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Abstract

In this paper we introduce a new kind of game, called a deck building game, of
which Dominion is the most prominent example. We focus on the question to what
extent traditional game analysis techniques can be used to analyze deck building games?
To do this, we look at several simple strategies, like Random and Greedy, and some
traditional techniques, namely Monte Carlo Tree Search and Dynamic Programming.
We compare the strategies for mid (31 turns) to long games (100 turns). We conclude
that our implementation of DP seems to be suitable only for games of medium length
or shorter because of its space complexity, whereas our implementation of MCTS seems
to fall behind other strategies with similar performance in regards of time complexity.
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1 Introduction

In this paper we will introduce a new kind of game, called a deck building game. Several of
these games have recently been designed and produced for the international board game market
and gained a lot of popularity. Dominion, designed by Donald X. Vaccarino and produced by
Rio Grande Games [5], is the most prominent example of deck building games [4]. As deck
building games are a relatively new kind of game, there has not been very much research on
the subject. The goal of this paper is to formulate an answer to the following question: to what
extent can traditional game analysis techniques be used to analyze deck building games? To
do this, we will look at several simple strategies, like Random and Greedy, and some traditional
techniques, namely Monte Carlo Tree Search and Dynamic Programming. We will compare
these strategies with other strategies specific to deck building games.

First we introduce the game components and definitions of deck building games. We define
states, actions and strategies and define the expected score of a state when a certain strategy
is followed. Next we take a look at some combinatorics of deck building games, to get an idea
of the scope of the calculations that need to be performed. We also define state equivalence
and prove that the expected scores of equivalent states are the same. After that we take a step
back and talk about reachability and efficiency. These definitions will allow us to remove some
cards from a game without affecting the strategies. We also prove that the best action for any
strategy in any state has to be one of only three possible actions. We make extensive use of this
theorem in the next section, Section 5, where we will list the tested strategies and techniques.
These include, among others, implementations of Dynamic Programming and Monte Carlo
Tree search. The experiments we ran and their results can be found in Section 6. These results
are summarised in Section 7 and we propose some interesting questions for further research.

This paper has been written as part of the bachelor programs Computer Science and Mathe-
matics at Leiden University. Walter Kosters (LIACS) and Floske Spieksma (MI) have been the
supervisors for this project.

2 Game components and definitions

In this section we will define a deck building game and its components.

Each deck building game has several things in common. First of all they are card games, played
over several turns. The player will have to try to gain as many points as possible before the
game is over. He can do this by adding some specific cards which are worth points to his deck
of cards.

Each turn a player can add at most 1 card to his deck. However, to add a certain card x to his
deck, he needs to have a certain amount of money c(x) available this turn. How much money
he has available is determined by the cards in his hand. Each turn, he draws 5 cards randomly
from his deck forming his hand. Just as some cards x give the player p(x) points, other cards
y are worth a certain amount of money, v(y), called the value of a card. He adds the value of
the cards in his hand to determine his total available amount of money m for this turn. After
that, he can add a card costing at most m to his deck.

This is formalized in the following definition.
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Definition 2.1 (Deck building game). A deck building game G is a 7-tuple:

G = (TC ,VC , c, v, p,GE , Q0)

where

TC : the set of treasure cards, non-empty;

VC : the set of victory cards, non-empty and disjoint from TC ;

c: a function c : TC ∪ VC → N associates a card with its cost;

v: a function v : TC ∪ VC → N associates a card with its value;

p: a function p : TC ∪ VC → N associates a card with its points;

GE : a function GE that determines when the game will end;

Q0: a multiset with elements from TC ∪VC and cardinality |Q0| ≥ 5 with which the player
starts the game.

Definition 2.2 (Deck). Let G = (TC ,VC , c, v, p,GE , Q0) be a deck building game. A deck
X is a multiset of cards from TC ∪ VC with cardinality |X| ≥ 5.

In particular, Q0 is a deck. It is sometimes called the game’s starting deck.

For his turn a player draws 5 cards from his deck to form his hand.

Definition 2.3 (Hand). A hand H is a multiset of cards from TC ∪ VC with cardinality 5.

Notation 2.4 (Collection of hands). We use HD to denote the collection of hands H of a
deck D.

Notation 2.5 (Multiplicity). Let X be a multiset of cards from TC ∪VC and x ∈ X a card.
We use qx ∈ N to denote the multipicity of x in X.

2.1 Game parameters

All these parameters influence the game in their own way. This section describes in more detail
the individual parameters and how they influence the game.

2.1.1 Treasure cards

Treasure cards provide money for a player when drawn from the player’s deck into his hand.
Let TC be the non-empty set of treasure cards. As with all cards, to add these cards to the
player’s deck, a certain amount of money is needed. If Tr ∈ TC is a treasure card, then c(Tr)
is its cost, while v(Tr) is the value of the card when in the player’s hand. The points p(Tr)
of a treasure card Tr ∈ TC are defined to be 0.

2.1.2 Victory cards

Cards that provide points are called victory cards. Let VC be the non-empty set of victory
cards. If Vi ∈ VC is a victory card, then c(Vi) is its cost, while p(Vi) is the number of points
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it is worth. The value v(Vi) of a victory card Vi ∈ VC is defined to be 0. The sets TC and
VC are required to be disjoint.

2.1.3 Game end function

The game end function GE is a probability distribution on N. The chance GE (t) is the chance
that the game will end on turn t, for all t ∈ N. When the game ends, the points of all cards in
the player’s deck are counted leading to his final score. The goal of the player is to maximaze
this score.

For this paper, we have looked at the following game end functions:

• games of a fixed number of turns tmax ∈ N, that is

GE (t) =

{
0 if t < tmax,

1 if t ≥ tmax.

• games with a constant ending chance 0 ≤ α ≤ 1 every turn, that is GE (t) = (1−α)tα.

Note that other game end functions are certainly possible.

2.1.4 Starting deck

The player begins the game with several cards in his deck. These cards form his starting deck
Q0. They determine the actions the player can perform in his first turn when he has not yet
added any cards.

2.2 A comparison between deck building games and classical
Dominion

There are many similarities between deck building games as defined in Definition 2.1 and
classical Dominion. There are, however, also many differences.

For example, we allow TC and VC to be infinite, whereas in classical Dominion this is not
the case for apparent reasons. We also require TC and VC to be disjoint, but there are cards
in Dominion that are both treasure and victory cards.

Also Dominion has to be played with 2–4 players, while our definition of deck building games
only supports a single player.

But the biggest difference between them is the fact that the number of copies of a single card
in a game is finite. When a player buys a card in classical Dominion, he adds it to his deck, as
usual. If this causes the maximum number of copies of this card to be reached, then the card
can not be bought any more.

The game end conditions in classical Dominion make use of this, since the game is defined to
have ended when the multiplicity of a certain number of cards has been decreased to 0.
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Another major difference between classical Dominion and deck building games, is the notion
of a discard pile. In classical Dominion a player has to discard the cards in his hand at the end
of his turn, thus forming a deck of discarded cards called his discard pile. Only when a player
runs out of cards to draw from his deck, does the player take all of the cards in his discard
pile to form a new deck. Because of this, a player can use this information to predict his next
hand more precisely, by examining the cards currently in his hand and discard pile. Real players
make extensive use of this information.

