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Abstract

In this paper we look at different ways of morphing audio and introduce a novel
strategy for morphing as an attempt to solve difficulties encountered in partial based
models. After proving that this is a well-defined strategy we try to characterize the
workings and shortcomings of the new morph by looking at various types of input. We
conclude that the morph produces sounds at unwanted frequencies and often morphs
in a way that produces inharmonic sounds, making it unsuited for musical and other
harmonic audio, and that the morph provides interesting results on sounds consisting
mainly of noise.
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1 Introduction

This paper focuses on various strategies for morphing audio. A morph is a ’continuous’ trans-
formation of two (or more) inputs: given any two inputs it will produce a range of things that
are ’in-between’ them, slowly transforming from one to the other. It should be noted that
there are often many possible ways to construct a morph; we focus on constructing a morph
that yields interesting results throughout the morphing process.

A common approach is to describe the input in terms of certain characteristics or features.
Once a set of features has been chosen that describes the input as completely as possible one
can construct a morph by altering these features. Ideally the chosen features are meaningful
and apparent to the listener: directly interpolating such features would create a morph that
smoothly changes sounds. We will look at the sets of features used in previous research and
choose the amplitude spectrum as our main feature. Then we will introduce a novel way of
interpolating such spectra by taking their integrals and weighing them using the geometric
mean. Finally we discuss a method to create a new sound file from such an interpolation using
phase information.

First we will look at the Fourier transform as it will be needed for working with and
describing audio. Then we look at various state of the art techniques and introduce the concept
of our morph. In section 4 we give an algorithm for computing this morph while checking it
is well-defined. Section 5 contains examples of various morphed audio files and describes the
characteristics of the morph. These results are summarized in section 6 along with questions
for further research.

2 Fourier transform

Our morph is meant primarily for musical sounds. These sounds usually have a clearly iden-
tifiable pitch; there is a fundamental frequency which represents the pitch of the note and a
range of other frequencies that help shape the sound (usually called overtones) that differ for
each instrument. When morphing musical sounds it is very helpful to see which frequencies a
sound consists of so that the pitch and overtones become apparent. In this section we will use
the Fourier transform to easily access the frequency information of a sound.

2.1 Continuous Fourier transform

We start with some basic definitions of our audio input. A sound can be seen as a periodic
vibration which is usually transmitted through the air. It is possible to record sounds by
measuring the variations in air pressure and converting these to an electronic signal. Since we
need an electronic signal in order to work with computers we take this as the definition for our
audio input.

Definition 2.1. An audio signal of length T is a continuous function [0, T ]→ R.

To access the frequency information we can embed such a signal in a vector space with a basis
of simple frequencies.

Definition 2.2. The space of square integrable functions on an interval [a, b] is the set

L2[a, b] = {f : [a, b]→ C |
∫ b
a
|f(t)|2dt <∞}.
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We can define pointwise addition and multiplication by constants to create a vector space.
Since audio signals are continuous L2[0, T ] contains all audio signals of length T . We can
define an inner product on L2[a, b] by setting

〈f, g〉 =
∫ b

a

f(t)g(t)dt.

This leads to the following nice result:

Proposition 2.3. Let L2[a, b] and set L = b − a. Then the functions {e2πikt/L}k∈Z form an
orthogonal basis of L2[a, b] and the normalized functions { 1√

L
e2πikt/L}k∈Z form an orthonormal

basis.

For a proof we refer to [1]. The orthogonality gives us an easy way to calculate the coördinates
with respect to the basis.

Definition 2.4. Let f be an audio signal of length T . The Fourier transform f̂ : Z → C of
f is the function

f̂(k) =
1

T
· 〈f, e2πikt/T 〉 = 1

T
·
∫ T

0

f(t)e−2πikt/Tdt

which for each k ∈ Z gives the coördinate of f with respect to the kth basis vector.

It is important to note that we can express our audio signal in terms of its Fourier transform
by summing over all basis vectors and their coëfficients. For all x ∈ [0, T ] we have

f(x) =
∞∑

k=−∞

f̂(k) · e2πikx/T

(do note that this holds only because we demanded our audio signal to be continuous[2]; for a
general L2-function this only holds almost everywhere). In particular, we can easily reconstruct
an audio signal from its Fourier transform. The signal is now written as a sum of complex
functions, yet the signal itself is real-valued. This leads to some constraints on the Fourier
transform.

Lemma 2.5. Let f be an audio signal of length T and f̂ its transform. Then for all k ∈ Z
we have f̂(k) = f̂(−k) and f̂(0) ∈ R.

Proof. We write f(x) =
∑∞

k=−∞ f̂(k) · e2πikx/T for any x ∈ [0, T ]. Since f(x) is real we have

f(x) =
∞∑

k=−∞

f̂(k) · e2πikx/T

= f(x) =
∞∑

k=−∞

f̂(k) · e−2πikx/T

=
∞∑

k=−∞

f̂(−k) · e2πikx/T .

Since the coëfficients of f with respect to our basis are unique it follows that f̂(k) = f̂(−k)
for all k ∈ Z.
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(a) simple audio signal (b) corresponding amplitude spectrum

(c) audio signal of a musical instrument (d) corresponding amplitude spectrum

Figure 1: Two audio signals and their amplitude spectrum.

