Efficient Equivalence Checking of Regular Expressions

Leroy van Delft
Contents

1 Introduction 2

2 Theory and Techniques 3
 2.1 Regular Expressions and Regular Languages 3
 2.2 Finite Automata 4
 2.3 Regular Expression Derivatives 4
 2.4 DFA construction 6
 2.5 Product Automata 8
 2.6 Efficient Equivalence Checking 10

3 Maude 12
 3.1 Equations & Rewrite Laws 12
 3.2 Motivation for using Maude 13

4 Implementation 15
 4.1 Automaton 15
 4.2 ProductAutomaton 16
 4.3 Equivalence 17

5 Experimental Results 19

6 Conclusion and Discussion 21

Appendix 22
1 Introduction

Regular expressions have many uses in computer science, including: protocol checking and pattern matching, moreover regular expressions are used in compilers. Furthermore regular expressions can be used as an abstract programming language. The use of regular expressions in these applications most of the time comes down to answering questions such as: Are two different syntactic descriptions of a language identical? But also other questions which seem trivial, but are not, are commonly solved via regular expressions. One such question would be: Is a language empty? Most of these questions involve solving equivalence for two regular expressions.

In this paper we present an implementation which can check equivalence in an efficient way. The implementation is based on the creation of a product automaton. This is created with the use of derivatives of regular expressions. Besides the implemented product automaton the goal was to make it more efficient. To gain this efficiency we use the properties of the equivalence operator. In this thesis first of all basic definitions for regular expressions are given. Furthermore definitions for derivatives are given, followed by an explanation of techniques for the creation of finite automata. This is all found in Section 2. In Section 3 an introduction to the programming language Maude will be given. Maude is the programming language in which the implementation is made. The implementation is discussed in Section 4, it shows the way the implementation was established and discusses tradeoffs. A comparison between multiple variants of the implementation has been done, in Section 5 these are presented and explained. In Section 6 the results are discussed and conclusions are drawn from these results. The code for the implementation can be found in the Appendix.
2 Theory and Techniques

The definitions introduced in this section are from [1, 2].

An alphabet Σ is a finite set of symbols. Throughout this paper the alphabet used will be a, b unless stated otherwise. The set of all strings over Σ is defined as Σ* and we use u, v to represent strings. A language L of Σ is a set of strings, L ⊆ Σ*. For a string u, |u| stands for the length (the number of symbols) of u. The null-string ε is a string over Σ and by definition |ε| = 0.

2.1 Regular Expressions and Regular Languages

The syntax of regular expressions (RE) includes the standard operations: concatenation, Kleene-closure and alternation (also called logical-or). In addition it is extended with the Boolean operation and. Throughout this paper we will use r, s and t to represent regular expressions.

Definition 2.1. A Regular Expression is defined as:

i) ∅ is a regular expression

ii) ε is a regular expression

iii) a is a regular expression, for every alphabet symbol a ∈ Σ

iv) r · s is a regular expression if r and s are regular expressions

v) r + s is a regular expression if r and s are regular expressions

vi) r&s is a regular expression if r and s are regular expressions

vii) r* is a regular expression if r is a regular expression

viii) Nothing else is a regular expression

Definition 2.2. The language of a regular expression r is a set of strings L(r) ⊆ Σ* generated by the following rules:

\[L(∅) = ∅ \]
\[L(ε) = \{ ε \} \]
\[L(a) = \{ a \}, a ∈ Σ \]
\[L(r · s) = \{ u · v \mid u ∈ L(r) \text{ and } v ∈ L(s) \} \]
\[L(r + s) = L(r) ∪ L(s) \]
\[L(r&s) = L(r) ∩ L(s) \]
\[L(r*) = \{ ε \} ∪ L(r · r*) \]

All languages that can be described by a formula involving the operations of union, concatenation and Kleene-closure are called regular languages. In other words regular languages are those languages that can be described by regular expressions according to Definition 2.2.
2.2 Finite Automata

A finite automaton is a model of a computation device, which acts as a language acceptor. In this paper only the deterministic finite automaton is needed, which is defined as follows:

Definition 2.3 A deterministic finite automaton (DFA) is a 5-tuple $(Q, \Sigma, q_0, A, \delta)$, where

- Q is a finite set of *states*
- Σ is a finite *input alphabet*
- $q_0 \in Q$ is the *initial state*
- $A \subseteq Q$ is the set of *accepting states*
- $\delta : Q \times \Sigma \rightarrow Q$ is the *transition function*

We define the extended transition function $\delta^* : Q \times \Sigma^* \rightarrow Q$ as follows:

\[
\delta^*(q, \varepsilon) = q \\
\delta^*(q, au) = \delta^*(\delta(q, a), u)
\]

The language of a DFA M is $L(M) = \{ u \in \Sigma^* | \delta^*(q_0, u) \in A \}$.

Having these definitions we can state Kleene’s Theorem: For every alphabet Σ, every regular language over Σ can be accepted by a finite automaton. According to Kleene’s Theorem the reverse is also true: For every finite automaton $M = (Q, \Sigma, q_0, A, \delta)$, the language $L(M)$ is regular. Proofs for both parts of this theorem can be found in [1].

2.3 Regular Expression Derivatives

Before we can define the derivative rules for regular expressions we need the help of a function. This function we call ν, which maps REs to REs. We say a regular expression r is *nullable* if the language that it defines contains the empty string, which means that $\varepsilon \in L(r)$.

Definition 2.4 The ν function can be calculated using the following rules:

- $\nu(\varepsilon) = \varepsilon$
- $\nu(a) = \emptyset$
- $\nu(\emptyset) = \emptyset$
- $\nu(r \cdot s) = \nu(r) \& \nu(s)$
- $\nu(r + s) = \nu(r) + \nu(s)$
- $\nu(r \& s) = \nu(r) \& \nu(s)$
- $\nu(r^*) = \varepsilon$

The function ν has the property that: $\nu(r) = \begin{cases} \varepsilon & \text{if } r \text{ is nullable} \\ \emptyset & \text{otherwise} \end{cases}$

The notion of a language derivative, with respect to a symbol $a \in \Sigma$ corresponds to the language that includes only those strings with a leading symbol a in L.

Definition 2.5 The derivative of a language $L \subseteq \Sigma^*$ with respect to a symbol $a \in \Sigma$ is defined to be $\partial_a L = \{ u \mid a \cdot u \in L \}$.

A set of rules, due to Brzozowski [3], is used to compute the derivative of a regular expression. The following rules compute the derivative of a regular expression with respect to a symbol $a \in \Sigma$:

- $\partial_a(\varepsilon) = \emptyset$
- $\partial_a(a) = \varepsilon$
\[\partial_a(b) = \emptyset, \text{ for } b \neq a \]
\[\partial_a(\emptyset) = \emptyset \]
\[\partial_a(r \cdot s) = \partial_a(r) \cdot s + \nu(r) \cdot \partial_a(s) \]
\[\partial_a(r + s) = \partial_a(r) + \partial_a(s) \]
\[\partial_a(r \& s) = \partial_a(r) \& \partial_a(s) \]
\[\partial_a(r^*) = \partial_a(r) \cdot r^* \]

The derivative of a regular expression with respect to a symbol \(a \) has the following property: \(L(\partial_a(r)) = \partial_a(L(r)) \)

We can extend these derivatives to strings, as follows:
\[\partial_a(r) = r \]
\[\partial_{au}(r) = \partial_a(\partial_a(r)) \]

These derivatives can be used to check if a string is contained in the language of a regular expression.
For every string \(u \) and every regular expression \(r \): \(u \in L(r) \iff \varepsilon \in L(\partial_a(r)) \). This is exactly true when \(\varepsilon = \nu(\partial_a(r)) \).

To check if a string is contained in the language of a regular expression we use a new relation \(\sim \). If \(r \sim u \) then we say \(r \) matches ‘ok’. The definition of this relation is as follows.

Definition 2.6
\[r \sim \varepsilon \iff \nu(r) = \varepsilon \]
\[r \sim au \iff \partial_a(r) \sim u \]

The function \(\nu \) is required because it is needed to check if \(\varepsilon \in L(\partial_a(r)) \). As stated before this is exactly true when \(\varepsilon = \nu(\partial_a(r)) \).

Example 2.1 \(abb \in L(a \cdot b^*) \)
\[a \cdot b^* \sim abb \iff \partial_a(a \cdot b^*) \sim bb \iff b^* \sim bb \iff \partial_b(b^*) \sim b \iff b^* \sim b \iff \partial_b(b^*) \sim \varepsilon \iff b^* \sim \varepsilon \iff \nu(b^*) = \varepsilon \]

If the RE does not match the string \(u \), we reach the derivative that is \(\emptyset \), and stop.

These derivatives can be further extended, to derivatives of regular expressions with respect to another regular expression.

