
Internal Report 2012-2013-12 July 2013

Universiteit Leiden

Opleiding Informatica

Guided Rewriting in Families of Languages

Jesper van Engelen

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1
2333 CA Leiden

The Netherlands

Bachelor thesis by J. van Engelen
Supervised by dr. H.J. Hoogeboom July 2013

GUIDED REWRITING IN FAMILIES OF LANGUAGES

J. VAN ENGELEN

Abstract. Guided rewriting is an operation on formal languages, motivated
by RNA editing, replacing substrings by certain guide strings, provided that
the strings are letter by letter equivalent. De Vink et al (MeCBIC, 2012) show
that regular sets are closed under guided rewriting with finite guide sets. We
extend this to regular guide sets, answering an open problem from that paper.
Our approach is more general, so that it also applies to “cones”, families closed
under regular transductions, including context-free languages.

1. Introduction

Within an RNA molecule, nucleotide sequences can be changed by operations called
insertion and deletion which add and delete the nucleobase uracil, respectively. This
operation can be abstracted to the more general concept of insertion and deletion
within strings in formal languages, based on certain rules.

The article Combining Insertion and Deletion in RNA-editing Preserves Regularity
[1] by De Vink et al covers an operation on regular languages called guided rewriting.
The operation maps a string to another string based on a set of guides, which
allow certain substrings to be replaced by a guide string of the same length as the
substring being replaced. The operation of guided rewriting on a language yields a
language containg all elements that can be obtained by executing a rewriting on a
string from the original language.

It is proven in [1] that regular languages are closed under the operation of guided
rewriting with a finite set of guides. The concluding remarks of this article pose
the question whether context-free languages are closed under guided rewriting, as
well as the question whether regular languages are closed under guided rewriting
with a regular set of guides.

We combine these two questions to form our research question: which families
of languages are closed under guided rewriting with a regular set of guides? The
relatively simple approach taken in [1] to obtain a finite representation of a rewriting
can not be applied to regular guides. We find a general solution to the problems
posed by separating the operation from the input language and constructing a
finite state transducer mapping a language to its rewritten language for a regular
set of guides, thereby proving that families of languages that are closed under
homomorphism, inverse homomorphism and intersection with regular language, so-
called cones, are closed under guided rewriting with a regular set of guides.

Date: Wednesday 10th July, 2013.

1

2 J. VAN ENGELEN

2. Guided rewriting

Using guided rewriting, a string over Σ can be rewritten to a string of the same
length, based on a set of guides. A substring of a string can be replaced by a guide,
which is also a string over Σ, but only if all characters in the original substring are
adjustable to the character in the guide at the corresponding position. Adjustability
between characters is governed by equivalence: only equivalent characters can be
adjusted to one another. This process of replacing substrings of a string can be
repeated with different guides at different positions for an arbitrary number of
times, as long as the substring being replaced is adjustable to the guide.

Equivalence between characters is defined in so-called equivalence classes. For any
alphabet, we define equivalence classes as sets of characters that are equivalent to
one another (and to themselves, the equivalence relation is reflexive). It follows
that the equivalence relation is also both symmetric and transitive. For α ∈ Σ,
equivalent to β ∈ Σ, we write α ∼ β. Extending this notion to strings, we say
a string is adjustable to another string if for every position in both strings, the
character at that position is adjustable to the character at the same position in the
other string. For x ∈ Σ∗, adjustable to x′ ∈ Σ∗, we write x ∼ x′.

Figure 1 shows a very simple rewriting for a string acbdc, which is rewritten to
dbeab using five unique guides and equivalence classes such that b ∼ c ∼ e and
d ∼ a. Using this image, we explain the notion of characters being adjustable to
other characters, and the subsequent notion of strings being adjustable to other
strings.

Figure 1. A rewriting of string acbdc to dbeab.

