
Internal Report 2013–19 August 2013

Universiteit Leiden

Opleiding Informatica

A Genetic Algorithm for the

Travelling Salesman Problem

with Area Constraints

Ruud Heesterbeek

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands



Abstract

The travelling salesman problem (TSP) is a very widely-studied problem
up until today. Numerous solutions have been proposed to solve the
problem, including genetic algorithms. In this paper, a solution method
is created that is also based on a genetic algorithm. In addition, a
special constraint is added to the TSP: the area constraint. Borders can
be defined in TSP instances, to mark areas that are more difficult to
travel through, or more expensive to enter. It will be shown that the
proposed genetic algorithm can achieve good solutions for problems with
and without these constraints. Also, a comparison is made between a
number of genetic operators, some of which use local knowledge to get
to a good solution in a very short amount of time.

1 The Travelling Salesman Problem

The travelling salesman problem (TSP) is a very widely studied problem in the
field of computer science and mathematics. The problem description is simple:
given a number of points (cities), find the shortest route that passes through
every city exactly once. The tour needs to end in the city it started in. It
turns out, the problem becomes very hard to solve for a large amount of cities,
because there are N ! possible solutions. In fact, the TSP is an NP-complete
problem, which means currently no algorithm exists, that can solve the TSP in
polynomial time, and if such an algorithm is found, there exist algorithms to
solve every problem in NP in polynomial time. While on the one hand the TSP
is a popular problem for academic research, it is also applicable to problems in
real life. One can easily think of parcel delivery or mail delivery problems, where
a mail carrier has to visit every customer, after which he/she has to return to
the post office. Another example of an application of the TSP to a real life
problem, is the design of a cable network, where cables need to pass every house
and the beginning and end of the cables needs to be at the main station. The
TSP is also a sub-problem in fields where you would not necessarily expect it,
for example, it is even used in the field of DNA sequencing.

It is easy to understand that the TSP has been a heavily-researched prob-
lem. Many algorithms have been proposed to solve the problem. The current
state-of-the-art solver is “Concorde” [2]. Its algorithm is designed to find the
exact optimal solution for instances of the TSP. It has been used to obtain the
optimal solution for the largest instance in TSPLIB [7], which contains 85,900
cities. This is the largest non-trivial TSP-instance that has been solved to op-
timality. In this paper, a heuristic algorithm is proposed, that tries to give an
approximation of the optimal solution, as close as possible to the real optimal
solution.

2 Genetic Algorithms

For implementing our TSP-solver, a genetic algorithm will be used. Genetic
algorithms are a special type of a larger group of algorithms that are called
evolutionary algorithms. These algorithms are inspired by biological evolution
and they are based on the process of natural selection. In a genetic algorithm,

2



there is a population that consists of candidate solutions, often called individu-
als. As the algorithm runs, these individuals “evolve” towards better solutions.
In standard genetic algorithms, individuals are represented as a binary string.
Individuals can evolve, by applying crossover and mutation. In a crossover, two
individuals are combined into a new individual, usually by taking a portion of
the bits of one individual, and a portion of the bits of the other. This process
is illustrated in Figure 1. A mutation slightly changes the bits of one individ-
ual, usually by inverting one bit. One can imagine that the standard crossover
and mutation methods are not very well suited for the TSP, because when you
change a bit string that was a legal solution to the TSP, chances are high that
the new bit string will not represent a legal solution anymore. This is because
solutions to the TSP must contain all cities exactly one time. For the TSP, it
is therefore common practice to represent the individuals as a string of inte-
ger numbers. It also requires special mutation and crossover operators. These
operators will be covered in the next section.

Figure 1: An example of a crossover between two individuals

After new individuals have been created, a new population has to be selected.
This can be done by selecting only individuals from the children, or by selecting
individuals from both parents and children. The principle of selection is based
on Darwin’s ”survival of the fittest”, which means that better solutions have a
greater chance of surviving, or making it to the next generation. The fitness of
every individual will be calculated by a so called fitness function. For the TSP,
the fitness value is the length of the tour that the individual represents. This
means that lower fitness values are better. The are a few selection operators to
select a new group of individuals based on their fitness value. These will also
be discussed in the next section.

3 A Genetic Algorithm for the TSP

In this section, the genetic algorithm that we implemented, will be explained in
detail. First, the global structure of the algorithm is described. In the following
subsections, all implemented operators will be described in detail.

