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Abstract

Clusters in computing grids are usually connected through a WAN. This thesis
investigates an alternative way of connecting two clusters which seems suitable
for cluster grids and campus grids: the ’Leiden Zipper’. A class of applications is
presented which would benefit from such a bridging architecture. Finally a soft-
ware forwarder designed especially to run MPI on the ’Leiden Zipper’ architecture
is presented and evaluated on two zipped QDR InfiniBand clusters.

1 Introduction

With the need to share large datasets and to solve problems that are too big
to handle on one computing cluster, the need started to rise to share computing
power among different institutions across the globe. One of the envisioned ways to
do this, is to couple different computing clusters, making the computing resources
globally available, much like an electric grid, hence called grid computing [4].

The way computers are connected and therefore the way clusters, being col-
lections of computers, are connected has great impact on both the performance
and the cost of the aggregated system. For instance, take the fully-connected to-
pology, in which every computer is directly connected to all the other computers
individually. This is ideal for performance, because each pair of computers can
communicate through a dedicated line. For cost however, it is not, since n(n−1)/2
links are needed when communication may go in both ways over one link to con-
nect n computers. This results in hardware costs scaling with Θ(n2) which is
costly.

At the other side of the spectrum are daisy-chained systems, where each com-
puter is connected to two other computers, creating a chain or a ring. To do this
in the chain case, only n − 1 links are needed for n computers, thus the cost
scales by Θ(n) which is relatively cheap. However, for computers at both ends
to talk, n− 2 computers need to forward the signal, which takes time. This res-
ults in high latencies and bad performance. Furthermore, if two computers need
to use one of the shared cables, packets might have to wait for other transfers
to finish, resulting in higher transfer times. These are some of the reasons why
modern connection topologies are compromises between cost and performance.
Tree structures, like the Fat trees [13], are popular connection topologies. In these
topologies, the amount of forwards, or hops, scale by Θ(log(n)) and the hardware
costs scale by Θ(n log(n)). Also high-dimensional structures like hypercubes and
multi dimensional torusses are commonly used.

In grid computing, clusters are usually connected through a WAN, which
usually is a collection of the topologies described above. Some even see being
connected through a WAN as an essential feature of grid computing [16]. This
thesis investigates an alternative way of connecting two clusters, namely by zip-
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ping them together using a set of computing nodes which are connected to both
clusters at the same time (hence nicknamed ’The Leiden Zipper’). The way this
is done is described in Section 2.

In Section 2.2 it is shown that connecting clusters using the Leiden Zipper
bridge architecture, in theory has properties which enable certain classes of paral-
lel programs to suffer from less overhead than they would have experienced if they
had been connected using classical approaches, that connect different subnets by
putting a set of routers in between.

Besides benefits, there are some problems to deal with. Although the ’Leiden
Zipper’ could be linked in any cluster using any type of interconnect, this thesis
will focus on InfiniBand, a popular interconnect for high performance computing
clusters. Some of its features will be described in Section 1.1. InfiniBand only
allows the routing of packets from one subnet to another by a router [1]. Since
at the time of writing no InfiniBand-to-InfiniBand router or bridge was available
that could connect InfiniBand networks to each other that both use copper cables
(only InfiniBand to Fibre or InfiniBand to Ethernet), a different solution was
sought and found in the form of a forwarding process (the forwarder) to enable
communication between clusters.

Since MPI is a de-facto standard in the field of high performance computing,
some functions of it were implemented to see how a forwarding process would
influence the performance of several applications. This implementation, called
MMPI, consists of a layer on top of Open MPI [7] which decides if communication
will go through the forwarder or stays in the local cluster. MMPI including the
forwarder is further described in Section 3. The performance of the forwarder is
also evaluated in Section 3 using a subset of the OSU benchmarks. In Section 4
the performance of MMPI on a subset of the popular NAS Parallel Benchmark
(NPB) is analysed.

1.1 Introduction to InfiniBand

InfiniBand is a popular Storage Area Network interconnect for high performance
computing clusters because it allows for high bandwidth and low latencies. This
high performance is achieved by offloading as much of the protocol (the first 4
layers in the OSI model) as possible to the hardware and allowing the hardware
to access memory directly. In addition to that, InfiniBand allows for user-space
access to the hardware. In this way the operating system can be bypassed as
much as possible, saving CPU cycles for computing and allowing InfiniBand to be
a zero-copy protocol. InfiniBand is also a lossless protocol, meaning that packets
are never dropped, however this does mean that the appropriate buffers must be
allocated before transfer starts.

The main building blocks of InfiniBand are Host Channel Adapters (HCAs),
Target Channel Adapters (TCAs), switches, routers and range extenders. Infini-
Band uses a switched fabric topology, which means that all compute nodes and
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I/O devices lie on the edge of a network created from switches, routers and range
extenders. So all communications over the fabric either start or end at a channel
adapter.

Channel adapters come in two forms. TCAs are used to connect I/O devices
to the InfiniBand fabric. HCAs are used to connect the compute nodes to the
InfiniBand fabric and contain all the hardware needed to allow the user to control
the fabric. Software access to the switched fabric is defined by a minimum set
of functionalities called Verbs, which is the native way to send information over
InfiniBand. Data can either be sent using send/receive operations, or by remote
direct memory access (RDMA). The first one makes use of sending buffers. The
latter allows the user to write directly into the memory of the remote machine.
InfiniBand supports both connectionless and connected transfers, which both may
be reliable or unreliable.

InfiniBand switches are used to connect channel adapters within a subnet to
each other. An InfiniBand subnet is a part of the switched fabric that is managed
by a subnet manager. The subnet manager is a central identity that monitors the
subnet, assigns addresses within the subnet and sets the routing tables within the
switches. The addressing within a subnet is done with a Local IDentifier (LID).
The switches use virtual cut-through switching [11] and flow control is credit
based.

