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Chapter 1

Introduction

This is the report of the Bachelor Project of Kerem Denizmen. This Bachelor
project is done at the University of Leiden under the supervision of W.A.
Kosters. The Bachelor Project is named VN (Vrij Nederland) [I] Movie Rec-
ommender and is a two part project. The first part (see Chapter [2)) is about
parsing the VN Detective and Thriller guide database and the second part
(see Chapter [3)) is about parsing specific movie pages from the IMDDb [2]
database and clustering the data. The selected movies will be from the VN
database. These are Detectives and Thriller novels turned into movies. The
resulting program will function as a recommender system for the VN movie
database.

For those that want to do some further research on recommender systems,
an overview can be found in [I0]. An overview for different recommender
system algoritms can be found in [13]. New developments in recommender
systems can be found in [I4].

1.1 VN and IMDb Databases

For this project we will use data from the VN Detective and Thriller guide
database and IMDb respectively. The VN database holds a collection of ref-
erences to Detective and Thriller books. This list is still a work in progress
but already very comprehensive. The web site serves as a guide to find in-
formation about thrillers and detective books concerning their authors, year
of release or related movies. The books in the database that have a related
movie have links to the IMDb pages of those movies. The IMDb is a com-



prehensive database of movies and information about movies. The IMDb
page of a movie displays general information about the movie like the actors,
director, year of release, rating, genre, etc.

1.2 Problem description

The problem description consists of two parts. The first one is for parsing the
VN Detective and Thriller guide database, and is detailed below. The second
part that is described in Chapter is about parsing the IMDb database
and clustering the data, a research area that is part of Artificial Intelligence.
An overview of Artificial Intelligence can be found in [11].

In the first part we want to parse a HTML [4] page that contains all
the author names in the VN database. When we visit this page and press
the search button we will get a complete list of all the authors that are
present in the database. We want to parse the HT'ML page of this list and
find all the author names and test if there exists a Dutch Wikipedia [5] page
for the author. If a Dutch page does not exist we will check if an English
Wikipedia [6] page exists for the author. Once we have found a successful
link we must place this link in an output file. Thus, the output file will
contain all the authors who have (preferably Dutch) Wikipedia links. At the
end of the file we will also print the number of authors counted, number of
links found, number of fake links (explained in Chapter and number
of ambiguous links found. See Chapter [2 for a detailed analysis.

1.3 Results

The results are given in the last sections of Chapter |2 and Chapter [3| Some
general conclusions can be found in Chapter [4]



Chapter 2

Implementation Part one

For the first part of the project we will use standard parsing methods to parse
the VN author database page. We have chosen for the programming language
Perl [7] because of its ease of use for parsing and text related processing. We
will use Perl to parse a .txt file that contains the HTML code of the VN
authors database page. Perl is very useful for text processing and has built
in Regular expression support [g].

2.1 The VN database

The VN author HTML page (from now on we will refer to this as authors
page) is generated automatically and rather difficult to analyze. This page
contains all the names in the VN writer database. The names are all written
with a last name followed by a first name and middle name. Examples of
names that can be found in the database are “Benson, Raymond” or “Blauw,
Frits de”. These are the most common type of cases that are found in the
database. The names are followed by additional information like date of birth,
date of death and country of origin. It can also be the case that names are
followed by additional names that are pseudonyms or co-writers, or even
multiple authors.

2.1.1 Names in database

The names in the authors page have a structure to a certain degree. Although
there is a pattern, it is rather difficult to parse with a single parsing method.



That is why it is hard to formally define how the names and additional infor-
mation is saved in the writers page. A name in the VN database is roughly
formatted as follows. It begins with a first name followed by a last name,
optionally followed by a middle name and optionally followed by additional
names. The additional names are names the authors also use. There are many
exceptions to the normal pattern though. Here is a list of examples of names
in the database:

e Aarons, Edward Sidney (aka Paul Ayres, Edward Ronns)

o Abbing, Justa (= Hannemicke Stamperius, aka Hannes Meinkema)
o Abel, Jurgen (= Jan Gerhard Toonder)

e Blom, K.(Karl) Arne

e Bock, Jos de (aka Paul Sanders)

e Boekan Saja (= Carel Wilhelm Wormser)

e Booy, H.Th.(Hendrik Thomas) de

e Broek, Joop van den (Johannes Frederik, aka Jan van Gent)

e Brahms, Caryl en Simon, S.J. (= Caroline Abrahams en Seca Jascha

Skidelsky)

As we can see there is a wide variety of formats in the database. Therefore
finding a general parsing algorithm can be quite difficult. To cope with these
names it is important to understand that not all the names are useful. If
the main name of the writer is not known for example, it is not likely that
the alternative name for the author is known as well. This is why we don’t
have to look at all the additional names. We will examine some alternative
names if the main name doesn’t have a Wikipedia page, namely the names
following the keyword “aka” will be looked at. The keyword “aka” stands for
“also known as” and is used when an author has other names he also uses.
In the above example of authors we can see that “Bock, Jos de (aka Paul
Sanders)” has the keyword “aka” which says that the author names “Jos de
Bock” is also known as “Paul Sanders”.



