

Internal Report 2012-08 August 2012

Universiteit Leiden

Opleiding Informatica

Maintaining a software system

 with the use of Domain-Specific languages

Tyron Offerman

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)

Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

2

Contents
Introduction .. 3

Background ... 4

Case study ... 5

Research question ... 5

Organization .. 5

Development process ... 6

Maintenance process .. 7

Domain-Specific language ... 9

Data collection .. 11

Results ... 14

Terminology .. 14

The number of changes .. 14

Maintaining the software ... 17

Distribution between architects and modelers when using the DSL .. 19

Internal and external .. 22

How long does it take to solve a change .. 23

In which version are changes solved .. 23

The number of workdays it takes to solve a change .. 26

Threats to validity ... 28

The way incidents are reported is subject to change ... 28

Data is not always uniformly documented ... 28

New development strategy... 28

Assumptions .. 28

Single case ... 28

Conclusion ... 29

Acknowledgement .. 30

References .. 31

Appendix A: From design to source code ... 32

3

Introduction
Maintaining software is a huge opportunity to earn money for a company, but it also brings

problems with it. Organizations can sign lucrative contracts to maintain software for their clients,

because clients cannot maintain the software themselves most of the time. Different departments have

to deal with incidents before they can be resolved. Incidents can differ from simple questions to critical

bugs. When developing large applications more often traditional programming methods can become

quite inefficient when it comes to maintenance. These applications can easily have over ten thousand

lines of code in which the structure of the application can easily be lost. Also a lot of code has to be

reused, because the same functionality is required in different parts of the application. Maintaining the

same functionality in different places can be difficult. Since incidents are often reported on functionality

in a certain part of the application, it can be hard to trace back in what other places that functionality

also is being used. To give more structure to large applications organizations start looking for alternative

developing strategies. One of the methods to turn to, are Domain-Specific languages (DSLs). DSLs can

simplify the process of maintaining a software system (1). DSLs can be seen as a method of model-driven

development, because DSLs use textual models to develop applications.

 This research was conducted at a large IT company that uses DSLs to develop some of their

applications. One of the reasons for using a DSL was to improve the maintenance process of their

application. In this research a case study is presented where I want to research if the introduction of the

DSL did improve the maintainability of an already existing software system. The structure of my research

is as follows. First I will take a look at the background of maintaining software with Domain-Specific

languages. After the background the case study is presented. Here the organization and how they have

implemented a DSL will be told. Also the way the data was collected is explained into detail. This will

lead to some results and a conclusion.

4

Background
Domain-Specific languages can be defined as "A domain-specific language (DSL) is a

programming language or executable specification language that offers, through appropriate notations

and abstractions, expressive power focused on, and usually restricted to, a particular problem domain."

(2) It can be seen as programming on a higher level on a specific domain. In software engineering a

domain can be seen as ‘a field of study that defines a set of common requirements, terminology, and

functionality for any software program constructed to solve a problem in that field.’1 For example the

financial accounting of an organization is a domain. The terminology is the same for all organizations. If

an organization needs software for their financial accounting, the functionality will also be the same.

DSLs can be used as a model driven development technique, implementing requirements into the DSL

which can be used to generate code. In this case the model is a textual/graphical representation of the

system that has to be developed. In traditional programming methods the code often dictates the

structure of the application. When an error is reported most of the time a developer or modeler starts

looking for the error in the code. Debugging of the system is than done in the code, not in the designs.

However with DSLs the model dictates the structure. Debugging should happen within the model. When

a problem is reported a modeler should check the designs and should make changes within the model

instead of the code.

One of the benefits for a domain-specific language and model driven development is

maintainability (3). The system is easier to maintain when underlying technology has to change. Every

now and then companies switch to a new technology. When using a DSL for generating an application

the designs would not have to change. Only the transformation part of the process has to be changed.

The designs have to be transformed to another programming language, instead of reconstructing the

entire application, which has to be done with traditional developing methods. This can save a lot of time

and effort.

Another benefit is consistency throughout the application (3) something that has been

generated will act the same everywhere. For example developing a user interface that has to be uniform

and act in the same way throughout the entire application is quite easy to build with a DSL. DSLs can

also help keeping business rules consistent. If a business rule has to be used in multiple sections of the

application, with some calculations in it, you do not have to develop everything by hand. This way you

have less chance of making errors. This will also benefit maintenance because solving a problem in one

place, will solve the problem everywhere.

1
 http://domains.askdefine.com/

http://domains.askdefine.com/

5

Case study
This section describes the case study.

Research question
 The research question of this thesis is “Does the use of a Domain-Specific language simplify the

maintenance of a software system”. This thesis focusses on finding out if the use of a DSL in a real world

application did simplify the maintenance of a particular software system. Finding empirical data that

supports the theory of a DSL simplifying maintenance (1) is the relevancy of this thesis.

Organization
This research was conducted at a business unit (BU) from a large IT company, with over 5,000

employees and revenues over €520,000,000, in the Netherlands. The organization serves different

companies in different domains. This particular BU serves the local government as their clients. The

business unit develops an administrative application that supports the daily operations of the local

governments in different domains. It’s one standard application that is under constant development by

the BU and used by different governments. Governments do not receive a custom made application.

However they can modify the system to their needs by selecting the modules they need. Table 1 is an

estimate on how many clients the BU has. The first column shows the versions. The second column

shows the number of clients with a license. This gives a picture on how many clients the business unit

has. Having a license does not mean that a local government also uses that version, because to use a

version you need to have the licenses of all the versions before that. The third column shows an

estimate on the number of installations, based on the number of clients that have reported an incident.

