latter definition for Pareto-
dominance. Pareto-dominance can be considered as a partial order where dominance
of ~x over ~y is denoted as ~x ≺ ~y [9].

Let S ⊆ Rd and ~f : S → Rm. In optimization problems S represents the decision
space, and ~f the objective functions. The Pareto front of the minimization problem
is the non-dominated subset of the image of ~f . The Pareto set is also known as the
Pareto front or Pareto optimum. We define the Pareto set YPF in Equation 3.

YPF := {~f(~x) | ~x ∈ S ∧ ∄~x′∈S
~f(~x′) ≺ ~f(~x)} (3)

The inverse image of the Pareto set with respect to ~f is called the efficient set.
The efficient set XE is defined in Equation 4.

XE := {~x ∈ S | ∃ỹ∈YPF

~f(x̃) = ỹ} (4)

The hypervolume indicator is a generally usable measure for multi-objective
optimization indicating how well the population approximates the Pareto front [13].
With this method, a reference point is chosen. Preferably the reference point is
chosen such that it is dominated by all images of the decision space. For example
the maximal point can be used as a reference point. Given the objective space Y
and m objective functions, the maximal point ȳ is defined by Equation 5 [11].

ȳ = (max
y∈Y

y1, . . . ,max
y∈Y

ym) (5)

The hypervolume indicator of a population is equal to the hypervolume of the
subset of Rm which consists of points which dominate the reference point and in
turn are dominated by some point of the population.

The hypervolume contribution indicator of a particle is defined as the hyper-
volume of the total population, minus the hypervolume of the population without
that particle. Particles which are part of the dominated set have a hypervolume
contribution of 0. The hypervolume is always at least as big as the hypervolume
contributions of the particles combined. The concepts of domination, hypervolume
and hypervolume contribution are clarified in Figure 1.

A fitness function is a single-objective scalar function that denotes the value of
a certain particle. A fitness function is used in heuristic optimization algorithms to
compare different particles. Good heuristic algorithms will efficiently converge to a
high fitness value. In turn a fitness function yields a low and high value in case the
population is respectively unoptimized and highly optimized.

In the literature regarding optimization algorithms, different terms with simi-
lar meanings are used depending on the field of research. The literature regarding
Evolutionary Algorithms (EAs) mention individuals, while the literature regarding
Particle Swarm Optimization (PSO) algorithms mention particles. Below is a short
summary of interchangeable terms. In this thesis an attempt has been made to
match each field with each of their terms.

EA PSO Gradient optimization
fitness (function) fitness (function) objective function
individual particle (search) point
population swarm multiset

It was attempted to use a similar notational convention as commonly used in
other literature regarding optimization such as for example the notational conven-
tions used in EAs [3].
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Figure 1: This is an example of a population in the objective space. Particles are
displayed in red in case they are not dominated by another particle in the pop-
ulation. Particles are displayed in blue when they are part of the dominated set.
The total hypervolume covered by the population is colored gray. The hypervolume
contribution of particle a is colored dark gray.

Notation Description
S Decision space
~x ∈ S Representation of a particle in decision space
~y ∈ Rm Representation of a particle in objective space
~f : S → Rm The objective function
µ Population size
Φ : Sµ × N → R Fitness of a certain particle given a population
HV : Sµ → R The hypervolume indicator of a population
∆HV : Sµ × N → R The hypervolume contribution indicator of a particle
i ∼ u({a1, . . . , ar}) A random discrete sample i ∈ {a1, . . . , ar}
x ∼ u([0, 1]) A uniformly random continuous sample x ∈ [0, 1]
~z ∼ N(0, I) A vector of gaussian random samples in [0, 1]

2.2 Problem definition

For optimizing, minimization is assumed for all objectives throughout this thesis.

~f(~x) → min (6)

The research is limited to 2 dimensions in both the decision and objective space
for simplicity.

S ⊆ R2 (7)

The aspiration of the optimization algorithms in this thesis is maximization of
the hypervolume indicator. That will be the measurement used for benchmarking.