2.1.2 Fake and ambiguous links

Wikipedia contains many records of names. Some of those are records about
the author. However there are cases where the author name is also a name
of another known person or character. When Wikipedia encounters a search
which results in multiple possibilities then Wikipedia will directly link to a
page where all the record links are presented. We will call these ambiguity
pages. We do nothing further with these pages because it is quite hard to
find the link we are looking for from this page. We do however check if a
page is an ambiguity page. If it is, we mark it as ambiguous and continue
to the next author. Another problem we encounter is that in some of the
cases the author does not have a record in Wikipedia but another person
or character with the same name does have a record. This leads to a page
where there is information about a person or character with the same name
as the author but is not the one we are looking for. We will call these links
fake links because from our viewpoint they act like they are the links we are
looking for. In Chapter we explain how we cope with this problem.

2.2 Algorithm

The general approach for our link collector looks like this:

1. Find name in database and strip away additional information like date
of birth, country or genre. For example the name “Aafjes, Bertus NL
[Deductie][Historische thriller]” will turn into “Aafjes, Bertus”. For
finding the names we use a regular expression. We also mark Dutch
authors tagged with NL in this stage because this will come in handy
in a later stage.

2. Once we (initially) have all the author names stored in our data struc-
ture, we will start searching for a Wikipedia link. First we format the
name so that we can use it for the Wikipedia pages (“Aafjes, Bertus”
will become “Bertus_Aafjes” for example). Sometimes multiple names
are encountered on the same line, these can be alternative names or a
second (or even third) author name. In the case of alternative names we
only look at the “aka” variant (author names that contain the keyword
“aka”). When we encounter the aka variant, we mark the writer. When
multiple writers are encountered, we identify the different names and
push them into the end of our data structure.
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3. We retrieve the Wiki page content with the link that is determined in
the previous steps. We first try the Dutch Wiki pages. If the writer is
marked Dutch we only try the Dutch pages, if the writer is non Dutch
we also try a search on the English Wiki pages. This happens only if we
can’t find the Dutch page for the writer. If the writer is marked as also
having an alternative name, we try a search on the alternative name if
the main name fails.

4. Once we retrieve the page (in HTML) we do additional checks to avoid
fake and ambiguous links. If the link does not exist, Wikipedia displays
a standard message saying that the page could not be found. This
is detected by our program. We also want to eliminate the chance of
finding fake links by checking if certain keywords can be found in the
contents of the page. For example we expect the keyword Novel or
Author to be in the page because we are searching for authors of books.
Other keywords we search for are “Thriller” or “Detective”. We also
detect the Wiki ambiguity page (search results with multiple links to
pages) by detecting keywords that are only found on these pages.

5. Successful links are directly written to a text output file. We also write
the number of fake links, ambiguous links and author count.

2.3 Regular expressions

In our search of Wikipedia links we need to search for patterns in the VN
database and Wikipedia pages. To search for these patterns we make use of
Regular expressions. Regular expressions are programming concepts that can
be used to identify textual patterns. For example we can search for the pat-
tern “author” which can be found in words like “authors”, “authorization”
or “authority”. We can also search for the pattern “author” that is preceded
and followed by a space character. This way “author” is recognized as an
isolated word. Another example is that we can also search for “author” be-
tween brackets only or after preceding a certain word. There are many ways
to search for patterns with regular expressions. To define a regular expression
we need to determine the exact pattern we want to search for and define that
in the language of regular expressions. For example, in our program we do a
search on the keyword “aka”. But we do not want to find words that contain
the keyword “aka”. When we define our regular expression, we wish to find
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“aka” in a certain context. In our case “aka” is always found after an opening
bracket (.

In Perl, we define the regular expression to find the keyword “aka” as
follows. \\Waka\\W. The W means we want to match a non word character
first before we see “aka”. We also want it to end with a non word character.
This way we can filter out the keyword “aka” from records like Bock, Jos
de (aka Paul Sanders). Another example is to find certain keywords in Wiki
pages. When we check if a page is the page we really want for example, we
look for certain keywords in the page that tell us that it is the page we are
looking for. In our program we use an expression like the following to filter
out fake pages:

\W[Ww]|riter\ W|\W[Aa]uthor\ W[\ W[Tt]hriller\ W[\ W[Dd]etective\ W.
In this case we use the or operator “|”. When we apply this to a file we can
check if a page uses the keywords Writer or Author or Thriller or Detective.
We also specify case sensitivity by using brackets. For example [Aa] means
that in this positions we accept both the capital form and normal form of
the letter a.

2.4 Output

In the test run we made there were 3,040 authors present in the database.
Depending on the internet connection speed the program will run anywhere
from 5 minutes to 20 minutes. When the program finished it found 1,023
successful Wikilinks, 223 fake links and 178 ambiguous pages. Still though,
even in the successful links we could find rare occurrences of Wiki pages
which are about the corresponding name yet not the author of the book.
Consider the situation where we are looking for a author and find a similar
name who has a page with somehow matching keywords. To prevent this
from happening we could be more selective about our keywords or demand
that multiple keywords are present on a single page. For example the keyword
author and “genre” should always be expected. It would be odd to say the
person is an author without mentioning the genre of books. On the downside
too much restriction could lead to discarding perfectly valid pages. Looking
back at the previous example, an author can write in many genres. So looking
for both author and the genre thriller or detective could lead to elimination
of pages where the genre detective or thriller is not mentioned. This could
be because the author’s most important books were in other genres.



Chapter 3

Implementation part two

Part 2 of the project is a much wider and interesting topic. Part two is about
parsing the IMDb database and clustering the data that we obtain from it.
This way we create a recommender system [9]. This system will recommend
movies based on various attributes that we collect about the movies. All of
the movies are related to the VN database. The VN database keeps track of
movies that are based on the corresponding book in the VN database. It even
provides links to IMDDb pages of the movies. The list is quite large, about
1,300 movies can be found at the time of writing.