This will give an indication on how many clients have installed the software. However not every client

reports an incident.

Table 1: Number of clients that reported an incident

Version Number of licenses Number of installations

1 Not available Not available

2 Not available 143

3 Not available 220

4 Not available 231

5 Not available 246

6 Not available 182

7 Not available 214

8 333 212

9 336 201

10 332 198

11 343 222

12 341 60

13 344 181

14 344 183

6

In version six the BU introduced a version where a part of the application was developed by

using a DSL. In version 12 another development strategy was introduced, which was also based on

generating code, to develop the front-end of the application. In this version they started using Microsoft

.NET for the front-end instead of Uniface. This was due to the fact that the management of the

organization decided that developing with Microsoft .NET should be the leading development strategy

throughout the whole organization. The introduction of the new development strategy can also be seen

in the number of installations that have reported an incident (Table 1). Version 12 was not as stable as

version eleven. Therefore many governments have skipped this release and waited for version 13.

The development team consists of 30 people, of whom 4 are architects (2 architects for the DSL

and Uniface and 9 for .NET), 25 are developers/modelers (15 developers/modelers for the DSL and

Uniface and 9 for .NET), 1 is a technical writer and 1 is the manager. They are constantly developing the

application and have written over 4,350,000 lines of code, this was stated by Bekkers (4) in 2008. These

lines of code were developed with Uniface2 and some C++3. 13 years ago the first version of the

application had been released. During the life cycle of the application each year there have been one or

two releases, with version 16 as the most recent one. Next to the releases there are also patches being

released for maintaining the software.

Development process

This paragraph describes the development process that happens before every release, starting with the

statement of work and ending with the release.

1) Statement of work

The number of hours available for the next release is stated in the statement of work. Based on

this the BU can decide how many requirements they can complete. Also in the statement of

work it is stated which components they want to take into development. Not all the

requirements can be resolved within a release, so choices have to be made. Sometimes some

components have to be changed, due to a change in the law.

2) National group

In a national group with representatives of the local governments, the product managers discuss

the statement of work. Product managers all have a part of the application or a certain (sub)

domain as their responsibility. The group has to decide whether they agree with the statement

of work or if they want other components to be taken into development. To make these

decisions the group is advised by expert groups. These expert groups have a lot of knowledge

about changing laws, which is needed to make a good decision. For example if the way welfare

is calculated changes, the software needs to be changed, so it calculates the right amount of

welfare somebody deserves. After discussing the statement of work and making some

adjustments to it, the requirements are made.

2
 Uniface is a development environment for building, renewing and integrating enterprise applications (8)

3
 C++ is a programming language (8)

7

3) Basic design

In the basic design product managers formulate the requirements and how the system should

work. Besides internal validation, the expert groups also need to validate if these requirements

are correct.

4) Detailed design

In the detailed design modelers translate the basic design into a more detailed and technical

design. This design contains the requirements written in an expression language. This expression

language has been designed by the architect that developed the DSL. In a later section I will

explain a bit more on the expression language. The detailed design has to be validated internally

and externally. After validating the design the development starts. Some parts of the application

will be made with the use of the DSL and the other parts of the application will be built with

Uniface and some C++.

5) Internal release

The system, with its new components, will be internally released. Internal testers will test the

system and especially the new components. If the test department finds errors within the

system, it is send back to the development department. Only if the system passes all the tests it

will be released to the pre-pilot.

6) Pre-pilot

In the pre-pilot some representatives from a few local governments are invited to the office of

the business unit. Here the representatives will have a first look on the new release. They can

test the system and look if it works the way it supposed to. Small adjustments will be made if

not everything is correct.

7) Pilot

In the pilot the application is installed at some local governments. They will extensively use and

test the system. Incidents with the application will be reported. If the incidents are critical they

will be resolved before the release.

8) Release

If all the involved people agree on the pilot the application is released to all the clients.

Maintenance process

 Incidents are reported by clients or internally. These incidents will be handled by the support

department first. They will try to answer questions and determine if an incident is really a fault or

incorrect use of the system. Also the priority of an incident is determined. When an incident is

categorized as a fault, it is seen as a change request. The process of incident management is based on

Information Technology Infrastructure Library(ITIL), which is standard throughout the IT industry for

service management.

 At the start of the maintenance process a planning is made by the coordinator of the helpdesk.

After the planning has been confirmed by the development department, the patch processes are

initiated. This means that all the testing environments are installed and prepared for the patch. The

patch process starts. After the patch has been finished it is tested on last time and all the

documentation for the release is created, the patch is released to the clients.

8

 During the patch process there are is a process going on at the support department and at the

development department. The process at the support department will be described first. The change

requests, for maintenance, are checked if they have a proper description and priority. After that the

change request is planned as maintenance by the coordinator of the helpdesk and transferred to the

incident coordinator of the development department. The coordinator of the helpdesk will check if the

change requests keep on progressing. If a change request has been solved, the support department can

start testing if it works correctly. If the solution did not pass the test, it is sent back to the development

department. If the tester agrees on the solution, the incident report is put in the release notes of the

patch.