Definition 2.7
\[\partial_\emptyset(r) = \emptyset \]
\[\partial_{s+t}(r) = \partial_s(r) + \partial_t(r) \]
\[\partial_{s,t} = \partial_t(\partial_s(r)) \]
\[\partial_{s^*}(r) = r + \partial_{s^*}(\partial_s(r)) \text{ if } r \neq \partial s(r) \]
\[\partial_{s^*}(r) = r \text{ if } r = \partial s(r) \]
This results in: \(L(s) \subseteq L(r) \iff \varepsilon \in L(\partial_s(r)) \).

There are two rules for Kleene-closure to ensure termination. If only the first rule is defined calculation of the derivative might result in endless recursion. It will do that as \(\partial_s^*(r) \) will eventually be minimal eg. will not change over \(s \). This results in the fact that endless repetition of the same result will occur. It will result in \(t + r + r + \cdots \), where \(t \) is everything that has been correctly derivited until that point. We know we are minimal if \(r = \partial_s(r) \) yields true, this is the reason for the second rule as it will ensure termination.

2.4 DFA construction

Another thing that can be done using the Brzozowski derivatives is the creation of a deterministic finite automaton (DFA) using these derivatives. The idea behind this is that the derivative with respect to a symbol \(a \) of a regular expression corresponds with ‘reading’ that symbol in the deterministic automaton. This will be used to create transitions and states in the DFA. The initial state will be the regular expression we want to make a DFA for, the other states are the derivatives with respect to all symbols \(a \in \Sigma \). Transitions with a symbol \(a \) are then added between two states (say \(q_1 \) and \(q_2 \)) if \(\partial_a(q_1) = q_2 \).

Example 2.2 Creation of a DFA for \(ab(a+b)^* \) (all words starting with \(ab \)).

First of all we can add the state for \(ab(a+b)^* \).

\[
\text{start} \rightarrow ab(a+b)^*
\]

Next we calculate the derivatives for the first state:

\[
\begin{align*}
\partial_a(ab(a+b)^*) &= b(a+b)^* \\
\partial_b(ab(a+b)^*) &= \emptyset
\end{align*}
\]

Two new states and two new transitions can be added now.

\[
\text{start} \rightarrow ab(a+b)^* \\
\text{start} \rightarrow b(a+b)^*
\]

The next extension will be the simple one, the derivatives for \(\emptyset \).

\[
\begin{align*}
\partial_a(\emptyset) &= \emptyset \\
\partial_b(\emptyset) &= \emptyset
\end{align*}
\]
Note that no new state for \emptyset is created. A new state may only be added to the automaton if it is not already present in the automaton. If this restriction would not be there this process would not terminate.

The only state left now to extend is $b(a + b)^*$.

\[
\partial_a(b(a + b)^*) = \emptyset \\
\partial_b(b(a + b)^*) = (a + b)^*
\]

This yields the following state and transitions.

For the newly added state transitions still need to be added and maybe also new states.

\[
\partial_a((a + b)^*) = (a + b)^*
\]
\[
\partial_b((a + b)^*) = (a + b)^*
\]

This finishes the automaton as follows.
While the automaton is now complete a detail is missing, which is the fact to determine which of the states in the new DFA are accepting. The can be done by checking if the regular expression of a state is nullable. If \(\nu(r) = \varepsilon \) then the state is accepting, if \(\nu(r) = \emptyset \) then the state is non-accepting.

\[
\begin{align*}
\nu(ab(a+b)^*) &= \emptyset \\
\nu(b(a+b)^*) &= \emptyset \\
\nu((a+b)^*) &= \varepsilon \\
\nu(\emptyset) &= \emptyset
\end{align*}
\]

In the following picture the automaton is shown with the accepting states.

We now have an automaton that accepts the same language as the regular expressions \(ab(a+b)^* \). As shown above this method works, however one point of interest occurs. That is the question whether or not this method will terminate. Brzozowski provided a proof in his paper [3], that regular expressions can only have a finite number of derivatives modulo associativity, associativity and idempotence (ACI) of the \(+ \) operator. This also guarantees that the construction of the deterministic finite automaton will terminate.

2.5 Product Automata

The construction explained in the previous section leads something more interesting which is equivalence checking of two regular expressions. Before this can be done however a new
Definition 2.8 Two regular expressions, \(r \) and \(s \), are equivalent, denoted as \(r \equiv s \), if \(L(r) = L(s) \).

Equivalence checking will be done with a product automaton, which is also know as bisimulation. A product automaton (PA) is similar to a DFA, however the way it is used is that every state contains a pair of regular expressions. The construction of such a PA is therefore based on the construction of a DFA explained in the previous section. The initial state contains the pair of the original regular expressions, which need to be checked for equivalence. New states are added by calculating the derivatives of both REs in a state. A state is can be added if both regular expressions are nullable or both are not (both either \(\epsilon \) or \(\emptyset \)). This condition also needs to hold for the initial state. The condition is required to make sure they accept the same words. If one of the regular expressions accepts a word the other regular expression does not, then they are not equivalent and no valid PA can be produced. Transitions are added in the same way as defined in the DFA construction.

Example 2.3 Product Automaton for \(\{ (a+b)^*, a^* + (a + b)^* \} \)

The first thing is to check if \(\nu((a+b)^*) = \nu((a^* + (a + b)^*)) \). Indeed \(\nu((a+b)^*) = \epsilon \) and \(\nu(a^* + (a + b)^*) = \epsilon \). For this reason we can add the state.

\[
\text{start} \quad \{ (a+b)^*, a^* + (a + b)^* \}
\]

Next up is computing the derivatives of both REs.
\[
\begin{align*}
\partial_a((a+b)^*) &= (a + b)^* \\
\partial_a(a^* + (a + b)^*) &= a^* + (a + b)^* \\
\partial_b((a+b)^*) &= (a + b)^* \\
\partial_b(a^* + (a + b)^*) &= (a + b)^*
\end{align*}
\]

This means we get the following pairs: \(\{ (a+b)^*, a^* + (a + b)^* \} \) and \(\{ (a+b)^*, (a + b)^* \} \), the first one is the original pair and does not need to be added. Of course the new pair needs to be checked: \(\nu((a+b)^*) = \nu((a + b)^*) = \epsilon \).

\[
\text{start} \quad \{ (a+b)^*, a^* + (a + b)^* \}
\]

\[
\begin{array}{c}
a \\
\quad \{ (a+b)^*, (a + b)^* \}
\end{array}
\]

The pair \(\{ (a + b)^*, (a + b)^* \} \) still needs to be extended. This is trivial as the derivatives are already known. So this yields the following result.
The only thing to determine next is which states are accepting. A state is accepting if both its expressions are nullable, and the state is non-accepting when they’re not. We already know that all four regular expressions in the two states are nullable.

Because we know that regular expressions can only have a finite number of derivatives. This guarantees that the construction of the product automaton will terminate.

As shown a product automaton can be used to check whether \(r \equiv s \). The construction can be altered slightly to check whether \(L(r) \subseteq L(s) \), for regular expressions \(r \) and \(s \). The algorithm for creating this new automaton is identical to the creation of the product automaton, except for one change. Because the subset operation is different from equivalence it results in that a different check is required when adding states. In the creation of the product automaton it is checked, everytime a new state is to be added, whether \(\nu(r) = \nu(s) \). When checking for \(L(r) \subseteq L(s) \) it is not required that for every new state \(\nu(r) = \nu(s) \) holds. It is now required that for every new state it holds that \(\nu(r) = \nu(s) \) or \(\nu(s) = \varepsilon \). This means that when a string \(u \in L(r) \) then it must hold that \(u \in L(s) \), however when a string \(t \in L(s) \) then it is not required that \(t \in L(r) \).

2.6 Efficient Equivalence Checking

While we now have a method for equivalence checking of regular expressions, this method is not as efficient as it could be. The goal is to be more efficient in space, by minimizing the number of states. The way to achieve this goal is to make use of the following properties of equivalence relation:

- Reflexivity, \(r \equiv r \)
- Symmetry, if \(r \equiv s \), then also \(s \equiv r \)
- Transitivity, if \(r \equiv s \) and \(s \equiv t \), then also \(r \equiv t \)

Besides these three ‘basic’ properties another property is added. This property is called the \(+\) closure which is defined as follows:
• If $r \equiv p$ and $t \equiv s$, then also $r + t \equiv p + s$

The least equivalence relation including a relation R and $+\text{-}closure$ is called the closure of R

When producing a product automaton it is checked whether a state $\{r, s\}$ is already present in the product automaton to avoid an infinite loop. With the improved method instead it is checked whether $\{r, s\}$ is in the closure of the current product automaton.

