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Abstract. The Coverability Tree is a useful tool for the behavioural
analysis of Petri nets. A powerful extension of Petri nets are inhibitor
arcs, but these introduce non-monotonicity. Because of this, the classical
construction for a Coverability Tree needs to be modified. In this paper
it is investigated which constructions are available for Petri nets with
inhibitor arcs. For the most obvious modification, it was known that it
may not always terminate for Petri nets with 3 or more inhibitor places.
Here it is proved that it also does not always terminate in case of 2
inhibitor places. Also a comprehensive overview is presented of what is
known concerning the reachability problem and the coverability problem
for both Petri nets with and without inhibitor arcs, under the sequential
and the (a priori) step semantics. To do this two constructions from
[10] are reconsidered. First the construction to reduce step to sequential
semantics for Petri nets with a single inhibitor arc is discussed. And next
a general construction to reduce Petri nets with weighted (inhibitor) arcs
to Petri nets with only unweighted (inhibitor) arcs.

1 Introduction

Petri nets offer a graphical notation for the description of distributed systems.
Unlike other modelling languages, such as UML([5]) activity diagrams, Petri nets
have an exact mathematical definition, and has a range of mathematical tools
for analysis. One of these tools, the Coverability Tree([9]), will be investigated.
In particular for two subclasses of Petri nets, PT-nets and PTI-nets. Where PT-
nets stands for Place/Transition-net, and a PTI-net is a PT-net with inhibitor
arcs.

It is well-known that for all PT-nets a finite coverability tree can be con-
structed([4]). However, in general for PTI-nets, the classical approach will not
work ([3]). Modified constructions for (subclasses of) PTI-nets are available([10,
3]). For one of these constructions, the Modified Coverability Tree from [10], it
is known that it does not terminate for all PTI-nets with three inhibitor places.
However, it does terminate for all PTI-nets with one inhibitor place. The main
goal of this paper was to find if this algorithm terminates for PTI-nets with



exactly two inhibitor places. In Section 6 it is proven that there exists such a
PTI-net for which the modified CTC does not terminate.

After a preliminary section, the relation between sequential and step seman-
tics in PTI-nets with a single inhibitor arc will be presented, using a construction
to show that reachability can be reduced to fs-reachability. In the next section
another construction will prove that simplicity can be considered as a normal
form of PTI-nets. In Section 5 the Coverability Tree Construction for Petri nets
will be investigated, in particular how it will be affected under the different se-
mantics, i.e. step or sequential. After this section, the influence of inhibitor arcs
will be analysed, including an overview of earlier decidability results, depend-
ing on certain properties, such as the amount of inhibitor arcs/places and the
semantics used.

2 Definitions

2.1 Multisets

A multiset! (over a set X) is a function p : X — N, and an eztended multiset
(over X) is a function p : X — NU {w}. Here N is the set of natural numbers,
and w being the first infinite ordinal. We assume that w+w = w,w —w = w,n <
wn—w=00-w=0andw+n=w-—n=%k-w=uw, where n is any natural
number and k any positive natural number. A multiset may always be considered
as an extended multiset. In this paper, X will always be a finite set. We denote
x € pif p(x) > 0. For two extended multisets p and p’ over X, we denote p < p/
(or ' covers p) if p(z) < p/(z) for all x € X. There is also the multiset 0 and
the extended multiset €. These are defined as follows: 0(z) = 0 and Q(z) = w
for all x.

2.2 PT-nets

A Place/Transition-net, in short PT-net is a tuple N' = (P, T, W, M) such that
P and T are disjoint finite sets of places and transitions, respectively, and W :
(T'x P)U (P xT) — N is the weight function of N'. M is a multiset over P and
denotes the initial marking of the net. In diagrams, places are drawn as circles
and transitions as rectangles. If W (z,y) > 1 for some (z,y) € (T x P)U(P xT),
then (x,y) is an arc leading from z to y. As usual, arcs are annotated with their
weight if this is 2 or more. A double headed arrow with weight k& between p and
t indicates that W(p,t) = W (t,p) = k. We assume that, for every ¢t € T , there
is a place p such that W(p,t) > 1 or W(¢t,p) > 1 (i.e., transitions are never
isolated).

A marking of N is a multiset of places. Following standard terminology,
given a marking M of A/ and a place p € P, we say that M (p) is the number of
tokens in p. In diagrams, a token is drawn as a small black dot. Multiple tokens
in a place can be represented by a number. For a transition ¢, *¢# denotes the

! Also known as a bag [16].



multiset of places given by *#(p) def W (p,t) for all places p. And likewise t* is

t*(p) def W (t,p) for all places p.

Transitions represent actions which may occur at a given marking and then
lead to a new marking. First, we discuss the sequential semantics. Formally,
t is enabled at M, denoted by M]Jt), if *t < M. If t is enabled at M, then
it can be fired leading to the marking M’ = M — *t + t*. This can also be
written as M[t)M’. A firing sequence from a marking M to marking M’ in
N is a possibly empty sequence of transitions o = ¢;...t, such that M =
Mo[t1)My ... My [tn) M, = M.

Besides sequentially, the semantics of nets can also be defined in terms
of concurrently occuring transitions: step semantics. A step of a PT-net N'=
(P, T,W, M) is a non-empty multiset of transitions, U : T — N. A step U is
enabled, at a marking M if *U < M. Thus in order for U to be enabled at M,
for each place p, the number of tokens in p under M should at least be equal to
the accumulated number of tokens needed as input to each of the transitions in
U, respecting their multiplicities in U. If U is enabled, it can be executed leading
to the marking M’ = M — *U + U*®, denoted M[U)M'.

