
Internal Report 2012-2013-11 July 2013

Universiteit Leiden

Opleiding Informatica

Multi-objective Generation of Bicycle Routes

Bart Hijmans

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands



Abstract

There are a large number of bicycle route planners available that only output a single
route. This paper explores the possibilities of making a routing algorithm that uses
multiple objectives to produce several different routes that are objectively incomparable
in quality, but each has their own relative merit. It looks at available data, possible
objectives and finally tries to combine that into an algorithm to produce these more varied
sets of routes. The challenges are to find realistic formulations of objective functions and
to design new and modify existing route planning algorithms for multi-objective route
planning with real-time constraints.

1



1 Introduction

The average person in the Netherlands owns 1.1 bicycles[14]. This is more than in any
other country. Using those bikes Dutch people ride an average of 900 kilometers every
year. Planning where exactly to go and how to get there is not a new idea. However
most existing route planners focused only on the shortest routes. We do not always care
about the shortest routes. Often we would prefer a slightly longer route if it avoids traffic
and runs through a nice forest instead.

Throughout the country runs a network of well-marked bicycle paths, called the fiets-
knooppuntennetwerk. This bicycle node network (as literally translated) is marked with
numbers from 00 to 99 and those numbers repeat. They are placed in such a way that
there is never an intersection where the same number is in two different directions. These
bicycle nodes are great because they make it easier for cyclists to find routes that a route
planner gives them because there are signposts at each of these nodes with these num-
bers and directions to adjacent nodes. They also make the algorithm not care about the
many thousands of streets through cities and villages that are very similar and not very
interesting.

There are a number of route planners available. They range from Google Maps[4] to
Falk[2] that only calculate the shortest routes, either over the bicycle node network or
over all roads. The only exception is the route planner of the Fietsersbond[3]. It has a
number of different route generating options, including ”nature route” and ”car sparse
routes.” How they work exactly is not public knowledge, but they seem to do something
different and it is certainly an improvement over the other route planners.

What this project is about is finding multiple routes that the user can then choose be-
tween, based on multiple objectives, instead of one function with one specific deterministic
solution that may not be the best option for what the user wants. The goal is to explore
the possibilities for making a route planner capable of suggesting multiple good routes
and combine that into a multi-objective algorithm. The research questions are as follows.
What kind of data is available that can be used in bicycle route planning? How can that
data be used to create meaningful objectives? And what kind of algorithm can be used
to output multiple possible routes based on these objectives?

Chapter 2 will focus on the exploration of available data and how that data had to be
processed. Chapter 3 will focus on the objective functions. The results of those two will
be combined into an algorithm in Chapter 4. That algorithm is subsequently tested in
Chapter 5. Finally Chapter 6 will focus on conclusions and future work that can be done
to make it better.

2



2 Geographical Data Resources

An algorithm that generates routes needs geographical data to do anything useful. Though
fabricated data was briefly considered, it just is not anywhere near as good as real-world
data. There are a number of different mapping service applications available on the in-
ternet. They can be separated into commercial and open source maps, which will be
discussed in Sections 2.1 and 2.2 respectively. Section 2.3 will talk about the format that
the data is in and how that was converted, and Section 2.4 is about how the data had to
be cleaned to avoid inconsistencies.

2.1 Commercial maps

Commercial mapping software include the aforementioned Google Maps, Bing Maps[1],
Yahoo Maps[9] and several others. They all offer a limited number of queries for free and
have a shortest path routing service for cars and sometimes for pedestrians and cyclists
as well. However, none of these have the Dutch bicycle node network data that we want
to use. So in order to get data on the distances between bicycle nodes, we need to gather
the bicycle nodes and their GPS coordinates from another source.

When we get that data we will run into more problems. We still do not know which
nodes connect to which other nodes. It would be easy to say that two nodes a and b are
adjacent if there is no node c such that d(a, b) = d(a, c) + d(b, c). Unfortunately there
are often different ways to get from one node in the network to another and it is likely
that in some cases the shortest route (which is the only thing these commercial maps
calculate) between connected nodes runs at least partially over roads that are not part
of the network. These problems are purely academic though, until we actually find data.