 After the change request is transferred to the coordinator of the development process, he

checks whether all the information is in the incident report. If that’s the case he will assign the report to

a technical analyst, otherwise he will sent it back to the support department. A technical analyst is a

modeler with a particular area of attention. They will analyze the report and indicate how the change

request can be solved or solve it themselves. If it’s a change request that needs to be solved by an

architect, the technical analyst will transfer the report to an architect. Otherwise the analysis is given

back to the coordinator so he can assign it to developer. The developer needs to solve the change

request and document everything. After that he needs to test the solution. If the developer needs the

help of an architect, because he or she cannot solve it due to the fact it’s a meta-level problem or a

meta-level adjustment needs to be made for the solution to work, the modeler can transfer the report

to an architect. When the solution has been sent to the support department and the tester agreed on

the solution. The developer needs to clear the adjusted components, so others can use them.

 If an architect is needed to solve a change request he must analyze if a temporary solution in the

meta-level or a work-around can made. If that’s possible the architect needs to make the solution

otherwise the change request is postponed to a newer version, where the required adjustments in the

meta-level can be made.

 Some terms that are used in the maintenance process that need clarification:

1) Incident report: The report itself.

2) Incidents: Incidents is a categorization of an incident report. This consists of questions, bugs and

wishes. All the incident reports can be seen as an incident.

3) Changes: Changes are a categorization of an incident. Changes are made due to bugs and

wishes.

4) Maintenance: Maintenance is a categorization of a change. Changes due to maintenance are all

the changes that have to be made to support the current versions that are in production.

5) Developer: Developers are also modelers. However some developers that work with the legacy

part of the system often do not serve as modelers. Somebody works as a modelers only if he or

she deals with the DSL.

9

Domain-Specific language

As stated before part of the application has been built with a DSL. Before the introduction of the

DSL the application became quite large. Different modules were built completely different from one and

another. There was no longer a structure in the software. So there was need for a structured

architecture. There was also a need for reusability of the code. Since a lot of functions are used in the

same way throughout the whole application it was inefficient to maintain different sources for all these

functions. For example the way certain buttons behaved was different defined separately although they

behave the same. The BU presented five goals with the introduction of the DSL:

 Speeding up the development process

 Lowering the number of errors in the application

 Increasing the uniformity of the interface

 Increasing the scalability

 Simplifying the maintenance of the application

The goal of this research is to see if the last goal ‘Simplifying the maintenance of the application’ is

reached.

 The domain-specific language that the BU uses to develop their application is their own

creation. So besides developing the application, they are also developing their own DSL and maintaining

it. The first repository of the DSL consisted of 254 files with a total size of 8.50MB (see Table 2). The

repository consists of the generic parts that architects develop and the XML files that the modelers

create, which will be explained in the next paragraph. These numbers are derived from the version

control system. In time the model grew with each version, which can be seen in Table 2. In the latest

version the size has already doubled up since the first version. The number of files is close to doubling

up. The DSL keeps growing due to increased and improved functionality. It still has room to grow even

further, because the estimate is that the DSL generates roughly 30 to 40 percent of the application.

Table 2: Size of the DSL repository

Version Size of the repository Number of files in
the repository

6 8.50 MB 254

7 9.71 MB 264

8 10.40 MB 293

9 11.32 MB 331

10 12.73 MB 364

11 13.82 MB 383

12 14.73 MB 419

13 15.81 MB 423

14 17.94 MB 442

15 18.31 MB 444

15B 19.17 MB 463

16 19.70 MB 473

16B 19.74 MB 473

10

From design to source code

Getting from the basic designs to a working application takes a few technical steps. These steps are

described below. A graphical representation can be seen in Appendix A: From design to source code.

1) Basic Design

The basic design is a design made by the product managers in Microsoft Word. A design is a set

of tables that are part of one component of the application. In these tables the requirements

are written in plain Dutch. The requirements are actually business rules. These are rules that

define or constraint specific behavior. (5) For example a client cannot have a date of birth lower

than 1/1/1900.

2) Detailed Design

Modelers create the detailed designs in Microsoft Word. The business rules, which the product

managers have put into the basic design, are translated into an expression language, which can

be read by a XSLT program to transform the requirements into XML. In the next step I will

explain what a XSLT program is and what XML is. The expression language is a language

developed by the BU itself to model the business rules. This is the main task of the modelers.

3) XML files

To create XML that can be transformed using XSLT the word documents need to be transformed

to XML files first. XML stands for Extensible Markup Language. It is used for making sure that

documents or data structures use a specific set of rules, which you can define yourself. In this

case the XML files give structure to the documents. Modelers can do this by using XSLT scripts

written by the architects. XSLT stands for Extensible Stylesheet Language Transformations and is

used for transforming XML to other data types or transforming other data types to XML.

4) Parsed XML files

After getting the XML files the files need to be parsed into parsed XML files. This can be done

with the use of other XSLT scripts. Modelers simply have to push a button and the files will be

parsed. If there are not errors the files are correctly parsed. If there are errors they need to

make adjustments in the expression language in step 2 and repeat it again. All the unnecessary

data is removed from the XML files and the expression language is transformed into a

representation of the data structure. With the help of a XSLT program the word documents will

be transformed into simple XML files. The word documents are stripped from all unnecessary

data.

5) Implementation/generation

In this phase the part of the model created by the architects and the part of the model created

by modelers are combined to generate the following products:

a. Functional documentation

b. Technical documentation

c. Uniface and Microsoft .NET code

I. For the .NET code a separate code generator has been built, that creates the

front-end of the application.