3.1 Problem description part two

The first part of the problem is collecting all links to the IMDb pages of the
movies and parsing the corresponding HTML page to get all the necessary
attributes of a movie. Attributes can contain information like movie duration,
directors or actors. We will go into detail on this in Chapter[3.4] Once we have
collected the data from the movie pages we want to cluster or visualize the
data using a simple distance formula. This should generate a distance matrix.
Based on this distance matrix we should be able to determine the nearest
movies to a particular given movie. We want to output this graphically. We
also want to determine which movies are nearest to multiple selected movies
(i.e, more than one). We will try different methods for this. These will be
explained in Chapter
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3.2 Implementation part two

For parsing the VN database and IMDb movie pages we use Perl for similar
reasons as we had for part one. For Perl we also use the library IMDb-Film-
0.33 [3]. This library provides functions for reading the IMDb pages. This
way we can always easily update the version if for some reason the IMDb
gets a redesign. Once we collected all the data we will read and cluster the
data using C++. C++ lends itself well to this kind of programming and is very
efficient. The end product is a Windows command prompt program which
functions as a recommender system.

3.3 Reading attributes from IMDb

Reading from the IMDb pages is similar to reading from the VN database. We
first use regular expressions to parse the links to the IMDb pages from the VN
database. Once we have all the links, we will start parsing the correspond-
ing movie pages for movie attributes. We first download the whole movie
page onto our computer (server) and then we start to parse the predefined
attributes using the library IMDb-Film-0.33. We then store the attributes in
a text file. This text file will later be read by the recommender program.

3.4 Movie attributes

Here is a list of the attributes we obtain from the IMDb database (and VN
database):

Author (AU): Each movie we will look into is originally from a book.
Therefore the author is an attribute for our movies. The author at-
tribute is the only attribute that we determine from the VN database.
The rest of the attributes come from the IMDDb.

Year of release (Y): Year the movie was first released.

Directors (D): Every movie has a director. Sometimes there can be multi-
ple directors to a movie.

Cast (C): A list of all the actors that have some kind of role in the movie.
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Genre (G): The main genre of the movie. This can be anything from horror
to comedy. A movie can have multiple genre’s. In total there are 26
genres.

Rating (R): This is the user rating as determined by the IMDDb users. It is
a double value between 0 and 10.

Keywords (K): These are words that help in defining what can be seen in
the movie. For example plottwist is a keyword. Gun or shooting is also
a keyword. A movie in the IMDb has many keywords.

Duration (DU): The duration of the movie in minutes.
Country (CO): The country of origin.

Aspect ratio (AS): The ratio of width to height of the picture. For exam-
ple 1.37:1.

Based on these attributes we will be able to devise a distance function which
measures the distance between two movies. Distance has something to do
with similarity. The further two movies are apart based on the distance func-
tion, the more different they are. The closer two movies are in the distance
function, the more similar they are.

3.5 Determining the distance matrix

Now that we have all the attributes of a movie we are ready to determine
the distance function and generate the distance matrix. First let us define
the distance matrix. A distance matrix is a matrix that contains distances
that we determine with our distance function from one movie to another
movie. Formally a distance matrix is a square n X n matrix A whose rows
and columns contain indexes of movies 1...n .The position A;; in A contains
a distance value y between movie ¢ and j. The distance value y is computed
with a distance function. The distance value of a movie compared to itself
is defined as null. In the next subsection we will discuss and formally define
the distance function.

12



3.5.1 The distance function

The distance function is computed by using the attributes of the movies to
determine a meaningful value of distance between two movies. Informally
you could see the distance function as a function that takes two movies,
compares its attributes and based on that comparison gives a value to the
distance between the two movies. The better the attributes compare, the
smaller the distance value. For example, if two movies share actors, they will
be given points for each actor they share. The same can be done for genre,
keywords and other attributes. Ones these values have been determined we
can subtract them from an initial value. The remaining value is than the
distance between the two movies.

Let us try to define this formally. In total there are 10 attributes that
determine the distance between two movies M; and M. The sum of weights
between M; and M, can be calculated as follows:

sum(Ml, MQ) = U)lAU + UJQY + w3D + ZU4C + U}5G + U)6K + (31)
UJ7R + U)gDU -+ UJQCO + wloAS

where w; € R are constant and are meant as weight values and AU is 1 if M;
and M, share the same author and 0 otherwise, Y is —(|year of release M; —
year of release Ms|), D is the amount of shared directors between M; and Mj,
(' is the amount of shared cast between movie M; and M, G is the amount
of shared genres between M; and M,, K is the amount of shared keywords
between M; and M, R is —|rating M; — rating M|, DU is —|duration M;
— duration M|, CO is the amount of shared countries between M; and M,
AS is 1 if M; and M, share the same aspect ratio and 0 otherwise. Notice
that if we select a particular weight value to be 0 the attribute will effectively
be put out of the equation.