GUIDED REWRITING IN FAMILIES OF LANGUAGES 3

The first (lowest) blue guide bb in Figure 1 rewrites the input string acbdc to abbdc,
emphasizing the part of the string being rewritten. This is allowed as b ∼ c and
b ∼ b. Directly after that, the yellow guide ccac is applied, rewriting abbdc to
accac. This is allowed as b ∼ c, d ∼ a and c ∼ c. Extending this to strings, cb ∼ bb
and bbdc ∼ ccac.

For proving for some families of languages that they are closed under the operation
of guided rewriting with a regular set of guides, we will need to represent rewrit-
ings of strings or parts of strings in some finite way. To do so, we will need to
adapt some definitions from [1], ultimately yielding a way to prove these closure
properties.

2.1. Guides. We refer to guides in a similar way as [1]. A guide g from the set of
guides G is a string over Σ. As our set of guides G is regular, it is accepted by some
finite state automaton (FSA) A. Using this, we can refer to a guide as a sequence
of transition input characters in A, representing a string. Thus, instead of using a
finite set of guides g1, . . . , gn ∈ G as is done in [1], we use guides G = L(A).

In following references to this finite state automaton A accepting our set of guides,
we assume that A is in a normal form where it has an initial state with no incoming
transitions, and a single accepting state with no outgoing transitions. By standard
construction, any FSA A′ that is not in this normal form can be converted to a
nondeterministic finite automaton A that is in this normal form such that L(A) =
L(A′). We represent A as a 5-tuple (Q,Σ, δ, s0, F) with:

• Q a finite set of states

• Σ the input alphabet

• δ ⊆ (Q× Σ×Q) the transitions

• s0 the initial state

• F = {sf} the set of accepting states

For any formal language L, we define the language LG as the set of strings that
can be derived from a string in L by guided rewriting with a regular set of guides.
We say a string x ∈ Σ∗ is rewriteable to x′ ∈ Σ∗, if there is some guide g ∈ G such
that x = uvw with u, v, w ∈ Σ∗, x′ = ugw and v ∼ g. We write x ⇒ x′.

Definition 1. Let L be a language over Σ with a set of guides G. We define the
rewritten language of L as

LG = {v ∈ Σ∗ | u ⇒∗ v for some u ∈ L}.

Relating this definition to Figure 1 with acbdc ∈ L and G = {bb, ccac, dc, d, eab}
we find that the result of this rewriting, dbeab, is in LG, by the rewriting acbdc ⇒
abbdc ⇒ accac ⇒ dccac ⇒ dccdc ⇒ dbbdc ⇒ dbeab.

We distinguish between guided rewriting with a finite set of guides, simply guided
rewriting, and guided rewriting with a regular set of guides, from here on regular
guided rewriting.

4 J. VAN ENGELEN

3. Closure properties of regular guided rewriting

In studying the closure properties of regular guided rewriting, we rely heavily on
the use of finite state transducers. A finite state transducer (FST) is a finite state
automaton which has two tapes: one input tape and one output tape. It generates
strings with output symbols by mapping an input string to an output string, instead
of simply accepting strings, but otherwise behaves a lot like a nondeterministic finite
automaton. A finite state transducer is a 6-tuple

T = (Q,Σ,Γ, I, F, δ)

Where Q is the set of states, Σ is the input alphabet, Γ is the output alphabet, I
is the set of input states, F is the set of final (accepting) states and δ is the set of
transitions. A transition t ∈ δ is defined as a 4-tuple (p, a, b, q) where p, q ∈ Q and
a ∈ (Σ ∪ {ǫ}), b ∈ (Γ ∪ {ǫ}) denoting a transition from state p to state q with input
symbol a and output symbol b.

To prove that some families of languages are closed under regular guided rewriting,
we will provide a method for constructing a finite state transducer mapping L to
LG for any L ⊆ Σ∗ with given Σ and a regular set of guides G, based on the finite
state automaton A accepting G. If we succeed in doing this, we have proven that
any family of languages closed under finite state transductions is also closed under
regular guided rewriting.

3.1. Cones. In the context of formal languages, a cone is a family of languages
that is closed under homomorphism, inverse homomorphism and intersection with
regular language [3, p. 201].