It is easier to describe the global structure of the algorithm by using pseu-
docode. The pseudocode can be found in Algorithm 1. The algorithm is started
by initializing the population: new individuals are added to the population. The
size of the population can be determined by the user. Then, for a fixed number
of iterations, a loop will be executed. In that loop, new individuals are created
by applying crossover and mutation operators. The crossover rate and muta-
tion rate, both numbers between 0 and 1, determine how often a crossover and
a mutation is performed on the population. The algorithm will stop creating

3



new individuals when the number of new individuals is equal to the population
size. After that, individuals are selected from both the old and new generation
to form the new population. The advantage of this is that good solutions can
survive for multiple generations, which should improve the overall quality of the
population. Individuals will be selected based on their fitness. During execution
of the loop, the algorithm keeps track of the best individual and when the loop
ends, this individual will be the final solution.

initialize population;
while iterations left >0 do

while new generation size <population size do
if random <crossover rate then

crossover parents;
if random <mutation rate then

mutate child;
end

else if random <mutation rate then
mutate parent;

end

end
update best solution;
select population;

end
return best solution;

Algorithm 1: The Genetic Algorithm

3.1 Initialization

A few well known operators have been implemented to initialize the population.

• Random. This is the easiest and most straightforward way to initialize a
population. The route will be a random permutation of the cities in the
particular TSP instance. This operator obviously does not require a lot
of computation time, but the solutions will be very poor.

• Nearest Neighbour. This operator generates tours by always picking the
city that is closest to the current city. Starting at a random node, the
next city in the tour will be the city that has the smallest distance to
the previous city. This process will be repeated until every city has been
added to the tour.

• Nearest Insertion. First, a random permutation of the cities has to be
generated. Cities will then be added to the tour in the order of the
permutation. However, their position in the tour will be where the in-
crease in length of the tour is the smallest. In other words, city i will be
placed between the cities a and b for which distance(a,i) + distance(i,b)
- distance(a,b) has the smallest value. This principle of inserting a city in
a tour is called nearest insertion.

4



The last two initialization operators require a lot more computation time —
O(N2) — than random intitialization, which only takes O(N) time, but the
tours they generate are of a significantly higher level.

3.2 Crossover

Three different crossover operators have been implemented.

• Edge Recombination Crossover. This operator was first introduced by
Whitley et al. [9]. It tries to preserve as much of the edges of the parent
tours as possible. To avoid cities being left out, it will select cities with
the least amount of different edges in the parent tours first. These cities
endure the highest risk of becoming isolated. The ER operator works with
a so called edge map. The edge map is a list that tells for every city which
edges it has in the parent tours. If we take for example the two tours
ABCDEF and FBAEDC, the algorithm will start with the edge map in
Table 1. As you see, city F has four entries in the edge map, because it
is connected to city A and E in the first tour and to city C and B in the
second tour. City D only has two entries in the edge map, because it is
connected to city C and E in both tours. City D will probably be selected
fairly early by the algorithm, because it has the least amount of edges in
its edge map.

Table 1: An example of an edge map

City Edges
A B, E, F
B A, C, F
C B, D, F
D C, E
E A, D, F
F A, B, C, E

The edge map will be updated constantly while the tour is constructed,
according to the cities that have been chosen: only edges that still have
the possibility to be added to the tour will be kept in the list. At the
moment that a city has been chosen by the algorithmin for the new tour,
all its edges will be erased from the edge map. The algorithm works as
follows:

1. Choose a random starting city.

2. Remove all occurrences of edges that contain the current city from
the edge map.

3. Pick the city in the current city’s edge list, that has the least amount
of cities in its own edge list. At a tie, decide randomly. If there are
no cities in the current city’s edge list, choose a random remaining
city as the next current city.

4. Repeat step 2 and 3 until all cities have been chosen.

• Order Crossover. The order crossover operator was introduced by Davis
[3]. The algorithm assumes that only the order of the cities in a tour

5



is important, not the position that they are in. It chooses a subtour of
cities from one parent, and puts these cities in the order that they appear
in the other parent. First, a subtour of the first parent is selected, that
will be copied to the child. The remaining cities will be added after this
subtour, in the order that they appear in the second parent. Figure 2
further illustrates this process. The cities of subtour 7-8-9-1-2 are put in
the order in which they appear in the second parent.

Figure 2: An example of order crossover

• NI-combined Crossover. This operator was proposed by Sakurai et al.
[8]. The basic principle is the same as in the previously discussed order
crossover, but to improve convergence speed of the genetic algorithm, cities
are now added using the nearest insertion method. The first step of the
algorithm is to select a subtour of cities from the first parent. These cities
will be copied to the child. The remaining nodes will be added to the child
using nearest insertion, in the order that the cities occur in the second par-
ent. To improve performance in larger problem instances, we have made a
slight alteration to the original operator. The first subtour that is copied
to the child, will be chosen in such a way, that the remaining cities will
not be more than fifty in total. By doing this, the operator will preserve a
larger part of the parent’s tour, which increases the chance that the new
tour is an improvement over the old tours. Moreover, this alteration to
the algorithm decreases the computation time that is needs, because the
number of cities that has to be added with the nearest insertion method,
is now limited.

