
Anton Hunsucker

1

Internal Report 2011-03 February 2011

Universiteit Leiden

Opleiding Informatica

Investigation into a Domain-Specific Language

for Securities Trading Operations

A.C.L. Hunsucker

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Anton Hunsucker

2

Table of Contents

Chapter 1: Introduction ... 3

Chapter 2: Background .. 5

2.1 The Genesis of Electronic Trading.. 5

2.2 The FIX Protocol at a glance ... 7

2.3 The Benefits of Standardization and the FIX protocol ... 8

2.4 Domain-Specific Languages and Modeling... 9

Chapter 3: Domain Definition .. 11

3.1 Parties .. 11

3.2 Messages .. 15

3.3 Interactions ... 17

Chapter 4: Metamodel ... 20

Chapter 5: Examples .. 23

Chapter 6: Conclusions and Future Work... 26

Appendix: a Textual DSL for FIX Messages ... 27

Anton Hunsucker

3

Chapter 1: Introduction

This paper will explore the feasibility of developing a Domain-Specific Language (“DSL”),

based on the FIX Protocol, for modeling electronic securities transaction communications. In

the past decade, the FIX protocol has emerged as the dominant technical standard for

electronic securities trading [3]. As has been widely argued [1], standardization in financial

markets offers many benefits in terms of increased connectivity, improved communication,

lower transaction costs and lower barriers to entry (improving competition), bringing down

trading costs to all parties involved. In fact, these reasons were among those cited for the

development of the FIX Protocol (as well as electronic trading in general), and have been

proved by its rapid adaptation in financial markets the world over.

However, FIX is hard to use directly by its ultimate users, financial experts – it was designed

as a communication standard, not a full-fledged modeling language. As such, it can be

expected to be overly detailed in some (e.g. technical) aspects, while falling short in others.

Furthermore, being designed with extensibility in mind [2], it is likely to lack definitions strict

enough for domain specification. We believe that standardization would be further aided by

addressing these shortcomings by developing a Domain-Specific Language for electronic

securities trading. Such a language would enable financial experts to implement and design

electronic securities communication software without intricate knowledge of the FIX

protocol. This paper is intended as a first foray into the development of such a DSL.

In this analysis, we shall restrict ourselves to the domain FIX was initially designed to operate

in *Euronext+: trading of equity securities (“stocks”) between domestic partners: investment

managers (e.g. mutual funds), brokers and trading platforms (e.g. exchanges or “dealer

markets”). Specifically, we will limit ourselves to modeling “pre-trade” and “trade”

communications (leaving out the “post-trade” phase), consisting of Indications of Interest

(“IOI’s”), quotes and various forms of orders. Administrative and Session-related messages,

while not constituting the focus of our analysis, will also be addressed when material to our

model. We will not model cross-border trades, debt/foreign exchange/derivative

instruments, allocations, program (“algorithmic”) trading or regulatory communications; we

will leave these aspects to future research.

Furthermore, we will limit the depth of our analysis, as well as the breadth. For one, along

the lines of the FIX protocol, we will limit our exact specification to the communication

between parties, leaving the exact semantics of the operations signified by this

communication to further analysis or implementation. As will be demonstrated, the benefits

of inter-party communication envelop those of in-house processing, mandating the

prominence of standardizing communication over operations. Furthermore, the DSD editor

we will develop will not be able to generate software, merely allowing its users to design

models subject to domain constraints.

Section 2 will start with a history of the electronic trading environment, introducing key

concepts of the FIX protocol and domain-specific modeling, as well as providing a rationale

for standardization. In Section 3, we will describe the concepts pertaining to our domain and

introduce their semantics in our domain-specific language. Subsequently, Section 4 will give

Anton Hunsucker

4

an overview of our metamodel. Section 5 concludes with the editor and example models

derived from industry examples. Section 6 wraps up with a conclusion and a suggestion for

future research. In the Appendix, we provide an outline of a text-based DSL for describing

FIX transactions.

Anton Hunsucker

5

Chapter 2: Background

In this chapter, we aim to describe the broad context of our analysis. We start by providing

an abridged history of the electronic trading environment and the electronic handling of

securities. We continue by describing the FIX protocol, and follow up with its beneficial

effects on the securities industry. Finally, the process of domain-specific modeling is

described.

2.1 The Genesis of Electronic Trading

Since the dawn of securities trading, financial instruments such as shares and bonds have

been held in the form of certificates. Usually bulky and ornate pieces of paper, these

documents physically represented ownership of a share [4], and ownership was transferred

by transferring the certificate, along with the processing of significant volumes of paperwork

[5]. Stockbrokers – intermediaries between end investors and the exchange – would employ

“runners” to physically carry the securities between firms, on handcarts or in large wallets

[4].

In the post-war years, as personal wealth increased and the memory of the Great Depression

faded [4], ownership of shares by the general public ballooned; in 1960, approximately three

million shares were traded daily on the New York Stock Exchange, six years later this had

increased to 13 million [6]. This increase precipitated the “paper crunch”, when broker firms

were unable to physically process securities transactions and dividend payments in time. In

April 1968, the backlog in NYSE-listed securities processing amounted an estimated $2.67

billion [5]. The physical certificate system became unworkable, and a solution was

mandated. Generally, two (non-complimentary) remedies for this problem exist:

dematerialization and immobilization.

Dematerialization entails the severing of the link between the share and its physical

representation (the certificate) – in other words, representing shares purely in digital form

[7]. In this way, transfer of ownership can be effected merely by means of an electronic

transaction. Immobilization, on the other hand, maintains the need for certificates, but

negates the need for physical movement by “immobilizing” the securities in a Central

Securities Depository. Ownership is then transferred by means of (electronic) bookkeeping

[7]. The latter method had been used by the Vienna Giro Association since the 1870’s *6]. In

1973, the Depository Trust Corporation was set up to this end in the United States, and in

1975 immobilization was made mandatory by the Securities and Exchange Commission [7].

The developments described above mainly pertain to the act commonly described as

“settlement”, which is a post-trade process where ownership changes are effected. Shortly

afterwards, electronic trading of equity securities commenced. Arguably, this would not

have happened had securities still existed exclusively in their physical form.

 The NASDAQ, an “over the counter” or OTC market, was the first instance of large-scale

electronic trading from 1971 onwards [8]. However, exchanges (as opposed to OTC markets)

remained dependent on human interaction. Trading was mostly conducted by telephone,

often in conjunction with “open outcry” systems where traders would communicate directly

Anton Hunsucker

6

(verbally or by a complex sign language) in so-called “pits”. The idea of a “fully automated

exchange”, where order books are processed automatically and ownership of

(dematerialized) securities is recorded and changed automatically, was first proposed by

Fisher Black [9] in 1971. The first actual transition to electronic exchange trading was

Toronto’s TSE, implementing the first true ECN (Electronic Communications Network)

trading system in 1977 with various major exchanges following suit throughout the 1980’s

and 1990’s. *10] While slower on the uptake, bond markets began the transition in 1999,

reaching near-exclusive electronic trading by 2006 [8]. Domowitz provides a very extensive

overview of electronic trading systems with their years of establishment in [11].

Electronic trading has numerous advantages over “traditional” trading through human

interaction. For one, less or no “rekeying” (the manual entry of order data) is needed by the

intermediary, reducing transaction cost and potential for erroneous processing [1, 12]. The

logical end of this transition is the possibility of “Straight Through Processing”, the seamless

integration of the different parts of the trading process by linking the execution,

confirmation, clearing and settlement phases of the trade with risk management procedures

[12], without the need for re-keying or even human intervention. In this way, electronic

trading moves beyond front-office operations into involving (and streamlining) back- and

middle-office operations as well. Furthermore, risk management is made more

comprehensive and errors in processing less likely. Also, scalability is greatly enhanced –

while it is very expensive to expand a trade floor, it is trivial by comparison to employ

additional computers and bandwidth [12].

