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Abstract

Guarded languages are sets of guarded strings, which are derived from KAT (Kleene
Algebra with Tests). KAT is an algebraic system used for program verification, making
use of a combined alphabet as it merges Boolean algebra with the traditional Kleene
algebra (KA). As KAT is a relatively fresh concept in language theory and computer
science, many possibilities have yet to be explored. In this paper, a context-free system is
presented that makes it possible to determine the language of any given KAT expression
and identify whether a guarded string can be generated by a certain KAT expression.
Since a guarded string can resemble programming code, a system for generating such
strings can prove useful for model checking. We can check whether or not the guarded
string is part of a language and thus, whether it is syntactically correct in the environment
it is in. We will also take a look at encoding recursive programs with KAT expressions
and guarded strings.
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1 Introduction

This thesis on the subject of Guarded Languages is written as part of the bachelor of Computer
Science at Leiden University and was supervised by Marcello Bonsangue. The topci of Guarded
languages has recently been growing in popularity in language theory (90’s). These languages
composed by a combined alphabet can accomplish anything a regular language already could,
but the incorporated Boolean alphabet creates a wider range of possibilities. With the added
potential of conditional statements it is now possible to mimic programming syntax with
Kleene algebras with tests (KAT). KAT has been useful to model while programs. In this
thesis we extend KAT to model context free behaviour, so that programs with full recursion
can be modelled too. Being able to systematically compose the language for any given KAT
expression allows for the possibility to involve computers to algorithmicly check whether a
guarded string is part of a given guarded language by applying Hoare logic [?]. This is
particularly useful as guarded strings can resemble basic computer programs as the base of
most program correctness tools lies in Hoare logic. In Section 2 back ground information will
be provided, in Section 3 the system for determining guarded strings in a context free manner
will be presented. Then we will look into recursion and guarded strings in Section 4 and we
end by drawing a conclusion and discuss the future possibilities in Section 5.

2 Background

In this section we will introduce guarded strings and clarify why a set of these can not be linked
to a Kleene algebra (KA), the algebra concerning regular expressions. Because of the lack of
possibilities that Kleene Algebra provides us with, we will take a look at Kleene Algebra with
Tests (KAT), and find out how we can tailor KAT expressions to manufacture our method
that defines a system that generates sets of guarded strings.

2.1 Kleene Algebra

A Kleene algebra KA = (K,+, ·,∗ , 0, 1) satisfies the following axioms

(r1 + r2) + r3 = r1 + (r2 + r3)
r1 + r2 = r2 + r1

r + 0 = r + r = r
r1(r2r3) = (r1r2)r3

1r = r1 = r
0r = r0 = 0

r1(r2 + r3) = r1r2 + r1r3

(r1 + r2)r3 = r1r3 + r2r3

1 + rr∗ ≤ r∗

1 + r∗r ≤ r∗

r1 + r2r3 ≤ r3 → r∗2r1 ≤ r3

r1 + r2r3 ≤ r2 → r1r
∗
3 ≤ r2

where r1, r2 and r3 denote regular expressions and r1 ≤ r2 iff r1 + r2 = r2. Furthermore,
1 denotes the empty word λ and 0 is used when referring to the empty set ∅. The set of
regular expressions over a non-empty alphabet Σ is defined as follows:

r := 0 | 1 | p ∈ Σ | (r1 + r2) | (r1 · r2) | r∗

also referred to as RΣ which composes a Kleene algebra considering the algebraic structure
(RΣ,+, ·,∗ , 0, 1). A word over Σ is a finite sequence of elements of Σ. Σ∗ is defined to be
the set of all words over Σ. A language over an alphabet Σ is a subset of Σ∗. The language
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corresponding L to r is defined by:

L(0) = ∅
L(1) = 1

L(p) = p where p ∈ Σ

L(r1 + r2) = L(r1) ∪ L(r2)
L(r1 · r2) = L(r1) · L(r2)

L(r∗) = L(r)∗

The above axioms can be used to assemble a complete proof system for determining equiva-
lence in regular expressions [6].

2.2 Kleene Algebra with Tests

A Kleene algebra with tests (KAT) is a KA with a Boolean subalgebra K = (K,B,+, ·,∗ , 0, 1,− )
incorporated, where − is a unary operator which denotes the negation of a Boolean expression
and is defined solely on B. KAT is an equational system, combining KA with Boolean algebra,
applied for the verification of programs [4]. The following holds:

• (K,+, ·,∗ , 0, 1) is a Kleene algebra.