Example 2.4 Symmetry

Let there be a product automaton as follows:

\[
\{r, s\} \rightarrow \{p, q\}
\]

Transitions are left out, for this example it is assumed that there are no states other than the states show in the picture. Let us go and expand the state with from the $\{p, q\}$; this means calculating the derivatives and adding the transitions. Let $\partial_a(p) = p'$ and $\partial_a(q) = q'$, for a symbol $a \in \Sigma$. This yields:

\[
\begin{align*}
\{r, s\} \rightarrow \{p, q\} \\
\{p', q'\}
\end{align*}
\]

Now suppose that $\{p', q'\} = \{s, r\}$. This yields the following automaton:

\[
\begin{align*}
\{r, s\} \rightarrow \{p, q\} \\
\{s, r\}
\end{align*}
\]

This state would be added in the product automaton, as there is no state $\{s, r\}$ yet. In the improved method however we need to check whether $\{s, r\}$ is in the closure. Indeed there is a state $\{r, s\}$, because of symmetry the state $\{s, r\}$ is in the closure. This results in the fact that the new state $\{p', r'\}$ does not need to be added. If one wants to have something that resembles an automaton one can now add a new transition as follows:

\[
\begin{align*}
\{r, s\} \rightarrow \{p, q\}
\end{align*}
\]

This resulting automaton is no longer considered a product automaton.
3 Maude

For the implementation I used a programming language called Maude [4]. “So what is Maude? Maude is a programming language that models systems and the actions within those systems.” [5]. In this chapter some of the basics of Maude will be explained so the implementation made for this paper can be understood. This section is not intended as a manual or tutorial on how to use Maude. Maude is closest related to logical programming languages such as Prolog. Similar to logical programming languages Maude is based on pattern matching and replacing. Unlike high-end languages such as C++ and Java, Maude programs are not compiled but interpreted. In the Maude environment we can load programs (called modules) and then ask questions regarding what is defined in the module.

Example 3.1 A simple Maude module (taken from [5])

fmod Animals is
 sorts Animal Dogs .
 subsort Dog < Animal .
 ops bloodhound terrier pitbull schnauzer : -> Dog .
 op penguin : -> Animal .
 op breed : Dog Dog : -> Dog .
endfm

In this module we can breed dogs with each other. In the Maude-environment the following expression could be typed: reduce breed(bloodhound, pitbull); this will result in a positive answer and return you Dog. Another expression, reduce breed(terrier, penguin) will not give a positive answer as penguin, because the sort Animals is not in a subsort of Dogs. As breed is defined only with two dogs as parameters, the query will fail. In Maude the command reduce (or red) is used to reduce an expression as far as possible. Once no more reductions are possible Maude terminates and the result is given.

3.1 Equations & Rewrite Laws

One of the most important features of Maude is the ability to use equations. The purpose of an equation is to provide Maude with rules to simplify an expression. The best way to see how these equations work, is via the use of an example.

Example 3.2 Equations

fmod Operations is
 protecting NAT

 op _+_ : Nat Nat -> Nat [comm].

 var N : Nat .
 eq 0 + N = N .
endfm

In this example a module which defines the natural numbers (called NAT) has been imported. Under the assumption that NAT allows for the use of natural numbers, but contains
no operators we can define the addition operator. Because of the added equation (keyword `eq`) we can now reduce the following expression: `red 0 + 5`, which will return 5. Note here that the expression: `red 5 + 0` will also be reduced to 5. This is ‘correct’ because we have specified that addition is commutative via `[comm]`.

Equations are very useful in Maude as they create and map out structures, however the real power of Maude is about transitions that occur within and between structures. These transitions are mapped in `rewrite laws`. As Maude is closely related to a logical programming language, the main strength of Maude lies in rewriting logic, hence rewrite laws. Rewrite laws are used to describe changes between different `states` with the use of `transitions`.

Example 3.3 Rewrite Laws (taken from [5])

```plaintext
fmod Smoking is
    sort State .

    op cigarette : -> State [ctor] .
    op butt : -> State [ctor] .
    rl [smoke] : c => b .
    rl [makenew] : b b b b => c .
endfm
```

This example is based on a puzzle. If there is a person who smokes, but who also can make a new cigarette from 4 butts (what is left over after smoking a cigarette), how many cigarettes can he smoke if he starts with `x` cigarettes? This module will not solve the puzzle but can simulate it. Each rewrite law is indicated with `rl`, the part between `[]` is treated as comments. So we can call the Maude environment: `rewrite c c c c`, which simulates smoking 4 cigarettes. In the Maude environment `rewrite (or rew)` is used instead for rewrite laws instead of `reduce`. The result is `b`. This is because the 4 initial cigarettes are smoked first, then the 4 butts are rewritten to a cigarette, and that is then smoked, leaving a single butt.

3.2 Motivation for using Maude

The main motivation for using Maude is that it makes the implementation much easier. If the implementation would be done in a more ‘conventional’ language such as Java or C++ new data structures would need to be defined: for regular expressions and for states and transitions (in the automata). Furthermore many lines of code are necessary for the implementation that can be done in a single line in Maude. Here is an example that makes clear how efficient the implementation can be done.

Example 3.4 Nullable

Recall the rules for the function `ν`:

- `ν(ε) = ε`
- `ν(a) = ∅`
- `ν(∅) = ∅`
- `ν(r · s) = ν(r) & ν(s)`
- `ν(r + s) = ν(r) + ν(s)`
\[\nu(r^*) = \varepsilon \]

In Java for example checking if an RE is nullable would require a loop with various if-statements. In Maude the code will look as follows:

\[
\begin{align*}
\text{eq } & \nu(1) = 1 . \\
\text{eq } & \nu(0) = 0 . \\
\text{eq } & \nu(A) = 0 . \\
\text{eq } & \nu(E1 - E2) = \nu(E1) \& \nu(E2) . \\
\text{eq } & \nu(E1 + E2) = \nu(E1) + \nu(E2) . \\
\text{eq } & \nu(E *) = 1 .
\end{align*}
\]

As can be seen the rules are described in exactly the same amount of lines (6) as the mathematical notation. Of course an operations of regular expressions needs to be defined as well as the variables \(E1\), \(E2\) and \(E\). This example shows how efficient mathematical functions can be defined in Maude.

While such functions can be implemented easily, one of the more difficult things to implement in Maude is loops. In Maude both while-loops and for-loops are not present, there is something called a \texttt{LOOP-MODE}, but this does not reflect loops in other programming languages. The best way to loop in Maude is using recursion. This is already shown in example 3.4, the rules for both concatenation and alternation. For example, in the equation for alternation we can see that \(\nu(r + s)\) is reduced to \(\nu(r) + \nu(s)\). Because Maude uses pattern matching, in the next step of the evaluation \(\nu(r)\) will be reduced. The main problem with recursion (in any programming language) is to ensure termination. In Maude this can be ensured by adding a condition to equations, which can only be executed if this condition is met. As stated before, Maude will continue rewriting and/or reducing until it is out of options. So endless recursion can be stopped by ensuring that a function is rewritten or reduced to a terminal (such as eq \(\nu(A) = 0 \)).
4 Implementation

For the implementation the goal is to get a working set of modules which can check if two regular expressions describe the same language. Checking equivalence is done via the method of a product automaton described in Section 2. Also the more efficient method (as explained in Section 2.6) is implemented. Before getting to that stage several other aspects related to this need to be implemented. In the final product the following modules are present:

- *RegularExpression*: This module contains all basic operations and definitions related to regular expressions.
- *Nullable*: The function ν is implemented in this module.
- *Derivative*: Brzozowski derivatives and all the extension thereof are present in this module.
- *Automaton*: Contains all operations for the construction of a DFA.
- *ProductAutomaton*: Creates a product automaton for two given regular expressions (if possible), to check if two regular expressions are equivalent.
- *Subset*: Checks if the languages of two provided regular expressions (r, s) are a subset ($L(r) \subseteq L(s)$).
- *Equivalence*: Also checks equivalence of regular expressions. Uses transitivity, reflexivity, symmetry and $+/-$ closure to be more efficient.

The module RegularExpression will not be discussed as this is a set of definitions and some equations. The equations are present to include equivalences such as $a + a = a$, with $a \in \Sigma$. The implementation for the nullable function is shown in Section 3.2. Brzozowski derivatives are implemented in the same way the nullable function is implemented.

4.1 Automaton

In Section 2.4 an algorithmic method for creating a deterministic finite automaton (DFA) has been shown. Because the method is based on an algorithm it means that it can be implemented. For the implementation the first thing that is required is to define a representation of a DFA. A DFA is in its essence a set of states and a set of transitions. Therefore the result will be a list of states followed by a list of transitions as follows: (\{state\} ; ... ; \{state\} | [transition] ; ... ; [transition]). A state is a regular expression which we are going to extend as we need the derivatives to make new states. A transition is defined as a triple $[r, a, s]$ where r is the state we are moving from to a state s, while reading a symbol a. Here r may be equal to s to make a loop to the same state.