Now we can take a look at the meaning of the transform. Let k ∈ Z≥1 and write f̂(k) =
r(k) cos(φ(k)) + ir(k) sin(φ(k)). Then

f(x) =
∞∑

k=−∞

f̂(k) · e2πikx/T

= f̂(0) +
∞∑
k=1

(
f̂(k) · e2πikx/T + f̂(−k) · e−2πikx/T

)
= f̂(0) +

∞∑
k=1

(
(f̂(k) + f̂(−k)) cos(2πkx/T ) + i(f̂(k)− f̂(−k)) sin(2πkx/T )

)
= f̂(0) +

∞∑
k=1

(
2r(k) cos(φ(k)) cos(2πkx/T )− 2r(k) sin(φ(k)) sin(2πkx/T )

)
= f̂(0) +

∞∑
k=1

2r(k) cos(2πkx/T + φ(k)).

The Fourier transform thus gives a decomposition of an audio signal in basic sine waves
with amplitude 2r and phase shift φ. An audio signal consisting of a single sine wave is
perceived as a single note of which the pitch depends on the frequency and the loudness
depends on the amplitude of the sine. The modulus of f̂(k) tells us the amplitude of the sine
wave with frequency k

T
, which corresponds to the loudness of a note with the same frequency:

it tells us how much that pitch is present in the original audio signal. A plot of |f̂ | is called an
amplitude spectrum.

Examples of amplitude spectra can be seen in figure 1. Figure 1a shows an audio signal
of a simple sine wave with a frequency of 20 Hz. Without any further analysis the Fourier
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(a) (b)

(c) (d)

Figure 2: 2a and 2c both contain a wave of 1Hz and a wave of 2Hz but in different phase
configurations. As a result the sums of the two waves are shaped differently.

transform indeed shows that the signal consists only of a sine of 20 Hz. Figure 1c contains the
signal of a musical instrument playing a single note. Here it is not as easy to infer information
directly from the signal, but the amplitude spectrum provides clear information on the pitch
and overtones of the sound.

It should be noted that the peaks in figure 1d are not as narrow as the peak in figure 1b.
This is because the Fourier transform decomposes the original sound in waves with frequencies
that are multiples of 1

T
. If a sound contains frequencies that are not multiples of 1

T
some

inaccuracies will show. The amplitude of such a frequency is in some way split over the nearby
available frequencies. For this work it is not hugely important how exactly this happens so we
will not explore this further.

The phase information encoded in the argument of f̂(k) doesn’t have as clear a meaning
as the amplitude information. The phases of multiple frequencies dictate how these frequencies
interact, i.e. where they boost and attenuate each other. This information does not impact
the pitch of the audio signal but rather the shape it takes, like temporary increases in loudness
or in the case of musical instruments often a sudden increase followed by a gradual lowering of
volume when a note is struck. Figure 2 contains an example. In 2a the two waves both have
their phase set to zero; in 2b the phase of the lower frequency is set to π and the phase of
the higher frequency is set to 2π

3
. As a result the sums of these waves behave differently.

2.2 Discrete Fourier transform

The audio signals we have worked with so far are continuous functions from a subset of R.
While such continuous signals are generated during the recording of audio a lot of data is lost
when these signals are stored, since only finitely many points can be stored on a computer.
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When a computer or recording device receives an audio signal as input it will measure that
signal at regular intervals. The measurements are called samples and the process is called
sampling.

Definition 2.6. A sampled audio signal of length T with N samples is a function [0, T ] ⊃
{ 1
N
T, 2

N
T, . . . , N−1

N
T, T} → R.

Notation. Let f be a sampled audio signal with N samples. For 1 ≤ n ≤ N we denote the
nth sample as f [n] = f( n

N
T ).

For fixed N we can think of a sampled audio signal as a vector of length N . Analogous to the
continuous case we can form a basis of simple frequencies. In the vector representation these
take the form (e2πik1/N , . . . , e2πik(N−1)/N , e2πikN/N)[3]. This leads to the following analogue of
definition 2.4:

Definition 2.7. Let f be a sampled audio signal of length T with N samples. The Fourier
transform f̂ : Z→ C of f is the function

f̂(k) =
1

N
· 〈f, e2πikn/N〉 = 1

N
·
N∑
n=1

f [n]e−2πikn/N

which for each k ∈ Z gives the coördinate of f with respect to the kth basis vector.

One can show that again f̂(k) = f̂(−k) for all k ∈ Z. As it turns out the Fourier transform
of sampled signals have another rather helpful property.

Proposition 2.8. Let f be a sampled audio signal of length T with N samples. Then the
Fourier transform f̂ is periodic with period N .

Proof. This follows straight from the definition. For any k ∈ Z we have

f̂(k +N) =
1

N
·
N∑
n=1

f [n]e−2πi(k+N)n/N =
1

N
·
N∑
n=1

f [n]e−2πikn/Ne−2πin = f̂(k).

In the process of sampling a lot of data is lost. As a consequence the Fourier transform also
yields less data. In live purposes, where small chunks of audio have to be processed as fast
as possible to minimize any delay, this creates a challenge where taking too small an audio
signal means the Fourier transform does not contain any useful data. On the whole though it
is extremely convenient that the transform of a finite signal is itself again finite. Just like in
the continuous case we can express an audio signal in terms of its Fourier transform[3]:

f(n) =
N∑
k=1

f̂(k)e2πink/N .

So the Fourier transform of a sampled signal is very convenient to work with. For a signal of
N samples the transform is completely determined by N

2
+ 1 values and it is easy to recover

the original signal. Working straight from these equations calculating an (inverse) transform
would have time complexity O(N2). A wide selection of algorithms are available that do these
transforms in O(N log2N), the first of which dates to 1965[4]. Any such algorithm with
complexity O(N log2N) is called a Fast Fourier transform.
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3 Morphing strategies

A morph is a way of transforming two inputs in a continuous fashion. In the case of audio
a morph would be a transformation between two arbitrary audio signals. So given two audio
signals the morph gives rise to a set of new signals that change from one sound to the other.
As mentioned previously there are often myriad ways to do this, some more complicated than
others. It may be helpful to visualize a space of audio signals and see the morph as a path
from one to the other. Some paths do not contain any interesting sounds, some might contain
sound that is barely audible; ideally a morph can provide an interesting path for a wide variety
of signals.

