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Abstract

Hanabi is a co-operative card game for two to five players, in which
every player can see the contents of the other players’ hands, but not of
their own. By the exchange of hints, a player can obtain information about
the cards in his or her hand.

The thesis consists of two main parts. In the first part, we study the
notion of playability. Not every initial configuration of the game can result
in a maximum score even if playing perfectly. By employing combinatorics,
we derive a formula with which the amount of the initial configurations
which can be finished perfectly can be calculated for a simplification of the
original game. We also propose an approach using dynamic programming
to perform these calculations for slightly more complicated versions of the
game. In the second part, we test a variety of strategies in search of good
strategies for the original game. We discover that some simple rules give
promising results, but that not all strategies which seem good intuitively
indeed result in high scores.
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1 Introduction

Hanabi, Japanese for “fire flower” or “fireworks”, is a co-operative card game
for two to five players. In contrast to many other games where every player tries
to outperform the others in an attempt to secure victory, in Hanabi the players
are required to work together and combine efforts to achieve the best possible
result. This gives an entirely different dynamics to the game. An interesting
feature of Hanabi is that players keep their cards in their hands with the card
backs facing themselves. Hence, every player can see the value and suit of the
cards in all other players’ hands, but not in their own. Indeed, viewing a game
being played is quite odd at first.

In Section 2, after introducing some notation for sequences, we will start with
a concise informal description of the rules of the game. Subsequently, we will
formalise these rules in order to be able to construct rigid proofs. In Section 3,
we will then look at the question of playability: for a given starting configuration
of the game, it turns out that it might be impossible to obtain a perfect score.
This situation can be compared to that in Klondike Solitaire, in which not all
permutations of the stack are winnable [I]. The question of which configurations
in Hanabi are playable turns out to give an interesting combinatorial problem,
for which Theorem [3.25]is the main result.

Next, in Section 4, we will look at the one question which is interesting for
every game: given a random initial configuration, what is a good or even optimal
strategy? To answer this question, we will distinguish between two optimality
criteria and run simulations to assess the quality of several strategies. Finally,
in Section 5, the main results and conclusions of the thesis will be listed, as well
as some questions which might give interesting directions for future research.

This thesis was written as part of the bachelor programmes of Mathematics
and Computer Science at Leiden University, under the supervision of Floske
Spieksma (MI) and Walter Kosters (LIACS).



2 Definitions and examples

In this section, we will provide an overview of the game of Hanabi in a series
of definitions and examples. Before we delve into the game itself, however, we
start with the introduction of some notation.

2.1 Preliminaries
First of all, we will use the following convention for the notation of natural
numbers.
Notation 2.1. For the set of natural numbers, we write
N={1,2,3,...} and Ny={0,1,2,3,...}.
In the game of Hanabi, we deal with a stack of cards, which can be represented

as a finite sequence in Z or Z x Z. Therefore, it is useful to introduce some
notation regarding these sequences.

Notation 2.2. Let z = (z;)¥; and y = (y;)M, with N,M € N be finite
sequences. We write the concatenation of x and y as

ry = (T1,T2,- -, TN, Y1, Y2, - - - YM)-
Notation 2.3. Let z = (z;)); be a finite sequence with z; € Z. We write
x—1=(z;—1Lao—1,...,25 —1).
Notation 2.4. Let z = (z;))Y; be a finite sequence. We write
{x} ={z;|i1=1,...,N}

for the multiset consisting of the sequence entries. If for some multiset S we
have S € {z}, we write S € .

Notation 2.5. Let x = (x;))Y; be a finite sequence. By z\z;, we denote x with
the i-th element removed:

.'IJ\CCZ‘ = (1‘1,1'2,...,.'171‘71,.'177;4»17..-,ZL‘N)~

Furthermore, in Section |3] we will make extensive use of binomial and multino-
mial coefficients. In the proofs in this section, the rules of Pascal’s triangle are
often necessary to rewrite our expressions. We state them here as lemmas, the
proofs of which can be found in Theorem 1.5.1 in [2].

Lemma 2.6. For n,k € Ng with n > k, we have

()= (") (o)

Lemma 2.7. For n,ky,..., ky, € Ng with ¥,\" | k; = n, we have

n _ n—1 N n—1
kiy... km N ki—1, ko, ... km ki,ko —1,... kmn

. . n—1
ki,kay ... km—1)"



2.2 Rules of classic Hanabi

Hanabi is a co-operative card game in which the players need to work together
to achieve the highest possible score. What follows is a concise description of
the rules of the game. For a more detailed version of the rules, consult [3].

In the base game, which we will denote by classic Hanabi, we have a stack of 50
cards. Every card has both a value and a suit, where we distinguish between 5
different values and suits. Hence, there are 5-5 = 25 unique cards in the stack.
For every suit, we have three cards with value 1, two cards with values 2, 3 and
4 and one card with value 5, giving 3 +2 4+ 2 + 2 + 1 = 10 cards per suit and
thus 50 cards in the stack in total.

The classic game is played with 2 to 5 players. At the start of the game, every
player is dealt an opening hand, which consists of 5 cards if playing with 2 or
3 players and 4 cards if having 4 or 5 players. Each player may view the cards
in all other player’s hands. However, a player does not know the contents of his
or her own hand. The goal of the game is to form five stacks, one of every suit,
every stack being built up from 1 to 5.

During the game, players take turns in clockwise order. On a turn, a player must
perform one of the following three actions:

1. give a hint,
2. discard a card,

3. play a card.

To give a hint, a player must spend one of the available hint tokens, of which 8
are given at the start. If no hint tokens are available, a player cannot perform
this action. To give a hint, a player indicates all cards of any one number or any
one suit in another player’s hand.

Example 2.8. John’s hand consists of a red 1, a green 4, a green 5, a white 1
and a white 4. On her turn, Mary may spend a hint token to indicate the 5 in
John’s hand, for example. She could also point out the two green cards, or the
two 1s. She is not allowed to point out a single 1, however. A hint must give
complete information about a single suit or number.

To discard a card, a player simply picks a card from his or her hand and moves
it to the discard pile. A new card is drawn from the stack to replenish the
player’s hand and a hint token is added to the stockpile. If all 8 hints are
already available, a player cannot discard.

To play a card, a player picks a card from his or her hand and puts it face-up on
the table. If the card played is a 1 of a suit of which there is not yet a stack on
the table, it forms the beginning of a new stack. Otherwise, the card is added to
the stacks of fireworks of the proper suit already on the table, if possible: stacks
must be built up from 1 to 5 in that order and may not contain duplicate cards.
If a stack is completed, i.e., if a 5 is succesfully played, a hint is added to the
stockpile if possible. If the card cannot be played in either of these fashions, it
is moved to the discard pile and an error is noted. In any case, the player draws
a new card to replenish his or her hand.



The game ends immediately if a third error is made, resulting in a score of 0. The
game also ends immediately if the fifth stack is completed, resulting in a score
of 25 points. If the bottom card of the stack is drawn, every player (including
the one that drew the last card) may perform one more action. After that, one
calculates the sum of the highest numbered card of every suit, resulting in a
score between 0 and 25.

2.3 Initial configurations

To be able to reason in a mathematically robust way about the game of Han-
abi, we will introduce a series of definitions. These definitions will allow us to
generalise the game to an arbitrary number of suits, players, etc. as well. We
will start by defining the initial configuration of a game, which we will take as
the definition of a game itself.

Definition 2.9. An initial configuration or simply a game of Hanabi is de-
fined as a 7-tuple H = (n, k, p, h, So, to, fo). Denoting Cards(H) = {1,...,n} x
{1,...,k}, we interpret the parameters in the following way:

1) n € N is the amount of available card values,

2) k € N is the amount of available suits,

4

(1)

(2)

(3) p e N is the amount of players,

(4) h e N is the hand size of every player,
()

5) So = (s;)I¥, is an ordered sequence of elements s; € Cards(H) with N €
N U {0} such that p- h < N forming the initial stack,

(6) to € Nog u {oo} is the amount of hints initially available and

(7) fo e Nu {0} is the amount of errors after which the game ends.

In pratice, when choosing ¢ty = o0, we will instead take a finite upper bound on
the amount of hints that can be given which is large enough to be able to give
each and every possible hint at any stage in the game. By using this bound, we
guarantee that a playout of a game of Hanabi remains finite.

Example 2.10. For classic Hanabi as described in the previous paragraph, we
have H = (5,5,p, h,S0,8,3) with pe {2,...,5},

b= 5, ifp=2orp=3,
T 4, ifp=4orp=5

and Sp = (s;)9%, with s; = (x;,3;) being such that #{s = (1,y)} = 3 for
every y = 1,...,5, #{s = (z,y)} = 2 for every z = 2,3,4, y = 1,...,5 and
#{s=(5,y)} =1lforeveryy=1,...,5.

Example 2.11. The boxed version of Hanabi features a sixth ‘rainbow’ suit as
an extension of the classic game. In the original German version of the game,
the sixth colour is indeed a full-fledged sixth suit, leading to the game described
by H = (5,6,p,h,5,8,3) with p and h as in Example and Sp = (5;)92,



with s; = (2, y;) being such that #{s = (1,y)} = 3 for every y = 1,...,6,
#{s = (z,y)} = 2 for every x = 2,3,4, y = 1,...,6 and #{s = (5,y)} = 1 for
every y =1,...,6.

Example 2.12. In the Dutch version of the game, the rainbow suit adds fewer
cards to the stack. Here, we obtain H as in Example but now Sy = (s;)?3;
with s; = (2, y;) being such that #{s = (1,y)} = 3 for every y = 1,...,5,
#{s = (x,y)} =2forevery x =2,3,4, y =1,...,5, #{s = (5,y)} = 1 for every
y=1,...,5and #{s = (z,6)} =1 forevery z = 1,...,5.

It is useful to define the different areas in which cards can be played during the
course of the game.

Definition 2.13. Given a game of Hanabi H = (n, k, p, h, So, to, fo) with Sy =
(5:)X,, we define the following.

(1) The remaining stack is a sequence S = (s;); for some L with 1 < L < N.
We may also have S = &.

(2) The discard pile is a sequence D = (d;)M, with d; € Cards(H) such that
M < N.

(3) The hand P; of player j, j = 1,...,p, is a multiset containing elements of
Cards(H).

(4) The field stacks F[i] = (fi;); are increasing sequences with elements in
Cards(H) for i =1,..., k.

At the start of the game, the discard pile and field stacks are all empty. Note
furthermore that the cardinality of P; will be h for most of the game, except
for possibly after the last turn of a player (at which point it becomes h — 1,
because a new card cannot be drawn if the stack is empty). Finally, the multiset
consisting of {S} u {D} v J'_| P, u Ule{F[z]} will be equal to the multiset
{So} containing the elements of the initial stack at any time during the game.

2.4 Process of play

We will now define the dynamic process that corresponds to the playing of a
game of Hanabi. To do so, we first need the notion of knowledge. Formally, the
knowledge about a card s; is uniquely bound to the index i. However, to avoid
cumbersome indices, we will describe the knowledge as being connected to a
card ¢ € Cards(H), even though some cards might occur multiple times in the
game. As every card is still uniquely identifiable, this does not cause problems
in practice. We also slightly abuse notation by using set operators when dealing
with multisets.

Definition 2.14. Let H = (n, k,p, h, So, to, fo) be a game of Hanabi and c € P,
a card in the hand of player j. The knowledge available about c is a subset
K. C Cards(H), where d € K, if player j believes that ¢ = d might hold. The
knowledge base of player j is the multiset K; = {K }ccp,.



For any game of Hanabi H = (n, k, p, h, So, to, fo), at the start of the game, we
see that K, = Cards(H) for every c € P;, j = 1,...,p as the players do not have
any information about their cards. To show the evolution of a player’s knowledge
due to hints given by another player, we consider the following example.

Example 2.15. Consider classic Hanabi H with p = 2 as in Example
Let P, = {(1,1),(4,2),(5,2),(1,3),(4,3)} and K. = Cards(H) for every ce P;.
On his turn, player 2 points out the two ones in the hand of player 1. After
this hint, the knowledge base of player 1 becomes K; = {4, B, B, A, B} where
A= {(x,y) € Cards(H) | z = 1} and B = {(z,y) € Cards(H) | x # 1}.

The given definition of knowledge thus also allows us to formalise the giving of
hints. This leads to the following description of the process of playing a game
of Hanabi.

Algorithm 2.16 (Playing a game of Hanabi). Given a game of Hanabi H =
(n, k,p, h, So, to, fo) with Sy = (s;)I¥,, this algorithm describes the playing of
the game:

1. Initialisation. We set D := @& and F[i] := & for every i = 1,...,k. Let
P; :={aj,...,a;4+n—1} be the starting hand for every player j = 1,...,p
and set S := (si)lN:th. Let C:=1,t:=ty, f:=0, M :=0 and R = o0.

2. Player C' performs any one of the following actions:

(a) Give a hint. If ¢t > 1, pick i € {1,...,p} and j € {1,2}. If j = 1, pick
a€{l,...,n} and set

K \{(x,y) € Cards(H) | z # a}, if ¢ =(a,y)

for any y € {1,...,k},
K \{(z,y) € Cards(H) | z = a}, if ¢ # (a,y)

forallye {1,...,k}

K. =

forall ce P;. If j = 2, pick a € {1,...,k} instead and set

K\{(z,y) € Cards(H) | y # a}, if c=(z,a)

for any x € {1,...,n},
K\{(z,y) € Cards(H) | y = a}, if ¢ # (z,a)

for all z € {1,...,n}

K.=

for all ce P;. Set t :=t — 1.

(b) Discard a card. Pick a € Po. Define Po := (Pc\a) U {s1} and K¢ :=
(Kc\K,) v Cards(H). Set S := S\sy and D := (dy,ds,...,dur,a).
Set M := M+ 1. If t < tg,set t:=t+1.

(c) Play a card. Pick a € Po. Define P := (Po\a) v {s1} and K¢ :=
(Kc\K,) v Cards(H). Set S := S\s;. If a = (,1) and F[z] = &,
then Flz] := (1). If a = (z,y) and F[z] = (1,...,y—1), then F[z] :=
(1,...,y). If furthermore y = n and ¢ < to, then ¢t := ¢ +1. Otherwise,
D = (di,ds,...,dp,a) and set M := M+1and f:= f+1.If f = fo,
set R = —1.