Unfortunately the data for these nodes is not publicly available from official sources.
According to Stichting Landelijk Fietsplatform only about half of the fifty subnetworks
let this data be freely available[15]. Those gaps would make for very odd and inaccurate
routing. The only option seems to be entering the data manually, based on observations
made while standing next to a sign with a gps-enabled device or from aerial photographs.
This is where OpenStreetMap (OSM) comes in.

2.2 OpenStreetMap

Fortunately, data for the bicycle node network has already been entered manually into
the collaboratively edited, open-source, OpenStreetMap[7]. Not only does OSM have all
the bicycle nodes and their GPS coordinates, it also has data on the connections between

3



pairs of nodes, with a large number of potentially useful tags. It is also possible to
calculate the distance over land over the network connections between pairs of connected
nodes. This is more than we could have hoped to get from the commercial maps and
there does not seem to be any reason to go back to them for now.

2.3 Data Formats

All the data in OSM is divided into three core elements. The first of which is the node.
A node always has a unique id and a longitude and a latitude value and represents a
point on the map. The next core element is the way. They have a unique id as well and
consist of a list of nodes representing (segments of) roads. Nodes and ways together are
enough information to draw the map, but for classification and ease of access there are
also relations. A relation is an ordered list of nodes, ways and other relations. Each item
in a relation may also have a role within the relation. All three of the core elements may
have tags, but relations must have at least one to indicate what kind of relation it is.

OpenStreetMap has a number of different API’s. An easy to use one that is solely for
retrieving data is Overpass[8]. Overpass uses an XML-based query language that allows
the user to easily access data. Since this API provided all the data that was needed for
this project, no other APIs were considered, though some may work just as well.

The Dutch bicycle node network in OSM is found in sixty-five relations that each have
data for one region. These regions seem to be different from the fifty regions mentioned
before. The relations contain nodes that are the bicycle nodes in that region and relations
that represent the connections from a bicycle node in that region to another node in the
same or a neighboring region. It also has tags identifying it as a network of type rcn
(regional cycling network) as well as for the province and country. Using these tags and
recursion in Overpass, it is possible to retrieve all relevant data for the entire network.

The data for the relations that represent regions can be retrieved using the following
query.

1 <query type="relation">

2 <has-kv k="type" v="network"/>

3 <has-kv k="network" v="rcn"/>

4 <has-kv k="addr:country" v="NL"/>

5 </query>

6

7 <print/>

We can subsequently find the other types of items we need by adding recurse calls on line
6, which has been left blank for clarity. The first item we need are the bicycle nodes. To
get the data for these, the call we want to add is <recurse type="relation-node"/>,
which gives us the data for all the nodes in each of the region relations. One of these
nodes looks as follows.

<node id="336199688" lat="52.2294812" lon="4.4457029">

<tag k="rcn_ref" v="20"/>

4



</node>

The information in this item is the unique node id, its latitude and longitude and the
rcn ref. The latter being the reference number that is on the signs as well. Many nodes
have other key-value pairs that identify a source, a name, a specific object or building at
that node’s location or often one or more redundant tags identifying it as a part of the
regional cycling network.

Secondly, we need to get the relations that represent connections between those nodes.
They can be acquired by adding <recurse type="relation-relation"/> to line 6 of
the original query instead. An example of such a relation is listed below.

<relation id="571157">

<member type="way" ref="30471337" role=""/>

<member type="way" ref="30120191" role=""/>

<member type="way" ref="30471239" role=""/>

<tag k="network" v="rcn"/>

<tag k="note" v="20-64"/>

<tag k="route" v="bicycle"/>

<tag k="type" v="route"/>

</relation>

As you can see the relation has a unique id and consists of three ways. It does not include
any nodes as those can be retrieved from the ways. There are relations that do include
nodes, but that is a deprecated system that has not been entirely phased out. The note
key in this case lists the rcn refs of the nodes it connects. However, because the notes are
not used in drawing the map, they are much more likely to be inaccurate than the ways.
Combined with the fact that the reference numbers are not unique, getting information
from the ways is more reliable. The network, route and type keys tell us that this relation
identifies a route for bicycles in the regional cycling network, which we already knew.