The path you choose is highly dependent on which characteristics of the input you would
like to control. For example, musical vibrato is often lost when morphing. When taking sounds
with a soft vibrato and a harsh vibrato as input a morph can produce ’in-between’ sounds that
do not have any vibrato at all. Research has been conducted to create morphs that specifically
respect the vibrato [5], but this places such a demand on the path you choose that you lose
control over some other feature the original morph might have respected. In brief, different
morphs emphasize different aspects of your input and are thus suitable for different goals.
Deciding on a morphing strategy is thus closely related to the set of features you choose to
emphasize. In this section we take a look at previous morphs and the features they emphasize
and introduce a new morph.

3.1 Previous work

For a nicely detailed summary on fairly recent work we refer to the thesis of Regueiro[5] which
provides plenty of further references. Most features are either derived from the signal directly
or from its transform. We refer to features derived directly as features in the time domain,
and to features derived from the transform as features in the frequency domain. An example
of a feature in the time domain would be the amplitude over time, or rather the amplitude
envelope. This relates to time-based events such as the beginning or attack of a musical note.

When working in the frequency domain there is the issue of noise. Due to a variety
of reasons noise is often present which in the frequency domain manifests itself as energy
that is present across all frequencies. That is, noise can be seen as random interference in
every frequency. This makes it more difficult to manipulate the frequency domain both from a
computational standpoint (as treating all frequencies is often computationally expensive) and
because it can be unclear which frequencies contribute something meaningful to the sound as
opposed to frequencies which contain nothing but noise. Multiple solutions have been proposed
to alleviate this. In the mid-eighties a model called Spectral modeling synthesis, or SMS, was
proposed[6]. The core idea was to see the frequency spectrum as the sum of a deterministic
part and a stochastic part; the stochastic part represents the noise and the deterministic part
consists only of clear peaks called partials. The harmonic content of a sound would reside
only in these partials and could as such be easily altered while the noise could be processed
seperately.

A related model developed in the early 2000’s is Loris[7]. This model also works with
partials but does not contain a seperate layer for noise. Instead each partial contains a pa-
rameter for noise energy. When a partial contains no noise it is still a pure sine wave of one
clear frequency, visible in a spectrum as one clear peak. As more noise is added the resulting
function will look like a sum of sine waves of frequencies close to the frequency of the partial,
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causing a ’spill’ of frequencies which looks like the original frequency is smeared out over the
spectrum.

The approach of using partials is quite commonly used in audio morphing. Features in the
frequency domain can almost always be expressed in terms of partials (an exception would be
vibrato which concerns small fluctiations of frequencies). Most of the work is then to analyse
a sound and find a representation in terms of partials, which can be quite difficult. Especially
in noisy sounds it is not necessarily clear what might be a partial or particularily violent noise.
When morphing sounds there is a problem of alignment. When the input sounds are similar
(e.g. of the same instrument) the sets of partials will most likely resemble each other such that
a pairwise identification can be made. However, often the input sounds will not be similar in
which case there might be no evident way of aligning the partials - the number of partials will
already often differ. The method in which partials are matched will then have a tremendous
impact on the morph.

There are other approaches to analysing features in the frequency domain. Efforts have
been made to create models that hardly use Fourier transforms altogether[8], and there is
documentation on using genetic algorithms to generate new spectral envelopes[9]. However,
models using partials seem to remain the standard.

3.2 A new strategy

As mentioned in the last section, working with partials brings problems of both finding and
aligning partials. We propose a novel way of morphing two spectra without using partials. The
main idea is to take two positive real-valued functions f and g (such as the amplitude for
each frequency) and focus instead on morphing their integrals F and G. Both integrals can
be taken and scaled on both axes such that they are comparable, for example by meeting at
(0, 0) and (1, 1). Since we took our functions to be positive their integrals are non-decreasing
which makes them easier to compare. We can create a new function H by finding x, y such
that F (x) = G(y) and setting H(x(1−p) · yp) = F (x) = G(y) for some parameter p ∈ [0, 1],
where x(1−p) ·yp is the weighted geometric mean of x and y. Lastly we can find a new function
h by differentiating. Please see figure 3 for an illustration.

The reasoning for using integrals is that these are more easily manipulated mathemat-
ically while retaining all information present in the original function. The interpolation used
when creating H is meant to function like a partial model but without the rigidity of defining
and finding partials. Any clear peak will be visible in the integral as a steep incline. Such an
incline is moved smoothly along the x-axis during morphing which causes the corresponding
peak to smoothly slide along the frequency axis as seen in figure 3. Using integrals and this
interpolation method allows the peaks to move freely without needing identification.

