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1 Introduction

In this thesis, we will develop a tool that compares two text files to get an
overview of their differences, in a way similar to what the diff tool does.
In some scenarios, the usefulness of diff may be limited by the fact that
the only changes it detects are insertions and deletions of lines. If a line was
moved to a different position in the file, then diff will consider that as one
line being deleted and another being inserted elsewhere, without realizing
that these are the same line.

To formalize the problem, we treat each file as a (multi)set of strings,
namely its lines. We want to assign each element in one set to a unique
element in the other set, in such a way that pairs of elements assigned to
each other are as alike as possible. To quantify the similarity of a pair of
strings, we need to choose a distance measure on strings. Then the problem
is to find an assignment that minimizes the total distance between the pairs
of strings.

An important property of this formalization is that by treating the files
as sets rather than sequences of lines, we completely ignore their original
ordering. This puts us at the other end of the spectrum from diff, which
strictly adheres to the ordering of the lines. Hence it depends on the ap-
plication which of the two tools is more appropriate for the comparison of
two files. For instance, when comparing two source code files, it is possible
that some lines were moved to different places in the file, but in general the
ordering of lines within the file is too important to ignore it altogether, so
that diff is still the better choice.

One example where our problem has practical application is for two files
representing snapshots of data from a database, but sorted according to
different criteria. Then if we have no good way of reconstructing the sorting
criteria, or if too many changes occurred in the database column on which
the files could have been sorted, diff is of limited use. The tool we intend
to develop in this thesis will help us to get an overview of changes in the
database based on just these two files.

The straightforward solution to the described problem would be to first
compute a table of distances from each element of the first set to each ele-
ment of the second set, and then run a standard algorithm for the assignment
problem (described in Section 3) on this table. While this would yield the
desired answer, computing all these distances is likely to be prohibitively
expensive in terms of computing power. Therefore, most of this thesis will
be concerned with the computational efficiency of our solution.

We will find that the resulting program can be a great help in the right
situation: for certain pairs of files that diff has trouble with, our program
finds the desired assignment of lines, and does so in very little time. However,
its applicability is restricted to those cases where the order of lines within
the files is irrelevant.
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This thesis is structured as follows. In Sections 2 and 3, we study related
work, on approximate string matching and the assignment problem respec-
tively. We describe our optimized algorithm in Section 4. Section 5 shows
the performance of this algorithm in practice, and Section 6 concludes.

The present work was written as a bachelor thesis in computer science,
at Leiden University (LIACS), under the supervision of dr. W.A. Kosters.

2 Approximate string matching

In many applications in which strings are involved, exact comparison of
strings is not sufficient and some notion of distance between strings is re-
quired. Some examples of such applications are spelling correction, informa-
tion retrieval (where either the query or the text being searched may contain
spelling mistakes), file comparison (where we usually wish to find what lines
are inserted or deleted), and computational biology (where various ques-
tions may be asked of very long strings of DNA). In this section, we look
at several such applications, and begin by looking at the various distance
measures that have been used in them.

2.1 String distance measures

We will review several classes of string distance measures. We do not intend
to be exhaustive, but want to show a glimpse of their variety, which reflects
the different applications for which these measures were designed.

2.1.1 Edit distance and variants

A basic distance measure is the edit distance (also called Levenshtein dis-

tance, see [WM91]). It counts the smallest number of edit operations that
will convert one string to another, where the editing operations are inserting
a character, deleting a character, and substituting one character for another.
This distance measure is very appropriate if we are interested in dealing with
typographic or spelling mistakes, as it tends to assign small distances only
to those pairs of strings that match with few such errors.

Many other string distance measures can be viewed as generalizations of
the edit distance. One obvious way to generalize it is by assigning nonuni-

form costs to the different editing operations [CGK06]. For example, we
could make insertions and deletions three times more expensive than sub-
stitutions, or we could assign different costs to substitutions based on how
close the corresponding characters are on a keyboard.

A further variation of the edit distance that is commonly used in com-
putational biology employs an affine gap penalty. The alignment of two se-
quences of nucleotides or amino acids can be visualized by printing each
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sequence on its own line, and leaving space in the sequences so that match-
ing elements are above each other. Then each series of insertions or deletions
shows up as a gap in one of the two sequences. Normal edit distance can be
seen as assigning linear costs to gaps: the cost of each gap is some constant
times the size of the gap. As observed in [NW70], other choices are possible.
In particular, an affine gap penalty results if the cost for starting a gap (the
first insertion or deletion) is different from the cost of extending a gap (each
subsequent insertion or deletion).

We can also modify the notion of edit distance by disallowing substi-
tutions (or equivalently, assigning them a cost of two or greater). This is
the notion of distance used by diff. (In diff, the sequence of lines in a
file is treated as the characters of the string to be compared.) Then finding
the distance between two files corresponds to finding the longest common
subsequence of lines in those files. Therefore this distance is known as the
longest common subsequence distance [Na01]. In principle, diff wants to
minimize the numbers of insertions and deletions, but by default, it uses a
heuristic and may produce suboptimal output if the input is complex enough
[GNU11].

It is obvious that all variations of the edit distance described above
satisfy the mathematical properties of a metric:

• they assign nonnegative distances to any pair of strings and zero dis-
tance only to equal strings;

• they are symmetric (if, in case of the generalized edit distance, inser-
tions and deletions have the same (nonzero) cost and the matrix of
substitution costs is symmetric);

• the triangle inequality holds (also for the generalized edit distance): if
we know sequences of edit operations that transform string x into y
and y into z, then those two sequences combined will transform x into
z, so that the distance between x and z can be no larger than the sum
of the other two distances.

2.1.2 Token-based distances

Some distance measures are based on treating the strings as (multi)sets of
tokens. These tokens may be the words occurring in a string (or possibly
just their stems) or the set of its q-grams (all its substrings of length q, see
[CGK06]). The former is used in [HK06] to measure distances and similarities
between documents, while the latter occurs in contexts dealing with shorter
strings.

A simple way to measure the similarity of two sets S1 and S2 is the
Jaccard coefficient, which is given by

|S1 ∩ S2|

|S1 ∪ S2|
.
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It is 1 if S1 = S2, and 0 if they share no common elements. Note that for this
measure and the following, larger values correspond to more similar strings.

If the frequencies with which all tokens appear in each of two strings
are given as two vectors v1 and v2, another way to express the similarity
between those two strings is the cosine similarity

v1 · v2

‖v1‖‖v2‖
, (2.1)

where the numerator contains the vector dot product and the denominator
the Euclidean norm. The name derives from the fact that this equals the
cosine of the angle between the two vectors. It is again between 0 and 1:
0 if the vectors are perpendicular (which must again mean that the strings
share no common tokens), 1 if they are colinear (in which case all tokens
occur with the same relative frequencies).

In some applications, it is useful to adjust these measures in the following
way. Given a set of strings (seen as documents in a corpus), we weigh each
token occurring in those strings by the inverse of its “document frequency”:
the number of documents in the corpus in which this token appears. (The
actual formula for the inverse document frequency given in [HK06] applies
a logarithm to this inverse frequency). Then the | · |s in the Jaccard coeffi-
cient become sums of such weights, and the elements in the vectors used to
define cosine similarity become term frequency times inverse document fre-
quency (TF-IDF ). This has the result of ignoring stop words that occur in
all documents (probably in large numbers) but that do not tell us anything
about the topic of the document, while emphasizing terms that are specific
to small sets of documents.