We decided to define deck building games as we did, because it will allow us to make more
powerful statements more easily.

2.3 Extensions for game functions

Although the functions c, w and p are strictly speaking only defined for single cards, we can
intuitively extend the definitions of these functions to incorporate collections of cards. In this
section we will formulate these extensions.

Definition 2.6 (Value of sets). Let G be a deck building game. The value of a multiset X
of cards from TC ∪ VC is defined as the sum of the values of the cards.

v(X) =
∑
x∈X

v(x)

Definition 2.7 (Points of sets). Let G be a deck building game. The points of a multiset X
of cards from TC ∪ VC is defined as the sum of the points of the cards.

p(X) =
∑
x∈X

p(x)

Definition 2.8 (Cost of sets). Let G be a deck building game. The cost of a multiset X of
cards from TC ∪ VC is defined as the sum of the cost of the cards.

c(X) =
∑
x∈X

c(x)

2.4 States, actions and strategies

In this section we define states, actions and strategies. The state describes the current state
of the game. To uniquely define this, it must encompass the cards in the player’s deck, the
amount of money currently available and the number of turns played.

Definition 2.9 (State). Let G = (TC ,VC , c, v, p,GE , Q0) be a deck building game. The
state of the game is characterized by the state S:

S = (D,m, t)

where D is a deck of G, t is the number of turns played and m is the amount of money
available for this turn, m ∈ {m′ ∈ N | ∃H ∈ HD : v(H) = m′}.
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Also note that there is no such thing as the initial state. This is because the first hand is
randomly drawn from the starting deck Q0 and as such there can be several states that the
game could start in. We can only describe when a state could be one of the initial states, as
is characterized in the following definition.

Definition 2.10 (Initial state). Let G = (TC ,VC , c, v, p,GE , Q0) be a deck building game
and S = (D,m, t) a state of G. We call S an initial state if the following conditions are
satisfied:

• D = Q0, and

• t = 0, and

• m ∈ {m′ ∈ N | ∃H ∈ HQ0 : v(H) = m′}.

A player has to decide which action to take depending on his current state. These actions
correspond to which card the player wants to add to his deck. Therefore each card in TC or
VC induces an action. The action a player takes transforms his current state into another.

Notation 2.11 (Passing). When a player chooses to add no card to his deck, he is said to
be passing. Slightly abusing notation, this action is denoted with ∅.

Definition 2.12 (Action). Let G = (TC ,VC , c, v, p,GE , Q0) be a deck building game,
S = (D,m, t) be a state and x ∈ TC ∪VC ∪ {∅}. The action induced by x is denoted by a.
It transforms S with transition probability Pr(S, ax, S

′) into S ′ = (D′,m′, t+ 1), where

D′ =

{
D, if a = ∅;
D ∪ {x}, otherwise.

and m′ = v(H ′) with H ′ ∈ HD′ .

Recall that D is a multiset, so if x 6= ∅, then D ∪ {x} 6= D, even when x ∈ D. Note that
a player can always choose to add no card to his deck. Again slightly abusing notation, we
sometimes write a card x where we mean the action associated with it.

When in a given state S, a player might not be able to buy every card because he does not have
enough money available. This means he will not be able to perform the actions corresponding
to those cards. The set of cards he can buy determines the actions he can perform, collectively
called the action set.

Definition 2.13 (Action set). The set of actions that can be performed when in state S =
(D,m, t) is called the action set and is denoted with A(S). It is defined as

A(S) = {x ∈ TC ∪ VC | c(x) ≤ m} ∪ {∅},

where ∅ denotes the action of passing, as before. The set of actions that can be performed
for a hand H is denoted with A(H). It is similarly defined as

A(H) = {x ∈ TC ∪ VC | c(x) ≤ v(H)} ∪ {∅}.

Although adding the card to the current deck and increasing the turn counter is a deterministic
process, we can not deterministically describe the resulting state of an action because the
money available in the next state is determined by randomly drawing from the resulting deck.
The chance of ending up in a state S ′ is described by the transition probability.

7/31



Definition 2.14 (Transition probability). Let G = (TC ,VC , c, v, p,GE , Q0) be a deck build-
ing game, S = (D,m, t) and S ′ = (D′,m′, t′) be states of G and a be an action. We call
the chance that the game will be in state S ′ after performing action a when in state S the
transition probability Pr(S, a, S ′). It is defined as:

Pr(S, a, S ′) =


#{H ′ ∈ HD′ | v(H ′) = m′}

#{H ′ ∈ HD′}
, if a ∈ A(S), D′ = D ∪ {x} and t′ = t+ 1;

0, otherwise.

Furthermore, the transition probability of a state into another over the course of several turns
is also easily defined.

Definition 2.15 (Transition probability of sequences). Let G be a game and (Si)
n
i=0 be a

sequence of (n+ 1) > 1 states Si. Furthermore, let (ai)
n
i=1 be a sequence of actions ai.

The chance that S0 will be transformed into Sn via the states Si, 1 ≤ i < n and actions
ai, 1 ≤ i ≤ n is defined by

Pr((Si)
n
i=0, (ai)

n
i=0) =

n∏
i=1

Pr(Si−1, ai, Si)

The set of all reachable states of a game G is denoted with SG.

A graphical interpretation of an action a associated with a card x on a state S = (D,m, t) is
presented in Figure 1.

(D,m, t) ...

(D ∪ {x}, 1, t+ 1)

(D ∪ {x}, 0, t+ 1)

Pr((D,m, t), a, (D ∪ {x}, 1, t+ 1))

Pr((D,m, t), a, (D ∪ {x}, 0, t+ 1))

Figure 1: The effect of action a on state S = (D,m, t).

Now that we know how states can be transformed into other states, we can formulate when
a state can be reached.

Definition 2.16 (Reachable states). Let G be a game. A state S is said to be reachable if

• it is an initial state, or

• there exists a sequence of states (Si)
n
i=0 and actions (ai)

n−1
i=0 where S0 is an initial state

and Sn = S such that Pr(Si, ai, Si+1) > 0, (i = 0, . . . , n− 1) holds.

Notation 2.17 (Collection of reachable states). The collection of reachable states is denoted
with SG.

A strategy decides which actions a player should take for any given state.
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Definition 2.18 (Strategy). A strategy σ of a game G is a function which associates to all
states S ∈ SG an action a = σ(S) ∈ A(S).

2.5 Expected score

We can extend the definition of the transition probability to allow for sets of states as desti-
nation states. For this we use the notation as described in Notation 2.19.

Notation 2.19 (Transition probability to sets). Let G be a deck building game, S ∈ SG and
a an action. We define the transition probability Pr(S, a,X) for a set of states X ⊆ SG to
be the sum of the transition probabilities of elements of X:

Pr(S, a,X) =
∑
S′∈X

Pr(S, a, S ′).

Using these definitions, we can define the expected score of a state S.