HV ({~x(1), . . . , ~x(µ)}) → max (8)
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2.3 Related work

Research about gradient optimization algorithms in MOO using the hypervolume
indicator has been performed before [12]. In the research, computation complexity
of the algorithms is reported for a varying numbers of dimensions.

In EA, NSGA-II is a well established method for MOO. NSGA-II introduced a
fast non-dominated sorting1 approach in combination with an elitist approach [7].

Research is performed in EA using the hypervolume indicator metric in combi-
nation with non-dominated sorting as fitness. The algorithm performed very well
in comparison with other EAs such as NSGA-II [10].

3 Optimization algorithms

In Algorithm 1 is displayed how a population is initialized in a randomly distributed
way. This initialization is used in both of the following algorithmic concepts.

Algorithm 1 Initialize randomly distributed population
for i ∈ {1, 2, . . . , µ− 1, µ} do

~a1 ∼ u([0, 1])
~a2 ∼ u([0, 1])
~x(i) ← ~a

end for

3.1 Multi-objective cooperative particle swarm algorithm

PSO is an EA where a swarm of particles is stochastically driven. In conventional
PSO algorithms, the swarm is driven by a certain leader. In single-objective opti-
mization an exploitation of the position of the leader will typically converge to a
local, or sometimes even global optimum. Such a solution will often approach the
Pareto optimum in single-objective problems. In the traditional PSO algorithms a
swarm will thus lead to unity, whereas in multi-objective optimization you need
diversification to adequately approach the Pareto set2. Using traditional PSO for
multi-objective optimization problems have been tried before [14], but we think the
traditional PSO algorithms do not fit multi-objective optimization problems.

In this subsection we will introduce our own interpretation of a MOCOPS. We
propose a simple MOCOPS based on the hypervolume contribution. Compared to
more traditional PSO algorithms, focus is shifted from exploitation to exploration.

Our proposed MOCOPS algorithm starts with randomly initializing every par-
ticle. After the initialization the algorithm will select a random particle of the
population. This particle is mutated with a gaussian random sample. The fitness
values of the particle before and after mutation are assessed. If the fitness value of
the mutated particle is equal or better than the particle will be replaced. Otherwise
the mutated particle will be rejected. The cycle continues with picking a random
particle again. The MOCOPS algorithm is displayed in pseudocode in Algorithm 2.
Care must be taken to ensure ~a ∈ S.

In Equation 9 the fitness function of particle i when only enabling the Pareto
front of the MOCOPS algorithm is shown. In this case the fitness values of all
particles which are dominated by another particle in the population are 0.

1Non-dominated sorting is a method in which, recursively, different ranks of Pareto sets are
formed in the population. First the Pareto set of the total population is formed. Then a new Pareto
set is formed out of the remaining population. This repeats until the population consists entirely
of different ranks of Pareto sets.

2In trivial situations where the objectives are not conflicting, no diversification is needed. In
this case, the problem can easily be restated as single-objective problems instead.
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Algorithm 2 MOCOPS
Initialize randomly distributed population
loop

i ∼ u({1, 2, . . . , n− 1, n})
~z ∼ N(0, I)
~a← ~x(i) + σ · ~z
if Φ({~x(1), . . . , ~x(i−1), ~a, ~x(i+1), . . . , ~x(µ)}, i) ≥ Φ({~x(1), . . . , ~x(i−1), ~x(i), ~x(i+1), . . . , ~x(µ)}, i)
then

~x(i) ← ~a

~y(i) ← ~f(~x(i))
end if

end loop

Φ({~x(1), . . . , ~x(µ)}, i) = ∆HV ({~x(1), . . . , ~x(µ)}, i) (9)

The hypervolume contribution indicator always will be 0 or more, thus
Φ({~x(1), . . . , ~x(µ)}, i) is in [0,∞).

Below the fitness function when enabling the whole population for the MOCOPS
algorithm is shown. It is assumed that ~y(i) ∈ [0,∞)2.