2.1.3 Block edit distances

A possible shortcoming of the edit distance and its variants is that they
fail to recognize the similarity between the pair of strings hello world and
world hello: they can only recognize one of the two words as occurring in
both strings, and must treat the other as being deleted from one string and
inserted into the other. Token-based distances are on the other side of the
spectrum: they depend very little (or not at all, if the tokens do not overlap)
on the order in which parts of a string are arranged, and may assign very
large similarity to strings that are very different but happen to have similar
sets of tokens. Block edit distances can be seen as a halfway point on this
spectrum. They are best explained as edit distances that allow an operation
that either moves or copies substrings.

The first article we could find that attempts to define such a distance
measure is [He78], which treats the problem of creating edit scripts (like
diff does). He allows a move operator in addition to deletion and insertion
operators. The (implicit) distance he tries to minimize assigns unit cost to
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deleting and inserting lines, while moving lines is free. This can easily be
seen to be a metric by regarding it as the Manhattan (or city block) distance
on the frequency vectors as used in (2.1). His algorithm prefers to move
contiguous elements together, but this preference is not made precise, so that
the distance behaves more like a token-based one. The exact preferences of
the algorithm are hard to make precise because the algorithm he describes
will fail to find matching lines and count them as insertions and deletions,
unless there are sufficiently many lines that occur exactly once in each file.
Nevertheless, the article was a good starting point for the investigation of
block edit distances.

A slightly different notion of distance is given by [Ti84]: he allows a new
string to be constructed from left to right as a sequence of insertions and
block copies from an original string. The problem he discusses is to minimize
the number of such block copy operations (which he calls “moves”, even
though the original string is not changed by this operation), given that only
characters that did not occur in the original string may be inserted. This
can be seen to correspond to minimizing the cost of a sequence of editing
operations where insertions cost M per character and copies cost 1 per block,
for some sufficiently large constant M . After these operations, the original
string is always deleted at no cost and the remainder must equal the target
string. Efficient algorithms to find the minimizing sequence of edit operations
are also given. Because unlike in the previous distance, block copies come
at a nonzero cost, this distance penalizes pairs of strings that share symbols
but have them in a different order. However, it is not a metric. In particular,
it is clearly asymmetric, and it violates the triangle inequality, for example
for

d(a, ab) = M + 1 d(ab, abab) = 2 d(a, abab) = 2M + 2. (2.2)

In [EH88], the authors define diff(x, y) as the smallest number of charac-
ters of the string x that must be marked so that each intervening substring
of x is also a substring of y. This leads to something very closely resembling
the previous distance for constructing x from y, though diff(x, y) will some-
times force characters to be inserted into x just as a way of marking the
boundary between two copy operations. The authors proceed to show that
lg((diff(x, y) + 1)(diff(y, x) + 1)) is a metric. It is clear how this transforma-
tion serves to get symmetry, and the logarithm is necessary to maintain the
triangle inequality in examples such as (2.2), where the relation between the
distances is multiplicative rather than additive.

Finally, [LT97] considers the following problem: Given a pair of strings,
we want to associate substrings of one with substrings of the other so that
the total distance of these pairs of substrings is minimized. The distances
between substrings may be given by an arbitrary function, which may even
take negative values. The authors discuss several variations with different re-
quirements on the substrings, the most natural of which seems to be the one
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where the substrings of one string are required to be a disjoint cover, while
there are no requirements on the other string’s substrings. This resembles
creating the first string from the second by a sequence of copy operations, ex-
cept that the copies may then be further edited. The authors show that this
problem is NP-complete if requirements of disjointness or coveredness are
made on both strings. For the other cases, they give polynomial algorithms,
though these are significantly less efficient than the algorithms occurring in
the other papers mentioned in this section.

2.1.4 Specialized distances

Some distance functions are not intended for comparing general strings,
but for strings from specific domains. We mention Soundex, described in
[Kn98], which is a method for encoding surnames by mapping them to a
sequence of a letter and three digits. This mapping throws away much of
the information in the original string, in such a way that names that sound
similar are mapped to the same code. This defines an equivalence relation
on strings. It can be seen as a distance function that assigns distance 0 to
strings in the same equivalence class, and distance 1 otherwise. Hence it
satisfies the properties of a metric except one: it may assign distance 0 to
unequal strings. This makes it a pseudometric.

2.1.5 Compression-based distances

According to the Minimum Description Length (MDL) principle [Gr07], it
is possible to draw various kinds of conclusions about arbitrary data by
seeing how well this data can be compressed. The motivation is that if we
can compress data well, then we must have seen regularity in the data,
which corresponds to having “learned” from the data. The ideal measure of
compressibility is Kolmogorov complexity, which is the length of the short-
est computer program that reproduces the data. However, this theoretical
notion has several problems when we try to apply it in practice: the exact
length depends on the programming language we use (though this difference
is a constant for Turing-complete languages), and the problem of finding (the
length of) the shortest program that produces some output is uncomputable.
Therefore, to apply this idea in practice we must restrict ourselves to less
general schemes of encoding data. We want such an encoding scheme to be
good at compressing the types of regularity we expect to find in our data.

Compressibility corresponds to a distance measure between two strings
in the following intuitive sense. Given some function L that assigns to a
string the length of its encoding (which we will measure in bits) and two
strings x and y, L(y|x) := L(xy)−L(x) is the code length we need to encode
y after having seen x. If x and y are similar (for example, if they share long
common substrings), then xy can be encoded by first encoding x and then
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encoding y with the help of x. Then L(y|x) will be small. However, if x
and y share little similarity, then encoding xy will be about as expensive as
encoding x and y separately, so that L(y|x) will be large (close to L(y)).

The expression L(y|x) is not a metric. It is clearly asymmetric: for x = ε
(the empty string) and y = this is a long string, L(x|y) will be small
but L(y|x) large. If a symmetric measure is desired, this can be accomplished
by taking d(x, y) = max{L(y|x), L(x|y)} [Ci07]. The other properties of a
metric do hold approximately for Kolmogorov complexity, and thus might
also be hoped for in a practical compressor. In [Ci07], the conditions on
a compressor such that d is approximately a metric are formalized in the
definition of normal compressor. Finally, [Ci07] suggests normalizing the
distance through dividing d(x, y) by max{L(x), L(y)}. The result is still a
metric, and assigns distance approximately 1 to pairs of strings which are
completely dissimilar.

We can now choose a practical string compression algorithm with the
properties referred to above and use it to define a distance function. One
popular family of compressors with these properties is the Lempel-Ziv family.
Roughly speaking, such a compressor encodes a string s as a sequence of
words from its dictionary, which initially contains all single characters in the
alphabet, but which is updated with substrings from the part of s already
encoded. The first member of this family was introduced in [ZL77] and is
referred to as LZ77. The main difference between LZ77 and its successors is
that the dictionary in LZ77 contains all substrings of s (up to some maximum
length and with starting point not too far back) of which the first character
has already been encoded, whereas subsequent algorithms only contain a
subset of those substrings.

The encoded output produced by LZ77 consists of an alternating se-
quence of pointers to previous substrings and literal characters. These point-
ers are encoded with two uniform codes: one over all possible starting posi-
tions, and one over all possible lengths. Then the triplet of two pointers and
a literal character takes ⌈lg w⌉ + ⌈lg Ls⌉ + ⌈lg |Σ|⌉ bits, where w is the size
of the sliding window in which the original substring must start, Ls is the
maximum length, and Σ is the source alphabet.

2.2 Approximate string matching algorithms

The problem of approximate string matching is to find a substring in a large
text which is within some specified distance threshold k of a small pattern
string [Na01] according to a chosen distance measure. There are two major
variations of this problem: the online version (where no preprocessing of the
text is allowed), and the version where the text can first be preprocessed to
create an index on it. We start with some online algorithms.
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2.2.1 Online algorithms

For biological sequences, [NW70] described the dynamic programming so-
lution to compute several variants of the edit distance between two strings.
The cell at position (i, j) of the dynamic programming table represents the
distance between prefixes of lengths i and j of the two strings respectively.
Then the value of each cell can be computed from the cells (i−1, j), (i, j−1)
and (i − 1, j − 1) with a simple recurrence. The algorithm in [SW81] is a
small adaptation of this to find approximately matching substrings rather
than the edit distance between the two full strings. In fact, the algorithm
goes further than approximate string matching: given two long sequences, it
can find a substring in each, such that these substrings have a good “simi-
larity score” (which is like an edit distance, except that matching characters
improve the score; otherwise two empty substrings would be the optimal
solution).