• (B,+, ·,− , 0, 1) is a Boolean algebra.

• (B,+, ·, 0, 1) is a subalgebra of (K,+, ·,− , 0, 1).

KAT satisfies the Kleene algebra axioms along with the axioms for a Boolean algebra. Now,
define Σ = {p1, p2, . . . , pn} to be a set of action symbols with n ≥ 1 and define T =
{t1, t2, . . . , tm} to be a set of test symbols with m ≥ 1. KAT expressions can be defined by
the following grammar:

b ∈ Bexp := 0 | 1 | t ∈ T | b | b1 + b2 | b1 · b2

e ∈ Exp := p ∈ Σ | b ∈ Bexp | e∗1 | e1 + e2 | e1 · e2

Here, the alphabet is the combined action and testalphabet Σ ∪ T and b1, b2 ∈ Bexp and
e1, e2 ∈ Exp. Similar to KA we will omit the concatenation operator for convenience. A
language corresponding to a KAT expression is called a guarded language which is a set
of guarded strings. A truth assignment to T is composed by all the elements of T, where
each element is either true or false, for instance: t1t2t3t4 is a truth assignment for a Boolean
alphabet of 4 elements. We will refer to such a truth assignment as being an atom. Let the
set of all atoms be At, which has size 2|T |. A guarded string is composed by alternating
elements from At with elements from Σ, starting and ending with an element from At. The
minimum size of a guarded string is one atom ∈ At. Thus, the guarded language over some
Σ and T is GL = (At·Σ)∗ · At. Two guarded strings x, y can be concatenated into x ·y only if
the last element (Boolean atom) of x equals the first element of y, hereby deleting one of the
redundant occurences of the shared atom. If last(x) 6= first(y) then the concatenation xy does
not exist. For guarded languages X, Y ⊆ GL we have that X � Y is defined to be the set of
all strings xy for which x ∈ X and y ∈ Y . The language corresponding to a KAT expression
is inductively defined by:

GL(p) = {α1pα2 | α1, α2 ∈ At} p ∈ Σ
GL(b) = {α ∈ At | α ` b} b ∈ Bexp

GL(e1 + e2) = GL(e1) ∪GL(e2)

GL(e1e2) = GL(e1) �GL(e2)
GL(e∗) = ∪n≥0GL(e)n

4



Two KAT expressions e1 and e2 are considered to be equivalent [1] iff the languages they
denote are equal. Thus, GL(e1) = GL(e2) ⇐⇒ e1 = e2.
Because of the conditional statements in KAT, more languages can be created than with a
KA. All languages that can be created by a KA are a subset of all possible guarded languages.
To mimic a regular expression with KAT, let the test alphabet T be empty or only use Boolean
statements which will always evaluate to true, like tautologies, so the language over Σ and T
will be GL = ({} · Σ)∗ · {} which essentially is the same as regular languages over Σ∗. Thus,
Regular expressions ⊆ KAT expressions.

3 Context Free Guarded Strings

We will present a system for determining context free guarded strings in this section and also
give a concrete example of how the rules of the system are applied. We first note that the set
of all the languages that the traditional Context Free Language accepts is a subset of GL, as
we can take an empty alphabet for T which will leave us with a language over Σ∗. Our system
will not be a traditional 4-tuple we are used to from context free grammars, but a 5-tuple
H = (V,Σ, T, P, S) due to the combined alphabet. We will also make an extension on the
definition of KAT expressions Exp to E Exp and introduce two types of rules. The system
H consists of:

• V is a set of variables or procedures.

• Σ is the alphabet of action symbols of the language generated by G.

• T is the test alphabet containing Boolean elements.

• P is the set of procedures, P is a function of V to E Exp. Thus, P : V → E Exp. We
use p e for P(p) = e, with p being the name of the procedure and e being the body.

• S is the startsymbol, the initial procedure, S ∈ V .

We modify the grammar defined in Section 2.2 that generates KAT expression to:

b ∈ Bexp := 0 | 1 | t ∈ T | b | b1 + b2 | b1 · b2

e ∈ E Exp := a ∈ Σ | b ∈ Bexp | p ∈ V | e1 + e2 | e1 · e2

By adding procedure names to the set of variables. We distinguish between two categories of
rules in our system :

Termination rules are of the form e ↓ α where e ∈ E Exp is an expression and α ∈ At
represents the current valuation of the elements of T. The formula e ↓ α indicates that e
terminates with truth valuation α.