2.3 PTI-nets

A PTT-net is a PT-net together with a (possibly empty) set of weighted inhibitor
arcs leading from places to transitions. A PTI-net A is specified as a tuple
(P, T,W,I, M) such that (P,T,W) is a net (the underlying net of N') and I
— the inhibitor mapping — is an extended multiset over P x T. My is again
the initial marking. If I(p,t) = k € N, then p is an inhibitor place of ¢ meaning
intuitively that ¢ can only be executed if p does not contain more than k tokens;
in particular, if & = 0 then p must be empty. I(p,t) = w means that ¢ is not
inhibited by the presence of tokens in p. If I always returns 0 or w, then we are
dealing with a PTI-net with unweighted inhibitor arcs, which can only be used to
test whether a place is empty or not. In diagrams, inhibitor arcs have small circles
as arrowheads. As with the standard PT-net arcs, inhibitor arcs are annotated
by their weights. In this case, the weight 0 is not shown, and if I(p,t) = w,
then there is no inhibitor arc at all drawn between p and t. The set of inhibitor
places of transition ¢ is given by °¢. Under the sequential semantics for PT-nets,
a transition ¢ is enabled at M, again denoted by M[t), if *¢t < M < °t. Thus, if ¢
is enabled at M, then it can be fired leading to the marking M’ = M — *t + ¢°.
This can again be written as M[t)M’. Also for PTI-nets there are semantics in
terms of concurrently occuring transitions. A step U is a priori enabled® at a
marking M of N if *U < M < °U and again, if U is enabled, it can be executed
leading to the marking M’ = M — *U + U*, denoted M[U)M'.

% Besides a priori, there is also a posteriori step-semantics(i.e. used in [3]). Reachability
for this coincides with fs-reachability. Lastly there is also an intermediate variation,
provided in [19], which is also more restricted than a priori. For a more detailed
discussion on semantics in inhibitor nets, see [8]
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Fig.1. A PTI-net N

2.4 Reachability and coverability

In the following definitions, keep in mind that a PT-net is a PTI-net with zero
inhibitor places, thus these definitions also cover PT-nets.

— A marking M is said to be reachable in a PTI-net A/ with initial marking
My, if and only if, there is a step sequence o, such that My[o)M. Hence
the reachability problem is the problem of deciding, given a marking M in
a PTI-net N, is there a step sequence o, such that My[o)M from initial
marking M.

— A marking M is said to be fs-reachable in a PTI-net N with initial marking
Moy, if and only if, there is a firing sequence o, such that My[o) M. Hence
the fs-reachability problem is the problem of deciding, given a marking M
in a PTT-net A, is there a firing sequence o, such that My[o)M from initial
marking M.

— A marking M is said to be coverable in a PTT-net N with initial marking Mo,
if and only if, there is a step sequence o, such that My[o)M’, and M’ > M.
Hence the coverability problem is the problem of deciding, given a marking
M in a PTI-net N, is there a step sequence o, such that My[o)M’ from
initial marking My such that M’ > M.

— A marking M is said to be fs-coverable in a PTI-net N with initial marking
My, if and only if, there is a firing sequence o, such that My[o)M’, and
M’ > M. Hence the coverability problem is the problem of deciding, given a
marking M in a PTT-net N, is there a firing sequence ¢, such that My[o) M’
from initial marking My such that M’ > M.

3 Step and sequential semantics with a single inhibitor
arc

In this section we take a closer look at one of the constructions in [10]. We will
show that the (step-)reachability problem can be reduced to the fs-reachability
problem in the case of a unique unweighted inhibitor arc. This means that for
each PTT-net N under the (a priori) step semantics there is a corresponding PTI-
net A" under the sequential semantics, both with a unique unweighted inhibitor
arc and a relation p between the reachable markings Rgcp(N) and Rys(N7).
This means that for all multisets M : P — N:

M € Rytep(N) & p(M) € Rys(N7).



We will first identify three cases. For the third of these cases a construction
will be provided. An example of such a construction can be seen in Figure 2 and
Figure 3.
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Fig. 2. Example net N/

3.1 Situation

Consider PTI-net N with a single unweighted inhibitor arc, from transition ;,,
to place p;nn. Transition ¢;,, has, like all other transitions, at least one input
place or one output place (transitions are never isolated). The following cases
concerning p;nn and t;,, are possible:

— Pinh € .tinh
Thus transition t;,, will never be enabled, because either t;,, will have no
input, or it will be inhibited by p;nn. As transition t¢;,, will never fire, it
behaves as a PT-net, from this it follows that N = N’ and Rgep(N) =
Rys(N”) and thus p is the identity.

— Pinh ¢ .tinh and Pinh ¢ tinh.
Assume M[U) for some marking M and step U. Then there are two cases,
either M (pinn) > 0 or M(pinn) = 0. In the first case, transition t;,; is
inhibited, so U(t;nn) = 0. When p;,;, is empty however, it may happen that
Pinnk gets filled by the execution of one or more transitions (different from
tink) in U. In that case, U can be sequentialised by executing all firings of
tinn first. Therefor again, N = N and Rstep(N) = Rys(N'). And again p is
the identity.

— Dinh ¢ .tinh and Pinh € tinh.
Only in this case reachability and fs-reachability are not always the same.
See, e.g. Figure 1. In this PTI-Net, under the sequential semantics, the only
reachable markings are M (p;nn) = 0 and M (p;nn) = 1. But, when using a
priori step-semantics, M (p;np) can be any integer > 1. However, using the
construction from the next subsection, it can be seen that reachability can
still be reduced to fs-reachability.
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Fig. 3. Constructed net N’



3.2 Construction

For the construction, we start with a PTI-net N' = (P, T, W, I, My).Again p;np,
is the only inhibitor place and (pinn, tinn) the only inhibitor arc. We assume
Dinh & tinn and pipp € ting®. Creating N' = (P, T/, W', I', M{) is as follows:

- P’ is defined by retaining all original places and adding three new places:
DPmuters Poutes a0d i v Also for every output place poy: of tinn (except
Dinh) & CODY Pl 18 created.