A very efficient solution using a different approach is the bitap algorithm
by [WM91]. Its base form finds all strings in the text which are within edit
distance k of the pattern, but many extensions are described, such as using
the edit distances with nonuniform costs (as long as the costs are small
integers), or using a regular expression rather than a single string as the
pattern. The algorithm is based on a state machine which tracks how some
substring of the text can be matched against the pattern. It gets a lot of
its speed from working with bitwise operations, which essentially allow it to
track many match states in parallel as long as the pattern’s length is small
compared to the machine’s word length. It is implemented in the UNIX tool
agrep.

In [Uk92], two algorithms are described for approximate string matching
using different distance functions: a distance based on q-grams, and [Ti84]’s
block edit distance.

2.2.2 Algorithms using preprocessing

We discuss two types of indices. The first is based on q-grams. It is useful
even if the distance function we are interested in is not directly based on
q-grams: many algorithms can be sped up by first finding occurrences of the
pattern’s q-grams in the text, then ignoring parts of the text containing no
matching q-grams, and running a different algorithm to take a closer look
at the parts that do [Na01]. Depending on q, the size of the pattern, and
the allowed distance, such an approach can be made precise in ways that
guarantee that no approximate matches will be missed.

Because we want to compare q-grams efficiently, we usually hash them.
A particularly useful type of hash function in many applications is a rolling

hash. Such a hash function is also used in [KR87]’s algorithm for exact string
matching. Given the hash of some substring, we can efficiently compute the
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hash of a substring of the same length starting one character later.
Another category of indices is based on suffix trees and variants [Gu97].

Such data structures store all suffixes of the text, and can be constructed in
linear time and space [McC76]. The ability to quickly locate any substring
is obviously valuable to an approximate string matching algorithm, though
they tend to be more expensive than q-gram based indices because of larger
constant factors.

Two concrete examples of approximate string matching algorithms with
edit distances, one using a suffix automaton and the other using an index of
q-grams, are given in [JU91].

2.3 Other problems involving approximate string matching

Several applications of string distance measures have already been men-
tioned. Here we mention a few more that are of interest, and discuss how
they relate to our assignment problem.

2.3.1 File comparison

In the problem of file comparison, we are not primarily interested in the
distance between two files, but rather in the similarities and differences
determining this distance. If the two files were similar, these differences can
be described in a patch file that is significantly smaller than the two files
being compared. This leads to a secondary application of file comparison
tools: if we also have a tool that, given the first input file and the patch,
reconstructs the second file, then these patches can be used to efficiently
store many versions of one file in a versioning system.

We already mentioned the well-known diff utility in our discussion of
the longest common subsequence distance. Its implementation (at least, of
the GNU version, see [GNU11]) is based on the algorithm described in [Me86]
and [MM85].

File comparison utilities could conceivably become more powerful if they
considered block edit distances: they could capture more similarities in the
files (where the user of diff will have to find such similarities by himself),
and they might make patches even more efficient. This was indeed the mo-
tivation behind most of the articles referred to in Section 2.1.3.

The problem we want to solve in this thesis is also very similar, the only
difference being that our primary interest is not the ability of reconstructing
the second file in its original order, but only modulo a permutation of its
lines. But with the trivial modification of adding the original ordering of the
lines to the difference file which (as required in our problem setting) already
describes the assignment of lines from one file to the other and the changes
made to those lines, such a file would constitute a patch.
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In this light, we take a closer look at two of the block edit distances
and how they compare to our problem. First, [He78] also wants to find an
assignment between the lines of the two files. However, the author only
assigns two lines to each other if they are identical (like diff), and the
solution found by the described algorithm may be arbitrarily far removed
from the optimal solution. On the other hand, [LT97] allows the file to be
split up into substrings in arbitrary ways rather than always splitting it at
every line end, and allows those substrings to be compared using an arbitrary
distance measure. However, the conclusion is that if we require for both files
that their substrings form a disjoint cover (which would make it most similar
to our assignment problem), then the problem becomes NP-complete. This
gives us hope that our problem, being halfway in complexity between these
two problems, will admit efficient computation, at least for certain choices
of the string distance function used to compare lines.

A final application that should be mentioned in this section is rsync

[Tr99], another popular tool in UNIX environments. The part of its func-
tionality that we are interested in is creating a patch, but with the caveat
that the two files being compared are separated by a low-bandwidth high-
latency connection. The crucial ingredient of the algorithm is a rolling hash,
as used in [KR87].

2.3.2 Record linkage

A common operation when working with relational databases is the join.
This is a subset of the Cartesian product of two tables, filtered to contain
only those pairs of records which match in some way; for example, referring
to the same customer or product. These are usually recognized by comparing
keys in the database. Record linkage concerns itself with such tasks when no
key is available but we still need to find all pairs of records that might refer
to the same entity, maybe because data from independent sources need to be
integrated. This may be accomplished by a similarity join, where all pairs of
records that are “close” in some sense are returned [CGK06]. Measuring the
distance between two records often involves measuring string distances. To
get good results, it is important to choose the distance functions properly.
Specialized distances like Soundex play a large role here.

It is also useful to match a database with itself in this way, in order to
find records referring to the same entity but not recognized as such because
of a misspelling in a name or a customer changing address.

The problem of record linkage is similar to our assignment problem,
though in record linkage, one typically does not assume that as many records
from each table as possible must be matched to a record in the other table.
A further difference is that we want an algorithm that returns at most one
match per record, while a similarity join may return more than one as long
as all matches are below the chosen threshold.
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2.3.3 Inference

Based on the Minimum Description Length principle, [Ci07] explored vari-
ous types of statistical inference tasks that can be done using compression-
based distances. These tasks included classification (for example, recognizing
whether an email message is spam) and clustering (for example, grouping
musical pieces together based on their similarity, so that pieces by the same
composer end up being grouped together). That such tasks can be performed
in this way demonstrates the usefulness of compression-based distances. The
similarity of these applications to ours suggests that such a distance measure
would also be useful for our purposes.

3 The assignment problem and the Hungarian al-

gorithm

The assignment problem is an optimization problem, with input consisting
of an n×n matrix of nonnegative integers. The rows of this matrix represent
jobs that need to be done; the columns represent the workers that may be
assigned to these jobs. The workers have different aptitudes for the various
jobs: the number in the matrix at row i, column j is the cost of assigning
worker j to job i. An independent set of cells of the matrix is a set for which
each row and each column contains at most one cell in the set. Such a set
describes a (partial) assignment of workers to jobs, where each worker is
doing at most one job and each job is being done by at most one worker.
The goal of the assignment problem is to find an assignment of each of the
n workers to a unique job, such that the total cost of the worker-job pairs
is minimized. In other words, we want to find an independent set of n cells
which minimizes the sum.

worker
Alice Bob Carol

A 4 4 1
job B 3 2 1

C 5 3 7

For example, in the table above, we see that Alice, Bob and Carol need to
be assigned to the three jobs A, B and C. Carol is very good at jobs A and
B, but we want to avoid assigning her to job C; because both Alice and Bob
are better at job B than at job A, we choose to assign Carol to job A. Of
the remaining costs, that of assigning Bob to job B is smallest. However,
that would leave Alice with job C. A better solution is to assign Bob to job
C and Alice to job B, for a total cost of 7.
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3.1 Theory and basic form of the Hungarian algorithm

Polynomial-time algorithms for this problem were first found by [Ku55] and
[Mu57]. The algorithm is based on two observations. First, if we pick a row
or column and add a (possibly negative) constant to each of its elements,
then this does not change the solution of the problem: each independent set
contains exactly one modified element, so all candidate solutions change by
the same value.