Definition 2.20 (Expected score). Let G be a game, S = (D,m, t) ∈ SG a state and σ
a strategy. The expected score of S using strategy σ is denoted with Eσ(S). It is defined
recurrently as

Eσ(S) = GE (t)p(S) + (1−GE (t))
∑
S′∈SG

Pr(S, σ(S), S ′) · Eσ(S ′)

3 Reducing calculations

For our experiments we would like to know more about the number of states there are for a
given game. In this section we find that it is possible to calculate this number. After that,
we introduce the concept of state equivalence. It allows us to reduce the calculations of our
algorithm, because equivalent states will have the same expected score.

3.1 Number of states

Since every state contains a deck, we can try to find the size of SG by looking at the number
of different decks.

Simply generating decks by drawing some cards with replacement from TC ∪ VC will lead
to many decks being generated more than once. More specifically, when a game G lasts tmax
turns and writing z = |TC |+ |VC |, this procedure could create at most

∑tmax

i=0 zi = 1−ztmax+1

1−z
decks.

However, because first performing action a and then action b leads to the same deck as first
performing b and a second, the number of different decks Dt after t turns is in fact a lot
smaller. To determine this number, we look at action sequences of length t. One can define
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an ordering on the actions such that these sequences can be ordered. Let a, b be two different
actions and ∅ denote the passing action and look at the following sequences:

(∅, ∅, a, a, a, b, b), (1)

(∅, a, a, b, b, b, b), (2)

(∅, ∅, a, b, b, a, a), (3)

(∅, a, b, b, a, a, ∅). (4)

Now define the ordering ∅ > a > b. This means that sequence 1 and 2 are ordered. However
they are different, because they lead to different decks. On the other hand, sequences 1, 3 and
4 lead to the same deck. This can easily be seen by ordering sequences 3 and 4 and concluding
that they lead to the same sequence as sequence 1.

Now we can reformulate the question of how many different decks Dt there are after t turns
by looking at the number of different ordered sequences of length t. The number Dt can be
calculated as

Dt =

(
t+ |TC |+ |VC |

t

)
(5)

as proven by [3, p. 38].

However, we do not need to list all states to calculate their expected scores, since some states
will have the same scores. Exactly when states will have the same scores is characterized in
Secton 3.2.

3.2 State equivalence

States are induced by combining decks with an amount of money and a turn number. Un-
fortunately, this is not a bijective relation. For example, some values between 0 and M , the
maximum amount of money a player can draw in one hand, might be impossible to draw from
specific decks. Furthermore, some states might have the exact same future and therefore have
the same expected score. This leads to the notion of state equivalence.

Example 3.1. Let G = (TC ,VC , c, v, p,GE , Q0) be some deck building game where VC =
{ν1, ν3, ν6} and D a deck. Consider the following two decks D1 and D2:

D1 = {ν1, ν1, ν1, ν6, ν6},
D2 = {ν3, ν3, ν3, ν3, ν3},

where νi ∈ VC , (i = 1, 3, 6) and p(νi) = i. Let t ∈ N and let S1 and S2 be the states
(D ∪D1, 0, t) and (D ∪D2, 0, t) respectively. Then we know that p(S1) = p(S2), since

p(S1) = p(D ∪D1) = p(D) + p(D1) = p(D) + p(D2) = p(D ∪D2) = p(S2)

holds. Similarly we know that |D ∪D1| = |D ∪D2|, and (D ∪D1)∩TC = (D ∪D2)∩TC .
Taking a ∈ A(S1) = A(S2), D′1 = D1 ∪ {a} and D′2 = D2 ∪ {a} we can see that

∀m′ ∈ N : Pr(S1, a, (D ∪D′1,m′, t+ 1)) = Pr(S2, a, (D ∪D′2,m′, t+ 1)).

This means that, although their decks are different, the states S1 and S2 have the exact same
transition probabilities. We will later see that this means it is not necessary to calculate the
scores of both decks, since they will be the same.
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Definition 3.2 (State equivalence). Let G = (TC ,VC , c, v, p,GE , Q0) be a deck building
game and S1, S2 ∈ SG. We say that S1 = (D1,m1, t1) is state equivalent to S2 = (D2,m2, t2)
if the following conditions are met:

(i) A(S1) = A(S2);

(ii) t1 = t2;

(iii) p(D1) = p(D2);

(iv) |D1| = |D2|;

(v) D1 ∩ TC = D2 ∩ TC .

We write S1 ∼ S2 when S1 and S2 are equivalent.

Note that ∼ is an equivalence relation, since it has the reflexive, symmetric and transitive
properties.

As an aside, note how the states S1 = (D1,m, t) and S2 = (D2,m, t) with D1 and D2 as in
Example 3.1, are equivalent and are the two equivalent states with the smallest decks in that
game.

Conditions (iv) and (v) of state equivalence are chosen such that the chance of ending in state
S ′1 = (D′1,m, t+ 1) when starting in S1 under an action a is the same as when starting from
S2 and ending in S ′2 = (D′2,m, t + 1) when S ′1 and S ′2 are also equivalent and the transition
probabilities are non-zero. This is formalized in the following lemma.

Lemma 3.3 (Equality of transition probability to states). Let S1 = (D1,m1, t), S2 =
(D2,m2, t) be equivalent states, a ∈ A(S1), xa the card associated with a and m ∈ N.
If S ′1 = (D1 ∪ {xa},m, t+ 1) and S ′2 = (D2 ∪ {xa},m, t+ 1) are equivalent states, then the
following equation holds:

Pr(S1, a, S
′
1) = Pr(S2, a, S

′
2). (6)

Proof The proof of this lemma follows directly from Conditions (iv) and (v) of state equiva-
lence (Definition 3.2):

#{H ′ ∈ HD′
1
| v(H ′) = m}

#{H ′ ∈ HD′
1
}

=
#{H ′ ∈ HD′

2
| v(H ′) = m}

#{H ′ ∈ HD′
2
}

.

Note that the non-zero transition probabilities of Pr(Si, a, S
′
i), (i = 1, 2) guarantee that

D′1 = D1 ∪ {x} and D′2 = D2 ∪ {x} when x is the card associated with action a. This is also
a necessary condition, as demonstrated by the following example.

Example 3.4. Suppose S1 = (D1,m1, t) and S2 = (D2,m2, t) such that S1 ∼ S2 and
D1 6= D2. Next take a = ∅ and m = v(H) for some H ∈ HD1 . When S ′1 is defined as
(D1,m, t + 1) and S ′2 = S ′1, then certainly S ′1 ∼ S ′2, but it is clear that Pr(S1, a, S

′
1) > 0

whereas Pr(S2, a, S
′
2) = 0.

In most games, states that are equivalent are pretty common. For example, let G be a deck
building game and S = (D,m, t) a state. If S ′ = (D,m+ 1, t) has the same action set as S,
that is A(S) = A(S ′), then they are equivalent. However, games with equivalent states that
have different decks are no exception either, as is shown by the following lemma.
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Lemma 3.5. Let G be a deck building game with |VC | ≥ 3 and where ν1, ν2, ν3 ∈ VC are
three different victory cards such that p(ν1) < p(ν2) < p(ν3). Then there exist equivalent
states S1, S2 using ν1, ν2 and ν3 in G with different decks.