The distance between two movies M; and M, is calculated as follows:
d(My, My) = MAXsum — sum(M;y, My) where MAXsum is the maximum
value that can occur, i.e, wy + w3 + wy + w5 + wg + wy + w1 if all weights are
> 0. This means that d(M, M) = 0 for every M. As seen earlier, the duration
DU, rating R and year of release Y values are negative. This is because if the
distance between two movies was based on only one of these attributes, we
would like these values to be as close as possible. Difference values between
duration, year of release and rating bring the distance value up. The higher
the difference value the more distance it will create. The rest of the values
are positive which brings the distance value down.
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3.5.2 Selection of weight values

The weight variables are an important part of determining the distance value
between two movies. They have to be carefully selected. For instance we
would not expect the duration of the movie to be more important than the
cast or the rating more important than the keywords. Therefore we have to
be careful in determining which weight values we will select initially. In our
final program the users have the option to select these weight variables for
themselves. We have three options. Either the initial values for the weight
variables will be used, the user will answer questions about which attribute
he finds more important or the user will fill in the numbers for the weight
variables. The initial values for the weight variables are as follows: w; = 15,
we =1, w3 =10, wy =3, w5 =7, wg = 3, wy =4, wg = 0.1, wg = 2, wig = 5.
Determining the best value for a weight in the given formula is more of an
art than science. For example the weight value for cast (wy, = 3) is much
lower than the weight value for director (ws = 10). That is because there
are many more matches for cast than for director. Usually a movie has only
one director so we can only have one hit. Yet a director is still an important
aspect of a movie. The same is true for author. The author can only have
one match and is very important in determining similarity between movies,
that is why it gets a high weight value. Other values like aspect ratio and
duration have a low value because we do not believe these to have a high
importance in determining similarity between movies. In the end the users
can also edit these to their own wish.

In our program we also have a weight selection method that lets users
define the importance of every attribute by giving it a rating. There are
three ratings to select from. Rating 0 is no importance, rating 1 is average
importance and rating 2 is high importance. For a 0 importance rating we
multiply the corresponding attribute’s default weight value with 0. This way
we eliminate the attribute from the distance equation. It is possible to gen-
erate a distance matrix based only on cast for example. The 1 importance
rating multiplies the corresponding attribute’s default weight value with 1.
This means the attribute weight value does not change and stays at its de-
fault value. The 2 importance rating multiplies the corresponding attribute’s
default weight value with 2 and doubles its importance. The users can try
many combinations with this setup.
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3.6 Determining similar movies

In this section we will take a look at how we can determine similar movies
based on different methods. The obvious method for determining a selection
of similar movies to a particular given movie is to go through the distance
matrix and search for the movies that have the least distance to the given
movie. This method is also present in our program. In general, the program
first reads the text file to update all the movie information into a data struc-
ture. Then it goes through the structure and compares every movie to every
other movie to calculate a distance value between the movies. The weight
values are either default or user selected. All the distance values are then
put into a distance matrix. When the user now asks for movies that have
the lowest distance value to a given movie we just go through the distance
matrix to search for the lowest values. In Chapter 3.7 we will look at how we
can find similar movies to multiple movies at once.

3.7 Determining similar movies with multi-
ple selection

A more interesting case for recommending movies is to find movies that are
similar to a multiple selection of movies. For example we could be interested
in finding similar movies to “The Third Man”, “Catch me if you can” and
“Moonraker”. These movies are not the closest movies to each other indi-
vidually but that makes it more interesting to find similar movies to them.
The number of movies we can select is not limited in any way. The number
could be three movies or ten movies. There are several methods we could
use. We will detail them in the following sections. We won’t have to make
new calculations for the distances, we can use the existing distance matrix
but use different methods for comparing. In Chapter [3.8.1 Chapter [3.8.2]
and Chapter we will look at such methods. In Chapter we give a
general formula to use for all methods.

3.8 Determining the distance vector

It is useful to mention that when we select multiple movies for comparison
we actually create a distance vector. The distance vector is the distance value
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of every user selected movie to the movie we are comparing it to. Formally
we say that a distance vector is a vector of distance values

Du(M) = (d(My, M), d(Ms, M), ..., d(M,, M))

where M is the movie that we compare to, Movies is the set of all movies
and M; € Mowvies with ¢ = 1,2,...,n are the n selected movies we have as
reference for recommendation. For example, if we would like to compare three
reference movies My, My, M3 to another movie in the database, say My, we
could get a distance vector like the following, Dv(My) = ( 100, 130, 120 )
We could also consider M5 and Mg and end up with the following situation:
Du(Ms) = (180, 140, 120 ) and Duv(Mg) = ( 50, 170, 130 ). We no-
tice that no vector dominates another, meaning each vector has some kind
of advantage over the other vectors. For example, Dv(M,) has the small-
est maximum distance value, Dv(Ms) has the smallest average value and
Duv(Ms) has the smallest minimum distance value. Therefore when dealing
with these vectors there could be several ways of selecting recommendations.
We will look at some of these methods in the following sections and eventually
propose a general formula in Chapter [3.8.4]

3.8.1 Average distance method (AD)

Determining distances based on averages is the safest method to use for
multiple movie comparisons. What we do is we determine all distance vectors
(by comparing the reference movies to all other movies in the database) and
compute the average distance value for every vector. Formally we want to find
a movie M with sum(M) = >_7" | d(M, M;) minimal, where M, My, ..., M,
are the n preselected movies. A big disadvantage to this method is that
the average distance can be pulled down significantly by one particular low
distance value while the others could be rather high. For example, if we have
two given movies M; and My and M has a distance value of 10 to M; and
100 to My we get a total distance of 110. Consider the same situation with
M’ with distance values 50 to M; and 60 to Ms. The total is also 110. This
means that both M and M’ have the same distance to M; and M, while in
reality M’ is a much more likely candidate of being closest to both movies
for the users. This is because it is in the middle of both movies which is
probably more desirable than being closer to one movie than the other. This
depends on what the criterion is, though. To counter this situation we can
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use another criterion for recommendations: the least maximum distance, see
Chapter [3.8.2]

It has to be noted that a particularly big advantage of the average distance
method is that it favors dominating vectors. A vector Dv; dominates Duws if
Du, is at least as good as Duvs for all the objectives (distances) and Duv; is
strictly better than Duv, for at least one objective (distance). We claim that
if Dv; dominates Duvy, Dv; also has a better average than Duvs.

