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Abstract

The multidisciplinary field of drug discovery deals with the discovery
and synthesis of novel medications. For over half a century, Com-
puter Science has aided chemists in exploring the extremely large
chemistry space that comprises the set of all drug-like molecules.
But only in recent years, the technological advances in computa-
tional power and the development of novel algorithms have enabled
researchers to start experimenting with in silico screening of prom-
ising compounds. While many classes of algorithms have been suc-
cessfully applied in this field, one of the most prevalent is the class of
Evolutionary Algorithms (EA ). This nature inspired optimization al-
gorithm, which will be discussed in this thesis, allows for the explor-
ation of large search spaces with the goal of finding good solutions to
a given problem. Although the classical EA require maintaining di-
versity of population, they do not necessarily have the goal of finding
a diverse set of solutions. This thesis discusses the application of the
novel Evolutionary Level-Set Algorithm (ELSA) for finding not only
a good set of solutions, but also diverse solutions, and application
of this algorithm for search of drug-like molecules given certain con-
straints on these molecules. This diverse set can be explored by the
chemist to enhance creativity and provide a starting point for further
research. For the comparison of molecules with respect to their qual-
ity and to measure similarity/diversity, a proper metric is needed.
The ELSA algorithm, along with five different diversity indicators
were implemented as an extension module in METool (Molecular
Evolutionary Tool). Also, experiments were conducted to test the
performance of ELSA and the various diversity indicators in the con-
text of finding diverse sets of molecules with user-defined constraints.
The results of the experiments show that the simple measures, des-
pite being of low computational complexity, perform surprisingly
well when used as a quality indicator in the ELSA algorithm.
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Chapter 1

Introduction

This chapter provides the reader with some basic background information on
the problem domain. This thesis is focused on the application of techniques from
computer science to the field of chemistry, which fits in a relatively new inter-
disciplinary branch of science called chemoinformatics. The following section
starts with an overview of this science and then provides an idea of the drug
discovery pipeline.

1.1 A brief history of chemoinformatics

Computers have been used in the field of chemistry for many decades. In recent
years there has been a shift in the application of computers as a data processing
tool towards a drug discovery tool. In the 1970s, for example, the word in-
formatics was used to describe the field that dealt with the collection, storage,
processing, and interpretation of data. Hippe [10] described the field of chemical
informatics as follows.

Thus we may say about chemical informatics, i.e., informatics as
applied to certain principles in chemical sciences, that the main areas
are: (1) numerical calculations connected with mathematical models
of processes and/or systems, (2) data processing, and (3) computer-
controlled automation of chemical processes or unitary operations in
the chemical industry.

From this definition it can be seen that the emphasis was not in drug dis-
covery, but rather on the descriptive and predictive modeling of large chemical
systems in the industry. In the 1990s Frank Brown came up with a much broader
definition that put the emphasis on drug discovery, and named it chemoinform-
atics [4]. He defined it as follows:

Chemoinformatics is the mixing of those information resources to
transform data into information and information into knowledge for
the intended purpose of making better decisions faster in the area of
drug lead identification and optimization.
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Today the field encompasses applications that come from bioinformatics,
data mining, optimization and many more sciences. Though chemoinformatics
might be less well-known than bioinformatics, it has a considerable history. The
difference is that bioinformatics has a focus on sequence data, where chemoin-
formatics focuses on structure information of small molecules.

1.2 Drug discovery process

This section will give an introduction to the process of drug discovery. The goal
is to inform the reader of the different steps in the drug discovery pipeline, and
to give an impression of the role of chemoinformatics. First, a broad overview
of the target-to-lead or lead discovery phase is given, followed by the discussion
of various methods to find such leads. The last section explains the need for
diversity optimization and where it fits in the drug discovery pipeline.

1.2.1 Target identification

The human DNA consists of approximately 20.000 to 25.000 genes, which make
up for a total of 3 billion base pairs. Each gene encodes a protein and each
protein has its own function in the complex human body. Proteins can, for
example, catalyze biochemical reactions, which regulate metabolism. They play
a role in cell signaling, immune responses, digestion and basically every process.

Proteins also interact with each other, which can in turn catalyze interactions
with other proteins, creating complex cascades of molecular reactions, called
chemical pathways. Knowing how these pathways work is an essential step in
the process of drug discovery, since diseases are often the consequence of an
abnormality along it. The process of finding one of the proteins in the chemical
pathway that is responsible for the disease is called the target identification.
Such a protein has to be “drugable”; i.e., it must be able to potentially interact
with and be affected by another molecule, called the ligand.

1.2.2 Target validation

Next, researchers must confirm that the identified target is a relevant link in
the chemical pathway. This process of demonstrating that a molecular target
is therapeutically relevant, is called the target validation. Experiments are per-
formed in living cells to elucidate the role the protein has in the disease and to
gain insight in its workings. This does not necessarily mean that the mechanism
is fully understood, but it aids in the creation of a model of the target.

To find active compounds that react with the target, researchers can use a
technology called High- Throughput Screening (HTS). In this process, a machine
is loaded with a solution of biological matter of experimental interest and many
different compounds, each in its own well. The reaction is observed, and if there
is an interesting response, the experiment is referred to as a hit. A difficult
challenge herein is to select the compounds based on the reaction caused by
the compound and the reaction of the compound with other biochemicals. The
selected molecules of interest are called lead compounds and are selected for
further study. By using HTS, up to 100.000 different compounds can be tested
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per day, which makes HTS one of the most powerful tools in the drug discovery
process.

Another method for finding lead compounds is called de novo design. In
contrast to HTS, de novo design tries to search the chemical space in silico (vir-
tually) rather than in vitro (physically). The three-dimensional shape of either
known ligands or the target can be used to define shape constraints that a search
algorithm can use to score the generated structures. These are called the primary
target constraints. The secondary target constraints include submolecular phys-
ical and chemical properties, and constraints on the ligand-receptor interaction
in the form of interaction sides, which are typically made up of hydrogen-bond
acceptor and donor interactions [21]. All these constraints make for a highly
complex multi-objective model of the target and a search space which is sub-
ject to combinatorial explosion. The number of chemically feasible, drug-like
molecules is estimated to well exceed 10°° [3], thus it is impossible to consider
all of them. Instead, a stochastic combinatorial search, such as an evolutionary
algorithm, is performed on the chemical space. This approach is of particular
interest in this thesis and will be discussed throughout Chapters 2 and 3.