- Also T" is defined by retaining all original places and adding three new
transitions: u, w and t},,. Also for every output place poyus of tinn (except

pink) an additional transition ¢,,,, is created. From now on when referring
t0 Pouts Phys and t, ,, we refer to the set of these places and transitions.

- The inhibitor mapping I’ remains the same as I. No additional inhibitor arcs
are added.

- In W', all original arcs from W are remain, except for those from t;,; to
Pout (note that this does not include p;yp). These are redirected to pl,,;.
These places have an outgoing arc to their respective transition in ¢
which in turn have outgoing arc to their respective place in pyy¢.

The transition ¢/, is in many ways a copy of t;,p, it is connected to the
same input places with the same weight. The output is the same too (thus
Pl and pinn), but as mentioned before, it is not inhibited by pipp.
The mutex places are connected as follows: pnuter has an outgoing arc to
tinn and double arrows to all other transitions that were in T'. It also has an
incoming arc from the new transition w. The place p, ;. has an incoming
arc from t;,5,, a double arrow to ¢/, , , and an outgoing arc to u. Lastly p!/, ;...
this one has an incoming arc from u, double arrows to all transitions in ¢,,_,
and an outgoing arc to w.

- The initial marking M| is the same as My for all places in P. All other (new)

places are empty, except for puter, Which has a single token.

Pout?

t

Given a M[UYM' in N, with t;,, € U(that is, U(;np) > 0), the (simultaneous)
firing of t;,, can always be simulated in N’ by first firing ¢;,,5, once, this emp-
ties Prmutesr, thus disabling all original transitions including t;np. Now pl. ... is
marked and hence u is enabled. Moreover, if U(t;,,) > 1, then also ¢, has
become enabled. After ¢/, , has fired U(t;,5) — 1 times, u fires, emptying p),;ex
and marking p/, ;.- Then the various transitions t,,,, can fire, so that the set
of places pou: can serve as input for the original transitions again. Lastly, w is
fired, filling p!,,. e, again and giving control back to the original transitions, so
that all transitions ¢t € U except t;,, can fire.

Now a marking similar to that of the original net, using a priori step sequence
semantics, is reached. This new marking is defined by the relation p. For every
original marking M, there is a new marking p(M), where M’(P’) = M(P) for all
places PN P'; M'(Dmutes) = 1 and all other places are zero. Thus M{ = p(Mp).

So in short M[U)M' = p(M)[tinnt inn"uty,,, Y wt*)p(M’). With z being
U(tinn) — 1, y the number of tokens in the set of places t and z the number
of transitions t € U except tinh.-

Pout



Now for every firing sequence o, such that p(M;)[e)p(M;+1) in N7, there is
a simulating step sequence in N. If o is a single transition (not ¢;nh) then this
can be simulated by firing the corresponding transition in N. If ¢, is fired,
Pmuter 1S emptied, and thus the current marking is not defined by p. By firing
the following sequence: tmht'mhwutpwtywtz, N can fire t;,,*1" to simulate this.
Note that in N it is not required to empty the set of place pl,,,, (by firing ¢, ., y
times). However as p!,,, are new places, no marking in p will be reached as long as
they are not empty. Thus p(M;)[tinnt’ inn“uwt?ootinnt’ inn uty,,, Y wt?) p(Mit1),
where at the first part ¢, ,, is not fired at all, followed by a firing sequence oy
(which can include ¢;,,;, again, but p, , is not emptied) finished by another firing
of t;nn, where p,,, is finally emptied.

4 Unweighted PTI-net

A PTI-net is said to be unweighted if all inhibitor arcs and ordinary arcs are
unweighted. The following construction shows that for each PTI-net, an un-
weighted PTI-net with equivalent reachability and boundedness problems can
be constructed. Because of this result, unweightedness can be considered as a
normal form of PTI-nets when considering reachability and boundedness. A
similar construction was proposed in [10]. The differences between these two
constructions will be discussed in more detail at Section 4.2.

4.1 Construction

Let N= (P, T,W, I, My) be a PTI-net. We can assume that for every place p,
there is at most one transition ¢ connected to it by an inhibitor arc 3. The con-
struction consists of two steps. The first removes the weigths from the inhibitor
arcs, and the second removes the weights from all other arcs.

4.1.1 Unweighted inhibitor arcs The first step removes the weight of the
inhibitor arcs, resulting in the intermediate net N7 = (P, T, W', I', M{). For
each inhibitor place ¢, we let inh, be the weight of the arc attached to it.

- The places P’ are copied from P, and for each inhibitor place ¢, two addi-
tional places are added: ¢; and g¢s.

- Also for T” all transitions are copied from T, and for each inhibitor place q,
two additional transitions, w, and u, are added.

- In W, all arcs between places ¢ and transitions ¢ remain the same, except
if there is an inhibitor arc between ¢ and t. If this is the case, all (non-
inhibiting) arcs are removed between ¢ and ¢, and these are redirected to ¢o
instead. They are also connected in the opposite direction, but still with the

3 We can always make enough copies of a place retaining the standard connectivity
and distribute the inhibitor arcs among them. As a result the number of inhibitor
arcs remain the same, but the number of inhibitor places increases.