Several subnets can be linked together by routers. For routing in between
subnets, packets get an IPv6 compliant header. This means that addressing in
between subnets is done using a 128bit Global IDentifier (GID). The packet will
only receive the global routing header if it is known that the receiver is not present
in the local subnet.

As for the cabling, InfiniBand supports both copper and fibre. Copper cables
can support ranges up to 30 meters, fibre can support distances up to several
kilometers. Cables and hardware allow for different speeds. The InfiniBand 1.2.1
specification describes for SDR (2.5Gb/s), DDR (5Gb/s), QDR (10Gb/s), and the
1.3 specification allows even higher speeds like FDR (14Gb/s) and EDR (26Gb/s).
Note that since SDR, DDR and QDR use 8b/10b encoding, only about 4/5th of
the speed is achievable. FDR and EDR use 64b/66b encoding to allow for higher
efficiency.

InfiniBand is full duplex since it has a dedicated lane for each direction. Also,
higher bandwidth can be achieved by 4x, 8x and 12x cables, which pack the above
mentioned 1x cables in bundles of respectively 4, 8 and 12 [1].

Common topologies for InfiniBand clusters include the fat tree, hypercube
and torus topologies.
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2 The Leiden Zipper

2.1 Architecture

The idea behind the ’Leiden Zipper’ is to connect two clusters by providing a set
of ’zipper’ nodes. These nodes are connected to the network of both computing
clusters without letting those networks be physically connected to each other.
This is depicted in Figure 1.

This schematical representation suggests a way of connecting more than two
clusters using the zipper nodes. When looking at the zipper nodes as the parent,
and the clusters as children of this parent a tree structure seems logical. It might
be possible to again connect this zipped system to another zipped system with
another set of zipper nodes, forming a tree. This could give rise to a scalable
solution where the amount of zipper structures when connecting n clusters scales
with an order of Θ(n log(n)). The average amount of zipper nodes which have to
forward data when communicating between two clusters could scale by Θ(log(n)).

Figure 1: A schematical representation of how the zipper nodes (Extension) are
connected to the existing clusters. The red lines are the Ethernet connections, the
blue lines the InfiniBand connections. The black boxes are the network switches
and the grey boxes are compute/head nodes.

The fact that both networks are physically disconnected causes some issues
with InfiniBand. A process in one cluster might need to communicate with a pro-
cess in another cluster. This requires the routing of InfiniBand packets between
clusters. Routing InfiniBand packets from one subnet to another requires an In-
finiBand Router or a dual port Host Channel Adapter (HCA) with routing capab-
ilities [1]. At the time of writing, it is possible to get a router to route InfiniBand
packets from copper InfiniBand cables to either fibre or Ethernet, but no routing
between copper cabled subnets is possible. So other solutions are needed.

The other possibility is to use a software forwarder, but where IP forwarding
is a common Linux functionality, found in its network stack [15], InfiniBand for-
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warding is not. There are several reasons why this is not common practice, but
the most important one is described in Section 1.1: all communication in Infini-
Band networks starts and ends at a channel adapter. This is a direct consequence
of the protocol, which does not allow delivery of a packet to any channel adapter
other than the receiver. But even if you would be able to let the subnet manager
think that the HCA is in fact a router, you would have to do the interpretation
of the IPv6 header on the CPU (since it is not hardware supported). This would
nullify one of the features of InfiniBand which makes it so beneficial: offloading
the protocol to the hardware.

However, solutions like RDMA over Ethernet are possible which send Infin-
iBand traffic over Ethernet with relatively good performance [18]. However, if
both clusters use 4x QDR (40Gb/s), a 10Gb Ethernet connection in between
them will be quite a bandwidth reduction and thus a bottleneck.

In an attempt to get a better performance than by connecting the clusters
using RDMA over Ethernet, a software forwarder is used. To minimize the over-
head of calculating the inter-subnet routing on the CPU, MPI ranks are used for
addressing, which is simpler than the IPv6 protocol. The full solution is described
in Section 3.

2.2 Fully utilizing the zipper architecture

The best performance can of course be obtained when links with relatively low
bandwidth can be avoided. In clusters that are not zipped together, but are
connected by a high-latency, low-bandwidth WAN, only applications which have
partial calculations that can be fully contained in a cluster can avoid those links.
However, zipped clusters in theory support more types of applications.

Let Γ be the communication graph of application A. The vertices of Γ are
processes. Two vertices in Γ are connected by an edge if and only if at some time
during the computation of A there is inter-process communication between the
corresponding processes.

Applications that have a communication graph Γ that contain a vertex-cut
set C, a minimal set of vertices that, when removed, disconnect Γ in at least two
graphs, can in theory communicate without overhead by issuing the processes
corresponding to the vertices in C to the zipper nodes. Of course, there should
be enough cores in the zipper nodes to reasonably host these processes.

Other communication graphs Γ that represent applications that can be run
theoretically without overhead, are ones that have a cut-set ǫ, a minimal set of
edges that, when removed, partition Γ in at least two graphs: Ω and Σ. The
processes that should in this case be issued on the zipper nodes for maximum
performance, either correspond to all the vertices in Ω that are connected to the
edges in ǫ, or correspond to all the vertices in Σ that are connected to the edges
in ǫ. Again, the zipper nodes must have enough cores to be reasonably able to
host these processes.
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Of course, to be able to fully use this possibility, the zipper nodes must be
zipped into both clusters using a high performance interconnect. This means
that the ’Leiden Zipper’ architecture can best be used to create cluster grids
and campus grids which, according to [16], are constructed from clusters that are
geographically close to each other.