The challenge is now to create an automaton when a regular expression is given by the user. The method is identical to the method described in Section 2.4, which means calculating derivatives and introducing them as states if they are not already present. So the main challenges are: termination and making sure all transitions and states are created.
Termination can be guaranteed by ensuring a state that is already present in the list of states is not added to that list. This requires us to make a helper function \textit{in} which checks if a state is already in the current set of states. This will result in a rewrite law which will add a state (and the corresponding transition) to the automaton (which is 2 lists) if it is not already present. This operation needs to be present for all symbols \(a \in \Sigma \) because we need to calculate all derivatives. This means that if we have a state \(r \) in the list we can add \(r' \) to the list if \(r' = \partial_a(r) \). This immediately results in a transition from \(r \) to \(r' \) while reading an \(a \), \([r, a, r']\). In the code this addition looks as follows:

\[
\text{cr1} : (S \mid S1 | T1) \Rightarrow (D(S, a) \mid S \mid S1 | [S, a, D(S,a)] \mid T1) \text{ if } \text{in}(D(S, a), S \mid S1) == \text{false}
\]

What it does is the following: Given an automaton \((S \mid S1 | T1)\) with a list of states \(S \mid S1 \) (the \(-\)-symbol is concatenation of states) and a list of transitions \(T1 \). We can add the derivative of \(S \) with respect to \(a \) to the list \(D(S, a) \mid S \mid S1 \) and the corresponding transition \([S, a, D(S,a)] \mid T1\), if the state is not already present in the state list, that is, \(\text{in}(D(S, a), S \mid S1) == \text{false} \).

One thing that is still missing now is the fact that sometimes we cannot add any new states from a state. This means that the derivative of that state is already present in the list. At this point we need a method of creating only a transition. The way to do this is to add a transition when from a state \(r \) to a state \(s \) when both of them are in the state list. Furthermore it needs to hold that \(s = \partial_a(r) \) and there is no transition yet between between \(r \) and \(s \). It can be argued that \(r \) must be equal to \(s \) because otherwise the transition would have been added when the state was added. Because Brzozowski has proven that a regular expressions has only finitely many derivatives modulo ACI it is ensured that this process will terminate, therefore no special termination operation is required. If we ignore helper functions the creation of a DFA only requires 4 rewrite laws, two rewrite laws for adding states and the corresponding transition, and another two are required as \(|\Sigma| = 2\), we need separate rules every \(a \in \Sigma \). For the same reason two laws are required to add the transitions.

4.2 ProductAutomaton

The implementation of a product automaton is based on the implementation of DFA. This means the same representation as a DFA is used, with two changes. First of all a state is no longer a single regular expression, but a pair of regular expressions. Also a state is not only a pair of regular expressions, but the state will also indicate if the state is accepting. This means a state will now look as follows: \(\{r, s, 0\} \), where \(r \) and \(s \) are the regular expressions. The third entry is either 0 or 1; 1 means that the state is accepting while 0 indicates that the state is not accepting.

The addition of new states and transitions is based on the method described in Section 4.1. This time we work with pairs instead of regular expressions, so pairs need to be checked to be present in the state list instead of single regular expressions. Besides that check an important new check needs to be made. As explained in Section 2.5 it needs to be checked if \(\nu(r) = \nu(s) \) so both regular expressions accept the empty word or neither
of them does so. To be more efficient we check \(\nu(r) = \nu(s) \) immediately when we want to add the state. The other option is to just add all states and at the end check if the created automaton is valid. These are the main changes made to get from creating a DFA to creating a product automaton. Because we indicate whether a state is final or not (which we did not do in the creation of a DFA) the amount of rewrite laws required is doubled. It is doubled because we need the same laws both when the state is final and the state is not final. Because we optimized a little by checking if both regular expressions are accepting, we can immediately stop if we find such a pair. To provide the user with error reporting, we then add a special state **ERROR** when this occurs. This yields the following code:

\[
\text{crl} : (E_1, E_2, E_3 ; P_1 \mid T_1) \Rightarrow (\text{ERROR} ; E_1, E_2, E_3 ; P_1 \mid T_1) \text{ if } \nu(D(E_1, a)) \neq \nu(D(E_2, a)) \\
\text{and } \text{in} (\text{ERROR}, E_1, E_2, E_3 ; P_1) == \text{false} .
\]

The code is quite similar to the piece of code shown in the previous section. It adds the special **ERROR**-state to the automaton if the state to be added is not ‘valid’ (\(\nu(r) = \nu(s) \)). Furthermore we need to make sure to check that no **ERROR**-states are already present as otherwise multiple **ERROR**-states are added. While this does not cause any problems, it is more ‘elegant’ if only one **ERROR**-state is added.

The code for creating a product automaton can be slightly altered to not check for equivalence but to check whether \(L(r) \subseteq L(s) \). The first change is not to indicate which states are accepting, this would result in many rewrite laws. Many rewrite laws are not a problem but removing the indicator makes the code more readable. The only major change is that now not only states are considered ‘valid’ when \(\nu(r) = \nu(s) \) but also when \(\nu(s) = \varepsilon \). As long as the language of \(r \) does not accept any words that the language of \(s \) would not accept a state is valid. This does mean however that we need an extra rewrite law for all \(a \in \Sigma \), which means a total of 8 rewrite laws.

4.3 Equivalence

As stated in Section 2.6, the goal is to more efficient in space. The first thing that we do to achieve this is no longer create transitions. These are not required to create all states, which determine whether two regular expressions are equivalent. Furthermore the transitions coming from a certain state can be found by calculating the derivative of both regular expressions and see what state it results in. The main challenge is now to find out what states are in the reflexive, symmetric and transitive closure, as well as check the \(+\)-closure. The way we check this is by calculating the closure from the state we are expanding and try and find the state we want to add in the closure of the state we started with. We illustrate this with an example.

Example 4.1 Closure calculation

Say we start with the following states:

\[(r_1, r_3), (r_2, r_3), (r_4, r_5), (r_6, r_5), (r_1, r_4), (r_5, r_1)\]

Of course, all of the \(r_x \) are regular expressions. Assume the derivative of \((r_1, r_3) \) is \((r_1, r_2) \), we need to check if \((r_1, r_2) \) is in the closure. We use a secondary list; to this list we first add a state based on the state we are going to expand. Say this state is \((r, s)\) then we add a state \((r, r)\) to the new list. In this example we add \((r_1, r_1)\) to the list. From this first
state we expand this list based on what is in the original list. If \((r, r)\) is in the new list, we may add \((r, t)\) to that list if \((r, t)\) was in the original list. Furthermore we may add \((t, r)\) if \((t, r)\) was in the original list. For this example we get the following list:

\[
\begin{align*}
(r_1, r_1) \\
(r_1, r_3) \\
(r_1, r_4) \\
(r_5, r_1)
\end{align*}
\]

Next we apply symmetry to these elements in the list. Which yields:

\[
\begin{align*}
(r_1, r_1) \\
(r_1, r_3), (r_3, r_1) \\
(r_1, r_4), (r_4, r_1) \\
(r_5, r_1), (r_1, r_5) \\
\end{align*}
\]

This is then expended via transitivity:

\[
\begin{align*}
(r_1, r_1) \\
(r_1, r_3), (r_3, r_1) \\
(r_1, r_4), (r_4, r_1) \\
(r_5, r_1), (r_1, r_5) \\
(r_5, r_5)
\end{align*}
\]

The final operation that is required is the \(\pm\)-closure. To make it more clear a pair a new example is made and only the pairs \(\{r_2, r_6\}, \{r_3, r_4\}\) are present. these elements are present in the secondary list which will be extended. Computing the \(\pm\)-closure modulo ACI we get:

\[
\begin{align*}
\{r_2, r_6\}, \{r_3, r_4\} \\
\{r_2 + r_3, r_6 + r_4\}
\end{align*}
\]

These steps are repeated until the state we are searching for is found, as soon as that state is found we can stop extending and not add the state. Otherwise this process will terminate and the state is not found and we may add the extension of the original state to the automaton. In the implementation the closure calculation is not done in as systematic way as show in the example above. Maude works from top to bottom which means it will apply the equations and rewrite laws in a specific order. One thing to note is that reflexivity is not in this closure function. Reflexivity is dealt separately as follows: if a state \((r, s)\) will be extended to \((t, t)\) then we can stop extension of that new state as it is clear that \(r \equiv t\) as it is clear that \(r \equiv s\). It is important of course to still check if \(\nu(r) = \nu(s)\) and compute the other derivatives.
5 Experimental Results

For the results several ‘variants’ of the implementation are compared with different regular expressions. The abbreviation rew is short rewrite, which indicates the amount of rewrite that Maude had to do.