10



same weight to ¢;.
The two new transitions for each inhibitor place ¢ are connected with un-
weigthed arcs in the following way: w, has incoming arcs from ¢ and ¢, and
an outgoing arc to ga. The other transition u, has an incoming arc from g,
and outgoing arcs to ¢; and gq.

- To get I’, all inhibitor arcs from I become unweighted. Thus if I(p,t) # w
then I'(p,t) =0, else I'(p, t) = w.

- The initial marking M} is equal to My for all places that were in P. Every
new place q; gets inhg tokens, and every place go remains empty.

Due to how the assistent places g; and g2 are connected, the sum of tokens in ¢;
and g will always be inh,. This means that a maximum of inh, tokens can be
removed from ¢, in order to allow ¢ to fire. In the case that a place ¢ is both in
*t and °t, then the regular (possibly weighted) arc from ¢ to ¢ is redirected to be
an arc from gy to t. If W(q,t) > I(p,t), then ¢t will still never be enabled, as go
will never contain more than I(p,t) tokens. Otherwise, if W(q,t) < I(p,t), then
t can still fire if ¢ does not overflow. An example of this can be seen in Figure 4.

In any net AV, the firing of a step U can be simulated in A”’. As only transition
t is changed we will look at a step in the form of M [t)M’. This can be simulated
by a firing sequence p(M)[wq"tugs¥)p(M’). Where z = M(q)), y =  — W(ga, t)
and p is the relation between the reachable markings in A" and A/’. This relation
is defined as follows:

p(M(p)) = M (p) for all p € P
p(M(g1)) = inh, for all inhibitor places ¢

p(M(g2)) =0

This means that first wq is fired until ¢ is empty and if ¢ was enabled in N, ¢o
will hold sufficient tokens to fire ¢. After firing ¢, transition u, is fired until g5 is
empty again, and the new marking will be in p(M) again.

For the other way around, any step sequence p(M)[U)p(M') in N” has a

corresponding step sequence M[UYM’ in N. A step sequence U is equal to U
with all occurences of transitions w, and ug removed.

4.1.2 Unweighted arcs The second step removes the weights from the ordi-
nary arcs, resulting in the unweighted PTI-net N"'= (P, 7", W" 1", M{/). For
this construction it is required that all inhibitor arcs are unweighted and all in-
hibitor places inhibit at most one transition. These restrictions can be achieved
by using the previous construction.

The second step is essentially the construction from [16], originally proposed
in [6]. We define maz, = max({W'(p,t)[t € T'} U{W'(t,p)|t € T'}). Now N’
is transformed into N/ by transforming each place p into a ring of max,, places
named p1, P2, ... Pmaz, (With transitions connecting neighbouring places). Each
weighted arc, with weight w between transition ¢t and place p can be represented
by w unweighted arcs connecting ¢ with individual places p; . ..p, from the ring
of places representing p. Initially, all tokens are in p;. Also each inhibitor arc,

11
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Fig. 4. From N to N’ with I(g,t) =5 and W(q,t) = 3 (fragment)

between place p and transition t, is represented by an inhibitor arc from every
place in the ring of places representing p to transition ¢. An example of a resulting
net A" is shown in Figure 5. We already showed that N is equivalent with N”.
So now we will show that A/ and A/ are equivalent. Now in any A, the firing
of a transition ¢ with M[t)M’ can be simulated in N/ as follows: If one or more
places ¢ inhibit ¢, then first all tokens are moved to place g. Then wy, is fired
untill this place ¢ is empty. After that, for every input place go from N’, the
tokens are distributed over the ring of places representing ¢o in N/, enabling ¢.
After t fires, all tokens are moved to ¢ again.

In any net N’, the firing of a step U can be simulated in N’. As only
transition ¢ is changed compared to the construction from [16] we will look
at a step in the form of M[t)M’. This can be simulated by a firing sequence
P(M) [ty " wg g, *tty, "tg, “ug?)p(M'). Where ¢,” is the moving of all tokens to g,
x = M(q)), t4,” moves the tokens around in the circle representing ¢, t,,"” moves
them back to ga, t4," does the same for ¢; and lastly u,Y empties ¢ again. Here
p is the relation between the reachable markings in N’ and N””. This relation is
defined as follows:

p(M(p)) = M(p) for all p € P’

p(M(q1)) = inhy for all inhibitor places ¢
p(M(gqz)) =0

All other new places contain zero tokens too.

Here too we look at the other way around, any step sequence p(M)[U)p(M’)
in A" has a corresponding step sequence M[U)M’ in N”. A step sequence U is
equal to U with the firing of all transitions that are added in the rings of places

excluded.

12






4.2 Discussion

In the second step of the construction, the result of the first step was taken as
a prerequisite. This was needed, because each inhibitor place is represented by
multiple new places. If the weights on the inhibitor arcs remained the same,
these could be ’fooled” by spreading the tokens, and thus staying below the
thesholds of the inhibitor arcs. It may be interesting to find a construction that
removes the weights from normal arcs, but keeps the inhibitor arcs untouched.
Another weakness of the constructions is the increase of inhibitor places. In the
first construction this is done by demanding that every place has at most one
inhibitor arc. And in the second step this is done because every inhibitor place
is being represented by a ring of (inhibitor) places.

When comparing the results as in example in Figure 6 and Figure 5 is the size
in number of places and transitions. The new construction creates less additional
transitions. Another difference is the intermediate net. Opposed to the original
construction, the new construction its intermediate net remains equivalent. This
means that the construction can not only be used to construct a unweighted
PTI-net, but also to construct a PTI-net with only unweighted inhibitor arcs.
Thus making analysis simpler, yet keeping the advantage of readability by using
weighted normal arcs.