11

Role of an architect

 The main role of an architect is making sure the DSL progresses through time. He decides what

parts of the system are transferred to the DSL. So he’s exactly in charge of the policy that the Business

Unit follows regarding the implementation of the DSL. Besides that an architect is in charge of keeping

all the generic parts of the application up to date. The generic parts of the system consist of the XSLT

scripts that are used for transforming the Word documents to XML files, scripts that are used to parse

the XML files to parsed XML files and those used for generating the documentation and the code.

Another generic part that an architect has to keep up to date is the generic Uniface code.

Data collection
The data was collected through different sources: interviews and the database with all the

incident reports. At first I gathered all the available documentation that was written about the DSL. To

clarify the documentation, interviews were held with the follow people: head architect, modeler,

business unit manager, manager of the software development department and the former manager of

the software development. These interviews, which were semi-structured, gave a better picture on how

the system has been developed and is being maintained. After understanding the structure of the

application and the role of the DSL in it, I knew what to look for in the incident reports. Besides

clarifying how the DSL works, it was important to know what the reason was of introducing the DSL and

to know what people think of the DSL. Most of the managers did not have a clear picture on what is

happening with the DSL. They had a feeling that the goals that were presented with the introduction

were reached. They did not have statistics supporting these feelings.

 The primary source for the collected data is from the incident reports. Besides clients, these

incidents can also be reported by the BU itself. So the data consists of incidents reported by external

people and internal people. Due to the fact that version 15 is still in full production, which means that

clients are still using this version and therefore maintenance is still being done, I only collect data until

version 14. All the incident reports are reported and managed in their own customized system. These

can also be exported to comma separated files. Table 3 gives a picture on how many reports there are

per category. The dataset consists of over 70.000 incident reports (see Table 3) therefore I have written

an algorithm that goes through all the reports and categorizes them in the categories shown in the left

diagram of Figure 1. The table also gives a picture of how many changes had been made and how many

of them were regarding maintenance.

Table 3: Total number of reports per category

Category Total reports Incomplete data

All incidents 76971 3401

All changes 11628 585

Maintenance 4302 24

12

Figure 1: Categories

Every report can be seen as an incident, however not every report as a change. Changes are a

subset of incidents. Maintenance is a subset of changes and maintenance done with the DSL is a subset

of maintenance. Maintenance done with the DSL means that when a change request has been flagged

as maintenance and the way of resolving the issue is by using the DSL. This will help clarify what types of

incidents occur at the organization. To answer the research question the latter category (maintenance

with the use of the DSL) is split up into three categories, shown in the right diagram of Figure 1. One

where architects have to make changes to the meta-level of the DSL, the other where modelers apply

changes to the business rules in the model and the intersection of these two categories. This

intersection means that a modeler needs an architect to make changes to the meta-model before he

can fix the problem or that a modeler needs advice from an architect on how to fix the problem.

To make this algorithm, certain assumptions had to be made to determine how a change due to

maintenance has been solved, because there is no uniform way that incident reports have to be filled

when solving changes. When an incident was not reported on a specific version or component, it is

categorized as an incomplete report. In the section Threats to validity I will go into this further. To see if

a modeler made a change in the business rules of the model the algorithm checks whether a design and

the parsed version of the design are checked into the database or not. If that combination has not been

checked in, a modeler has not made a change within the business rules of the model, so the DSL has not

been used. Whether an architect has made changes to the meta-model or not, is determined by

checking if the architect has performed any actions regarding the incident report. This information is

combined in different ways to derive results. At first it was used to compute results on the number of

changes that have been done. Secondly I used the data to retrieve information on the distribution

between modelers and architects when the DSL is used. Information about how many incidents had

been reported by external people and how many by internal people was computed after that. At last I

tried to give a picture on how many versions it takes for a change request to be resolved.

13

The secondary source of information was interviews. These interviews are different from the

ones already mentioned before. Only architects and modelers participated in these interviews. The

interviews were semi-structured and being held as an iterative process from the moment the first

preliminary results were available till the end of this research. 6 Modelers were interviewed and 1

architect. These were only people that deal with the DSL and not with .NET. The manager of the

development department gave the names of the modelers and architect that could be interviewed. It

was a diverse group with people from different backgrounds and expertise. Most of the questions were

presented as a survey. There were two reasons for doing these interviews: validating if previous

mentioned assumptions are correct and finding explanations for the results. Validating if the

assumptions were correct and were the best possible practice to gather the right information was quite

important. If the assumptions were not correct the results would not have been valid. To reduce bias I

did not present my assumptions in the beginning of the interview. This way they had to make the

assumptions on their own. In the beginning I assumed that modelers always, not only for maintenance,

checked in what files they changed. Although this was confirmed by a couple of interviews, after talking

to the incident coordinator, I found out that these assumptions were not true. Modelers only checked in

files for maintenance, not for new releases. I also found out that most of the changes that occur in new

releases were not reported in the database. Therefore now only information from maintenance was

gathered. New interviews revealed that the adjusted assumptions were correct and only minor details

had to be adjusted.

To figure out the explanations for the results that I found, the modelers and architects were

shown the preliminary results. Questions were asked regarding if they thought the data was correct,

that there was no data missing in the results and if they could explain certain peaks in the graphs. Some

modelers indicated that the results based on the distribution of the workload between modelers and

architects, regarding maintenance were not correct. After some research I found out that the mistake in

the data was due to the fact that for architects I use their names to indicate if they had anything to do

with an incident, but there is an architect with the same name as a modeler. After changing the search

criteria in the database to the last name of the architect, this was resolved. I also asked them if they

could relate the results to their own point of view on the DSL and what their personal experience with

the DSL was.