<table>
<thead>
<tr>
<th>r</th>
<th>s</th>
<th>Product automaton with transitions</th>
<th>Product automaton without transitions</th>
<th>Equivalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(a+b)^* \cdot (ab) \cdot (a+b)^* + b^a^$</td>
<td>$(a+b)^*$</td>
<td>4 states, 11653 rew</td>
<td>4 states, 3594 rew</td>
<td>4 states, 2396 rew</td>
</tr>
<tr>
<td>$(a+b)^*$</td>
<td>$(a^* \cdot (a+b)^*)$</td>
<td>3 states, 2958 rew</td>
<td>3 states, 932 rew</td>
<td>2 states, 426 rew</td>
</tr>
<tr>
<td>$(a+b)^* \cdot b$</td>
<td>$(a+b)^* \cdot a$</td>
<td>1 state, 985 rew</td>
<td>1 state, 561 rew</td>
<td>? states, 400 rew</td>
</tr>
<tr>
<td>$(a+b) \cdot (a+b)^*$</td>
<td>$(a+b)^*$</td>
<td>0 states, 32 rew</td>
<td>0 states, 32 rew</td>
<td>0 states, 19 rew</td>
</tr>
<tr>
<td>$\varepsilon + \varepsilon$</td>
<td>$\varepsilon + \emptyset$</td>
<td>2 states, 776 rew</td>
<td>2 states, 117 rew</td>
<td>1 state, 46 rew</td>
</tr>
<tr>
<td>ab</td>
<td>ba</td>
<td>4 states, 2992 rew</td>
<td>4 states, 802 rew</td>
<td>? states, 279 rew</td>
</tr>
<tr>
<td>$b+b+b+a$</td>
<td>$a+a+a$</td>
<td>3 states, 1554 rew</td>
<td>3 states, 379 rew</td>
<td>1 state, 102 rew</td>
</tr>
<tr>
<td>$\varepsilon + ba$</td>
<td>$\varepsilon + ab$</td>
<td>0 states, 42 rew</td>
<td>0 states, 42 rew</td>
<td>0 states, 26 rew</td>
</tr>
<tr>
<td>$(a+b)^*$</td>
<td>$(a^* + (a+b)^*)$</td>
<td>2 states, 1294 rew</td>
<td>2 states, 496 rew</td>
<td>1 state, 152 rew</td>
</tr>
<tr>
<td>a^*</td>
<td>$a^* + \varepsilon$</td>
<td>3 states, 1585 rew</td>
<td>3 states, 486 rew</td>
<td>1 state, 87 rew</td>
</tr>
<tr>
<td>$a^a^$</td>
<td>a^*</td>
<td>3 states, 2238 rew</td>
<td>3 states, 725 rew</td>
<td>2 states, 326 rew</td>
</tr>
<tr>
<td>$(a+b)^*$</td>
<td>$(a^b)^ \cdot a^*$</td>
<td>2 states, 3045 rew</td>
<td>2 states, 765 rew</td>
<td>2 states, 778 rew</td>
</tr>
<tr>
<td>$a(ba)^*$</td>
<td>$(ab)^*a$</td>
<td>3 states, 4539 rew</td>
<td>3 states, 853 rew</td>
<td>2 states, 500 rew</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>r</th>
<th>s</th>
<th>Only \pm-closure</th>
<th>Full equivalence without transitivity</th>
<th>Full equivalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(a+b)^* \cdot (ab) \cdot (a+b)^* + b^a^$</td>
<td>$(a+b)^*$</td>
<td>4 states, 2366 rew</td>
<td>4 states, 2396 rew</td>
<td>4 states, 2396 rew</td>
</tr>
<tr>
<td>$(a+b)^*$</td>
<td>$(a^* \cdot (a+b)^*)$</td>
<td>1 state, 192 rew</td>
<td>1 state, 196 rew</td>
<td>1 state, 196 rew</td>
</tr>
<tr>
<td>$(a+b)^* \cdot b$</td>
<td>$(a+b)^* \cdot a$</td>
<td>? states, 270 rew</td>
<td>? states, 754 rew</td>
<td>? states, 2059 rew</td>
</tr>
<tr>
<td>$(a+b) \cdot (a+b)^*$</td>
<td>$(a+b)^*$</td>
<td>0 states, 19 rew</td>
<td>0 states, 19 rew</td>
<td>0 states, 19 rew</td>
</tr>
<tr>
<td>$\varepsilon + \varepsilon$</td>
<td>$\varepsilon + \emptyset$</td>
<td>1 state, 42 rew</td>
<td>1 states, 46 rew</td>
<td>1 state, 46 rew</td>
</tr>
<tr>
<td>ab</td>
<td>ba</td>
<td>? states, 210 rew</td>
<td>? states, 315 rew</td>
<td>? states, 351 rew</td>
</tr>
<tr>
<td>$b+b+b+a$</td>
<td>$a+a+a$</td>
<td>1 state, 98 rew</td>
<td>1 state, 102 rew</td>
<td>1 state, 102 rew</td>
</tr>
<tr>
<td>$\varepsilon + ba$</td>
<td>$\varepsilon + ab$</td>
<td>0 states, 26 rew</td>
<td>0 states, 26 rew</td>
<td>0 states, 26 rew</td>
</tr>
<tr>
<td>$(a+b)^*$</td>
<td>$(a^* + (a+b)^*)$</td>
<td>1 states, 148 rew</td>
<td>1 state, 152 rew</td>
<td>1 state, 152 rew</td>
</tr>
<tr>
<td>a^*</td>
<td>$a^* + \varepsilon$</td>
<td>1 state, 83 rew</td>
<td>1 state, 87 rew</td>
<td>1 state, 114 rew</td>
</tr>
<tr>
<td>$a^a^$</td>
<td>a^*</td>
<td>2 states, 314 rew</td>
<td>1 state, 160 rew</td>
<td>1 state, 160 rew</td>
</tr>
<tr>
<td>$(a+b)^*$</td>
<td>$(a^b)^ \cdot a^*$</td>
<td>2 states, 708 rew</td>
<td>2 states, 1276 rew</td>
<td>2 states, 2514 rew</td>
</tr>
<tr>
<td>$a(ba)^*$</td>
<td>$(ab)^*a$</td>
<td>2 states, 488 rew</td>
<td>2 states, 500 rew</td>
<td>2 states, 500 rew</td>
</tr>
</tbody>
</table>

The table above shows the results of several pairs regular expressions tested for equivalence on different parts of the implementation. The results show both the amount of states created by the method (this is shown as states). Secondly it shows how many rewrites are required to determine equivalence. While the goal is to minimize the number of states it is interesting to also look at the speed (less rewrites means faster) of the different implementations. In the table sometimes the number of states is unknown, which is indicated by a ?, this occurs in the variants when the regular expressions are not equivalent and an
empty list is returned. If the variant does not return the empty list, but produces an error state, then the amount of states shown is all states produced up until the error state was encountered. In both tables, the first two columns contain the two regular expressions which are checked for equivalence.

The third column in the first table is the results from the product automaton module. As described in Section 4 this module makes a product automaton based on the method in Section 2.5. The implementation, from which the results are shown in fourth column, also produces a product automaton however this variant does not produce any transitions. This is added to have a better comparison. The last column contains ‘basic’ equivalence; in equivalence the closure will be applied using reflexivity, symmetry and transitivity, but this variant does not contain the +-closure. In the second table the third column contains the a variant in which we do check the closure, but only use +-closure. In the fourth column full equivalence is used, which is identical to equivalence but now the +-closure is also taken into account. However this is a variant in which transitivity is left out. The final variation is in the last column of the second table here full equivalence is used without leaving anything out.
6 Conclusion and Discussion

The results from the previous section are interesting for several reasons. The first thing to notice is that in all test cases, and in any implementation variant the number of states is less than or equal to the method of a product automaton. That equivalence does not increase the number of states is obvious, that it decreases the number of states shows that the closure properties have a positive effect on the number of states. Equivalence also has the nice benefit of reducing the amount of rewrites required for most of the test cases.

An interesting result is gained from the pair \(\{(a + b)^* , (a^*b)^* \cdot a^*\}\). Here equivalence does not reduce the amount of states when comparing to the product automaton. It does however require about the same amount of rewrites, 3045 versus 2514. This is however an unfair comparison as equivalence does not have to use rewrites to generate transitions, while the product automaton does have to do this. It is therefore better to compare to the product automaton that does not produce transitions. Now it is 765 versus 2514 rewrites. Clearly in terms of speed the product automaton without transitions preforms better than equivalence does, and in terms of space they are equally good. It is interesting to also look at equivalence without transitivity. This is interesting as it requires significantly less rewrites when compared to equivalence (full equivalence to be exact), namely 1276 versus 2514 rewrites. This is still about 500 rewrites more than the product automaton without transitions. Of course the module for equivalence was designed to optimize in terms of space, but it is still interesting that it sometimes performs better while in other cases it does not.

If we are going to compare the full equivalence method to the full equivalence method without transitivity it shows that in none of the test cases the full equivalence method produces less states than it does without equivalence. Furthermore full equivalence performs worse in 2 cases in terms of rewrites. It is not clear why these two specific cases perform in this way, the first is a pair of expressions that are not equivalent while in the second they are not. This raises the question whether or not it is good to include transitivity to the implementation as it does not seem to reduce the amount of states. Neither does it improve the amount of rewrites, quite on the contrary it increases the number of rewrites required. Based on the results gained the ‘best’ variant would be full equivalence without transitivity. This variant yields a minimal number of states and required the least amount of rewrites to achieve this. If one would be looking at speed this would also be the best variant. All implementations are based in the goal to be most efficient in space, therefore it is not optimized in terms of speed. A implementation which has the goal to be as efficient as possible in speed would most likely out perform it.

For future work multiple things can be done. First of all more extensive testing could be done. This means more regular expressions and also regular expressions with a more extensive alphabet than only \(\{a, b\}\). Secondly one would be interested to extend the implementation to other types of automata. Here example could be, Mealy machines, Moore automata and weighted automata. It would also be nice to rewrite the automata in a format that can be used by a program that produces a graphical representation of an automata. An example of such a program would be graphviz. This topic has been researched more in the recent past an example of this can be found in [6].
This program will recognize if a given string is a regular expression (RE) over the alphabet \{a, b\}. 0 will be used for the empty language (or set). I will be used for the empty string.