Proof Let D1 be a deck consisting of p(ν3)− p(ν1) copies of ν2, and D2 be a deck consisting
of p(ν3) − p(ν2) copies of ν1 and p(ν2) − p(ν1) copies of ν3. Then we know that D1 has
p(D1) = (p(ν3)− p(ν1))p(ν2) points, the same as D2 as is shown by:

p(D2) = (p(ν3)− p(ν2))p(ν1) + (p(ν2)− p(ν1))p(ν3) = (p(ν3)− p(ν1))p(ν2) = p(D1).

This means that they satisfy conditions (iii), (iv) and (v) and therefore the states S1 =
(D1, 0, t) and S2 = (D2, 0, t) must be equivalent, for all values of t.

Example 3.6. Let G be the game from Example 3.1 and S ′ = (D′,m′, t′) ∈ SG a state with
D′ = D1 ∪X, for some deck X. Then we know that

p(D′) = p(D1 ∪X) = p(D1) + p(X)

holds. From Example 3.1 we also know that p(D1) = p(D2), and therefore also p(D2 ∪X) =
p(D′) holds. Then the equivalence class [S ′] of S ′ contains at least 2 different states, namely
S ′ itself and (D2 ∪ X,m′, t′). In fact, if D1 ⊆ X also holds, then [S ′] contains at least 3
different states: S ′ itself, (D2 ∪X,m′, t′) and (D2 ∪D2 ∪ (X \D1),m

′, t′).

A strategy that performs the same on equivalent states is called an equivalence preserving
strategy.

Definition 3.7 (Equivalence preserving strategies). Let G be a game and σ be a strategy.
We call σ to be equivalence preserving if ∀S1, S2 ∈ SG where S1 ∼ S2, the action chosen in
these states is the same, that is σ(S1) = σ(S2).

The notion of state equivalence is interesting, because it gives us a way to quickly determine
the payout of all decks in the same equivalence class when an equivalence preserving strategy
is used.

3.3 Scoring of equivalent states

A similar statement to Lemma 3.3 is also true when looking at an entire equivalence class.

Lemma 3.8 (Equality of transition probability to classes). Let S1 and S2 be equivalent states
of a game G and let a ∈ A(S1). Define S ′1 = (D′1,m

′
1, t
′
1) and S ′2 = (D′2,m

′
2, t
′
2) to be

equivalent states with non-zero transition probabilities Pr(Si, a, S
′
i), (i = 1, 2). Use [S] to

denote the equivalence class of S ′1 and S ′2. Then the equality

Pr(S1, a, [S]) = Pr(S2, a, [S]) (7)

holds.

Proof If the decks of S1 and S2 are the same, this lemma is trivial. Therefore assume that
the decks D1 and D2 of S1 and S2 respectively are different from each other. Then D′1 and
D′2 are also different, since Pr(Si, a, S

′
i) > 0, (i = 1, 2) is given.
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We can then separate [S] into three disjoint parts:

[S] = [S]D′
1
∪ [S]D′

2
∪ [S]D′ ,

where

[S]D′
1

= {S = (D,m, t) ∈ [S] | D = D′1},
[S]D′

2
= {S = (D,m, t) ∈ [S] | D = D′2},

[S]D′ = {S = (D,m, t) ∈ [S] | D 6= D′1, D
′
2}.

Note that ∀S ′ ∈ [S]D′
2
∪ [S]D′ : Pr(S1, a, S

′) = 0 holds, since the decks of S ′ and S ′1 are
different. For the same reason ∀S ′ ∈ [S]D′

1
∪ [S]D′ : Pr(S2, a, S

′) = 0 also holds.

This means that the following equation holds:∑
S′∈[S]

Pr(S1, a, S
′) =

∑
S′∈[S]D′

1

Pr(S1, a, S
′). (8)

Next define
M1 = {m ∈ N | ∃H ∈ HD′

1
: v(H) = m}.

We know that for every S ′ = (D′,m′, t′) ∈ [S]D′
1

: m′ ∈ M1 holds. We also know ∀m′ ∈
M1 : ∃!S ′ = (D′,m′, t′) ∈ [S]D′

1
, since all the decks of the states in [S]D′

1
are the same. This

means we can rewrite Equation 8 into the following:∑
S′∈[S]D′

1

Pr(S1, a, S
′) =

∑
m∈M1

Pr(S1, a, (D
′
1,m, t

′
1)). (9)

Via analogous steps we know that the right part of Equation 7 equals∑
S′∈[S]

Pr(S2, a, S
′) =

∑
m∈M2

Pr(S2, a, (D
′
2,m, t

′
2)). (10)

Define M2 analogous to M1 and note that they are equal, since A(S ′1) = A(S ′2) holds. This
means we can simply writeM forM1 =M2. Let m ∈M and look at the states (D′1,m, t

′
1)

and (D′2,m, t
′
2). Because of Lemma 3.3, the transition probablities into these states when

applying a must be the same:

Pr(S1, a, (D
′
1,m, t

′
1)) = Pr(S2, a, (D

′
2,m, t

′
2)).

Since this holds for all m ∈M, Equations 9 and 10 must be equal:∑
m∈M

Pr(S1, a, (D
′
1,m, t

′
1)) =

∑
m∈M

Pr(S2, a, (D
′
2,m, t

′
2)).

And we can conclude that the initial statement in Equation 7 also holds.

Theorem 3.9 (Expected score of equivalent states for fixed length games). Let G be a game
of fixed length and σ be an equivalence preserving strategy. Let S1, S2 ∈ SG be equivalent
states. Then S1 and S2 have the same expected score:

Eσ(S1) = Eσ(S2).
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Proof Let tmax be the turn on which G ends. Note that for games of length tmax, the definition
of the expected score Eσ(S) reduces to

Eσ(S) =

{
p(S), if t = tmax;∑

S′∈SG Pr(S, σ(S), S ′) · Eσ(S ′), otherwise.

We will prove this theorem using induction.

It is clear that the expected score of the equivalent states S1 = (D1,m1, tmax) and S2 =
(D2,m2, tmax) is the same. This follows from condition (iii) of state equivalence.

Let T ∈ [0, tmax) and assume, as the induction hypothesis, that ∀t ∈ (T, tmax] and ∀S1 =
(D1,m1, t), S2 = (D2,m2, t) with S1 ∼ S2 the statement Eσ(S1) = Eσ(S2) holds.

Then take S1 = (D1,m1, T ) and S2 = (D2,m2, T ) equivalent states at turn T . Because
σ is equivalence preserving, we know that σ(S1) = σ(S2). Denote this action with a and
its associated card with xa. Because of Lemma 3.3, we know that the chances to reach
states S ′1 = (D1 ∪ {xa},m, T + 1) and S ′2 = (D2 ∪ {xa},m, T + 1) from states S1 and S2

respectively when a is applied, are both zero when m is not a suitable value, or both equal to
a certain chance φ ∈ (0, 1] when it is. Now we can use the induction hypothesis to show that
Eσ(S ′1) = Eσ(S ′2), since S ′1 and S ′2 are equivalent. Combining these statements gives

Pr(S1, a, S
′
1) · Eσ(S ′1) = Pr(S2, a, S

′
2) · Eσ(S ′2).