Definition 2. A family of languages L is a cone if and only if the following prop-
erties hold for L:

• L is closed under homomorphism (h)

• L is closed under inverse homomorphism (h−1)

• L is closed under intersection with regular language (∩Reg)

The families of regular (REG), context-free (CF) and recursively enumerable (RE)
languages meet these criteria.

By Theorem 3.8 from [3], commonly known as Nivat’s Theorem, we know that
all cones are closed under finite state transductions. Furthermore, as all cone
operations (homomorphism, inverse homomorphism and intersection with regu-
lar language) can be implemented using a finite state transducer, and finite state
transductions are closed under composition, all families of languages that are closed
under finite state transductions are cones.

Thus, if a family of languages is closed under the operation of finite state transduc-
tions, it is a cone, and vice versa.

We proceed to state our main theorem.

Theorem 1. Every cone is closed under regular guided rewriting.

GUIDED REWRITING IN FAMILIES OF LANGUAGES 5

In the following sections, we will work towards a finite representation of rewritings
to be used in our finite state transducer, ultimately using this finite representation
to prove Theorem 1.

4. Slices

To construct a finite state transducer that rewrites strings character-by-character,
we will need to move away from the horizontal perspective (per guide) we have
taken on rewriting so far, and look at rewritings from a vertical perspective (per
position in the input string). Considering our previous example of a rewriting in
Figure 1, we look at the sequences of characters along the vertical lines, instead of
looking at the guides.

For this vertically-oriented representation, we introduce the notion of slices, closely
related to the notion of slices in [1].

A slice denotes a sequence of characters, each originating from a certain guide, to
which one character of the input string at a certain position is rewritten. As our set
of guides G is not necessarily finite, we can no longer rely on the notion of guide-
offset pairs as is done in [1]. Instead, we will express the current state in the entire
set of guides (which a guide-offset pair essentially is as well) by a transition (from
one state to another state under an input character) from the FSA A accepting
G.

Definition 3. Let β ∈ Σ. A sequence sℓ of transitions (p, α, q) is called a slice for
β and A if it holds for all (p, α, q) ∈ sℓ that:

• (p, α, q) ∈ δ

• β ∼ α

A slice sℓ is called a slice for a string u ∈ Σ∗ at position n with 1 ≤ n ≤ #u if it
is a slice for u[n].

A graphical representation of such a slice is shown in Figure 2. As you can see, we
have inset state 1 from the left and state 6 from the right. These inset states denote
the initial state (state 1) and the accepting state (state 6) in A, to emphasize the
special role the initial state and the accepting state play in the notion of slices,
which is clarified later.

As you may notice, we are not using a finite index set (which was done in [1]), but
instead denoting a slice as a sequence, which is by definition ordered.

Following this change in the notion of slices, we introduce the notion of matching
slice sequences, corresponding with the original definition of slice sequences from [1].
Using regular guides instead of a finite set of guides, we have to adapt our way of
viewing adjacency between slices. Instead of testing whether every element of a
slice has a corresponding element in the previous slice for the same guide at the
previous position, we only check whether the source state of each element in a
slice has a corresponding target state in the preceding slice and whether the target
state of each element in a slice has a corresponding source state in the succeeding
slice.

6 J. VAN ENGELEN

Figure 2. A slice in regular guided rewriting.

However, a source state in a slice does not need a corresponding target state in
the previous slice if it is an initial state. Conversely, a target state in a slice does
not need a corresponding source state in the next slice if it is an accepting state.
Thus, we must check that all non-initial source states from a slice have a matching
target state in the preceeding slice, and that all non-accepting target states from
a slice have a corresponding source state in the succeeding slice. This is why it is
important that A is in the normal form introduced in Section 2.1: we must be able
to differentiate between the initial and accepting state and the other states, making
sure that the initial state has no incoming transitions and the accepting state has
no outgoing transitions.

We define the left and right parts of a slice, denoting the sequence of source states
that are not initial states and the the sequence of target states that are not accepting
states in all elements of the slice, respectively.