The other observation is a key theorem from graph theory. We first need
to define two terms.

Definition 3.1 A matching is a subset of the edges in an undirected graph

such that no vertex is the endpoint of more than one of those edges.

Definition 3.2 A vertex cover is a subset of the vertices in an undirected

graph such that for each edge, at least one of its endpoints is in that subset.

Now we can state the theorem.

Theorem 3.3 (Kőnig’s theorem) In a bipartite graph G, the size of a

largest matching is equal to the size of a smallest vertex cover.

If we view the rows and columns of the matrix as 2n vertices in a graph, and
join two of these vertices by an edge if the corresponding cell in the matrix
contains a 0, then we obtain a bipartite graph. Applying the theorem to this
graph tells us that a largest set of independent zeros (which corresponds to
a set of edges which share no endpoints) has the same size as a smallest set
of rows and/or columns covering all zeros.

Kuhn named his algorithm “the Hungarian algorithm” in [Ku55], after
Kőnig’s nationality, reflecting the importance of these theoretical results to
the development of the algorithm.

Though the details differ between the algorithms in [Ku55] and [Mu57],
both algorithms follow the same general pattern. First, we find a set of lines
(i.e., rows and/or columns) that cover all zeros in the matrix. If this requires
n lines, then by Kőnig’s theorem there is an independent set of n zeros, so
we have a complete assignment and the algorithm terminates. Otherwise,
let h be the value of a smallest uncovered element of the matrix. Then for
each covered column, add h to all its elements, and for each uncovered row,
subtract h from all its elements. Repeat these steps until the assignment is
complete.

Each time the matrix is modified, this happens in such a way that the
solution is unchanged (by the first observation above). The net result of the
modification is that all uncovered cells are reduced by h (so that at least
one of them becomes a zero), all cells for which both the row and column
are covered are increased by h, and other cells are unchanged. This ensures
that all cells remain nonnegative.
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To show that the algorithm terminates, it suffices to show that the sum
of all cells decreases with each modification step. Because the number of cov-
ered lines was less than n, the number of uncovered rows must be larger than
the number of covered columns, and the number of uncovered columns must
be larger than the number of covered rows. Hence the number of cells whose
value decreases is larger than the number of cells whose values increases, so
that their total decreases each time.

3.2 Improvements of the algorithm

Algorithm 1 Pseudocode of [Mu57]’s Hungarian algorithm

initialize
repeat

uncover all columns; cover all rows containing a starred zero
repeat

if there are uncovered zeros then
choose an uncovered zero
cover its column
if that column contained a starred zero then

uncover the starred zero’s row
end if

else
find the smallest uncovered element
modify matrix

end if
until we covered a column that contained no starred zero
star a larger set of zeros

until the assignment is complete

In order to understand some changes to the algorithm we will describe
later, we first need to take a closer look at the version of the algorithm
described in [Mu57], shown in Algorithm 1. This algorithm tracks an inde-
pendent set of zeros by marking them with stars. Initially, only rows are
used when covering all zeros. Then when another uncovered zero appears
(due to the matrix being modified or due to rows being uncovered), its col-
umn is covered. If this column contained a starred zero, that zero’s row is
uncovered (possibly causing new zeros to become uncovered). If the column
did not contain a starred zero, then it can be seen from Kőnig’s theorem
that there must be an independent set of k + 1 elements, where k is the
number of zeros that already have a star. This new set can also be found
efficiently.

At most k+1 uncovered zeros are chosen and at most k modifications to
the matrix are made until we star an additional zero. Every time a zero is
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found, all columns are uncovered and we again cover each row that contains
a starred zero. After n repetitions of this, we have n independent zeros
and the algorithm terminates. All this requires O(n4) operations on matrix
elements.

A refinement in [La76] allows the algorithm to be performed in O(n3)
steps by tracking the minimum value in each column incrementally.

Further improvements to reduce the amount of work performed by the
algorithm are described in [JV86]. These improvements are:

• Rather than looking for the smallest element in the entire matrix,
only look in one uncovered row at a time. Until an additional zero is
starred, only covered rows and that one uncovered row are considered
when looking for the minimum.

• The algorithm consists of an outer loop (which stars an additional zero
in each iteration) and an inner loop (which identifies an uncovered
zero). Matrix modifications in principle happen within the inner loop,
but can be postponed to outside this loop where several can be applied
together.

These modifications to the Hungarian algorithm reveal an interesting
connection with the minimum-cost maximum-flow problem and a certain
class of algorithms for it. This latter problem is a generalization of the
assignment problem. In graph-theoretical terms, the assignment problem
considers a bipartite graph with costs on the edges, and asks for the cheapest
way to transport each of n units of some commodity from a distribution
center, via a vertex in one part, to a vertex in the other part, and from
there to a common destination. The minimum-cost maximum-flow problem
allows an arbitrary directed graph with two special vertices marked as the
source and the sink, where each edge additionally has a capacity that limits
how many units may be transported along that edge. (In the assignment
problem, all edges have capacity one.)

One class of algorithms for the minimum-cost maximum-flow problem
repeatedly augments its solution by a shortest path from the source to the
sink. Such a path may travel along edges that have not been used to capacity
yet. It may also travel backwards along edges used in the solution. This
represents undoing that part of the solution, hence the cost of such backward
travel is the negative of the normal cost. If no augmenting path exists, the
solution is optimal.

A straightforward algorithm based on augmenting paths applied to the
assignment problem would take at least O(n4). An O(n3) algorithm of this
type for the assignment problem was described in [To71]. To accomplish this,
we want to use Dijkstra’s algorithm to find each shortest augmenting path.
However, if the augmenting path follows an edge that was already in the
assignment, then its cost needs to be subtracted from rather than added to
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the total cost of the path. Dijkstra’s algorithm does not allow such negative
edge costs. But the modifications to the matrix in [JV86] correspond to
modifications to the edge costs so that edges in the assignment always have
cost 0, and the highly efficient Dijkstra’s algorithm can still be used. In
fact, the modifications in [JV86] make the Hungarian algorithm equivalent
to a shortest augmenting path algorithm. This equivalence also allows a
concise explanation of the procedure used in Algorithm 1 to increase the set
of starred zeros: this is accomplished by following the shortest augmenting
path in the graph, unstarring the starred zeros and starring those that were
unstarred.

4 Our algorithm

We intend to write a program that solves the assignment problem on the
matrix of distances between two sets of strings. Because such distances may
be expensive to compute, we would like to avoid as many such computations
as possible. To know the optimal solution of the assignment problem, for
many elements of the matrix it will suffice to know a lower bound rather than
the exact value of the distance. To use this idea and solve the assignment
problem more efficiently, we need a way to identify quickly which cells are
likely to contain small distances, and need guaranteed lower bounds on the
rest. Both can be accomplished by creating an index on one of the files.
Then for a given line in the other file, we can quickly determine which lines
in the first file are most similar. Later in this section, we discuss in detail
how the Hungarian algorithm can be adapted to use such lower bounds, but
first we need to choose a distance measure.

4.1 Distance measure

The usefulness of our program relies on an appropriate choice of the under-
lying distance measure. We want this measure to be able to reflect many
types of similarity between two lines, so that two lines that look related
to a human reader will also have a small distance by our measure. If our
distance measure fails to satisfy this, then the optimal assignment found by
our algorithm may often look wrong.