14

Results
In this section the results will be presented.

Terminology
The terminology used in the results is explained below.

 Incidents without changes: Incidents without changes are all the incidents that aren’t

categorized as changes.

 Changes: Changes are all the incidents that are categorized as changes. The changes can be

either product development or maintenance.

 Product development: Changes that are categorized as product development. Product

development can also be seen as maintenance with a low priority. This is product development

based on incidents. There is more product development going on with the application but that

isn’t reported in the incident management system.

 Maintenance: Changes that are categorized as maintenance. Maintenance can also be seen as

maintenance with a high/critical priority. These change requests need to be resolved as quickly

as possible, because the application isn’t functioning correctly. It can however happen that a

change has a low priority but is still flagged as maintenance. This can happen because the

category of an incident can be changed throughout time.

 Maintenance without the DSL: This is maintenance done without the use of the DSL. This means

that a change request has been resolved with .NET, Uniface, SQL or C++.The front-end of the

system is generated with .NET. Others parts of the system are still developed by writing code in

Uniface, SQL or C++.

 Maintenance with the DSL: This is maintenance done with the use of the DSL. Architects or

modelers solve these change requests with the DSL. This means that a modeler has changed the

input of the DSL, an architect changed the input of a generic part of the DSL or an architect

made a change in the meta-level of the DSL. It’s also possible that they work together to solve

an issue. Sometimes a modeler needs an architect because a generic part or something at the

meta-level has to be changed. It can also happen that an architect gets a change request

assigned that a modeler can solve then an architect can assign it to a modeler. Another

possibility is that a modeler just needs advice from an architect.

The number of changes
 Figure 2 shows the distribution of the changes. It can be seen that the percentage of

maintenance increases over time to about 80 percent. This is due to the fact that the maintenance flag is

used more often than before. Also product development is reported less in the incident report database.

Most of the newly added features do not depend on incidents reported and are implemented during the

development phase.

15

Figure 2: The distribution of changes and maintenance

Looking at Figure 3, which shows the total number of changes that have been made, the total

number of changes decreased over time. After the peak in version 4 the number of changes starts

decreasing and after the introduction of the DSL in version 6 the number of changes goes down even

more and stabilizes around 700 changes per version, until in version 12 the new development strategy

was introduced. Because of the new development strategy many governments skipped that version. As

stated before many of them waited for version 13. This means that they had version 11 in used for a

longer period. Because of the longer period of production, more incidents were reported on version 11

which leads to more changes in that version. Version 12 has fewer changes than version 11, but there

were 60% less incident reports in version 12 so there were relatively more changes in version 12, which

can be seen in Figure 4. After the release of the twelfth version the number of changes decreases again.

The number of changes due to maintenance also starts decreasing again and the balance between

incidents and changes is restored.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
e

rc
e

n
ta

ge
 o

f
to

ta
l c

h
an

ge
s

Version on which the report has been made

Product development

Maintenance

16

Figure 3: The total number of changes

Figure 4: The distribution of incidents

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14

To
ta

l n
u

m
b

e
r

o
f

ch
an

ge
s

Version on which the report has been made

Product development

Maintenance

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
e

rc
e

n
ta

ge
 o

f
to

ta
l i

n
ci

d
e

n
ts

Version on which the report has been made

Incidents without changes

Changes

17

Maintaining the software
 Figure 5 shows the distribution and the total numbers of the changes due to maintenance. The

percentage of maintenance that is done with the use of the DSL decreases after the introduction of the

DSL in version 6 until version 11. From version 11 25% to 30% of maintenance is done with the use of

the DSL. This means that in 70% to75% of the time maintenance is done without the use of the DSL. This

means the maintenance has been done by traditional programming. There can be different reasons for

this fact. One of them is that there are more changes made in the parts that are not part of the DSL.

These parts are often quite complex and less error prone than the generated code (2). Another reason is

that sometimes the model does not support certain functionality yet. Than a fix is made in the Uniface

code for the patch and a real solution will be made in a new version or a modeler can make business

rule in the model that says: call my own Uniface code. This last situation can be seen in Table 4 as

business rules with services. Most of the time this is part of larger business rule. It’s also possible to

ignore the model and write Uniface by hand. This can be seen in Table 4 as business rules in Uniface. The

data on how the business rules were made could not be retrieved for all the versions, but this will give

an indication.

Figure 5: The distribution of changes due to maintenance

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
e

rc
e

n
ta

ge
 o

f
to

ta
l m

ai
n

te
n

an
ce

Version on which the report has been made

Maintenance without the DSL

Maintenance with the DSL

18

Table 4: The number of business rules

Version # of business
rules(BR)

of BR in
Uniface

% of BR in Uniface # of BR with services % of BR with
services

10 4151 203 4.89 566 13.64

11 4689 217 4.63 603 12.86

12 4864 233 4.79 636 13.08

14 5329 243 4.56 675 12.67

15 5656 250 4.42 701 12.39
Table 4 shows per version the number of business rules, the number of business rules in Uniface, the percentage of business
rules in Uniface, the number of business rules with services and the percentage of business rules with services. A business
rule in Uniface means that the DSL isn’t used for the business rule. These BRs are written in Uniface so these BRs are written
manually. This happens most of the time when a business rule is too complex. It’s often easier to make complex BRs in
Uniface and it can help with the performance as well. A business rules with services means that the DSL has been used for
creating the business rule. However a modeler uses Uniface code for a part of the business rule. So these BRs are partially
generated.