Thirdly, we need data for the ways. In order to get data for those we keep
<recurse type="relation-relation"/> which got us the relations that represent con-
nections between nodes and follow that line with <recurse type="relation-way"/> to
get the ways in those relations.

<way id="30471337">

<nd ref="45798403"/>

<nd ref="336199680"/>

<nd ref="336199682"/>

<nd ref="336199684"/>

<nd ref="336199687"/>

<nd ref="336199688"/>

<tag k="highway" v="cycleway"/>

</way>

This way is an ordered list of nodes with a unique id. There are a few things to note here.
Firstly the highway key is used in OSM to determine the way a road is drawn on the

5



map. In this case it is a cycleway, which means it will be drawn thin and white, where
a motorway would be drawn much thicker and blue in OSM’s default view. A second
thing to note is that the way listed here is the first way in the relation listed above and
the last node in the way is the one used as an example as well. What this indicates is
that even though the relation is an ordered list of ways and the way is an ordered list of
nodes, those orders do not match in this case. Thirdly, it is important to note that ways
with bends contain a lot more nodes than this one, to provide good approximations of
how the road actually runs.

Lastly we need all the nodes in the ways as well, so we can calculate the distances over the
road rather than just as the crow flies. For that, we need
<recurse type="relation-relation"/> , <recurse type="relation-way"/> and
<recurse type="way-node"/>, which gives us the nodes in the ways in the relations
in the relations that represent the regions. These will also include the bicycle nodes
again and the other nodes look just like the rcn nodes except that most have no tags at
all.

2.4 Data Cleaning

Now that we have all this data the first thing we need to do is to find out exactly which
nodes connect to which other nodes. The simplest way to do that would be to take the
first node of the first way and the last node in the last way of a relation and check them
against the rcn-nodes. However, as we noted before, the orders of the ordered lists do not
always match. So we need to look at the first and last nodes of the first and last ways
in a relation to see which of them are the bicycle network nodes. And because there is
a possibility of a relation having only one way, we need to make sure we check the first
node of the first way in a relation first, and the last node of the last way first, so we are
guaranteed to get both rcn-nodes from that single way.

This is where the troubles start. It turns out that 800 out of 10761 relations do not
have an rcn-node as the start or endpoint of either the first or last way. This is clearly a
mistake and likely a consequence of the open source nature of OSM. Before we give up all
hope though, we can try to find out exactly what is wrong. A short investigation of some
of the relations reveals that there are numerous different problems. One relation ended
on a roundabout that was not even on a part of the cycling network. Another ended on
an rcn-node that was not listed in the regional subnetwork and after comparing it to a
different map of the network for that region, turns out to have been mislabeled with the
wrong reference number as well. These mistakes should, and may already, be fixed in the
OSM database. The data used in this project is, at the time of writing, over four months
old.

Some of the problems can be fixed however. A significant portion of the problematic
relations end very close to an rcn-node. Connecting a relation to a node based on this
proximity risks creating more errors, but when the distance is small enough, that risk is
minimal. The average distance between two adjacent rcn-nodes is about 2.8 kilometers,
so a cutoff point of half a kilometer seems fairly safe. After doing this through a semi-
automated process, the last step was to remove all relations that connect a node with
itself. In the end 455 relations had to be removed and as a consequence 212 nodes out of

6



7544 were not connected to anything and were removed as well to avoid strange behavior
in the algorithm if they were used as the start or end nodes of a route.

An error rate of 7.4% in the relations leaves one to wonder what else could be wrong.
There could be any number of nodes, ways and relations with significant errors, but that
is not important. We now have data that at least resembles real world data and because
OSM is open source, it might be that someone is correcting it as you are reading this. So
there is hope for updates and improvements.