1.2.3 Lead optimization

Once the target has been validated and a lead compound has been found, the
next step is to optimize this lead. “Optimizing”, in this sense, means that the
derived compound is modified in order to, for example, reduce off-target activ-
ities (side-effects) and improve the potency and pharmacokinetic properties of
the lead, such as solubility. This optimization is accomplished through chemical
modification of the lead structure, which is either led by the structural inform-
ation on the target (target-led) or by using information about known ligands.

1.3 Multi-objective optimization

The optimization of lead compounds has been approached as a single object-
we optimization problem (SOOP) for many years, even though many different
objectives were considered, but the optimizations were done sequentially, for
instance by means of a weighted-sum-of-objective-functions method [18], which
takes the following form:

f(z) = wy - (Objectivey) + wq - (Objectives) + ... + wy, - (Objectivey,),

where f(z) is a fitness function valuating the quality of the solution x, consisting
of n components/objectives.

It is often desired to search for solutions, or molecules, that satisfy certain
conditions. These conditions are often properties of the solution in the objective
space and are defined by constraints. These are described by a set of formulas
g; as equalities or inequalities. Including such constraints is a very useful tool
in guiding the search towards a specific area of interest or to exclude unwanted
solutions. Kruisselbrink et al [12]. suggested an approach where not only the
objective, in the form of desirability functions, but also the constraint functions
are aggregated. This yields an optimization problem with only two objectives,
one aggregating objectives and another aggregating constraints, which can be
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reduced even further to a single-objective optimization problem if all functions
are aggregated as follows:

f=hH-fo-iIN-91- G2 gMm

Optimizing the different objectives in this manner results in only one solu-
tion, since the weights are fixed a priori. This makes it harder to consider al-
ternatives and furthermore, assigning proper weights can be a difficult task. In
the case of, for example, the optimization of ADMET! properties of a chemical,
we would like to find those solutions that are optimal in at least one objective.
Finding such solutions is tedious with the aggregation method, but are easier
with specialized multi-objective optimization methods (MOOP). These meth-
ods try to find compromises and trade-offs by optimizing different objectives
simultaneously and without deciding on the order of importance or weights of
objectives a priori.

1.4 Drug discovery and diversity

Pharmaceutical companies keep a large collection of compound libraries, called
combinatorial libraries, that are used in the HTS process and can sometimes
contain over a million of different compounds. As the purchase and synthesis
of these compounds can be very expensive, it is desirable to maintain a library
that is very diverse, so that it can be used in random HTS campaigns. Also, a
subset of this library has to be selected from the available compounds to create a
screening library that is targeted towards the biochemical target in the screening
process. In this case, diversification helps to explore the biochemical space on
a large scale rather than a space that was biased towards a certain compound.
Merely optimizing diversity on the molecular structure has shown however that
this can lead to molecules that possess undesirable physicochemical properties
that make them less suitable as a drug lead [16]. It is therefore required to
take the physicochemical properties of the molecules into account and include
them as constraints in the selection process. The substituents that satisfy these
conditions are known as feasible.

Another application of diversification in drug research can be found in de
novo computer applications such as the Molecule Evoluator [13], which imple-
ments an interactive way of searching. In this software tool, the user is first
presented with a set of random molecules. After that, the most interesting mo-
lecules are manually selected by applying rules from chemistry and implicit
knowledge. The chemist thus effectively operates as a “fitness function” for the
program. In this case, maintaining diversity can be helpful for generating diverse
sets of molecules in each step, therefore covering a larger area of interest.

In this study, METool, which is developed by researchers of the Leiden /
Amsterdam Center for Drug Research (Prof. Ad IJzerman), Leiden University
(Maartje van der Sar) and the Leiden Institute for Advanced Computer Science
(Johannes Kruisselbrink), is used. METool has an evolutionary approach that is
very similar to the Molecule Evoluator, although the focus here is on diversity
optimization, which is not part of the Molecule Evoluator.

LADMET is an abbreviation in pharmacology for absorption, distribution, metabolism,
excretion and toxicity, and describes the tendency of a pharmaceutical compound to interact
with an organism.



Chapter 2

Molecular diversity

The aim of this thesis is to find an answer to the following overarching question:
how can we apply diversity-based search in drug discovery? In the previous
chapter a broad description of the drug discovery process was given, and it was
explained why the notion of diversity is useful here. This chapter elaborates on
a more specific definition of diversity and other facets that come into play in the
context of drug discovery. The following sections split the question into three
sub-questions, namely:

e What is diversity and how is it measured?
e What are the usual constraints and how are they specified?

e What are speed-dynamics in this context?

2.1 Comparison of diversity in biological species
and chemical compound libraries

One of the diversity measures that will later be discussed is called the Solow-
Polasky measure [23]|, which comes from biology. In their article, Solow and
Polasky explain the need for such a measure in the context of species conser-
vation programs. They state that the extinction of any species comes with a
cost, and since there is only a limited amount of resources, it should be decided
which species contribute the most to biological diversity. They assume that if
two species are very similar in genetic code, then they are likely to possess the
same characteristics and one of them does not contribute much to the diversity
of the population, i.e., the species are partially redundant. In contrast, if species
are very dissimilar then each one of them contributes a lot to the diversity of
the population. Since it is unlikely that all of the species useful properties are
known a priori, it is better to keep highly dissimilar population of species, as
the number of preserved properties is more likely to grow this way.

This idea is analyzed in more formal framework in Section 4.3, but what
should be noted at this point is that the contribution of a species to the diversity
of a population can be described in terms of its added value, expressed by its
dissimilarity to other members of the population. This same idea transfers over
to combinatorial libraries of chemical compounds. As stated in the previous
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chapter, it is desirable to cover as much of the chemical space as possible, but
this can be expensive and time-consuming. The focus, therefore, is on picking
those compounds that have the least overlap in their properties. This allows the
creation of diverse libraries consisting of only limited compounds.

Another approach, which is utilized in this study, is to do the inverse. Instead,
the focus is on compounds that are partially redundant, i.e., contribute less
to the diversity of the population based on some dissimilarity function. These
compounds can then safely be removed from population, while preserving the
diversity of the population as much as possible. A population is first initialized
with randomly generated molecules. Next, a new molecule is added, followed by
the removal of the molecule that contributes the least to the diversity of the
population. This approach is used in the ELSA algorithm that is the subject of
Chapter 4.