Figure 6 shows the total number of changes due to maintenance. In this figure it can be seen

that the number of changes due to maintenance increases over time, until version 11. After that, it

starts decreasing. This was always stated before. The number of changes due to maintenance that were

solved by using the DSL is quite stable after the first introduction, with about 100 changes per version. In

version 11 there is an increase in the number of changes. However after that it starts declining again

until reaches 100 changes per version.

Figure 6: The total number of changes due to maintenance

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14

To
ta

l n
u

m
b

e
r

o
f

m
ai

n
te

n
an

ce

Version on which the report has been made

Maintenance without the DSL

Maintenance with the DSL

19

In the Figure 5 and Figure 6 it looks if the DSL was available in the version before version 6. This is not

true however. Due to the fact that not every incident can be resolved within the same version, some

incidents are reported on, let’s say, version X and resolved in version Y, where version X is not the same

as version Y. In section ‘In which version are changes solved’ I will go further into this.

Distribution between architects and modelers when using the DSL
Figure 7 shows the distribution between the architects and the modelers when the DSL is used

to maintain the application. In about 60% of cases where the problems have been resolved by using the

DSL a modeler has resolved the problem without the help of an architect. This means a modeler has

edited a business rule so that the system will behave in the right way and did not need any

(documented) help. Besides the fact that for some things you need the help from an architect to solve a

problem, because changes have to be made in the meta-model, it depends on the level of experience on

how often you need an architect for advice. The more experience a modeler has, the less he or she

needs advice from an architect. This can be seen in Figure 7 due to the fact that the percentage of

changes resolved by modelers with the help of an architect decreases since the introduction, with an

average of 10%. So modelers get more experienced over time. In version 12 the percentage of changes

that the modelers do alone or with the help of an architect goes down. After the introduction of the new

development strategy it increases a bit again to the same level as it was before. Some modelers work

with the legacy part of the application that has not been implemented into the model yet. These

modelers often have less experience with the DSL than the modelers that do most of their work with the

model. Through the interviews it came to light that when a modeler is confronted with the model for

the first time, he or she might try to solve a problem by working around the model. Sometimes there’s

no other solution than to work around the model, because some functionality is not supported or the

generic functionality is not needed. However when the experience increases and the mindset set is

changed to thinking in models instead of code, modelers work less around the model than in the first

year since they were confronted with the model.

20

Figure 7: Distribution between changes made by architects and modelers when using the DSL for maintenance

As stated by Heijstek and Chaudron (6) the role of the architect is broader and more demanding,

which is shown by Figure 7. This is also illustrated in Figure 8 where in version 12 architects had to make

more changes than before, after the introduction of the new strategy. About 40% of the cases an

architect is involved in solving a problem. In 20 to 30% of the cases an architect solves the problem on

its own. A change in at the meta-level has to be made for the system to behave the way to should,

which means an architect has made a change in the meta-model, in the XSLT scripts or in the generic

Uniface code. I couldn’t compute results for these categories. The data didn’t correspond with the

reality.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
e

rc
e

n
ta

ge
 o

f
m

ai
n

te
n

an
ce

 w
it

h
 D

SL

Version on which the report has been made

Architects

Working together

Modelers

21

Figure 8: The total number of changes made by architects and modelers when using the DSL for maintenance

Figure 8 shows the total number of changes made by the architects and the modelers. As in the

cases before there’s a peak in version 11 for the same reasons as mentioned before. The number of

changes made by a modeler increases slightly after the introduction of the DSL in version 6. After

version 11 it starts decreasing a little bit. Most of the time the number of changes a modeler made is

between 55 and 70. The number of changes modelers and architects make together, follows a similar

pattern. This pattern can also be seen in the fluctuation of the number of changes, seen in Figure 3.

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
u

m
b

e
r

o
f

m
ai

n
te

n
an

ce
 w

it
h

 D
SL

Version on which the report has been made

Architects

Working together

Modelers

22

Internal and external
Figure 9 and Figure 10 show the number of changes that were respectively internally and

externally reported. In Figure 9 it can be seen that the total number of changes and the number of

changes due to maintenance that are reported internally increases over time, after version 7, until

version 13 where it drops. This means that errors are found more often internally than before. The same

pattern also exists for maintenance with the use of the DSL. Due to the consistency of the system errors

are found more easily. However in these changes there are also pre-pilot and pilot change requests, so

the actual number of internal errors found lies a bit lower. These errors are errors that are found after

the development department has released a patch or version internally. So the errors found in

development are not reported here.

Figure 9: The number of changes reported internally

 Even though more errors are found internally over time, the number of changes that were

requested from clients is a lot more. This is shown by Figure 10. There is no clear pattern in the total

number of changes, except between version 4 and 10. Between those versions the number of changes

reported externally decrease over time. The number of changes due to maintenance that is reported

externally appears to be quite stable. Looking at both Figure 9 and Figure 10 the difference between

internal reported changes and external reported changes is in the number of changes without

maintenance. Since the number of changes due to maintenance is almost the same internally and

externally.

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14

To
ta

l n
u

m
b

e
r

o
f

ch
an

ge
s

Version on which the report has been made

Product development

Maintenance

23

Figure 10: The number of changes reported externally

 How long does it take to solve a change
To calculate how long it takes to solve a change two different approaches are used. The first approach

was to find out in which version a change has been solved. The second approach was to see how many

workdays it takes to solve a change. Both approaches are presented respectively in the next two

paragraphs.