2.3 An overview of the zipper architecture

This section describes two real clusters zipped together by zipper nodes. This is
also the testbed for all benchmarks.

The two clusters that are zipped together are the Little Green Machine (LGM)
cluster and the cluster consisting of the nodes of the Distributed ASCI Super-
computer 4 (DAS4) that are located in Leiden. These were connected by 4 zipper
nodes. Schematical views of the processor environment in the computing nodes
of the LGM, the DAS4 and the zipper nodes presented in this section were made
using the lstopo tool in the hwloc framwork [3].

The LGM and DAS4 nodes used in the experiment have a 2.40GHz Intel
Xeon E5620 processor, consisting of 2 sockets with each 4 cores with 4 more made
available by HyperThreading. The cache hierarchy can be found in Figure 2. They
also use the Mellanox MT26428 HCA adapter, which is hooked to the machine
throug PCI express 2.0, to connect to the InfiniBand fabric, allowing for a 4xQDR
speed. Both clusters have a separate crossbar switch to which all nodes of a cluster
are connected. The LGM uses an IS5030 switch, the DAS4 is connected through
an IS5025 switch. Both systems are also connected through 10GigE, which is not
used during experiments except for starting up the processes.

There are some differences between the machines. The LGM nodes have 24GB
RAM and the DAS4 nodes have 48GB RAM. Besides that, the LGM nodes also
contain a graphics card, but it is not used during the experiments. More important
is the fact that the DAS4 nodes run CentOS6 kernel 2.6.32-358.14.1.el6.x86 64,
while the LGM nodes run CentOS5, kernel 2.6.18-348.6.1.el5. Since no binary
compatibility is guaranteed between the two releases, the benchmark software
was compiled separately for both systems. As for the InfiniBand drivers, the
DAS4 uses the libmlx4-1.0.4-1.el6.x86 64 userspace drivers, LGM and the zipper
nodes use libmlx4-1.0.2-1.el5.

The zipper nodes are a bit different. They contain 63GB of main memory and
a 2.0GHz Intel Xeon E5-2650 processor with 2 sockets containing 8 cores per
socket and an extra 8 per socket through HyperThreading. The cache hierarchy
is shown in Figure 3. The zipper node contains a dual-port HCA, the Mellanox
MT27500. One port of it is connected to the central crossbar switch of the DAS4
and one is connected to the crossbar switch of the LGM. The zipper nodes use
the same software and operating system as the LGM.
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Figure 2: The system topography of a LGM node, which has the same memory
hierarchy as a DAS4 node.

As for the software, two binary versions are used. The benchmark software that
runs on the DAS4 is compiled using mpicc which wraps gcc 4.4.6. The LGM and
zipper nodes use software compiled with gcc 4.1.2. All software was compiled
with the -O optimization flag. The MPI library that is used is OpenMPI 1.4.4.

It must be noted that DAS4 has a reservation system, but the LGM has not.
During experiments on the LGM, several incidents were noted of users staying
logged in on nodes and occassionally running programs on them, which might
have interfered with the benchmarks running on those nodes.

3 MMPI

MMPI is a layer on top of Open MPI which allows communication between two
clusters to go through a forwarding process, while using the ’native’ Open MPI
functions to communicate within a cluster. It must be noted that it is not a real
MPI implementation since no real effort has been made to be conform the MPI
specification. Applications using MMPI must be slightly rewritten: a seperate
header file must be included and an M must be placed in front of MPI calls
from which the user wants to use the MMPI version. This is because of technical
reasons, and not because of a deliberate breaking with the MPI semantics. Also
application startup is made a more complex, and must be done using a shellscript,
because a forwarding process has to be started on a zipper node.

The forwarding process is a separate process to which other groups of processes
can connect using the MPI_Lookup_name, MPI_Connect and the MPI_Accept func-
tions. These dynamic process management functions are described in the MPI-2
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Figure 3: The system topography of a zippernode.

standard [9]. The main arguments that supported implementing the forwarder
using MPI functions, and not using the more low-level InfiniBand Verbs API
were code complexity, performance and portability. With the MPI functions used
for communication, any MPI library supporting MPI-2 features can be used to
make MMPI run. Because of that, depending on the MPI library used, more in-
terconnection networks than only InfiniBand can be supported. Also, most MPI
libraries are highly optimized, which will benefit the performance of MMPI.

After the connection, the forwarding process will have rank 0 in both com-
municator groups. This means there are double rank numbers in both groups
of processes. To continue to be able to use ranks to uniquely address a process,
virtual ranks have been implemented similar to the method described in [8].

Basically one of the two groups is chosen to be the ’low’ group, and the other
group will be the ’high’ group. Let us say that the ’low’ group has x processes,
not including the forwarder, and the ’high’ group has y processes. Now processes
1 till x will get virtual rank 0 till x− 1. The processes 1 till y in the high group
will receive virtual rank x till x + y − 1.
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3.1 OSU MPI Benchmarks

The next few subsections will describe the implemented MPI functions and show
their performance compared to the Open MPI implementation. The benchmarks
used consist of a subset of the OSU MPI Benchmarks 4.0.1 (OMB). These are
the classical microbenchmarks for evaluating MPI performance. Both point-to-
point and collective benchmarks were used. From the point-to-point benchmarks,
osu_bw, osu_bibw and osu_latency were used. The first of these, osu_bw meas-
ures the average sustainable bandwidth by issueing MPI_Isend 64 times after
each other, from process 0 to process 1, and then waits for the completion of
these sends. It then waits for an acknowledgement from the other process. This
is done 100 times in succession for different transfer sizes.

The osu_bibw benchmark measures the bidirectional bandwidth. It works
about the same as osu_bw, with the difference that both process 0 and 1 send to
each other, again using non-blocking MPI_Isend and MPI_Irecv.