2.2 Constraints on the properties of the molecule

Searching for a diverse set of molecules would not in itself be of any practical
use, as there are practically infinitely many molecules. Such a subset would
include molecules of many different types and posses many unrelated properties
and potential applications. To guide the search process it is desirable to define
constraints that describe the “family” of molecules that is searched for. These
constraints can be stated on the physicochemical properties of the molecule, such
as solubility or the number of rings. It is also possible to include constraints on
particular external information about the molecule, such as the expected costs
involved in its synthesis, or whether the molecule is proprietary. Only molecules
that match these constraints are considered, which are called feasible molecules.

The inclusion of such constraints can be made part of the quality indicators
in such a way that a replacement of an infeasible by a feasible molecule is al-
ways beneficial. The indicators that include such penalties are called augmented
quality indicators [6] and are further discussed in Chapter 4.

2.3 Speed dynamics of the indicators

The third key goal of this thesis is to study the various quality indicators for
measuring the performance of a set of alternatives that have been proposed
throughout the years. The different indicators, ranging from very simple to com-
plex, are compared in their ability to efficiently create diverse set of molecules.
These indicators are described in detail in Chapter 4 with the experiments in-
cluded in Chapter 6.

10



Chapter 3

Methodology

This chapter discussed the tools and techniques that were used to evolve pop-
ulations of molecules in METool. In order to work with molecular structures
within computer software, it is required to have a suitable virtual representa-
tion, which is discussed in Section 3.1. Furthermore, the evolutionary algorithm,
that is used, searches the chemistry space by changing intermediate solutions
by means of mutation, which is discussed in Section 3.2. After that, the notion
of (dis)similarity based on molecular fingerprints, is introduced in Section 3.4.
This allows us to measure the distance between pairs of molecules and utilize it
to compute the diversity of the population.

3.1 Molecular representations

Chemoinformatics has spawned many different approaches to the virtual repres-
entation of molecules within software. Depending on the domain of interest, one
has to decide which representation is best suited for the problem at hand. The
interested reader can take a look at Brown’s “An Introduction to Chemoinform-
atics” [5] for an overview of these molecular representations. Many commercial
packages use either the line notation of SMILES [2] or the connectivity table
for molecular representation. These methods are well suited for applications
that contain static models, e.g. for graphical views of molecules and chemical
descriptor computation purposes. In METool, the molecular structures will dy-
namically change as they are constantly evolved by the algorithm.

Many of the algorithms for modifying molecules and computing chemical
properties come down to solving graph problems. It is therefore most natural
to represent molecular structures as a set of nodes (the atoms) and a set of
edges (the bonds), as is most commonly used in chemistry. This is also the
representation used in METool, in which we the experiments of Chapter 5 were
implemented.

3.2 Mutation of molecules
In order to evolve the molecules over time, one needs a method that allows to

modify the molecular structures in a systematic way. This modifying of mo-
lecules is called mutation, in the context of evolutionary algorithms. METool

11
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Figure 3.1: Cocaine (left) and scopolamine (right) share the same chemical formulas
(Ci7H21NOy), but have different structural formulas and properties.

has twelve different ways to perform a mutation on a molecule. These operators
will be described in the next few paragraphs and a graphical overview will be
provided in the table below. The mutation operators are very similar to those
originally used in the Molecule Evoluator [13], with the exception of a few subtle
changes.

3.3 Extended-connectivity fingerprints

In the 1960s the American Chemical Society created a database with informa-
tion on chemical compounds, called the Chemical Abstracts Service (CAS). As
in every database, each entry needs a unique identifier. This, however, is not as
trivial for the chemical compounds. Firstly, one has to decide on the represent-
ation of the compounds, which can be one of many, e.g.: as a linear (SMILES,
molecular formula) or as 2-D or 3-D geometric representations. Secondly, some
representations have a problem in the sense that they are ambiguous, rendering
them unsuitable for the use of unique identifiers. An example of such ambigu-
ity is given in Figure 3.1, where two molecules share a molecular formula, but
are very dissimilar in their structure and properties. This ambiguity is a com-
mon problem in graph theory, where it is referred to as the graph isomorphism
problem:

Definition 1 (Graph isomorphism).

Two graphs (G; and G5 are isomorphic if there exists a one-to-one mapping f of
the labels of vertices of G onto the labels of vertices of G5 such that adjacency
is preserved, i.e., two vertices in (G1, are adjacent if and only if the corresponding
vertices of G are adjacent [19].

Morgan proposed an algorithm [17] for finding unique identifying labels for
molecules in 1965. This algorithm exploits the fact that the molecular graph is a
particular class of graphs, and as such, each vertex of the graph is numbered with
an atomic number. Each non-hydrogen atom is initially assigned a numerical
identifier equal to the degree, which is the number of non-hydrogen neighbors
(see Figure 3.2a). Next, for each atom, the identifiers of the neighboring atoms
are summed iteratively until each atom in the structure has a number that is
as unique as possible (see Figure 3.2b). Finally, a graph walk is done, starting
at the atom with the highest identifier, to which the number 1 is assigned.
The neighbor with the second highest identifier is assigned 2, and so on (see
Figure 3.2c). There is a tie when two neighbors have the same identifiers. In

12
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Operator Description Pre Post
An atom is selected randomly from the molecu- m
Replace . 2
lar structure and replaced with another random l:(
atom 2
atom.
Remove An atpm tha.t has only one non-hydrogen atom as NH,
its neighbor is removed from the molecular struc- l:(
atom
ture.
I . The program first searches for a bond of order
nser one and then adds to it an atom with valence 2 or E>NH
atom .
higher.
The program first creates a list of atoms in the
molecular structure that have exactly two non-
Uninsert hydrogen neighbors and then randomly removes -
atom one from this list. A new bond is created between
the neighbors of the removed atom to make the
graph connected.
The program selects a non-hydrogen atom from
the molecular structure and tries to find an atom —5
Mutate . .
: with at least the same valence. If one is found, the
atom element is mutated into the found element. If no
element can be found, the graph is not changed.
Increase The program searches for a bond of order 1 or 2
bond and increases it to a bond of order 2 or 3 respect-
order ively.
Decrease The program searches for a bond of order 2 or 3
bond and decreases it to a bond of order 1 or 2 respect-
order ively.
Create Closes a ring by inserting a bond between two /\
ring atoms that did not have a bond before. / N\
Break Breaks a ring by removing a bond between two A
ring atoms that are in a ring.
Add The program adds a known functional group to a CH Oﬁ
group free atom.® 4
Remove The program removes a functional group from the Qﬁ CH
group molecular structure. 4
Ring An existing ring is fused with a compound of the
Bond static set of ring fragments, creating a ring fusion OQ
Fusion bond.