Numerous downsides are also noted in literature. First, there is the issue of counterparty risk

– the risk of the other party in a deal failing to meet its obligations. Traditional trading

mitigates this risk by putting parties in direct contact, engendering mutual trust. Electronic

trading systems provide anonymity and impede verbal communication, making it harder to

ascertain the counterparty’s identity and trustworthiness. [12] cites this as an important

factor in the slower uptake of electronic trading in the foreign exchange market, where

counterparty risk is greater. Furthermore, the danger of reduced liquidity is mentioned in

[12] and [13], either due to a reduction in brokers (through increased competition) or an

absence of market-makers and increased fragmentation. Thus far, such fears have proven

baseless [12].

Anton Hunsucker

7

2.2 The FIX Protocol at a glance

The emergence of electronic trading called for a standard messaging protocol. Initially,

exchanges or platforms developed their own standards to connect buyers and

intermediaries to each other and the market. This led to high costs of establishing

connectivity, prohibitive switching cost, impediments to competition and unnecessarily high

trading cost [1]. In 1992, Salomon Brothers (an investment bank) and Fidelity Investments (a

mutual fund) decided to develop a communications standard for electronic trading of equity

securities (“shares”); this would become the FIX protocol. In 1995 the FIX committee, by

then the driving force behind FIX, released FIX 2.7, the first production version of the

protocol [14]. Since then, FIX has been maintained as an open standard, around which

interested parties may develop commercial or open source software [15]. The FIX protocol is

directed by FIX Protocol Limited, or FPL, and its Global Committee [16]

During the past 15 years, FIX has established itself as the de facto securities trading protocol

[3]. While exact usage figures are hard to come by [15], a 2008 survey indicated that 75% of

buy-side and 80% of sell-side firms, as well as three quarters of all exchanges, use FIX for

electronic trading. The FIX protocol is constantly expanding its scope, having started as a

protocol for bi-lateral domestic equity trading, it has now evolved to support post-trade

processing, transaction handling on behalf of third parties, and a variety of instruments like

derivatives and foreign exchange (currencies) in a cross-border context.

It is important to note that FIX itself does not imply or endorse any specific implementation.

FIX is not software [15], it is an open and free communications standard around which

interested parties (members and non-members) can develop their own implementation.

Furthermore, an attempt has been made to steer clear of “over-standardization” *2]: the

protocol does not define a standard for the underlying network (e.g. leased line, internet,

satellite) or network protocol (e.g. TCP/IP). Likewise, support for encryption is present, but

the choice of encryption method is left to the parties involved in designing the connection

[2]. Interested readers are referred to [3] for a sample implementation.

The FIX protocol defines a message as a ASCII-encoded string, consisting of a standard

header, a “message body” and a standard trailer *2]. Messages consist of <tag = value> fields

of an undefined sequence (barring a limited set of exceptions), with the tag consisting of a

predefined number and the value in alphanumerics. The standard leaves a great amount of

tag values open for proprietary extensions, allowing implementing parties to embed their

own features into their implementation of the protocol. This extensibility even allows for

“vanilla” FIX features being “carried back” into older versions, that initially did not support

them [17]. More importantly, there is no central record of which tags have been used for

proprietary extensions, aggravating inter-vendor compatibility and possibly endangering the

benefits of interoperability as described in section 2.3.

 The protocol defines three message groups: session messages, administrative messages and

application messages [2]. The first two pertain to establishing and maintaining a connection:

they define logon/logout messages, a framework for authentication (left to the specific

implementation), and two distinct mechanisms for maintaining session integrity: the

heartbeat (periodic messages sent by all parties) and a message sequence number allowing

Anton Hunsucker

8

for discrete gap recovery. These messages are not considered fundamental to our analysis,

and will hence not be detailed further; we will focus (mainly) on the third type, application

messages, defined as “the exchange of business-related information” *2]. Elements of FIX

bearing relevance to our analysis are detailed in the next section.

The abovementioned practice of providing freedom of implementation, as well as the

extensible nature of the FIX tag system, gives rise to a host of proprietary implementations

that are mutually incompatible and may provide non-overlapping functionality. As a result,

parties are likely to use a specific subset (or superset) of the FIX protocol. Buy-side

institutions must therefore ensure that their Order Management Systems are compatible

with the protocol implementation used by their sell-side institution, and ultimately, the

trading platform or exchange used. We will elaborate further on this condition in Section 4.

It should be noted that from FIX 4.2 onwards, FIXML is being developed concurrently as an

XML vocabulary based on the FIX Protocol [16]. In other words, it defines a one-to-one

mapping from FIX’s conventional tag=value form to XML. It is intended to utilize existing

systems and processes and protect investment in “traditional” FIX implementations, while

providing a migration path to next-generation FIX systems and increase interoperability with

other industry standards. Furthermore, FIXML does not define a session or transport

protocol, relying on traditional FIX for embedding or requiring the use of a different

transport protocol [17]. We will not cover FIXML in our analysis.

2.3 The Benefits of Standardization and the FIX protocol

The benefits of implementing FIX are described extensively in [1]. They mirror in large part

those of standardization in general, with some added gains applying to the financial context

in which the FIX protocol is used. We will briefly reproduce the key gains in this section.

First, it should be noted that the automation of trade systems started within organizations.

While using a standardized protocol for internal operations may benefit firm-wide efficiency,

applying standardization to external (i.e. inter-firm) links engenders a multitude of additional

benefits. The most direct effects of widespread inter-firm FIX use are a reduction in

connectivity costs and an increase in efficiency level.

Connectivity costs are lowered when a single standard is used between all parties. This way,

the level of investment needed to establish trading connections decreases rapidly as the

number of connections established rises. With a single connectivity standard, no new

software needs to be developed and with it, less individuals trained and less testing and

certification is called for. This, in turn, allows all market parties to achieve a more optimal

level of domestic and international connectivity. For instance, institutional investors are no

longer confined to a single brokerage firm for their market operations, and brokerage firms

may more easily interact with numerous trading platforms, allowing them to offer a more

comprehensive array of investment services to their clients. Trading platforms, in turn, may

more rapidly achieve a number of trading members deemed sufficient for proper

functioning.

Anton Hunsucker

9

This increase of competition benefits the whole securities marketplace. When switching

costs go down, investors are more likely to seek out the brokerage firm that offers its

services at the most attractive price level. Together with the decrease in connectivity costs

as a whole, this is likely to significantly reduce transaction costs in the marketplace, bringing

about greater efficiency. This in turn affects the overall level of activity and liquidity in the

market, reducing bid-ask spreads for end investors. This process is furthered even more by

increased global market integration made possible by adaption of a standardized protocol.

All in all, higher net returns and a more optimal asset allocation greatly benefit end

investors, and with them, large sectors of the global economy as a whole.

However, there are a few likely impediments to this transition to a standardized electronic

securities market. First of these is the free-rider problem: while the benefits of

standardization described above arguably accrue to a wide range of market parties, the costs

are borne by a select few. Second, the standard may not cater fully to the needs of all

parties, giving rise to proprietary and potentially conflicting additions. Plus, the increase in

competition as described above erodes the market power of individual participants, who

may thus oppose a standard that is thus detrimental to their profits. Finally, the network

effects of an extant standard may be too strong, in that they hinder innovation and impede

implementation of superior standards.

FIX Protocol Limited seeks to remove these hindrances, and aid implementation, through its

organization as a non-profit membership organization. In this way, the free-rider problem is

alleviated, the organization itself has no market power and market participants get an equal

say in its decisions.