5 Coverability tree constructions

5.1 Coverability tree

A coverability tree is a tree representation of all possible firing sequences and
markings in a PT-net. A node represents a set of markings, while an arc rep-
resents the firing of a transition. An arc labeled ¢ from node v to node w, also
denoted as v —» w, means that ¢ can be fired in v, which results in marking
w. It was originally introduced in [9], under the name of reachability tree, to be
used with Vector Addition Systems, and also proved to be useful for PT-nets[4].
From this tree certain useful properties can be derived [15]:

- A PT-net is bounded if and only if w does not appear in node.

- A PT-net is k-bounded if and only if numbers less than or equal to k appear
in any node. (Safe if k =1)

- A transition in a PT-net is dead if and only if it does not appear in any arc
of the tree.

- If marking M (a multiset) is reachable from the initial marking, then there
exists a node with label M’ that covers M.

- If the PT-net is bounded, the coverability tree coincides with the reachability
tree as it contains all possible markings.

5.2 CTC for PT-nets

The algorithm to construct a coverability tree for PT-nets under sequential se-
mantics is shown in Algorithm 1, and is based on the Karp-Miller construction

14
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from [9]. The construction starts with a single node vg, corresponding to the
initial marking. Then, for each transition that is enabled, an arc and a new
node representing the resulting marking is added. When this is repeated for
each node, it may lead to an infinite tree, therefor some boundaries are needed.
First, there can be nodes with markings that correspond with markings appear-
ing earlier in the tree. The successors of this node have already been considered,
so it does not need to be done again. In the algorithm this is done in the line:
if p(v) & pu(V\unprocessed).

For nets with unbounded places, another ‘trick’ is needed. If the marking rep-
resented by the new node M covers an ancestor node M’, then each M(p) is
replaced by w if M'(p) < M (p).

Algorithm 1: Coverability Tree Construction. Generates a coverability
tree of a PT net N'= (P, T, W, M)

CT = (V, A, u,v0) where V. ={vo}, A =0 and p(vo) = Mo
unprocessed = {vo}
while unprocessed # () do

let v € unprocessed

if p(v) € w(V\unprocessed) then
foreach p(v)[t)M do
V=Vu{w}and A=AU{v - w}
and unprocessed = unprocessed U {w}
if there is u such that uw~» sv and p(u) < M then

w(w)(p) = (if p(u)(p) < M(p) then w else M(p))
else

mw(w) = M
unprocessed = unprocessed\{v}

5.3 CTC for PTI-nets

When applying this algorithm to PTI-nets, the main problem one encounters is
the non-monotonicity. Due to this, the algorithm can produce w’s for bounded
places, which invalidates most of the useful properties of the coverability tree,
mentioned in Section 5.1. In fact, the tree may contain nodes that are not reach-
able in the actual net. An example is Figure 7(a), which is clearly bounded, but
for which the CTC would produce w’s. To strengthen the condition to generate
w-components, it is suggested in [10] to modify the algorithm to Algorithm 2.
The new condition makes sure that no inhibitor arc features were used along
a path where the number of tokens has grown. As in [10] we will refer to this
algorithm from now on as the modified CTC. The results of this modification
will be discussed in Section 7.
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Algorithm 2: Modified CTC. Generates a CT of a PTI net N=
(P7 T7 W Iv MO)

CT = (V, A, u,v0) where V = {vo}, A =0 and p(vo) = Moy

unprocessed = {vg}

while unprocessed # () do
let v € unprocessed

if p(v) & p(V\unprocessed) then
foreach p(v)[t)M do
V=Vu{w}and A=AU{v - w}
and unprocessed = unprocessed U {w}
if there is u such that u~ v and p(u) < M and such that
w(u)(p) < M(p) implies that °t'(p) = w, for all transitions t' in ot *
then
u(w)(p) = (if p(u)(p) < M(p) then w else M(p))
else
mw(w) = M
unprocessed = unprocessed\{v}

1
® °
2 2
c a c a
Q o
3 2 3 D 2
2 b b
(a) PTI-net for which the CTC incor- (b) PTI-net for which the Modified CTC
rectly produces w-components. does not terminate.

Fig. 7. PTI-nets with three inhibitor places.

a b c a a b
® ® ® ® ® ®

(1,0,0) (0,1,0) (0,0,1) (2,0,0) (1,1,0) (0,2,0)

Fig. 8. First six nodes of the (infinite) CT of Figure 7(b) produced by Algorithm 2.
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5.4 Step CTC

In [10] another modification of the CTC was introduced: the Step Coverability
Tree Construction(SCTC). This algorithm is shown in Algorithm 3. It generates
a CT for PT-nets under step semantics. It is similar to Algorithm 1, however as
the set of enabled steps can be infinite, it uses select(.), to choose a representative
subset. Moreover extended markings are compared with the  relation, instead
of <. Both select and C need to be specified, depending on the subclass of
PT(I)-nets that is investigated. In [11] this algorithm is investigated further.

Algorithm 3: Algorithm generating a SCT of a PTT net
SCT = (V, A, u,v0) where V = {vo}, A =0 and pu(vo) = Mo
unprocessed = {vg}

while unprocessed # () do
let v € unprocessed

if p(v) € w(V\unprocessed) then
foreach p(v)[U)M with U € select(p(v)) do
V=Vuw{w} andA:AU{ULw}
and unprocessed = unprocessed U {w}
if there is u such that u~ v and p(u) C M then
u(w)(p) = (if p(u)(p) < M(p) then w else M(p))
else
mw(w) = M
unprocessed = unprocessed\{v}

6 Modified CTC and two inhibitor places

In [10] it was found that Algorithm 2 would not always terminate for PTI-nets
with three inhibitor places. An example of such a net is in Figure 7(b). The initial
goal for this article was to find out if Algorithm 2 would always terminate for
PTI-nets with two inhibitor places. In the next section the process of constructing
a counterexample will be shown. After that the actual counterexample will be
presented.