Interesting things will happen when the number of partials and their shapes do not
match. When one signal contains a partial that cannot be matched to another, a new partial
of zero amplitude is created in the other signal in or near the same frequency (the frequency
might be altered slightly to better fit the harmonic content of the other sound). This causes
the previously unmatched partial to slowly dissappear when morphing as its amplitude nears
zero; conversely, starting from the other sound a new partial will emerge from nothing. In our
approach such an unmatched partial is informally matched to some other and will naturally
move towards it. Take as an example a sound with one partial morphed to a sound with two
partials. The one partial will slowly grow wider and split in two partials that will move to their
own frequency. Morphing in the other direction the two partials will move toward each other

9



(a) f (b) g

(c) F (d) G

(e) H

(f) h

Figure 3: The morphing process. We start with two functions f and g and create their integrals
F and G. From these a function H is created which yields a function h by differentiating.

and merge. An example can be found in figure 4.
Lastly there is the fact that we used a geometric mean when defining H. The geometric

mean works quite well in musical sounds since it preserves the ratio between different frequen-
cies, and these ratios are extremely important in our perception of sound. As an example, take
one sound with a frequency of 50Hz and a frequency of 75Hz, and one sound with a frequency
of 100Hz and a frequency of 150Hz. Both sounds contain two frequencies with ratio 2 : 3.
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(a) The two spectra taken as input (b) The two corresponding integrals

(c) A number of interpolated functions, calculated with p = 0.17, p = 0.3, p =
0.5 and p = 0.75

(d) The resulting spectra

Figure 4: Starting with two differently shaped spectra the morph smoothly changes the shape
of the spectrum.

When morphing we would like the intermediate sounds to contain two frequencies with this
ratio as well. Taking the standard arithmetic mean we would find a signal with frequencies
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75Hz and 125Hz halfway through; the geometric mean gives frequencies of roughly 70Hz and
106Hz, preserving the 2 : 3 ratio. For this reason we use a geometric mean for H.

4 Calculations

Last section we informally discussed previous morphing strategies and outlined the approach
we will take. In this section we will define our morph and prove it is well-defined. We also
present an algorithm for computing the morph.

Before we start this chapter there is an important matter of notation to be resolved.
The algorithm was implemented in MATLAB[10] which starts array indices at 1. As a result all
indices had to be shifted, e.g. given some Fourier transform f̂ one would need to ask MATLAB
for the first value to obtain f̂(0), ask for the second value to obtain f̂(1) and so forth. As it
so happens this convention simplifies notation for the upcoming math somewhat so we have
kept it for the following chapters: for 1 ≤ n ≤ N we denote f̂ [n] = f̂(n − 1). Lemma 2.5
then states that f̂ [1] ∈ R and

f̂ [n] = f̂(n− 1) = f̂(N + 1− n) = f̂ [N + 2− n]

for 2 ≤ n ≤ N .

4.1 Defining the morph

First we will make our previous description more rigorous. As input we take two sampled audio
signals f and g, both of length T with N samples, and some percentage p ∈ [0, 1]. The output
will be a sampled audio signal (also of length T with N samples) that is produced by stopping
the morph after p percent when morphing from f to g. So for p = 0 the output should be f ,
for p = 1 the output should be g, for p = 0.2 the output should be something close to f that
slightly resembles g and so forth.

First we need to use f and g to construct two continuous functions F,G that are non-
decreasing and map to the same image. We will discuss our method for this later this section
and first focus on using these two functions to construct H.

Theorem 4.1. Let F,G : [1, N ] → [0,M ] be continuous and non-decreasing. Then there
exists a unique function H : [1, N ]→ [0,M ] such that for all x, y ∈ [1, N ]

F (x) = G(y)⇒ H(x(1−p) · yp) = F (x) = G(y).

Proof. First we prove that H exists for all values of p. For p ∈ {0, 1} this is obvious since F
and G share the same image, so H will be either F or G itself; so we can take p ∈ (0, 1).
Let n ∈ [1, N ]: we prove that H(n) exists. Should F (n) = G(n) then we are done, so
F (n) > G(n) or F (n) < G(n). First we consider F (n) > G(n).

Let x(t) = (1− t)n+ t and y(t) = (n ·x(t)p−1)
1
p for t ∈ [0, 1]. Then for all t ∈ [0, 1] we

have x(t)(1−p) · y(t)p = n. We can now consider F (x(t)) and G(y(t)) as functions of t where
F (x(0)) > G(y(0)) and try to find a value of t such that F (x(t)) < G(y(t)); then by the
intermediate value theorem we obtain a value t∗ such that F (x(t∗)) = G(y(t∗)). For t = 1 we
have F (x(t)) = 1, the minimum of the function, but G(y(1)) is not necessarily defined since
y(1) might be larger than N . In such a case we can take t∗ ∈ (0, 1) such that y(t∗) = N and
thus G(y(t∗)) =M , which still yields F (x(t∗)) ≤ G(y(t∗)).
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This proves that for F (n) > G(n) we can find a value for H(n). In the case that F (n) <

G(n) we can take a similar approach by setting y(t) = (1−t)n+1 and x(t) = (n·y(t)−p)
1

(1−p) .
So for any n ∈ (1, N) we can find a value for H(n): all that remains is to show that these
values are unique. Let x, y, x′, y′ ∈ [1, N ] such that F (x) = G(y), F (x′) = G(y′) and
x(1−p) · yp = x′(1−p) · y′p. If x 6= x′(and so y 6= y′) assume without loss of generality that
x > x′ and y < y′. Since F and G are non-decreasing we have

F (x′) ≤ F (x) = G(y) ≤ G(y′)

and thus we have F (x) = F (x′) = G(y) = G(y′). We have proven that for all p ∈ [0, 1] we
can find a well-defined function H that is completely determined by F and G: hence H is also
unique.

Notation. Given two continuous and non-decreasing functions F,G : [1, N ]→ [0,M ] we call
H their direct interpolation.

Corollary 4.2. Let F,G : [1, N ] → [0,M ] be continuous and non-decreasing, and let H be
their direct interpolation. Then H is non-decreasing.