2.4 Domain-Specific Languages and Modeling

The use of domain-specific knowledge is increasingly gaining currency in systems analysis

and development. Literature often (but not always) distinguishes domain-specific languages

and domain-specific models. The former are defined as “a programming language or

executable specification language that offers, through appropriate notations and

abstractions, expressive power focused on, and usually restricted to, a particular problem

domain [18]. Mernik and Heering state in [19] that domain-specific languages exist “in a

gradual scale with very specialized DSLs such as BNF (Backus-Naur Form) on the left and

GPLs such as C++ on the right”, adding that “domain-specificity is a matter of degree”. This

vagueness notwithstanding, DSLs as a whole offer strong advantages. Gray and Karsai

identify several key benefits in [20]: conciseness, a boost in productivity, and the ability “of a

computationally naïve user to describe problems using natural terms and concepts of a

domain with informality, imprecision, and omission of details”, to which Latry et al add the

admittedly large benefit of direct verification by means of domain restrictions as specified in

the DSL [21]. Van Deursen et al mention “improved readability, maintainability, flexibility

and portability” as benefits of Domain-Specific Language use in [18].

Whereas Domain-Specific Languages are usually textual [22], Domain-Specific Models

usually represent domain concepts in a graphical fashion [23]. Please note that this

Anton Hunsucker

10

distinction has become blurred, with “domain-specific language” also referring to “visual

programming languages” (metamodel editors) as well as the more conventional textual

incarnations. DSM use offers similar benefits, such as a 5-10x productivity increase and a

drastic increase in reusability [24]. DSMs usually specify a solution domain as well as the

conventional problem domain – the latter is comparable to the “specific application domain”

used in the definition by Mernik and Heering as cited above; whereas the former refers to a

(textual) language that a DSM “program” is translated into. Literature mentions general

programming languages as solution domains, such as C++, assembly language and XML [25]

but also domain-specific languages such as SQL [ibid], CPL [22] or a textual DSL developed

concomitantly with a visual DSL/DSM in a two-pronged approach [21].

Domain-specific modeling or language development has been applied to a diverse variety of

problem domains, such as machine control and call processing [22], graphics and networking

[ibid], server configuration and medical purposes [25]. A few instances of problem domains

in the area of finance are also known, such as the RISLA language for interest-bearing

financial products [26] and a language for the definition and processing of financial

contracts, such as swaps and options [27]. We are aware of no language or model

specifically developed for transactions of such financial products. Given the definition of a

DSL cited above, together with the notion that domain-specificity is a continuum, it can be

argued that FIX already constitutes a domain-specific language for describing transactions in

various financial products (i.e. securities). However, FIX was never intended as such: its

domain is not strictly defined, it is burdened with concepts not pertaining to the domain

(such as session and administrative messages) and its notation, using numerical tags, hardly

lends itself to be “manipulated by a domain expert to express a solution as a model” *21].

This paper attempts to remedy this deficiency by developing a domain-specific language that

largely mimics or incorporates FIX’s functionality, but is more expressive, intuitive and

strictly defined.

Anton Hunsucker

11

Chapter 3: Domain Definition

This section will introduce the key concepts to be incorporated into our domain. These

concepts are based on abstractions derived from the FIX language; we will give a brief

description of the FIX underpinnings.

In this section, we use the nomenclature of [28+: ‘DSL’ or ‘Domain-Specific Language’ refers

to the language we intend to develop, ‘DSD’ or ‘Domain-Specific Definition’ is a “program”

written in such a DSL and the ‘DSP’ or ‘Domain-Specific Processor’ is “a software tool for

compiling, interpreting or analysing domain-specific descriptions”.

3.1 Parties

By definition, a trade implies at least two parties involved in a transaction. FIX

communication, at its essence, usually takes place between two parties. For message

exchange to take place, a session must be established [2]. This entails two distinct stages:

establishing a physical and logical connection between two endpoints (left to the

implementation), and the subsequent establishment of a FIX Session. As defined in [3+, “A

FIX session is defined as a bi-directional stream of ordered messages between two parties

within a continuous sequence number series”*3+ . Sessions are the overarching “meta-state”

of the system: they define the context in which message exchange take place. Not only do

they allow for authentication of sender and receiver (“initiator” and “acceptor” in FIX

parlance), they also define the identity of these parties: while FIX messages have address

fields in the header, FIX lacks, unlike a protocol such as TCP/IP, a well-defined system for

name resolution (e.g. DNS), routing, or even a system of verifying whether these names are

correct or unique. The FIX specification only mentions the existence of the fields, leaving

much to the implementation [2]. In version 4.0 of the protocol, these fields were extended

to allow for delivery of messages “on behalf of” third parties *29]. In version 5.0 of the

protocol, the session and application message groups were decoupled further with the

introduction of the Transport Independence Framework; from this version on, FIX application

messages can be exchanged using a multitude of transport technologies, including the

“traditional” FIX session *30]

It should be noted that the strictly two-party architecture of the session layer in no way

implies that FIX may only be used for transactions between the two parties initiating the

session. On the contrary, the added value of a standardised interconnected electronic

trading system lies in large part in its ability to foster connections in a “many-to-many”

fashion (as detailed in section 2.3). As a result, the situations in which one is likely to

encounter FIX “in the wild” are likely to involve a multitude of parties. In such an

environment, multiple sessions exist concurrently. Take for instance the example given in

[14]: a client contacts his broker with a “sell” order, upon which the broker sends Indication

of Interest messages to several of his clients, one of whose places a “buy” order with the

broker. In the end, the seller sells securities from his portfolio to a seller, through their

broker. This is an example of a “meaningful” FIX transaction involving multiple parties and

multiple sessions: between the seller and the broker, and between the broker and its clients

(including the eventual buyer). Furthermore, the delivery and executing of messages “on

Anton Hunsucker

12

behalf of” third parties, as made possible in FIX 4.0, also provides a mechanism for involving

more than two parties in a single session [29]

As mentioned above, the initiator and the acceptor partake in a FIX session and, in general,

constitute the parties in the underlying securities transaction (barring “third party”

transactions). We will use parties to refer to the union of initiators and acceptors. More

specifically, in this analysis we will focus on investment managers, brokerage firms, and

trading platforms, as identified in [1]. These three will be the main entities in our DSL.

Figure 1: generalized interaction between parties

3.1.1 Investment managers

Investment managers, “buy-side institutions” or “buy-side firms” are professionals

managing securities portfolios on behalf of their clients or principals, which can be (wealthy)

individuals, pension funds, insurance companies, mutual funds, ETFs (“exchange trade

funds”) or any other “firms which trade securities to make a return on an initial capital

investment [1]. They are the ultimate owners of the securities and other financial

instruments traded in a market, and the overwhelming majority of trades is performed on

their behalf. It should be noted that the phrase “buy-side” does not imply that these firms

are only involved in purchasing securities – rather, they may sell as well as buy securities

from their portfolios; the “buy” refers to the purchasing of market services, not to the actual

securities bought. These services entail access to a market or trading platform, which is

Anton Hunsucker

13

usually accomplished through a broker, whose services are purchased. In our DSL,

investment managers are represented as a generic BuySide entity. The DSL allows users to

name these entities. Buy-side entities may only be connected to Sell-side Entities (Brokers),

by means of interactions. Typically, buy-side entities will have at least one connection with a

sell-side entity. We will describe these interactions in section 3.3.

3.1.2 Brokerage firms

Brokerage firms, also called “brokers” or “sell-side firms”, are defined in *1+ as “firms that

provide execution service to investors”. In short, they provide “market access” to investment

managers – and by extension, to the clients and principals they represent – allowing them to

trade securities. This process is greatly aided by the dematerialized and/or immobilized

nature of their portfolios, as discussed in the previous section, and by the electronic

transmission of orders. They are called “sell-side firms” because they sell market access

services to investors. These same firms may also trade and own securities on their own

behalf and for their own profit, or on behalf of other business units within the same firm. In

these cases, there is no other ultimate beneficiary than the firm itself. The FIX protocol

defines a special tag to distinguish these trades. Please note that a connection to a trading

platform is not necessary for a broker to function – not all transactions need one. For

instance, the example in [14] displays a broker-mediated transaction between two of the

broker’s clients, which does not involve a trading platform. Naturally, this transaction may

still involve a third party in the post-trade settlement phase, however, this is not part of our

analysis.

In our DSL, brokers are represented by a generic SellSide entity, with a user-provided name.