The last of the point-to-point benchmarks, osu_latency measures the point-
to-point latency using a classical ping-pong benchmark, implemented by blocking
sends and receives. The latency is measured by averaging over 10000 of such ping-
pong events for each different transfer size.

The reported point-to-point benchmarks are all averaged over 15 runs of the
benchmark.

The collective benchmarks measure the average time it takes to execute a
certain MPI function. This is done by executing this function a thousand times
across a certain amount of processes for different transfer sizes. On each process
the execution of these MPI calls is timed, and the times reported are the average
of all these times.

The measured transfer sizes lie between 1B and 4MB for the point-to-point
benchmarks. The transfer sizes of the collective benchmarks range up to 1MB.
This gives us the appropriate tools to evaluate the results reported by the NAS
Parallel Benchmarks described in Section 4 since the bulk of the communications
made by those benchmarks lie in those ranges [20].

To make a fair comparison of the MMPI version and the MPI version of the
applications possible, the processors are laid out on the cores in a specific way
during each of the benchmarks.

When running MMPI, the only thing running on the zipper nodes is the
forwarding process. This is done to simplify comparison of the performance, ex-
cluding factors like overhead of running an extra forwarding process next to the
computation processes. When adding extra nodes to the computation, nodes are
added in pairs, one on the LGM cluster and one on the DAS4. This means that
the number of processes running on LGM is equal to the number of processes
running on DAS4.

The node layout for MPI on a single cluster is the same. Processes are added
in pairs, but they are added to different nodes in the same cluster, simulating
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the same layout of processes on the core, but instead of a forwarder, it just has
a normal InfiniBand link in between.

For both MMPI and MPI, when one process of a pair is added to a cluster,
it will be added in such a way that as less nodes as possible are in use and as
many cores as possible are in use on a single node. The stress on the L3 cache
in a machine is distributed as evenly as possible. This is done by dividing the
processes evenly among the sockets. Lastly, only physical cores are used, this
is done in order to prevent side-effects cause by hyperthreading. The resulting

Figure 4: An example displaying how the native MPI ranks (red) are distributed
over the cores of a processor. Note that all these processes have a sibling process
in the remote cluster, which are laid out in the exact same way on a node in that
cluster.

scheme, illustrated in Figure 4 is that in a cluster (LGM), the process with native
MPI rank 0 is assigned to core 1 of socket 1, process 1 is assigned to core 1 of
socket 2, process 2 is assigned to core 2 of socket 1, etc. This is done till all
physical cores of a node are taken, in our case the amount of physical cores is 8.
So process 8 is added to the first core of socket 1 of a new machine, etc. Note
that because the processes are added in pairs, the layout is copied in the remote
cluster (DAS4).

Because of the order of process start-up, during MMPI runs, the LGM always
contains the lower-ranked processes. So the process with virtual rank 0 is always
located in the LGM cluster.

3.2 Handshaking protocol

Nearly all the implemented MPI operations (except for barrier) use a handshaking
protocol to communicate with the forwarder. This results in easier programming
because you do not have to split up messages bigger than some size of a pre-
allocated buffer. A schematical representation of the handshaking protocol in the
case of a point-to-point transfer can be found in Figure 5.
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The request is initiated by sending the forwarder information concerning the
message type (point-to-point, broadcast, reduce, etc.). Depending on the transfer
type, information included might be the payload size, addressing information like
the virtual rank of the other process and the message tag. This MPI message has
a payload of 7 integers.

The forwarder matches this information with pending transfer requests. If no
matching request is found, the forwarder adds this request information to the list
and adds an identifier (ID) to the transfer. This ID is send back to the request
initiator. A blocking call is used to receive the ID.

If there is a matching request, buffers of sufficient size are allocated on the
forwarder to enable the transfer. Then the request ID of the matching request is
send back. This ID is used as a tag to identify the real transfer of the data.

At this moment, all parties involved in the communication have the transfer
ID. The actual transfer is then handled, after which the forwarder will free the
buffers and again starts waiting for new transfer requests.

Figure 5: The handshaking as it is used in a point-to-point transfer between
Alice and Bob. The part marked by ’blocking’ is the actual handshaking. The
handshaking is blocking because it is implemented with blocking MPI calls.

3.3 Point-to-point

The MPI point-to-point operations simply deliver a message between two pro-
cesses. The sender has to call a send function and the receiver has to call a
receive function. Both blocking versions of the basic send and receive opera-
tions (MPI_Send and MPI_Recv) and the non-blocking operations (MPI_Isend
and MPI_Irecv) have been implemented.

After the handshaking has succeeded, the sending side of the transfer will
transmit the buffer to the forwarder. The forwarder receives this information
using a blocking receive call and then forwards it to the receiver.
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Note that even the non-blocking operations will block during the handshaking
since the reception of the transfer ID is done using a blocking call. The difference
is that the non-blocking MMPI functions use non-blocking MPI calls to receive
the real data. The performance of the point-to-point operations are evaluated

Figure 6: Bandwidth, bi-directional bandwidth and latency results for the MMPI
and MPI implementations for the point to point communication

in Figure 6. By looking at the bandwidth plots, several things can be noted.
First of all, although having the same HCAs, the LGM and the DAS4 network
perform quite different. The DAS4 cluster reaches about 3500MB/s, which is
quite similar to bandwidth of the QDR ping-pong benchmarks reported in [14].
Nevertheless, the LGM cluster only reaches 780MB/s, an interesting but yet
unexplained difference.

Another, more relevant, fact can be found comparing the bi-directional band-
width plot with the uni-directional bandwidth plot. InfiniBand is full duplex with
separate lines for each direction, so for both the LGM and the DAS4 the band-
width doubles in the bi-directional case. However, this is not the case for MMPI,
which uses the forwarder during communications. Since the forwarder can only
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handle one request at a time, it is half duplex. Therefore the maximum band-
width does not increase when communicating in both directions. This could be
solved by either making the forwarder multithreaded, enabling it to handle more
transfers at a time, or by creating a separate forwarder for communications in
each direction.