Proof. Let n, n′ ∈ [1, N ] such that H(n) > H(n′) and let x, y, x′, y′ ∈ [1, N ] such that
F (x) = G(y) = H(x(1−p) · yp), F (x′) = G(y′) = H(x′(1−p) · y′p), x(1−p) · yp = n and
x′(1−p) · y′p = n′. Then from H(n) > H(n′) it follows that F (x) > F (x′) and G(y) > G(y′),
so x ≥ x′ and y ≥ y′. Then we also get n = x(1−p) · yp ≥ x′(1−p) · y′p = n′ which proves that
H is non-decreasing.

Now it is clear how we can obtain an interpolation H from F and G. We would like to construct
a new audio signal h using H; for doing so it is important to decide how to construct F and G
from our input signals such that we can reverse the process. Starting from our input signals we
will create some intermediate functions that reflect the steps described in the previous section:
creating positive real-valued functions, integrating, scaling as well as making the resulting
function continuous.

Given our input signals f and g of N samples we take Fourier transforms f̂ and ĝ. To
create positive real-valued functions two options seem apparent. We could take the amplitude
spectrum, meaning the modulus of the Fourier transform; or we could take the modulus
squared. This would represent the total energy present in each frequency (this is due to
Parseval’s identity[11] which states a relation to the squares of the Fourier coefficients and
the square of the original signal). The impact of this choice will be discussed next chapter.

Next we want to take the integral of our positive function. Since integrating over sampled
functions makes little sense we take sums instead, and get

F1(n) =
n∑
k=2

|f̂ [k]| or F1(n) =
n∑
k=2

|f̂ [k]|2

as our function for 2 ≤ n ≤ N , x ∈ Z. We do need to ensure that F and G will have the
same image. We do this by demanding that F1(1) = G1(1) = 0 and setting

F2(n) = F1(n) ·
1

2

F1(N) +G1(N)

F1(N)

(analogous for G) such that both functions obtain the same maximum value, say M . Now,
these functions are still only defined on N points. We want to find x, y such that F (x) = G(y)
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but for these functions such points do not need to exist; so we set F and G to be the continuous
functions obtained by linearly interpolating F2 and G2.

Now we can take the direct interpolation H of F and G and reverse these steps. First
we need to undo the scaling we applied on F and G, so say

H1(n) = H(n) · (1− p) · F1(N) + p ·G1(N)
1
2
· (F1(N) +G1(N))

where the maximum value of H1 is interpolated linearly between the maxima of F1 and G1

depending on p. Next we can set |ĥ[k]| = H1(k)−H1(k−1) or |ĥ[k]| =
√
H1(k)−H1(k − 1)

for 2 ≤ k ≤ N , depending on our earlier choice. The values f̂ [1] and ĝ[1] were not encoded
in F and G so we manually set ĥ[1] = (1− p) · f̂ [1] + p · ĝ[1].

The rather apparent problem at this point is that we only constructed the absolute
value of ĥ and have no way to determine the function itself which is needed to compute
the new audio signal. F and G only contain information on the modulus of f̂ and ĝ. To
finish constructing ĥ we also need the phase information. For this purpose we construct new
functions Fphase, Gphase : [1, N ] → (−π, π] that at each integer 1 ≤ n ≤ N contain the

phase information (or rather the argument) of either f̂ [n] or ĝ[n]. Between integers the phase
can be interpolated (we will briefly visit the effect of the interpolation method next chapter).
These functions can be used to create Hphase: when there are x, y such that H(x(1−p) · yp) =
F (x) = G(y) we set Hphase(x

(1−p) · yp) to be some interpolation of Fphase(x) and Gphase(y)
(we will also visit the effect of this interpolation method next chapter). Then finally the phase
contained in Hphase(k) is taken as the argument of |ĥ[k]| and we obtain a complete Fourier

transform ĥ. Taking the inverse transform yields the desired output h.

4.2 Well-definedness of ĥ

In the previous section we have defined our morph using Fourier transforms and various func-
tions derived from these transforms. We started with signals of N samples and treated the
transforms as if they had N distinct points of data, since these transforms are N -periodic.

In this section we use the identity of lemma 2.5, manifesting as f̂ [n] = f̂ [N + 2− n] for
2 ≤ n ≤ N , to prove the derived functions F and G have a similar kind of symmetric be-
haviour. This allows us to know these functions by only computing N

2
+1 points of them which

cuts out some computational effort. Lastly we enforce such a condition on H thus ensuring ĥ
satisfies the identity of lemma 2.5 and that its inverse transform h is indeed real-valued.

Proposition 4.3. Let f be an audio signal of N samples and construct F : [1, N ]→ [0,M ]
as in the previous section. Then for all r ∈ [1, N ] we have F (r) + F (N + 1− r) =M .

Proof. First we will prove that for all 1 ≤ n ≤ N we have F1(n) + F1(N + 1− n) = F1(N).
For n = 1 or n = N the statement is trivial. Otherwise using that |f̂ [n]| = |f̂ [N +2− n]| we
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have

F1(n) + F1(N + 1− n) =
n∑
k=2

|f̂ [k]|+
N+1−n∑
k=2

|f̂ [k]|

=
n∑
k=2

|f̂ [k]|+
N∑

k=n+1

|f̂ [k]|

=
n∑
k=2

|f̂ [k]| = F1(N).

(this works the same when setting F1(n) =
∑n

k=2 |f̂ [k]|2.) The same property holds for F2 as
it is a scaled version of F1. We use this to prove our property of F . Again for r = 1 or r = N
this is trivial, so assume r ∈ (1, N). Write r = n+ c with n ∈ Z and c ∈ [0, 1). F is the linear
interpolation of points of F2 so F (r) = F (n+ c) = (1− c)F2(n) + cF2(n+ 1). This gives

F (r) + F (N + 1− r) = (1− c)F2(n) + cF2(n+ 1) + cF2(N − n) + (1− c)F2(N + 1− n).