Brokers may have bidirectional connections with buy-side entities as well as trading

platforms, though not with each other. Each sell-side entity is assumed to be connected to at

least one buy-side entity, and possibly (though not required) one trading platform. Please

note that this requirement is not enforced – brokers may also trade on their own account

(negating the need of buy-side clients) and deals do not necessarily involve a trading

platform [14].

3.1.3 Trading Platforms

Trading platforms, or markets, are defined as (stock) exchanges, ATSs (Alternative Trading

Systems), MTFs (Multilateral Trading Facilities) and Crossing Networks [1]; in short, they are

a venue for matching buyers and sellers. Stock exchanges, the most well-known form of

trading platforms, are regulated entities that allow trading in securities and instruments that

have obtained a listing on that specific exchange. While stock exchanges have a natural

predisposition towards listing stock of companies originating in the exchange’s country,

major exchanges radiate beyond natural boundaries, and major international corporations

often list their stock on multiple exchanges. A host of major exchanges offer FIX connectivity,

usually as part of a larger offering of connectivity solutions, and bound to an exchange-

specific implementation. An example is given by the Euronext exchange network in [3], and a

list of participating exchanges is provided by FPL at [15].

Anton Hunsucker

14

Alternative Trading Systems are regulated US-based non-exchange trading venues that, like

stock exchanges, “constitutes, maintains, or provides a market place or facilities for bringing

together purchasers and sellers of securities or for otherwise performing with respect to

securities the functions commonly performed by a stock exchange” *31+. They do not “list”

securities in the fashion stock exchanges do, even though they may trade securities that are

listed on an exchange. Trading in this fashion is usually called “OTC”, for “over-the-counter”

trading to distinguish it from trading on an exchange. Most ATSs offer FIX connectivity, using

proprietary implementation. An example of such is given in [32]. The Securities and

Exchange Commission provides a list of Alternative Trading Systems in [33].

In a similar fashion, Multilateral Trading Facilities are defined as “a multilateral system,

operated by an investment firm or a market operator, which brings together multiple third-

party buying and selling interests in financial instruments” *34]. MTFs serve as a

transnational, low-cost alternative to exchange-based trading, and as such compete with

one another. Examples of MTFs are Chi-X Europe, Turquoise and Burgundy. Most, if not all

MTFs offer connectivity based on their respective FIX implementations.

Crossing Networks, finally, are systems that “cross” or match buy and sell orders from

connected members in an automatic, “black-box” manner. Unlike ATSs, they usually operate

in an anonymous fashion. Examples of Crossing Networks are Goldman Sachs’ SIGMA X,

Nomura’s NX (also operating as an MTF within the EU), Liquidnet and Pipeline. All these

systems offer FIX connectivity in line with their proprietary specifications. An example of

such is given in [35].

In our DSL, trading platforms are specifically named, that is, they are not generic. This stems

from the prevailing differences in connectivity requirements among trading platforms, as

discussed in the previous chapter. As such, it is non-trivial for a broker to establish a

connection to a certain trading platform, as this will entail additional effort and investment

in the FIX implementation. Given the multitude of FIX-based trading platforms, we provide a

non-exhaustive list, aiming not to cover the entire spectrum. Extending the DSL to include

more named platforms is relatively easy.

Brokers may connect to trading platforms, but not every interaction is valid. For instance,

quote messages are invalid in this context as price propagation is assumed not to use the FIX

protocol. IOI’s are equally irrelevant in the context of trading platforms. Consequently, we

only allow Ordering and Execution Reports to be exchanged between brokers and trading

platforms.

Anton Hunsucker

15

3.2 Messages

Message transfer – the sending and receiving of “Application” messages between the

session initiator and acceptor – is what gives the FIX protocol its functionality. Transactions

(the buying and selling of securities) take place after the relevant messages have been sent

and processed; the FIX messages are therefore highly relevant to our domain. As such, the

“arcs” or connections in our visual DSL will be “interactions”, which are aggregates of FIX

messages defined later in this section.

Messages consist of <tag>=<value> fields delimited with the ASCII 01 (“start of heading”)

character. Tags are numbers that denote the type of data in the field, such as the name of

the sender or the stock’s symbol. Messages start with a standard header, itself made up of

<tag>=<value> fields, and end with a trailer. There is a taxonomy of message types (denoted

by a field in the header), each serving a particular purpose: messages for ordering, reporting,

and soliciting orders, but also for logging in and testing the connection. Each message type

requires a specific set of tag fields (for instance, a login message doesn’t need the field for

“currency type” but it needs a field specifying the type of encryption desired for the session),

which are specified in the FIX documentation. It is important that these fields all be present,

however, the order in which they are sent is usually not important, unless otherwise stated.

Messages can also refer to previous messages – for instance, a Quote Request message may

be responded to by a Quote message from the other party, containing the same value in the

QuoteReqID field. Also, a New Order message may be cancelled using a Cancel Request that

refers to the order message to be cancelled, using its OrderID. FIX does not provide or define

a system to generate these IDs, leaving it to the sender’s implementation.

The message types relevant to our domain will be covered next. Please note that this

overview is based on version 4.0 of the FIX Protocol as described in [2].

3.2.1 Indications of Interest

IOI’s, or Indications of Interest, are messages sent by the brokerage firm indicating that it

wishes to buy or sell a specific security. The broker may do so in an agency capacity (on

behalf of a client) or proprietary (for its own gain), this is indicated by the optional

IOINaturalFlag tag in the message. Other important fields specify Side (whether the interest

is in buying or selling), the Price (optional), expiration time for the offer (optional), the

security name and the amount of securities to be bought/sold. IOI’s are usually sent to a

large number of clients, which may then respond by ordering a buy/sell from the broker,

who fills one or more orders, until the desired number of securities is bought/sold.

3.2.2 Quotes and Quote Requests

Quote Requests are sent to brokers, to request a price quote from them for buying or selling

a specific security. The broker usually responds with a Quote message. Note that Quotes and

Quote Request differ from IOIs, in that quotes are for a specific security and quote requests

Anton Hunsucker

16

are sent to brokers. Quotes may also be sent unsolicited, i.e. without a preceding quote

request message. Solicited quotes need to include the appropriate value in the QuoteReqID

field, whereas unsolicited quotes lack these fields. A Quote Request message only requires

the security’s symbol, and optionally the Side (buy or sell) and the securities previous closing

price (for additional verification). Quote messages also include the bid (and optionally) offer

price, and may also include a stated quantity and validity time.

3.2.3 New Order – Single

The New Order – Single message is used for actual trading, sent by clients/intermediaries to

brokers indicating that they wish to buy or sell a stated security. Mandatory fields include

Side, quantity, stock symbol, handling instructions (private/public/manual) and order type.

This last field allows, apart from “Market” orders (straight buying and selling), for limit

orders, stop orders, etcetera. Extra optional fields are provided for these order types, as well

as execution instructions.

3.2.4 Execution Reports

Execution Reports are sent by the broker to report on the status of a previously submitted

order. They may flag an order as New (received, but not executed), Partially Filled, Filled

(completed), Done for Day (filled, no further executions forthcoming), Cancelled, Replaced,

Pending Cancel/Replace, Stopped (at the exchange), Rejected (by broker), Suspended

(usually at request of client), Pending New, Expired and Calculated (signaling that fees have

been calculated and returned in the message). Execution Reports are sent autonomously or

in response to an Order Status Request message. It contains mandatory fields listing the

quantity filled (the amount of securities purchased) and the average price, as well as various

status-related optional fields.

3.2.5 Don’t Know Trade

Don’t Know Trade (DK) messages are sent as a notification that a trade has been rejected. A

reason is given in the (mandatory) DKReason field, for instance “Unknown Symbol” or

“Quantity Exceeds Order”. Other fields include the symbol (presumably echoed from the

New Order message), side, last price and last quantity.