When summing over all possible values of m, we get∑
S′
1∈SG

Pr(S1, σ(S1), S
′
1) · Eσ(S ′1) =

∑
S′
2∈SG

Pr(S2, σ(S2), S
′
2) · Eσ(S ′2).

A similar theorem holds for games with a non-deterministic game end function GE :

Theorem 3.10 (Expected score of equivalent states with non-deterministic game end func-
tion). Let G be a game where GE (t) = (1 − α)tα for some value α ∈ (0, 1] Let σ be an
equivalence preserving strategy and S1, S2 ∈ SG be equivalent states. Then S1 and S2 have
the same expected score:

Eσ(S1) = Eσ(S2).

Proof Let Ek
σ(S) denote the expected score of state S under strategie σ when assuming the

game ends after at most k turns.

The limited horizon expected score is defined as

Ek
σ(S) =

{
p(S), if k = 0;

GE (t)p(S) + (1−GE (t))
∑

S′∈SG Pr(S, σ(S), S ′) · Ek−1
σ (S ′), otherwise.

It follows from this definition that limk→∞E
k
σ(S) = Eσ(S). The proof therefore is reduced to

proving that Ek
σ(S1) = Ek

σ(S2) holds for all k ∈ N. We prove this using induction, similar to
the proof of Theorem 3.9.
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First take k = 0. It follows from condition (iii) of state equivalence that E0
σ(S1) = p(S1) =

p(S2) = E0
σ(S2) holds.

We write S1 = (D1,m1, t) and S2 = (D2,m2, t). Now take K ∈ N and assume as the induction
hypothesis that ∀k < K and for all S, S ′ ∈ SG with S ∼ S ′ that Ek

σ(S) = Ek
σ(S ′) holds.

Because σ is equivalence preserving, we know that σ(S1) = σ(S2). Denote this action with a
and its associated card with xa. Let S ′1 = (D1∪{xa},m, t+1) and S ′2 = (D2∪{xa},m, t+1)
be equivalent states.

Because of Lemma 3.3, we know that the chances to reach states S ′1 and S ′2 from states S1

and S2 respectively when a is applied, are both zero when m is not a suitable value, or both
equal to a certain chance φ ∈ (0, 1] when it is. In either case, they are equal.

We can use this and the induction hypothesis to write∑
S′
1∈SG

Pr(S1, σ(S1), S
′
1) · EK−1

σ (S ′1) =
∑
S′
2∈SG

Pr(S2, σ(S2), S
′
2) · EK−1

σ (S ′2)

Because GE (t) is the same for states S1 and S2, and p(S1) equals p(S2) because of Condi-
tion iii, this equality can be extended to

EK
σ (S1) = GE (t)p(S1) + (1−GE (t))

∑
S′
1∈SG

Pr(S1, σ(S1), S
′
1) · EK−1

σ (S ′1)

= GE (t)p(S1) + (1−GE (t))
∑
S′
2∈SG

Pr(S2, σ(S2), S
′
2) · Ek−1

σ (S ′2) = EK
σ (S2)

This proves that ∀k ∈ N : ∀S, S ′ ∈ SG with S ∼ S ′ the statement Ek
σ(S) = Ek

σ(S ′) holds.

Consequently, this gives us

Eσ(S1) = lim
k→∞

Ek
σ(S1) = lim

k→∞
Ek
σ(S2) = Eσ(S2).

4 Reachability and efficiency

It follows from Section 2, there are many different deck building games. However, when we
focus on the strategies, we notice that a lot of games feature cards that will not be used in
any strategies or can be replaced by other cards and lead to better strategies. This leads to
the notions of reachability or inefficiency respectively.

4.1 Reachability

Suppose a game G = (TC ,VC , c, v, p,GE , Q0) contains a card x ∈ (TC ∪VC )\Q0 which is
so expensive it can never be bought. This means it will not be used in any strategy. Therefore,
every strategy σ for the modified game G′ = (TC \ {x},VC \ {x}, c, w, p,GE , Q0) will also
be a strategy for G. So when looking at strategies, the games can be considered the same.
Such a card x is said to be unreachable.
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Definition 4.1 (Reachable). Let G = (TC ,VC , c, v, p,GE , Q0) be a deck building game
and x ∈ TC ∪ VC . The card x is called reachable if one or more of the following is satisfied

• the card x is part of the starting deck Q0;

• there exists a hand H of reachable cards with x ∈ A(H).

If a card is not reachable, it is unreachable. A game where all cards are reachable is said to be
reachable.

Example 4.2. Let G be a deck building game, where TC = {1, 2, 3},VC = {4}, Q0 =
{1, 4, 4, 4, 4, 4} , and

c(1) = 1; c(2) = 5; c(3) = 16; c(4) = 16;

v(1) = 1; v(2) = 3; v(3) = 4; v(4) = 0;

p(1) = 0; p(2) = 0; p(3) = 0; p(4) = 1.

Because 1 ∈ Q0 and 4 ∈ Q0, they are both reachable. Furthermore, note that H =
(1, 1, 1, 1, 1) is a hand which consists of reachable cards. Then A(H) = {1, 2}, which means
that card 2 is also reachable. Now we can define the hand H ′ = {2, 2, 2, 2, 2}, which again
consists of only reachable cards. Note that this is the hand with the most available money
of all the hands consisting of the reachable cards 1, 2 and 4, and it is not possible to buy
card 3 with this hand. We can therefore conclude that card 3 is unreachable and G is also
unreachable.

Also note that card 3 and 4 cost the same, but card 3 is unreachable whereas card 4 is not,
even though both cards can never be bought.

4.2 Efficiency

Suppose a game G = (TC ,VC , c, v, p,GE , Q0) contains a card x ∈ TC \Q0 that costs c(x)
and has a value of v(x). Also suppose there is a card y ∈ TC that costs c(y) ≤ c(x) with
a value of v(y) ≥ v(x). This implies that any strategy σ featuring card x will perform worse
than a strategy σ′ obtained from σ by replacing all additions of x to the deck with additions
of y:

σ′(S) =

{
y if σ(S) = x

σ(S) otherwise

So when looking at strategies, one can disregard G and only consider games G′ without cards
like x. Such a card x is said to be inefficient.

Definition 4.3 (Efficient). Let G = (TC ,VC , c, v, p,GE , Q0) be a deck building game. Let
x ∈ TC ∪ VC . The card x is called efficient if one of the following statements holds:

• the card x ∈ TC \Q0 and ∀y ∈ TC with c(x) ≥ c(y) : v(x) ≥ v(y); or

• the card x ∈ VC \Q0 and ∀y ∈ VC with c(x) ≥ c(y) : p(x) ≥ p(y).

If x is not efficient, it is called inefficient. A game G where all cards are efficient is said to be
efficient.
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From now on, it is assumed that every deck building game is reachable and efficient.