After making a move, set C := (C'+1) mod p. If R >0, set R:= R— 1.



3. If R =—1, STOP and return a score of 0. If R = 0, STOP and return a
score of ZlemaxF[i]. If R>0and max F[i] = n foralli =1,...,k,
STOP and return a score of n-k. If R =0 and S = &, set R := p. Go to
step 2.

In the algorithm, the variable R is used to keep track of the amount of turns
remaining. Note that while the stack is not empty, we have no upper bound on
the amount of turns left just yet, which we denote by R = . Here, 00 — 1 = 0.

Naturally, the way in which an action is chosen in step 2 defines the strategy of
the players, which completely determines the outcome of the game. Note that
the set of actions A from which a player can choose on any turn is always of size
(p—1)-(n+k)+2h. If a player chooses to give a hint, there are n numbers and
k suits to choose from and p — 1 players to give a hint to; if a player chooses to
play or discard a card, there are h cards to pick.

Definition 2.17. Let H = (n, k, p, h, So, to, fo) be a game of Hanabi and A the
set of available actions. A decision rule (D, F,K) = (Wq)qea is a probability
distribution on A dependent on the current discard pile D, field stacks F' =
(F[1],..., F[k]), knowledge base IC = (K1,...,K,) and turn ¢. A strategy is a
sequence x = (z'); of decision rules. The average value v(x, H) of a strategy z
is the average score achieved in H by playing x. The mazimum value v*(x, H)
is the maximum score achieved in H by playing the strategy =x.

Example 2.18. Consider once again classic Hanabi as in Example A
possible decision rule is the random rule, in which every action has an equal
possibility of being carried out every turn, i.e., w, = m for every a € A,
regardless of D, F', K and t. The random strategy z is formed by using the
random rule every turn. The average value v(x, H) of the random strategy is
close to 0 for any permutation of the stack as the probability of making three
errors before ending the game in a different way is almost 1. Indeed, in the case
of classic Hanabi where the probability of randomly playing a card succesfully
can be approximated by %7 chances of achieving the maximum score will be of

order 5%5 .

Definition 2.19. Let H be a game of Hanabi. A decision rule 2(D, F,K) =
(wa)aea is deterministic if for all D, F and K there exists an a* € A such that

(1 if a =a*,
“a=1 0 otherwise.

We may then note 2 (D, F, K) = a*. A strategy using only deterministic decision
rules is called a deterministic strategy. The value v(x, H) of a deterministic
strategy x is the score achieved in H by playing x.

Definition 2.20. Let H be a game of Hanabi. A strategy x = (zt); is stationary
if 2t = z* for any decision rule z* and all t € Ny, i.e., if the decision rule used
is independent of ¢.
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3 Playability

Having set up the framework with which we will work, we now start on the first
main question: given a game of Hanabi, can we achieve the maximum possible
score if playing perfectly? We will first show that for answering this question, it is
sufficient to regard an alternative of the original game with perfect information.
We will then simplify the game further by reducing the amount of players and
colours. For the simplest version of the game, some rigid calculations can be
done.

3.1 Open games

For any given game of Hanabi, we wonder whether it is possible to score the
maximum amount of points if we play optimally. To start our answer to this
question, we introduce the notion of playability.

Definition 3.1. Let H = (n,k,p, h,So,to, fo) be a game of Hanabi. H is
playable if there exists a strategy x such that v*(x, H) = n - k. The strategy x
plays H.

The following examples show that there exist non-playable games.

Example 3.2. Let H = (5,5,2,5, 50,8, 3) be 2-player classic Hanabi as defined
in Example Now, assume that Sy is ordered in such a way that all fours
and fives are on top of the stack, for example

So = ((5,1),(5,2),...,(5,5),(4,1),(4,1),(4,2), (4,2),...,(4,5),(4,5),...).

At the start of the game, player 1 holds all fives and player 2 holds only fours,
ie, P = {(51),(5,2),...,(5,5)} and P» = {(4,1),(4,1),(4,2),(4,2),(4,3)}.
Note that to obtain a perfect score, we may never discard a 5: because there is
only one in each suit, discarding would make it impossible to finish the stack in
the corresponding suit. By the same reasoning, we may not discard both fours
of the same suit. Therefore, the only course of action which might lead to a
perfect score would be to discard fours from the hand of player 2, keeping at
least one four of every suit in the game.

After some turns, this will yield P, = D = {(4,1),(4,2),...,(4,5)}. Now, note
that at this point there is exactly one 4 left of every suit. However, after possibly
expending all available hints, we must discard or play another card to move on.
With both P, and P, now consisting of cards which cannot rightfully be dis-
carded, we see that we cannot obtain a score of 25 points using this permutation
of the stack.

Example 3.3. Again consider classic Hanabi H = (5,5, p, h, S, 8,3), but now
with an arbitrary number of players. Let Sy be such that all ones are on the
bottom of the stack, for example

So=(...,(1,1),(1,1),(1,1),(1,2),(1,2),(1,2),(1,3),...,(1,5)).

Now, note that no card can succesfully be played until the first 1 is drawn from
the stack. As such, the maximum amount of cards left in the stack when the
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first field stack becomes non-empty is 14. Whenever a card is played, a card is
also drawn from the stack. Therefore, after at most 14 cards have been played
to the field stacks, we find S = @.

After the stack has been emptied, every player including the one who drew the
last card may execute one more action. In the optimal case that every player
can play another card in this last round of actions, we can add p more cards to
the field stacks. However, in classic Hanabi, p < 5. Therefore, when the game
ends, at most 144+5=19 cards have been added to the field stacks and as such
the attained score cannot be higher than 19 — it certainly cannot be 25.

These examples show that there are at least two distinct causes which can make
a game unplayable. First, we may find that there is not enough space in player’s
hands to store crucial cards until they can be played. In other words, we might
at some point be forced to discard a card which is actually needed later on.
Second, we see that even if this situation does not arise, we might not have
enough time to play enough cards, i.e., the game ends because of an empty
stack before n - k cards were played.

Now, we would like to investigate what percentage of permutations of a given
stack are actually playable. As the giving of hints and processing of information
is a difficult aspect of the game, we will look at a version of Hanabi which
features perfect information. If it is impossible to achieve a perfect score even
if the players can see everything in the game, it will certainly be impossible to
obtain the maximum score if we need to give hints and deduce what cards we
have. Therefore, considering open games will certainly provide an upper bound
on the percentage of playable configurations of a given stack. We start with
some definitions and examples.

Definition 3.4. An (initial configuration of an) open game of Hanabi is defined
as a 7-tuple L = (n, k, p, h, So, to, fo), where to € Ng u {00} is now the amount of
passes initially available: the action of giving a hint to a fellow player is replaced
by the action of passing the turn to the next player. For {5 = o0, we use the
same convention as introduced below Definition 2.9 The parameters n, k, p, h,
Sy and fy are also as in Definition [2.9] For a given game of Hanabi H, we write
H, for its associated open game.

Note that the areas of play are still the same as in Definition Also, Al-
gorithm [2.16] can be used almost unaltered to play a given open game L. We
simply replace step 2a by “Pass: do nothing.”. Moreover, we no longer need the
knowledge base of Definition [2.14] as we do not have hints in an open game. As
such, we may also remove the operations on K¢ in steps 2b and 2c¢. This change
in available information is also reflected in the definitions of a decision rule and
strategy in an open game.

Definition 3.5. Let L = (n, k,p, h, So, to, fo) be an open game of Hanabi and
A the set of available actions. An open decision rule xt(D,F,S,P) = a € A
is a function which gives an action in A dependent on the current discard pile
D, field stacks F' = (F[1],..., F[k]), stack S, hand cards P = (Pi,...,P,) and
turn t. An open strategy is a sequence x, = (x%); of open decision rules. The
value v(x,, H) is the score achieved in H by playing the strategy xz,. If 21 = z%
for any open decision rule x* and for all ¢ € Ny, the strategy x, = (zf); = (z¥);
is called stationary.

12



Note that we now no longer need non-determinism to define our strategies be-
cause we have access to perfect information: we do not need to take chances,
because we know exactly what will be the result of our actions. Now, playability
of an open game of Hanabi is defined in the same way as playability of a regular
game as in Definition [3.I] However, a decision rule and thus a strategy in an
open game is not the same as a strategy in a regular game, as different amounts
of information are available to determine the course of action. As mentioned
earlier, if a regular game is playable, then certainly its associated open game is
playable. In fact, the converse also holds. To obtain this result, we provide the
following lemma.

Lemma 3.6. Let H be a playable game of Hanabi. If H is playable, then there
erists a deterministic strategy x which plays H.

Proof. Because H is playable, there exists a finite sequence of actions (a;) ;
for some N € Ny such that performing these actions in order results in a score of
n - k. Define the decision rule 2t by 2(D, F,K) = a; for t = 1,..., N, regardless
of D, F and K. Consider the strategy = = (2t);. This strategy is obviously
deterministic and has value v(z, H) = n -k by construction, hence z plays
H. O

Theorem 3.7. Let H = (n, k,p, h, So, to, fo) be a game of Hanabi. H is playable
if and only if H, is playable.

Proof. First, assume that H is playable. By Lemma[3.6] there exists a determin-
istic strategy x such that v(xz, H) = n- k. Run the game using this strategy z in
Algorithm In every execution of step 2, let z! (D, F,S,P) = z'(D, F,K),
where a hint is replaced by a pass. For any other 5-tuple D, F, S, P and
t let 2t(D, F,S,P) be a pass. Now, playing the open game H,, the strategy
2, = (2!); will mimic the actions taken when playing H using x. As such, we
will keep facing the same game states and achieve a perfect score.

Now suppose that H, is playable. Let = be the random strategy as described in
Example ie., 2!(D,F,K) = m for all D, F, KL and t and for all
a € A. Because H, is playable, there exists a sequence of actions which results in
a score of n- k. As the random strategy x may result in any sequence of actions,
it may specifically result in the sequence giving a perfect score. Therefore, the
maximum value v*(z, H) is n - k, hence H is playable. O

3.2 Single-player Hanabi

We will now first narrow our analysis to that of single-player open games of
Hanabi. In these games, the action of passing is obviously futile as the turn
cannot be passed to another player.

Theorem 3.8. Let L = (n,k,1,h,So,to, fo) be a single-player open game of
Hanabi. Let Ly = (n,k,1,h, 50,0, fo). If L is playable, then Ly is playable.

Proof. Let x, be the strategy that plays L. Assume that x!(D,F,S,P) is a
pass for some D, F, S, P and t*. If this situation is met during the playing of
the game, we will execute action 2a in the modified Algorithm by which
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none of D, F, S and P is changed. Consequently, it is still the same player’s
turn while the state of the game has not changed, except for the turn number
increasing by 1. Therefore, the strategy z/, defined by

2! (D, F,S,P), if t < t*,

1t -
$O(D7FaSaP)_{ YD, F, S, P), if ¢t > t*

will result in the same course of the game and thus the same perfect score of
n-k. We can eliminate all passes from the given strategy x in this fashion, noting
that x cannot consist of infinitely many passes by the convention for tg = co. [

Corollary 3.9. Let L = (n,k,1,h,So,to, fo) be a single-player open game of
Hanabi. Let L, = (n,k,1,h,So,x, fo). If L is playable, then L, is playable for
all z € Ny.

In the single-player situation, it is thus sufficient to consider only games without
passing. But even with this knowledge, it turns out to be difficult to construct
an open strategy which always plays a playable open game. Naturally, a card
in hand should be played when possible. However, determining which card to
discard when facing a hand of cards which cannot be played is hard. We will
return to this matter later on, but first our attention shifts to some special cases.

3.3 Playability of single-colour sequences

To further narrow down our search, we will consider games with only one suit.
For such games L, the set of available cards is given by Cards(L) = {1,...,n} x
{1} = {1,...,n}. As such, the stack S can now be represented by a simple
ordered sequence of integers. We will extend our definition of playability of
games to these sequences.

Definition 3.10. Let S = (s;)I¥,, s; € Z be an ordered sequence. Then S is
(k, m)-playable if there exist an open game L = (n,1,1,m,S,0,0) and open
strategy x, such that v(z,, L) = k.

Example 3.11. Consider the sequence S = (4,3,2,1,1,1,1). We might wonder
whether S is (4,4)-playable, i.e., if our single player has a hand size of 4, can he
achieve a score of 47 The starting hand will be P = {4, 3,2, 1} and the stack will
be S = (1,1,1) at the start of the first turn. On this first turn, we play the 1
and draw a card to replenish our hand, leading to P = {4,3,2,1} and S = (1,1).
We can now play a 2 and after drawing a card we then have P = {4,3,1,1} and
S = (1). Playing the 3 then yields P = {4,1,1,1} and S = @. As the stack is
now empty, we have one more turn left, in which we can play the 4 to complete
the goal of scoring 4 points. Therefore, S is (4,4)-playable.

However, S is not (4, 1)-playable. In this scenario, the starting hand and stack
will be P = {4} and S = (3,2,1,1,1,1) respectively. On our first turn, we are
forced to discard the 4. Unfortunately, we see that we will not encounter another
4 in the rest of the stack and therefore cannot obtain a score of 4 points.

Example 3.12. Let S = (1,2,3,4). In contrast with the stack in the previous
example, this stack is (4, 1)-playable. At the start of the first turn, we have
P = {1} and S = (2,3,4). We can thus play the 1, after which we draw the 2,
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which we can again play, etc. Ending up with an empty stack and just enough
time to put down the 4, we indeed see that S is (4, 1)-playable.

Now we wonder whether S is also (4, 4)-playable. The initial hand will then be
P = {1,2,3,4} and the initial stack is S = @. As the stack is already empty
at the start, we only have one turn to play a card after which the game ends
immediately. Therefore, no score higher than 1 can be reached, thus S is not
(4,4)-playable.

These two examples show that no simple ordering exists in the second argument:
a (k, m)-playable sequence is not necessarily (k,n)-playable for all n < m or
all n > m. Such an ordering does exist in the first argument, however, which
together with three simple other properties make up the following theorem.