3.2.6 Order Cancel / Replace Request

The Order Cancel / Replace Request message allows clients to change the parameters of an

existing order. Only orders that can be successfully pulled back from the exchange floor

without executing can be altered, and only a limited number of fields can be changed, such

as price, order quantity, execution instructions and the expire time of the order. These fields

are all included in the message (though not all mandatory). For identification purposes, this

message is treated as a “replacement order” with its own OrderID. When the order cannot

be changed, an Order Cancel Reject message is returned. Unlike the name suggests, FIX does

not recommend the use of this message to cancel outstanding orders.

Anton Hunsucker

17

3.2.7 Order Cancel Request

The Order Cancel Request message allows clients to request the cancellation of all or part of

the remaining quantity of an existing order (denoted by the mandatory CxlType field). Only

orders that can be successfully pulled back from the exchange floor without executing can

be canceled. A Cancel Request is treated as a separate order for ID purposes, and given a

proper OrderID. If cancellation fails, an Order Cancel Reject message will be generated by the

broker.

3.2.8 Order Cancel Reject

Sent only in response to an Order Cancel / Replace Request or an Order Cancel Request

message, denoting that these requests cannot be honored. For instance, an attempt might

be made by the requester to modify an order that has been already filled. A reason for

rejection can be given in the optional CxlRejReason field. A mandatory field is included that

refers to the ID of the rejected message.

3.2.9 Order Status Request

An Order Status Request message is sent to request an Execution Report from the broker.

The ClOrdID field must contain the ID of the order whose status is being requested. Other

mandatory fields are Symbol and Side.

3.3 Interactions

Interactions are the arcs between entities in our DSL, representing the link between parties.

In the FIX protocol, parties interact by exchanging messages as detailed in the previous

section; given the large number of possible messages and their fine-grained nature, we have

decided not to work directly with messages in this DSL. Instead, FIX messages are aggregated

into interactions for the purpose of brevity. For instance, in the customer/broker example in

[14+, Customer A’s order to sell securities consists of three messages between buyer and

seller alone: an “Order Single” message sent by the customer, an “Execution Report” sent in

response by the broker, followed by a second “Execution Report” to indicate completion. In

between, the broker has sent numerous messages to its clients to find a buyer for Customer

A’s security, Customer B. All in all, the sale of A’s security to B requires no less than seven

messages. This number grows even larger when we take into account the mandatory session

messages, the possibility of resends, and Cancel/Reject/Replace messages that might occur.

Furthermore, there are usually several messages defined for what is globally the same goal.

The FIX 5.0 protocol defines ten messages pertaining to Quotes alone [36], and nearly

twenty messages related to Orders [37]. This is a dramatic increase from earlier versions of

the protocol. We believe that, while this plethora of messages possess (slightly) distinct

semantics and implementation characteristics, we may ‘abstract away’ some of this

distinction into more general interactions, such as Quoting, Buying, and Selling. We will now

cover these generalized abstractions, based on the messages described in Section 3.2.

Anton Hunsucker

18

3.3.1 Indicating Interest

Indicating Interest is mapped to the Indication of Interest message described in 3.2.1. It also

includes any IOI’s replaced or cancelled using subsequent message with a different

IOITransType flag. Due to this narrow mapping, the semantics for this interaction are very

similar to those described in 3.2.1, and will therefore not be detailed here. The directionality

of the arc indicates the origin of the message – not whether the originator is interested in

buying or selling. This may be indicated by adding a description to the arc. The arc may also

be tagged with a security symbol and quantity. IOI arcs always lead from sell-side to buy-side

firms.

3.3.2 Requesting Quotes

Requesting Quotes are sent by the investment manager to the broker to request a price

quote on a stated security, as described in Section 3.2.2. This interaction is originated by the

buy side (investment managers), and entails Quote Request messages (and their variants

defined in version 5.0) sent to the broker as well as the Quote Request Reject response

defined in version 5.0. It does not include the actual Quote message interaction requested in

response, which is described in section 3.3.3. Please note that requesting a quote in this way

is not mandatory and is only used in some markets [2]. The DSL allows the user to specify

whether the quote requested is for buying or selling, and which security is involved and in

which amount. Arcs always start at Investment Managers and lead to Brokers.

3.3.3 Quoting

Quoting entails the sending of Quote messages (as defined in the FIX 4.0 protocol as well as

in section 3.2.2 of this document), its subsequent extensions in version 5.0 (e.g. Mass

Quoting) and all variants such as unsolicited quotes, quote rejects and quote status

messages. In short, this interaction entails the propagation of price quotes to buy-side from

sell-side; Quoting arcs therefore always originate at Brokers and lead to Investment

Managers.

3.3.4 Ordering

Ordering interaction entails the buying and selling activities in the greater securities

marketplace. It encompasses the Order Single message (and all its variants possible through

manipulating the OrdType and other fields) as described in section 3.2.3, as well as list

orders and the messages described in sections 3.2.6 through 3.2.8. Orders are either sent

from investment managers to brokers or from brokers to trading platforms. The interaction

arc can be ‘tagged’ as Buy or Sell, and may also include the security’s name or symbol as well

as quantity.

Anton Hunsucker

19

3.3.5 Accepting/Rejecting Orders

This interaction consists of a subset of the Execution Report message as detailed in 3.2.4 –

namely, those with the OrdStatus field set to 0 (New, meaning accepted) or 8 (Rejected) as

well as the Don’t Know Trade message as described in Section 3.2.5. Both denote the

acceptance or rejection of an order. All other Execution Report messages (e.g. fills) are

described in the next interaction. These message are sent from the broker to the investment

manager, or from the trading platform to the broker. However, this interaction also

encompasses Order Status Request messages (3.2.9) and Execution Report Ack [30]

messages sent by the investment manager. The interaction arc can be ‘tagged’ as Accept or

Reject.

3.3.6 Execution Reports

This interaction encompasses all other types of Execution Reports (i.e. those not described in

3.3.5) sent by the broker or trading platform. For example, a “fill” is an Execution Report

message, with the OrdStatus field set to 2, denoting the successful completion of a buy/sell

order. It may also be used to notify of expired orders (when a time limit is given in the

original order message) or to confirm the (requested) cancellation of an order. See [2] for a

full description.

Anton Hunsucker

20

Chapter 4: Metamodel

This chapter describes the domain-specific model, or metamodel, underlying our domain-

specific language. The metamodel was developed based on the semantics described in the

previous section. It is presented here in Ecore format, as visualized by the Eclipse Modeling

Framework. The entities are formed by the three generalized parties previously described (in

the top layer of figure 2) as well as the interactions which constitute the various

relationships (in the middle layer). All entities – parties and interactions – have several

attributes as described in the previous section.

4.1 Metamodel overview

Figure 2: The metamodel

Note the “FIXNetwork”EClass-entity at the bottom. While it has no meaning in our domain, it

is mandated by the Eclipse Modeling Framework as a “mother” class representing the

model, from which all other entities (classes) inherit. It has “bulbed” arcs leading to every

entity in the metamodel, these are called aggregations. Their cardinality specifies the valid

number of entities in our model; each aggregation has a cardinality of “0…*” to denote that

a model may contain an infinite amount of parties and interactions between them. These

arcs are named “FIXBuySides”, “FIXIOIs”, “FIXQuotes” etcetera, after the entities they

connect.

The middle layer in Figure 2 contains the EClass-entities representing the interactions. They

have several attributes, and have association arcs (with arrowheads) to signify which parties

they may connect in a model. These arcs have cardinality, to signify the nature of the

relationship. In our metamodel all associations have “0…*”, or zero-to-many, cardinality to

signify that a party may have several interactions with several parties. These arcs are named

after the entities they connect, abbreviated to reduce clutter. For instance, “QRtoB”

connects the Quote Request entity to the Buyside entity, and its brother “QRtoS” connects

to the sell-side entity. Some interactions are possible between multiple pairs of parties – for

instance, Order interactions may lead from a Buy-side to Sell-side entity, or from a Sell-side

entity to a Trading Platform; in these cases, “BS” and “ST”, respectively, are affixed to the

interaction name. For instance, whereas there is only one “IOI” entity in the metamodel, the

order interaction is represented by “OrderBS”and “OrderST”.