Edit distances capture mostly small editing operations, as used when
correcting typographical errors. This is one kind of similarity we wish to
capture, but certainly not the only one. For example, rephrasing an English
sentence may cause parts of it to be moved elsewhere, which would be as-
signed too large a cost by an edit distance. This makes edit distances an
unsuitable choice for our purposes.

Specialized distances can be discarded immediately: we wish to write a
general purpose program which can be applied to strings from many different
domains, and a specialized measure would limit this wide applicability.
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We can imagine that token-based distances might generate good results,
but as discussed in Section 2.1.3, they may treat strings as similar even when
they are not, as long as their sets of tokens are similar.

Of the types of string distance measures discussed in Section 2.1, this
leaves block edit distances and compression-based distances. Both seem like
good choices, as they can capture many kinds of similarity between pairs of
strings. We limited our treatment of compression algorithms to the Lempel-
Ziv family; with that restriction, these two classes are very similar. Their
main differences are:

• Compression-based distances have a firmer theoretical basis for assign-
ing numerical values to the costs of editing operations; the block edit
distances seem to use relatively ad-hoc numbers;

• Block edit distances create the target string from substrings of the
source string; compression-based distances can take their copies not
just from the source string, but also from the already encoded part of
the target string.

The first is definitely an advantage of compression-based distances. The sec-
ond is not a clear advantage to either: it may mean that compression-based
distances satisfy the triangle inequality at least approximately, while on the
other hand, searching both strings for substrings to copy may increase the
computational cost and make it harder to establish lower bounds on the
distance. Because the importance of the triangle inequality to our applica-
tion is not evident, we choose a distance measure that is a mixture of the
two: a block edit distance with costs based on compression, or equivalently,
a compression-based distance that only copies substrings from the source
string.

For natural language strings, LZ77 achieves better results than later
members of the Lempel-Ziv family except when we are dealing with re-
ally long strings (over 1 MB) [MRS98]. Therefore, we choose to base our
distance on LZ77: we consider all substrings of the source string as candi-
dates for copying, rather than using some more limited subset of these as a
dictionary.

Most compression algorithms use a greedy method for choosing a sub-
string to copy. This may not yield optimal results; for example, instead of
greedily encoding the obvious match, it may be possible to first encode a
single literal character, then copy a much larger match. This results in a
smaller overall cost, assuming that encoding a literal is cheaper than en-
coding a match. For large files, compressing with a greedy algorithm will be
faster than trying to find an optimal encoding of the file, while the difference
in code length will usually be negligible compared to the total size. However,
we are interested in an accurate measure of string similarity; using a greedy
algorithm introduces undesirable noise into this measurement. Therefore, we
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choose to use an optimal algorithm. It will turn out in Section 4.4 that an
efficient algorithm can be found to compute this optimal code length.

To encode a target string given a source string, we will transmit a se-
quence consisting of literal characters, pointers to substrings of the source
string, and eventually a symbol denoting that the target string has ended.
We will use the following code lengths for these:

• To encode a literal, we transmit a zero bit, followed by the eight bits
of the literal character. (We make no assumptions about the character
encoding used by the files, and treat the strings as sequences of bytes.)

• To encode a substring from the source string, we transmit a one bit,
followed by a sequence of bits identifying the beginning and end of the
substring.

• To encode the end of the target string, we again transmit a one bit,
followed by a special sequence of bits.

The second and third of these require us to encode which option out of
a number of options we choose. The number of possible ways to choose
a nonempty substring from a source string of length n is n(n + 1)/2. We
want to allow all of these to be encoded. With the end symbol, there are
n(n+1)/2+1 options to encode. It seems reasonable to assign the same cost
to all options, and thus in particular to all possible substrings, regardless of
their lengths; we have no reason to assign smaller costs to shorter substrings.
Uniform code lengths also simplify the computation of distances and lower
bounds. The length of the uniform code is lg(n(n + 1)/2 + 1) bits. As is
standard when working with minimum description lengths, we do not round
this number to an integer.

This distance measure is clearly not symmetric, but that may be the way
it should be: the cost of editing one string to make another may be quite
different from the cost of reversing that operation, and it may be desirable
that our algorithm uses the cost for the appropriate direction.

The distance measure is also always positive, even for identical strings.
However, the following similar property does hold: for fixed t, the distance
from s to t is minimized when s = t.

We also want to know costs for inserting or deleting an entire line. Delet-
ing a line is free, as we are interested in the cost of encoding all lines in the
target file, and a deleted line is not in there. The cost of inserting a line
into the target file without a corresponding line in the source file is taken
to be equal to the cost of encoding the target line using the empty string
as source line. The result is that such a target line will be encoded as a
sequence of literals, with an interleaved sequence of zeros and eventually a
one to announce the end of the string.
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4.2 Hashing

To speed up the determination of a minimum cost assignment, we will index
the first file. For this purpose, we will use two hash tables. For the first, we
will use a hash function on complete lines; for the second, a hash function
on q-grams. The index on lines will allow us to determine quickly if a line
b in the second file has an identical copy a in the first file. If such a line
a exists, then very likely b will be assigned to it, and we may not have to
compute distances to b from any other line in the first file. If no identical
copy of b exists in the first file, the index on q-grams will help us identify
good candidates for assigning to b: non-identical but similar lines in the first
file.

As discussed in Section 2.2.2, using a rolling hash function for the index
on q-grams will allow us to compute the hash values of overlapping q-grams
more efficiently. We use a hash function of the same form as used in [KR87]:

H(s) ≡

|s|
∑

i=1

si · a
|s|−i (mod M).

Here the string s to be hashed is treated as a sequence of integers. Our
choices for the modulus M and the multiplier a will be discussed below.

If we want to compute hash values of all q-grams of the string s, then
we can compute the hash value of the q-gram starting at character t + 1
(denoted st+q

t+1) from the hash value of the q-gram at t with

H(st+q
t+1) ≡ (H(st+q−1

t ) − st · a
q−1) · a + st+q (mod M).

This expression first removes the character st from the hash value, then mul-
tiplies by a so that the remaining characters have the new correct multiplier
(using distributivity), and finally adds the character st+q.

In [KR87], the modulus M is chosen at random from a certain range of
primes, which they show has a high probability of producing a hash function
with few collisions on the input. We do not use this randomized approach,
but for computational convenience choose M to be a power of two large
enough to facilitate the number of entries we expect in the hash table. The
quality of H as a hash function then depends on the apparent randomness
of the sequences of the form c, c · a, c · a2, . . . (mod M). Because these se-
quences are exactly the output of a multiplicative congruential generator
with multiplier a for different seeds c, we choose a = 69069, which is men-
tioned in [Kn97, pages 106–107] as a good choice for such generators when
the modulus is a power of two.

It is not obviously best to store all q-grams of the first file in the index:
all these q-grams contain a lot of redundant information due to their overlap.
A more general approach is to store only every hth q-gram. For h = 1, this
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source file target file
...

...

· · ·

indexed
︷ ︸︸ ︷
xunseenx

︸ ︷︷ ︸

indexed

· · · · · · unseen · · ·

...
...

Figure 1: The common substring unseen is unnoticed by the index for q = 5,
h = 3

gives the old approach of collecting all q-grams; for h ≥ q, it leaves non-
overlapping q-grams, which are called q-samples in [ST96]. We allow the
parameters q and h to be adjusted freely.

4.3 Computing lower bounds on distances

Using the index of q-grams of the first file, we want to be able to compute
lower bounds on the distance from string a to string b. This will be done as
follows: given b, we look up all its q-grams in the index, retrieving for each
q-grams a list of locations where it occurs. (If h = 1, these lists will contain
all occurrences; otherwise, they will contain only subsets.) Each location
consists of a line number and a position within that line. Traversing these
lists simultaneously, we visit all source lines a for which at least one matching
q-gram was found. We call these matching q-grams fingerprints. For each
such line a, we use the fingerprint information to compute a lower bound
on the distance from a to b. For source lines for which no fingerprints were
found, such lower bounds can be computed without referring to the index.