Theorem 3.13. Let S = (Si)fv7

s; € Z be an ordered sequence.

1. If S is (k,m)-playable, then S is (I, m)-playable for all 0 < 1 < k.

2. S is (k,1)-playable if and only if S contains the sequence (1,...,k) as a
subsequence.

3. If{1,... .k} £ {S}, then S is not (k,m)-playable for all m € Ny.
4. If N—m + 1<k, then S is not (k,m)-playable.

Proof. 1. If S is (k,m)-playable, there exist an open strategy x, and an
open game L = (n,1,1,m,S,0,0) such that v(z,,L) = k. Now, define
/

xp, = () by

o

zt (D, F,S,P) if |F| <1,
discard random card if |F| =1.

(D, F,S,P) = {
By playing ], we imitate z, until we obtain a score of ! points, after
which no more cards are played and thus no more points are obtained. As
such, z! scores exactly [ points, which proves the (I, m)-playability of S.

2. Let P; be the player’s hand on turn ¢, ¢ > 1. Note that the hand size of 1
and the lack of passing in a single-player game ensure that P, = {s;} for
allt =1,..., N: every turn, the one hand card is played or discarded and
subsequently replaced by the top card of the stack.

Now, if S is (k, 1)-playable, we must have sy, =1, 8¢, =2, ..., 8¢, = k for
some t1 < to < ... < tg, as a card with value ¢ > 1 can only be played if
a card with value i — 1 was played before. As such, we see that (1,...,k)
is a subsequence of S.

Conversely, assume that (1,...,k) is a subsequence of S. Now, let L =
(n,1,1,m,S5,0,0) with n = max(S) be an open game. By assumption,
e, = 1,8, =2, ..., 8, =k for some t; < t3 < ... < tg. Define the
stationary open strategy z, by
_ | play card if P ={s;:},|F|=s:—1<k,
zo(D, F, 8, P) = { discard card otherwise.

This strategy succesfully plays cards onto the field stack until a score of k
points is reached.
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3. The multiset {S} v {D} U {P1} U {F[1]} is equal to the multiset of the
initial stack at any point during the game. If k& points need to be scored
in an open game L = (n,1,1,m,S,0,0), the field stack must be equal to
F[1] ={1,...,k} at some point in the game. However, as {1,...,k} ¢ {5},
we have {1,...,k} € {F[1]} at any time during the game.

4. Let S denote the stack at the start of turn ¢, ¢ > 1. By Algorithm [2:16]
Sy = (si)N .41 with [S1] = N —m. As we play or discard a card on every
turn in a single-player open game, we find that |S;| = N —m —t + 1 for
every t = 1. Then, for t = N —m + 1, we find that |S;| = 0 and as such
S; = @. By the rules of Hanabi, we can thus have a maximum of N —m+1
turns and therefore play a maximum of N —m+1 cards. To score k points,
we need to play exactly k cards. However, kK > N —m + 1 by assumption.

O

Part 2 of the given theorem gives rise to a combinatorical approach to calculating
the amount of (k, 1)-playable sequences, which we will now elaborate upon.

3.4 The case m=1

In this section, we will calculate the amount of (k, 1) playable sequences which
can be constructed for a given number of 1s, 2s, etc. For example, if we are
given two 1s, three 2s and one 3, how many (3, 1)-playable sequences can we
construct using these numbers? Theorem [3.13]2 states that this is exactly the
amount of sequences we can construct using the given numbers which contain
the sequence (1,2,3) as a subsequence.

Definition 3.14. Let x1,xo,...,xr € Ng with Zle x; = N. We then denote
Seq(x1,...,%n) to be the set of all sequences for which #{x € S |z =i} = z;
for all i = 1,...,k. The set Pl(x1,...,2%) € Seq(x1, ..., zx) is defined to be the
subset containing exactly all (k, 1)-playable sequences.

Notation 3.15. We write
#Seq(z1,...,xk) = T(x1,...,2k),

#Plxy,...,xk) = x(21,...,2k),
#(Seq(x1, ..., xp)\Plx1, ..., 2x)) = ¥(z1,...,2).

Note that we have

N N!
T = = 3.4.1
(@1, > Tk) (xl,...,xl) zq!xy! ( )

for any given x; by []. Calculating the number y(z1,...,zx) turns out to be
less trivial, however.

Example 3.16. We calculate x(2,2,1) by inspection: how many sequences
are there consisting of two 1s, two 2s and one 3 which contain (1,2,3) as a
subsequence? First of all, note that there are 7'(2,2,1) = (27271) = 30 sequences
containing the right number of digits in total. By inspecting every one of these
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sequences, we see that only 11223, 12123, 12213, 21123, 21213, 11232, 12132,
12231, 21231, 12312 and 12321 contain (1,2,3) as a subsequence, resulting in
x(2,2,1) = 11.

With the total number of sequences T'(z1,...,z) growing large very fast for
increasing z;, simply inspecting all possible sequences rapidly becomes an infea-
sible approach. In the next section, a recursive method of determining whether
a sequence is (k, m)-playable for arbitrary m is discussed. For the case m = 1,
we can derive an expression for x(x1,...,2x). We will do this in a number of
steps, increasing k by one at a time.

Theorem 3.17. Let x1,x2 € Ny be such that x1 + xo = N. Then

(@1, 72) = <N> _1.

Z1

Proof. By Eq.

N N! N
T = = — .
(1, 22) <x1,x2> z1!25! <x1>

Note that a sequence in Seq(z1,z2) is (2,1)-playable if there is at least one 1
which is followed by a 2 on any later position. The only sequence which does
not contain such a 1 is the sequence in which all 2s occur before all 1s, hence

22---211---1.
——

zodigits xpdigits
We thus find 1(z1,22) = 1, which completes the proof. O

Theorem 3.18. Let x1,x9,x3 € Ny be such that x1 + 22 + x3 = N. Then

I A EAE o O P O RSN 04

=0 =0 =0

Proof. We give a direct combinatorial proof. By Eq.
N
T(I17I27l'3) = ( >

Z1,T2,T3

We will determine 9 (1, x2, 3), from which x(z1, 2, z3) will then readily follow.
First, note that every sequence s € Seq(z1, €2, x3)\ P1(21, 22, 23) can be divided
into three parts P, @ and R, of which P does not contain any 1s, ¢ does not
contain any 2s and R does not contain any 3s, i.e.,

s =[2s and 3s only] [1s and 3s only] [1s and 2s only].

v
" " "

P Q R

Note that P, @ and R may be empty. Indeed, let P be the part until the first
1 (if any, otherwise we are done), @) the part after P until the first 2 after the
first 1 (if this exists) and R the rest. By construction, P does not contain any 1s
and @ does not contain any 2s. If R would contain a 3, we found a subsequence
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1-2-3, hence R does not contain a 3. Conversely, it is easy to see that a sequence
of the form PQR does not contain a subsequence 1-2-3.

Now, a sequence in Seq(z1,x2,z3)\Pl(x1, z2,23) is uniquely determined if we
know the positions of all 3s and the positions of all 1s after these 3s. For example,
given the sequence xax3x3x33zrr3xlrlzrla, we first replace all 2’s to the left
of the last 3 by 1s, starting from the rightmost one, until the number of 1s in the
sequence equals x1. By construction, the number of 3s is already equal to z3 so
that the replacement of all remaining x’s will then lead to a sequence containing
2 2s. Note that the resulting sequence is of the form PQR as described above
and as such does not contain 1-2-3 as a subsequence. Furthermore, every initial
placement of the 3s and 1s to the right of the 3s uniquely determines such a
sequence and every sequence of the desired type can be created in this way.

In total, there are

G () () -2 0

choices for the initial placement of the 3s and 1s, as we need to place all x3
of the 3s and only the 1s to the right of these 3s (which can be any amount
between 0 and 7 inclusive). However, note that the method proposed does not
always work: if we have placed ¢ 1s and are left with fewer 2’s to the left of the
rightmost 3 than x; —1, there is not enough space to place the remaining 1s. To
construct such a sequence, choose i, out of the IV positions, 0 < i < z;. Now
fill, starting from the left, x3 non-selected positions with a 3 and the chosen
positions to the right of the last 3 with a 1. This produces exactly the sequences
that canot be completed in the indicated way. As (Ij ) selections can be made
for every choice of ¢, this occurs for exactly

() () e (005 ()

sequences in total. We thus find
Ty N x1—1 N
T1,%2,x3) = ) - ).
V@, 22, 3) ;<x3+z> ;)<z>

Rewriting gives

205 (-2 0)-20)

1=0 =0 1=x3 1=0
r3—1 N N N r1—1 N
-350)-.2,0)-20)
i=0 i=z1+23+1 i=0
zr3—1 N N—z1—xz3—1 N z1—1 N
»-2(0)- 2 ()-20)
=0 =0 =0

- E0-E0-EC)



It follows that

X(z1,22,23) = T'(21, x2, 23) — Y(T1, 22, 23)

(o) S (5O

=0 =0

Example 3.19. We calculate x(3,3,2) using Theorem i.e., how many
sequences are there consisting of three 1s, three 2s and two 3s which contain
(1,2, 3) as a subsequence? This turns out to be

x(3,3,2) = (3)23) — 28 +;2;) (f) + i (j) +ZZIE) 6’) = 387.

=0

By Eq. the total number of sequences containing the given amounts of
digits is T7'(3,3,2) = (3 g 2) = 560. We thus find that the fraction of playable

sequences satisfying the given conditions is % ~ 0.69. In other words, if we
shuffle the deck consisting of the specified cards randomly, the probability of
the resulting game being playable by a single player with one card in hand is

approximately 0.69.

In general, for the z; large, Theorem [3.18| gives the following results on the
fraction of playable sequences in Seq(x1, z2, z3).

x(1,1,N)

Corollary 3.20. 1. limy o X377

1
29

2. limy o MERRS = 1,

2. limy . % = 1.

Intuitively, these statements are clear. If there is a large supply of 3s, it is almost
sure that there is at least one 3 both before and after the one 1 and 2. Therefore,
the only scenario in which a sequence does not contain the subsequence 1-2-3
is the case in which the 2 appears before the 1, which occurs with probability
%. If there is also a near-infinite supply of 2s, this implies that there are 2s
and 3s both before and after the one 1 in any order. As such, the probability
of a sequence not being playable tends to zero. Naturally, the same holds for
sequences containing a large amount of every of the three numbers.

Now, note that the formula of Theorem [3.18]is symmetric in its three arguments:
if we swap for example the amount of given 1s and 2s, the number of playable
sequences remains the same. While not immediately obvious, this symmetry
holds for any number of arguments.

Lemma 3.21. Let o : {1,...,k} = {1,...,k} be a bijection. Then

X(:Ela s 7$k) = X(‘ra(l)v s 737(7(16))'
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Proof. Tt is sufficient to show that x(x1,...,21) = X(T5(1), - - - To(k)) for any o
with (i) = ¢ for all but two 4’s, i = 1,..., k. By repeatedly swapping elements,
any permutation can be achieved (see also Proposition 2.35 in [5]). We will
construct a bijection f : Pl(z1,...,2x) = Pl(x501,. .., 2s()) for such a map o.
Let s € Pl(xy,...,xx) be arbitrary. Because (1,...,k) € s, we can divide s into
parts si,..., Sk, Skr1 by choosing s; to be the part up to but not including the
first 1, so the part from the first 1 up to but not including the first 2, etc. We
obtain
s = 811892833+ sp_1(k — 1)spksgy1.

Note that the s; may be empty. By construction, s; does not contain any 4’s.
Now, assuming that for some 4,5 € {1,...,k} with i < j we have o(i) = j and
o(j) =i and that o(l) =l forall l =1,...,k, | # 1,7, we define

frisilsg-- (i —1)s;0---(j —1)s55 - (k — 1)spkskq1
> silsy e (i = D)sjie - (= 1)sig o (k= 1)spksy g,

where s; equals s; with all ¢’s replaced by j’s and vice versa. In words: we swap
s; and s; and replace all i’s and j’s by j’s and ¢’s respectively except for the ¢
and j in the subsequence we isolated. First of all, because we do not alter this
subsequence, f(s) is (k, 1)-playable. Moreover, the amount of I’s in f(s) is equal
to the amount of I’s in s for [ # i, j, i.e., x,;) = z; for these [. What remains to
be shown for f to be well-defined is that the amount of i’s in f(s) is equal to
the amount of j’s in s and vice versa.

By applying f, we change z; —1 occurrences of 4 into occurrences of j and z; —1
j’s are replaced by i’s. Exactly one ¢ and one j are left unaltered. As such, the
number of i’s in f(s) is now 1 +x; — 1 = x; = 24(;) and the number of j’s is
L+, —1 = x; = x,(j). Therefore, f(s) € Seq(z4(1), - - -, To(k)), Which combined
with the fact that f(s) is (k, 1)-playable yields that f(s) € Pl(zg(1),---,%o())
and f is well-defined.

To show that f is a bijection, first note that (s;)" = s; for all I: replacing all i’s
by j’s and vice versa twice results in the sequence we started off with. Similarly,
o(o(i)) =0(j) =i and o(o(j)) = o(i) = j. We thus find that
F2(s) = f(f(silsg--- (i = V)sgi- - (j = 1)sj - - (k = 1)spksps))

= f(silsy - (i = 1)sfi--- (j = 1)sij -~ (k = 1)sphs)iq)

= sylsy - (i = 1)sji---(j — 1)+ (k = 1)spksy 4

=silsg - (i —=1)syi---(j —1)s;j--- (K — 1)spksps1 = s,
which shows that f2 = f~1. Hence, f is bijective. O

The following recursive definition of x(x1,...,2x) will form the basis of the
proof for the general case.

Lemma 3.22. Let x1,...,x; € N be such that Zle z; = N. Then

N—-1
(El—].

X(ajl,...,xk)=<

+ x(x1, 20,23 — 1, ..., xk) + ... + x(21, 22, 23, ..., 2 — 1).