Φ({~x(1), . . . , ~x(µ)}, i) =
{

∆HV ({~x(1), . . . , ~x(µ)}, i), if ∆HV ({~x(1), . . . , ~x(µ)}, i) > 0

−|~f(~x(i))|, if ∆HV ({~x(1), . . . , ~x(µ)}, i) = 0

(10)

In this case the range is broader and also includes negative values, thus
Φ({~x(1), . . . , ~x(µ)}, i) is in (−∞,∞). In this case a particle which is not dominated
by another particle in the population will have a fitness of at least 0. A particle
which is dominated by another particle in the population will have a fitness of less
than 0.

Adaptive mutation

In general when the mutations are largely successful, the mutation rate σ can
be improved for a faster convergence. However, when a high fraction of the mu-
tations are unsuccessful, the mutation rate should be lowered instead for a faster
convergence. Getting the mutation rate right can be crucial for efficiency. In earlier
research it has been heuristically determined that adapting the mutation rate to a
success rate of 1

5 is a good balance [2]. This has been called the 1/5th succes rule. In
practice σ could be multiplied by a scalar every time the mutation rate is successful
and multiplied by the 4th root of that scalar such that σ remains stable with a
success rate of 1

5 .
The MOCOPS algorithm with adaptive mutation is displayed in Algorithm 3.

Complexity class

Both the MOCOPS algorithms with and without adaptive mutation are in the
complexity class depicted in Equation 11, given a 2-dimensional objective space.
Reason for the computational complexity is formed by calculating the hypervolume
contribution. This computation is beyond the scope of this thesis.

O(µ logµ) (11)
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Algorithm 3 MOCOPS with Adaptive Mutation
Initialize randomly distributed population
loop

i ∼ u({1, 2, . . . , n− 1, n})
~z ∼ N(0, I)
~a← ~x(i) + σ · ~z
if Φ({~x(1), . . . , ~x(i−1), ~a, ~x(i+1), . . . , ~x(µ)}, i) ≥ Φ({~x(1), . . . , ~x(i−1), ~x(i), ~x(i+1), . . . , ~x(µ)}, i)
then

~x(i) ← ~a

~y(i) ← ~f(~x(i))
σ ← σ · 1.05

else

σ ← σ · −4
√
1.05

end if

end loop

3.2 Multi-objective gradient based optimization algorithm

The MOGO algorithm is a deterministic algorithm where each search point is si-
multaneously directed by a gradient. For example the search point ~x(i) could be
directly directed by the gradient of ~f . This will converge to a local optimum. It is
however expected that using the gradient this way will lead to little diversification.
Therefore instead we will be using the gradient of ~f indirectly with use of the hy-
pervolume contribution. This will enable each search point to follow the direction
in which their own hypervolume contribution will increase most. This should lead
to a good diversification.

The MOGO algorithm starts with initializing a randomly distributed population.
For every search point in the population a Jacobian matrix will be calculated. A
Jacobian matrix consists of the first-order partial derivatives of a vector function.
The values in a Jacobian indicate how the objective function values respond on a
change of the input. In our case we have 2 dimensions for both our decision and
objective space, and the Jacobian will thus have 2 × 2 dimensions. The Jacobian
Matrix of ~f at ~x is shown in Equation 12 3.

J(~f, ~x) =







∂f1
∂x1

(~x)
∂f1
∂x2

(~x)

∂f2
∂x1

(~x)
∂f2
∂x2

(~x)






(12)

The hypervolume contribution derivative vector is shown in Equation 13. This
vector shows how the hypervolume contribution of a certain particle is affected by
a change of the objective values.

∇y∆HV ({~x(1), . . . , ~x(µ)}, i) =









∂∆HV ({~x(1), . . . , ~x(µ)}, i)

∂f1(~x(i))
∂∆HV ({~x(1), . . . , ~x(µ)}, i)

∂f2(~x(i))









(13)

Multiplication of the matrix and vector yields a gradient of the ∇y∆HV as
shown in Equation 14. This vector shows how a change in the search space propa-
gates in a change of the hypervolume contribution of a certain particle.