Extended with equations to reduce REs
Extended with the nullable operation for REs
Extended with the Brzozowski Derivative
Extended with the checking if a String is part of a language
Extended with the ability to create a DFA
Extended with the checking if 2 REs describe the same language
Extended with the Derivative of a RE, over a RE
Extended with the checking if E1 is subset of E2
Extended equivalence checking with the closure

This module contains the basic regular expression definitions, as well as basic equivalences among certain REs

mod RegularExpression is
 sorts RegExp Alphabet .
 subsort Alphabet < RegExp .

 ops a b : -> Alphabet .
 ops l 0 : -> RegExp .

 *** Regular Expression related operations
 op _-_: RegExp RegExp -> RegExp [ctor assoc prec 20] . *** Concatenation

 vars E : RegExp .
 vars A B : Alphabet .

 *** RE Equivalences
 eq 1 - E = E .
 eq 0 - E = 0 .
 eq 0 & 0 = 0 .
 eq E & E = E .
 eq 0 + 0 = 0 .
 eq 0 + E = E .
 eq E + E = E .
 eq (E *) * = E * .

endm

The module Nullable contains a function which can check whether a L(RE) contains the empty word.

mod Nullable is
 protecting RegularExpression .
Function \(v \) determines whether a RegExp is nullable or not

```plaintext
op \( v : \text{RegExp} \rightarrow \text{RegExp} \).
```

```plaintext
vars E E1 E2 : \text{RegExp}.
vars A B : \text{Alphabet}.
```

Nullable Equations

```plaintext
eq v(1) = 1.
eq v(0) = 0.
eq v(a) = 0.
eq v(b) = 0.
eq v(E_1 - E_2) = v(E_1) \land v(E_2).
eq v(E_1 + E_2) = v(E_1) + v(E_2).
eq v(E *) = 1.
```

```plaintext
endm
```

This module contains all functions related to derivatives of REs, which are:

- Brzozowski Derivatives
- Extended Brzozowski Derivatives for strings
- Derivatives over regular expressions

```plaintext
mod Derivative is
  protecting \text{RegularExpression}.
  protecting Nullable.
```

```plaintext
sorts \text{String}.
subsort \text{Alphabet} < \text{String}.
```

String related operations

```plaintext
op 1 : \rightarrow \text{String}.
```

```plaintext
op _ : \text{Alphabet} \rightarrow \text{String} [\text{id}: 1].
```

```plaintext
op D : \text{RegExp} \text{Alphabet} \rightarrow \text{RegExp} [\text{ctor}].
```

```plaintext
op Ds : \text{RegExp} \text{String} \rightarrow \text{RegExp} [\text{ctor}].
```

```plaintext
op Dr : \text{RegExp} \text{RegExp} \rightarrow \text{RegExp} [\text{ctor}].
```

```plaintext
vars E E1 E2 : \text{RegExp}.
vars A B : \text{Alphabet}.
var S : \text{String}.
```

Equations for Derivatives

```plaintext
** Equations are used so they can be used by other modules
```

```plaintext
eq D(1, A) = 0.
ceq D(B, A) = 1 \text{ if } B = A.
ceq D(E, A) = 0 \text{ if } B /= A.
eq D(0, A) = 0.
eq D(E *, A) = D(E, A) - E *.
eq D(E_1 + E_2, A) = D(E_1, A) + D(E_2, A).
eq D(E_1 - E_2, A) = D(E_1, A) - E_2 + v(E_1) - D(E_2, A).
eq D(E, 1) = E.
```

Derivatives for checking if a String is part of a Language

```plaintext
eq Ds(E, A S) = Ds(D(E, A), S).
eq Ds(E, A) = Ds(D(E, A), 1).
eq Ds(E, 1) = v(E).
```
eq Dr(E, 0) = 0 .
113 eq Dr(E, 1) = E .
114 eq Dr(E, A) = D(E, A) .
115 eq Dr(E, (E1 + E2)) = Dr(E, E1) + Dr(E, E2) .
116 eq Dr(E, (E1 - E2)) = Dr(Dr(E, E1), E2) .
117 ceq Dr(E, (E1 *)) = E + Dr(Dr(E, E1), E1 *) if E /= Dr(E, E1) .
118 ceq Dr(E, (E1 *)) = E if E == Dr(E, E1) .
119
120 endm

*** This module is used for the creation of a deterministic finite automaton
121 *** (DFA), for a given regular expression.
122 mod Automaton is
123 protecting RegularExpression .
124 protecting Nullable .
125 protecting Derivative .
126 protecting BOOL .
127
128 *** The declaration of the DFA 'building blocks'
129 sorts State Statelist Arrow Arrowlist Automaton .
130 subsort RegExp < State .
131 subsort State < Statelist .
132 subsort Arrow < Arrowlist .
133
134 *** Operations regarding DFAs
135 op null : -> Statelist [ctor] .
137 op null : -> Arrowlist [ctor] .
138 op [-,-,] : State Alphabet State -> Arrow .
140 op (_-) : Statelist Arrowlist -> Automaton .
141 op aut : RegExp -> Automaton .
142 op ins : State Statelist -> Bool .
143 op ins : Arrow Arrowlist -> Bool .
144
145 var E : RegExp .
146 vars S S2 : State .
147 var S1 : Statelist .
148 vars T T2 : Arrow .
149 var T1 : Arrowlist .
150
151 eq aut(E) = (E | null) .
152
153 *** In: is a State or Transition part of the entire Transition or Statelist
154 eq ins(S, null) = false .
155 eq ins(S, S : S1) = true .
156 ceq ins(S, S2 : S1) = ins(S, S1) if S == S2 .
157
158 eq ins(T, null) = false .
159 eq ins(T, T : T1) = true .
160 ceq ins(T, T2 : T1) = ins(T, T1) if T == T2 .
161
162 crl [A-building1] : (S : S1 | T1) => (D(S, a) : S : S1 | [S, a, D(S,a)] : T1)
163 if ins(D(S, a), S : S1) == false .
164 crl [A-building2] : (S : S1 | T1) => (S : S1 | [S, a, D(S,a)] : T1)
165 if (ins(D(S, a), S : S1) == true) and (ins([S, a, D(S,a)], T1) == false) .
166
This module contains the checking if 2 RE accept the same language by means of creating a product automaton. This also shows the user which states are final.

```latex
mod ProductAutomaton is
  protecting RegularExpression.
  protecting Nullable.
  protecting Derivative.
  protecting BOOL.

  *** The declaration of the Product Automaton 'building blocks' ***
  sorts Pair Pairlist Transition Transitionlist ProductAutomaton.
  subsort Pair < Pairlist.
  subsort Transition < Transitionlist.

  *** The operations of the Product Automaton ***
  op empty : -> Pairlist [ctor].
  op ERROR : -> Pair.
  op ... : Pair Pairlist -> Pairlist [comm assoc id: empty].
  op {...} : RegExp RegExp RegExp -> Pair.
  op empty : -> Transitionlist [ctor].
  op [...] : Pair Alphabet Pair -> Transition.
  op ... : Transition Transitionlist -> Transitionlist [comm assoc id: empty].
  op (...) : Pairlist Transitionlist -> ProductAutomaton.
  op equal : Pair -> ProductAutomaton.
  op in : Pair Pairlist -> Bool.
  op in : Transition Transitionlist -> Bool.

  vars E1 E2 : RegExp.
  var E3 : RegExp.
  vars P Pl P2 : Pair.
  var Pl : Pairlist.
  vars T T2 : Transition.
  var Tl : Transitionlist.

  ceq equal({E1,E2,E3}) = ({E1,E2,1} | empty) if (v(E1) == v(E2)) and v(E1) == 1.
  ceq equal({E1,E2,E3}) = ({E1,E2,0} | empty) if (v(E1) == v(E2)) and v(E1) == 0.
  ceq equal({E1,E2,E3}) = (ERROR | empty) if v(E1) /= v(E2).
  eq in(P, empty) = false.
  eq in(P, P : Pl) = true.
  ceq in(P1, P2 : P1) = in(P1, P1) if P1 /= P2.
  eq in(T, empty) = false.
  eq in(T, T : Tl) = true.
  ceq in(T, T2 : Tl) = in(T, T1) if T /= T2.

  *** All rewrite laws regarding the building of the Dual DFA ***
  1) The a-derivative of the 'current' state is not yet added and will
  *** added now plus the corresponding transition ***
```

```latex
crl [B-building1] : (S ; S1 | Tl) => (D(S, b) ; S ; S1 | [S, b, D(S,b)] ; Tl)
  if ins(D(S, b), S ; S1) == false.

crl [B-building2] : (S ; S1 | Tl) => (S ; S1 | [S, b, D(S,b)] ; Tl)
  if (ins(D(S, b), S ; S1) == true) and (ins([S, b, D(S,b)], Tl) == false).
```
\[(\text{in}\{\{D(E1, a), D(E2, a), 1\}, \{E1.E2,E3\} ; P1) == \text{false}\} \text{ and} \]
\[
\text{*** both expressions are nullable, and the nullable = 1} \]
\[
((v(D(E1, a)) == v(D(E2, a))) \text{ and } (v(D(E1.a)) == 1)) .
\]