Notice that the first two crossover operators are very fast, traditional genetic
operators. They do not use any extra knowlegde of the problem and they
only require O(N) computation time. The NI-combined crossover method is
different. It uses local knowledge (the distance between each pair of cities) to
create new individuals and the computation time is a lot longer. Because the
number of cities to insert is limited to fifty, the operator can finish in O(N)
computation time, but with a large coefficient before the N (O(50N)).

3.3 Mutation

Four different mutation operators have been implemented in the solver.

• Insertion Mutation. The insertion mutation operator is based on a very
simple principle. It randomly selects a city, removes it from the parent’s

6



tour and then chooses a random position to insert the city back in the
tour. It was proposed by Fogel [4].

• Displacement Mutation. This operator starts by selecting a random sub-
tour. This subtour is then removed from the parent’s tour and inserted
at a random place. It was proposed by Michalewicz [6]. Figure 3 shows
an example of how the operator works.

Figure 3: An example of the displacement mutation operator

• 2-Opt Mutation. This method has been proposed by Sakurai et al. [8].
It is based on simple inversion mutation, Figure 4 (Holland [5]), but it
has been slightly changed to improve the convergence speed of the genetic
algorithm. First, a random subtour will be selected from the parent. The
cities in this subtour will then be put in reverse order. The change over
the original algorithm is the following: if the new tour is an improvement
over the old tour, the operator will be applied again. It will stop when no
improvement has been made, and the end result will be the last tour that
has been an improvement over the previous one.

Figure 4: An example of simple inversion mutation

• Block-type Mutation. This method has also been proposed by Sakurai et
al. [8]. The operator is applied on a random geographical block in the
tour. First, a random city is chosen as the centre of the block. After that,
the algorithm determines a random neighbourhood by taking the distance
from the city in the centre to the next city in the tour and multiplying it
by a random number from 1 to 5. This number will be the neighbourhood
size. Every city that has a distance to the centre node that is smaller
than the neighbourhood size, will be removed from the tour. After that,
all nodes that have been removed, will be inserted into the remaining tour
using the nearest insertion method. We have made a small alteration to
the operator, the same alteration we made to the NI-combined crossover
operator: we only allow the operator to remove a maximum of fifty cities
from the tour. Removing more cities will destroy too much of the original
tour, but more importantly, it is very time-consuming to insert a high
number of cities back into the tour using the nearest insertion method.

Just as with the crossover operators, a few key differences between the operators
can be pointed out. The first two mutation operators (insertion and displace-
ment) are fast, traditional operators that only require O(N) computation time.

7



The last two operators use local knowlegde to create a new individual. It is hard
to comment on the computation time of the 2-opt operator. There are O(N2)
pairs of edges, and inverting a pair of edges requires O(N) computation time,
so the operator will certainly finish in O(N3) computation time. However, in
practice the operator will often be applied to very good tours, so that it will
only execute one or two iterations. In practice, block-type mutation will be the
slowest of the four, because it uses the nearest insertion method, which is very
time consuming. Just as with the NI-combined crossover operator, the number
of cities that is inserted is limited to fifty, so the operator can finish in O(N)
computation time, but again with a large coefficient before the N (O(50N)).

3.4 Selection

Two different selection operators have been implemented in the solver. The
operators will select the new individuals from both the parents and the children.
As an extra rule, copies of the same individual are only allowed once in the
population, to keep the population more diverse. The implemented operators
are the following:

• Tournament Selection. In tournament selection, a number of individuals,
which we call the tournament size, will be randomly picked from the can-
didate solutions. The fittest individual, the one with the best solution,
will be put into the new population. This process is repeated until the
population has reached the required size.

• Exponential Ranking Selection. This operator starts by ranking all can-
didate solutions according to their fitness value. After that, there will be
several rounds in which an individual is picked and put into the popula-
tion. At each round, the fittest individual has the highest chance to be
picked and the individual with the worst solution has the lowest chance to
be picked. We have chosen the distribution of the chances over the indi-
viduals to be exponential (Blickle, [1]). The probability pi that individual
i will be picked, can be calculated by the following formula:

pi =
c− 1

cN−1
cN−i (1)

i is the rank of the individual from 1 to N : the fittest individual gets rank
N , while the worst individual gets rank 1. The parameter c is a value
between 0 and 1 and is called the selection bias. A value closer to 0 leads
to more exponential behaviour of the operator, while a value closer to 1
distributes the chances over the individuals more equally.