Proof: We know, going by the definition of domination, that every com-
ponent of Dv; is at most equal to that of Dv, and that at least one of the
components of Dvy is smaller than one of the components of Dwv,. This means
that the sum of all components of Dv; will always be smaller than the sum
of components of Duvs.

3.8.2 Least maximum distance method (LMD)

In the previous Chapter we have seen that determining distances to a
multiple selection of movies with (only) averages could lead to bad choices
for the users. Now we will explain another method for determining distances.
This method is based on the least maximum distance. This method favors
the vectors with the smallest maximum value. Formally, we want to find a
movie M with the maximum of d(M;, M), d(Msy, M), ..., d(M,, M) as small
as possible and My, Ms, ..., M, are the preselected n movies. The advan-
tage of this method is that it finds a rather balanced set of movie rec-
ommendations. Because the maximum distance is kept at a minimum we
eliminate great fluctuations between distance values and thereby eliminate
the disadvantage of determining distances based on average. This method
could also have a disadvantage, though. Let us look at an example. Con-
sider three given user selected movies and three distance vectors Duvy, Duv,
and Dvs with Dv; = ( 120, 140, 120 ), Dv, = ( 80, 150, 100 ) and
Dus = ( 50, 160, 70 ) The LMD method would have picked vector Duvy
as the best candidate for a movie recommendation yet choices Dvy and Duvg
are certainly not bad either. Actually, it is more likely that Dwvs and Duws
would have been the better choices. The AD method would have picked Duvs.
These kinds of situations are probably less likely to happen in a large set of
movies, though. But nonetheless this method is certainly not the best method
for every situation. In Chapter [3.8.3] we will look at another method that also
could prove to be useful.

Let us start by giving a definition of strict domination. A vector Duw;
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strictly dominates Duvy if Dvy is strictly better than Dwvs for all the objectives
(distances).The least maximum distance method does not favor dominating
vectors but does favor strictly dominating vectors. Our intuition says that if a
vector Dv; dominates Dvy than the maximum distance value of Dv; is at least
as small as the maximum distance value of Dwvs. This however does not mean
that the vector picked by LMD is a dominating vector. Consider the following
example: Dv; = (1120, 140, 110 ) and Dv, = (120, 140, 120 ). We sce
that Dv,; dominates Dwvsy yet this does not mean that Dwv; will be picked
over Duvy because as far as LDM is concerned, both vectors are the same.
However, this method does favor strictly dominating vectors. This is rather
easy to see going by the definition of strict domination. If every component
of a vector Dv; is better than that of a vector Dvy then we can conclude
that the maximum distance of Dv; is also better than that of Duv,.

3.8.3 Minimum distance method (MD)

In this section we will explain how to determine the distance based on min-
imum distance. This method is actually similar to determining the distance
based on the least maximum distance. The difference is that the minimum
distance method favors the vectors with the smallest distance values instead
of the smallest maximum distance values. This method is pretty straightfor-
ward. We just pick the vectors with the smallest distances. Formally, we want
to find a movie M where the minimum of d(My, M), d(Ms, M), ..., d(M,, M)
is as small as possible where M, M,, ..., M, are the n preselected movies.
This method rewards those vectors which have at least one distance value that
is relatively close to the given movies but does not guarantee that the other
values are close as well. Consider the following example. Given three movies
selected by the user and given two distance vectors Dv, = ( 30, 140, 120 ),
Duvy = ( 40, 40, 50 ) the minimum distance method would pick Dv; as a
movie recommendation. However, it is quite obvious that Dwvy is much better
in general because all of the distances are rather close to the given movies.
This does not necessarily have to be a disadvantage, though. If the users
want to find a movie that is close to any one of the given movies this method
is the correct method to use. If the user wants to find a movie that is like all
of the given movies, this method is not recommended. In fact, we have seen
that any of the methods we determined have advantages and disadvantages.
Therefore we would like the users to pick which method is the best for them.
In Chapter [3.8.4] we will make a proposal for a general formula that contains
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all the methods we discussed.

This method also has another disadvantage in that in does not favor dom-
inating vectors but does favor strictly dominating vectors. Consider the fol-
lowing example: Dv; = (120, 130, 110 ) and Dv; = ( 120, 140, 110 ).
We see that Dwv; dominates Duw, yet this does not mean that Dvy, will be
picked over Duv; because as far as MD is concerned, both vectors are the
same. Strictly dominating vectors are favored, though. If every component of
a vector Duv; is better than those of a vector Dvy then we can conclude that
the minimum distance of Dv, is also better than that of Dv,. This method is
not advisable for use in situations where we want to find the most balanced
movie recommendations.