**3) The a-derivative of the 'current' state is already yet added

*** but a transition needs to be added

crl [Abuilding2] : \{\{E1.E2,E3\} ; P1 | T1} =>
\{E1.E2,E3\} ; P1 | \{\{E1.E2,E3\}, a, \{D(E1, a), D(E2, a), 1\} ; T1} if
\text{*** (check if the a-derivative is already added)}
\text{\\text{(in}\{D(E1, a), D(E2, a), 1\}, \{E1.E2,E3\} ; P1) == \text{true} \text{ and} \]
\[
\text{*** (check if the transition is already added)}
\[
\text{(in}\{\{E1.E2,E3\}, a, \{D(E1, a), D(E2, a), 1\} ; T1) == \text{false} \text{ and} \]
\[
\text{*** (both expressions are nullable, and the nullable = 1)}
\[
((v(D(E1, a)) == v(D(E2, a))) \text{ and } (v(D(E1.a)) == 1)) .
\]

**4) The a-derivative of the 'current' state is already yet added

*** but a transition needs to be added

crl [Abuilding2] : \{\{E1.E2,E3\} ; P1 | T1} =>
\{E1.E2,E3\} ; P1 | \{\{E1.E2,E3\}, a, \{D(E1, a), D(E2, a), 0\} ; T1} if
\text{*** (check if the a-derivative is not yet added)}
\text{\\text{(in}\{D(E1, a), D(E2, a), 0\}, \{E1.E2,E3\} ; P1) == \text{false} \text{ and} \]
\[
\text{*** (both expressions are nullable, and the nullable = 0)}
\[
((v(D(E1,a)) == v(D(E2,a))) \text{ and } (v(D(E1.a)) == 1)) .
\]

**5) The a-derivative of the 'current' state is not yet added and

*** will added now plus the corresponding transition

crl [Abuilding1] : \{\{E1.E2,E3\} ; P1 | T1} =>
\{D(E1, a), D(E2, a), 0\} ; \{E1.E2,E3\} ; P1 | \{\{E1.E2,E3\}, a, \{D(E1, a), D(E2, a), 0\} ; T1} if
\text{*** (check if the a-derivative is already added)}
\text{\\text{(in}\{D(E1, a), D(E2, a), 0\}, \{E1.E2,E3\} ; P1) == \text{true} \text{ and} \]
\[
\text{*** (check if the transition is already added)}
\[
\text{(in}\{\{E1.E2,E3\}, a, \{D(E1, a), D(E2, a), 0\} ; T1) == \text{false} \text{ and} \]
\[
\text{*** (both expressions are nullable, and the nullable = 0)}
\[
((v(D(E1,a)) == v(D(E2,a))) \text{ and } (v(D(E1.a)) == 1)) .
\]

**6) The b-derivative of the 'current' state is already yet added

*** but a transition needs to be added

crl [Abuilding2] : \{\{E1.E2,E3\} ; P1 | T1} =>
\{E1.E2,E3\} ; P1 | \{\{E1.E2,E3\}, b, \{D(E1, b), D(E2, b), 1\} ; T1} if
\text{*** (check if the b-derivative is not yet added)}
\text{\\text{(in}\{D(E1, b), D(E2, b), 1\}, \{E1.E2,E3\} ; P1) == \text{false} \text{ and} \]
\[
\text{*** (both expressions are nullable, and the nullable = 1)}
\[
((v(D(E1,b)) == v(D(E2,b))) \text{ and } (v(D(E1.b)) == 1)) .
\]

**7) The b-derivative of the 'current' state is not yet added and

*** will added now plus the corresponding transition

crl [Abuilding1] : \{\{E1.E2,E3\} ; P1 | T1} =>
(* This module will check if a regular language is a subset of a second regular language.

*** We check this using a product automaton based on the product automaton defined in the
*** module ProductAutomaton. Unlike the previous module this module does not show which
*** states are final.

mod Subset is
 protecting RegularExpression .
 protecting Nullable .
 protecting Derivative .
 protecting BOOL .

*** The declaration of the Product DFA 'building blocks'

sorts Pair Pairlist Transition Transitionlist SubsetAutomaton .
subsort Pair < Pairlist .
subsort Transition < Transitionlist .

*** The operations of the Product DFA

op empty : -> Pairlist [ctor] .
op _:_ : Pair Pairlist -> Pairlist [comm assoc id: empty] .
op {}{..} : RegExp RegExp -> Pair .
op empty : -> Transitionlist [ctor] .
op _:_ : Pair Alphabet Pair -> Transition .
op _:_ : Transition Transitionlist -> Transitionlist [comm assoc id: empty] .
op (._:_): Pairlist Transitionlist -> SubsetAutomaton .
op empty : Pair -> SubsetAutomaton .
op in : Pair Pairlist -> Bool .
op in : Transition Transitionlist -> Bool .

vars E1 E2 : RegExp .
vary P P1 P2 : Pair .
var P1 : Pairlist .
vary T T2 : Transition .
var T1 : Transitionlist .

(* (D(E1, b), D(E2, b), 0) : (E1, E2, E3) : P1 |}

(* (E1, E2, E3), b, (D(E1, b), D(E2, b), 0) : T1) if

(* (check if the b-derivative is not yet added)
(in (E1, E2, E3) : (P1) == false) and
(* (both expressions are nullable, and the nullable = 0)
((v(D(E1, b))) != v(D(E2, b))) and (v(D(E1, b)) != 1)) .

(* 8) The b-derivative of the 'current' state is already yet
*** added but a transition needs to be added

\(\) : (E1, E2, E3) : P1 | T1 =>

(* (check if the b-derivative is already added)
(in (E1, E2, E3) : (P1) == true) and
(* (check if the transition is already added)
(in (E1, E2, E3), b, (D(E1, b), D(E2, b), 0) : T1) == false) and
(* (both expressions are nullable, and the nullable = 0)
((v(D(E1, b))) == v(D(E2, b))) and (v(D(E1, b)) != 1)) .

crl [building2] : (E1, E2, E3) : P1 | T1 =>

(* (check if the b-derivative is already added)
(in (E1, E2, E3) : (P1) == true) and
(* (check if the transition is already added)
(in (E1, E2, E3), b, (D(E1, b), D(E2, b), 0) : T1) == false) and
(* (both expressions are nullable, and the nullable = 0)
((v(D(E1, b))) == v(D(E2, b))) and (v(D(E1, b)) != 1)) .

crl [nonequal] : (E1, E2, E3) : P1 | T1 =>

(* (check if the b-derivative is already added)
(in (E1, E2, E3) : (P1) == true) and
(* (check if the transition is already added)
(in (E1, E2, E3), b, (D(E1, b), D(E2, b), 0) : T1) == false) and
(* (both expressions are nullable, and the nullable = 0)
((v(D(E1, b))) == v(D(E2, b))) and (v(D(E1, b)) != 1)) .

crl [nonequal] : (E1, E2, E3) : P1 | T1 =>

(* (check if the b-derivative is already added)
(in (E1, E2, E3) : (P1) == true) and
(* (check if the transition is already added)
(in (E1, E2, E3), b, (D(E1, b), D(E2, b), 0) : T1) == false) and
(* (both expressions are nullable, and the nullable = 0)
((v(D(E1, b))) == v(D(E2, b))) and (v(D(E1, b)) != 1)) .

crl [nonequal] : (E1, E2, E3) : P1 | T1 =>

(* (check if the b-derivative is already added)
(in (E1, E2, E3) : (P1) == true) and
(* (check if the transition is already added)
(in (E1, E2, E3), b, (D(E1, b), D(E2, b), 0) : T1) == false) and
(* (both expressions are nullable, and the nullable = 0)
((v(D(E1, b))) == v(D(E2, b))) and (v(D(E1, b)) != 1)) .

crl [nonequal] : (E1, E2, E3) : P1 | T1 =>

(* (check if the b-derivative is already added)
(in (E1, E2, E3) : (P1) == true) and
(* (check if the transition is already added)
(in (E1, E2, E3), b, (D(E1, b), D(E2, b), 0) : T1) == false) and
(* (both expressions are nullable, and the nullable = 0)
((v(D(E1, b))) == v(D(E2, b))) and (v(D(E1, b)) != 1)) .

crl [nonequal] : (E1, E2, E3) : P1 | T1 =>

(* (check if the b-derivative is already added)
(in (E1, E2, E3) : (P1) == true) and
(* (check if the transition is already added)
(in (E1, E2, E3), b, (D(E1, b), D(E2, b), 0) : T1) == false) and
(* (both expressions are nullable, and the nullable = 0)
((v(D(E1, b))) == v(D(E2, b))) and (v(D(E1, b)) != 1)) .

crl [nonequal] : (E1, E2, E3) : P1 | T1 =>

(* (check if the b-derivative is already added)
(in (E1, E2, E3) : (P1) == true) and
(* (check if the transition is already added)
(in (E1, E2, E3), b, (D(E1, b), D(E2, b), 0) : T1) == false) and
(* (both expressions are nullable, and the nullable = 0)
((v(D(E1, b))) == v(D(E2, b))) and (v(D(E1, b)) != 1)) .

endm
ceq subset({E1,E2}) = ({E1,E2} | empty) if v(E1) == v(E2) .
ceq subset({E1,E2}) = ({E1,E2} | empty) if v(E2) == 1 and v(E1) == 0 .
ceq subset({E1,E2}) = (empty | empty) if v(E1) == 1 and v(E2) == 0 .
eq in(P, empty) = false .
eq in(P, P : P1) = true .
ceq in(P1, P2 ; P1) = in(P1, P1) if P1 /= P2 .
eq in(T, empty) = false .
eq in(T, T : T1) = true .
ceq in(T, T2 ; T1) = in(T, T1) if T /= T2 .