2The program chooses the element from a table consisting of 11 atoms: hydrogen,
carbon, oxygen, nitrogen, sulfur, fluorine, chlorine, bromine, iodine, phosphorus and

boron.

3The program uses two SDF data files containing 291 ring and 296 branch fragments.

13
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Figure 3.2: The figures above show the three stages of the Morgan algorithm for the
tyrosine molecule. (a) shows the atom identifiers after initialization. (b) shows the
atom identifiers after a few update cycles. (c) shows the end-results, with each atom
identifier assigned a unique value.

that case, the atom with the highest degree of atomic bond takes precedence
over the other.

An alternative approach was introduced in the Pipeline Pilot [1] software
in 2000, called Eaxtended-Connectivity Fingerprints (ECFP) [20]. This method
is related to the Morgan algorithm, but it is adapted in two ways. First, the
EFCP algorithm terminates after a predetermined number of iterations rather
than after identifier uniqueness is achieved. Secondly, the Morgan algorithm
tries to avoid collisions, i.e., where two different atom environments are given
the same identifier, which might result in two atom identifiers given the same
identifier. The ECFP algorithm replaces the collision-avoiding step by a fast
hashing scheme. An overview of the algorithm is given below.

Algorithm 1 (ECFP Algorithm).

1. An initial assignment stage, in which each atom has an integer identifier
assigned to it.

2. An iterative updating stage, in which each atom identifier is updated to
reflect the identifiers of each atom’s neighbors, including identification of
whether it is a structural duplicate of another feature.

3. A duplicate identifier removal stage, in which multiple occurrences of the
same feature are reduced to a single representative in the final feature
list. (The occurrence count may be retained if one requires a set of counts
rather than a standard binary fingerprint).

14
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3.3.1 Initial assignment stage

To compute an integer identifier for each atom, a set of rules similar to the
Daylight atomic invariants rules [25] can be used. These encompass seven rules
in total that do not depend on the atomic numbering.

e The number of immediate non-hydrogen neighbors;

e The valence minus the number of hydrogen atoms;

The atomic number;

The atomic mass;

e The atomic charge;

The number of attached hydrogens;
e Whether the atom is contained in at least one ring.

The computed values are hashed into a single 32-bit integer value and are used
as the initial atom identifier.

3.3.2 Iterative updating stage

Each iteration produces a set of features that represents each atom within a
larger substructure of the atom. In the previous stage, the information of an
atom with neighborhood of size 0 was captured. For a generalized ECFP _n fin-
gerprint, process is iterated n/2 more times, where n is the effective diameter of
the largest feature, i.e., the largest possible atom environment after n iterations.
For example, if iterated three times, the largest possible fragment has a width
of six bonds and the result is an ECFP 6 fingerprint.

In each consecutive step, the atom identifier from the previous iteration is
used in the updating of the atom identifiers, which are added to a fingerprint
set. This is achieved by using the information from the previous step, effectively
looking at a fragment with diameter k, and adding to it the non-hydrogen
attachments, thus obtaining the features of a fragment with diameter k& + 1.
The information of the previous step is captured in the current atom identifier,
so it does not need to be re-evaluated.

The way this is implemented is as follows. After initialization we have a 32-bit
integer atom identifier for each atom in the molecule. Next, we create an array
of integers that captures the features of a fragment with radius ¢, the iteration
count. This array is initialized with ¢ as the first number and the current atom
identifier as the second. To this list is appended a list of ordered pairs (o, I)
with o the bond order and I the atom identifier of the neighbor, which is sorted
according to bond order. The new atom identifier is then computed by again
hashing the resulting array to a 32-bit integer. This process is repeated for every
atom in the molecule.

3.3.3 Duplicate structure removal

An ECFP consists of an array of features as represented by the hashed 32-bit in-
teger values. Two molecules can then be compared by looking at the features that

15
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they have. A problem with this updating scheme is that similar substructures
can result in different integer values. For example, if two atoms have a differ-
ent atomic number, they are initialized with different values (see Section 3.3.1).
After a few generations, the feature region of one atom might be exactly the
same as that of another atom, but might be represented by a different hashed
value.

To resolve this possible redundancy, a record of a set of bonds for each
fingerprint feature is kept. A bond set is a bit string with length equal to the
number of bonds in the molecule. This is because a feature region cannot be
larger than the total number of bonds in the molecule. Each bit in the bit
string is a flag that is set whenever the bond that is represented by the bit is
part of the current neighborhood of the atom. When two features describe the
same neighborhood, i.e., they are from equivalent bond sets, the features collide
and one of them must be removed. Two simple rules are used to achieve this
deterministically [20]:

1. If the features were generated from a different number of iterations, the
feature from the larger number of iterations is rejected.

2. If the features were generated from the same number of iterations, then
the larger hashed identifier value (interpreted as an integer) is rejected.

3.3.4 Duplicate identifier removal (optional)

The last step is an optional one. As one molecule can contain substructures that
may appear several times in the same molecule, we can remove the duplicate
fingerprint features that were generated. The terminology fingerprint with counts
was proposed in the original paper on extended-connectivity fingerprints [20].
The additional information on the duplicate substructures might be useful in
some cases.

3.3.5 Remarks on the ECFP algorithm

Let us conclude this overview of the ECFP generation algorithm with three
remarks.

Firstly, 64-bit integer values were investigated by Rogers et al. but led to no
significant improvements [20]. We therefore use the 32-bit variant, as they are
more efficient to work with on 32-bit computer architectures.

Secondly, the choice of a hash function is free. The hash function has only
the following two requirements: it should be able to map arrays of integers
both randomly and uniformly distributed into the 232-size space of all possible
integers.

Thirdly, multiple features might be represented by the same bit code, there-
fore, the absence of a code is determinative, but the presence of a code is only
suggestive.

3.4 Jaccard distance coefficient

Now that we can describe molecular structures using Extended-Connectivity
Fingerprints, it is possible to compare two molecules based on the substructures

16
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Figure 3.3: The ECFP algorithm has collected several features from which four have
been highlighted. It can be seen that the molecules are similar to some degree, as they
share some features, e.g. the red and blue substructures.

that each fingerprint is composed of. A widely used similarity index is the Jac-
card coefficient. In the literature the name Tanimoto coefficient is often used,
but this is historically defined on bit strings rather than sets of features [8], as
in the case of ECFP. Therefore, the remaining part of this text will refer to the
Jaccard index.