4 Area constraints

In this section, the area constraint that has been added to the TSP will be
discussed. A feature has been added in the solver to add borders to a TSP
instance. The borders make it more expensive to travel from a certain area to
another. It relates closely to scenarios that you see in real life. For example,
it could be seen as travelling to different countries. It often costs more time or
even money to travel from one country to another, than to travel between two

8



cities in the same country. It could also be seen as an obstacle in nature, that is
more difficult to pass during a travel. For example a river, or mountains, often
require more time or effort to cross. It could also be the case that there simply
is no direct route from one city to another, because it is not possible to travel
through the area between the cities. In that case, the borders can be used to
block that part of the map, so that specific paths cannot appear in the final
solution.

The borders in the TSP solver are defined by a few simple rules. As a first
rule, travelling from one city to another can only happen in a straight line. If
the resulting path crosses one or more borders, a penalty will be added to the
distance of the path, for each border that it crosses. This penalty is customizable
in the algorithm, but it should be the same penalty for each individual border.

5 Experiments and Results

In this section, the results of the experiments that have been performed to com-
pare and evaluate the operators, will be shown. The algorithm has so many
parameters that one can tune, that it is impossible to test everything. A selec-
tion of tests have been made and these tests were run on eight different problems.
Four of these eight problems have additional area constraints. Each combina-
tion of operators and parameters was run 20 times and from these 20 runs, the
average solution quality and the standard deviation were calculated. All runs
in which a crossover operator was tested, were run with the same combination
of mutation operators: insert mutation, displacement mutation and 2-opt mu-
tation. These operators were alternated by the algorithm on a random basis. In
the runs in which a mutation operator was tested, the edge recombination op-
erator was used as crossover operator. This operator is fast and gives relatively
good solutions, so it is a good test to compare the different mutation operators
against each other. Each combination has been tested with different population
sizes, and two different combinations of initialization. Finally, tournament se-
lection was used as the selection operator and each test was performed with the
following values of the remaining operators:

• Crossover rate: 0.9

• Mutation rate: 0.2

• Tournament size: 4

• Penalty for crossing a border: 1000

• Number of iterations: 200 times the number of cities. Because the com-
plexity of the problem is directly correlated to the number of cities, the
algorithm was given more time on larger problem instances. However,
when the best tour did not improve for 10,000 consecutive generations,
the algorithm was stopped prematurely to start the next run.

Four different problems have been selected from TSPLIB, a library of TSP prob-
lems from various sources [7], and each of these problems has been tested with
and without area constraints. The problems that were picked were: berlin52,
bier127, gil262 and rd400. The numbers in these problem names indicate the
number of cities. The results of the bier127 problem can be found in Tables 2

9



and 3. The results of the other problems can be found in the Appendix section.
Note that for the problems without constraints, the optimal solution is known.
The optimal solution for the problems with area constraints is unknown, but it
is possible to compare the results to the best solution that has been found by
our algorithm.

Population Size 20 50 100 200 20 50 100 200

Initialization Random N. Neighbour + N. Insertion

Operator Result

Edge R. C. Average 124914 123824 121463 120664 122687 121814 120108 119113

Std. dev. 2207.1 1822.7 1429.2 1035.2 2455.3 2228.4 1066.8 382.2

Order C. Average 191559 173269 162948 155878 127218 125408 125411 124444

Std. dev. 5707.1 3443.2 3584.0 2735.1 1396.3 1257.4 868.9 832.6

NI-Co. C. Average 118704 118557 118500 118411 118545 118544 118448 118402

Std. dev. 410.3 290.1 224.6 148.4 284.0 404.6 153.1 145.3

Insert M. Average 127204 125089 123349 121681 123632 121889 120785 119690

Std. dev. 3261.8 2750.6 1947.9 1500.7 2549.1 1308.5 1580.0 1026.0

Disp. M Average 131474 125539 122503 121340 123946 121515 120439 119256

Std. dev. 2823.6 2978.9 1647.1 1227.8 2003.1 1716.9 1570.1 713.3

2-OPT M. Average 128731 128148 127153 124223 123495 122427 120474 119476

Std. dev. 2801.3 2938.1 2581.4 1653.8 1723.6 2017.2 1442.0 484.8

Block M. Average 119131 120113 120820 120603 119194 119894 120910 120671

Std. dev. 699.9 974.6 325.1 378.9 658.2 1242.2 300.0 432.4

Table 2: Results of the bier127 problem without constraints. The optimal solution is
known to be 118282. It has in fact been found numerous times by our algorithm.