)X($2,...,$k)+X(Z‘1,$2—1,1‘3,...,$k)
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Proof. Any sequence s € Pl(z1,...,xy) either starts with a 1 or does not start
with a 1. If s starts with a 1, we can obtain s by concatenating this 1 and
a sequence t € Pl(xa,...,z;) to which we have added x; — 1 ones. There are
x(x2,...,2x) sequences in Pl(xs,...,x) and 1 — 1 ones can be added to such
a sequence in (i\i:ll) ways as we need to choose x1 — 1 spots out of N —1 (all
except the first) to place the remaning 1s. This explains the first term. If s does
not start with a 1, say s starts with ¢ # 1, it can be formed by concatenating
i and a (k, 1)-playable sequence containing one ¢ less than s. There are exactly
x(x1,...,2; —1,...,xp) of these sequences, which proves the formula. O

Corollary 3.23. Let x1,...,x, € N be such that Zle x; = N. Then

N -1

blonooan) = (3 7)) 4 012~ Laa )
1—

+’(/)(J?1,172,£E3—1,...,$k)+...+1/}(5€1,5L‘2,1‘3,...,,Ik—1).

Proof. Note that

N -1 N—.’ﬂl _ (N—l)'(N—fEl)' _ N -1
v — 1) \@o, ... xn) (21— DYN —ax) ! 2! \op—1,20,..., 24
O

and use Lemma 2.7

Lemma, and Corollary allow for an inductive proof of Theorem [3.18|
which we will use as guideline for the proof of the general case.

Alternate proof of Theorem[3.18 We will again calculate ¢ (z1, z2, z3), now by
induction to N. First note that

1 =5 A= =5 |
¥(1,0,0) = T(1,0,0) = (17070) =1=2 +§) <Z> +§) <Z> +§) <Z>
By Corollary it follows that ¥(0,1,0) = ¢(0,0,1) = 1 as well. These are
the base cases. Now, assume the theorem holds for all x1,z9,23 € Ny with
r1+x2+23 =N —1and let X1, X5, X35 € Ny be such that X7 + Xo + X3 = N.
We use Lemma for the induction step, where we set (X1, X2, X3) = 0 if

X; < 0 for any 7 and apply the result of Theorem [3.17]

N-—-1
0 X X0) = (3 7] )0l X+ 000, X = 1K)+ 000, X, X = 1)
N-1 SNy RGP N -
= 2.2N=1 2 —2
(o) 22y ()2 5 ()

25T (- (0
_9N _q Z (Ni—1>_<§71—_11>_2 Z;) (Ni—1>

2X3‘2 N -1 N -1 N-1
Par) i Xy —1 X;—1)
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Now, note that
X;i—2 X,;,—2 X,—1
d N -1 d N -1 J N -1
DI ED (D ED N iy
i=0 v i=0 t i=1 i—1
' N N N-1 N N-1
~ \i 0 X; -2
' N N N-1
= 1 X;—2

for all j = 1,2,3, where we use Lemma [2.6] to combine the sums. Using this
lemma once more, we find that

@__11) f ()jfvg_—lz)) - <XjN— 1)'

Substituting these formulas in the expression we found above, we obtain

s S () () E )

i=0 =0

()£

I
N

O

In [6], we find a proposal and combinatorial proof for the case k = 4, the
formula for which we state in Theorem However, the inductive proof given
for Theorem also generalises for the case K = 4. We will not work out
this proof in detail. Instead, we will discuss the proof of the general formula for
arbitrary k in Theorem [3.25| which follows the same structure and view Theorem
3.24] as a special case.

Theorem 3.24. Let xq,...,x4 € Ny be such that 2;1:1 x; = N. Then

X(xl’m’u):(xl,.{v.., >_3N+wlz:1( >2N i +x§:1< )2N i

=0 j=0 1=0 j=0

Before we state the general formula, we introduce some notation. For two se-
quences § = (si)N L and u = (u;)Y, of the same length, we write s < u if 5; < u;
for all i = 1,..., N. Note that this relation < is in fact a partial order on the
set of sequences of length N. We write |s| = #{i | s; > 0}, i.e., |s| is the amount
of non-negative entries in s. For two numbers n,m € Ny, we define

) n—m, ifn—m=>=0,
n-m= .
0, otherwise.
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We then write Xs = vazo(si =~ 1) to be the sum of all entries in s lowered by 1.
Finally, we define

N N
s) \s1=1,89=1,....,sy =1, N—3%s)

Note that by definition of Xs, this multinomial coefficient is indeed well-defined.
Using this notation, the formula for the general case now reads as follows.

Theorem 3.25. Let xq,...,x, € N be such that Zle x; =N, k>2. Then

(@1, ... xp) = (lexJ _ki(_l)‘* > @7) (k—0—1)N—>1

£=0 I<(z1,...,x1)
|1]=¢

Proof. Let k = 2 be arbitrary. Once more, we find an expression for the amount
of unplayable sequences ¥ (x1, ..., x): we will deduce that

k—2
Glar, .. z) = D (=D ) <J}])(k—£—1)N_EI. (3.4.2)

Without loss of generality (cf. Lemma [3.21)), we find the base case to be

k—2
0,00 = B0 T (e
0)

£=0 I1<(1,0,...,
|I|=¢

- ((0,0,].\]..,0)>(k_0_ D= ((1,0,].\[..,0)>(k_ L=
—k-1-—(k—2)=1.

For the induction step, we use Corollary which gives

N -1\ ‘ N -z N—z,—%I
w(xl,...,xk)—<x1_1>2(—1) Z ( I )(k—K—Q)
=0 I<(z2,...,x1)
|I|=¢
ko2 N-—1
fRE R (Ve
=0 I<(z1,02—1,...,Tx)
‘:
k—2
N -1
I, ,  \N-1-%I
+ > (-1) 2 ( I >(k t-1) '
=0 I<(zy,x2,...,05—1)

|I|=¢
(3.4.3)

Now, let I = (iy,...,4) with I < (z1,...,2) and |I| = ¢ be arbitrary. We will
construct this term in Eq. using terms from Eq. showing that every
term in Eq. can be constructed in this way and that every term in Eq.
[3:4:3] is used exactly once in this construction.
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First, let 43 = 0. For every ¢ with 1 < ¢ < k for which i; = 0, we take the term

corresponding to I in the summation which constitutes ¥ (x1,...,2;—1,..., zk),
being
N -1
(—1)Z< / )(k — (= 1)V (3.4.4)
For every ¢ with i; > 1, we take the term corresponding to I' = (i1,...,% —
1,...,i) in the summation of ¥(z1,...,xs — 1,...,z):

N -1

-1 J4 L—f—1 N*l*(Z[*l).
( )(O,ig;1,...,it—2,...,z’k;1,N—1—(ZI—1)>( )

For every t with i; = 1, we take nothing. Therefore, the contribution for every
t with t > 0 can be written as

]\?__211(—1%(]\]; 1) (k—¢—1)N->1 (3.4.5)

Noting that there are exactly kK — ¢ — 1 values for ¢ > 1 for which i; = 0, we
obtain as the sum of all terms we took k — £ — 1 times Eq. plus Eq.
for every t with i, > 0:

(—=1)* (NI_ 1) (k—t¢—1)N"> 4 o] %IEI(—l)f (NI_ 1) (k—¢—1)N">
(3.4.6)

Using the definition of ST = 33§ (i = 1) = 3, ;,_o(is — 1) and Lemmal[2.7} we

find
N-—1 N I (N-1\ (N
I N-X2I\ I “\I1)

so that Eq. turns out to be

(—1)Z<J¥>(k — 1N (3.4.7)

which is exactly the term corresponding to I in Eq. Also, note that every
term corresponding to an I for which ¢; = 0 in a summation of a v in Eq.
is used exactly once in this construction.

Now, consider an I for which ¢; > 0. Following the same construction, we still
deplete all terms in the ¢ summations in Eq. using the same reasoning as
before, However, the total of the terms we use in this way now adds up to Eq.

plus an additional term

O G R e e e G [ B

as there is one more ¢t with 1 < t < k for which i; = 0 and we cannot take a
term from the non-existent ¢)(x1—1, ..., z;) summation. Noting that the second
part of this term is 0 for ¢; = 1 and following the reasoning behind Eq. [3.4.5]
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summing the extra terms over all I with i; > 0 almost telescopes to 0. We are
only left with the terms regarding the I with i1 = z1:

Z(_l)e Z (_1)2 <N_ 1) (k—f— 1)N—1—EI.
1

(=1 I<(z1,...,x1)

|I|:Z;i1:a:1

In order to correct this, we rewrite
N -1\ N —x,
_15 L—f—2 N—x1—-%1
<x1—1)§)( DY G [

I<(w2,...,7x)
[1]=¢

k-3
= —1)¢ N-1 E_¢_9\N-1-%I
se 5 (Y e

I<(z1,z2,...,TL)

[T|=0+15i1 =21
k—2
N -1
_ Y _p_1\N—-1-X1I
—-yer (V7w
=1 I<(z1,22,..., zx)

[I|=tyi1=m1

We thus find that these terms precisely cancel out the first term in the recursive
formula, which completes the proof. O

Note that the structure of the formula for x(z1,...,2x), an alternating sum,
suggests that its validity can also be shown using a combinatorial proof based
on the principle of in- and exclusion. However, how to construct this proof is
as of yet unclear. Furthermore, a comparable example in [7] shows an approach
using generating functions, which might be yet another method of proving the
statement.

Choosing x1 = 2 = ...z, = 1 and regarding ¥(x1, ..., x) using Theorem
yields the following interesting result.

Corollary 3.26. For arbitrary k € N:

]CZQ(—I)@CZ)(k — =)=kl -1

£=0

This expression turns out to be a special case of the formula proven in [§].
However, the main result of Theorem [3.25] is that we can now calculate the
amount of (k, 1)-playable sequences for arbitrary values of the ;.

Result 3.27. Theorem [3.25] allows us to compute the amount of playable se-
quences if we follow the distribution of the numbers in classic Hanabi as in
Example We find x(3,2,2,2,1) = 5934. With the total number of admis-
sible sequences being T(3,2,2,2,1) = 75600, only 755963040 ~ 0.078 of all possible
stacks containing the specified numbers of cards are (5, 1)-playable.

25



3.5 Dynamic programming

While Theorem provides a complete characterisation of the (k, 1)-playable
sequences, it does not cover games where the hand size is larger than 1. Indeed,
reasoning about (k, m)-playability for m > 2 turns out to be much harder than
the case m = 1 as Theorem [3.13]2 no longer holds. Therefore, instead of taking
a theoretic combinatorial approach, we will turn to the use of the computer
to determine the playability of a given sequence. This process is based on the
observation that we can determine whether a sequence is (k, m)-playable by
searching for and playing the first 1 in the sequence (discarding cards on the
way if necessary), subtracting 1 from the rest of the elements in the sequence
and then wondering whether the remaining sequence is (k — 1, m)-playable. This
statement is captured in the following theorem, where we use the notation as
introduced in Section 2.1.

Theorem 3.28. Let S = (s;)Y,, s, € Z be an ordered sequence. Assume 1€ S
and write S = tlu, where t is the part of S up to the first 1. S is (k, m)-playable
if and only if S = (t' — 1)(u — 1) is (k — 1, m)-playable for some subsequence
t' €t of length not greater than m — 1.

Proof. Assume S is (k, m)-playable. Let 1 be the first occurrence of 1 in S, let
s¢ be the position of 1; and write S = t1,u. We distinguish between two cases.

First, assume that f < m, i.e., that the first 1 is contained in the starting hand
of the player, i.e., 1y € P, after initialisation. We can then play 1; to F[1] as
action in our first turn. After doing so, we then have P = {(s;)"_;\1;}. Note
that this would exactly be the starting hand of the player if the game had begun
with the sequence S’ = tu. Naturally, wondering whether we can now play a
sequence (2, ..., k) is the same as wondering whether we could play a sequence
(1,...,k — 1) if using the stack (¢t — 1)(u — 1). Moreover, the length of ¢ is at
most m — 1 by assumption.

Now, assume f > m. It is clear that the first time that a card can be played is
immediately after 1; has entered the player’s hand P;. At this point, we have
P = {t'1;} with ¢ being a subsequence of ¢ of length m — 1. This would exactly
be the starting hand of the player if the algorithm had started with the stack
S’ = t'1u. Because the initial stack S is (k, m)-playable by assumption, there
must exist a ¢’ for which S’ must be (k, m)-playable. Then (¢ — 1)(u — 1) must
be (k — 1, m)-playable as well.

Finally, suppose (t' — 1)(u — 1) is (k — 1, m)-playable for some subsequence ¢’
following the given requirements. Let S = ¢'1u. Because the length of ¢ is at
most m — 1, the added 1 will be in the starting hand of the player. On the first
turn, it can be played to F[1], after which P will be the same as the original
opening hand, but with the values of all cards increased by 1. As we could play
a sequence (1,...,k — 1) using the original stack, we can thus play a sequence
(2,...,k) from now. With the 1 already having been played, this proves the
(k, m)-playability of S. O

Note that elements of the sequence may be reduced to values of 0 or lower.
In practice, this essentially means that the respective cards cannot be played.
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However, they cannot be completely removed from the stack as they might act
as a buffer which prevents the stack from emptying.

Theorem allows us to recursively determine whether a sequence S is (k, m)-
playable: we search for the first 1 in .S, remove this 1 and perhaps some other
numbers from S, lower all elements in S by 1 and repeat the process. This
recursive definition gives rise to an implementation using dynamic programming,
the theory of which is explained in Chapter 8 of [9]. The result is the following
algorithm, employing properties from Theorem [3.13] as well.

Algorithm 3.29 (Determine the (k, m)-playability of a single-colour sequence).
Given an ordered sequence S = (s;),, s; € Z and integers k,m € Zs, this
algorithm decides whether S is (k, m)-playable.

1. Initialisation. Set n := N, p:= k. If n —m + 1 < k, return NO.

2. (a) Let i be the position of the first 1 in S orseti:= o0 if 1 ¢ S.If i = o0,
return NO. If p = 1, return YES. If n — ¢ < p — 1, return NO.

(b) If i <m,set S:=(S\s;) —land n:=n—1and p:=p—1. Go to
step 2.

(¢) Let S = tlu, where ¢ is of length ¢ — 1. For all subsequences t' < ¢
of length m — 1, recursively invoke step 2 with S := t'u — 1, n :=
n—i+m—1and p:=p—1. If one of the subsequences ¢’ results in
YES, return YES. Otherwise, return NO.