There are many other coefficients that have been used in chemoinformatics
and could have been used here for (dis)similarity measures. This is however
not the focus of the thesis and the interested reader could look into [11] for a
thorough overview of such coefficients.

Informally, the Jaccard coefficient is defined on two sets of features, A and
B, as the number of common features divided by the number of all presented
features. Or more formally:

_|AnB|

T4, B) = |AU B|

(3.1)

This is the ratio of common or shared features of the two sets as compared
to the total number of known features. The dissimilarity coefficient or distance
measure, called the Jaccard distance, is easily derived by subtracting the Jaccard
similarity from 1.
|AUB|—1]AN B|
Js(A,B)=1—-J(A,B) = 1UB (3.2)

The distance is a real value with interval [0, 1], with value of 1 for maximum
similarity and 0 for minimum similarity.

An example of similarity search using molecular substructures is given in
Figure 3.3. Four features have been given a different color and it can be seen that
some of these are shared among the molecules. The ECFP algorithm collects for
each molecule all these features and the Jaccard distance is computed according
to the number of similarities.

3.4.1 Properties of the Jaccard distance coefficient

A distance coefficient can be seen analogously to distances in multidimensional
geometric space, although they are not necessarily precisely equivalent to such
distances [27]. A distance coefficient is only a metric if the following axioms
hold.
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1. d(z,y) > 0 (non-negativity)

Y
2. d(z,y) =0 & x =y (identity of indiscernible)
3. d(z,y

x, d(y,x) (symmetry)

- d(z,y)
- d(z,y)
Cd(z,y) =
cd(z, 2) < d(z,y) +d(y, z) (triangle inequality)

4. d

T, %

The first three properties hold trivially for the Jaccard distance, and the fourth
property has been proven by Alan Lipkus [15], meaning that it is a proper
distance metric.

It is also possible to use a distance metric that is a member of the more
general class of Minkowski distances, such as Euclidean or Manhattan distances,
which are defined as follows:

n 1/p
dyi(z,y) = (Z |z; — yi|p> ] =yl =n (3.3)
i=1

The fundamental difference between the class of Minkowski distances and the
Jaccard distance is that the former considers the common absence of attributes
(or low values in continuous space) as evidence for similarity, where the Jaccard
distance does not. Since molecular fingerprints are usually bit string and contain

mostly zeroes, the Jaccard distance is more natural to use.
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Chapter 4

Evolutionary Level-set
Algorithm

One of the recently developed evolutionary methods for finding optimal di-
verse sets of solutions is the indicator based Evolutionary Level-set Algorithm
(ELSA), which was proposed by Emmerich, Deutz and Kruisselbrink [6]. This
chapter will first give an outline of the Black-Box levelset problem in Section 4.1.
After that, a formal description of five indicators for diversity that were used
in the conducted experiments is given in Sections 4.2-4.4. Sections 4.5 and 4.6
deal with the feasibility and druglikeness of molecules. This chapter ends with
an adaption of the utilities that were discussed to the domain of molecules.

4.1 Black-box Level Set Problem

In classical optimization problems, the objective is often to look for a solution
that minimizes (or the inverse: maximizes) a certain objective function. However,
if one is not necessarily interested in finding the optimal solution, but rather a
set consisting of solutions that match certain constraints, the problem is referred
to as a Black-box Level Set Problem.

Definition 2 (Black-Box Level Set Problem).

Given a black box function f : X — R and a target space T C R, find all
solutions in L = {z € X | f(z) € T}. Solutions in L will be termed feasible
solutions.

Here, the target space T' could, for example, be a point, an interval box or
any space, for which the condition f(x) can be evaluated. A few examples of
the problems that belong to this family of problems are given in [6].

In the context of diversity optimization in populations of molecules, this
means that there is a function that maps molecules to an N-dimensional space,
with N the number of constraints. Furthermore, the goals of the search can be
split twofold:

1. Diversity: spread the molecules as much as possible within the target
space.

2. Feasibility: find molecules that match given constraints.
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4.2 Simple Spread Indicators

To compute the distance between two solutions in a population, the Jaccard
distance, based on Extended-Connectivity Fingerprints, is used, as described
in the previous chapter. As stated before, the maximization of diversity of the
population can be seen as spreading the molecules throughout the decision space,
or maximizing the gap between the molecules in this same space. Maximizing
diversity can then be restated as maximizing a spread indicator. For this purpose,
let us first define the distance from an element x to a set A:

d(xz, A) = mingead(x,a) (4.1)

Emmerich et al. [6] have proposed three simple spread indicators with “simple”
referring to the efficient computability of the indicators.

o [SN(A) :=mingead(z, A — {z}) (Minimal Gap)

1

(] ISE(A) = W

Y wead(x, A—{z}) (Arithmetic Mean Gap)

A

o ISu(A) == ([[,ead(x, A—{x}))™ (Geometric Mean Gap)

Maximizing these indicators results in maximizing diversity of a population
of fized size. It does not, however, necessarily reward adding more molecules to
the population, i.e., the monotonicity in species property does not hold.

Definition 3 (Monotonicity in Species Property).
If x ¢ A is added to a set A, then

D(AU{z}) > D(A) +d(z, A)

It should be noted that since the ELSA algorithm uses a population of fixed
size, this does not cause a problem. Two populations of the same size are easily
comparable, and the population with a larger value on the spread indicator can
be considered more diverse.

4.3 Weitzman Diversity

A diversity measure that does fulfill the monotonicity and a few other desir-
able properties, is the Weitzman distance [26], which will be discussed shortly.
Weitzman proposed a recursive definition for measuring the diversity in biolo-
gical species, which is defined as follows.

D(A)=D(A—z)+d(z,A—x) Ve e A (4.2)

Once the initial condition D(i) = dp has been set — usually dy = 0 — the
algorithm computes the diversity for each subset of increasing size. This is a very
rigorous approach for measuring diversity with the downside that a straight-
forward approach has a time complexity of O(]A|!). Weitzman proposed an
algorithm that reduces the complexity to O(2|A|). This approach uses a dynamic
programming technique and makes use of the notion of link species.
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Definition 4 (Link property).
For all A, with |A| > 2, there exists at least one species x € A, called the link
species, that satisfies D(A) = D(A — {z}) + d(z, A — {z}).