Population Size 20 50 100 200 20 50 100 200

Initialization Random N. Neighbour + N. Insertion

Operator Result

Edge R. C. Average 136581 133279 132377 131292 134191 132306 130338 129783

Std. dev. 2879.1 2502.0 2163.8 1123.9 2330.7 1988.0 1329.4 1104.7

Order C. Average 217019 196294 181517 171465 138161 136938 136232 135202

Std. dev. 7449.7 5469.9 6593.2 5360.0 2396.1 2073.2 1553.5 981.1

NI-Co. C. Average 128445 128474 128157 128067 128610 128464 128218 127971

Std. dev. 545.3 586.5 566.5 369.1 642.7 534.3 443.6 222.6

Insert M. Average 139208 133758 133056 131835 135090 133349 131783 130294

Std. dev. 4413.4 3166.5 2172.5 2416.4 2078.2 2134.7 1172.0 1037.2

Disp. M Average 139903 135594 133623 131844 133165 132417 130997 130006

Std. dev. 4185.5 2980.6 3382.6 1370.2 2465.2 2335.5 1433.7 1178.1

2-OPT M. Average 139987 139489 135527 133856 135010 132332 131678 130173

Std. dev. 2282.8 3525.2 2850.8 2314.5 2050.3 1911.8 1704.4 889.0

Block M. Average 128818 130960 130957 130404 129367 130195 130981 130586

Std. dev. 883.6 932.6 455.2 501.9 888.4 1292.2 351.2 502.4

Table 3: Results of the bier127 problem with constraints. The best result found by
the algorithm in one run was 127762.

It can be concluded from Tables 2 and 3 that the NI-combined crossover
operator performes best. It outperformed the other two crossover operators on
every combination of operators and parameters that was tested. Its best average

10



result in our experiments was only 1.0% away from the optimal solution. Order
crossover performed worst of the three. It needs a very large population size to
achieve a decent result. With a population size of 20 and random initialization,
its average result was 62% worse than the optimal solution on the problem with-
out constraints. With constraints, its average result was even 69% worse than
the best solution that was found by our algorithm. It can also be concluded
that the best performing mutation operator is block-type mutation. Some in-
teresting behaviour by the operator can be observed: it performes better when
the population size is smaller. Its results with a population size of 20 are better
than what the other operators achieve with a population size of 200, although
the differences are small. There are only small differences between the results
of the other three mutation operators. It can be said that the displacement
mutation operator slightly outperformes the other two when population sizes
are large, but all three achieve very similar results. Tables 2 and 3 also show
that initializing the population with the nearest neighbour and nearest insertion
operators, almost always improves the solution quality of the algorithm.

From comparing the problem without constraints to the problem with con-
straints, the following can be concluded: the added constraints do not affect the
performance of the operators. The NI-combined crossover operator is the best
operator on both problems and the block-type mutation operator is the highest
performing mutation operator on both problems. As can be seen from Tables
2 and 3, the operators that performed well on the problem without constraints,
also performed well on the problem with constraints, and the same can be said
for operators did not perform well.

The results of the other problems that were tested, can be found in the
Appendix section. A lot of the results are similar to the results of the bier127
problem, in the sense that the same operators got the best results, so they sup-
port the conclusions that were drawn based on the bier127 problem. However,
a few interesting differences can be pointed out. Tables 7, 8, 9 and 10 show
that the edge recombination crossover operator performes a lot worse when the
population size is large and random initialization is used. The mutation opera-
tors were tested with the edge recombination operator as well and therefore the
results of these operators are rather strange as well. The 2-opt operator often
achieves the best results on these occasions. It can also be seen that on these
problems, the results when a population is initialized by neighrest neighbour
and nearest insertion are all very similar. This is probably because the opera-
tors struggle to improve the solutions that were created by these initialization
operators. It can be seen that here the solution quality of the NI-combined
crossover operator is higher than the solution quality of the other operators as
well.

A final experiment will be shown, in which we compare the results of the
algorithm to the optimal solution that is known for the four problems without
constraints. For this experiment the NI-combined crossover operator is used,
combined with two mutation operators, namely 2-opt and block-type mutation.
The population size has been set to 25, to keep computation time reasonable.
Again, tournament selection is used as the selection operator and the other
parameters are the same as in the previous experiment. Each combination has
been run 20 times and Table 4 shows the results of these experiments.

Only for the rd400 problem, the algorithm has not found the optimal solu-
tion. The optimal solution for rd400 is known to be 15281, according to TSPLIB.