6.1 Constructing a counterexample

Beforehand, it is useful to identify the properties of the net that helped us
construct the counterexample. To be a good counterexample, a net needs to
comply to at least the following properties:

- The net needs at least one unbounded inhibitor place.
Motivation: Algorithm 2 only differs from Algorithm 1 for inhibitor places.
This means that for bounded inhibitor places, the algorithm will terminate
under the same conditions as it would for Algorithm 1.
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- The two inhibitor places need to grow simultaneously.
This follows from the proof in [10] for PTI-nets with one inhibitor place.
In short, if they would not grow simultaneously, one of the inhibitor places
would generate an w-component. The remainder of the construction would
regard the net as a PTI-net with a single inhibitor place, and terminate.

6.2 A counterexample

Our counterexample will be Figure 9. We will first prove that this net is in-
deed unbounded. Standard techniques will not work for this, because in general
boundedness is undecidable for PTI-nets with two inhibitor places. After this,
we will show that the Modified CTC will not terminate for this net.

Proposition 1. There is a PTI-net with 2 inhibitor places for which the Mod-
ified CTC will never terminate.

Proof. Consider the PTI-net in Figure 9. This net can execute exactly one infinite
sequence of transitions o = ggo10 . .., where o; = a® ¢b*'d for every i > 0. For
any such a o;, the firing of transitions a, ¢ and d does not change the total
amount of tokens. The firing of transition b does change the total amount of
tokens, in fact it doubles it by taking tokens from place 2, and placing twice
that amount in place 1. In 0,4 all tokens from place 1 are moved to place 2
again, therefor both place 1 and place 2 are unbounded, and thus the net is
unbounded.

Now we will show that the Modified CTC will not terminate. In Figure 10,
a part of the execution of the PTI-net from Figure 9 is shown. It starts with a
marking of x tokens in place 1, and one token in place 3 (x € N and = > 0).
There are three nodes covering ancestor nodes. The first node, (z, 0, 1, 0), is being
covered by the node (2z,0,1,0) and the node (2z — k,k,1,0) with 0 < k < =.
Between these nodes, both transition ¢ and d fire. As both transition ¢ and d are
inhibited at the second node, the line marked with an * in Algorithm 2 is false,
and there will be no w produced for this node. The second node, (x —i,4,1,0) is
being covered by the node,(2z — k, k, 1,0). Between these nodes, both transition
c and d fire. As both transition ¢ and d are inhibited at the second node, the line
marked with an  in Algorithm 2 is false, and there will be no w produced for this
node. The third node, (0,z,1,0), is being covered by the node (2z — k, k, 1,0)
with < k < 2z and the node (0, 2x,1,0). Between these nodes, both transition
c and d fire. As both transition ¢ and d are inhibited at the fifth node, the line
marked with an * in Algorithm 2 is false, and there will be no w produced for
this node.

The ninth node is in fact a repetition of the third node, as 2z € N and
2z > 0, 2x can be replaced by x again. Thus the possible coverings will continue
like this, with transitions ¢ and d being fired between any two <-comparable
markings. In our PTI-net in Figure 9, = is set equal to 1, as 1 € N and 1 > 0,
the Modified CTC will never generate any w components in this net, and thus
never terminates. a
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b

Fig. 9. A PTI-net with 2 inhibitor places for which the Modified CTC does not termi-

nate.

i X a (z —1i) X a c i X b (x —j) xXb

(x,0,1,0) (x —1i,4,1,0) (0,x,1,0) (0,x,0,1) (24,2 — 4,0,1)

ékxa (2z — k) X q,
OO

(2,0,1,0) (2@ — k,k,1,0) (0,2z,1,0)

Fig. 10. Execution of the PTI-net in Figure 9. With 0 < i < x and 0 < j < = and
0< k<22
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7 Overview of decidability results

Since the 70’s, a lot of research has been done concerning PT(I)-nets and their
analytical tools. In this section a comprehensive overview will be given on the
decidability of both the reachability problem and the coverability problem. The
overview will first be divided by semantics (firing sequence or step) and then
we will explore the trade-off between decidability and expressiveness. For exam-
ple the ability to test for emptiness makes it possible to model more complex
systems, but certain properties will become undecidable.

The decidability of both reachability and coverability have their own uses.
They can both be used to check whether certain (unwanted) situations can arise.
With reachability this can be a precise marking (configuration of the system),
while coverability investigates more general behaviour, such as boundedness of
a place.

Recall that a CT is a tree labeled with extended markings. All labels are
coverings of reachable markings, and w is only introduced when a place is un-
bounded. The decidability of coverability will be split in two issues: first whether
there is an algorithm that generates a finite CT (and thus all labels cover reach-
able markings). Then whether the algorithm produces a complete CT, where all
reachable markings are covered. When an algorithm is guaranteed to produce
a finite CT, we know that the algorithm will always terminate, and that the
resulting CT tells us if the net is bounded. If the resulting CT is a complete CT,
then there is an algorithm that produces not only a finite CT, but also provides
full information about unboundedness for each place of a PT(I)-net.

As we have seen in Section 4, a construction is available to remove the weight
from inhibitor arcs. Therefor we assume that all inhibitor arcs are unweighted.
All results will be presented in Table 1.

7.1 Sequential semantics

The most elementary semantics of PT-nets were based on sequences of firing
single transitions, thus generating a firing sequence [16].