Anton Hunsucker

21

Please note that, in this metamodel, there is no clear visual distinction between the parties

and the interactions – all are represented by EClass-entities, whereas in the eventual editor

there will be a fundamental difference between parties (entities) and interactions

(relationships between those entities). This distinction is made at a later stage of the

implementation process, during the mapping model creation phase. Directionality of the

relationships is also defined during this process and can hence not be gleaned from this

diagram. The association arcs in this metamodel however serve to define one restraint, that

of valid interactions: no entity may interact with another of the same type, and interactions

are only valid between specific types of parties (e.g. a trading platform does not send out

IOIs, and is hence not connected to the IOI entity).

The top layer of the diagram contains the party entities: BuySide (representing Investment

Managers and the like), SellSide (brokers and other entities providing market access to buy-

side entities) and TradingPlatform for exchanges, MTFs, ATSs etcetera.

4.2 Towards a Domain-Specific Language

The metamodel described above forms the basis of a Domain-Specific Language. For the DSL

to be useable by domain experts (financial experts, in our case) a Domain-Specific Processor

[28] is needed to transform models, developed using the metamodel as instances of the

problem domain, into output as instances of the solution domain. This DSP takes a DSD (a

“program” specified using the DSL) and applies evaluation semantics [27] to achieve this

transformation. Ideally, this transformation is made simple as verification is rendered

unneccessary by the DSL itself, as described in section 2.4 and in [21]. Nonetheless, for this

transformation to be possible, both the DSL syntax and the evalualation semantics need be

unambiguous and complete.

Our analysis has stopped short ofproviding full, formally defined evaluation semantics. Nor

have we specified a solution domain for our prospective domain-specific language.

Nevertheless, using the metamodel developed in section 4.1 and the informal semantics

given in section 3, we may develop an editor which allows domain experts to design

syntactically valid models. An example of such an editor will be given in Chapter 5. In the

remainder of this section, we will informally touch upon possible uses and problem domains

for our prospective DSL.

4.2.1 Generalized interaction

With the DSL editor developed for this analysis, it is possible to model generalized

interaction between market parties in an electronic trading environment. In other words, it

allows the user to specify a certain connection arrangement: the design of an electronic

trading network. In this way, the parties represent actual parties, but the interaction

specified does not all take place at the same time; rather, it shows what transactions may

take place. Generally, no symbols or quantities are specified, and Side (buying or selling) may

also be left empty to indicate that both are possible. Diagrams like this are found in the

documentation of specific trading implementations (e.g. [3], [32], [35]) and in [1]. Possible

Anton Hunsucker

22

solution domains for a generalized interaction DSD are configuration files (runtime as well as

compile-time), automatically generated documentation or a requirements specification. An

example will be given in Section 5.1.

4.2.2 Actual interaction

The DSL may also be used to “log”, or display, electronic securities transactions between

specific parties. Given the hard-to-read nature of FIX in its various forms, as well as the lack

of an agreed-upon representation standard for such transactions, this allows domain experts

to quickly grasp the nature of a specific transaction. Conversely, it may be used to

“prototype” or design transactions before they are performed. Currently, this is

accomplished by creating several models using the metamodel in a sequential manner. With

a simple extension, such as adding a Time field to all interaction entities, it would also be

possible to model subsequent interactions in a single model, as the metamodel allows a

(virtually) unlimited amount of entities to be placed in a single model. The solution domain

best suited to this design would be the FIX protocol itself, possibly with implementation-

specific extensions, or the domain-specific language given in the Appendix. An example of

this use, modeling the interaction example in [14], is given in Section 5.2.

Anton Hunsucker

23

Chapter 5 Examples

In this chapter, we will demonstrate the expressiveness of our DSL by modeling several

examples of FIX-based interaction from other sources. Using the Eclipse Modeling

Framework, we have created a model editor from our metamodel. Using this editor, which

functions as a plug-in within the Eclipse environment, one can create models of electronic

trading interactions by intuitively placing Parties on a canvas and drawing Interactions

between them.

Figure 3: “FIXNetwork” editor

The editor enforces the constraints defined in the metamodel: interactions are only valid

between specific entities, and directionality is enforced – Quote arcs, for instance, originate

exclusively at Sell-Side entities, as per the semantics described in Section 3.

 It is important to note the distinction, as noted in Sections 4.2.1 and 4.2.2, between displays

of generalized interaction and those of actual interaction; the former are intended to display

the range of connection and interaction possibilities allowed by a specific implementation

(as one would find in its documentation), the latter is a means of demonstrating the various

steps of a specific transaction as it took place. In other words, generalized interaction

provides a template for use of a specific implementation, whereas actual interaction is a

“logbook” of FIX message exchange. One example of each will be provided.

5.1 Generalized Interaction

An example of generalized interaction is given by [1] and reproduced in chapter 3 (Figure 1).

It shows the basic order process as well as the parties involved. As a pre-trade interaction,

Anton Hunsucker

24

the distribution of market data is outside the scope of our domain, and as the role of the FIX

in market data propagation is inferior to that in trade flow[low latency report, FIX website,

Bloomberg website+, the “market data” arcs and “financial content providers” entity have

been removed. Furthermore, the “Verification” step is of a post-trade nature (and also

accomplished through settlement-related protocols such as SWIFT), and is therefore

removed as well. The relevant interaction represented in Figure 1 can therefore be modeled

as follows:

Figure 4: modeling generalized interaction

5.2 Actual Interaction

The FIX organization provides an example of FIX message exchange in [14], where a broker

facilitates the sale of securities between two of his clients’ portfolios (notably not involving a

trading platform). The transaction comprises four steps: first, Customer A sends an Order

message to his broker, notifying his desire to sell 1000 shares of ‘Cheung Kong’, and receives

an Execution Report message in return, to notify its order has been accepted. Subsequently,

the Broker sends IOI messages to a multitude of clients, through a “FIX Network” – an

implementation-dependent means of addressing multiple parties, as FIX usually functions

only bilaterally, as described in Section 2. In our model, this network is represented by a

single Buy-Side Entity. In step 3, out of this network, a single party (“Customer B”) responds

to the IOI with an Order to buy the securities offered (at a price determined by the broker, in

the IOI message). The broker accepts the sale trough an Execution Report message. In step

4, finally, the broker sends Execution Report messages to both parties, indicating the order

as filled.

Figure 5: the customer indicates its willingness to sell from its portfolio (price not given)

Anton Hunsucker

25

Figure 6: the broker informs his clients (through an unspecified FIX Network)

Figure 7: one customer decides to buy, and notifies the broker

Figure 8: the broker notifies both parties of the transaction

Anton Hunsucker

26

Chapter 6: Conclusions and Future Work

It has been demonstrated that the electronic securities trading environment lends itself

fairly well to domain-specific modeling, and that the FIX Protocol forms a suitable basis for a

domain-specific language by incorporating in its design the numerous interactions typically

expected in the trading of electronic securities. The protocol, while including numerous low-

level mechanisms and concepts (somewhat alleviated in version 5.0) and being subject to a

diverse array of specific implementations, can be used to define higher-level interactions as

an abstraction of its workings. In this way, it is possible to capture domain-specific

knowledge and implement a visual model to quickly demonstrate FIX-enabled connection

arrangements as well as visualize message exchange between trading parties.

This analysis has been fairly limited in scope, as it aimed to capture the essence of electronic

trading in a simple model. With regards to scope, we have based our analysis mainly on

version 4.0 of the FIX protocol, thus predating the drastic expansion in version 5.0, as well as

the more gradual changes in version 4.1 through 4.3. Further work may also be done to

incorporate specific interactions pertaining to foreign exchange, derivatives and other more

exotic financial instruments in which FIX has gained currency since its inception as an equity-

specific protocol. Plus, pre-trade (such as market data) and post-trade (clearing and

settlement) interaction may also be explored in future research.