3.8.4 A general formula

In the previous sections we have seen different methods of determining movie
recommendations when we have a multiple selection of given movies. It
turned out that all these methods, depending on the criteria of the users,
have certain advantages and disadvantages that makes none of the meth-
ods the definitive method to use. We would now like to propose a formula
which contains all the methods we discussed. This formula assigns weight
values to the three methods we discussed earlier. These are, average distance
method (AD), least maximum distance method (LMD) and minimum dis-
tance method (MD). The users should let the program make different kinds
of recommendations by assigning different weight values depending on their
mood. If they want a rather safe movie recommendation, they could give
more weight to the LMD method. If they feel adventurous, adding weight to
the AD method could lead to some surprising recommendations and yet if
they want to pick out a movie that is like any one of the given movies they
could give more weight to the MD method.

We propose the following formula: Consider three weights q1, ¢2, q3 and let
Avg be the average value of a vector, Maz be the maximum distance value
of a vector and Min be the minimum distance value of a vector. We now can
define the total distance value of a vector as:

Sum = q1 Avg + @oMaz + g3 Min (3.2)

It turns out this rather simple formula can cope with many different criteria.
Notice that we favor the lowest values of Sum because these are the vectors
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that have the smallest total distance to a given set of movies. We can define
g1 = 1,0 = 0,g3 = 0 and we end up with the AD method. Configuration
¢1 = 0,92 = 1,93 = 0 is the same as the LMD method and configuration ¢; =
0,92 = 0,q3 = 1 is the MD method. We could also choose for a combination
of weight values like ¢ = 0,90 = 1,93 = 1. This would lead us to movies
with relatively small maximum values and small minimum values but not
necessarily the smallest values. We could even choose negative weight values.
If we take configuration ¢; = 0,q2 = 0,g3 = —1 we would end up with the
movies that are furthest from a given set of movies. This way, users could
give sets of movies they don’t like and the program would recommend movies
that are least like them. Because this configuration is the reverse of the LDM
method, dominating vectors (with our reversed objective) will be favored. It
must be mentioned that Max is probably the main contributor to the total
distance value but as long as we apply the same formula for all vectors this
should not be a problem.

Linkage is a term that is used in the data mining world to describe various
clustering techniques. If the reader is interested, he/she can gain some more
insight into the process of clustering with linkage in [12].

3.9 Output

Our program has two different outputs. One of the outputs is showing the top
ten collection of movies that our recommender system recommends. These
recommendations are shown with the movie names and distance values. Fur-
thermore our program shows the reason why the movie is of relative close
distance by showing which attributes of the given movies match. The rec-
ommender shows if the writers of the original novels match, which directors
the movies have in common, which actors the movies have in common, which
keywords the movies have in common, how the ratings compare, how the
year of releases compare, which genres the movies have in common, how the
aspect ratios compare and which countries the movies have in common. This
is only done with a single movie though as with the multiple selection of
movies there are different criteria and the information would be meaningless.

Another output of our program is a two dimensional graph that shows
the distances of all the movies to a two given movies. The given two movies
are shown on the x and y axis. This graphical representation can be quite in-
teresting for experimentation. Movie names are not shown because it would
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cause too much clutter on the screen. Furthermore, multiple selection dis-
tance value graphs with more than three movies are not supported because
they require multi dimensional graphs. In Chapter we will make use of
these graphs.

3.10 Experiments

In our experimentations we will try various configurations for our formulas
for distance calculations and multiple movie selection distance calculations.
We will try to use generally familiar movies because making sense of the
given data is not easy if one has no knowledge of movies at all. We will also
try to compare it to the recommender system of the IMDDb in some cases so
that we have a clue of how our program compares to other recommenders.

3.10.1 Single movie selection

Let us start with an example output for a “James Bond” movie, let’s say
“Goldeneye”. We will start with the default weight selection values. Because
there are several “James Bond” movies in the database, it would be normal to
expect some “James Bond” movie recommendations. Let us see the results.
Here are the top ten movies our program recommends with the default weight
values for Formula 1 as w; = 15, wy =1, w3 = 10, wy = 3, ws = 7, wg = 3,
wy; =4, wg = 0.1, wg = 2, w19 = 5. The value that is seen next to the movies
is the distance value. The closer it is to zero the better.

1. “The World is not Enough”: 249.4
2. “Die Another Day”: 265.3

3. “Casino Royale”: 302

4. “Thunderball”: 307.4

5. “Licence to Kill”: 307.7

“For your Eyes Only”: 311.5

N9

“On Her Majesty’s Secret Service”: 319.8

8. “Tomorrow Never Dies”: 321.9
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9. “The Spy Who Loved Me”: 322.5

10. “A View to a Kill”: 322.5

It seems that the program correctly identifies other “James Bond” movies
as the most likely candidates for a good recommendation. Because if a user
likes a particular “James Bond” movie, it is likely that the user will like
another “James Bond” movie as well. Knowing if the program returns good
results is not easy to determine. That is why we will use known movies like
“James Bond” and other known movies for further experimentation and trust
our intuitions. If we compare our results to the IMDb movie recommender
(which makes use of similar attributes as we do but also makes use of user
votes) we see that our results are somewhat similar. The IMDb has a much
bigger database of movies to choose from but nevertheless, “James Bond”
movies seem to compare best to other “James Bond” movies. We have to
notice that the movies “Live Free or Die Hard’ and “The living Daylights”
are not found in out current version of the database.