11



Initialization Random N. Neighbour N. Insertion N. N. + N. I.

berlin52
Best 7542 7542 7542 7542
Average 7542.0 7542.0 7542.0 7542.0
Std. dev. 0.0 0.0 0.0 0.0

bier127
Best 118282 118282 118282 118282
Average 118628 118654 118496 118630
Std. dev. 420.3 478.3 214.8 410.0

gil262
Best 2378 2380 2383 2380
Average 2408.3 2398.2 2404.0 2396.9
Std. dev. 23.8 13.4 11.6 9.4

rd400
Best 15502 15385 15327 15314
Average 15572 15553 15453 15440
Std. dev. 43.1 84.0 61.0 58.6

Table 4: Results of the final experiments in which it is tried to achieve near-optimal
solutions with the algorithm.

For the other three problems, the algorithm found the optimal solution at least
once. The method of initialization has little influence on the end result. On
the largest problem, we can see that nearest insertion initialization achieves a
slightly better average solution than initialization by nearest neighbour, while
a combination of the two achieved the best average on three of the four prob-
lems. On the largest problem, the best combination of operators was only 1.0%
away from the final solution, on average. It can be concluded from the standard
deviations that the algorithm performs very consistent as well. On every run it
will come very close to the optimal solution.

6 Conclusion

A genetic algorithm has been presented to solve the travelling salesman problem
with the addition of area constraints. The experiments show that NI-combined
crossover and block-type mutation generate the highest quality tours. They
are both based on the nearest insertion method and while they require a bit
more computation time, they improve tours very quickly. It has been shown
that the algorithm can achieve very good results, even for problems with up to
400 cities. On the rd400 problem, the algorithm was only 1.0% away from the
optimal solution on average. It was also shown that the algorithm can achieve
good results when area constraint are added to the TSP. NI-combined crossover
and block-type mutation also achieved the best results in this situation. The
low standard deviations also show that these operators are very consistent: they
produce a high quality tour on every run. While the optimal solutions of these
problems with area constraints is unknown, it is possible to assess the solutions
by hand and it can be seen that the solutions look good. Figure 5 shows a
picture of the solver. It has been solving a problem with area constraints and
the solution looks like it is very close to the optimal solution.

7 Future Work

While the current algorithm achieves good results, the genetic operators could
still be improved further. The experiments suggest that the operators that

12



are based on nearest insertion work well. It would be a good addition to the
solver to add more of these operators. Right now, it only has one crossover and
one mutation operator that utilizes this method. It could also be possible to
hybridize operators with the nearest neighbour method. For example, the edge
recombination crossover operator currently chooses a random city to go to next,
when a city’s edge list is empty. Maybe it would improve the operator, if it
instead would choose the city that is nearest to the current city.

It would also be interesting to add more real life constraints to the solver.
A good example would be precendence constraints, where city a needs to be
visited before city b. It could also be turned into a time constraint, where the
constraint would be that city a and b need to be visited within the first 20 cities,
or within the first 50 kilometres travelled.

References

[1] T. Blickle & L. Thiele. A Comparison of Selection Schemes used in Genetic
Algorithms. TIK-Report No. 11. Computer Engineering and Communica-
tion Networks Lab (TIK). Swiss Federal Institute of Technology (ETH)
Zürich, Switzerland (1995).

[2] W. Cook. Concorde TSP Solver. Mathematics — University of Waterloo,
www.math.uwaterloo.ca/tsp/concorde/ (2011).

[3] L. Davis. Applying Adaptive Algorithms to Epistatic Domains. Proceed-
ings of the International Joint Conference on Artificial Intelligence, 162–
164. Morgan Kaufmann Publishers, San Francisco, CA (1985).

[4] D. B. Fogel. An Evolutionary Approach to the Traveling Salesman Prob-
lem. Biological Cybernetics 60: 139–144. Springer-Verlag, Berlin (1988).

[5] J. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, MI (1975).

[6] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Pro-
grams. Springer-Verlag, Berlin (1992).

[7] G. Reinelt. TSPLIB. Institut für Informatik — Universität Heidelberg,
comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ (2013).

[8] Y. Sakurai, T. Onoyama, S. Kubota, S. Tsuruta. A multi-inner-world
Genetic Algorithm to optimize delivery problem with interactive-time.
In D. Davendra, Traveling Salesman Problem, Theory and Applications:
137–154. In-Tech (2010).

[9] D. Whitley, T. Starkweather & D’Ann Fuquay. Scheduling Problems and
Travelling Salesman: The Genetic Edge Recombination Operator. In J.
Schaffer (ed.) Proceeding on the Third International Conference on Ge-
netic Algorithms: 133–140. Morgan Kaufmann Publishers, Los Altos, CA
(1989).