Informally, this means that there is some species that will reduce the diversity
of the population exactly by the distance of that species to its closest relative.
Weitzman has shown in his paper that the link species is one of two species that
are closest to each other. This means that instead of computing all diversity
values for each species in the population on each iteration (which gives rise to
the factorial complexity), it is instead possible to compute the diversity value
as follows:

Dy (A) = max{ Dy (A — {&}) +d(z, A~ {z})}

An implementation of this approach would maximize the cumulative sum of dis-
tances between the link species from populations of size N to 1. This effectively
reduces the time complexity to O(2/41). A proof can be found in Weitman’s
paper on diversity.

Definition 5 (Twin Property).

Suppose that some species y € A is identical to some species z ¢ A, meaning
that for all z € A, d(z,y) = 0 and d(x, z) = d(y, z). Then, if y is added to A,
there is no change in diversity, i.e., D(AUy) = D(A).

This is a reasonable requirement as adding copies of a species does not add
any additional value to the population. Replacing a redundant species s; by
another species sy with d(s2, A) > 0 is always preferred and the twin property
makes sure this is always the case.

Definition 6 (Continuity in Distances Property).
Let there be two sets A and A’, with |A| = |A’|. Let ¢(.) be a one-to-one function
mapping A onto A’. Then, for all € > 0, there exists a 6 > 0, such that

Dicajeald(i,j) —d(#(i), #(j))| < ¢ implies that [D(A) — D(A")| <e .

This property tells us that a slight modification of pairwise distances in S
results in a slight modification of the population’s diversity. The property is
very useful since there is some uncertainty in the real values of the distances,
induced by the discrete representation of real values in a computer.

Definition 7 (Monotonicity in Distances).
Let |A| = |A'| > 2. Let ¢(.) be a one-to-one function mapping A onto A’.
Suppose that d(¢(i), #(j)) > d(i,7), for all i,5 € A, i # j. Then D(A") > D(A).

This means that if a structurally identical set has a greater or equal distance
between pairs, the resulting diversity value should be greater as well. This is a
necessary property for any reasonable diversity function.

Definition 8 (Maximum diversity that can be added by a species).
If a species y is added to a set A, then D(AUy) < D(A) + dpmaz(y, A), for all
Y ¢ 57 where dmaw(y7 A) = maX;cA d(y7 7’)

Intuitively, this can be deduced from the algorithm that uses the link prop-
erty: the addition to the diversity value per iteration is at most the maximum
distance from the added species to the set.
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The distance function, based on Extended-Connectivity Fingerprints, has
values on the interval [0, 1]. As the maximum value that can be added is equal
to 1, the interval of the Weitzman diversity for the intended purpose is therefore
[0, n], with n = | A| the size of the set. The Weitzman diversity indicator therefore
gives some intuition on the diversity of a population, since its boundaries are
easily determined and normalization can easily be applied.

4.4 Solow-Polasky Diversity

A problem with the Weitzman measure is the time complexity of the algorithm
and the interpretability of the indicator value, as it lacks a clear scale on which
different values can be compared on. Clearly, if there are two sets A and A’
of equal size and D,,(A") > D, (A) then A’ is strictly more diverse than A.
However, by just looking at the indicator value of a population with unbounded
distances, it is hard to say whether the population is very diverse at all. It
would be more convenient to talk about a population A with k species with
0 < k < |A|. The Solow-Polasky measure [22] manages to do exactly this.

Definition 9 (Solow-Polasky measure).

Suppose we have a set A = {ay,...,an} where |[A] = n. Then we can define a
matrix M with entries m; ; = exp(—6 - d(a;,a;)), for all 4,5 € {1,...,n}, 6 > 0.
Then, if M is non-singular, the Solow-Polasky diversity, denoted by Dgp, is
defined as follows:

Dsp(A) =2 3 M}

i=1 j=1

The computational complexity of the Solow-Polasky indicator is O(n?),
which makes it more attractive for large sets than the Weitzman diversity in-
dicator [24].

There is, however, a problem with this indicator. If M is not invertible, then
the Solow-Polasky indicator value is not defined. We can overcome this problem
by using the Moore-Penrose inverse (or pseudo-inverse) of a matrix, which is
defined for any square matrix. A commonly used method is to compute the
pseudo-inverse by means of Singular-Value Decomposition, but this method is
still very expensive to compute. However, since the considered sets are relatively
small, this does not pose a severe problem.

4.5 The search space and druglikeness

The chemistry space consists of all possible combinations of atoms and their
topology that form molecules. A drug-like molecule is a substance that has
physicochemical properties that make it more likely that it will interact with
proteins in the human body, thus making it a target for further drug research.
Such a property can be computed using predictive modeling techniques and
provides the chemist with values that can be used to base decisions on.

A traditional method to predict druglikeness is Lipinski’s rule of 5 [14]. The
rule is based on the fact that a drug has to satisfy several molecular properties
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in order for it to be absorbed and distributed through the body. These proper-
ties are the so-called ADMET properties referring to absorption, distribution,
metabolism, excretion and toxicity. While the rule does not predict whether the
drug is pharmacologically active, it is useful as a rule of thumb, since molecules
that do not satisfy the rules are unlikely to be drug-like. Lipinski’s rules are
defined as follows:

e There are no more than 5 hydrogenbond donors (expressed as the sum of
OH- and NH-groups);

e The molecular weight is less than 500 Daltons;
e The Log P is over 5 (or MLogP is over 4.15);

e There are more than 10 hydrogenbond acceptors (expressed as the sum of
N and O atoms);

This rule will be used as a guideline for setting the constraints in the experiments
of Section 5. Many extensions have been proposed that narrow down the drug-
like chemical space. The interested reader can look into [9] for more details.

4.6 Feasibility of molecules

The complete set of possible molecules is enormous, but not all molecules have to
be screened, since many do not satisy the imposed constraints. These require-
ments can be, for example, constraints on the ADME properties. Therefore,
we can apply filters on these properties to exclude substances of low interest.
The molecules that fulfill the requirements are called feasible. The next section
provides details on how the notion of feasibility is incorporated in the evolution-
ary level-set algorithm.

4.7 Finding diverse sets of molecules

At the beginning of this chapter, we defined the Black-Box Levelset problem. In
this section, this problem will be formalized in the context of finding diverse sets
of molecules. As stated before, the goal is to find a set of feasible molecules, i.e.,
molecules that satisfy user-specified constraints, that are as diverse as possible.
The diversity measure can be any diversity measure, such as those described
in Sections 4.2—4.4. The search space under consideration is the chemical space
S of all possible drug-like molecules, where we can use Lipinski’s rule of 5 (see
Section 4.5) to specify the constraints. The remaining part of this chapter will
use a slightly different notation to emphasize the shift from abstracts sets to
sets of molecules. S is the chemical space (the search space) and P will be a
population of molecules.
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The levelset problem for finding drug-like molecules is defined as follows:

Definition 10 (Levelset problem for molecules).