In which version are changes solved

If a change request is reported on version X the report can be solved for a patch belonging to

that version. However it can also be solved for versions older than version X or for versions newer than

version X. Another possibility is that is solved for numerous patches belonging to different versions or to

one version. Figure 11 shows these facts, by showing the average version number that a report has been

resolved for. For example in version 10 the reports have been solved for one version later. So on

average reports that are reported in version 10 are solved for version 11. This means a report can be

solved in a patch for version 10, 11 and 12. A change request due to maintenance is often solved for 1.2

to 2.3 patches. If the version in which the report has been solved is higher than the version on which the

report has been made, than most of the time there is a newer version already in use, but the client

reporting the incident uses a lower version. The issue is than fixed for all the versions in use that are

affected. It can also happen other incidents are prioritized and the report is moved towards another

version, but is still seen as maintenance and not as a new part of the system. Often patches are also

released for a lower version because the lower version is still in use and has the same problems within

it.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

To
ta

l n
u

m
b

e
r

o
f

ch
an

ge
s

Version on which the report has been made

Product development

Maintenance

24

Figure 11: The average version number a report has been solved for per version on which the report has been made

 In the early versions it can be seen in Figure 11 that change requests due to maintenance were

solved in many versions after that had been reported. This is due to following reason. An incident report

in version two did not have a high priority and was postponed to a later moment. The maintenance flag

was introduced around version 4 so over versions 2 and 3 there is not more information besides the

incidents that were postponed and flagged with maintenance. Since the introduction of the DSL this all

stabilizes. However this does not say anything on how fast an incident is solved, but it shows that the

total maintenance is solved in the same version number as maintenance solved with the DSL, although

the changes made with the DSL are released in more patches, which is shown in Figure 12. Because the

part of the application built by the DSL is more consistent a change made with the DSL can be applied to

more releases. Also is the chance that an error shows up in more releases than one is bigger.

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14

V
e

rs
io

n
 in

 w
h

ic
h

 t
h

e
 r

e
p

o
rt

 is
 s

o
lv

e
d

Version on which the report has been made

Maintenance

Maintenance with the DSL

25

Figure 12: The average number of patches per report

0

0,5

1

1,5

2

2,5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
ve

ra
ge

 n
u

m
b

e
r

o
f

p
at

ch
e

s

Version on which the report has been made

Maintenance

Maintenance with the DSL

26

The number of workdays it takes to solve a change

 Figure 13 shows the average number of workdays it takes to solve a change request for

maintenance. In this figure the average number of workdays for version 2 and 3 are left out. They were

so high that the graph couldn’t display the other versions correctly. It shows that the number of

workdays it takes to complete a change request, from the moment it’s reported as an incident till it’s

solved, decreases over time. The average workdays for total maintenance and for maintenance with the

DSL are about the same. This means there’s no difference between the two. This also corresponds with

the pattern seen in Figure 11.

Figure 13: The average number of workdays it takes to solve a change request for maintenance

Figure 14 shows the average number of workdays an architect or a modeler needs to solve a

change request. This figure shows that the number of workdays decreases over time. When architects

and modelers work individually to solve a problem with the application they take about the same time

to solve it. However if a they need to work together to solve an incident it takes quite some extra days

to complete these change requests. This is due to the fact that there’s an extra layer of work. Another

possible reason for this is that modelers and architects don’t agree on who should solve the issue. This

takes extra time in solving the incident.

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
u

m
b

e
r

o
f

w
o

rk
d

ay
s

Version on which the report has been made

Total maintenance

Maintenance with DSL

27

Figure 14: The average number of workdays an architect or modeler needs to solve a change request

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
u

m
b

e
r

o
f

w
o

rk
d

ay
s

Version on which the report has been made

Architects

Modelers

Working together

28

Threats to validity

The way incidents are reported is subject to change

 Throughout the years the way incidents are reported has changed although the system has not

changed. For example the flag of maintenance was not always part of the system. The flag was added

between version 3 and version 4. Besides that the meaning of certain words changes. In the incident

report system every incident should have a component, although this was not always required, but the

meaning of the components can change because the application changes, which might result in

components being renamed. It also differs throughout time which elements of an incident report are

required and which elements are not. The registration on which version an incident has been reported,

can be registered on two ways. One is in the description of the incident, which is quite freely, and the

other is a required field where the version has to be filed. As already stated the first way is quite freely,

although most of the time the version was registered in the description. The description of the incident

was present from the beginning. The more strict way of registering which version an incident was

reported on, was not introduced from the beginning. The combination of these two elements should

provide a clear picture on the version an incident was reported on.

Data is not always uniformly documented

 The way to report an incident is also subject to change, because there are not very strict rules

on how to enter data. Especially the way changed documents were checked into the incident report

system was not uniformly documented. For new releases almost nothing was documented. For

maintenance the changed files are checked in most of the time. Also the information on how an incident

is resolved depends on who solved it. Some modelers explain in detail what they did, but others do not

do that. This way it might be possible to see who solved the problem, but most of the time it is not

possible to see that.

New development strategy

 The new development strategy is not part of the results, because incident reports that regard

the new development strategy are not well documented. However the impact of the new strategy has

been taken into account for the presented results.

Assumptions

 Although the assumptions were checked by interviews they are still assumptions. Searching if an

architect was involved into solving a problem, does not exactly show what an architect does. If an

incident report was assigned to an architect by mistake, the algorithm will count is as an operation by

the architect. There was not a way to remove this data since it is not documented who does what

exactly.