Example 3.30. We will determine whether S = (4,2,3,1,3,2,1,1) is (4,2)-
playable using Algorithm In the initialisation, we have n = 8 and p = 4.
As 8 — 241 =7 < 4, we continue to start iterations of step 2.

1. We find 7 = 4 and return nothing in step a. Skipping step b as 4 £ 2, we
execute step c. We recursively test all subsequences t’ € (4, 2, 3) of length
1. In any case, set n =5 and p = 3.

(a) Take S = (4,3,2,1,1)—1=(3,2,1,0,0). We find i = 3. As 2 « 2, we
continue to step b. Here, 3 € 2, so we try all subsequences t” € (3, 2)
of length 1, always setting n = 3 and p = 2.

i. Take S = (3,0,0) — 1 = (2,—1,—1). We now find ¢ = 00 and
return NO.

ii. Take S = (2,0,0) —1 = (1,—1,—1). We again find ¢ = 00 and
return NO.

(b) Take S =(2,3,2,1,1) — 1 =(1,2,1,0,0).

i. We find i = 1. Now we see 4 4 3, so we continue to step b. Here,
1<2,s0weset S=(2,1,0,0)—1=(1,0,—1,-1), n = 4 and
p = 2 and return to step 2.

ii. We find ¢ = 1. As 3 <« 1, we continue to step b, where we again
find1 <2 .S S=(0,-1,-1)—1=(-1,-2,—-2), n = 3 and
p=1

iii. We obtain i = o0 and return NO.
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(c) Take S = (3,3,2,1,1) — 1 = (2,2,1,0,0). We find i = 3 and 2 2,
so continue to step b. Finding 3 < 2, we skip this step and to go step
¢, where we try all subsequences t' € (3, 3) of length 1, setting n = 3
and p = 2. Note that (3) is the only subsequence available: taking
S =1(3,0,0) —1=(2,—1,—1), we find i = c© in step a and return
NO.

We thus find that S is not (4, 2)-playable.

The fact that we need to test all possible subsets t' C t to see whether a stack
is playable illustrates the fact we already discovered in Section 3.2: even though
we have perfect information in open games, it is still hard to find a strategy
which plays a playable game. Even so, calculations using the algorithm give us
the following result.

Result 3.31. Using tables to keep track of the playability of smaller sequences,
one can compute the amount of (k, m)-playable sequences of length 10 for given
amounts of 1s, 2s, etc. The results can be found in the tables in appendix A.

Note that the largest fraction of playable stacks is encountered when choosing
three 1s, two 2s, two 3s, two 4s and one 5, which is exactly the configuration
used in classic Hanabi. For a hand size of 5, approximately 0.8778 of all initial
stacks are playable when using these amounts of cards. Note that this fraction
lies below 1 even though there is now enough space to store all possible cards
1 through 5 and prevent a crucial card from being discarded. The unplayable
stacks must thus be unplayable only because the stack runs out before the filling
of the field stacks was completed.

Furthermore, note that while the symmetry proven in Lemma is indeed
apparent for hand size 1, this symmetry does not seem to hold for larger hand
sizes. Indeed, we find that the portion of playable stacks when taking six 5s
and one card of every other value is approximately 0.2571, while picking six
1s and one copy of every other number results in a fraction of 0.4764. It thus
seems that the addition of the possibility of storing cards in hand disrupts the
exchangeablilty of the values.

3.6 Playability of multi-colour sequences

Definition [3.10|of the playability of a single-colour sequence is easily extended to
cover multi-colour sequences, i.e., stacks consisting of cards of several different
colours. Note that we again take our values in Z instead of N to allow for non-
positive values.

Definition 3.32. Let S = (s;)N,, s; = (2:,4;) € Z x Z be a sequence. Let
n = max)\, z; and ¢ = max? ,y;. S is (k,m)-playable if there exist an open
game L = (n,c,1,m,S,0,0) and open strategy x, such that v(x,, L) = k.

Note that Properties[3.13}1 and [3.13]4 still hold for multi-colour sequences, with
identical proof. An analogon of [3.13]3 can be constructed if we note that in a
game with a single player and hand size 1, building the stacks in the different
colours occurs in a completely parallel way, i.e., the colours do not interfere.
Therefore, if the stack is sorted by colour without altering the numerical order
of the cards within a single colour, playability is preserved.

28



Theorem 3.33. Let S = (s;)Y,, s, = (wi,y;) € Z x Z be a sequence. Let S’ be
the sequence S sorted by non-descending y; using a stable sorting method. Then
S is (k,1)-playable if and only if S is (k,1)-playable.

Proof. First, suppose S is (k, 1)-playable. Letting P;, ¢ > 1 be the hand of the
player at the start of turn ¢, we have P, = {s;} as in the proof of Theorem
1. Because S is (k, 1)-playable, we must thus be able to find subsequences
((Ly),(2,y),...,(k,y)) € S for all y = 1,...,c. Because the sorting method
used is stable with respect to the values of the cards, these subsequences are
conserved when building S’. Therefore, S’ is playable. The proof in the other
direction is similar. O

Corollary 3.34. Let S = (5)N,, si = (vi,y;) € Z x Z be a sequence with
c=max;y;, and let Y; = (x| (z,5) € S) € 5, 1 < j < ¢ be subsequences. S is
(k,1)-playable if and only if there exist k; € No, 1 < j < ¢ with Z§=1 ki =k
such that Yj is (kj, 1)-playable for all j.

This statement gives a simple characterisation of (k,1)-playability of multi-
colour stacks. For (k,m)-playability with m > 1 we can determine whether a
stack is playable by employing a recurrence relation like in the single-colour
case, which is captured in the following analogon of Theorem [3.2§

Theorem 3.35. Let S = (s;), s; = (z;,y;) € Z x Z be a ordered sequence.
Assume (1,y) € S for a certain y € Ng. Let 1g = min{i | (z;,y;) € S} be the
position of the first 1 in S and write S = t(z14,y145)u. S is (k,m)-playable if
and only if S" = (' —y, . 1)(u—y, 1) s (k—1,m)-playable for some subsequence
t' <t of length m — 1, where 5; —y 1 = (x; — Lyy,—y}, Vi)

Proof. Similar to the proof of Theorem [3.28] O

Again, this recursive definition of (k, m)-playability of a sequence gives rise to an
algorithm. Now, we search for the first 1 in S, remove this 1 and perhaps some
other numbers from S, lower all elements of the same colour as the removed 1
in S by 1 and repeat the process.

Algorithm 3.36 (Determine the (k, m)-playability of a multi-colour sequence).
Given a sequence S = (s;)¥,, s; = (%;,9;) € Z x Z and integers k, m € Zs, this
algorithm decides whether S is (k, m)-playable.

1. Initialisation. Set n:= N, p:=k. If n —m + 1 < k, return NO.
2. (a) Let i be the position of the first 1 in S orseti:=o0if 1 ¢ S.If i = o0,
return NO. If p = 1, return YES. If n — ¢ < p — 1, return NO.
(b) If i <m, set S := (S\s;) =y, land n:=n—1and p:=p—1. Go to
step 2.
(c) Let S = tlu, where t is of length ¢ — 1. For all subsequences t' € t of
length m—1,do S:=tu—y, 1, n:=n—i+m—1,p:=p—1, go to
step 2.
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Example 3.37. Using Algorithm we will determine whether

5 =1((2,1),(1,1),(3,2),(1,2),(3,1),(2,2), (1,1))

is (4, 2)-playable. In the initialisation, we have n = 7and p=4. As 7—2+1 =
6 4 4, we continue to start iterations of step 2.

1. Wefindi =2 As7—2 =5 4« 4—1 = 3, continue. In step b, we find
i=2<2,s085:=(1,1),(3,2),(1,2),(2,1),(2,2),(0,1)), n :== 6, p := 3
and go back to 2a.

2. Nowi=1.6—2=4 4% 3—1 =2, continue. In step b, we find i = 1 < 2, so
S :=((3,2),(1,2),(1,1),(2,2),(=1,1)), n := 5, p := 2 and return to step
2a.

3. i =2.Because 5—2 = 3 € 2—1 = 1, continue. In step b, we find i = 2 < 2,
so S :=((2,2),(1,1),(1,2),(—1,1)), n := 4, p:= 1 and return to step 2a.

4. i =1. As p =1, we return YES.
We thus find that S is (4,2)-playable.

In practice, it quickly becomes infeasible to calculate the amount of (k,m)-
playable sequences for stacks consisting of given cards, as the amount of permu-
tations rises superexponentially. For example, the total amount of stacks of size
12 using at most three numbers and two colours is (2 - 3)!? ~ 2 billion. Even if
the amount of the specific cards is fixed beforehand, we are still left with many
configurations: taking two copies of every card in the given example, we still
find % ~ 7 million possbilities. Therefore, the suggested approach of dynamic
programming is no longer effective, as the tables in which the data on the se-
quences is stored grow too large to fit into memory. The fraction of playable
sequences might still be approximated using simulations, however, which might
form an area for future research.

3.7 Multi-player Hanabi

When dealing with more than 1 player, the option of passing becomes relevant.

Example 3.38. Let L1 = (4,1,2,2,50,0,0) and Ly = (4,1,2,2,5g,90,0) be
two open games of Hanabi with So = (4,3,2,1,1,1,1,1). We have P; = {3,4}
and P> = {1,2}. In L, on the first turn of player 1, as he may not pass, he must
play or discard a card. This card being a 3 or 4, it is evident that the maximum
score of 4 cannot be achieved in L1, i.e., L is not playable.

In Lo, player 1 may spend his first turn doing nothing. Player 2 is then given
the opportunity to play the 1 from his hand. Continuing in this fashion, passing
where necessary, it is obvious that a stack of 1 up to 4 can be formed, hence Ly
is playable.

For hand size 1 and allowing no passes, a multi-player game can be reduced to
a single-player game.
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Theorem 3.39. Let L = (n,k,p,1,50,0, fo) be an open game of Hanabi. Let
L' =(n,k,1,1,50,0, fo). Then L is playable if and only if L' is playable.

Proof. Assume L is playable and let z, be the strategy that plays L. Note that
on turn ¢, card s; is played or discarded by some player, who then draws card
Si+p from the stack if ¢ + p < N (otherwise the hand remains empty). We can
thus define 2!, = x, as a strategy for the single player which plays L’. The proof
in the other direction is similar. O

With larger hand sizes or non-trivial amounts of available passes, the analysis
of the playability of multi-player games becomes excessively difficult. For these
choices h > 1 and t € (0, 0], there are many possible strategies and there does
not seem to be a simple method of deciding whether one of these strategies
succesfully plays the game. In fact, this problem seems equivalent to that of de-
termining an optimal strategy. We decide to now focus on that problem instead,
leaving the further calculations on playability for possible future research.
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4 Strategies for classic Hanabi

In this section, we will turn to answering the second main question: given a
random configuration of the game of Hanabi, what is a good strategy to play?
After having defined two different optimality criteria, we will outline several
strategies. We will then test these strategies on the classic game of Hanabi as
defined in Example and discuss the results of these experiments.

4.1 Approach

We now return to “regular” closed games of Hanabi as given in Definition [2.9
and pose the question: given a game of Hanabi H = (n, k, p, h, S, to, fo) with a
randomly permuted stack Sy, what strategy x is optimal to play? Before being
able to start to work on an answer, we must first make sure that the question is
well-defined. Indeed, what is an optimal strategy? One obvious definition would
be to define an optimal strategy x* by the strategy which achieves the best
average score, i.e.,
z* = argmax, E (v (z, H)),

where the expectation is taken over all possible permutations of the stack Sy
in H. However, a bolder player may not be interested in achieving a high score
on average, but to optimise his chances of achieving a maximum score, perhaps
risking a higher probability of failure. To properly express this goal, we introduce
the following notation.

Definition 4.1. Let H = (n,k,p, h, So,to, fo) be a game of Hanabi and z a
strategy. Then P(z, H) is the probability that a score of n - k is reached in H by

playing x.

Using this definition, an optimal strategy x* can then also be defined as a
strategy which maximises the probability of achieving a perfect score:

z* = argmax, E (P (z, H)) .

Again, the expectation is taken over all possible permutations of the stack Sy in
H. We will see that a strategy which is optimal for the one optimality criterion
might not be optimal for the other and vice versa.

Two well-known methods that could be tried to search for optimal strategies are
the Monte-Carlo Tree Search, for which the basis is explained in [10] and several
extensions are proposed in [IT], and the Minimax algorithm with alpha-beta
pruning as described in [12]. However, both these methods face some problems.
First of all, one of the most prominent features of Hanabi is that of grossly
imperfect information. Indeed, players have very limited knowledge of the cards
in their hand. Moreover, hints that are given carry more information than visible
at first sight. If three 1s have already been played, for example, and John tells
Mary that she has exactly one 2 in her hand, she may well assume that this 2
will fit one of the three 1s without having been told so. Furthermore, a truly
random player will end the game with zero score by making too many mistakes
very quickly. These three reasons make the implementation of the Monte-Carlo
method a difficult task. Finally, disregarding the storage of hint information
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completely, the different configurations of the cards already give a magnitude of
10°° different states of the game and every player has between 20 and 50 actions
per turn, depending on the number of players. This huge size of the search space
and large branching factor make algorithms like Minimax infeasible: there are
simply too many options to consider.

Therefore, we will implement a different method in our search for good strate-
gies. We will use our experience in playing the game in daily life to design,
implement and compare several different strategies consisting simple guidelines
on how to play the game. These strategies might for example outline rules for
when to play or discard a card or for the hints to be given. These rules might
involve probabilities, e.g., if I am 80% certain that I can play a card, should
I always do so? Or should I try to play the card in only a percentage of the
situations?

Before we introduce these rules and probabilities in the next section, it is useful
to have the following three definitions regarding cards.

Definition 4.2. Let H = (n, k,p, h, So, to, fo) be a game of Hanabi with current
field stacks F' and let ¢ = (x,y) € Cards(H) be a card. Then c is playable if
#Flyl=x—1or Fly] = @ Az =1 holds.