An overview of the results for sequential semantics can be found in Table 1(a),
and will now be discussed.

7.1.1 Coverability and reachability for PT-nets One of the first notable
results in 1976 was the proof that the Karp-Miller construction [9] intended for
Vector Addition Systems was also useful for Petri nets. In [7] it was proven that
this Coverability Tree Construction indeed resulted in a finite CT and that any
marking reachable in a PT-net, would also be covered by a node in the resulting
tree, and thus a complete CT. We discussed this in more detail in Section 5.

The decidability of the reachability problem turned out to be harder to es-
tablish. It remained one of the most important open questions, until 1981, when
it was proven to be decidable in [12].
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7.1.2 Reachability in PTI-nets With the introduction of inhibitor arcs in
[2], leading to PTI-nets, new issues arised. It was originally proved in [1] that
these nets are equivalent to Turing machines, but this could not be traced by
the author of this thesis. However, the equivalence is easy to show in terms
of register machines, introduced in [18]. A register machine exists of a finite
number of registers and a programming unit. This programming unit executes
a program consisting of a sequence of instructions. The number of registers is
finite, and each can store any natural number. The programming unit can inspect
the registers, but it can only discern whether a register is empty or not. Using
results from [14], it was found in [18] that Turing machines can be simulated by a
register machine with only three basic instructions and two registers. The three
instructions are P(n), “Increase register n by 17; D(n), “Decrease register n by
17; and J(n)[s], “Jump to instruction s if register n is 0”. In [16] it is shown how
these instructions can be converted into fragments of a PTI-net, see Figure 11.
Places p;, p;+1 and ps correspond to instructions ¢, ¢ + 1 and s. The place ¢, is
register n (with n = 1,2). Thus a full net consists of a sequence of instructions p;
(identification). Initially the registers ¢; and g2 are empty and only p; is marked
with a single token. Only the J(n)[s] type instructions use an inhibitor arc. As
there are only two registers needed, two inhibitor places are sufficient to reach
Turing equivalence, as every Turing machine can be modeled in this way. As a
consequence of this, reachability is undecidable for PTI-nets with two or more
inhibitor places.

In [17] it has been proven, using semilinear sets, that fs-reachability is de-
cidable for PTI-nets with only one inhibitor arc. Using the construction from
[10, Theorem 1], it can be seen that every PTI-net with a single inhibitor place
can be transformed into a PTI-net with a single inhibitor arc with equivalent
fs-reachability. Thus fs-reachability for PTI-nets with a single inhibitor place is
decidable.

Fig. 11. Instructions of a register machine.

pi ? pi ? pi n

Ow [0
DPi+1 O Di+1 O Ps O O Pi+1

(a) Instruction P(n) of (b) Instruction D(n) of (c) Instruction J(n)[s]
a register machine. a register machine. of a register machine.
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7.1.3 Coverability in PTI-nets In [10], the Modified CTC (here Algo-
rithm 2) is presented to construct a CT for PTT-nets. It was proven that for
PTI-nets with one inhibitor place this construction always constructs a finite
CT, although it does not always produce a complete CT. Thus the boundedness
of PTI-nets with one inhibitor place is decidable, even though this algorithm is
not always able to find all unbounded places.

For PTI-nets with three inhibitor places this algorithm does not terminate
as shown in [10]. A counterexample can be seen in Figure 7(b). In Section 6 of
this paper it is shown that there are also PTI-nets with two inhibitor places for
which the MCTC does not terminate. An example of such a net is Figure 9.

That the MCTC does not always result in a complete CT in the case of one
inhibitor place, does not proof that there is no algorithm at all that creates a
complete CT for PTI-nets with a single inhibitor place. Therefor this question
remains open in Table 1(a).

7.2 Step semantics

When considering step-semantics a lot of the analytical tools that are available
for PTT-nets become invalid. Recall Figure 1, even for this simple PTI-net the
modified CTC creates a CT which is infinite in breadth. To obtain decidability
results new tools are needed, or a reduction from the results of the sequential
semantics needs to be found.

Note that properties that are decidable under step-semantics are also de-
cidable under sequential semantics. Because any PT(I)-net under sequential se-
mantics can be simulated by a PT(I)-net using step-semantics by adding an
additional runplace. This runplace contains a single token and is connected to
every transition with a double arrow. This ensures that every transition can only
fire once, just like it would under sequential semantics, resulting in corresponding
reachability and coverability problems. As a direct result, if reachability is unde-
cidable under sequential semantics, it is also undecidable under step-semantics.

An overview of the results for step-semantics can be found in Table 1(b).

7.2.1 Coverability and reachability in PT-nets In [10], the concept of
a step coverability tree construction is introduced which has been further spe-
cialised in [11]. This SCTC generates a step coverability tree, which is finite and
in which every step sequence (and thus also every reachable marking) can be
retraced. If not exactly, then at least through a covering step sequence, thus we
have a complete SCT.

When no inhibitor arcs are involved, any marking reachable under the step-
semantics, is also reachable under the sequential semantics. This is because any
enabled step, can be sequentialised to a firing sequence, and vice versa any firing
sequence can be simulated by a step sequence. As a result, the reachability prob-
lems are equal and therefor the reachability problem for PT-nets is decidable.
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7.2.2 Reachability in PTI-nets Recall from Section 7.1.3 that for PTI-
nets with one inhibitor place the fs-reachability problem can be reduced to the
decidable fs-reachability problem with one inhibitor arc. Unfortunately, the con-
struction used to prove this reduction does not work under the step semantics.
Therefor it is still unclear whether the reachability problem is decidable in the
case of a single inhibitor place. We do know that, as seen in Section 3, the reach-
ability problem under the step semantics for PTI-nets with a single inhibitor arc
can be reduced to the fs-reachability problem for PTI-nets with a single inhibitor
arc, and therefor is decidable.