Definition 4. Let sℓ be a slice with elements (pi, αi, qi)
n
i=1. Then we define left(sℓ)

as the sequence of states pi for 1 ≤ i ≤ n for which pi 6= s0 in the same order as
the elements of sℓ. We define right(sℓ) as the sequence of states qi for 1 ≤ i ≤ n
for which qi 6= sf in the same order as the elements of sℓ.

Extending this definition, for a sequence of slices σ = (sℓi)
n
i=1, we define left(σ) =

left(sℓ1) and right(σ) = right(sℓn).

A graphical representation of left(sℓ) and right(sℓ) is shown in Figure 3.

GUIDED REWRITING IN FAMILIES OF LANGUAGES 7

Figure 3. Graphical representation of the left and right parts of a slice.

Using these definitions, we can easily construct our definition for a matching slice
sequence, which is a slice sequence in which all adjacent slices fit, but for which
it is not necessarily true that it starts with only initial states and ends with only
accepting states.

Definition 5. A sequence σ = (sℓn)
#u
n=1 of slices is called a matching slice sequence

for a string u if the following holds:

• sℓn is a slice for u at position n, for n = 1, . . . ,#u

• For every 1 ≤ n < #u, right(sℓn) = left(sℓn+1)

Following these definitions, we define a successful matching slice sequence σ to
be a matching slice sequence for which it holds that left(σ) = ǫ and right(σ) =
ǫ, where ǫ denotes the empty sequence. It follows that any succesful matching
slice sequence represents a rewriting on a string, so the horizontal and vertical
perspectives coincide. In classical formal language theory, this concept of matching
slice sequences coincides with the notion of crossing sequences in two-way devices
(see, e.g., [2]).

The character at the topmost transition of the slice, yield(sℓ), is defined in a similar
way as in [1]. For a slice sℓ for β with elements (pi, αi, qi)

n
i=1, we define yield(sℓ) =

αn for sℓ 6= ∅. In case sℓ = ∅, we define yield(sℓ) = β.

8 J. VAN ENGELEN

We define the yield of an entire slice sequence σ = (sℓn)
#u
n=1 for a string u as

v = v1 . . . v#u with vi = yield(sℓi) for every 1 ≤ i ≤ #u. Thus, yield(σ) is the total
rewritten string of u for σ.

5. Reduced state sequences

To construct a finite state transducer mapping L to LG, we need to find a way to
express slices inside our finite state transducer. In [1], as the set of guides is finite,
it is possible to simply remove repeating guides at a certain position to obtain a
finite set of slices. However, as our set of guides is regular, the number of possible
slices without repeating guides is potentially infinite. This is the result of the
absence of a bound on the length of guides (as our set of guides can be infinite),
removing the guarantee that repeating guides must occur at some point. We show
this by an example with guides G = ba∗c and a ∼ b the only equivalence. Then for
every string anc from input language L = a∗c, we can generate bnc by rewriting.
However, to do so, we need at least n unique guides ending at the last position in
the string (the position of c), yielding a slice with at least n elements for the last
character. Thus, removing repeating guides will never result in the last slice having
fewer than n elements, showing that it can occur that we need an infinite set of
slices to represent a rewriting with a slice sequence.

Knowing that a transition in our finite state transducer will have to represent
the rewriting to a certain character and should thereby be derived from a certain
sequence of transitions, we should obtain the states in our finite state transducer
from sequences of states in our FSA. We argue that nonrepeating sequences of
states with corresponding transitions capture the essence of a rewriting (Lemma 1
and Definition 7).

Note that we can obtain all possible state sequences for any slice sequence by using
left(sℓ) and right(sℓ). However, as we want to construct a finite state transducer,
our set of states needs to be finite, which our set of possible state sequences, in
all but one case (when there are no rewrites possible, i.e. the only possible slice is
the empty slice), is not. So, we need to find a way to obtain a finite set of state
sequences from our set of all possible state sequences.