The latency plot reveals another weak point of the use of a handshaking pro-
tocol in combination with a single threaded forwarder. Since the communicating
parties have to wait on their handshake, they at least have to wait for a normal
MPI transfer of 7 integers for the information (depending on your C implement-
ation about 28B) and the MPI transfer sending back the transfer ID of 1 integer
(4B). Hereafter the normal communication is started. Since the reception from
the sender and the forwarding to the receiver have to be done in serial, this adds
up the transfer latency for that transfer size of both clusters. Latencies can even
get worse if the forwarder handles another transfer in the mean time, which is
to be expected when more than 2 parties engage in communication over the for-
warder. For small transfers this can more than double the transfer latency found
in the slower network, as can be seen in the graph.

For larger transfers, the latency of the MMPI implementation gets quite close
to the theoretical best case for transfer in serial, which is the time taken to send
the packet from the sender to the forwarder plus the time taken to send the
data from the forwarder to the receiver. The overhead of the handshake will be
relatively small compared to the transfer time of larger amounts of data, so is
ignored in this best case.

Several interesting bumps are present in the latency graph. The first one is
around transfers of 100B, which is a clear result of the underlying native MPI
implementation that also expresses this bump. The other interesting bump can be
found at transfers around a 256KB transfer size. It is mainly interesting because
it only shows up in the MMPI implementation and it is also present in the form
of a dip at the 256KB transfer size in both the bandwidth plots. One can only
speculate why it is there, but the fact that the performance restores at higher
transfer sizes and the size of the dip seem to rule out that it has anything to do
with the L2 cache of the system which is 256KB, and might cause cache misses.
There is not enough information to be sure, so this is for future investigation.

3.4 Barrier

The goal of MPI_Barrier is synchronization by waiting till all processes have
reached the barrier before continuing. The MMPI implementation of the bar-
rier is straightforward. Both groups of processes perform a barrier on their local
communicator, in which the forwarder is not included. As soon all processes in
a communicator get through the barrier, the lowest ranked process will send a
request to the forwarder. In contrary to the point-to-point case, the transfer ID
will only be returned to the requesting process when the matching request has
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been received by the forwarder. So it will block the calling processes until both
groups of processes have reached the first barrier. After the transfer ID is re-
turned to both processes, the processes will again perform a barrier in their local
groups. To make an approximation for the case in which the barrier latency is

Figure 7: Latency of both the MMPI and the MPI barrier implementations.

much higher than the 4 byte message latency, let n be the amount of total pro-
cesses in both process groups, let barriers1/2n be the normal MPI barrier time in
the slow group for n/2 processes and let barrierf1/2n be the normal MPI barrier
time in the fast group for n/2 processes. Since two barriers are performed with
half of the total amount of processes in each local group, the expected latency
of the MMPI implementation in the slow group, in this case the LGM, will be
about 2barriers1/2n. For the fast group, in this case the DAS4, the barrier time
of the MMPI barrier will be about barriers1/2n + barrierf1/2n.

To see if this is the case, Figure 7 shows the latency of the normal MPI and
MMPI implementations of MPI_Barrier. Note that the latencies are averaged
over both the LGM and DAS4 latency time by nature of the benchmark. When
taking this into account, the expected latency coincides quite well with the ap-
proximation.

A problem of algorithms that use two barriers is that they do not synchronize
processes in two communication groups tightly [8], which might not be what you
want if the purpose of the algorithm is synchronization.

3.5 Broadcast

MPI_Bcast is used to send a message from one process, the root, to all the other
processes in a communicator. In MMPI, the root sends a request to the forwarder
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to make a broadcast. It uses the ID that it received during the handshake as a tag
to send the buffer to the forwarder. After that, it starts a native MPI_Bcast with
the forwarder as root. Note that this time only the root does the handshake, all
the other processes of both clusters immediatly perform the native MPI_Bcast.

Figure 8: Latency of both the MMPI and the MPI broadcast implementations
for different transfer sizes.

In Figure 8 it can be seen that the performance drop for low transfers, caused
by the handshaking protocol, is present in MMPI’s MPI_Bcast at least in case
of 2 processes. However when comparing and extrapolating the results in Fig-
ures 8 and 9, for transfer sizes between 100B and 100KB among more than 4
processes, MMPI’s MPI_Bcast latency is about as high as it is for the normal
MPI implementation in the worst cluster up to the average time of the native
MPI implementation in both clusters. It is hard to pinpoint an exact reason for
this behaviour and explanations may heavily rely on the broadcast algorithm
used in Open MPI.

One explanation for the fact that MMPI gets the average latency of MPI’s
Bcast algorithms in both clusters at medium sized messages could be that the
lowest ranked process in Open MPI’s broadcast algorithm will not send much,
for example only two messages. After these messages are sent, the forwarder can
start the broadcast to the other cluster. This would cause a large overlap in the
execution of the broadcast calls in both clusters, keeping latency down. However,
this theory can not explain why this low latency does not scale to transfer sizes
higher than 100KB, so future research is needed.

Another set of performance degradations can be found in Figure 8 at sizes
of transfer which correspond with the cache sizes of the system. One is quite
small and is around the the L1 cache of 32KB in the 2 processors case. The
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Figure 9: Latency of both the MMPI and the MPI broadcast implementations
for different amounts of processes.

other one appears around transfers as big as the 256KB L2 cache. As discussed
in section 3.3, it is impossible to prove with our results that these are indeed the
result of cache misses, so it is for future research to confirm this.