Since F2(n) + F2(N + 1− n) = F2(N) =M we can write

cF2(N − n) + (1− c)F2(N + 1− n) = c(M − F2(n+ 1)) + (1− c)(M − F2(n))

which yields

F (r) + F (N + 1− r)
= (1− c)F2(n) + cF2(n+ 1) + cF2(N − n) + (1− c)F2(N + 1− n)
= (1− c)F2(n) + cF2(n+ 1) + c(M − F2(n+ 1)) + (1− c)(M − F2(n))

= (1− c)F2(n)− (1− c)F2(n) + cF2(n+ 1)− cF2(n+ 1) + cM + (1− c)M
= M.

This proof naturally also applies to G. Unfortunately this property does not hold for H.

Proposition 4.4. Let F,G : [1, N ] → [0,M ] continuous and non-decreasing such that for
all r ∈ [1, N ] we have F (r) + F (N + 1 − r) = G(r) + G(N + 1 − r) = M , and let H be
their direct interpolation. Then in general we do not have H(r) +H(N + 1− r) =M for all
r ∈ [1, N ].

Proof. We construct a counterexample. Let N > 2, p = 0.5, set F (x) = (x− 1) M
N−1 and set

G(x) =


0, x < N

2

M(x− N
2
), N

2
≤ x ≤ N

2
+ 1

M, x > N
2
+ 1

.

Note that F is strictly increasing and that G is strictly increasing on the interval (N
2
, N

2
+ 1),

such that both functions attain all values other than 0 and M exactly once. Take, say, x = 2,
then F (x) = M

N−1 . Solving G(y) = M
N−1 yields y = N

2
+ 1
N−1 and this gives H(x0.5·y0.5) = M

N−1 .

This implies H only attains the value M
N−1 at this one point.
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Next we look for x′, y′ such that H(x′0.5 · y′0.5) = M − M
N−1 . By assumption we have

F (N+1−x) = G(N+1−y) =M− M
N−1 so we take x′ = N+1−x and y′ = N+1−y noting

again that H only attains the value M− M
N−1 at this one point. So if H(r)+H(N+1−r) =M

would hold for all r ∈ [1, N ] we must have

20.5 ·(N
2
+

1

N − 1
)0.5 = x0.5 ·y0.5 = N+1−x′0.5 ·y′0.5 = N+1−(N−1)0.5 ·(N

2
+1+

1

N − 1
)0.5

for all values of N > 2. It is easy to find values for N such that the above equality does not
hold which proves that in general we do not have H(r) +H(N + 1− r) =M .

It should be noted that the failure of H to attain this property can be attributed to our choice
to use the geometric mean when constructing the function. When using the arithmetic mean
instead H would inherit the symmetric structure of F and G; in comparison the geometric
mean seems to behave in a less symmetric manner. Since we want to use the geometric mean
as explained last chapter we have to find a way to enforce this symmetry on H.

Definition 4.5. Let F,G : [1, N ]→ [0,M ] continuous and non-decreasing and let H be their
direct interpolation. The symmetric interpolation of F and G is the function{

H(x), x ≤ N+1
2

M −H(N + 1− x), x > N+1
2

.

Now instead of the direct interpolation we can take the symmetric interpolation as our
new function H. Then we do have H(r) + H(N + 1 − r) = M for all r ∈ [1, N ] and we
can show that ĥ is well-defined; from this property we have |ĥ[n]| = |ĥ[N + 2 − n]|. The
phase information is transferred similarly through Hphase enforcing that the phase contained

in H(r) is the opposite of that in H(N + 2 − r). This then yields ĥ[n] = ĥ[N + 2− n] or

rather ĥ(n) = ĥ(N − n). When computing h we find

h(n) =
N∑
k=1

ĥ(k)e2πink/N

= ĥ(N) +

N−1
2∑

k=1

(
ĥ(k)e2πink/N + ĥ(N − k)e2πin(N−k)/N

)

= ĥ(0) +

N−1
2∑

k=1

((
ĥ(k) + ĥ(N − k)

)
cos(2πnk/N) + i

(
ĥ(k)− ĥ(N − k)

)
sin(2πnk/N)

)
so it is clear that h(n) will be a real-valued function. With this last alteration of H we have
completed our morph and proven it is completely well-defined.

4.3 Algorithm

In this section we present an algorithm for computing the morph. Given two sampled audio
signals f and g we first have to compute their Fourier transforms and the functions F and
G (or at least F2 and G2 such that values of F and G can be interpolated when needed).
The challenging part of the algorithm is computing H in an efficient manner. When proving
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theorem 4.1 we took some value n and then searched for x, y that averaged to n and provided
a value for H. This is not very practical as it would require traversing large parts of F and G
for each 1 ≤ n ≤ N , creating an algorithm of complexity O(N2). A better solution would be
to construct inverse maps of F and G providing easy access to values for x, y for any given
function value. This strategy is more promising but has some slight problems. It can be difficult
to find a nice level of detail since a Fourier transforms with clear peaks leads to functions F,G
with very steep slopes, although this could be solved using hash mappings. Another problem
is that F,G are non-decreasing but not necessarily strictly increasing. These factors led us to
develop another strategy.