To do so, we introduce an operation on state sequences called reduction. By re-
ducing a state sequence, we remove all lower occurences of states occuring more
than once, leaving a sequence of states in which only the top occurence of a state
is “visible”. Thus, a reduced state sequence is a sequence of states with no repeti-
tions.

Definition 6. Let X be a sequence (x1, . . . , xn). We use the notation delx(X) to
remove all occurences of x from X. We define the operation red(X) to be:

• red(X) = red(delxn
(X)) · xn for X 6= ∅

• red(X) = ǫ for X = ∅

5.1. Relations between reduced state sequences. As stated before, the tran-
sitions in our finite state transducer need to represent the rewriting of a single
character to another character, and should therefore be derived from a sequence of

GUIDED REWRITING IN FAMILIES OF LANGUAGES 9

transitions rewriting a single character. We define an operation between reduced
state sequences that indicates whether a slice for a certain character exists which
has one of the state sequences as its left part, and the other as its right part.

Definition 7. Let r and r′ be two reduced state sequences. Then r 7→α r′ if a slice
sℓ for some β exists such that the following holds:

• red(left(sℓ)) = r

• red(right(sℓ)) = r′

• yield(sℓ) = α

We say r 7→ r′ if any α exists such that r 7→α r′.

It follows from the definition above that any matching slice sequence can be ex-
pressed using state sequences and the 7→α-relation. However, it is not that obvious
that any sequence of state sequences R = {r0, . . . , rn} for which ri−1 7→αi

ri for
all 1 ≤ i ≤ n has a corresponding slice sequence with the same yield (i.e. a yield
equal to α1 . . . αn). After explaining the methods, operations and relations we have
introduced in an example in the following section, we will prove this property of
these sequences of state sequences in Section 7.

6. Regular guided rewriting example

Before proceeding in proving Theorem 1, we will illustrate the concept of regular
guided rewriting and its related operations and relations with an example of a
rewriting.

Given alphabet Σ = {a, b, c, d, e}. Let A be the nondeterministic finite state au-
tomaton in the normal form described in Section 4 as depicted in Figure 4, accept-
ing the regular set of guides G. For our equivalence classes, we use a ∼ c ∼ e and
b ∼ d.

1start 2

3

4

5

c

b

a

e

d

d

c

Figure 4. Finite state automaton A accepting G.

10 J. VAN ENGELEN

As is clear from Figure 4, G = L(A) can be expressed using the regular expression
b | c(ad|ed∗c). We will continue to explain the notion of rewriting, slices, slice
sequences, the left , right and red operators, and the 7→α relation.

To do so, we will use a possible rewriting on the string u = aaedbacd. A graphical
representation of this rewriting is given in Figure 5. In this graphical representation,
the initial state and accepting state are grayed out and inset to emphasize their
special role in the rewriting, as was done by using an inset in Figure 2.

Figure 5. A possible rewriting for u = aaedbacd.

The bottom row of characters forms the input string u, while the top row of char-
acters forms the result of the rewriting, i.e. the yield. Each horizontal sequence
of states and transitions represents a rewriting of the string at that position in
the string. As you may notice, each of these sequences is a path in A from 1 to
5. For example, for the second sequence, looking from the bottom up, is the path

1
c

−→ 2
a

−→ 3
d

−→ 5, rewriting the input string aaedbacd to acadbacd (emphasizing
the substring being rewritten).

Shifting to the notion of slices and slice sequences, we look at the diagram from a
vertical perspective. Instead of approaching the rewriting by looking at paths in
A, we view a rewriting as a sequence of transition sequences (i.e. slices). As slices
consist of transitions, every state in our diagram that is not the initial state (1) or
the accepting state (5) is part of two slices. For example, state 2 is part of both

GUIDED REWRITING IN FAMILIES OF LANGUAGES 11

the first slice (in the transition 1
c

−→ 2, where it is the target state) and the second

slice (in the transition 2
e

−→ 4, where it is the source state).

As we did in our first representation of an example slice in Figure 2, we inset the
initial state (1) and the accepting state (5). This is related to the left and right
operations on a slice, in which the initial and accepting states are left out.