32 dimensions are assumed for ~f , as well as ~x
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J(~f, ~x) ·∆∇yHV ({~x(1), . . . , ~x(µ)}, i) =

∇∆HV ({~x(1), . . . , ~x(µ)}, i) =











∂∆HV ({~x(1), . . . , ~x(µ)}, i)

∂x
(i)
1

(~x(i))

∂∆HV ({~x(1), . . . , ~x(µ)}, i)

∂x
(i)
2

(~x(i))











(14)

Normalizing the gradient yields the unit vector ∇̂∆HV ({~x(1), . . . , ~x(µ)}, i) as
shown in Equation 15. Normalizing is done with the purpose of preventing that the
optimization stagnates.

∇̂∆HV ({~x(1), . . . , ~x(µ)}, i) =
∇∆HV ({~x(1), . . . , ~x(µ)}, i)

|∇∆HV ({~x(1), . . . , ~x(µ)}, i)|
(15)

The MOGO algorithm is displayed in Algorithm 4.

Algorithm 4 MOGO
Initialize randomly distributed population
loop

for i ∈ {1, 2, . . . , µ− 1, µ} do
~a(i) ← ~x(i) + σ · ∇̂∆HV ({~x(1), . . . , ~x(µ)}, i)

end for

for i ∈ {1, 2, . . . , µ− 1, µ} do
~x(i) ← ~a(i)

~y(i) ← ~f(~x(i))
end for

end loop

Complexity class

The MOGO is in the computational complexity class shown in Equation 16,
just like the MOCOPS algorithm. Again the reason for this computational com-
plexity lies in finding the hypervolume contribution. In contrast with the MOCOPS
algorithm, the MOGO algorithm will move every particle simultaneously in every
iteration.

O(µ logµ) (16)

4 Evaluation

4.1 Test problems

4.1.1 Problem 1

The objective functions for problem 1 are depicted in Equation 17 and Equation 18.
The reference point used for the hypervolume indicator will be the maximal point
(1.25, 1.25). Problem 1 is visualized in Figure 2.

f1(~x) = (x1)
2 + (x2 − 0.5)2 (17)

f2(~x) = (x1 − 1)2 + (x2 − 0.5)2 (18)
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Figure 2: The decision space and objective space of test problem 1 are shown using
a uniformly distributed population of 250000 particles. The area covered with dark
gray particles denote the efficient and Pareto set among the population. The area
covered with light gray particles resembles the subset which is dominated by the
Pareto set of the population. The efficient set is horizontal.

4.1.2 Problem 2

The objective functions for problem 2 are depicted in Equation 19 and Equation 20.
The reference point used for the hypervolume indicator will be the maximal point
(1, 1). Problem 2 is visualized in Figure 3.

f1(~x) = 1− ((x1)
2 + 1)(x2)

2 (19)

f2(~x) = 1− ((x2)
2 + 1)(x1)

2 (20)

4.2 Experiments setup

With µ = 100 we are going to compare the different algorithms based on the hy-
pervolume indicator with varying amount of iterations. The amount of iterations
that will be used is 10, 50, 100, 500 and 1000. Each of these tests is run 100 times
and averaged. The 10, 50, 100, 500 and 1000 iterations tests will be performed on
both test problems. The MOCOPS will be benchmarked with and without adaptive
mutation. The MOCOPS algorithms will have their mutation rate initialized with
0.2. The step size of the MOGO is initialized with 0.0008.

Also we will have a look at the dynamics of the algorithms in a visual way. We
will compare the converged populations of the different algorithms.

4.3 Description of results

The results of the benchmark on problem 1 and 2 can respectively be found in Ta-
ble 1 and Table 2. MOCOPS is the MOCOPS algorithm without adaptive mutations
and MOCOPS A is the MOCOPS algorithm with adaptive mutation. The numbers
represented in the tables representing the hypervolume indicator are visualized for
problem 1 in Figure 4 and for problem 2 in Figure 5.

In Figure 6 and Figure 7 the converged populations of respectively the MOCOPS
and MOGO algorithm are shown of test problem 2. It seems that the algorithms
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Figure 3: The decision space and objective space of test problem 2 are shown using
a uniformly distributed population of 250000 particles. The area covered with dark
gray particles denote the efficient and Pareto set among the population. The area
covered with light gray particles resembles the subset which is dominated by the
Pareto set of the population. The efficient set is curved.

Table 1: In this table the hypervolume indicator is shown using a varying amount
of iterations on test problem 1.