Given F2 and G2 we let an integer variable x walk along F2. For each value of x we
search for some y such that G(y − 1) < F (x) ≤ G(y), so for each 1 ≤ x ≤ N+1

2
we find

some value for H. When we have found such a y for a particular value x we also get that
G(y− 1) < F (x+1) which simplifies searching for a new value for y. If F (x+1) ≤ G(y) we
immediately find another value for H. Otherwise we have F (x) ≤ G(y) < F (x+1) which also
yields a value for H and we can increase y afterwards. So essentially, while x walks from 1 to
N+1
2

asynchronously y walks from 1 to N+1
2

as well and this gives exactly N +1 combinations
of x and y that all give some value of H. This also ensures that these values are found in
linear time.

Practically the algorithm consists of an outer loop in which x is incremented and an inner
loop in which y is incremented. To store the values for H we create an array of triples Htemp
where each triple represents values x, H(x) and the phase at H(x). Below is the pseudocode
of the algorithm. Before this executes we assume that F2 and G2 are already calculated and
that the phase information is stored in Fphase and Gphase. Interpolation between phases is
done using the functions avgPhase and avgPhase2. The first is meant for morphing phases
between the two functions while the second is meant for interpolating between known phases
of one function. The algorithm for computing H is as follows:

Initialize Htemp to zero
i← 1
Htemp(i)← (1, 0, 0)
y ← 2
for x← 1 to N+1

2
do

while F2(x) > G2(y) and y <
N+1
2

do
i← i+ 1
if G2(y) = F2(x− 1) then

Htemp(i)← ((x− 1)1−p · yp, G2(y), avgPhase(Fphase(x− 1), Gphase(y), p))
else

c← G2(y)−F2(x−1)
F2(x)−F2(x−1)

phase← avgPhase(avgPhase2(Fphase(x− 1), Fphase(x), c), Gphase(y), p)
Htemp(i)← ((x− 1 + z)1−p · yp, G2(y), phase)

end if
y ← y + 1

end while
i← i+ 1
if F2(x) = G2(y) then

Htemp(i)← (x1−p · yp, G2(y), avgPhase(Fphase(x), Gphase(y), p))
else

c← F2(x)−G2(y−1)
G2(y)−G2(y−1)
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phase← avgPhase(Fphase(x), avgPhase2(Gphase(y − 1), Gphase(y), c), p)
Htemp(i)← (x1−p · (y − 1 + z)p, F2(x), phase)

end if
end for

Now we have an array containing N + 1 values for H. This does not necessarily contain all
integer values of H so we have to interpolate one last time. Including this interpolation the
above algorithm has a time complexity of roughly 2N . All that is left then is to construct ĥ
from H and apply the inverse Fourier transform. Altogether obtaining a new fourier transform
from the transformed inputs is done in linear time. Since the transforms themselves are of
complexity O(n log2 n) they have the biggest impact on the speed of the morph, which means
the morph is nicely computable.

5 Results

Now that we have described both our morph and a way to compute it we can study the
results. Since these results are audio files the reader is strongly recommended to listen to the
files discussed in this chapter[12]. We will study various types of input to try to analyse the
workings of the morph.

5.1 Simple notes

To start we take the examples shown in figures 3 and 4. We use the sounds simplein1.wav,
simplein2.wav and simplein3.wav. The first contains a note of 80Hz, the second a note
of 320Hz (two octaves higher) and the third contains two notes, one of 320Hz and one of
480Hz(a perfect fifth above). Our choice for F1 or avgPhase does not matter much in these
cases. The resulting F1 will have one or two clear peaks and nothing else and for signals
with such a low number of frequencies the phases do not seem to have much influence. The
given samples were produced with F1 =

∑n
k=2 |f̂ [k]|, setting avgPhase to linear interpolation

and setting avgPhase2 to nearest-neighbour interpolation (e.g. avgPhase(x, y, p) = x when
p < 0.5 and avgPhase(x, y, p) = y when p ≥ 0.5).

When morphing in1 to in2 our morph behaves like the models using partials. The two
peaks are identified and shifted towards each other, slowly changing the pitch of the sound.
Because of our use of the geometric mean in computing H the amount of changes in pitch
make some amount of musical sense. Looking at the sound for p = 0.5 we find a frequency
of 160Hz which means the note is exactly an octave above the lower note and an octave
under the higher note: musically exactly in between the two. Likewise for other values of p the
resulting pitch lies at a frequency that makes musical sense and this helps the morphing to
feel more smooth.

The morph of in1 to in3 is far less succesful. The first contains a single note and the
second contains two notes that are a fifth apart, meaning their frequencies have a ratio of
2 : 3. The inputs are not very similar making it less apparent what a good morphing strategy
would be. Our morph behaves as in figure 4, the peak splits in two peaks that slowly shift
apart. The resulting sounds are very inharmonic and have decidedly less of a smooth feel to
them. During the morphing the frequencies of the two peaks go to a variety of ratios from
1 : 1 to 2 : 3. However almost all of these ratios give inharmonic and ’ugly’ sounds that are
often best avoided. These ratios are also not at all present in the input sounds which makes
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it somewhat unnatural for them to show up.

5.2 Musical notes

Here we study two cases. First we take two notes of the same instrument, so two sounds with
a different pitch but a very similar pattern of overtones. Second we take the same note on
different instruments, so two sounds with the same pitch but a different pattern of overtones.
Both definitions of F1 were tested, one were we sum over absolute values and one were we
sum over squares. The results for the first can be found in the folder F1 abs and results for
the second in the folder F1 squared.