3.6 All to All

The MPI_Alltoall and MPI_Alltoallv subroutines send messages from all pro-
cesses to all other processes. The first one handles fixed sized message, the second
one handles variable sized messages.

The MMPI implementation basically handles sends and receives from pro-
cesses within the local group using the native MPI all to all subroutines. To
reach the processes in the remote group, the MMPI versions of the non-blocking
sends and blocking receives are used. Since each call generates overhead because
of the repeated handshake protocol, a large overhead is expected for small trans-
fer sizes. This can be clearly seen in Figures 11 and 13 for the 4B transfer size,
but is more clear in Figures 10 and 12.

Another result can be found by comparing these figures. There is quite a
performance difference between the MPI versions of
MPI_Alltoall and MPI_Alltoallv, especially for small messages with a relatively
large number of nodes. Apparently this increased performance does not help the
MMPI implementation, since the curves of MPI_Alltoall and MPI_Alltoallv

are nearly the same. This again demonstrates the loss in performance for small
messages due to the handshaking protocol.

Figures 11 and 13 show that, after performing as well as the MPI versions
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Figure 10: Latency of both the MMPI and the MPI alltoall implementations for
different transfer sizes.

in the worst network at 4096B, another performance drop for the higher transfer
size of 1MB appears. Since the relative overhead of the handshakes will be less,
it does not account for this drop. However, making a quick calculation, for 32
processes, the fowarder needs to forward 32∗16MB = 512MB. Although this is less
than the 550MB found in the bidirectional bandwidth plot of Figure 6, the plot
has been made with only 2 processes communicating. In this case, 32 processes
are using the forwarder. Although these figures do not provide direct proof for
it, it is well known that when using other than ping-pong communications, the
performance of the InfiniBand will decrease significantly [14], which without a
doubt will influence the bandwidth available to the forwarder, probably leading
to a lower forwarding bandwidth than 550MB/s. This would again point out that
the half-duplex property of the forwarder is a bottleneck.

3.7 Allreduce and reduce

MPI’s allreduce and reduce operations take data from all the processors and
perform a calculation on it, like a summation or taking the maximum or the
minimum. If more than one element is provided, the calculation will be done in a
per-element fashion. For instance, if 4096 bytes are given to the function with the
summation operator, the first byte handed over by all processes will be summed
and stored in the first byte of the result. The same is done for the second byte, till
all bytes have been processed and a result of 4096 bytes has been generated. In
the case of reduce, only one of the processes, named root, will receive the result.
In the case of allreduce, everybody receives the result of the calculation.
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Figure 11: Latency of both the MMPI and the MPI alltoall implementations for
different amounts of processes.

The MMPI implementations are quite similar. Both start performing a native
MPI_Reduce operation. In the reduce version, in one group the root, which has
received the result of the reduce operation, will handshake with the forwarder. In
the other group the lowest rank, provided with the reduce result of that group,
will handshake with the forwarder. In allreduce, the lowest ranks of both groups
will do the handshaking and the reception of the result. After this, the parties
who did the handshaking will send the result to the forwarder, which calculates
the final result by combining the information. In reduce, the forwarder will send
the final result to the root. In allreduce, the final result is broadcasted by the
forwarder over all participating processes using a native MPI_Bcast function.

The evaluation of reduce can be found in Figure 14. The graph is not very
clear because it shows the averaged results of the execution time of all processes.
In MMPI’s reduce implementation, the root process has to wait a lot longer than
the other processes, but this effect can be averaged out if the other processes have
lower latencies than in the native MPI version. In Figure 15, this is probably the
reason why the different curves lie so close at higher numbers of nodes.

It is better to look at results that are less averaged out. Looking at the results
for two processes in Figure 14 and comparing it with the latency plot of Figure 6
shows us, that sending the information to the forwarder and receiving the inform-
ation from the forwarder accounts for nearly all of the latency. This is because
the reception of the intermediate results from both groups is happening using a
blocking receive call, which makes the whole process of receiving from the groups
and sending it back to the root serial. Changing these receives into non-blocking
ones will probably result in a significant reduction in latency for this operation.
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Figure 12: Latency of both the MMPI and the MPI alltoallv implementations for
different transfer sizes.

The results for the allreduce algorithm, found in Figures 16 and 17 are less
averaged out since all processes are blocking till they get the result from the
broadcast. For the medium sized messages, the performance seems to scale well
regarding the amount of processes that are active in the operation. For the 4B
transfer size and the 1MB transfer size however, there seems to be some overhead.
In the 4B case, nearly all the overhead seems to result from two times the broad-
casting and two times the local allreduce. Looking at the 1MB case, the MMPI
curve can not fully be explained by adding up the send latencies and the broad-
cast latencies. It also does not explain the undulating character of Figure 17.
However, finding another explanation is hard.

In Figure 14 and Figure 16, again a peak can be found at 256KB message sizes
and a smaller one can be found around 32KB. This time they actually might be
due to an increase in cache misses, since the forwarder needs to see every byte and
perform the reduction operation. An inefficient scheme in the forwarder is used
in which a special result buffer is separately allocated, instead of reusing one of
the two receive buffers. Since at sizes bigger than 8kB the three buffers do not fit
in one L2 cache anymore, this will lead to an increase in cache misses. However,
in the allreduce graph, the latency is about 20 times higher than the latency
expected if you would interpolate the latency. If this is due cache misses, an
increase in latency of similar order would be expected at this point in Figure 14.
So the effect might be too big to be caused by L2 cache misses alone. It would
be interesting to see whether the increase in latency is truly due to cache misses
during future research.
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Figure 13: Latency of both the MMPI and the MPI alltoallv implementations for
different amounts of processes.