7



3 Objective Functions

The general goal of this project is to generate ”nice” routes. Unfortunately, niceness is
not a measurable thing. The question is what exactly it is that a cyclist looks for in a
route? That is where the objective function modeling comes in. This chapter discusses a
number of possible objectives, how they were formulated and why they were eventually
chosen or discarded. We will start with the shortest path in section 3.1, followed by
scenic beauty in 3.2. Thirdly we will discuss an objective called cycleway in 3.3 and
finally we will look at the impact of wind direction in 3.4. There are also a number of
possible constraints and objectives that were discarded for being incompatible with the
algorithm. Discussing those outside the context of the algorithm makes no sense so they
will be discussed briefly in Section 4.5 instead.

3.1 Shortest Distance

The main reason why shortest distance is important is that it adds a degree of reality. It
may be a very interesting result if the nicest route from here to the next town over visits
every city in the country before reaching its destination, but in the end a user will want
to get to his destination before the end of the day as well.

In order to add the shortest path as an objective we need to calculate the distance between
every node and all its neighbors. That should be the sum of the distances between every
pair of consecutive nodes in every way in the relation that describes that connection. In
order to take into account the curvature of the earth. the distances can be calculated
using the haversine formula which reads as follows.

d = 2r arcsin

(√
sin2

(
φ2 − φ1

2

)
+ cos(φ1) cos(φ2) sin2

(
λ2 − λ1

2

))

Here φ represents the latitudes and λ the longitudes of the two points and r is the radius
of the earth. This provides us with the distance over the surface of the sphere. This is
important because at different fixed latitudes, a fixed difference in longitude represents a
different distance. We assume the country is completely flat (besides the curvature of the
earth) partly because it very nearly is, so any errors will be minor, and partly because
the data for this is not available.

Now that we have this data it is easy to define the objective. The distance of a certain
route is the sum of the distances of all the connections used, and we want to, at all times,
minimize this distance.

8



3.2 Scenic Beauty

Outdoors, away from the noise of the cities and in the tranquility of nature is where
we find cyclists on a nice day. And who could blame them? Scenic beauty is clearly
something people are looking for in a bicycle route. So we should aim to provide it.

The problems start when trying to quantify the scenic beauty of a place as a number.
One way it could fall apart is when we compare a pine forest and a field of flowers. If we
decide fields of flowers are nicer, what happens in the fall when the flowers are gone and
the forest is standing strong?

It gets worse when one person prefers heath and another prefers forests. It might be
too hot in the sun for one and too cold in the shade for someone else. In order to make
this less subjective we would need to introduce a large number of different criteria based
on types of landscape, ranging from fields to forests. this would allow the user to pick
which criteria he cares more or less about. And we have not even considered architectural
beauty yet.

All of this is hypothetical though, because a database with this information does not
actually exist — at least not anywhere freely accessible. And though it might be con-
structed manually or by image analysis algorithms, that is far from the scope of this
project. It is unfortunate, but it seems that scenic beauty cannot be considered with the
available data.

3.3 Cycleway

Given that we cannot model scenic beauty we would like to formulate another objective
that represents the niceness of a route. We do not have to look very far because OSM
provides us with a large number of possible tags. They range from illumination to width
and from restricted vehicle types to street names. There is even a tag for different types
of nature, but it is used for only one way and therefore not useful at all. And that seems
to be a trend. The vast majority of tags are either woefully incomplete or otherwise too
rare to use.

There is one tag that stands out and that is the highway tag. Out of 111350 ways only
128 do not have this tag, making it by far the most complete tag available. The highway
tag identifies the kind of road a way represents and its importance in the network[6]. It
has a number of possible values ranging from motorway to residential and, most relevant
here, cycleway. Of the ways on the network 31292 are marked as cycleway and this value
means a road that is mainly or exclusively for bicycles. Pure cycleways in cities or villages
are rare. There are often bicycle paths next to roads, but they would be classified as the
type of road they are next to and not as cycleway. Though there are some true cycleways
in cities, they are few and far between. Most cycleways are outside the cities, through
nature, and paved in crushed seashells, and those are exactly the type of places we were
trying to go.