Single case

This research was conducted on a single case study so deriving general conclusions would not be

possible. More implementations of a DSL should be studied to form generalized conclusions on

maintaining a software application with the use of a DSL.

29

Conclusion
 In this research the following research question was presented: “Does the use of a Domain-

Specific language simplify the maintenance of a software system?” To answer this question a case study

was done at a business unit from an IT company in the Netherlands. In this business unit they have an

administrative application for the local governments. To develop this application a Domain-Specific

language is used to generate the code. In particular the business rules and the user interface are

generated. These are rules that define or constraint specific behavior of the application. (5) The results

of the case study are based on data from incident reports and are based on interviews held with various

people in the organization.

 Some benefits of a DSL (3) (1) are confirmed through this case study. The application is more

consistent than before. There are no longer errors due to the fact that an interface is not working the

same in different parts of the system. For example the way text is inserted will go the same everywhere.

The generic code provides the boundaries for this kind of things, making the system more consistent.

This helps in maintenance, because these kinds of errors are no longer reported. This has the following

effects for maintenance: increased speed of maintenance and lower number of changes. The increased

speed of maintenance can be seen as the number of workdays it takes to solve an incident lowers

through time. The consistency also helps the fact that a change made with the DSL can often be used in

more patches, because the same structure is kept over the versions.

Maintaining with the DSL can be simpler when you only have to change a business rule. Some

business rules are more complex, so changing things might even take longer than with traditional

developing techniques for those business rules. Those business rules (5% of the total business rules) are

therefore made with traditional developing techniques and for most business rules it’s a simple change

in these rules to get the right functionality, if you know which business rule to change. This will make

maintenance simpler (1). Maintaining with the use of a DSL does require a certain mindset and

knowledge of the DSL. However experience grows throughout the years and modelers become more

accustomed to the DSL and they can solve almost everything alone.

 Also some disadvantages showed up. Modelers need the help of an architect in 10% of the

incidents. This means that the role of an architect grows, but modelers are stuck behind. They do not

have all the information or the capabilities (yet) that an architect has. This happens more often with

modelers that work with the legacy part of the system most of time. These modelers are not really

experienced with the DSL and might try to work around the model. If modelers are not thinking in terms

of the DSL, but still in code, it can be quite difficult to make changes with a DSL.

Sometimes it’s necessary to make a change in the meta-model before an incident can be

resolved. This can be due to the fact that the expected functionality is not supported by the model or

that the model generates alternate behavior than expected. There’s exactly an extra layer created when

solving some incidents. For example a modeler thinks an architect should solve the incident at the meta-

level. After solving the incident at the meta-level the incident is not completely solved, because the

modeler has to change some business rules. It also happens that modelers and architects do not agree

on who should fix the problem. Incidents are often transferred a lot before solving it. When this

30

happens, maintaining the system is slowed down when using a DSL. These facts are also the reason that

the number of workdays when modelers and architects work together is higher than when they work

alone.

So I conclude that the DSL has helped the organization with simplifying their maintenance

process in the most cases. Modelers are accustomed to the DSL and use it solve change requests. Also

the number of incidents and the number of changes decreased since the introduction of the DSL. The

architects have an important role in maintaining the system. When a change in development strategy

occurred the architects had to deal with a lot of incidents. These incidents could not be fixed by

modelers. Besides that the architects are involved a lot when doing maintenance, not only by changing

things themselves, but also as a source of information for modelers. On the other hand the number of

externally reported change requests does not seem to decrease over time. This means that customers

still find a lot or errors in the application, which should become less over time. The introduction of the

DSL also slowed down the maintenance when architects and modelers need work.

Acknowledgement
I would like to express my gratitude towards my supervisor Dr. Michel R.V. Chaudron for supporting my

Bachelor Thesis. I’m also grateful that the involved organization and especially the business unit, where I

conducted my research, gave me the opportunity to study their use of a domain-specific language.

31

References
1. Little Languages: Little Maintenance. Arie van Deursen, Paul Klint. University of Amsterdam : Journal

of Software Maintenance: Research and Practice, 1998, Vol. 12.

2. Domain-Specific Languages:An Annotated Bibliography. Arie van Deursen, Paul Klint, Joost Visser.

Amsterdam : ACM SIGPLAN Notices, 2000, Vol. 35.

3. Model Driven Development – Future or Failure of Software Development. Ruben Picek, Vjeran

Strahonja. Varazdin, Croatia : 18th International Conference on Information and Intelligent Systems,

2007.

4. Bekkers, Willem. Situational Process Improvement in Software Product Management (Master Thesis).

Utrecht : University of Utrecht, 2008.

5. Defining Business Rules ~ What Are They Really? (Chapter 1).

http://www.businessrulesgroup.org/first_paper/br01c1.htm. [Online] [Cited: 8 22, 2012.]

6. The Impact of Model Driven Development on the Software Architecture Process. Werner Heijstek,

Michel Chaudron. Lille, France : 36th Euromicro Conference on Software Engineering and Advanced

Applications, 2010.

7. Rapid Application Development . http://www.compuware.com/rapid-application-development/.

[Online] [Cited: 8 10, 2012.]

8. C++ Language FAQ - C++ Information. http://www.cplusplus.com/info/faq/. [Online] [Cited: 8 10,

2012.]

32

Appendix A: From design to source code

Figure 15: The process of generating code with the DSL