1. “The World is not Enough”

2. “Die Another Day”

3. “The living Daylights”

4. “On Her Majesty’s Secret Service”’
5. “Casino Royale”

6. “Live Free or Die Hard”

7. “The Spy Who Loved Me”

8. “Never Say Never Again”

9. “For Your Eyes Only”

10. “Octopussy”
Let us look at another interesting movie that is well-known, namely, “The

Godfather”. This classic is one of the top rated movies in the IMDDb and is still
considered by many as one of the best movies ever made. We would expect
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our recommender to return at least recommendations for “The Godfather:
Part II” and The “Godfather: Part III” along with other maffia movies in its
current configuration. We would also expect it to show some maffia movies.
Let’s look at the results.

1. “The Godfather: Part I11”: 75.3
2. “Basic Instinct”: 224.4
3. “Goodfellas”: 265.5
4. “The Godfather: Part II1": 288.1
5. “The Untouchables”: 290.8
6. “I, the Jury”: 308.8
7. “Marathon Man”: 317.4
8. “Casino”: 332.1
9. “The Shining”: 336.7
10. “L.A. Confidential”: 336.9

Notice how “The Godfather: Part II” and “The Godfather: Part 111" are
present along with a lot of other maffia related movies. Considering “The
Godfather” is a maffia movie, this was to be expected and shows that our
method of comparing movies has some success. We also see “Basic Instinct” in
the list but this movie has nothing to do with the mob. What does compare,
though, are the keywords. There is a lot going on in “Basic Instinct” that
also is found in other maffia movies like murder, guns, police interrogations,
corruption, etc. If we change the configuration a bit so that we give a higher
importance to the cast and lower importance to keywords we might see “Basic
Instinct” compare a little worse. We pick the configuration for Formula 1 as
follows: wy = 15, wo =1, w3 =10, wy = 1, w5 =7, wg = 3, wy = 4, wg = 0.1,
wy = 2, wip = 5. Notice that we changed w,, which is for keywords, from 3
to 1. Let us look at the results.

1. “The Godfather: Part I1”: 49.3
2. “The Godfather: Part III”7: 138.1
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3. “Basic Instinct”: 148.4

4. “Goodfellas”: 155.5

5. “Marathon Man”: 163.4

6. “The Untouchables”: 164.8

7. “I, the Jury”: 166.8

8. “The Outfit”: 168.4

9. “The French Connection”: 169.3

10. “The Getaway”: 173.1

We see that “The Godfather: Part III” moved up and “Basic Instinct”
moved down a spot. It is interesting to note that the IMDb movie recom-
mender doesn’t recommend “The Godfather: Part II1I” at all for the rec-
ommendations of “The Godfather”. “The Godfather: Part III” was released
sixteen years after “The Godfather: Part I1” and is also the lowest rated ver-
sion and misses some cast from the previous titles. That might explain the
huge difference in distance between “The Godfather” and “The Godfather:
Part III” relative to “The Godfather: Part II” in our recommender system.

Let us now look at another set of movies based on serial killer movies.
Arguably the best known movies are “se7en” or “The Silence of the Lambs”.
We would expect our recommender system to recommend movies based on
serial killings and police investigations. Let us choose “se7en” for our input
on the initial configuration and see the results.

1. “The Silence of the Lambs”: 329.9
2. “Basic Instinct”: 336.2

3. “L.A. Confidential”: 343.3

4. “Casino”: 351.5

5. “The Godfather”: 356.2

6. “Red Dragon”: 356.6
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7. “Panic Room”: 360.3
8. “Goodfellas”: 360.7
9. “Taking Lives”: 362.6

10. “The Untouchables”: 363.6

It is interesting to see that there is a split between maffia movies and mur-
der mystery movies. The top recommended movies are certainly good recom-
mendations if someone likes murder movies. We wouldn’t be too sure about
recommending maffia movies, though. The problem is that these movies do
have a lot in common. maffia movies also have murders, police investigations
and brutal killings. That is why they also get recommended. It turns out that
the IMDDb movie recommender also has some maffia movies in its recommen-
dations for “Se7en” so this must be a common problem. Let us change the
configuration again to see if it has any positive effect. Let’s do it like in the
previous case, that is: wy = 15, wo = 1, w3 = 10, wy = 1, ws = 7, wg = 3,
wr = 4, wg = 0.1, wg = 2, wip = 5. The keyword weight is set from 3 to 1.
Let’s look at the results.

1. “L.A. Confidential”: 159.9

2. “The Silence of the Lambs”: 163.9
3. “Panic Room”: 164.3

4. “Basic Instinct”: 166.2

5. “Casino”: 169.5

6. “Kiss the Girls”: 174.4

7. “Red Dragon”: 175.5

8. “Sleepers”: 175.6

9. “Les Rivieres Pourpres”: 175.7

10. “Inspector Morse: The Way Trough the Woods”: 175.8
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Surely this looks like a much better list. When we look at the list, we
see only one maffia movie and that is “Casino”. The rest are all either serial
killer related or investigation of murder related movies. This leads us to
believe that putting too much weight into “keywords” can become a problem
and we might need to change the initial configuration so that it has less
weight on “keywords”. The problem with attribute “keywords” is that there
can be many of them that match and so be the dominant factor in movie
recommendation, which turns out, is not always a good thing.

Let us look at the final single movie selection recommendations before we
move on to the multiple movie selection in Chapter [3.10.2] This time let’s
take a look at “The Firm”. This movie is about a young law graduate who
starts to work for a corrupted law firm. Let’s look at the results.