Finally, in order to arrive at a full-fledged domain-specific language, it would be necessary to

address the shortcomings mentioned in Section 4.2: provide evaluation semantics and a

domain-specific processor to generate instances of a possible solution domain. This would

entail considerably more effort than expended on this analysis, but should be possible based

on the domain concepts from Section 3 and the metamodel from Section 4. In doing so, it

might be necessary to expand the scope of the original analysis in a fashion described in the

previous paragraph. This depends on the intended solution domain.

Anton Hunsucker

27

Appendix: a Textual DSL for FIX Messages

Concurrent to this analysis, a Domain-Specific Language, modeled after COBOL, was

developed based on the FIX messaging standard. It may be used to render the exchange of

FIX messages more readable to humans (compared with FIXML or the traditional

<tag=value> form) or to quickly model specific message exchange between parties. It differs

from our visual DSL in that it does not allow the modeling of generalized interaction

arrangements.

1. The Session

As already mentioned in the previous section, the session provides the context of the FIX

transmission, and can therefore be seen as a “code block” surrounding “statements” – the

FIX messages. No statements are allowed to exist outside such a block, just as no FIX

messages may be sent when there is no session. The session definition also serves to identify

the parties involved as Initiator and Acceptor. There is always one Initiator, but there can be

many Acceptors. As the mechanism of one-to-many communication is not defined in the FIX

specification itself, and either occurs through the establishment of many one-to-one

sessions or through a FIX Hub or Exchange, we will not explicitly define how such a one-to-

many session is established.

Sessions are defined by the SESSION…END SESSION structure. The exact syntax is as follows:

SESSION FROM [INITIATOR] TO [ACCEPTOR] {statements} END SESSION

Where {statements} is optional and all other fields mandatory.

2. Initiator and Acceptor

Though the identities of initiator and acceptor have been defined in the SESSION statement,

and most FIX messages have a predefined origin of either buy-side or sell-side firm, there is

no predefined relationship between these nomenclatures. In other words, even though it is

intuitively the buyer that initiates a session with the seller, the reverse may also be true [14].

Hence, it is necessary to explicitly state the origin of each message in the session, given the

full-duplex nature of communications.

To this end, messages sent by the Initiator are prefixed by I: and messages sent by the

Acceptor are prefixed by A:.

Anton Hunsucker

28

3. Grouping of similar tag fields

Given the large number of (optional) tag fields in each message definition, we have decided

to group redundant or complementary fields into an aggregate abstracting the different

fields for the purpose of syntax definition. For instance, a security can be identified by the

fields Symbol, SecurityID, SymbolSfx, IDSource, Issuer and SecurityDesc, with only the Symbol

field being mandatory. We believe that, without loss of generality, we can use Symbol in lieu

of these fields. In the FIX 5.0 documentation [36] this grouping is explicitly stated: for

instance, the “Instrument component block” to refer to the group of fields identifying the

security in question.

 Similarly, in quote messages, bid and order prices and quantities are grouped as well. Also,

TimeInForce and ExpireTime are grouped.

4. Message IDs

As briefly touched upon in the previous section, the FIX protocol makes extensive use of IDs

to allow messages to refer to other messages for status or modification purposes.

Generation of these IDs is left to the implementation, as long as unicity is maintained for at

least a 24-hour period [2]. Due to their essential nature we maintain these IDs in our DSL,

though simplifying them somewhat. For one, the FIX protocol maintains a distinction

between client-supplied ID and broker-supplied ID, providing both the ClOrdID and OrderID

fields. While these are arguably important in a production situation (driven by the need to

maintain unicity at the broker’s, who likely handles several clients concurrently), we believe

the distinction is not material to our analysis, and can hence be abstracted as a single ID.

Furthermore, to improve readability and reduce ambiguity, we use a statement’s line

number as the ID of the message represented. A line number can thus serve as AdvRefID,

ClOrdID, ExecID, ExecRefID, IOIid, IOIRefID, OrderID, OrigClOrdID, AllocID, RefAllocID,

QuoteID, QuoteReqID and ListID.

5. Replacing or cancelling messages

The FIX protocol provides for the possibility of cancelling or altering (“replacing”) previously

sent IOIs, Advertisements and Execution Report messages by resending a message of the

same type with a the TransType (IOITransType, AdvTransType or ExecTransType) set to

CANCEL and REPLACE/CORRECT, respectively, as well as any fields that need to be altered. In

the interest of readability, we have chosen to represent these messages not by their

“normal” statement keyword, but with the REPLACE and CANCEL statements. To “replace”

an IOI, for instance, a new IOI message is sent with IOITransType = REPLACE and IOIRefID set

to the original IOI’s ID; in our DSL, this would be represented by “REPLACE INDICATE

<linenum> WITH…”

Please note that this mechanism does not apply to orders. Orders have a different

cancelling/alteration mechanism, using the Order Cancel… messages.

6. Messages

Messages are modeled by single-line statements. Given the diverse use of mandatory and

optional fields for each message, every message type will be defined individually. We have

chosen to use a COBOL-like syntax for statements - using verbosity to represent statements

Anton Hunsucker

29

as English-language sentences – instead of a more C-like syntax representing statements as

functions. Furthermore, statements in our DSL do not have a return value. Analogous to the

FIX protocol, errors and confirmations are signaled through messages returned by the

sender. Statements are non-blocking by default, with synchronization provided by the WAIT

FOR statement.

Please note that all FIX messages have standard headers and trailers affixed. These contain

information mostly pertaining to the session protocol (abstracted through the SESSION

statement), for instance to identify duplicate messages, and a simple addressing system. We

consider these fields irrelevant to our analysis, therefore, the contents of these headers and

trailers will not be included in our DSL syntax.

3.1 Indications of Interest

IOI’s are represented by the “INDICATE TO” keyword, followed by BUY or SELL, according to

the following format:

INDICATE TO[BUY|SELL] [<quantity> OF] [Symbol] {FOR <price>} {IN <currency>} {UNTIL

<timestamp>} {AGENCY|PRINCIPAL}

3.2 Quote Requests

Quote Requests are represented by the “REQUEST QUOTE FOR” keyword including the

symbol and optionally the quantity and side (buy/sell), as follows:

REQUEST QUOTE FOR {BUY|SELL} {<quantity> OF} [Symbol]

3.3 Quotes

Quotes are represented by the “QUOTE” keyword and mandatorily the symbol and bid price,

with several optional keywords, as follows:

QUOTE {<quantity> OF} [Symbol] [FOR <price>] {UNTIL <timestamp>}

3.4 New Order – Single

Single orders are represented with the “ORDER TO” keyword, followed by the Side, quantity,

Symbol, and, when applicable, references to the quote/IOI the deal is responding to.

ORDER TO [BUY|SELL][<quantity> OF] [Symbol]{QUOTED IN <linenum> | INDICATED IN

<linenum>} {IN <currency>}

3.5 Execution Reports

Execution reports are semantically different from most other statements, as they don’t

imply any action to be taken and just report on a previous order. Nevertheless, they are

treated like any other statement in our DSL and represented by the “REPORT ON” keyword,

followed by the order’s ID (i.e. its line number) and its status (New, Partially Filled, Filled,

Done for Day, Canceled, Replaced, Pending Cancel/Replace, Stopped, Rejected, Suspended,

Pending New, Expired or Calculated), Side, amount of shares (LastShares field) and last price.

Anton Hunsucker

30

REPORT ON *linenum+ STATUS IS *New|Filled|…+ *BOUGHT | SOLD+ *<quantity> SHARES+

[FOR <price> <settlement currency>]

3.6 Don’t Know Trade

Just like the Execution Report, the Don’t Know Trade message merely indicates a condition,

not asking for any action to be taken. Most of the fields are just copied over from the

original order message, and hence not used.