If a substring shared by a and b is sufficiently long, then it will be detected
by the index. To be precise, the largest substring that can go undetected is of
length q+h−2: as illustrated in Figure 1, such a substring would have to start
in a position in a one character after a position where a fingerprint was taken,
and extend until one character before the end of the next fingerprint (which
starts h characters later). Thus in a region of b for which no fingerprints
were found in a, we know that no matches of length greater than q + h − 2
exist. We are looking for a lower bound, so we will be optimistic and assume
such matches exist at all positions in b. To encode a region of b where no
fingerprints were found, we use as many matches of size q + h − 2 as will
fit, then encode any remaining characters either as literals or with another
match.

We will use the following information from the index when establishing
a lower bound on a distance for which fingerprints were found:

• The number of positions in b for which fingerprints were found;
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• The first and last positions in b for which a fingerprint was found;

• The number of extending pairs of such positions: two positions in b
that differ by exactly h, and for which corresponding q-grams in a
occur in the same order, at positions that also differ by exactly h.

All these statistics can be determined efficiently when traversing the lists
obtained from the index. We use these statistics as follows to establish lower
bounds:

• Each fingerprint may indicate a matching substring of length at most
q + 2h − 2 (if that substring extends h − 1 characters to either side
of the fingerprint), or k fingerprints may work together to allow the
existence of a match of length q + (k + 1)h − 2;

• The first and last positions with fingerprints in b limit how much of b
can be encoded with the help of matches longer than q + h − 2; the
rest is encoded with matches of length at most q + h − 2 as described
above;

• Regardless of how they are used exactly, each fingerprint allows an
additional h characters to be encoded by means of matches rather
than literals. However, the shortest code lengths are achieved if we can
encode b with just a few long matches. If k fingerprints are all due to the
same matching substring, then each neighbouring pair of fingerprints
must be an extending pair. This way, the number of extending pairs
limits how long a single match can be.

Now the algorithm for computing a lower bound using these statistics
boils down to the following: first, greedily make a single match that is as
large as allowed by the constraints; then, make further matches of length
q+2h−2, supported by one fingerprint each. Continue with matches of length
q + h − 2 not supported by fingerprints, and finally encode the remainder
of b with literals. The algorithm must also check for several boundary cases,
for example when the optimal encoding requires match lengths not of the
form q + kh − 2. We will not go into such details here.

4.4 Computing distances exactly

Though a lot of work goes into avoiding this, our program will have to
compute distances between some pairs of strings exactly. If we are unlucky
and the lower bounds only rule out a few source strings as candidates for
assigning to a target string, we may still end up computing a large fraction
of these distances. Therefore, we would like such computations to be fast.
Since we want to find an optimal encoding of the target string rather than
a greedy one, it is not obvious that this efficiency is possible.
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The problem of finding the optimal encoding of the target string b as a
sequence of literal characters and substring matches from the source string
a can be translated to a problem of finding the shortest path in a graph.
This graph has vertices v0, v1, . . . , v|b| which correspond to the prefixes of
b of the lengths indicated by the subscripts, and a directed edge between
two vertices for each encoding operation. We want to find the cheapest path
from vertex v0 to vertex v|b|. Because all operations have nonnegative costs,
we can use Dijkstra’s algorithm to solve this problem.

But we can do even better than in the general shortest path problem
with nonnegative edge costs. First, we know that the cost of encoding the
first k characters of b is nondecreasing in k. Hence, if Dijkstra’s algorithm
has visited vertices v0 up to vk−1, then the next vertex to visit will be vertex
vk; no priority queue is necessary. Second, the edges in the graph are highly
structured: each vertex vk other than v|b| has a (literal) edge to vk+1 and
these edges all have the same cost c1; similarly, all other (match) edges share
a single cost c2, and if vertices vi and vℓ are connected by a match edge,
then so are vertices vj and vk for all i ≤ j < k ≤ ℓ. Assume that c1 < c2,
as otherwise greedily using any available match is optimal. Then it follows
that when Dijkstra’s algorithm is currently visiting vertex vk, there are only
two types of vertices for which the shortest path may come from vk:

• the vertex vk+1;

• those vertices which can be reached from vk by a single match and
which have not been reached before.

Vertices that have been reached before are disqualified from the second set:
among all shortest paths to the vertices visited so far, the path to vk is
longest, so any vertex that has been reached before via a vertex other than
vk will have been reached at least as efficiently as it could be reached through
vk. It follows from the structure of the match edges that the vertices in the
second set form a contiguous sequence, extending from the first unreached
vertex to the last vertex reachable from vk by a match. Thus, Dijkstra’s
algorithm needs to do very little work when visiting a vertex.

In order to quickly find which vertices are connected by matches, we
create a small index on the ℓ-grams of a, where ℓ is the smallest number
of characters for which encoding them as a match is cheaper than encoding
them as a sequence of literals: matches shorter than ℓ are not worthwhile.
Using this new index is likely to be more efficient than using the previously
created index on the entire source file: that index allows us to quickly retrieve
a list of all occurrences of a particular q-gram in the first file, but not to
quickly filter out just the ones in line a. Additionally, it is likely that q > ℓ,
in which case that index would not help us find matches smaller than q.
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4.5 Adapting the Hungarian algorithm

We now describe what changes we made to the Hungarian algorithm to
exploit the hash tables. Our starting point is the version of the algorithm in
[JV86]. Pseudocode of this algorithm is given in Algorithm 2; our algorithm
will differ very little from it at this level of detail.

Algorithm 2 Pseudocode of [JV86]’s Hungarian algorithm

initialize
repeat

uncover all columns; cover all rows which are already assigned
determine which unassigned row will be considered
repeat

find the smallest uncovered element among the considered rows
cover its column
if augmenting path not found yet then

partially modify matrix
uncover row and add it to consideration

end if
until an augmenting path is found
finish modifying matrix
augment assignment

until the assignment is complete

One modification has already been applied to Algorithm 2, because it is
a simplification. Since we chose a real-valued distance function, we do not
expect many cells in the matrix to contain exactly the same distance value.
Therefore, whenever we modify the matrix, we expect only one element
to becomes zero, namely the minimum that determined by how much we
updated the matrix. Rather than looking for zeros, our algorithm assumes
there are none and looks for the minimum, then modifies the matrix to turn
it into a zero. Of course, the minimum may have already been a zero, but the
(superfluous) update operation takes very little computational work because
it is performed lazily.

4.5.1 Finding the minimum

In order to find the smallest cell in some region of the matrix without having
to consider all cells, we use a system of priority queues. For each row in the
matrix (corresponding to a line in the (unindexed) target file), we maintain
a row queue which contains all exact distance values and lower bounds that
have been computed so far for cells in that row. There is also a master queue:
each element in this queue corresponds to an entire row, and uses that row’s
minimum as its key.
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One optimization introduced by [JV86] was to consider only some subset
of the rows when looking for a minimum. We use this same optimization,
and only have elements in the master queue for those rows under consid-
eration for finding the minimum. Also, unlike the row queues, the master
queue is cleared every time we augment the assignment. Adding a row to
consideration is accomplished simply by adding an element to the master
queue.

Now whenever we need to find the smallest value in some region of the
matrix, we first pop the minimum from the master queue to find out which
row contains the smallest element. Then popping an element from that row’s
queue will tell us what column that element comes from, and whether it is
an exact distance or a lower bound. If we find an exact distance, then this is
the minimum and we are done. However, if we find a lower bound, then we
need to compute the corresponding exact distance. It may be equal to the
lower bound, in which case we are still done. But in general, it may of course
be larger, in which case we insert a new element with the exact distance into
the row queue, insert a new element with the row’s new minimum into the
master queue, and repeat.