8 Appendix

13



Figure 5: A solution of the solver on the bier127 problem with area constraints.

Population Size 20 50 100 200 20 50 100 200

Initialization Random N. Neighbour + N. Insertion

Operator Result

Edge R. C. Average 7861.9 7679.9 7632.9 7588.9 7627.5 7553.7 7542.0 7542.0

Std. dev. 287.7 197.9 148.3 115.2 136.0 50.8 0.0 0.0

Order C. Average 8946.3 8379.9 8115.7 7838.4 7982.5 7821.6 7742.4 7646.5

Std. dev. 283.5 215.5 196.3 198.9 158.8 154.3 115.9 76.3

NI-Co. C. Average 7542.0 7542.0 7542.0 7542.0 7542.0 7542.0 7542.0 7542.0

Std. dev. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Insert M. Average 7890.0 7756.7 7691.8 7570.0 7603.0 7542.0 7542.0 7542.0

Std. dev. 217.2 228.6 206.7 90.6 131.5 0.0 0.0 0.0

Disp. M Average 7852.2 7740.6 7693.8 7542.0 7616.4 7542.0 7542.0 7542.0

Std. dev. 202.1 144.1 211.6 0.0 120.7 0.0 0.0 0.0

2-Opt M. Average 8205.8 8100.1 7776.0 7700.9 7651.0 7559.4 7553.7 7542.0

Std. dev. 295.0 288.8 150.8 158.6 146.4 75.6 50.8 0.0

Block M. Average 7542.0 7542.0 7542.0 7542.0 7542.0 7542.0 7542.0 7542.0

Std. dev. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 5: Results of the berlin52 problem without constraints. The optimal solution is
known to be 7542 and the algorithm found that solution a lot of times.

14



Population Size 20 50 100 200 20 50 100 200

Initialization Random N. Neighbour + N. Insertion

Operator Result

Edge R. C. Average 12279 12127 12114 12035 12136 12047 12035 12016

Std. dev. 539.0 195.8 249.5 58.4 135.8 56.5 58.4 11.7

Order C. Average 13502 13014 12535 12524 12675 12375 12282 12214

Std. dev. 393.1 434 76.5 293.6 340.9 123.6 149.6 80.5

NI-Co. C. Average 12012 12012 12012 12012 12012 12012 12012 12012

Std. dev. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Insert M. Average 12702 12166 12138 12029 12154 12088 12022 12014

Std. dev. 892.6 221.3 299.9 58.5 139.8 105.2 16.9 8.5

Disp. M Average 12712 12345 12088 12027 12142 12058 12044 12018

Std. dev. 747.4 605.2 165.0 58.4 137.1 89.1 66.8 13.9

2-OPT M. Average 12706 12264 12250 12056 12151.1 12099 12048 12026

Std. dev. 814.6 218.4 275.8 82.7 158.9 130.7 69.0 52.5

Block M. Average 12012 12012 12012 12012 12012 12012 12012 12012

Std. dev. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 6: Results of the berlin52 problem with constraints. The best result found by
the algorithm in one run was 12012. Because this solution was found so many times
by the algorithm, it is very likely that this is in fact the optimal solution.

Population Size 20 50 100 200 20 50 100 200

Initialization Random N. Neighbour + N. Insertion

Operator Result

Edge R. C. Average 2655.5 2570.2 7075.9 7708.4 2554.2 2543.4 2546.0 2530.1

Std. dev. 51.4 38.7 2964.7 154.4 34.7 29.2 19.2 23.8

Order C. Average 8523.7 7629.3 6976.5 6347.7 2576.9 2552.9 2541.7 2540.0

Std. dev. 178.1 159.1 180.0 131.9 24.4 22.3 21.3 14.7

NI-Co. C. Average 2414.1 2403.1 2398.0 2387.4 2404.7 2389.8 2391.0 2390.0

Std. dev. 13.9 19.6 9.5 7.7 10.3 8.3 8.4 6.3

Insert M. Average 2686.6 2639.7 9307.2 7869.0 2561.1 2544.3 2542.7 2524.9

Std. dev. 52.9 71.1 216.3 155.2 34.0 23.1 19.2 21.8

Disp. M Average 2997.8 2742.9 9022.2 7959.5 2563.4 2560.1 2540.9 2529.6

Std. dev. 91.3 69.0 1500.3 197.4 26.5 20.6 22.2 27.5

2-OPT M. Average 2690.3 2682.5 6528.6 5196.1 2563.7 2544.7 2545.2 2536.5

Std. dev. 54.9 52.0 2841.8 2331.7 21.6 23.2 19.5 24.2

Block M. Average 2674.3 2819.8 2809.1 2789.2 2529.1 2558.7 2544.0 2539.6

Std. dev. 202.5 41.8 33.6 48.0 65.3 20.0 13.6 13.1

Table 7: Results of the gil262 problem without constraints. The optimal solution is
known to be 2378 and the algorithm was able to find that solution as well, with the
NI-combined crossover operator.