*** All rewrite laws regarding the building of the Subset DFA

crl [Bbuilding1] : {{E1,E2} ; P1 | T1} =>

 (D(E1, a),D(E2, a}) : {E1,E2} ; P1 | [{E1,E2}, a, {D(E1, a),D(E2, a})] ; T1 if
 (in(D(E1, a),D(E2, a}), {E1,E2} ; P1) == false) and
 (v(D(E1, a)) == v(D(E2, a))) .

crl [Bbuilding2] : {{E1,E2} ; P1 | T1} =>

 (E1,E2) ; P1 | [{E1,E2}, a, {D(E1, a),D(E2, a})] ; T1 if
 (in(D(E1, a),D(E2, a}), {E1,E2} ; P1) == true) and
 (v(D(E1, a)) == v(D(E2, a))) .

crl [Bbuilding1] : {{E1,E2} ; P1 | T1} =>

 (D(E1, b),D(E2, b}) : {E1,E2} ; P1 | [{E1,E2}, b, {D(E1, b),D(E2, b})] ; T1 if
 (in(D(E1, b),D(E2, b}), {E1,E2} ; P1) == false) and
 (v(D(E1, b)) == v(D(E2, b))) .

crl [Bbuilding2] : {{E1,E2} ; P1 | T1} =>

 (E1,E2) ; P1 | [{E1,E2}, b, {D(E1, b),D(E2, b})] ; T1 if
 (in(D(E1, b),D(E2, b}), {E1,E2} ; P1) == true) and
 (v(D(E1, b)) == v(D(E2, b))) .

crl [Bbuilding1] : {{E1,E2} ; P1 | T1} =>

 (D(E1, b),D(E2, b}) : {E1,E2} ; P1 | [{E1,E2}, b, {D(E1, b),D(E2, b})] ; T1 if
 (in(D(E1, b),D(E2, b}), {E1,E2} ; P1) == false) and
 (v(D(E2, b)) == 1) and (v(D(E1, b)) == 0) .

crl [Bbuilding2] : {{E1,E2} ; P1 | T1} =>

 (E1,E2) ; P1 | [{E1,E2}, b, {D(E1, b),D(E2, b})] ; T1 if
 (in(D(E1, b),D(E2, b}), {E1,E2} ; P1) == true) and
 (v(D(E2, b)) == 1) and (v(D(E1, b)) == 0) .

[crl nonequal] : {{E1,E2} ; P1 | T1} => (empty | empty) if
 (v(D(E1, a)) == 1) and (v(D(E2, a)) == 0) .

crl [nonequal] : {{E1,E2} ; P1 | T1} => (empty | empty) if
 (v(D(E1, b)) == 1) and (v(D(E2, b)) == 0) .
endm

*** The module to which all previous modules have been working towards.
*** This module will check if 2 REs accept the same languages. While this
*** module is also based upon the creation of a product automaton. It used
*** transitivity, reflexivity and symmetry to check more efficiently.
*** The final result will not be a full functional product automaton.
*** To be more efficient in space transitions are no longer required, these
*** can be derived from the derivatives of a state.

mod Equivalence is
 protecting RegularExpression .
 protecting Nullable .
 protecting Derivative .
 protecting BOOL .

*** The declaration of the Dual DFA 'building blocks'
sorts Pair Pairlist Transition Transitionlist ProductAutomaton .
subsort Pair < Pairlist .
subsort Transition < Transitionlist .

*** The operations of the Dual DFA
op empty : -> Pairlist [ctor] .
op TRUE : -> Pair .
op FALSE : -> Pair .
op ERROR : -> Pair [ctor] .
op .. : Pair Pairlist -> Pairlist [comm assoc id: empty] .
op {...} : RegExp RegExp -> Pair .
op empty : -> Transitionlist [ctor] .
op .. : Transition Transitionlist -> Transitionlist [comm assoc id: empty] .
op (-..) : Pairlist Transitionlist -> ProductAutomaton .
op equal : Pair -> ProductAutomaton .
op in : Pair Pairlist -> Bool .
op closure : Pair Pairlist Pairlist -> Bool .

vars E1 E2 E3 E4 E5 E6 : RegExp .
vary P P1 P2 ; Pair .
var P1 AltP1 : Pairlist .
var T1 : Transitionlist .

c eq[equal](E1,E2) = (E1,E2) | empty if v(E1) == v(E2) .
c eq[equal](E1,E2) = (FALSE | empty if v(E1) /= v(E2) .

eq in(P, empty) = false .
eq in(P, P : P1) = true .
c eq[in](P1, P2 ; P1) = in(P1, P1) if P1 /= P2 .

*** I use the fact that Maude works form top to bottom.
*** By putting the return true operator at the top.
c eq[closure](E1,E2), P1, {E3,E4} : AltP1) =
 true if in({E1,E2}, {E3,E4} ; AltP1) == true .
c eq[closure]((E1,E2), P1, AltP1) =
 closure({E1,E2}, P1, {E1,E1} ; AltP1) if in({E1,E1}, AltP1) == false .
c eq[closure]((E1,E2), {E3,E4} ; P1, {E3,E4} ; AltP1) =
 closure({E1,E2}, {E3,E4} ; P1, {E3,E4} ; AltP1) if
 in({E3,E4}, {E3,E5} ; AltP1) == false .
c eq[closure]((E1,E2), {E3,E4} ; P1, {E5,E4} ; AltP1) =
 closure({E1,E2}, {E3,E4} ; P1, {E3,E5} ; {E5,E4} ; AltP1) if
in({E3,E4}, {E5,E4} : AltPl) == false.

closure({E1,E2}, P1, {E3,E4} : E5, E6 : AltPl) =
closure({E1,E2}, P1, {E3,E4} : AltPl) =
in({E4,E3}, {E3,E4} : AltPl) == false.
closure({E1,E2}, P1, {E3,E4} : {E4,E5} : AltPl) =
in({E3,E5}, {E3,E4} : {E4,E5} : AltPl) == false.
closure({E1,E2}, P1, {E3,E4} : AltPl) == false if
in({E1,E2}, AltPl) == false.

*** All rewrite laws regarding the building of the Dual DFA

**1) Add the \(a \)-derivative of \(\{E1,E2\} \) to the list of states, if all conditions are met.

\[
\text{crl} \begin{array}{l} \text{[Abuilding1]} : \{\{E1,E2\} : P1 \mid T1 \Rightarrow (\{D(E1, a) , D(E2, a)\} : \{E1,E2\} : P1 \mid T1) if \v(D(E1, a)) = \v(D(E2, a)) \end{array}
\]

\text{and} *** (Are both REs final or non-final)

\((D(E1. a) =/\ D(E2. a)) \) and ***([Reflexivity])

*(Check if the pair is in the symmetric, transitive and \(\vdash \)-closure)

(\text{closure}({D(E1, a), D(E2, a)}), \{E1,E2\} : P1, \text{empty}) == false).

**2) Add the \(b \)-derivative of \(\{E1,E2\} \) to the list of states, if all conditions are met.

\[
\text{crl} \begin{array}{l} \text{[Bbuilding1]} : \{\{E1,E2\} : P1 \mid T1 \Rightarrow (\{D(E1, b) , D(E2, b)\} : \{E1,E2\} : P1 \mid T1) if \v(D(E1, b)) = \v(D(E2, b)) \end{array}
\]

\text{and} *** (Are both REs final or non-final)

(\text{closure}({D(E1, b), D(E2, b)}), \{E1,E2\} : P1, \text{empty}) == false).

\[
\text{crl} \begin{array}{l} \text{[nonequal]} : \{\{E1,E2\} : P1 \mid T1 \Rightarrow (\text{empty} \mid T1) if \v(D(E1, a)) =/\ v(D(E2, a)) \end{array}
\]

\text{crl} \begin{array}{l} \text{[nonequal]} : \{\{E1,E2\} : P1 \mid T1 \Rightarrow (\text{empty} \mid T1) if \v(D(E1, b)) =/\ v(D(E2, b)) \end{array}
\]

endm
References