We view a more detailed representation of the third slice, which has e as its input
character and yields c. This slice, sℓ3, is depicted in Figure 6.

Figure 6. Slice sℓ3 from the rewriting represented in 5.

As is clear from Figure 6, sℓ3 consists of three transitions. More precisely, sℓ3 =
((2, a, 3), (2, e, 4), (4, c, 5)). Using this slice, we can explain the notion of the op-
erations left and right on a slice. By Definition 4, left(sℓ3) consists of all source
states in sℓ3 that are not the initial state. Correspondingly, right(sℓ3) consists of
all target states in sℓ3 that are not the accepting state. By this definition, both
left(sℓ3) and right(sℓ3) must be in the same order as the transitions of sℓ3.

As the source states of sℓ3 do not contain the initial state, left(sℓ) is simply (2, 2, 4).
The right part, on the other hand, contains the accepting state. Thus, right(sℓ3) =
(3, 4).

We move on to the reduction operation, which removes all lower occurences of states
in a state sequence. Considering the state sequence left(sℓ) = (2, 2, 4), we notice
that state 2 occurs twice. Thus, by Definition 6, left(sℓ3) does not contain the
lowest (first) occurence of 2, keeping the other elements in the same order, yielding
red(left(sℓ3)) = (2, 4). As the right part of sℓ3 contains no duplicate elements,
red(right(sℓ3)) = right(sℓ3) = (3, 4).

Now that we have these two reduced state sequences, r = red(left(sℓ3)) and r′ =
red(right(sℓ3)), the 7→α-relation becomes clear. This relation, from Definition 7,
simply says that there is a slice that has r and r′ as its reduced left and right parts,
respectively, yielding α. It is obvious that (2, 4) 7→c (3, 4), as we can find a slice for
which these properties hold, namely sℓ3. In this way, we can represent an entire
slice sequence.

12 J. VAN ENGELEN

Now that we have explained our method of representing a matching slice sequence
as a sequence of reduced state sequences with transitions, we move on to prove that
any such sequence has a corresponding matching slice sequence.

7. Converting sequences of state sequences to slice sequences

To use reduced state sequences and the 7→α relation in our finite state transducer, we
need to prove that for any sequence of reduced state sequences for which a transition
is possible between all adjacent reduced state sequences, there is a corresponding
matching slice sequence that yields the same string.

Lemma 1. Let R be a sequence of reduced state sequences R = {r0, . . . , rn} for
which ri−1 7→αi

ri for all 1 ≤ i ≤ n. Then there exists a matching slice sequence σ
for which it holds that

yield(σ) = α1 . . . αn

We prove this lemma by induction on the natural number n. Firstly, we show that
two slice sequences σ and σ′ can be combined to a single slice sequence with proper-
ties matching the properties of the two initial slice sequences, if red(right(σ)) = red(left(σ′)).
We do so by providing a mechanism for constructing this new slice sequence, and
showing that it has the same yield.

Lemma 2. Let σ and σ′ be two matching slice sequences on u and u′, respectively,
such that red(right(σ)) = red(left(σ′)). Then there exists a slice sequence φ for
u · u′ such that

• red(left(φ)) = red(left(σ))

• red(right(φ)) = red(right(σ′))

• yield(φ) = yield(σ) · yield(σ′)

To prove this lemma, we provide a method for constructing φ based on σ and σ′.
In this method, we rely on a visual representation of a slice sequence to obtain an
easy method of copying sequences of transitions. The partial diagrams for the slice
sequences used are represented in Figure 7.

Given σ and σ′, the two matching slice sequences from Lemma 2, we can check the
states of right(σ) against the states of left(σ′), one by one. As the reduced right
part of the first slice sequence is equal to the reduced left part of the second slice
sequence, we know that if the current state being checked for σ is not equal to the
current state being checked for σ′, there is a state that has already been checked in
σ′ which is equal to the current state in σ, or that there is a state that has already
been checked in σ which is equal to the current state in σ′. Without changing
the yield of any of the two partial slice sequences, we can copy the sequences of
transitions corresponding to this state that occured previously, thereby “fixing” the
unmatching pair of states.