Transition rules are of the form e
〈α,q〉−−→ e′ where α ∈ At is the label, the atom which expression

e starts with. The action succeeding α is q ∈ Σ and e′ is the tail part of e, the string minus
the first two elements.
The start symbol S now goes to the KAT-expression representing the guarded language, for
instance S  b1b2q + b1b21.
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We define the following rules:

The set of rules for termination:

1.
α ` b
b ↓ α

α ∈ At

2.
e ↓ α
p ↓ α

p e

3.
e1 ↓ α

e1 + e2 ↓ α

4.
e2 ↓ α

e1 + e2 ↓ α

5.
e1 ↓ α e2 ↓ α
e1e2 ↓ α

The set of transition rules:

1. q
〈α,q〉−−→ 1 q ∈ Σ

2.
e
〈α,q〉−−→ e′

p
〈α,q〉−−→ e′

p e

3.
e1
〈α,q〉−−→ e′

e1 + e2
〈α,q〉−−→ e′

4.
e2
〈α,q〉−−→ e′

e1 + e2
〈α,q〉−−→ e′

5.
e1
〈α,q〉−−→ e′

e1e2
〈α,q〉−−→ e′e2

6.
e1 ↓ α e2

〈α,q〉−−→ α

e1e2
〈α,q〉−−→ e′

Transition rules create pairs of 〈α, q〉 while consuming the KAT expression from left to right.
A derivation of a string with this system should always end with a termination rule on the
last element. We distinguish between termination and transition rules, because the last test is
never succeeded by any action as a guarded string x is defined as x ∈ (At·Σ)∗· At. Therefore
we can not keep creating pairs of tests and actions, thus terminating with the last test. We
define the guarded language GL corresponding to a KAT expression e with aid of system H
by:

GL(e) = {〈α, q〉 · w | e 〈α,q〉−−→ e′, w ∈ GL(e′)} ∪ {α | e ↓ α}

This way we can recursively determine the guarded language of a KAT expression by defining
the language of e′ until the last element is reached or establish that the language is empty if
we can not continue by any rule at some point.

3.1 Regular Languages as Guarded Languages

In regular languages there is only one alphabet Σ = {a0, a1, . . . , am} and we already stated
that the set of regular languages is a subset of the set of guarded languages. Therefore we must
be able to map a string x = q0q1 . . . qn | qi ∈ Σ, 0 ≤ i ≤ n of a regular language to strings of
a corresponding guarded language. For the corresponding guarded language we take the same
alphabet Σ and an arbitrary test alphabet T. A string y of the guarded language will be of the
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form: y = 〈α0, q0〉〈α1, q1〉 . . . 〈αn, qn〉αn+1. By taking αi ∈ At with 0 ≤ i ≤ n+ 1 we basically
say that the tests of the string can be satisfied by any atom. This results in every qi being
executed and yielding strings with different atoms between the actions. The consequence of
this is that multiple strings can map to a single string x of a regular language, where the same
actions take place for all of these guarded strings as the one string in the regular language
they all map to.

3.2 Example

For a simple example we look at the KAT expression e = q1b1 with T = {b1, b2} and Σ = {q1},
and determine the language accepted by the expression. We start with the starting symbol,
S  q1b1. The first rule we use is transition rule 2 for the start symbol:

q1b1
〈?,?〉−−→?

S
〈?,?〉−−→?

Where this leads to is unclear for now as we first need to determine what step we can do on
the body of S. Therefore we look at transition rule 5 as q1b1 is composed of two expressions.
The bottom part of rule 5 must correspond with the upper part of rule 2 previously applied.
This way we can build up a tree until we reach a termination rule or transition rule 1. We can
also get stuck if there are no possible rules to apply, meaning no steps can be done and the
language is in that case empty. Applying rule 5 yields:

q1
〈?,?〉−−→?

q1b1
〈?,?〉−−→?

S
〈?,?〉−−→?