4 NAS Parallel Benchmarks

To get a more realistic indication of how MMPI would perform, when used in a
real application, it was evaluated using a subset of the NAS Parallel Benchmarks
(NPB) version 3.2. This benchmark suite consists of several kernels that are
frequently used in computation fluid dynamics and some simulated application
benchmarks which try to mimic computation in actual computational fluid dy-
namic applications [2]. From this benchmark, 4 kernels were chosen: EP, MG, CG
and IS, which will be respectively presented with their results in Sections 4.1, 4.2,
4.3 and 4.4. Apart from the kernels, one simulated application was chosen from
these benchmarks, LU, which is presented along with the results in Section 4.5.

The NPB provides several sizes of the benchmark. For this cluster, size class
C was chosen because it gives significant calculation times and scales well when
adding more nodes.

It must be noted that the benchmark results for the LGM end at 32 nodes
since there were not enough free nodes available at the time these benchmarks
were ready. All presented results are averaged over 15 runs.

4.1 EP

EP is an ’Embarassingly Parallel’ application that performs minimal communic-
ation and therefore is a good indication of the throughput of the system.

As described in Section 2.3 the processors of both DAS4 and LGM should
be the same, like much else of the system, so it is quite a surprise that, when
looking at Figure 18, the LGM is about 20% faster than DAS4 at low numbers
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Figure 14: Latency of both the MMPI and the MPI reduce implementations for
different transfer sizes.

of processes. Less surprising is the fact that the MMPI implementation has a
speedup compareable to the slowest of the two clusters, namely the DAS4. After
48 nodes, the MMPI version starts to perform worse. This occurs at the moment
an extra compute node in both clusters is added to the calculation. Since the
benchmark tests throughput of the system, overhead due to MMPI is unlikely.
Probably someone had programs running on this node which interefered with the
measurements.

4.2 MG

MG is a MultiGrid kernel. It is a computation bound kernel (about 80% of the
running time) [21], but it does perform some communication. The bulk of its
traffic consists of blocking sends and non-blocking receives, but MPI_Allreduce

is used frequently enough (about once on 100 sends) to be mentioned [20]. The
point-to-point communications are done in a ring topology [17]. With the process
distribution used in these experiments, this will keep a lot of the communication
restricted to the local clusters. The results presented in Figure 19 show us that
for small communication loads, MG can scale quite well with the number of nodes
and only performs slightly worse than MG executing on the DAS4. Reason for
this is that the badly scaling allreduce operation is not used much, and only for
transfer sizes smaller than 4 integers (16B on some implementations of C).

Pinpointing the problem therefore is quite hard, but since the slowdown com-
pared to the case where MPI is running on DAS4 is small, the bottleneck probably
lies within the bandwidth of the forwarder. Because of the ring topology, 2 pairs
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Figure 15: Latency of both the MMPI and the MPI reduce implementations for
different amounts of processes.

of processes will cause the bulk of the communication over the forwarder. Like
mentioned in Section 3.6, the bandwidth of the traffic that the forwarder can for-
ward will probably drop and the average latency of transfers will increase as the
number of transfers from different processes increases. This explanation would be
in line with other studies which say that bandwidth is more important for the
MG benchmark than latency [19].

4.3 CG

CG is a Conjugate Gradient method which performs sparse matrix-vector oper-
ations. Like MG, most of CG’s operations are point-to-point communication in
which it moves even more data than MG [6]. CG communicates with a chain
like structure, meaning process 0 communicates with process 1, process 1 com-
municates with process 0 and 2, etc [17]. This means that most traffic over the
forwarder will be generated by the same two processes.

Our results confirm this extra pressure on the interconnects. When looking
at Figure 20, up to 16 nodes, the LGM is superior to both MMPI and DAS4.
This is clearly the case because LGM has the superior throughput as can be seen
from the EP results in Figure 18. When more nodes are added to the calculation,
and more traffic is produced, the scaling of the application seems to become very
bandwidth dependent. If we compare the bidirectional bandwidth for the different
clusters found in Figure 6 with the results found in Figure 20, we can see that
the version allowing the fastest process communication, performs best.

Since the performance of MPI on LGM is not known beyond 32 nodes, it
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Figure 16: Latency of both the MMPI and the MPI allreduce implementations
for different transfer sizes.

would be interesting to see if adding an extra forwarding process to provide extra
bandwidth would make the performance of MMPI similar to that of MPI on
LGM.

4.4 IS

IS is an Integer Sorting application which is quite different from the other bench-
marks. Not only because it mainly does integer arithmetic instead of floating point
arithmetic, but it is different in a communication perspective. IS’s computation
mainly consists from collective operations (MPI_Allreduce, MIP_Alltoall(v)

and MPI_Reduce), and it has quite a lot of big transfers, with big being bigger
than 1MB up to a about 30MB [20]. Not suprisingly, IS is reported to be commu-
nication bound [21]. With that knowledge, Figure 21 contains no surprises. An
interesting fact is that MMPI has about the same factor of slowdown in respect
to MPI on LGM for small numbers of nodes when comparing the bi-directional
bandwidth plot in Figure 6. However, with increasing numbers, the performance
of MMPI scales a lot worse than MPI on the LGM, which has the worst network.

This could be the result of the bad scaling of MMPI’s allreduce. Another
possible reason is, that the bandwidth of the forwarder collapses a lot faster for
a large number of nodes trying to communicate than standard InfiniBand like
described in Section 3.6. This is important since alltoall is an important part of
IS.
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Figure 17: Latency of both the MMPI and the MPI allreduce implementations
for different amounts of processes.