Note that the definition of playability of a card is different from and in fact has
nothing to do with the definition of playability of a game.

Definition 4.3. Let H = (n, k,p, h, So, to, fo) be a game of Hanabi with current
stack S, hands P; and field stacks F' and let ¢ = (x,y) € Cards(H) be a card.
Then c is worthless it #F[y] = x or #F[y] <z A (3z: #F[y] <z <z A (z,9) ¢
S v Uj-, Pj) holds.

Definition 4.4. Let H = (n, k,p, h, So, to, fo) be a game of Hanabi with current
stack S and hands P; and let ¢ = (x,y) € Cards(H) be a card. Then c is unique

if #{(z,y) e SUUj_, P} = L.

Example 4.5. Let H be classic Hanabi as in Example 2.10] and let the field
stack F[1] be given by F[1] = (1,2, 3). At this point, all cards of the form (z, 1)
with < 3 are useless, as the stack has already been filled to a value of 3 and
no second stack of the same colour may exist. The cards (4,1) are playable, as
these might be added to F[1] when played. If both these cards are already in
the discard pile, we say that (5,1) is useless as well, as it can never be played
because the 4 which needs to be played first misses. Note furthermore that (5, 1)
is always unique by the definition of classic Hanabi.

Intuitively, it seems a good idea to play any playable cards to advance the field
stacks, discard any worthless cards to free up hints and keep non-worthless
unique cards to prevent stacks from being blocked. Hints should thus give in-
formation about these three types of cards. We will make this more precise in
the next section.

4.2 Parameters

In Definition[2.17] a decision rule was defined as a probability distribution on the
possible actions based on the currently available information. We will construct
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a stationary strategy using several rules of thumb and probabilities, using the
following algorithm as a basis.

Algorithm 4.6 (Playing a game of Hanabi using rules of thumb). Given a game
H = (n, k,p,h,So, to, fo) of Hanabi with Sy = (s;)I,, this algorithm describes
the playing of the game using some preset rules. The details of every action can
be found in Algorithm [2.16]

1. Initialisation.
2. Every turn, do:

(a) If the active player’s hand contains at least one playable card, play
one of these cards chosen randomly.

(b) Else, if the active player’s hand contains at least one worthless card,
discard one of these cards chosen randomly.

(c) Else, if there are any hints left, give a hint.
(d) Else, discard a card.

The exact execution of the steps in the algoritm depends on the chosen rules
and parameters. We will consider stationary strategies using decision rules of the
form w = (wp, Ws, Wa, Wh, Ph, pd), for which we will now intoduce the parameters
step by step.

Parameters

1. Using all knowledge available, a player may calculate the probability that
a card in his hand is playable. If this probability exceeds a predetermined
threshold w, € [0, 1], a player will mark this card as playable in step 2a.

2. If wp, < 1, we might make errors when attempting to play a card. The
parameter ws € {0,1} controls whether we want to play safe or take the
risk of making three errors: if wy = 1 and two errors have been made,
we will only play a card in step 2a if the active player is certain of its
playability.

3. The parameter wq € [0,1] mimics the role of wy,, now in step 2b: if the
active player deduces that the probability of a certain card being worthless
is at least wy, it is marked as such.

4. In the given base algorithm, a hint is always given in step 2c if possible.
However, it might be better to sometimes discard even though a hint is
available. To explore this possibility, we introduce the parameter wy €
[0, 1]: if a hint is available, it is given with probability wy. Otherwise, we
turn to step 2d immediately.

5. In step 2c, the active player gives a hint to another player. The way in
which the given hint is chosen is defined by the hint rule pj, for which
several choices are outlined below.

6. Finally, in step 2d, the active player discards a card. The way in which
the card to be discarded is selected is determined by the discard rule pg.
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Here, the hint and discard rules pp and pg can be picked from the following
alternatives, respectively.

Hint rules p;,

1. Random. A hint about a random value or colour is given to a random
fellow player.

2. Most voluminous. A hint is given which provides information about most
cards at once, i.e., a hint providing information about three cards is pre-
ferred over a hint providing information about two.

3. First playable card, then most voluminous. Looking in turn order, a hint is
given on the first playable card found. If not yet given, a hint on the value
is preferred over a hint on the suit. If a player holds multiple playable
cards, a hint on a lower-valued card is preferred. If no playable cards are
in view, the most voluminous rule is used.

4. First playable card, then first worthless card, then most voluminous. An
attempt is made to give a hint on the first playable card as in 3. If no
playable cards are available, a hint is given on the first worthless card in
sight following the same rules. If also no worthless card can be seen, the
most voluminous rule is used.

Discard rules p,

1. Random. A random card is discarded, disregarding all knowledge available.

2. Most worthless. For every card in hand, the probability of it being worth-
less is calculated using the available information. The card with the highest
probability of being worthless is discarded.

3. Oldest. The card which has been present in the active player’s hand for
the most turns is discarded.

4. Least unique. For every card in hand, the probability of it being unique
is calculated using the available information. The card with the lowest
probability of being unique is discarded.

Of course, many other hint and discard rules could be thought of. In the exper-
iments to follow, however, we will choose p;, and pg from the four hint rules and
four discard rules described above and compare the resulting decision rules for
several different choices of the parameters w;. Here, by slight abuse of notation,
we will write p;, = 1 to describe a strategy using the first hint rule described
above, for example.

4.3 Experiments and results

We take classic Hanabi as in Example with p = 3 and thus h = 5. For
a decision rule w, we take the stationary strategy x = (w);. To calculate the
average value T(x, H) of a strategy x, we play the same game H ten times in a
row and compute the average score. To then approximate the value E(v(z, H)),
we play 10000 different games in this fashion and average the amount of points
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Discard rule pgq Hint rule pp
1 2 3 4
1 (5.50562,14,0) (12.5932,22,2) (13.1048,21,4) (10.7417,20,3)
2 (5.77127,16,0) (12.6614,22,1) (12.8471,21,3) (10.7758,21,2)
3 (4.96048,14,0) (12.2293,20,5) (12.6672,21,5) (10.2653,20,3)
4 (4.86980,14,0) (12.0331,20,3) (12.3029,21,4) (10.3384,20,3)

Figure 1: Scores obtained for w, = ws = wqg = wp, = 1.

obtained. With these values, the simulations testing a strategy take approxi-
mately one minute to complete. In addition to calculating the average score,
we also calculate the minimum and maximum score obtained for every tried
decision rule w. The full results can be found in the tables in Appendix B.

As it takes slightly over a minute to calculate the scores for a decision rule, not all
rules could be tested. Therefore, in our search for an optimal rule, we iteratively
chose which values to try. Intuitively, the hint and discard rules should have
the most impact on the score obtained. Therefore, we started off trying all 16
combinations of these rules while keeping the other parameters constant at value
1. In the table in Figure 1, the resulting tuples (average, maximum, minimum)
score are shown.

It is very clear that hint rules 2 and 3 are superior to rules 1 and 4. Between
these two rules, the rule of giving a hint about the next playable card seems to
be optimal, but only slightly. The result is to be expected: by giving information
on playable cards, fellow players obtain knowledge on which cards to try and
add to the field stacks, which progresses the score.

The differences between the various discard rules are smaller. According to these
experiments, rules 1 and 2 seem to slightly outperform rules 3 and 4, which is
confirmed by the values in the appendix. It is not surprising that rule 2 per-
forms well: discarding worthless cards does not damage the maximum possible
obtainable score. It is slightly surprising that rule 1 performs better than rules
3 and 4, though. Indeed, it seems to be better to discard randomly than to keep
track of the oldest card or to try and avoid unique cards.

As can be found in the appendix, the combination of the hint and discard rules
prn = 3 and pg = 2 provides room for the highest average score. The values
obtained using these rules are shown in Figure 2, where wy = wp = 1 are kept
constant and w,, and w, are varied.

We see that taking some risks in playing cards pays off. To be exact, playing
a card when at least 60% sure of its playability results in the best average
score and playing when at least 50% sure gives the best maximum score. This
trend is also apparent for other combinations of hint and discard rules. The
fact that the highest average scores are obtained at a lower risk value than the
highest maximum scores can be explained by noting that by taking a higher
risk in playing cards, more cards can potentially be played faster, but also more
unique cards might be turned to waste.

Furthermore, it is apparent that while taking some risk is recommended, taking
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Figure 2: Scores obtained for pg = 2, pp, = 3, wqg = wp, = 1.

too much risk is suboptimal if in search of the best average score. If taking the
risk of making a third error and thus ending the game with a score of 0 points,
the average score obtained is larger only for the highest values of w,. If more
uncertainty is accepted and wy, is lowered, the score obtained decreases rapidly.
For w, < 0.2, the choice w, = 0 even results in an average score of 0 as every
game is ended by making a third error, because the players are too reckless
when playing cards. Do note that the maximum scores achieved are generally
higher for ws = 0: taking the risk of ending the game with a score of zero does
bring a higher probability of obtaining the maximum score, as well.

Now, having established that the choice p;, = 3 and pg = 2 is promising and
that values of 0.5 < w, < 0.7 and ws = 1 provide the best average score among
the values we tested, we keep these rules and parameters fixed while varying wy.
Some results can be found in Figure 3.

We see that for values 0.8 < wy < 1.0, the scores obtained do not vary much.
In fact, it seems that all fluctuations should be contributed to the randomness
of the games being sampled — there is no clear trend. For lower values of wg,
the scores obtained steadily decrease. It thus seems best to only discard cards
willingly when completely sure of their worthlessness. This result is further
established by the experiments where wy, is varied: keeping all other parameters
fixed, we obtain Figure 4.

As was to be expected from the previous experiments, Figure 4 also shows that
it does not seem to be profitable to discard a card using the discard rule if there
is a hint available. A player should give this hint instead.
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4.4 Discussion

As discussed previously, hints in Hanabi often convey more information than
explicitly clear. While the option of playing a card when not 100% sure about
its playability was implemented in the parameter w,, this implicit information
in the hints was not taken into account. It might be interesting to see whether
considering this implicit information makes any difference. We could for example
record whether a hint was given about multiple cards or one card in particular
and introduce a hint rule to give information about single playable cards when
possible.

Another property of the real game which was not captured in these decision
rules is the fact that players anticipate on each other’s actions. For example, in
practice it seems smart to remember which card in a player’s hand is the oldest
card and to agree upon always discarding the oldest card if a semi-random
discard action is necessary. In this way, players can predict the actions of each
other and prevent the discarding of a unique card only when necessary, which
makes deciding what to do easier. It could be interesting to implement this as
well.

Furthermore, as mentioned before, the size of the search space makes it impos-
sible to test each and every value of all parameters. Here, the choice of which
values to test was made empirically and based on the results of previous exper-
iments. Instead, one could consider using more structured methods of exploring
the search space. We might for example think of natural computing methods
like particle swarm optimisation or simulated annealing — explained in [I3] and
[14] respectively — to search for optimal solutions.

Moreover, the heuristics which were implemented turn out to result in a maxi-
mum score of 25 points only very seldomly, which makes the analysis of P(x, H)
difficult if not outright impossible. The only conclusion on this subject which
can be drawn so far is that strategies involving more risk give a higher prob-
ability of obtaining a maximum score while compromising the average score.
Though the general lack of maximum scoring might be attributed to a sizeable
portion of the sampled games not being playable cf. the previous section, it is
likely that other and better strategies may more often result in a maximum
score. If so, this could lead to a more detailed and interesting analysis of the
optimality criterion P(x, H).

Finally, one could experiment some more with the base parameters of the game.
Games with other amounts of players, hints and errors may result in different
scores and other optimal strategies, which could also be an interesting field for
further research.
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5 Conclusions and further research

In this thesis, we consider the game of Hanabi with two main questions in mind.
The first of these questions is which fraction of the initial configurations of a
game of Hanabi are playable, i.e., for which percentage of the permutations of
the initial stack can a perfect score be obtained? In Section 3, we start out by
proving that for the question of playability, we can consider open games instead
of closed games without loss of generality. We then continue by looking at games
of increasing complexity, starting off with single-colour games played by a single
player with hand size 1. For this situation, the question of playability gives rise
to a combinatorial problem regarding sequences, for which the main result is
stated in Theorem [3.25

Subsequently, we increase the complexity of the games step by step, at first
increasing the hand size of our single player to a value greater than 1. For
this type of game, we calculate the amount of playable sequences for various
compositions of the initial stack using a dynamic programming algorithm based
on a recurrence relation. We discover that for multi-colour games, a recurrence
relation still holds, but the implementation of the ensuing algorithm turned
out to be problematic because of memory issues. Finally, we show that for the
simplest choices for the hand size and amount of passes, multi-player games are
equivalent to single-player games.

In Section 4 we turn to the second main question: given a random initial con-
figuration of the game, what strategy is good or even optimal? We introduce
two optimality criteria, the former optimising the average score obtained by
employing a specific strategy and the latter valuing the probability of obtaining
a perfect score. Subsequently, we look at a set of heuristics, which were tested
by running simulations of the game. From these simulations, it becomes appar-
ent that it is wise to give hints about playable cards and discard cards only if
completely sure of their worthlessness. Furthermore, it is good to take some risk
in playing cards, but not too much.

As for future research, there are many possible routes to take. The first one
would be to continue the theoretical analysis of playability as commenced in
Section 3.4. In order to do so, one could start by discarding the rule that the
game ends when the stack is empty and note that using this modification of
the game, a sequence S in Z is (k, m)-playable if the sequence (1,...,k) can be
read when scanning S once from left to right, where a memory of size m — 1
is available to store numbers in. Following this observation, it seems that a
permutation (s;)¥; of the sequence (1,...,k) is (k,m)-playable if and only if

#{s; | J <i,s5>sif <m—1

for all i = 1,...,k. In words: for any number in the sequence, there may not
be more than m — 1 higher numbers before it, as no more numbers can be
stored. Using X, (21, ..., xk) to denote the amount of (k, m)-playable sequences
disregarding the game’s end, we arrive at the following.

Conjecture 5.1. For x,,(x1,...,x) as defined above, we have

Xm(1,1,...,1) = m!(m +1)F ™,
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Furthermore, note that by not stopping the game when the stack is emptied,
multi-player games with hand size 1 and infinitely many passes also seem to
become equivalent to single-player games:

Conjecture 5.2. Let L = (n,k,p,1,50,0, fo) be an open game of Hanabi,
where the game is not ended by an empty stack. Let L' = (n,k,1,p,S0,0, fo).
Then L is playable if and only if L' is playable.