We consider molecules z € S. Furthermore, there is a function f : S — RF,
that maps molecules to a vector p = (py, ..., pr)’, containing for each property
considered its computed value. The target space T' € RF is defined by constraints
on the values in such a vector p.

Find all solutions in the levelset L ={z € S| f(z) € T}.

As the set of feasible solutions can be very large, it is essentially impossible
and impractical to search for the entire set L. Therefore, an approzimation set
L* that is maximally diverse and of bounded size, is searched for instead. Using
the definitions of distances between molecules and the notion of diversity, it is
now possible to further refine the problem.

Definition 11 (Optimize diversity on sets of molecules).
Given a distance measure d(x, y), compute a set L* C L of size n that maximizes
D(L™).

In Section 2.1 it was stated that some species are partially redundant, i.e.,
they share some characteristics. The less features two molecules share, the higher
the probability is that the molecules will have unique properties. To maximize
the diversity of the population, the diversity quality indicator contribution (6]
is used. Such indicators compute for each molecule in the population its contri-
bution to the overall diversity.

Definition 12 (Diversity Contribution).
Given a set of solutions P, we define the diversity contribution of a solution
p € P as

Aqi(p, P) = QI(P) = QI(P —{p}).

Since the approximated levelset L* contains only feasible molecules, a mech-
anism for excluding infeasible molecules is required. This is done by penalizing
infeasible molecules, using an adapted version of the quality indicator contribu-
tion, called augmented indicators, as suggested by Emmerich et al. [6].

Definition 13 (Augmented Diversity Contribution).
Given a set of solutions P, the augmented diversity contribution of a solution
p € P is defined as:

AQIJr (pa P) <~ AQI(p,P) + dM(p7 T)7

where dm(p,T) is a Minkowski distance (see Section 3.4.1) from a molecule
x € P to the target space T. In the experiments of Chapter 5, the Manhattan
distance d; was used, since it is highly efficient to compute.

Because the contributions are highly correlated, i.e., the contributions of the
solutions are dependent on each other, a stable replacement strategie is a steady-
state scheme such as that in NOAH [24] and SMS-EMOA [7]. Evolutionary
algorithms utilizing such replacement strategies insert a new solution in the
population at the beginning of each iteration and then delete one as specified
by the objective and constraint functions. In this case, the molecule with the
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Algorithm 2

1: procedure ELSA

2 Py + init()

3 t+<0

4 while not terminate do
5: q < generate( Py, ppm)
6

7

8

9

P}« P,U{q} ,
74— argmax . pr {Agi+(p, P,)}
Pray < P\ {r}
: t—t+1
10: end while
11: return P,
12: end procedure

lowest augmented indicator value is selected for deletion. By doing so, penalized
(infeasible) molecules are likely to be deleted first, after which the diversity is
optimized by replacing partially redundant molecules.

The evolutionary level set approximation algorithm given in Algorithm 2
can be used to generate a diverse set of molecules. A population of random
molecules is first initialized. After that, an evolutionary loop starts where in
each iteration a new molecule is added by either mutating from an existing
molecule or by randomly generating a new molecule with a probability p,,. For
each molecule in the set, its contribution to the diversity of the population is
computed. The molecule with the lowest contribution is then removed from the
population and the next iteration starts.
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Chapter 5

Experiments

Earlier work on the comparison of the quality indicators described in Sec-
tions 4.2—4.4, have shown that even the simple indicators can do a good job
in the ELSA algorithm to generate a diverse set of solutions on artificial prob-
lems, such as the sphere function [6]. This chapter provides a description of the
experiments that were conducted to measure the performance of the indicators
in their ability to find diverse sets of molecules. We also explored various values
for p,, that controls the probability that a molecule is mutated from an existing
parent or randomly generated.

5.1 Comparison of different quality indicators

For this experiment the Weitzman diversity indicator was used, as it has all the
minimal properties (see Section 4.3) that are commonly associated with diversity
[26]. The indicators that were compared to the Weitzman diversity indicator are
the Minimal Gap (ISy), Arthitmetic Mean Gap (I1Sx), Geometric Mean Gap
(ISm) and Solow-Polasky (SP). The population size was set to a small value
of 10 to reduce the required calculation time, since the Weitzman indicator is
computationally very expensive, and was computed at each iteration and for all
indicators. The population was initialized by random arrangements of two static
sets of ring and branch fragments, which are not required to be feasible. In each
iteration of the algorithm, one new molecule was either generated from scratch
using this same method with probability 1 — p,,, or mutated from a parent
molecule using one or more randomly picked operators that were mentioned in
Section 3.2 with probability p.,.

In this experiment we also compared the performance of the algorithm in two
different scenarios. The first one is the unguided search using non-augmented
indicators which does not take into account any set constraints, i.e., any mo-
lecule is considered feasible. The focus herein is solely on the capabilities of
the algorithm to find a diverse set and is therefore less likely to be of use in
practice. It was included for theoretical intents only. The second scenario is the
guided search which uses the augmented indicator as defined in Definition 13
(see page 24). This is more relevant since it resembles a real-life use case in which
a diverse set of molecules meeting certain constraints is required. We refer to
Algorithm 2 (see page 25) for a detailed description of the procedure used.
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We also note that there is no explicit order in which the objectives of feasibil-
ity and diversity are considered in the case of a guided search, since the augmen-
ted diversity indicators aggregate both objectives in one value, the augmented
diversity contribution. This means that it is possible that infeasible solutions
are kept if their contribution to the diversity of the population is significant. It
is however very likely that infeasible solutions are replaced by feasible ones.

The mutation probability p,, was set to 0.5. The diversity quality contribu-
tion was then computed for each molecule in the population and the molecule
with the lowest contribution was deleted from the population. This process was
repeated for a total of 100 iterations per indicator. The results of 30 separate
runs were collected and the mean over these values for each iteration was taken.

5.2 Mutation probability

No experiments were previously conducted on the mutation probability p,, that
is hidden in the generate function of line 6 in Algorithm 2. For select this
probability value, the effects of varying this parameter from 0.0 (never mutate)
to 1.0 (always mutate) were studied.