We formalize this approach.

Proof for lemma 2. Given the matching slice sequences σ and σ′, letR = right(σ) =
{r1, . . . , rm} and R′ = left(σ′) = {r′1, . . . , r

′

n}. Our approach is as follows: Let i and

GUIDED REWRITING IN FAMILIES OF LANGUAGES 13

j be the indexes of the states we are currently evaluating, starting with i = m, j = n.
If ri = r′j , move to the next pair of states by decrementing i and j by 1, and start-
ing evaluation again. If, however, ri 6= r′j , then either ri occurs in r′j+1 . . . r

′

n or r′j
occurs in ri+1 . . . rm, or both. Assuming ri = r′k occurs in r′j+1 . . . r

′

n, consider the
sequence of transitions and states corresponding to r′k in the diagram for σ′, and
copy this sequence above r′j in the diagram. Otherwise, assuming r′j = rk occurs
in ri+1 . . . rm, consider the sequence of transitions and states corresponding to rk
in the diagram for σ, and copy this sequence above ri in the diagram.

If both i = 0 and j = 0 then R = R′, and we obtain φ by concatenating the
two constructed matching slice sequences. If this is not the case, we proceed by
decrementing both i and j by 1, unless a sequence from σ was copied, in which case
we decrement only j, or a sequence from σ′ was copied, in which case we decrement
only i.

By performing the copying steps, we “fix” an unmatching pair by inserting a se-
quence of transitions in one of the diagrams. By doing so, we do not violate the
properties from Lemma 2. Firstly, the yield remains the same. As we are copying
a sequence that has already occured above the current index, the copied sequence
will never be “visible” and will thus not affect the yield. Secondly, the reduced
left and right parts of φ will match the reduced left and right parts of σ and σ′,
respectively, as the possibly copied transition sequences have an outer left (for σ)
or right (for σ′) state which has already occured at that position in the sequence
it was copied from, at an index higher than the copied sequence. Thus, this outer
left or right state is deleted with the red-operator. Thirdly, the copying is always
permitted in the context of adjustability, as at all positions in the string, the transi-
tion input character is adjustable to the transition input character in the sequence
it was copied from at the same position. This holds because the sequence is copied
at the same position. Thus, all characters in the slices for the copied sequence are
adjustable to the transition input character in the new slice, as the adjustability
relation is an equivalence relation.

As the yield of both σ and σ′ remains the same during construction, concatenating
the slice sequences in the end will yield a slice sequence with the concatenated yield,
thereby meeting the last requirement for φ in Lemma 2. �

We illustrate this approach by using diagrams to show the process of checking the
states. Consider Figure 7, which shows the initial configuration with σ and σ′ from
which we will construct φ. As is clear from this figure, right(σ) = (8, 5, 3) and
left(σ) = (8, 3, 5, 3) (hence, red(right(σ)) = red(left(σ′)) = (8, 5, 3). Figure 8 shows
the first two evaluation rounds, which both succeed, as for both i = 3, j = 4 and
i = 2, j = 3 it holds that ri = r′j . After decrementing again, however, we get
i = 1, j = 2 and thus ri 6= r′j (as r1 = 8, r′2 = 3). We then take the approach
outlined in the proof of Lemma 2. We find that for k = 3, it holds that rk = r′j .
Thus, we copy the transition sequence corresponding with r3 directly above the
transition sequence for ri, as it shown in Figure 9. After copying, the new ri+1

matches r′j , and we can continue with the next pair, which consists of r1 (i = 1, as i
is not decremented due to the copying in σ) and r′1. This pair matches, which yields
i = 0, j = 0 after decrementing both, allowing us to obtain φ by concatenating the
two constructed slice sequences.

14 J. VAN ENGELEN

Figure 7. Initial configuration showing slice sequences σ and σ′,
to be combined to form φ.

Figure 8. The first two states match, but the third one doesn’t.

Figure 9. Copy the entire transition sequence for the matching state.