15



Population Size 20 50 100 200 20 50 100 200

Initialization Random N. Neighbour + N. Insertion

Operator Result

Edge R. C. Average 10980 9434 64897 67487 8792 8740 8735 8735

Std. dev. 1519.5 957.6 32504 2390 63.3 60.1 41.7 31.8

Order C. Average 55339 40994 33622 21573 8823 8777 8750 8739

Std. dev. 3249.9 4290.9 3338.0 2241.6 124.9 35.2 28.9 25.3

NI-Co. C. Average 8568 8558 8544.7 8543 8565 8569 8550 8544

Std. dev. 26.6 20.4 18.9 13.2 21.9 15.8 16.4 11.9

Insert M. Average 12521 17678 84262 68341 8784 8762 8746 8732

Std. dev. 2090.7 19095 3827.0 2783.8 49.1 48.1 34.2 33.1

Disp. M Average 10626 20427 85262 68655 8797 8764 8758 8736

Std. dev. 1250.4 24928 2586.2 3180.5 46.7 31.7 19.2 33.0

2-OPT M. Average 12371 11492 61793 63687 8773 8760 8750 8737

Std. dev. 1684.6 1612.8 29504 3000.1 55.6 36.2 30.2 31.2

Block M. Average 13314 12187 11119 10586 8798 8754 8737 8734

Std. dev. 1272.8 1295.8 749.6 880.4 95.4 60.3 26.2 22.1

Table 8: Results of the gil262 problem with constraints. The best result found by the
algorithm in one run was 8525.

Population Size 20 50 100 20 50 100

Initialization Random N. Neighbour + N. Insertion

Operator Result

Edge R. C. Average 17992 32945 80857 16687 16581 16471

Std. dev. 211.0 32539 27397 120.3 105.3 203.1

Order C. Average 69745 63337 58539 16692 16577 16516

Std. dev. 1035.0 1224.4 1393 122.0 91.1 48.3

NI-Co. C. Average 15616 15606 15496 15476 15449 15411

Std. dev. 98.7 102.9 68.2 62.5 51.5 48.5

Insert M. Average 17734 101850 96322 16542 16601 16527

Std. dev. 280.9 1884.4 1229.3 210.0 103.4 99.4

Disp. M Average 21517 93497 95957 16645 16587 16554

Std. dev. 535.5 24928 1372.2 107.1 83.1 85.6

2-OPT M. Average 17511 17175 85680 16635 16582 16545

Std. dev. 216.2 331.5 22890 168.2 108.7 97.0

Block M. Average 27044 26783 25505 16277 16535 16541

Std. dev. 2797.3 1264.2 1202.6 486.3 292.0 75.0

Table 9: Results of the rd400 problem without constraints. The optimal solution
is known to be 15281, but the algorithm was not able to find this solution in this
experiment.

16



Population Size 20 50 100 20 50 100

Initialization Random N. Neighbour + N. Insertion

Operator Result

Edge R. C. Average 32895 43916 322611 28190 26918 27032

Std. dev. 2159.3 64180 98678 937.7 781.3 657.5

Order C. Average 213199 183856 160577 28337 27635 27244

Std. dev. 6131.6 5559.2 3760.5 693.6 672.0 641.1

NI-Co. C. Average 24661 24677 24397 24581 24562 24270

Std. dev. 446.8 483.9 390.5 471.7 453.9 110.5

Insert M. Average 36446 376305 361834 28335 27509 26962

Std. dev. 3344.2 18602 5001.7 814.6 725.4 613.7

Disp. M Average 38583 361940 362843 28401 27686 27250

Std. dev. 2905.6 77861 7686.8 757.8 957.0 549.2

2-OPT M. Average 34539 78564 311444 28436 27396 26883

Std. dev. 2836.0 109103 93939 1433.1 678.8 519.4

Block M. Average 83473 79458 72993 27587 27384 26832

Std. dev. 10212 6056.8 5834.3 1531.6 969.4 399.3

Table 10: Results of the rd400 problem with constraints. The best result found by the
algorithm in one run was 24076.

17