4.3 A new definition for the action set

When games are efficient, one can decrease the number of cards a strategy has to consider.

Lemma 4.4. Let G be an efficient game, S = (D,m, t) ∈ SG and x, y ∈ A(S) ∩ TC two
different affordable treasure cards. Note that c(x) 6= c(y). Without loss of generality, we can
assume c(x) < c(y). This implies v(x) < v(y), since G is efficient. Then it is never worse to
add y than x.

Proof Let H be a hand containing x. Let H ′ be the same hand, except all copies of x are
replaced with copies of y: q′x = 0, q′y = qx + qy. This implies that v(H) < v(H ′), since
v(x) < v(y). Because of this, the action set of H ′ might be larger than the action set of H.
And since it will not be smaller, A(H) ⊆ A(H ′) holds. So when given the choice between
adding x or adding y, it is never worse to add y and it might be better.

A similar lemma holds for victory cards:

Lemma 4.5. Let G be an efficient game, S ∈ SG and x, y ∈ A(S) ∩ VC two different
affordable victory cards. Note that c(x) 6= c(y). Without loss of generality, we can assume
c(x) < c(y). This implies p(x) < p(y), since G is efficient. Then it is better to add y than x.

Proof Let D be a deck containing x. Let D′ be the same deck, except all copies of x are
replaced with copies of y: q′x = 0, q′y = qx + qy. This implies that p(D) < p(D′), since
p(x) < p(y). Furthermore, replacing all copies of x with copies of y in a hand H will not
change the action set of H, since v(H) is not affected by the replacement. The action set
A(H) will therefore be the same before and after the replacement. So when given the choice
between adding x or adding y, it is always better to add y istead of x.

This implies that because of efficiency, any strategy only has to consider buying the most
expensive treasure card, buying the most expensive victory card or buying nothing.

Theorem 4.6. For every strategy σ in an efficient game G, the best action in every state SG
is either buying the most expensive affordable treasure or victory card, or doing nothing.

Proof The proof follows from Lemma 4.4 and Lemma 4.5.

Using Theorem 4.6 we can redefine the action set.

Definition 4.7 (Action set). Let G be a deck building game, S = (D,m, t) ∈ SG and H a
hand. The set of actions that can be performed when in state S is called the action set and
denoted with A(S). It is defined as

A(S) = arg max
Tr∈TC

{c(Tr) | c(Tr) ≤ m} ∪ arg max
Vi∈V C

{c(Vi) | c(Vi) ≤ m} ∪ {∅}

The set of actions that can be performed of a hand H is denoted with A(H). It is defined as

A(H) = arg max
Tr∈TC

{c(Tr) | c(Tr) ≤ v(H)} ∪ arg max
Vi∈V C

{c(Vi) | c(Vi) ≤ v(H)} ∪ {∅}

We use this theorem extensively in every strategy that we tested.
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5 Strategies and algorithms

In this section we will explain the different strategies we have compared and the algorithms
we implemented.

Each playthrough of a deck building game follows the steps described in Algorithm 1. Note
that the implementation of the function Buy card depends on the strategy of the player.

Algorithm 1 Game overview

1: function Play game(starting deck Q0)
2: Draw hand H ∈ HQ0

3: S ← (Q0, v(H), t)
4: while ¬Game End(S) do
5: Play turn(S)
6: end while
7: return p(S)
8: end function

9: function Play turn(state S = (D,m, t))
10: D ← D ∪Buy card(S)
11: Draw new hand H ∈ HD

12: m← v(H)
13: t← t+ 1
14: end function

15: function Buy card(state S = (D,m, t))
16: x← the card associated with action a = σ(S)
17: return x
18: end function

5.1 Simple strategies

The strategies in this section are called simple strategies because they can also be used in
many different games and their implementation is straightforward. We have used the following
strategies:

• Random: choose randomly to buy nothing, the most expensive affordable treasure card
or the most expensive affordable victory card.

• Greedy: buy the most expensive, affordable victory card if able, otherwise buy the most
expensive affordable treasure card.

• Expensive: buy the most expensive affordable card.

• Picky: buy the most expensive victory card. If it is not affordable this turn, buy the
most expensive affordable treasure card. (This strategy is called Picky because it is
picky about which victory cards to buy.)
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The strategies are compared in Section 6.2.

5.2 Monte Carlo Tree Search

Besides the simple strategies, we have also applied Monte Carlo Tree Search (MCTS) to deck
building games. In this section we will explain our implementation of the MCTS algorithm for
deck building games.

Monte Carlo Tree Search is well suited for problems dealing with chance and only a handful
possible actions in every state. Since there are only 3 different actions in any state (recall
Theorem 4.6), we expect it to perform well for deck building games.

Pseudocode of the Monte Carlo Tree Search algorithm is shown in Algorithm 2 and is adapted
from [2].

Algorithm 2 Monte Carlo tree search

1: function Buy card
2: Tr ← most expensive affordable treasure card
3: Vi ← most expensive affordable victory card
4: for each action a ∈ {∅,Tr ,Vi} do
5: for iter ← 0 to iter max do
6: Determine points obtained when continuing with strategy σ on a(S)
7: end for
8: Average points obtained
9: end for

10: Perform action with highest average
11: end function

5.2.1 Parameters of MCTS

There are several parameters which influence the performance of MCTS.

First of all there is the number of offspring that will be created, used in line 5. We picked a
value of 100 for iter max as a value combining speed and sample size.

The strategy σ which is used for the children of S is another parameter of MCTS. We used
the Random strategy for σ.

In line 10 we chose to average the payouts of the offspring, because we want to determine
the average payout when performing (close to) optimal actions in line 10. Other options are
of course possible.

5.3 Dynamic Programming

Dynamic Programming is a technique well suited for problems where subproblems are revisited
many times. Interpreting a state as its own smaller problem instance for the question “What
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are the optimal actions starting from this deck?”, one can see how DP should be suited for
solving deck building games. However, it soon runs into data and time complexity problems,
even when using Theorem 3.9 on the scoring of equivalent decks. In this section we will explain
how our implementation dealt with them.

Since Dynamic Programming (DP) is a bottom-up algorithm, it does not follow the outline as
describe in Algorithm 1. Instead it follows the pseudocode as listed in Algorithm 3.

Algorithm 3 Dynamic Programming

1: function Dynamic Programming
2: for turn t← tmax to 0 do
3: for each state S at turn t do
4: Determine payout(S)
5: end for
6: end for
7: return opt payout[(Q0,m, t)] for all values of m ≤ max{v(H) | H ∈ HQ0}
8: end function

9: function Determine payout(state S = (D,m, t))
10: if t = tmax then
11: opt payout[S]← p(S)
12: else
13: Tr ← most expensive affordable treasure card
14: Vi ← most expensive affordable victory card
15: for each action a ∈ {∅,Tr ,Vi} do //identifying a card as an action

16: D′ ← D ∪ {a}
17: payout[a]← 0
18: for money m′ ← 0 to max{v(H) | H ∈ HD} do
19: payout[a]← payout[a]+opt payout[(D′,m′, t+1)]·Pr(S, a, (D′,m′, t+1))
20: end for
21: end for
22: a∗ ← arg max(payout[a])
23: opt payout[S]← payout[a∗]
24: end if
25: end function

5.3.1 Explanation of pseudocode

The output of the algorithm is the average score obtained when performing optimal actions.
This value is calculated in a bottom-up fashion, starting by examining the final turn. Recall
that the game end function GE is part of the definition of a game. To be able to apply
Dynamical Programming, the game should end after a known, fixed number of turns.