The population size was again set to 10 and randomly generated from ring
and branch fragments. As the quality indicator for diversity, the Weitzman
indicator was used because of its “nice” properties, as stated in the previous
section. The experiment was run 10 times for 100 iterations.
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Chapter 6

Results

In this chapter, the results for the two experimental setups — the non-augmented
(unguided) and augmented (guided) as explained in the previous chapter — are
described and analyzed.

With Experiment 1 we denote the comparison of the various quality in-
dicators for diversity with respect to the Weitzman indicator, as described in
Section 5.1. Experiment 2 refers to the setup that compares various settings for
the mutation probability in ELSA as described in Section 5.2.

6.1 Experiment 1: Indicator comparison

The first experiment was run 100 times for each quality indicator, both for non-
augmented and augmented versions. The mean of each indicator was computed
after each iteration and plotted in Figures A.2 and A.4, which show the evolution
of the indicator value over time. The end-results after 100 iterations are shown
in Tables 6.1-6.2 and shown as box plots in Figures A.3 and A.5.

The end-results for both non-augmented and augmented indicators show
negligible difference, which is particularly clear in the box-plots. Despite the
simple nature and low computational complexity of the simple quality indicat-
ors (Minimal Gap, Arithmetic Mean and Geometric Mean Gap), they perform
surprisingly well in the experiments. In the non-augmented experiment, the
Geometric Mean Gap was a clear winner with both the best intermediary and
end-results, followed by the Solow-Polasky indicator with 6 = 20.

From these results it can also be seen that the Solow-Polasky indicator’s
performance is highly dependent on the value of the § parameter. Where the
averaged results for most indicators show an almost monotonic increase in qual-
ity value, the Solow-Polasky indicator with # = 1 shows many fluctuations,
indicating irregular performance over the various runs. This shows another in-
teresting advantage of the simple quality indicators over the Solow-Polasky in-
dicator, namely that these indicators have no parameters that influence the
performance.
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MG AMG GMG SP;  SPs;  SPyy  SPy

Mean 7.9658 7.9849 8.0193 7.8482 7.9219 7.9695 8.0070
Median 7.9732 7.9920 8.0248 7.8815 7.9331 7.9966 8.0024
o 0.1018 0.0887 0.0887 0.2028 0.1337 0.1304 0.0946

Table 6.1: End results after 100 runs with various regular, non-augmented indicators.

MG AMG GMG SPy SPs SP1o SPag

Mean 7.7610 7.8561 7.9039 7.8887 7.6587 7.7686 7.5982
Median 7.8373 7.8645 7.9040 7.8846 7.8409 7.8527 7.8424
o 0.7887 0.1023 0.0897 0.0980 1.1080 0.7957 1.3488

Table 6.2: End results after 100 runs with various augmented indicators.

6.2 Experiment 2: Mutation probabilities

The second experiment investigates the influence of various settings of the muta-
tion probability on the ability of the ELSA algorithm to find diverse sets of
molecules. Only the Weitzman indicator is used as the measure of diversity in
this experiment.

The mean value over 10 runs was computed after each iteration and for every
mutation probability and plotted in Figure A.1. The end-results for each setting
of the mutation probability can be found in Table 6.3.

The results show that the obtained population diversities after 100 iterations
are very similar for all settings. Setting the mutation probability p,, to 1.0 results
in poor performance compared to the other settings.

Mut. prob. Mean Median o

0.0 8.2667  8.2780  0.0575
0.1 8.2995 8.2750  0.1316
0.2 8.2958 8.2984  0.0544
0.3 8.2916  8.3058  0.0813
0.4 8.2896 8.2674  0.0882
0.5 8.2704  8.2923  0.0735
0.6 8.2520 8.2559  0.0673
0.7 8.2791  8.2758  0.0665
0.8 8.4243  8.2725 0.3081
0.9 8.3746  8.3167  0.2505
1.0 8.2176  8.2420 0.1366

Table 6.3: End results after 10 runs with mutation probabilities.
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Chapter 7

Conclusions and Future Work

In this thesis we described methods for generating diverse sets of molecules with
user-specified properties. We gave details about the representation, about dis-
tance measures using extended-connectivity fingerprints and Jaccard distance,
and we described how new molecules are generated from parent molecules using
various mutation operators. The ELSA algorithm was able to successfully evolve
an initially random set of molecules using a steady-state replacement scheme
utilizing the contribution of diversity to the molecule population.

We started out with the following question: How can we apply diversity-
based search in drug discovery? We have shown that many of the required tools
are available, but that a suitable algorithm for the particular optimization goal
of finding diverse sets was not yet experimented with. The ELSA algorithm has
shown to be a suitable candidate for the task. The results of the experiments
show that all diversity measures, and their respective indicators of diversity
contribution, are able to rapidly select infeasible molecules and replace them. In
the case of unconstrained diversity optimization, i.e., with use of non-augmented
indicators, the algorithm was able to generate a set that was more diverse than
the random initial sets.

Another aspect of this thesis was the comparison of various indicators of
diversity. Two well-known indicators, Solow-Polasky and Weitzman, were tested
with three less complex measures, called simple spread indicators. Our results
show that the latter are as suitable as the former in finding diverse sets. This
result is rather surprising, since their nature is much more simple and they
are less expensive to compute. The Minimal Gap indicator, for example, has
complexity O(|A|?) for the initial computation of the population diversity, but
updates to the indicator can be done in linear time.

The experiments with the mutation probability give no definite answer to
the best setting of this parameter. Further research could be conducted to in-
vestigate whether this parameter can be dynamically adapted to improve the
performance of the algorithm.

Although the METool was able to find diverse populations of molecules, it
is unclear whether the molecules it finds can be synthesized. The application
should be extended to implement such synthesizability checks, as this would
greatly enhance its practical value. Further research should therefore be done
on finding a suitable way to integrate the synthesizability, for example as an
additional constraint on the objective space.
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Figure A.1: The evolution of averaged Weitzman indicator value over 10 runs using
various mutation probabilities.
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Figure A.2: The evolution of averaged diversity indicator value of 100 runs using
various regular, non-augmented indicators.

9
8.5 |
3 O
Q
: [
N i
a + T
7.5 + |
+
7

| | | | | | |
MG AMG GMG SP1 SP5  SP10 SP20

Figure A.3: Box plot of the results of Experiment 1 after 100 runs with various non-
augmented indicators.
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Figure A.4: The evolution of averaged diversity indicator value of 100 runs using
various augmented indicators.
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Figure A.5: Box plot of the results of Experiment 1 after 100 runs with various aug-
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