Using transition rule 1 we determine that q1 leads to a 1, e.g., a skip. This logically makes
sense since there is no test preceding q1, making every α ∈ At an option for this step. We can
now fill in the blanks:

q1
〈α,q1〉−−−→ 1

q1b1
〈α,q1〉−−−→ 1b1

S
〈α,q1〉−−−→ 1b1

This is one step which can be performed in four different ways as α can be any atom. We can
start establishing the guarded language of e now:

GL(S) = {〈α, q1〉 · w | w ∈ GL(1b1)} ∪ {α | q1b1 ↓ α}

We note that we can only apply termination rule 5 for the right part of the union and then
get stuck, because there is no rule for q1 ↓ α. This results in the right part evaluating to the
empty set ∅.
We still need to determine the guarded language for GL(1b1). We apply termination rule 5
which can be done in two different ways:

7



1 ↓ b1b2 b1 ↓ b1b2

1b1 ↓ b1b2

1 ↓ b1b2 b1 ↓ b1b2

1b1 ↓ b1b2

This leads us to GL(1b1) = {b1b2, b1b2}. By substituting GL(1b1) in the previous expression
for GL(S), we have sufficient information to determine the guarded language for e. Indeed,
we have the four ways we can make a step 〈α, q1〉 from S concatenated with the two elements
of GL(1b1):

GL(S) = {〈α, q1〉 · w | w ∈ {b1b2, b1b2}} ∪ ∅ =

{〈b1b2, q1〉b1b2, 〈b1b2, q1〉b1b2, 〈b1b2, q1〉b1b2, 〈b1b2, q1〉b1b2,

〈b1b2, q1〉b1b2, 〈b1b2, q1〉b1b2, 〈b1b2, q1〉b1b2, 〈b1b2, q1〉b1b2}

4 Recursion and Guarded Strings

As the main property of guarded strings is that they can mimic programs, we investigated
whether we can use guarded strings to simulate recursive programs. By using the property of
a while-loop of being recursive and the Kleene star operator in KAT expressions, we can make
a KAT expression resembling a while-loop. A simple while-program is shown below:

while ( b ) do
q;

od

This can be resembled by the KAT expression K: (bq)∗b. Here Σ = {q} and T = {b} and
GL(K) = {b, 〈b, q〉b, 〈b, q〉〈b, q〉b, . . .}. The amount of times that 〈b, q〉 is copied is repre-
senting the amount of iterations of the while-loop. See [5] for more on KAT expressions and
while-loops.
We can also construct KAT expressions and guarded strings for recursive functions. We con-
sider procedure declarations p e such that p is the name of the procedure and e ∈ E Exp
represents the body. This expression in the body generally consists of a conditional statement
followed by some (or no) action(s) and in the end the procedure p is invoked or not depending
on whether the conditional statement was met. Thus, by considering the procedure declaration
in our system we are able to determine the guarded strings for a recursive program such as:

proc p do proc q do
a1; if t1 then
call q; call p;
a2; else

od a3;
od

p a1qa2 q  bp+ ba3

Let Σ = {a1, a2, a3}, where the elements of Σ represent the various actions in this program.
Furthermore, let T = {t1, t2}. Now the starting symbol will lead to: S  p. We continue
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by making KAT expressions for both of the procedures: a1qa2 and bp + ba3 for p and q
respectively. First of all notice how the KAT expression p goes to does not commence with a
Boolean atom, while the definition states that guarded strings are strings alternating between
tests and actions. The Boolean at the beginning of the string is in this case 1 and is therefore
omitted.
By introducing procedures p, q ∈ P , we now have to define where these new procedures
goes to. Required is that p can invoke q in its body and vice versa. Consequently we define
the productions: p a1qa2 and q  bp+ ba3. The guarded string representing this program
depends on how the value of t1 changes, as this is the only test element occurring. An example
of a guarded string resembling this program is:
〈t1t2, a1〉〈t1t2, a1〉〈t1t2, a1〉〈t1t2, a3〉〈t1t2, a2〉〈t1t2, a2〉〈t1t2, a2〉t1t2 ∈ GL(p)
This is a string guarded string derived from the above program by our system where p and q
are both invoked three times, the middle tuple represents the occurrence of q where the else-
branch was reached. Even though the amount of strings representing this program is infinite,
we can find any finite string using our system.

5 Conclusion and Future Work

With our system we can determine the set of context free guarded strings for any given KAT
expression. Also, we can make KAT expressions for programs with full recursion and determine
the guarded language corresponding to this KAT expression.
As for future work we can be look into implementing the system into a context-free parsing
algorithm [2, 8]. The structural way of composing a guarded language for an expression can
prove to be useful in syntax checking of programs. Proving partial correctness of (recursive)
programs using Hoare logic in combination with our system is also to be explored. Another
interesting thing to look into would be the correlation between the (deterministic) graphs for
KAT expressions and the guarded languages corresponding to them.
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