The algorithm starts by examining every possible deck of the final turn where t = tmax. Because
we know how many turns have been played, we can list all possible decks. And since this is
the last turn, no more cards can be added. Therefore the payout of these states is simply the
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sum of the victory cards in the deck. This value is calculated in line 11 and stored for future
iterations.

In the next iteration, the algorithm examines every states at turn t = tmax − 1. For these
states we have to determine which action will lead to the highest payout. To do this, we try
each action in line 18. We know what deck will be the result of every action, however we do
not know beforehand which hand we will draw. Because of Theorem 3.9 (Expected scores of
equivalent states), this is also not necessary. It is sufficient to calculate the score of a single
state, This allows us to sum over all possible values of m in line 19, as long as we calculate
the probabilities of drawing that amount of money and not a single hand. This transition
probability is calculated by the function Pr(S, a, (D′,m′, t + 1)) and then multiplied by the
previously calculated optimal payout of the state (D′,m′, t+ 1).

This formula is known as the recursive formula. It forms the core of the Dynamic Programming
algorithm because it tells us how to determine the payout of the current state based on the
payouts of future states. The payout, or utility value U of a state S at turn t is defined as
follows:

U(S) = max
a∈A(S)

{∑
S′∈SG

U(S ′) · Pr(S, a, S ′)

}
(11)

where
U((D,m, tmax)) = p(D). (12)

Recall that the transition probability Pr(S, a, S ′) is defined in Definition 2.14. Equation 11
corresponds to lines 18–21 of the pseudocode in Algorithm 3, whereas Equation 12 corresponds
to line 11.

By using the recursive formula, we can calculate the expected payout for an action when in a
specific state. If we do this for every action, the optimal expected payout can be determined
for states at turn t = tmax − 1.

Repeating these steps until the optimal expected payout for t = 0 is calculated, we can
calculate the optimal average payout for the starting deck Q0. This value can be compared to
results from other algorithms.

5.3.2 Space complexity of DP

In this section we will take a closer look at the memory usage of Dynamic Programming.

For each state we want to store its payout. This payout is usually a non-integer number, since
it is the product involving chances between 0 and 1. However, to keep the space complexity
down, we decided to store the payout as an integer number by multiplying it by a constant. To
fully utilize the complete range of integer numbers normally stored in 16 bits, we calculated
the maximum number of points z a player could score and multiplied the (fractional) payouts
with a constant d = 216/z. We used rounding to avoid cutoff errors.

We also reasoned that a state at turn t can have at most t copies of a single card in its deck
beyond the starting deck Q0. But as for alle states S = (D,m, t) we know that Q0 ⊆ D, we
do not have to store Q0 with the description of a state as long as we don’t forget it during
calculations. The number of copies of a specific card in any state can thus be described by
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dlog2(tmax)e bits. As DP visits all states, we knew our implementation had to be able to index
these states. We decided to concatenate the bits describing the number of copies of a card
with the number of point cards, as well as the number of points and the amount of money
available into a single 16-bit or 32-bit long bitstring, depending on the value of dlog2(tmax)e.
We did not need to incorporate the turn number in this string, because that information could
be extracted from elsewhere.

This way our algorithm requires around 16GB of RAM when tmax = 31.

5.3.3 Time complexity

The time complexity of Dynamic Programming is characterized by the number of turns be-
ing played and the number of card types in the game. Our algorithm is of time complexity
O(t|TC |+|VC |). This is shown by the following lemma.

Lemma 5.1. Let G = (TC ,VC , c, v, p,GE , Q0) be a deck building game of fixed length t.
The time complexity of Dynamic Programming on G is O(t1+|TC |+|VC |).

Proof We know from Equation 5 that there are Dt =
(
t+|TC |+|VC |

t

)
different decks after t

turns. This can be rewritten into

Dt =
(t+ |TC |+ |VC |)!
t!(|TC |+ |VC |)!

=
1

(|TC |+ |VC |)!
(t+ |TC |+ |VC |)!

t!

=
1

(|TC |+ |VC |)!

|TC |+|VC |∏
i=1

(t+ i) =
1

(|TC |+ |VC |)!
· O(t|TC |+|VC |)

= O(t|TC |+|VC |)

If we are required to calculate the score for every deck, then this would be our time complexity.
In practice, we can do it a bit faster by using state equivalence. The time complexity is therefore
at most O(t|TC |+|VC |).

6 Experiments and results

All experiments were run with values taken from the deck building game Dominion, although
of course others could be used. It is defined as follows: TC = {1, 2, 3},VC = {4, 5, 6}, Q0 =
{1, 1, 1, 1, 1, 1, 1, 4, 4, 4}, and

c(1) = 0; c(2) = 3; c(3) = 6;

c(4) = 2; c(5) = 5; c(6) = 8;

v(1) = 1; v(2) = 2; v(3) = 3;

v(4) = 0; v(5) = 0; v(6) = 0;

p(1) = 0; p(2) = 0; p(3) = 0;

p(4) = 1; p(5) = 3; p(6) = 6.

The game end function GE varied on the type of experiment.

Note that this version of Dominion is both reachable and efficient.
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6.1 Types of experiments

We have conducted several kinds of experiments. Note that the results of all these experiments
were obtained from simulations. Except for DP, they are all subject to outcomes from random
variables when drawing cards, and as such slightly different results can be expected in a future
execution. However, because we have a sample size of 100 and average the results of all
executions of a single algorithm, we feel these results give an acceptable idea of the actual
values.

The kinds of experiments we have perforemd, is detailed in the following sections.

6.1.1 Probabilistic game end

First we ran the techniques listed in Section 5 using a non-deterministic ending function. After
every turn of play the game could end with a chance α. We varied α between 1

1
and 1

100
and

ran 100 iterations of each algorithm for each α.

We chose this kind of ending function because in traditional deck building games the end of
the game is influenced by the actions of other players. Because our model only contains a
single player, we tried to simulate this behaviour by randomly deciding if the game will end
after every turn.

6.1.2 Fixed game length

We also ran tests using a fixed game length. The length of the game was information available
to all strategies, although not all strategies actually make use of this, even though they could.

We varied the game length between 1 turn and 31 turns for DP and between 1 turn and 100
turns for other strategies.

6.1.3 Action ratios

We were also interested in the ratio of actions being performed for a given turn in a given
game. Knowing these numbers could show us that for short games, it is a good idea to buy
points every turn, but if a game lasts longer, buying points should be avoided early in the
game. We were also interested in the number of times and in which situations the passing
actions would be the best action, if it would be used at all.

6.1.4 Time complexity

We also ran tests where the execution time was part of the output, to test the time complexity
of the executed algorithms.
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6.2 Results

In this section we describe the results of each experiment.