In every iteration of the inner loop, a column is covered, and its cells
should no longer be considered when looking for the minimum value. We
do not look through all row queues to remove elements corresponding to a
column when it gets covered. Instead, we solve the problem when such an
element is popped from a row queue. Then we temporarily remove it from
its row queue, and proceed as when we encountered a lower bound. When
all columns are uncovered at the start of the outer loop, we return all these
temporarily removed elements to their row queues.

4.5.2 Labels

After the minimum element has been determined, we need to modify the
matrix to make the minimum equal to zero. Like almost all implementations
of the Hungarian algorithm, we do not actually recompute all cells in a row
or column that we modify, but only change a row or column label : row labels
track by how much all cells in that row have been decreased, and column
labels track the increase of their cells.

Whenever we add an element to a row queue, we use as its key not
just (the lower bound on) the distance, but that value plus the value of its
column label. Because all elements in one row queue share the same row
label, we do need to take row labels into account here. This is done when a
row is added to the master queue: then the row label’s value is subtracted
from the minimum value in the row queue.

Like [JV86], we do not update the labels immediately after determining
the minimum element, but we postpone part of the label update until an
augmenting path has been found and the independent set can be extended.
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However, we perform our updates slightly differently, to be compatible with
the priority queues. We have the requirement that the elements among which
we are looking for the minimum must have the correct values relative to each
other whenever we need to determine that minimum. (This is not required
in [JV86], because there the minimum is found in a different way.) But the
relative values can be maintained by only updating one column and one row
label after finding a minimum: for the column just covered (instead of for all
columns that were already covered), and for the row about to be uncovered
(instead of for all currently uncovered rows under consideration). After the
inner loop, we need to get all modified rows and columns back in line with
the unmodified ones, but this is a cheap operation when done at that time.

A row label will only be updated just before that row is added to the
master queue, and again after the inner loop is done. This means that during
the time that a row is represented in the master queue, its row label is
constant. Hence, we never have to deal with outdated row label values in
the master queue.

On the other hand, when a column label is changed, this will usually
affect many elements spread out over the row queues. Similar to how we
handle covered columns, we handle this situation when an element is popped
from a row queue and the column label used for its key turns out to be
outdated. Then we recompute its key using the current value of the column
label and proceed as with a lower bound. Because modifications to column
labels will only increase matrix cells as time passes, the outdated keys are
still lower bounds on the actual values, so that this procedure guarantees
that we find the minimum.

4.5.3 Creating the row queues

For two similar files, we expect it to happen often that a given line in the
target file has one very similar or even identical twin in the source file, while
all other lines in the source file are quite different. This is the situation we
hope to take advantage of with the row queues. In such a situation, where
only a very small portion of a row will be considered, we would like to avoid
wasting time filling up the row queue with lower bounds for every column.
So when constructing the row queues during initialization, for each line b in
the second file, we use the index on the first file’s whole lines to determine
if any are identical to that line. If such lines are found, then their exact
distances are added to the row queue. For all remaining lines, we add a
single common lower bound. The value of this lower bound is attained by a
string a which contains b as a substring, but is one character longer: for this
pair, it holds that a 6= b, but b can still be encoded by a single match which
is only slightly more expensive than when a = b.

When the common lower bound is popped from the row queue, then we
need to spend a little more computation time to add more precise lower
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bounds to the row queue. At this point, we consult the index on q-grams
in the first file, following the procedure described in Section 4.3. No time
is spent yet on lines in the first file without matching q-grams; for these,
a new common lower bound is enqueued. Only when this lower bound is
popped from the queue do we add individual lower bounds to the queue for
source lines with no matching q-grams in the index. How these values can
be computed was also described in Section 4.3.

4.5.4 Rectangular matrices

The assignment problem as stated in Section 3 takes a square matrix as in-
put. However, the two files being compared by our algorithm may of course
be of different size. In [BL71], it is shown that the original Hungarian algo-
rithm can be applied to such matrices with only some small modifications
to the initialization steps. The result is equivalent to applying the algorithm
to the square matrix obtained by extending the actual input matrix with
cells containing some large number. However, the optimization of consider-
ing only one row at a time used in [JV86] does assume square matrices. It
will still work without modification if the number of columns is larger than
the number of rows, as each row must then still be assigned to a column.
However, if there are more rows than columns, then a number of rows equal
to the difference, k, must remain unassigned in the end. In that case, con-
sidering only a single row at a time may force the algorithm to assign a
row that should not be assigned. To avoid this, we consider k + 1 rows at
the start of each iteration iteration, adding those rows to the master queue.
Also, all unassigned rows should retain their correct relative values, as these
may affect which rows to assign and which to leave unassigned. Therefore,
we do not update the row labels of the k rows that were considered but will
remain unassigned after the assignment is augmented.

When choosing among the different unassigned rows under consideration,
the algorithm will prefer the row which contains the cell with the smallest
cost. However, the behaviour we want is that it prefers the row with the
greatest reduction in cost when going from not assigning to assigning that
row. In effect, we should change the initial value of all cells in each row so
that they reflect this cost reduction rather that the absolute cost. This can
of course be accomplished easily by initializing the row labels to different
values.

4.5.5 Voluntarily assigning fewer lines

Our algorithm does not always need to find a complete assignment, assigning
lines from the files to each other until either file runs out. It has an alternative
option: mark a line from the source file as deleted, and a line from the target
file as inserted from scratch. For our distance measure, this is the better
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option for example if the strings have no characters in common.
The behaviour we desire is that whenever a distance between two lines is

computed, if not assigning those lines would be cheaper than assigning them
to each other, we use that smaller cost instead. If those lines end up being
assigned to each other, then we treat both as unassigned. We can achieve
this behaviour by inserting into each row queue a single special element,
with as its cost the cost of inserting that line into the target file without a
corresponding line in the source file. When this element is the smallest in the
row queue, it means that inserting the target line is cheaper than assigning
it to any source line.

It suffices to have a single such element per row queue, which is not
associated to any one column. To see why, consider the desired behaviour
described above. We call a matrix cell an insertion cell if its value is the
cost of inserting a target line anew, rather than assigning it to a source
line. When an insertion cell is used for the assignment of some row i, then
apparently there are no unassigned columns with non-insertion cells in row
i. If in some future iteration, we consider row i again (because the column
of its insertion cell contained the smallest element), then apparently there
are still unassigned columns (or this iteration would not have happened);
for all of these, the cell where they insersect row i must be an insertion
cell. Then we would select one of those other insertion cells to complete
the augmenting path at no extra cost. Hence we could have ignored what
column the insertion was in originally, because we can always assume it is
in a column we do not need anymore.

4.6 Theoretical performance analysis

It is hard to say theoretically how much the improvements detailed above
are worth, because they are intended to provide benefit only in certain lucky
cases, where for each line in the target file there is a line in the source file
that is clearly more similar than other lines. Indeed, the worst case of our
algorithm is slightly worse than that of the standard Hungarian algorithm:
O(n3 log n) instead of O(n3). (Here we ignore the cost of reading the files
and computing exact distances—tasks which our algorithm also has to do,
but which are not part of the assignment problem solved by the standard
Hungarian algorithm.) This O(n3 log n) is caused by the operations that
must be done when popping row queues yields invalid elements, that is, ones
for which the column is covered or the column label is outdated. Such events
may happen O(n3) times during the execution of the algorithm, causing heap
operations costing O(log n) each time.