DON’T KNOW TRADE ,linenum- BECAUSE *<reason>+

3.7 Order Cancel/Replace Request

*what to do with all the fields? There’s too many+*Side and symbol included, but must stay

the same as previous order. Price and quantity can be changed, so we keep these fields to

create a full sentence+*beware of ambiguity with “our” REPLACE keyword, see above+

REPLACE ORDER [linenum]TO [BUY|SELL]{quantity}[Symbol] {FOR <price>} {UNTIL

<expiretime>} {INSTRUCT ExecInst}

3.8 Order Cancel Requests

Order Cancel Requests are represented with the “CANCEL ORDER” keyword, followed by the

order ID and parameters indicating whether the order should be fully cancelled or its

quantity reduced.

CANCEL ORDER [linenum][FULLY | {TRUNCATE TO <quantity}]

3.9 Order Cancel Reject

Just like Execution Report and Don’t Know Trade, this message serves to indicate the

outcome of a process – in this case, a request to cancel an order. It is represented by the

“REJECTED CANCEL” keyword:

REJECTED CANCEL [linenum] {BECAUSE <reason>}

3.10 Order Status Request

This message is represented using the “REQUEST STATUS ON” keyword. While the FIX

message mandates the Side and Symbol fields, they must be the same as those in the

original order, and we refer to that using the ClOrdID field. They are hence considered

redundant and not included in our syntax.

REQUEST STATUS ON [linenum]

Anton Hunsucker

31

References

1 Oxera. What are the benefits of the FIX protocol? Standardising messaging protocols

in the capital markets. December 2009. Available at

http://www.fixprotocol.org/news/publications.shtml

2 The FIX Committee. Financial Information Exchange Protocol (FIX) Version 4.0.

January 1997. Available at http://www.fixprotocol.org/specifications/FIX.4.0

3 Euronext. EURONEXT FIX Trading Interface, Version 2.0.1.October 2006. Available at

http://www.integration.euronext.com/fic/000/020/502/205024.pdf

4 A. Benn. The Unseen Wall Street of 1969-1975. Quorum Books, 2000

5 W. Wells. Certificates and Computers: The Remaking of Wall Street, 1967 to 1971.

The Business History Review, Vol. 74, No. 2 (Summer, 2000) pp. 193-235

6 D. Donald. The Rise and Effects of the Indirect Holding System: How Corporate

America Ceded its Shareholders to Intermediaries. Doctoral thesis adaptation,

University of Frankfurt, 2007

7 D. Chan, F. Fontan, S. Rosati and D. Russo. The Securities Custody Industry. European

Central Bank Occasional Paper Series, August 2007

8 B. Mizrach and C. Neely. The Transition to Electronic Communications Networks in

the Secondary Treasury Market, Federal Reserve Bank of St. Louis Review,

November/December 2006, 88(6), pp. 527-41

9 F. Black. Toward a Fully Automated Stock Exchange. Financial Analysis Journal,

November-December 1971

10 N. Economides and R. Schwartz. Electronic Call Market Trading. Journal of Portfolio

Management, vol. 21, no. 3, pp. 10-18 (1995)

11 I. Domowitz. A taxonomy of automated trade execution systems. Journal of

International Money and Finance, issue 12, pp. 607-631 (1993)

12 Bank for International Settlements. The implications of electronic trading in financial

markets, 2001

13 M. Massimb and B. Phelps. Electronic Trading, Market Structure and Liquidity.

Financial Analysts Journal, January-February 1994

14 FIX Protocol Limited. Financial Information eXchange General Conference Hong

Kong, March 30, 2000. Available at

http://www.fixprotocol.org/specifications/TechDoc-Beginner

15 FIX Protocol Limited website. http://www.fixprotocol.org

16 FIX Protocol Limited. FIX Protocol Open Forum – London, 2000. Available at

http://www.fixprotocol.org/specifications/TechDoc-Beginner

17 R. Pierce. Transitioning to Advanced Versions of Messaging Standards. Townsend

Analytics Ltd. / Archipelago LLC, 2001.

18 A. van Deursen, P. Klint and J. Visser. Domain-Specific Languages: An Annotated

Bibliography. CWI, Amsterdam, 2000

19 M. Mernik, J. Heering and A. Sloane. When and How to Develop Domain-Specific

Languages. ACM Computing Surveys, Vol. 37, No. 4, December 2005, pp. 316-344

http://www.fixprotocol.org/news/publications.shtml
http://www.fixprotocol.org/specifications/FIX.4.0
http://www.integration.euronext.com/fic/000/020/502/205024.pdf
http://www.fixprotocol.org/specifications/TechDoc-Beginner
http://www.fixprotocol.org/
http://www.fixprotocol.org/specifications/TechDoc-Beginner

Anton Hunsucker

32

20 J. Gray and G. Karsai. An Examination of DSLs for Concisely Representing Model

Traversals and Transformations. Proceedings of the 36th Hawaii International

Conference on System Sciences, 2003

21 F. Latry, J. Mercadal and C. Consel. Processing Domain-Specific Modeling Languages:

A Case Study in Telephony Services. In: Generative Programming and Component

Engineering for QoS Provisioning in Distributed Systems, 2006

22 J. Luoma, S. Kelly, J. Tolvanen. Defining Domain-Specific Modeling Languages:

Collected Experiences. In: Proceedings of the 4th OOPSLA Workshop on Domain-

Specific Modeling(DSM ’04), Vancouver, Canada, 2004

23 M. Karlsch. A model-driven framework for domain specific languages demonstrated

on a test automation language. Master thesis, Hasso-Plattner-Institute of Software

Systems Engineering, Potsdam, Germany, 2007

24 S. Kelly. Domain-Specific Modeling – 76 cases of MDD that works. MetaCase, 2009

25 S. Kelly and R. Pohjonen. Worst Practices for Domain-Specific Modeling. IEEE, 2009

26 B.R.T. Arnold, A. van Deursen, M. Res. An algebraic specification of a language for

describing financial products. In: ICSE-17 Workshop on Formal Methods Application

in Software Engineering, 1995

27 S.P. Jones, J. Eber and J. Seward. Composing contracts: an adventure in financial

engineering. In: ICFP ’00 Proceedings of the fifth ACM SIGPLAN international

conference on functional programming, 2000

28 A. van Deursen, P. Klint. Little Languages: Little Maintenance? Journal of Software

Maintenance: Research and Practice, 10, 75-92, 1998

29 The FIX Committee. FIX Protocol 4.0 Release Notes, 1996. Available at

http://www.fixprotocol.org/specifications/FIX.4.0

30 FIX Protocol Limited. Financial Information Exchange Protocol (FIX) Version 5.0

Volume 1, 2006. Available at http://www.fixprotocol.org/specifications/FIX.5.0

31 Securities and Exchange Commission. Rule 300a, 17 CFR 242.300(a). Securities and

Exchange Commission, 1998

32 LAVA Technology. LavaFlow ECN FIX Specifications, 2010. Available at

https://www.lavatrading.com/solutions/LavaFlow_FIX_Specs_1-7.pdf

33 Securities and Exchange Commission. Alternative Trading System (“ATS”) List, 2011.

Available at http://www.sec.gov/foia/docs/atslist.htm

34 European Parliament and Council of the European Union. Directive 2004/39/EC,

article 4, 2004. OJ L 145, 30.04.2004, p. 1

35 A. Bowley, K. Nandwani. Nomura NX FIX Specifications. Nomura, 2010

36 FIX Protocol Limited. Financial Information Exchange Protocol (FIX) Version 5.0

Volume 3, 2006. Available at http://www.fixprotocol.org/specifications/FIX.5.0

37 FIX Protocol Limited. Financial Information Exchange Protocol (FIX) Version 5.0

Volume 4, 2006. Available at http://www.fixprotocol.org/specifications/FIX.5.0

http://www.fixprotocol.org/specifications/FIX.4.0
http://www.fixprotocol.org/specifications/FIX.5.0
https://www.lavatrading.com/solutions/LavaFlow_FIX_Specs_1-7.pdf
http://www.sec.gov/foia/docs/atslist.htm
http://www.fixprotocol.org/specifications/FIX.5.0
http://www.fixprotocol.org/specifications/FIX.5.0