Algorithm 10 50 100 500 1000
MOCOPS 1.36053 1.36552 1.37069 1.384 1.38793
MOCOPS A 1.36013 1.36583 1.37003 1.38032 1.38511
MOGO 1.36442 1.37472 1.38098 1.39014 1.39087

Table 2: In this table the hypervolume indicator is shown using a varying amount
of iterations on test problem 2.

Algorithm 10 50 100 500 1000
MOCOPS 1.35933 1.36565 1.37033 1.38419 1.38787
MOCOPS A 1.36107 1.36587 1.37042 1.38027 1.38501
MOGO 1.36341 1.37507 1.38108 1.39015 1.39086

converge with a slightly different alignment. Both alignments are diverse and ap-
proximate the real Pareto set.

In Figure 8 the steps of the particles are shown as trails. This reveals that
particles tend to evade other particles. This leads to a better diversification.
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Figure 4: Graph depicting the hypervolume indicator of the different variants of
optimization algorithms on problem 1 after a number of iterations.

 1.355

 1.36

 1.365

 1.37

 1.375

 1.38

 1.385

 1.39

 1.395

 0  100  200  300  400  500  600  700  800  900  1000

H
yp

er
vo

lu
m

e 
in

di
ca

to
r

Iterations

MOCOPS
MOCOPS A

MOGO

Figure 5: Graph depicting the hypervolume indicator of the different variants of
optimization algorithms on problem 2 after a number of iterations.

4.4 Discussion of results

Looking at the benchmarks, it seems that the performance of the algorithms is com-
parable. The MOGO seems to perform slightly better than the MOCOPS variants.
The visualization seems to offer more convenient information. Experimenting with
the algorithms show that nearly the whole population quickly finds a spot on the
Pareto front with the MOGO algorithm. In the MOCOPS algorithm some parti-
cles tend to lag behind. Since the MOGO algorithm updates the whole population
simultaneously, it is much faster with larger populations. Also, since the algorithm
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Figure 6: A screenshot of the converged population with the MOCOPS algorithm
on test problem 2.

Figure 7: A screenshot of the converged population with the MOGO algorithm on
test problem 2.

is deterministic it is more robust4. The MOCOPS algorithm turns out to converge
slightly slower with adaptive mutation rate if the amount of iterations increase.

4Aside from the initialization, the MOGO algorithm is deterministic. This in contrary to the
MOCOPS algorithm which is stochastic at every single iteration.
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Figure 8: A screenshot showing the previous locations of the particles as trails using
the MOGO algorithm.

5 Conclusion

It turns out both the algorithms perform well on the test problems. However, the
MOGO algorithm outperforms the MOCOPS algorithm. This especially holds with
a big population. The MOGO algorithm tends to get a nearly perfect diversification
after a small amount of iterations. For future research it will be interesting to see how
the MOCOPS will perform when the adaptive mutation is performed individually
instead of globally. Experiments with more challenging test problems will also be
interesting for future research. Test problems with for example local minima and
more than 2 objective function will reveal more about the usefulness and robustness
of the algorithms.
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[12] Michael Emmerich and André Deutz. “Time Complexity and Zeros of the
Hypervolume Indicator Gradient Field”. English. In: EVOLVE - A Bridge

between Probability, Set Oriented Numerics, and Evolutionary Computation

III. Ed. by Oliver Schuetze, Carlos A. Coello Coello, Alexandru-Adrian Tan-
tar, Emilia Tantar, Pascal Bouvry, Pierre Del Moral, and Pierrick Legrand.
Vol. 500. Studies in Computational Intelligence. Springer International Pub-
lishing, 2014, pp. 169–193. doi: 10.1007/978-3-319-01460-9_8.

[13] Mark Fleischer. “The measure of Pareto optima applications to multi-objective
metaheuristics”. In: Evolutionary multi-criterion optimization. Springer. 2003,
pp. 519–533.

[14] Sanaz Mostaghim, Jürgen Branke, and Hartmut Schmeck. “Multi-objective
Particle Swarm Optimization on Computer Grids”. In: Proceedings of the 9th

Annual Conference on Genetic and Evolutionary Computation. GECCO ’07.
London, England: ACM, 2007, pp. 869–875. doi: 10.1145/1276958.1277127.