GUIDED REWRITING IN FAMILIES OF LANGUAGES 15

Figure 10. Check remaining states, which match, thus we have
found φ

We are now in position to prove Lemma 1.

Proof for lemma 1. LetR be a sequence of reduced state sequencesR = {r0, . . . , rn}
for which ri−1 7→αi

ri for all 1 ≤ i ≤ n. We construct σ for which it holds that
yield(σ) = α1 . . . αn by induction. For n = 0, the base case, we obtain the empty
slice sequence, ǫ. For n > 0, the induction step, we construct the slice sequence by
combining the slice sequence for n−1 with a slice sequence S. S is the slice sequence
consisting of a single slice, namely the slice with source states rn−1, target states
rn and transitions between them that form a slice sℓ such that yield(sℓ) = αn. We
know that such a slice always exists by Definition 7. Then, we combine the slice
sequence from n− 1 with S by Lemma 2, which has the yield α1 . . . αn as the slice
sequence for n− 1 has, by induction, the yield α1 . . . αn−1 and yield(S) = αn. �

8. Proof

We are now in position to prove Theorem 1 by constructing a finite state transducer
T = (Q,Σ,Γ, I, F, δ) mapping L to LG.

Proof of Theorem 1. Let Σ be an alphabet, let A be the finite automaton in the
normal form introduced in Section 4 accepting the set of guides G. We construct
a finite state transducer T = (Q,Σ,Γ, I, F, δ) mapping any language L ∈ Σ∗ to
LG. Suppose S is the set of all possible reduced state sequences. The finite state
transducer T is specified as follows:

• Q = S

• Γ = Σ

• I = {ǫ}

• F = {ǫ}

• δ = {(p, a, b, q) | p, q ∈ Q, a, b ∈ Σ, p 7→b q, a ∼ b}

For this proof to hold, it is important for it to maintain two properties. Firstly, it is
important that any possible sequence of reduced state sequences with 7→α-relations
can be obtained by following a path in our finite state transducer. This property

16 J. VAN ENGELEN

holds as our finite state transducer is defined in this way: it consists of reduced
state sequences with transitions directly based on the 7→α-relations.

Secondly, all strings generated by our finite state transducer from any input in L
must produce an output in LG (i.e. for an input x ∈ L there can not be a path
generating x′ /∈ LG). As a path in our finite state transducer represents a sequence
of reduced state sequences with corresponding transitions, this property follows
from Lemma 1.

Thus, we have proven Theorem 1, concluding that cones are closed under the op-
eration of guided rewriting. �

9. Conluding remarks

We have studied an extension of the operation of guided rewriting as introduced
in [1], using a regular set of guides instead of a finite set of guides. We have
proven that families of languages that are closed under homomorphism, inverse
homomorphism and intersection with regular language, so-called cones, are closed
under this operation, thereby answering our research question.

Furthermore, looking closely at the finite state transducer constructed in Section 8,
we can derive that not only are cones closed under regular guided rewriting, but so-
called faithful cones as well. A faithful cone is a cone that is not necessarily closed
under all homomorphisms, but only under homomorphisms called ǫ-free homomor-
phisms, which are homomorphisms that never map a letter to the empty word. As
the finite state transducer we constructed in 8 never maps to the empty word, we
can adapt Nivat’s Theorem (mentioned in Section 3.1) to show that faithful cones,
which include the families of recursive (REC) and context-sensitive (CS) languages,
are indeed closed under regular guided rewriting as well.

References

[1] E. de Vink, H. Zantema, and D. Bosnacki. Combining insertion and deletion in rna-editing pre-
serves regularity. In Gabriel Ciobanu, editor, Membrane Computing and Biologically Inspired

Process Calculi, volume 100 of EPTCS, pages 48–62, 2012.
[2] F. Hennie. One-tape, off-line turing machine computations. Information and Control, 8(6):553–

578, 1965.
[3] G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages: Word, Language,

Grammar, volume 1 of Handbook of Formal Languages. Springer-Verlag GmbH, 1997.