First we look at the two guitar sounds guitar_g.wav and guitar_b.wav. These sounds
have a very similar pattern of overtones and all peaks in the spectrum should be clearly
identifyable. One would expect the morph to produce guitar sounds slowly changing in pitch.
Contrary to this the morph produces a number of samples that do not sound much like a
guitar. It starts off as a guitar sound only to add inharmonious pitches and the sound quickly
becomes hollow. The reason for this is that the peaks in both spectra do not at all have
the same amplitudes which causes the morph to match them incorrectly. This phenomenon

(a) F and G (b) F,G and H for p = 0.5

(c) Amplitude spectra for f̂ , ĝ and ĥ for p = 0.5.

Figure 5: Every time F and G cross creates a new incline for H which in turn produces an
unwanted peak in the spectrum of ĥ.

is shown in figure 5. Every time F and G meet prompts H to create a new incline. In the
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spectrum of ĥ these lead to unwanted frequencies. For p = 0 or p = 1 these frequencies do not
show up at all; for p = 0.5 they are most prominent as they have then distanced themselves
the most from frequencies normally present in a guitar sound. This is clearly audible when
listening to the morphed sounds. As the morphing progresses the unwanted sounds become
more apparent and after the halfway point fade away again.

The choice of F1 does have an impact on this. Using squared values instead of absolute
values increases the difference between frequencies, making peaks more prominent. This can

(a) F and G using absolute values for F1 (b) F and G using squared values for F1

(c) H using absolute values for F1 (d) H using squared values for F1

Figure 6: The choice of F1 greatly impacts the shape of F,G and H. Using absolute values
accentuates the peaks less leading to less prominent unwanted frequencies.

be seen clearly in the shapes of F and G, seen in figure 6. Since the peaks are less prominent
the unwanted frequencies are less prominent as well.

Lastly it should be noted that the produced sounds have some kind of symmetrical
behaviour. Like the input sounds they all start with a clear attack and gradually decrease
in volume, but unlike the input sounds the volume starts increasing near the end. This is a
consequence of the phase information. A Fourier transform of a signal of length T decomposes
that signal in sine waves that are all periodic with length T . The inverse of the transform can
thus be seen as a T -periodic function as well. It is difficult to create a signal that has such
a large increase in loudness at precisely one point (even though such signals occur so often
in nature and thus sound more natural) and has largely to do with setting phases correctly.
We tried various settings and combinations for avgPhase and avgPhase2 which did not
alleviate the problem. In the end all morphs were performed using linear interpolation and
nearest-neighbour interpolation as described in the previous set.

Next we look at two different instruments playing the same note. We use the same guitar
sample guitar_g.wav and combine it with a keyboard sample keys_g.wav. The exact same
problems apply here. While morphing the overtones new peaks are created that are not present
in either input sound and these peaks create an inharmonic sound that does not really resemble
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any of the input sounds. The phase problem is a little less pronounced here; while the guitar
sound has a clear attack the keyboard sound is nearly constant for its entire duration and as
such the morph moves towards more constant sounds as well.

5.3 Noisy sounds

The previous cases considered musical sounds with a clear harmonic structure: sounds with a
clear pitch and distinct or no overtones containing little noise. In these cases our morphing
strategy produced unwanted overtones that did not fit the harmonic structure. It seems that
such cases are better suited for clearly identifying and aligning partials. One of the areas that
models using partials often struggle with is noisy sounds since there are often no clear partials
and these models are usually geared towards preserving harmonic structure which these sounds
do not contain. For this reason it is interesting to study the effect of our morph here as well.
We use four drum sounds; two toms tom1.wav and tom2.wav and two cymbals crash.wav

and ride.wav.
Looking at the morph between the tom sounds the choice of F1 once again comes up.

Using absolute values leads to a slightly lighter sound where the attack of the second tom
becomes steadily more apparent. Squared values give a deeper sound but also a very audible
high pitched noise. It also seems like the attack of the second tom has some more difficulty
finding its pitch, and in general it sounds a little more disjointed.

The morph between the crash and the ride is probably the best result of this morph.
The spectrum of the crash contains more frequencies and more energy than the spectrum of
the ride which has an almost humble sound. The ride seems to die out a little faster as well.
Overall the morph performs well here, aside from the phase issue which prevents the notes
from dying out: the sounds produced by the morph seem to transition smoothly and naturally.

The previous two examples morphed sounds that were in a way very similar, often giving
the listener some ideas of what an ’in-between’ sound would be like. This is why the last morph
we look at is between a tom and the ride cymbal which are two very different sounds. When
morphing the low rumbling of the tom quickly disappears as the pitch rises. At the sample for
p = 0.7 the distinct metal ringing of the cymbal starts to become apparent and the sound
slowly solidifies from there to form the cymbal sound. It seems like the features of one sound
gradually fade out while the features of the other fade in. The result is somewhat promising
but we would rather have a process that feels slightly smoother.

6 Conclusions and further research

In this paper we presented an idea for a morph based on difficulties encountered in previous
work based on partials and we presented an algorithm for computing it. The morph was
supposed to avoid issues with identification and alignment of partials. There are numerous
problems with this approach. At the cost of avoiding alignment of partials unwanted noise was
introduced and when one partial is morphed to multiple others very inharmonic sounds appear.
Lastly we have not found a nice way of handling or averaging the phase information. This has
a very pronounced effect on the shape and timing of the sounds that the morph produces. In
conclusion this model does not seem fit for sounds with any clear harmonic structure, as that
structure is better preserved by previous models.

The results on noisy sounds without clear harmonic structure do seem interesting and
it could be valuable to explore this further. In this paper we have focused mainly on musical
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sounds and the peaks in their amplitude spectra. To study noisy sounds one could look at dif-
ferent features that are not based on partials since they seem unwieldy to use in an inharmonic
context. Another point that could be explored is different strategies for handling the phase
information.
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