One example of a particularly lucky case for our algorithm is if the two
files are simply permutations of each other; in particular, this happens when
the two files are identical. Then the exact distance computation is never
called (because the index on lines will recognize the pairs of identical lines
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and know their distance directly), and the number of times that a column
gets covered is limited by the presence of identical lines within either file.
Then on average (depending on the performance of the hash tables), the
computational complexity is linear in the length of the files.

5 Experiments

In this section, we will look at the performance of our algorithm in practice.
We are interested in two things: correctness and speed. By “correctness” we
mean whether the string distance measure we use lead to assignments that
correspond to our intuition of which lines of the input files correspond to
which.

5.1 Correctness

The practical problem we had in mind when starting this project is that of
finding a summary of the differences between two versions of a file of card
information for the card game Magic: the GatheringR© [MtG12]: one version
from when the set of cards was still under development, and one containing
the final, printed information. Until now, this task had to be done mostly by
hand, because of the unpredictable nature of the changes between the files.
Because the cards are listed in a different order in each file, diff would be
able to match only very few cards correctly, and because the titles of many
cards are changed between the two versions, sorting both files by name before
running diff would not help much. Even a special purpose sorting method
based on domain knowledge would not be robust against all the potential
editing operations that could have been performed between the two files.

However, our program seems to handle the task very well: for the set
of cards that was released this summer, we checked its results by hand and
found that each card in the final file was correctly assigned to the earlier
version of that same card in the development file. Finding this assignment
would have been a lot of work if done by hand, or with tools inadequate for
this purpose. This result means that our string distance measure was able
to see through all the modifications made to these cards, and recognize the
relevant similarities.

5.2 Speed

For the pair of files mentioned above, the optimizations proved very valuable.
Even though both files contain only 229 elements and measure a modest 33
kilobytes each, computing the distance between each pair of them would
take over 5 seconds. Our algorithm takes less than 150 milliseconds to find a
complete assignment, by avoiding most of the work of computing distances.
It was able to avoid this work because each card in the final file really was
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q: h:
1 2 3 4 5

1 524 800 1120 1376 1516
2 184 204 340 476 560
3 132 140 236 376 464
4 144 172 292 396 476
5 180 248 364 452 524
6 256 352 432 506 604

Table 1: Computation time in milliseconds for various values of q (the size of
the q-grams used by the index) and h (the interval at which these q-grams
were sampled)

produced by taking a card in the development file and making some changes
to it. The connections between these pairs of cards can be recognized by
looking at the files, and the index enables our program to do this quickly.

In another experiment, we considered two random files, each consisting
of 100 lines of 50 characters chosen uniformly from the capital letters and
the space. For these files, it does not hold true that each line in one file has
a unique relative in the other file. This makes it necessary to compute a
much larger fraction of exact distances. However, as we will see below, even
in that difficult case, many exact distance computations could be avoided
by tuning the parameters of the index.

Because the hash table of q-grams plays such a large role in the algorithm,
we experimented with different values of q and h to find which values offer
the best performance. The results are shown in Table 1. We see that the best
results are obtained when q is 3 or 4, and h = 1. Increasing h is generally
harmful to performance (with the exception that q = 3, h = 2 stands out as
another good choice), so adding all q-grams to the index seems best in our
application. Based on these results, we set q = 3, h = 1 as the defaults in
our program.

In the experiment with random files, the behaviour of the index changes.
For files generated this way, all q-grams over the used alphabet are equally
likely, and their expected frequency drops off exponentially in q. This is very
different from the behaviour we find in natural language files, where some
q-grams are expected to occur very frequently, even for large q. For these
random files, setting q to 1 or 2 and h to 1 proved best; for larger values,
100% of the distances had to be computed, but for q = 2, this was only 5%.

Another factor that might impact the program’s efficiency is the perfor-
mance of the hash tables. The hash table of lines uses a cyclic redundancy
check as a hash function, which can be trusted to give good performance.
The hash table of q-grams, on the other hand, uses our custom rolling hash

28



χ2 (msb): χ2 (no msb): df 95% quantile

lines 28.4468 41.0912 31 44.985
1-grams 132.000 ! 3.60000 15 24.996
2-grams 1913.85 2280.43 ! 2047 2153.37
3-grams 4251.33 ! 4114.16 4095 4244.99
4-grams 4012.61 4003.74 4095 4244.99
5-grams 4135.17 4294.96 ! 4095 4244.99

Table 2: Results of χ2-tests for the Magic: the Gathering files

χ2 (msb): χ2 (no msb): df 95% quantile

lines 13.1200 8.80000 15 24.996
1-grams 178.630 ! 2.03704 15 24.996
2-grams 416.021 634.343 ! 511 564.696
3-grams 706.634 ! 553.827 511 564.696
4-grams 497.408 515.142 511 564.696
5-grams 476.814 475.923 511 564.696

Table 3: Results of χ2-tests for the random files

function described in Section 4.2 and needed to be tested. In our exper-
iments, we computed χ2-scores of (groups of) buckets, using the formula
from [Kn97, 3.3.1]. For the statistic to be reliable, the expected number of
values in each bucket must be large enough. Therefore we join sets of sixteen
buckets together into groups. Two different ways of grouping are reported
in Tables 2 and 3. In the column marked “msb” we use the first four most
significant bits of the binary representation of each bucket index, ignore the
next four, and use the rest to determine the bucket’s group. For the column
marked “no msb”, the four most significant bits were ignored, but all others
were used.

We compared the values of this statistic against the 95% quantile of the
χ2-distribution with the appropriate degrees of freedom. When the statistic
exceeds this quantile, it is marked with an exclamation point. This means
that uniform random values would be this unevenly distributed only 5% of
the time. All χ2-scores for the hash table of lines are below this threshold,
showing that the cyclic redundancy check is behaving as expected. However,
for the hash table of q-grams, several exclamation points appear. The ones
for q = 1, 2, 3 appear to follow a pattern. It should have been expected
that the most significant bits of 1-grams would not be evenly distributed:
for a 1-gram, the value of the rolling hash is just the character code of the
only character, and ignoring the four least significant bits throws almost all
its information away. This gives a false alarm, because the hash function is

29



actually perfect, mapping each 1-gram to a unique bucket. Something similar
may be going on for q = 2 and 3: the number of hash buckets being used
might simply be too small to satisfy the test. Though further investigation is
warranted, enough χ2-scores are below the threshold that we see no reason
for concern in these results.

6 Conclusion

We implemented a program that finds the optimal assignment between two
sets of strings. Though its applicability is not as wide as that of diff,
our tool finds the correct answer very efficiently under appropriate circum-
stances.

The idea of comparing two files by finding an optimal assignment be-
tween their lines is new, to the best of our knowledge.

As a measure for the distance between two strings, we used a mixture
between a compression-based distance and a block edit distance. In our
experiments, this measure was able to recognize the similarity between pairs
of strings that were related to each other through editing operations. This
property made it a suitable choice for computing the distances to which the
assignment problem could be applied.

We described and implemented a novel version of the Hungarian algo-
rithm for the assignment problem, which uses lower bounds on distances to
exclude many elements of the distance matrix from consideration, thereby
saving the computational effort of computing the values of those elements
exactly. Lower bounds could be computed efficiently with the help of index-
ing techniques from the approximate string matching literature.

We showed that an algorithm based on Dijkstra’s shortest path algorithm
could compute our distance measure very efficiently, because we only need to
consider a subset of the matching substrings between the two input strings.
Though distance measures very similar to ours exist in the literature, we
found no reference to such an algorithm.

Our experiments were limited in scope. Further testing is required to tell
whether the program works similarly well in a wider set of circumstances.
One part of the algorithm that may be improved upon is the distance func-
tion, which can be replaced by a different one without affecting the rest of
the program. Many different functions are possible, though implementing
and comparing them is outside the scope of this thesis.
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