Instead of further pursuing a theoretical approach, one might also try to en-
hance Algorithms and to allow for calculations on larger stacks. It is
for example obvious that a unique card must not be discarded for the remaining
stack to be playable. Furthermore, in checking whether we need to hold on to
a card in our hand to produce a playable sequence, only the first occurrence of
every value in the remaining stack would need to be known. Perhaps these ob-
servations would resolve some time and space issues involved in the calculations
on playability.

Finally, one could also try to further consider the second main question of the
thesis regarding optimal strategies. More heuristics could be tried, for exam-
ple, or more structural search algorithms could be implemented as described
in Section 4.4. In addition to the other improvements and extensions discussed
in this section, it might also be interesting to take a look at computer Bridge
[15] and see whether methods from this area of study may come in handy when
examining Hanabi. Indeed, the implicit information present in the hints of this
game slightly resembles the implicit information which is given in the auction
phase of the game of Bridge, see also [16].
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Appendix A

(z1,29,23,24,25) |m=1|m=2|m=3|m=4|m=>5
(1,1,1,1,6) | 0.0250 | 0.1460 | 0.2393 | 0.2571 | 0.2571
(1,1,1,2,5) | 0.0380 | 0.1995 | 0.2893 | 0.3000 | 0.3000
(1,1,1,3,4) 0.0436 | 0.2210 | 0.2963 | 0.3000 | 0.3000
(1,1,1,4,3) 0.0436 | 0.2276 | 0.2984 | 0.3000 | 0.3000
(1,1,1,5,2) 0.0380 | 0.2180 | 0.2952 | 0.3000 | 0.3000
(1,1,1,6,1) 0.0250 | 0.1810 | 0.2821 | 0.3000 | 0.3000
(1,1,2,1,5) | 0.0380 | 0.2110 | 0.3190 | 0.3357 | 0.3357
(1,1,2,2,4) 0.0559 | 0.2755 | 0.3768 | 0.3857 | 0.3857
(1,1,2,3,3) 0.0613 | 0.2938 | 0.3821 | 0.3857 | 0.3857
(1,1,2,4,2) 0.0559 | 0.2866 | 0.3806 | 0.3857 | 0.3857
(1,1,2,5,1) 0.0380 | 0.2435 | 0.3690 | 0.3857 | 0.3857
(1,1,3,1,4) | 0.0436 | 0.2357 | 0.3399 | 0.3500 | 0.3500
(1,1,3,2,3) 0.0613 | 0.2959 | 0.3948 | 0.4000 | 0.4000
(1,1,3,3,2) 0.0613 | 0.3006 | 0.3958 | 0.4000 | 0.4000
(1,1,3,4,1) 0.0436 | 0.2632 | 0.3891 | 0.4000 | 0.4000
(1,1,4,1,3) 0.0436 | 0.2427 | 0.3448 | 0.3500 | 0.3500
(1,1,4,2,2) 0.0559 | 0.2889 | 0.3952 | 0.4000 | 0.4000
(1,1,4,3,1) | 0.0436 | 0.2634 | 0.3919 | 0.4000 | 0.4000
(1,1,5,1,2) 0.0380 | 0.2308 | 0.3439 | 0.3500 | 0.3500
(1,1,5,2,1) 0.0380 | 0.2450 | 0.3880 | 0.4000 | 0.4000
(1,1,6,1,1) 0.0250 | 0.1889 | 0.3321 | 0.3500 | 0.3500
(1,2,1,1,5) 0.0380 | 0.2181 | 0.3429 | 0.3655 | 0.3655
(1,2,1,2,4) | 0.0559 | 0.2858 | 0.4083 | 0.4214 | 0.4214
(1,2,1,3,3) | 0.0613 | 0.3051 | 0.4156 | 0.4214 | 0.4214
(1,2,1,4,2) 0.0560 | 0.2975 | 0.4139 | 0.4214 | 0.4214
(1,2,1,5,1) 0.0380 | 0.2519 | 0.3988 | 0.4214 | 0.4214
(1,2,2,1,4) 0.0559 | 0.2988 | 0.4492 | 0.4690 | 0.4690
(1,2,2,2,3) | 0.0785 | 0.3715 | 0.5199 | 0.5333 | 0.5333
(1,2,2,3,2) | 0.0785 | 0.3755 | 0.5212 | 0.5333 | 0.5333
(1,2,2,4,1) 0.0559 | 0.3285 | 0.5087 | 0.5333 | 0.5333
(1,2,3,1,3) 0.0613 | 0.3202 | 0.4704 | 0.4857 | 0.4857
(1,2,3,2,2) 0.0785 | 0.3768 | 0.5340 | 0.5500 | 0.5500
(1,2,3,3,1) 0.0613 | 0.3445 | 0.5271 | 0.5500 | 0.5500
(1,2,4,1,2) | 0.0559 | 0.3111 | 0.4688 | 0.4857 | 0.4857
(1,2,4,2,1) 0.0559 | 0.3292 | 0.5228 | 0.5500 | 0.5500
(1,2,5,1,1) 0.0380 | 0.2607 | 0.4525 | 0.4857 | 0.4857
(1,3,1,1,4) 0.0436 | 0.2461 | 0.3811 | 0.4012 | 0.4012
(1,3,1,2,3) 0.0613 | 0.3100 | 0.4444 | 0.4595 | 0.4595
(1,3,1,3,2) | 0.0613 | 0.3149 | 0.4455 | 0.4595 | 0.4595
(1,3,1,4,1) | 0.0436 | 0.2744 | 0.4331 | 0.4595 | 0.4595
(1,3,2,1,3) 0.0613 | 0.3231 | 0.4866 | 0.5095 | 0.5095
(1,3,2,2,2) 0.0785 | 0.3802 | 0.5515 | 0.5762 | 0.5762
(1,3,2,3,1) 0.0613 | 0.3474 | 0.5425 | 0.5762 | 0.5762
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(r1,22,23,24,25) |m=1|m=2|m=3|m=4|m=>5
(1,3,3,1,2) 0.0613 | 0.3291 | 0.4995 | 0.5262 | 0.5262
(1,3,3,2,1) 0.0613 | 0.3486 | 0.5543 | 0.5929 | 0.5929
(1,3,4,1,1) | 0.0436 | 0.2845 | 0.4841 | 0.5262 | 0.5262
(1,4,1,1,3) | 0.0436 | 0.2529 | 0.3875 | 0.4083 | 0.4083
(1,4,1,2,2) | 0.0559 | 0.3019 | 0.4442 | 0.4667 | 0.4667
(1,4,1,3,1) 0.0436 | 0.2743 | 0.4365 | 0.4667 | 0.4667
(1,4,2,1,2) 0.0559 | 0.3136 | 0.4858 | 0.5167 | 0.5167
(1,4,2,2,1) 0.0559 | 0.3319 | 0.5393 | 0.5833 | 0.5833
(1,4,3,1,1) | 0.0436 | 0.2845 | 0.4859 | 0.5333 | 0.5333
(1,5,1,1,2) | 0.0380 | 0.2395 | 0.3841 | 0.4083 | 0.4083
(1,5,1,2,1) | 0.0380 | 0.2541 | 0.4291 | 0.4667 | 0.4667
(1,5,2,1,1) 0.0380 | 0.2624 | 0.4657 | 0.5167 | 0.5167
(1,6,1,1,1) 0.0250 | 0.1948 | 0.3643 | 0.4083 | 0.4083
(2,1,1,1,5) | 0.0380 | 0.2288 | 0.3641 | 0.3903 | 0.3903
(2,1,1,2,4) 0.0559 | 0.3012 | 0.4352 | 0.4512 | 0.4512
(2,1,1,3,3) | 0.0613 | 0.3222 | 0.4435 | 0.4512 | 0.4512
(2,1,1,4,2) 0.0559 | 0.3144 | 0.4417 | 0.4512 | 0.4512
(2,1,1,5,1) 0.0380 | 0.2655 | 0.4250 | 0.4512 | 0.4512
(2,1,2,1,4) | 0.0559 | 0.3151 | 0.4787 | 0.5028 | 0.5028
(2,1,2,2,3) | 0.0785 | 0.3935 | 0.5556 | 0.5730 | 0.5730
(2,1,2,3,2) | 0.0785 | 0.3982 | 0.5570 | 0.5730 | 0.5730
(2,1,2,4,1) 0.0559 | 0.3475 | 0.5431 | 0.5730 | 0.5730
(2,1,3,1,3) 0.0613 | 0.3384 | 0.5017 | 0.5214 | 0.5214
(2,1,3,2,2) 0.0785 | 0.3997 | 0.5706 | 0.5917 | 0.5917
(2,1,3,3,1) | 0.0613 | 0.3646 | 0.5627 | 0.5917 | 0.5917
(2,1,4,1,2) | 0.0559 | 0.3287 | 0.4998 | 0.5214 | 0.5214
(2,1,4,2,1) | 0.0559 | 0.3481 | 0.5578 | 0.5917 | 0.5917
(2,1,5,1,1) 0.0380 | 0.2747 | 0.4820 | 0.5214 | 0.5214
(2,2,1,1,4) 0.0559 | 0.3267 | 0.5142 | 0.5464 | 0.5464
(2,2,1,2,3) | 0.0785 | 0.4098 | 0.5989 | 0.6246 | 0.6246
(2,2,1,3,2) | 0.0785 | 0.4151 | 0.6003 | 0.6246 | 0.6246
(2,2,1,4,1) | 0.0559 | 0.3611 | 0.5823 | 0.6246 | 0.6246
(2,2,2,1,3) 0.0785 | 0.4264 | 0.6537 | 0.6921 | 0.6921
(2,2,2,2,2) 0.1004 | 0.5004 | 0.7382 | 0.7804 | 0.7810
(2,2,2,3,1) 0.0785 | 0.4565 | 0.7248 | 0.7802 | 0.7810
(2,2,3,1,2) | 0.0785 | 0.4333 | 0.6680 | 0.7127 | 0.7135
(2,2,3,2,1) | 0.0785 | 0.4582 | 0.7378 | 0.8008 | 0.8024
(2,2,4,1,1) | 0.0559 | 0.3740 | 0.6452 | 0.7119 | 0.7135
(2,3,1,1,3) 0.0613 | 0.3560 | 0.5553 | 0.5940 | 0.5940
(2,3,1,2,2) 0.0785 | 0.4222 | 0.6317 | 0.6742 | 0.6750
(2,3,1,3,1) | 0.0613 | 0.3838 | 0.6191 | 0.6738 | 0.6750
(2,3,2,1,2) 0.0785 | 0.4393 | 0.6864 | 0.7437 | 0.7452
(2,3,2,2,1) 0.0785 | 0.4644 | 0.7569 | 0.8337 | 0.8369
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($1’1727$3,334, 335)

m=1

m=2

m=3

m=4

m=2>5

H N = WNNND R FEREWWWNDNNNDNDNDNRF == O s

= R N H R FRNDRFR WD R R R RN RFRWNDRND =R WWNNNRF == =N

R R R NFRFRFRPRPRNRFRFPRPNNREOWNNRRRNNRERNDNREOQNDNR,RNDRE ONDRE BSWNDRE -~

S O Ot O O s s s s s s b s s B W W W W WWwWwWwWwwwwwwwwwwwwho NN

N N N N N AN N S S PN S PN PN S N S N N S PN PN S N S S PN S N S S S N N S S~~~

0.0613
0.0559
0.0559
0.0559
0.0380
0.0436
0.0613
0.0613
0.0436
0.0613
0.0785
0.0613
0.0613
0.0613
0.0436
0.0613
0.0785
0.0613
0.0785
0.0785
0.0613
0.0613
0.0613
0.0613
0.0436
0.0436
0.0559
0.0436
0.0559
0.0559
0.0436
0.0559
0.0559
0.0559
0.0436
0.0380
0.0380
0.0380
0.0380
0.0250

0.3995
0.3461
0.3666
0.3798
0.2878
0.2673
0.3385
0.3441
0.2986
0.3525
0.4168
0.3793
0.3592
0.3804
0.3089
0.3678
0.4366
0.3963
0.4540
0.4798
0.4123
0.3813
0.4038
0.4192
0.3277
0.2788
0.3342
0.3025
0.3469
0.3671
0.3135
0.3633
0.3847
0.3985
0.3335
0.2654
0.2816
0.2907
0.3043
0.2157

0.6831
0.5533
0.6144
0.6647
0.5278
0.4228
0.4944
0.4954
0.4810
0.5407
0.6131
0.6023
0.5540
0.6145
0.5356
0.5787
0.6576
0.6443
0.7142
0.7868
0.7098
0.6103
0.6756
0.7299
0.5906
0.4391
0.5029
0.4935
0.5490
0.6085
0.5471
0.5880
0.6517
0.7044
0.6030
0.4371
0.4873
0.5278
0.5647
0.4133

0.7631
0.6008
0.6802
0.7488
0.5984
0.4502
0.5171
0.5171
0.5171
0.5742
0.6500
0.6496
0.5925
0.6679
0.5913
0.6230
0.7063
0.7056
0.7786
0.8719
0.7975
0.6694
0.7543
0.8280
0.6733
0.4716
0.5381
0.5373
0.5948
0.6704
0.6117
0.6433
0.7265
0.7987
0.6880
0.4724
0.5389
0.5956
0.6440
0.4716

0.7667
0.6024
0.6833
0.7536
0.6024
0.4502
0.5171
0.5171
0.5171
0.5742
0.6508
0.6508
0.5937
0.6702
0.5937
0.6230
0.7079
0.7079
0.7817
0.8778
0.8040
0.6730
0.7607
0.8373
0.6813
0.4716
0.5397
0.5397
0.5980
0.6758
0.6175
0.6480
0.7341
0.8091
0.6980
0.4764
0.5444
0.6028
0.6528
0.4764
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Appendix B

ws =1, wg =1, wy =1:

Wy Hint rule py,
1 2 3 4
Discard rule pq 1.0 | (5.5056,14,0) (12.5932,22,2) (13.1048,21,4) (10.7417,20,3)
0.9 | (5.5299,15,0) (12.6483,21,3) (13.2534,21,4) (10.8474,20,2)
0.8 | (5.8733,15,0) (13.1144,21,4) (13.9214,21,4) (11.3789,21,3)
0.7 | (6.2900,16,0) (13.4682,22,3) (14.5354,22,6) (11.9149,22,3)
0.6 | (7.0842,17,0) (13.9480,23,3) (15.2845,23,5) (12.6737,23,3)
0.5 | (7.2655,20,0) (13.7624,24,4) (15.1522,24,5) (12.5262,24,2)
0.4 | (6.9327,20,0) (13.4423,24,3) (14.7761,24,4) (12.2090,24,3)
0.3 | (6.3639,20,0) (12,9593,23,3) (13.7684,24,3) (11.3396,25,2)
0.2 | (5.9188,16,0) (12.5794,22,2) (13.0553,21,4) (10.7026,22,2)
0.1 (5.9151,17,0) (12.5987,22,3) (13.0654,22,4) (10.7144,21,2)
0.0 | (5.9053,17,0) (12.5707,22,4) (13.0284,23,4) (10.7025,21,2)
1.0 | (5.7713,16,0) (12.6614,22,1) (12.8471,21,3) (10.7758,21,2)
0.9 | (5.7916,16,0) (12.8029,21,1) (13.0706,21,2) (10.8978,20,3)
0.8 | (6.1781,17,0) (13.3883,22,2) (13.8633,23,3) (11.4885,22,3)
0.7 | (6.6139,18,0) (13.8258,22,2) (14.5393,23,4) (12.0299,22,2)
0.6 | (7.3921,19,0) (14.3677,23,3) (15.4075,23,4) (12.7149,24,2)
0.5 | (7.5030,19,0) (14.1546,25,2) (15.3015,25,3) (12.5837,24,2)
0.4 | (7.1368,20,0) (13.7957,24,2) (14.9218,24,3) (12.2222,24,3)
0.3 | (6.5577,19,0) (13.2201,24,1) (13.78777 24,2) (11.4213,25,2)
0.2 ](6.1372,17,0) (12.8190,23,1) (12.9537,24,2) (10.7822,21,1)
0.1 (6.1284,19,0) (12.8493,22,1) (12.9318,22,2) (10.8034,21,2)
0.0 | (6.1131,17,0) (12.7790,22,2) (12.9477,23,3) (10.8185,20,2)
1.0 | (4.9605,14,0) (12.2293,20,5) (12.6672,21,5) (10.2653,20,3)
0.9 | (4.9973,15,0) (12.3364,20,5) (12.7818,21,5) (10.3829,20,3)
0.8 | (5.3725,15,0) (12.7421,21,4) (13.5218,21,6) (10.9540,20,4)
0.7 | (5.8092,16,0) (13.1218,22,5) (14.1131,21,6) (11.5054,21,4)
0.6 | (6.6410,16,0) (13.5421,22,5) (14.9423,23,7) (12.2981,22,3)
0.5 | (6.8717,18,0) (13.4395,23,5) (14.8424,24,5) (12.2740,24,3)
0.4 | (6.5035,21,0) (13.1259,23,5) (14.4649,24,5) (11.9009,24,3)
0.3 | (5.8765,20,0) (12.6055,24,4) (13.3777,24,4) (10,9657,24,2)
0.2 | (5.3761,15,0) (12.2265,22,4) (12.6381,22,4) (10.2441,21,3)
0.1 (5.3695,16,0) (12.2303,21,4) (12.6497,22,3) (10.2747,21,3)
0.0 | (5.3771,17,0) (12.2155,21,4) (12.6133,22,4) (10.2451,21,2)
1.0 | (4.8698,14,0) (12.0331,20,3) (12.3029,21,4) (10.3384,20,3)
0.9 | (4.8925,14,0) (12.1448,21,2) (12.4649,21,3) (10.4248,19,2)
0.8 | (5.3105,15,0) (12.6284,21,3) (13.2326,21,4) (10.9843,20,3)
0.7 | (5.7849,15,0) (13.0691,22,4) (13.9301,22,5) (11.5031,21,3)
0.6 | (6.6534,17,0) (13.6847,23,4) (14.8472,23,5) (12.2824,23,2)
0.5 | (6.8430,20,0) (13.5090,24,2) (14.7366,24,3) (12.2453,25,3)
0.4 | (6.4443,20,0) (13.1023,24,3) (14.3649,24,5) (11.8658,24,3)
0.3 | (5.7565,21,0) (12.5732,23,2) (13.2425,24,3) (10.9986,24,2)
0.2 | (5.2733,17,0) (12.1734,22,2) (12.4184,23,3) (10.4085,21,2)
0.1 (5.2553,18,0) (12.1610,21,2) (12.4047,21,3) (10.4037,21,2)
0.0 | (5.2510,16,0) (12.1498,21,2) (12.4119,22,2) (10.4001,20,2)
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ws =0, wg =1, wy, = 1:

wp | Hint rule py
2 3
Discard rule pq 1.0 | (12.5932,22,2) (13.1048,21,4)
0.9 | (12.6357,22,0) (13.2652,22,0)
0.8 | (13.0565,22,0) (13.8906,22,0)
0.7 | (13.1259,22,0) (14.1914,22,0)
0.6 | (10.2284,23,0) (11.5433,24,0)
0.5 | (2.2244,24,0) (3.1172,25,0)
0.4 | (0.4891,24,0) (0.9215,24,0)
0.3 | (0.0090,24,0) (0.0171,24,0)
0.2 | (0.0000,0,0) (0.0000, 0, 0)
0.1 | (0.0000,0,0) (0.0000, 0, 0)
0.0 | (0.0000,0,0) (0.0000, 0, 0)
1.0 | (12.6614,22,1) (12.8471,21,3)
0.9 | (12.8046,21,1) (13.0843,21,0)
0.8 | (13.3537,23,0) (13.8488,24,0)
0.7 | (13.5718,23,0) (14.3005,23,0)
0.6 | (11.1379,24,0) (11.8696,24,0)
0.5 | (2.8141,24,0) (3.0940,25,0)
0.4 | (0.6115,24,0) (0.8301,24,0)
0.3 | (0.0063,24,0) (0.0164,25,0)
0.2 | (0.0000,0,0) (0.0000, 0, 0)
0.1 | (0.0000,0,0) (0.0000, 0, 0)
0.0 | (0.0000,0,0) (0.0000, 0, 0)
1.0 | (12.2293,20,5) (12.6672,21,5)
0.9 | (12.3350,20,0) (12.7957,21,0)
0.8 | (12.6677,21,0) (13.4759,21,0)
0.7 | (12.7402,22,0) (13.7811,22,0)
0.6 | (9.7045,22,0) (11.1711,23,0)
0.5 | (2.0157,23,0) (3.1852,24,0)
0.4 | (0.4338,25,0) (1.0019,24,0)
0.3 | (0.0047,23,0) (0.0184,24,0)
0.2 | (0.0000,0,0) (0.0000, 0, 0)
0.1 | (0.0000,0,0) (0.0000, 0, 0)
0.0 | (0.0000,0,0) (0.0000, 0, 0)
1.0 | (12.0331,20,3) (12.3029,21,4)
0.9 | (12.1350,21,0) (12.4855,21,0)
0.8 | (12.5778,21,0) (13.2245,21,0)
0.7 | (12.7804,23,0) (13.6581,23,0)
0.6 | (10.1671,23,0) (11.3533,23,0)
0.5 | (2.0241,24,0) (2.9102,24,0)
0.4 | (0.4320,24,0) (0.8405,25,0)
0.3 | (0.0051,23,0) (0.0150,25,0)
0.2 | (0.0000,0,0) (0.0000, 0, 0)
0.1 | (0.0000,0,0) (0.0000, 0, 0)
0.0 | (0.0000,0,0) (0.0000, 0, 0)
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ws =1, wp=1,pg =2, pp =3

wq Wp
0.7 0.6 0.5
1.0 | (14.5390,23,4) (15.3862,24,4) (15.3318,24,4)
0.9 | (14.5594,22,3) (15.3884,24,5) (15.3284,24,4)
0.8 | (14.4814,22,4) (15.2814,24,5) (15.2054,24,4)
0.7 | (14.2941,23,4) (15.0831,23,4) (14.9624,24,3)
0.6 | (13.6756,22,3) (14.3426,23,4) (14.3206,23,4)
0.5 | (12.1948,23,2) (12.8148,23,3) (13.0637,23,2)
0.4 | (11.3456,22,2) (12.0016,22,2) (12.3321,22,2)
0.3 | (9.7709,21,2) (10.6428,21,2) (10.7501,21,2)
0.2 | (7.9446,20,1) (8.3093,20,2) (8.1522,20,1)
0.1 ] (4.8198,18,1) (5.0473,18,1) (5.2114,18,1)
0.0 | (0.0813,4,0) (0.3801, 6, 0) (0.6603,8,0)
ws=1wp=1pg=1, pp =3
wq Wp
0.7 0.6 0.5
1.0 | (14.5550,23,5) (15.2535,24,5) (15.1971,24,4)
0.95 | (14.5309,22,4) (15.2778,24,5) (15.1435,25,4)
0.9 | (14.5387,22,4) (12.2650,23,5) (15.1811,24,4)
0.85 | (14.5185,22,5) (15.2621,24,5) (15.1280,24,4)
0.8 | (14.4364,22,4) (15.1761,24,5) (15.0411,24,4)
ws =1 w, =1, pg =2, pp =1
Wy Wp
0.7 0.6 0.5
1.0 | (6.6103,18,0) (7.3725,18,0) (7.4781,20,0)
0.95 | (6.6056,17,0) (7.3683,19,0) (7.4998,20,0)
0.9 | (6.6221,17,0) (7.3631,18,0) (7.4811,19,0)
0.85 | (6.6005,17,0) (7.3633,19,0) (7.5021,19,0)
0.8 | (6.6011,17,0) (7.3803,18,0) (7.4820,20,0)
ws=1wp=1,pg=2, pp =2:
wq Wp
0.7 0.6 0.5
1.0 | (13.8341,22,3) (14.3602,24,3) (14.1649,23,3)
0.95 | (13.8383,22,2) (14.3718,23,4) (14.1760,25,3)
0.9 | (13.8115,23,2) (14.3773,23,1) (14.1685,24,2)
0.85 | (13.8432,23,2) (14.3529,23,2) (14.1613,24,2)
0.8 | (13.7957,23,3) (14.3137,23,3) (14.0983,24,3)
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ws =1, wp=1,pg =2, pp =3

wq Wp
0.7 0.6 0.5
1.0 | (14.5390,23,4) (15.3863,24,4) (15.3318,24,4)
0.95 | (14.5586,23,5) (15.3981,24,4) (15.3107,25,4)
0.9 | (14.5161,23,5) (15.3645,24,4) (15.2956,25,5)
0.85 | (14.5235,23,4) (15.3767,23,5) (15.3075,24,2)
0.8 | (14.4894,22,3) (15.2937,24,4) (15.2230,24,4)
wszlawhzlvpdzzaph24:
wq Wp
0.7 0.6 0.5
1.0 | (11.9910,22,2) (12.6953,24,3) (12.5871,24,3)
0.95 | (11.9902,22,3) (12.7082,24,3) (12.5830,24,4)
0.9 | (11.9883,21,2) (12.7127,23,3) (12.5692,24,2)
0.85 | (12.0060,22,3) (12.7479,23,3) (12.6224,24,2)
0.8 | (11.9960,22,2) (12.7048,24,3) (12.5931,24,3)
ws =1, wp, =1, pg =3, pp, =3:
wq Wp
0.7 0.6 0.5
1.0 | (14.1064,22,6) (14.9089,23,6) (14.8009,24,6)
0.95 | (14.1364,22,6) (14.9155,24,7) (14.8373,24,6)
0.9 | (14.1256,22,7) (14.8801,23,6) (14.8504,24,6)
0.85 | (14.1319,22,7) (14.8752,23,6) (14.8108,24,6)
0.8 | (14.0663,21,6) (14.7715,24,6) (14.7296,23,6)
ws=1,wp=1,pg =4, pp =3:
wq Wp
0.7 0.6 0.5
1.0 | (13.9381,22,5) (14.8180,23,4) (14.7612,25,4)
0.95 | (13.9775,22,5) (14.8221,23,5) (14.7841,25,4)
0.9 | (13.9486,22,5) (14.8346,24,5) (14.7270,24,4)
0.85 | (13.9107,23,4) (14.8005,23,4) (14.7613,24,4)
0.8 | (13.8918,22,4) (14.7641,23,4) (14.6528,25,4)
wp =06, ws =1, wg = 1:
Wh | pa=ph=2 | pa=2,pp=3 | pi=3,pp=2| pi=pn=3
1.0 | (14.3602,24,3) | (15.3863,24,4) | (13.5553,22,4) | (14.9089, 23, 6)
0.9 | (14.1930,23,2) | (15.2398,24,3) | (13.3761,22,4) | (14.7730,23,5)
0.8 | (13.9194,23,1) | (14.9892,23,3) | (13.1068,22,4) | (14.5573,23,5)
0.7 | (13.3620,23,2) | (14.5166,24,2) | (12.4564,22,3) | (14.1135,23,5)
0.6 | (12.2327,22,1) | (13.5044, 2 ,2) (11.2787,22,1) | (13.1100, 23, 3)
0.5 | (10.5193,22,0) | (11.7572,23,2) | (9.5636,20,1) | (11.5150,22,2)
04| (85117,21,0) | (9.7813,21,2) | (7.7266,19,0) | (9.7195,20,1)
0.3 | (6.5051,19,0) | (7.8872,21 ,1) (6.0289,18,0) | (7.9067,20,1)
0.2 | (4.6148,16,0) | (6.0293,17,0) | (4.4217,16,0) | (6.0844,16,0)
0.1 (2.6954,14,0) | (3.8577,15,0) | (2.7172,12,0) | (3.9087,13,0)
0.0 | (0.3868,5,0) (0.3856,6,0) (0.3823,7,0) (0.3779,6,0)
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