Now we need to convert this very binary data into something that can actually be used.
We could consider calculating the percentage of a route that is marked as cycleway. This

9



seems simple enough, but the problem is it does not scale well. The other criterion we
have so far is distance and if we look at some possible values, we could have a route with a
distance of ten kilometers and fifty per cent cycleway or a route with the same percentage
marked as cycleway that is ten times as long. When using a linear weighting scheme,
the balance of the two criteria radically changes over the course of generating a route,
and exactly that balance is what we will be looking for. Problems also occur because the
value of the attribute can both increase and decrease which breaks the algorithm. More
on that in Chapter 4.

So we need a new idea. A way to make the cycleway attribute more predictable and more
in line with the distance objective. Instead of using percentages, it is possible to use the
absolute value instead. So we can change the attribute to the sum of the length of all the
cycleways on the route in kilometers. Now the attribute will scale well with distance and
it is nondecreasing. The only problem is now that making routes longer will make this
attribute better — because we are trying to maximize it — and the best value will be for
the route that manages to cover as many cycleways as it can find. However this is easy to
solve by instead using the distance that is not covered by cycleways and minimize that.
Now adding nodes to the route will only not make it worse if the new road segments are
entirely cycleways.

Using this method it is possible for extremely long routes to be considered good, as
long as they run over cycleways. This is not a problem, because those solutions can be
discarded at the end, based on a maximum length defined by the user in absolute value
or a percentage over the shortest path.

So the final definition for the cycleway attribute is the sum of the length of all route-
segments that are not cycleways.

3.4 Wind Direction

Cycling against the wind is a lot more work than cycling with the wind. It would be nice
if we could plan routes to avoid that. However, a preliminary and hasty implementation
of this objective yielded no interesting results. Routes were barely, if at all, changed -
even with a heavy focus on this objective over others. This begged the question, is it ever
worth taking a longer route to avoid going against the wind? Before we get there though
we need to think about the physics and how to synthesize that into an attribute.

We will need to assume a constant wind speed. A change in wind speed over the course
of a few hours is hard enough for weather services to predict and taking that into account
is not realistic. For the same reasons we will assume the wind direction is constant as
well. We will also, for now, ignore the effects of friction. Friction is proportional to the
length of the road and constant factors like the specific bicycle used. So the shortest path
objective is already a good measure for friction.

In physics the wind affects the amount of work needed to move in a certain direction
based on the component of the angle parallel to the direction traveled. There is no extra
work needed when the wind is exactly perpendicular to the direction you are traveling
and the maximum extra work is needed when the wind is in your face. With wind in

10



Figure 3.1

the back you will need less work to get to where you are going. The difference in work
is proportional to the cosine of the angle between the direction you are riding and the
wind. That angle is zero when the wind is in your face. We also need to multiply that by
the length of the road segment because, clearly, going against the wind for a few meters
is not as bad as going against the wind for a couple of kilometers. In physics this work is
defined as a product of the distance and the force, so we have the following formula for
the difference in work of a particular road segment:

cos(δ) · l

where δ is the angle of that road segment and the wind and l the length of the road
segment. Let us now consider the situation in Figure 3.1

There we are trying to get from A to B and the angle δ represents the angle of the wind
with the line c. So the work for the road segment c must be

cos(δ) · 2

Now let us consider the route through point C. Since the line from C to D divides the
triangle into two right-angled triangles we can easily use trigonometry to calculate the
length of a and b as a function of α, which turns out to be

b =
c
2

cos(α)
=

1

cos(α)

and because of symmetry this is the same for a. The angles with the wind of the two
route segments are δ−α and δ+α respectively. And because we take the cosine of these
angles we do not have to worry about overflow. So, the formula for the extra work of
a+ b is

cos(α + δ) · 1

cos(α)
+ cos(α− δ) · 1

cos(α)

This can be reduced using the following rule[16, Page 63]

cos(α± β) = cos(α)cos(β)∓ sin(α) sin(β)

And this works out as follows:

cos(α + δ) · 1

cos(α)
+ cos(α− δ) · 1

cos(α)

11


