6.2.1 Results of probabilistic experiments

The results of the experiments with a probabilistic game end can be found in Figure 2. We
can clearly see that the Random and Greedy strategies are significantly worse than the other
strategies. However, because some games in this experiment might have lasted twice as long
as others as a result of the probabilistic game end, it is hard to say anything more from these
results. This is different for the experiments with a deterministic game end.

Figure 2: Average final scores of 100 executions per algorithm
using a probabilistic game end of α.

6.2.2 Results of deterministic experiments

Figure 3 shows the results of the experiments with a deterministic game length. Because all
the games have the same number of turns, the distribution of points is a lot narrower. Now
we can clearly see some trends, especially for the shorter games. A zoomed in version of this
image is pictured in Figure 4.

First of all, we immediately see that DP is the best performing strategy. This is expected,
since it is clear that DP will attain an optimal solution of a problem [1].
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Figure 3: Average final scores of 100 executions per algorithm using a
predetermined game length between 1 and 99.

Figure 4: Average final scores of 100 executions per algorithm using a
predetermined game length between 1 and 15.

Apparently this involves following a Greedy strategy for very short games (lasting up to 4
turns), since the scores for Greedy and DP coincide. After that, however, Greedy seems to
slow down, while DP continues to climb.
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In fact, when we return to the longer games as pictured in Figure 3, we can see that Greedy
is one of the worst performing strategies. What is even more interesting: calculations have
shown that for very long games, 150 turns or longer, Greedy even falls behind the Random

strategy! We think that this is a fundamental property of deck building games. Although one
needs victory cards to win the game, if bought too early, they will keep one’s score low.

This idea is strengthened by the relationship between Expensive and Picky. For shorter
games, Expensive seems to have the upper hand. However, for games longer that 15 turns,
Picky takes the upper hand. Apparently buying the most efficient victory card is very important
for longer games.

In fact, we think it is very surprising to see such a simple strategy as Expensive performing
so well. We think it could be attributed to the distribution of the costs of the treasure and
victory cards in the test game, because the treasure and victory cards alternate when sorted by
increasing cost. This could cause the Expensive strategy to buy a balanced number of treasure
and victory cards. Had the values been different, then Expensive might have performed
differently.

Another surprise is the performance of MCTS. Even though it bases its actions on continuations
that follow the Random strategy, it performs a lot better than Random itself. However, its scores
seems to remain on par with Picky, even though there is a lot more computation behind it.

6.2.3 Results of time complexity experiments

Finally, in Figure 5, we can see the time complexity for DP. A trend line can be plotted of
O(t6) that seems to fit this data series. This indicates that the theoretical time complexity of
O
(
t|TC |+|VC |) is met in practice.

However, in the same figure we can see the execution time of MCTS for games of up to 250
turns. Apparently MCTS is several orders of magnitude faster than DP. So when one values
execution time over optimality, MCTS seems to be the better algorithm.

However, in this case Picky seems to be an even better algorithm, since tests have shown it
to be capable of performing 10.000 executions of 250-turn games in 25 seconds, while yielding
similar scores as MCTS. Because of this, we have to say that our current implementation of
MCTS seems to be unsuitable for deck building games, as apparently far better algorithms are
available.

Ultimately it turned out to be possible to substantially accelerate the DP algorithm. Ben Ruijl
form Universiteit Leiden reported a runtime of around 20 seconds for games of 30 turns, also
allowing for longer games to be played. In the future we want to elaborate on this.

6.2.4 Results of action ratios experiments

In Figures 6, 7 and 8 we can see the action ratios of the strategies DP, MCTS and several
others respectively.

At first sight, the action ratios of DP in Figure 6 seem to have a similar distribution, regardless
whether the game length is 15, 25 or 31 turns. The biggest difference seems to be the first
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Figure 5: Execution time of DP, MCTS and 10.000 runs of Picky in seconds
for games between 1 and 250 turns.

turn on which a victory card is ever bought. They seem to be bought later as the game length
increases.

Also note that there is a blue section at every turn in all three figures. This indicates that it
is optimal in some states to pass and passing seems to be an integral part of the game.

Now compare Figures 6 and 7. Just as the action ratios of DP, the action ratios of MCTS are
quite similar regardless of game length. Furthermore, one could say that the action ratios of
DP and MCTS look alike.

Unfortunately, this does not mean that good performance corresponds with similar action
ratios, as the action ratios of Picky indicate in Figure 8b. It shows a completely different
pattern of action ratios, when compared to the ratios of DP or MCTS, but still performs
similarly. This indicates that action ratios themselves are no good indicators for effective
strategies.

The reason behind the decelerating rise of scores for Greedy might be hidden in the action
ratios of Figure 8c. One can clearly see that the percentage of states in which Greedy is still
able to buy victory cards decreases as the length of the game increases.

7 Conclusions and further research

In this paper we defined a framework of definitions to reason about deck building games.
We introduced a notion of equivalence of states, detailed necessary and sufficient conditions
for equivalent states to exist and proved that the expected score of such states is the same.
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(a)

(b)

(c)

Figure 6: Action ratios of DP for various game lengths, where green signifies
buying treasure cards, red victory cards and blue passing. Figures 6a, 6b and 6c

picture games of 15, 25 and 31 turns respectively.
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(a)

(b)

(c)

Figure 7: Action ratios of MCTS for various game lengths, where green signifies
buying treasure cards, red victory cards and blue passing. Figures 7a, 7b and 7c

picture games of 15, 25 and 31 turns respectively.
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(a)

(b)

(c)

Figure 8: Action ratios of various strategies for 31-turn games, where green signifies
buying treasure cards, red victory cards and blue passing. Figures 8a, 8b and 8c
picture executions with the Random, Picky and Greedy strategies respectively.

Furthermore, we defined the concepts of reachability and efficiency to allow us to remove cards
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from a game without affecting any interesting strategies.

Next we introduced our implementations of MCTS and DP adapted for deck building games,
as well as our series of experiments for them. The most striking results could be the fact that
DP is indeed able to find the opmtial action in each state, albeit slowly; the fact that MCTS is
surpassed with respect to both execution time and perfomance by strategies specific to deck
building games; and the fact that passing is an integral part of deck building games.

Still, a lot of interesting questions remain, and we can discern four major areas for future
research.

First one could look into parallelizing the DP algorithm. It is well suited for parallelization
because its calculations can be easily divided into sections with no relation to other sections.
This will speed up the algorithm greatly and therefore allow for the analysis of longer games.

Besides parallelization, one could look into the data complexity of the DP algorithm. Our
current implementation hardly uses Theorem 3.9, but if used properly it might allow us to
circumvent most of the data complexity issues we are currently facing.

As mentioned in Section 6.2.3, we also want to further improve the runtime of the computation
of exact scores.

And finally, the relation between the model of a deck building game we described in this paper
and a real deck building game — such as Dominion — could be examined. When we applied
DP to Dominion, we had to make several assumptions such as the fixed game length. It is
unclear how different algorithms are affected by this and whether they can be modified to
accomodate for this.
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