[15] Christos A Nicolaou, Nathan Brown, and Constantinos S Pattichis. “Molec-
ular optimization using computational multi-objective methods”. In: Current
Opinion in Drug Discovery and Development 10.3 (2007), p. 316.

[16] V Pareto and Manuale di Economia Politica. Societa Editrice Libraria, Mi-

lano, Italy, 1906. Translated into English by AS Schwier as Manual of Political

Economy. 1971.

[17] Gade Pandu Rangaiah. Multi-objective optimization: techniques and applica-

tions in chemical engineering. Vol. 1. World Scientific, 2008.

[18] Wilco Verhoef. The interactive multi-objective optimization application. En-
glish. 2015. url: http://wilco.verhoef.nu/projects/moo.

17



Appendices

Manual of the application

The application and code is available online [18]. Using the application is straight-
forward and does not need any installation or configuration. The application can
be started with any modern browser. The application is shown in Figure 9.

Figure 9: A screenshot of the interactive multi-objective optimization application.

1. This is the sidebar with the interaction. The sidebar is shown in detail in
Figure 10.

(a) Pressing the Printable button sets the background color to white. Press-
ing the Regular button will set the color scheme regular again.

(b) In the problem section you can choose a test problem.

(c) In the initialization section you can select the population size. You can
initialize the population with the set population size by pressing one of
the buttons. Pressing the Initialize randomly button will position the
particles at random in the decision space. Pressing the Initialize uni-

formly button will try to position the particles uniformly in the decision
space.

(d) In the algorithm section you can choose the optimization algorithm by
pressing Particle swarm optimization or Gradient based optimization.
Deselecting the Enable dominated set will enable the use of the whole
population. Pressing Adaptive mutation makes the MOCOPS algorithm
use the 1/5th succes rule. The mutation rate for the MOCOPS algorithm
can be adjusted by using the slider. The step size of the MOGO can be
adjusted similarly with the other slider.

(e) In the optimization section you can select how many milliseconds delay
every iteration should have using the slider. A bigger delay can make the
dynamics of the algorithm clearer. The button Start will start the se-
lected algorithm. Pressing the button Stop will stop the algorithm again.
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Figure 10: A screenshot of the application capturing the sidebar.

The Benchmark button will run some benchmarks and outputs the statis-
tics in the browser console. In most browsers the console is accessible by
pressing F12. The application automatically adapts to the window size.
Full screen mode is available with F11.

2. The objective functions of the chosen test problem are shown here.

3. This graph is the decision space. The efficient set of the population is displayed
red. The particles which are dominated by the particles in the efficient set are
blue.

4. This graph is the objective space. The Pareto set of the population is displayed
red. The particles which are dominated by the Pareto set are blue.
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Code directory

The code directory contains the following files:

• index.html

The HTML file specifying the JavaScript files and the stylesheet.cc. Open
this file with a modern browser to start the application. The other files are
dependencies and should be in the same directory.

• stylesheet.css

This CSS file declares the layout of the page.

• main.js

This file instantiates the Controller class from controller.js.

• controller.js

This file instantiates the Interface class from interface.js.

• interface.js

This file contains the class Interface and instantiates Problem from problem.js,
Optimizer from optimizer.js and Graphics from graphics.js successively.

• optimizer.js

This file contains the class Optimizer. Optimizer contains the optimization
algorithms and instantiates Individual from individual.js. Optimizer also
uses the Matrix class from matrix.js.

• individual.js

This file contains the class Individual.

• problem.js

This file contains the classes defining the test problems.

• graphics.js

This file will visualize the graphs using three.min.js and typeface.js.

• matrix.js

This file contains the Matrix class, used for matrix multiplications between
the jacobian matrix and the hypervolume derivative.

• benchmark.js

This file contains the Benchmark class, which can be used for benchmarking
purposes.

• typeface.js

This defines the typeface to be used in the canvas as labels of the graph.

• three.min.js

three.js is a graphics engine for the web [4].

20