For PTI-nets with two or more inhibitor places, it is certain that anything
that is fs-reachable is also step-reachable. This is because every firing sequence
can be simulated by steps of size one, as this step size can be enforced by
adding a runplace, as mentioned in Section 7.2. It follows from Section 7.1.2
that a PTI-net with two inhibitor places can simulate a Turing machine, making
fs-reachability undecidable. Hence, reachability is undecidable under the step-
semantics for PTI-nets with two or more inhibitor places.

7.2.3 Coverability in PTI-nets As with reachability, we do not know if
a single inhibitor place can be reduced to a single inhibitor arc. We do know
however, as seen in Section 3, that any PTI-net with one inhibitor arc under the
step semantics can be transformed into a PTI-net with one inhibitor arc under
the sequential semantics with equivalent reachability and boundedness problems.
For these nets the Modified CTC is applicable, and the resulting tree will be a
finite CT, which can be used to detect net boundedness. Like in Section 7.1.3,
it is not known whether there exists an algorithm that can construct a complete
CT. Therefor both finite SCT and complete SCT are unknowns in Table 1(b),
with the note that finite (S)CT is decidable for a single inhibitor arc.

As under the sequential semantics, it is not possible to create a finite SCT
for PTI-nets with two or more inhibitor places, for the same reasons reachability
is undecidable under step semantics too.

8 Conclusion

The initial goal of this paper was to answer an open problem from [10]: to find
an example of a PTI-net with two inhibitor places for which the modified cover-
ability tree construction would never terminate. To gain a better understanding
of PTT-nets, we started with two constructions from [10].

The first construction from step-reachability to fs-reachability in case of a
single inhibitor arc was merely clarified. The second construction removed the
weights from PTI-nets for both inhibitor arcs as regular arcs. We found an alter-
native construction, which had the advantage of a clear separation of concerns.
The construction was split in two parts. One that removed the weights from the
inhibitor arcs, and one that removed the weights from the remaining arcs. The
second part relied on properties which could be achieved by the first part, but
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Table 1. Decidability of Reachability and Coverability for PTI-nets

(a) Sequential semantics

(b) Step semantics

#Inhibitor placesH 0 ‘ 1 ‘ >=2  #Inhibitor placesH 0 ‘ 1 ‘ >=2
Reachability [[Yes[12][Yes[17]] No®  Reachability [ Yes*[ 777" [ No’
Finite CT# Yes[7] [Yes[10]] No®>  Finite SCT" Yes[11]] 77?7 [ No®

Complete CT* || Yes[7] [727[10]|No[10]
! Yes: MCTC can produce it.
?7?77. MCTC cannot produce it, but
other algorithms might.
No: It cannot be done.
2 See Section 6.
3 See Section 7.1.2.

Complete SCT' |[Yes[11][???[10]|No[10]
! Yes: MCTC or SCTC can produce it.
77?7 MCTC and SCTC cannot pro-
duce it, but other algorithms might.
No: It cannot be done.
2 See Section 7.2.1 and [12].
3 See Section 7.2.2 and [13].

4 Decidable with a single arc. See Sec-
tion 7.2.1, Section 7.2.3 and [10].
5 See Section 6.

the intermediate net held the same reachability and boundedness properties of
the original weighted net.

After this we investigated several coverability tree construction algorithms
for both PT-nets (sequential and step semantics) and PTI-nets (sequential se-
mantics).

Finally we zoomed in on the modified CTC. This straightforward approach
to generate a coverability tree for PTI-nets gave some information on the bound-
edness of a PTI-net with a single inhibitor place ([10]). In Section 6 an example
was given demonstrating that this construction may not terminate for PTI-nets
with no more than two inhibitor places, as was the original aim of this paper.

An interesting subclass of PTI-nets that we have not discussed before are
Primitive PTI-nets. These nets, introduced in [3], have the following constraint:
it is possible to associate a threshold value with each inhibiting place, in such
a way that, if the number of tokens in the place exceeds this threshold at some
stage of the computation, then that place will never be succesfully tested for the
absence of tokens, because it cannot be emptied any more. In [3] this threshold is
called the emptiness limit. In [3] several properties of these nets are proven under
the sequential semantics. One of these properties is that a finite and complete
coverability tree can be computed. Also for every primitive PTI-net it is possible
to construct a PT-net with equivalent reachability problems. In [10] this subclass
is investigated further, in particular under the a priori step semantics. It is
proven that the step coverability tree construction can, if the correct select and
C relations are instantiated, produce a finite and complete SCT for Primitive
PTI-nets. As PT-nets can be considered as Primitive PTI-nets with an emptiness
limit of —1, the SCTC can also produce a finite and complete SCT for PT-nets
with the same instantiation. So far, this is also the largest subclass of PTI-nets
to which the STCT has been applied. Unfortunately, primitivity itself is not
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decidable[3], but can often be guaranteed by construction. In particular PTI-
nets with bounded and complemented inhibitor places are primitive.

As can be seen in Table 1 there are still some open questions, most involving
the gap between a single inhibitor arc and a single inhibitor place. Under the
sequential semantics reachability and net-boundedness are both decidable for
these two cases. However, this is not enough to solve the coverability problem.
To find the answer to this problem, the boundedness problem must be decidable
for every place in the net. When considering step-semantics, the gap only seems
to become bigger. Under these semantics, none of the properties of PTI-nets
with a single inhibitor place are known so far.
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