4.5 LU

The LU benchmark is a simulated application and therefore the closest thing to
a real computational fluid dynamic application we get in this study. It generates
several GB’s of traffic through point-to-point communications [6]. Like MG it
communicates in a ring-topology, restricting much of the communication to the
clusters in which the nodes are present. The difference with MG is that the
message rate of LU is lower [17]. Looking at Figure 22, the break-even point of
communication and computation seems to be at 32 nodes. Here MPI and the
MMPI version on both clusters have about the same runtime. It is hard to tell if
the performance of MMPI on 64 nodes is bad due to the network performance of
LGM, or due to overhead of the MMPI implementations.

5 Related Work

Although the architecture of the ’Leiden Zipper’ seems to be unusual, the solution
of using repeaters to forward traffic between clusters is not. Both BC-MPI [5] and
PAXC-MPI [8] use separate forwarding processes, in the latter called daemons,
for inter-cluster traffic. The forwarder that is presented in Section 3 is similar to
the PAXC-MPI implementation in many other ways, like for instance in the way
barriers are implemented, how virtual/global process numbering is done and the
fact that it is an implementation on top of a native MPI implementation.

Many other MPI implementations support inter-cluster communication, like
MPICH-G2 [10] and MagPIe [12]. However, to the author his knowledge, this is
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Figure 18: Comparison of Open MPI on LGM and DAS4 with MMPI for the EP
benchmark.

the first study describing the forwarding of data between two InfiniBand networks
by using software.

6 Discussion

The results presented in Section 3 have exposed two elements of the design which
significantly decrease the performance of the forwarder. The first one is the hand-
shake protocol, which in several cases degraded the performance of MPI opera-
tions at low transfer sizes. The second one being the fact that the forwarder is
only half duplex, decreasing the possible bandwidth.

Another, smaller, decrease in performance is caused by the blocking receives
used, for instance, in Allreduce. Making these non-blocking would increase per-
formance since they can be executed in parallel.

Furthermore the LU and MG benchmarks show us that with equal distribu-
tion of nodes in both clusters, the combined cluster only scales as well as the
worst of the two. This limits the possibilities of deploying zipped nodes. Too slow
interconnects will create big performance penalties.

Applications with relatively few communication over the ’Leiden Zipper’ per-
form quite well, as can be seen for LU, MG and EP. IS is a nice example of a
communication pattern (all nodes communicate with each other) of applications
that will not work well. However, from this study, it is hard to see how MMPI
and the zipper architecture perform in comparison to other grid enabled MPI
versions.

25



Figure 19: Comparison of Open MPI on LGM and DAS4 with MMPI for the CG
benchmark.

7 Conclusion

This thesis describes an alternative way of connecting clusters into a grid by
connecting both clusters to a set of zipper nodes. It is shown that applications
that have a communication graph with either a cut-set or a vertex-cut set can
in theory be run without extra overhead of routers or forwarders on the ’Leiden
Zipper’.

For applications which do not exhibit this ideal property, information must
be forwarded. For this purpose, a layer on top of Open MPI, which routes inter-
cluster traffic over a forwarding process, MMPI, is described and evaluated. Les-
sons learned from the evaluation of the design include the overhead caused by
the handshake protocol for small transfers and the half-duplex property of the
forwarder.

Results from the NAS Parallel Benchmark show that applications with low
communication frequencies and ring communication topologies like LU, scale well
on the Leiden Zipper. Communication intensive applications like IS do not.

Furthermore it is shown on the Leiden Zipper architecture that running applic-
ations from the NAS Parallel Benchmark with an even distribution of processes
over both clusters, will not scale better than the worst cluster.

8 Future Work

Based on the results presented in this thesis, several things are interesting to
investigate of which the most obvious one is improving MMPI. Just plain practical
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Figure 20: Comparison of Open MPI on LGM and DAS4 with MMPI for the CG
benchmark.

improvements would include implementing the existing functions in conformance
with the MPI standard and implementing more functions from the standard. This
would make applications source-code compatible, which would remove the need
for rewriting.

Also some improvements can be made on the performance of MMPI. An
alternative has to be found for the handshaking algorithm, as it gives a lot of
overhead. As for the relatively low bandwidth of MMPI, different alternative
solutions could be evaluated like multiple forwarders and maybe multithreaded
forwarders. Having multiple forwarders might also solve part of the increase of
latency due to the forwarding being done serial, like described in Section 3.3, since
message striping schemes are possible which increase the available bandwidth for
one message.

It would also be interesting to investigate the theory of loss of performance
due to the influence of cache misses, as discussed in Section 3.3. Some hard-
ware counter statistics could either confirm or falsify this theory. If the theory is
true, it might be possible to increase performance by implementing cache-friendly
algorithms in the forwarder.

Other things to investigate are applications that have communication graphs
with either vertex-cut sets or cut sets, as is discussed in Section 2.2, or com-
munication graphs that are very similar. This thesis only presents a theoretical
result about these ideal types of applications. The question whether it is possible
to rewrite such applications so that there is no or very little overhead, perhaps
automatically, remains open.

If rewriting is not possible, it might be possible to map applications to the
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Figure 21: Comparison of Open MPI on LGM and DAS4 with MMPI for the IS
benchmark.

zipper architecture automatically for maximal performance. This could allow ap-
plications mapped over the zipper architecture to outperform the worst of the
zipped clusters, which was not possible by the process mapping presented in
Section 3.1, or at least not for the tested benchmarks. Another challenge con-
sidering process mapping might lie in the hardware differences among clusters.
If some processes need a GPU, which might not be available among all nodes of
both clusters, is it possible to automatically map these processes to nodes which
contain a GPU?

Finally, this thesis does not compare the MMPI solution with other existing
solutions. A comparison with for example RDMA over Ethernet and existing
grid enabled MPI applications could shine a light on other techniques that allow
optimal use of the ’Leiden Zipper’ architecture in the field of grid computing.
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Figure 22: Comparison of Open MPI on LGM and DAS4 with MMPI for the LU
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