1. “The Client”: 348.3

2. “The Pelican Briet”: 360.5

3. “Casino”: 377

4. “Basic Instinct’: 377.5

5. “Presumed Innocent”: 377.5

6. “Absolute Power”: 377.7

7. “The Chamber”: 377.7

8. “The Godfather: Part II17: 378.4
9. “Runaway Jury”: 378.7

10. “Rising Sun”: 379.3

These look like fairly accurate recommendations given the database we
have. The Pelican Brief is especially a movie that is alike and it seems the
recommender agrees. Basic Instinct should probably not be in this list but
again, these movies share a lot of common “keywords”. We will leave the
interpretation of these results up to the reader.
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3.10.2 Multiple movie selection

Like in the single movie selection, in the multiple movie selection section we
will try to use more well-known movies so that we can interpret the results
more clearly. Our program can also output a graph, given two movies, with
the distances of those movies to other movies. We will show these graphs here
as well. Let us start with two “James Bond” movies. We will select “Golden
Eye” and “Dr. No”. Our distance matrix will be made up from the initial
configuration. That is, wy = 15, wy = 1, wg = 10, wy = 3, ws = 7, wg = 3,
wy =4, wg = 0.1, wg = 2, w1y = 5 and we will use the AD method for distance
calculation. That is, Formula 2 with configuration ¢; = 1,¢2 = 0,93 = 0. Let
us look at the results.

1. “Thunderball”: 280.8

2. “The World Is Not Enough”: 302.1

3. “On Her Majesty’s Secret Service”: 302.2
4. “From Russia with Love”: 306.7

5. “For Your Eyes Only”: 321.6

6. “Never Say Never Again”: 321.7

7. “Die Another Day”: 322.7

8. “Casino Royale”: 325

9. “The Spy Who Loved Me”: 328.9

10. “Moonraker”: 329.9

As expected, we see only “James Bond” movies. We see a healthy mix of
different cast in those movies, from “Sean Connery” to “Pierce Brosman”.
This shows that the average distance method picks up a rather diverse se-
lection and that the average distance method works as a user might expect.
What is probably a little more interesting is our graph in this situation. As
explained in Chapter the graph is a two dimensional representation of
the distance vectors (represented as dots) to the given movies. Let us look
at such a graph, see Figure [3.1]
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Figure 3.1: Distance graph of distances to movies “Dr. No” (bottom right)
and “Goldeneye” (top left)

The dots (vectors) are the individual movies and their position is the
distance to the two Bond movies that are seen on the y-axis and x-axis (as
little dots). We also have drawn two lines at a dominating Bond movie (the
big dot). The dots within the the lines are dominated by this movie, the ones
that fall under the lines (which are two) are not dominated by this particular
Bond movie. In fact, we see that there is no movie that dominates all the
other movies. This means that the best movie to recommend in this case
depends on the configuration of Formula 2.

We notice that the movies in Figure [3.1] are either preferring one or the
other Bond movie. This is surprising because the two Bond movies are rather
alike and we would expect that if a movie is like one of the Bond movies, it is
also similar to the other. We would therefore expect the dots to be clustered
more centrally between the two movies. We could probably explain the split-
ted clustering because of the more modern year of release of “Goldeneye” and
the older year of release of “Dr. No”. The split in clustering could be because
older movies compare better to “Dr. No” and newer movies to “Goldeneye”.
We can still see a lot of dots that are closer to the origin of the graph which
are the Bond movies that dominate the selection.

28



To prove our intuition about the spread of dots between older and newer
movies we would like to show a graph of “The Mystery of a Hansom Cab”
(1911) and “Catch Me If You Can” (2002), see Figure [3.2]

Figure 3.2: Distance graph of distances to movies “The Mystery of a Hansom
Cab” (bottom right) and “Catch Me If You Can” (top left)

Our intuition proves to be correct. The dots for Figure |3.2| are spread
parallel to the given two movies because they are quite different from each
other in year of release and probably other attributes as well. this graph
would not be so spread had we given less importance to the year of release
weight value.

A better example of two lookalike Bond movies would be the two movies
“Moonraker” and “Octopussy” because they have a small difference in year
of release and share a lot of cast. They compare quite well according to the
recommender. Let’s examine their graph too, see Figure

We see that the vectors (dots) in Figure are much more centered in
this graph. That is because the Bond movies are very alike in terms of year
of release and cast. We also spot the other Bond movies in this graph. These
are the vectors that are seen at the edge of the cluster. These dominate the
other vector by a big margin.
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Figure 3.3: Distance graph of distances to movies “Moonraker” (bottom right)
and “Octopussy” (top left)

Let us take a look at two unrelated movies according to out intuition. Let’s
take a serial killer movie, “Se7en” with a more lighthearted movie “Catch
Me If You Can”. When we do this, let us use the different methods for vector
comparisons. We will use the initial configuration for making up the distance
matrix. Let us start with the MD method and see which movies our program
recommends.

1. “The Silence of the Lambs”: 329.9
2. “Basic Instinct”: 336.2

3. “L.A. Confidential”: 343.9

4. “Casino”: 351.5

5. “The Godfather”: 356.2

6. “Red Dragon”: 356.6

7. “Panic Room”: 360.3
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8. “Goodfellas”: 360.7
9. “Betty Fisher et Autres Histoires”: 361.6

10. “Taking Lives”: 362.6

When we look at the results we see that there is a fair selection of serial
killer movies and a selection of other types of movies as well, mainly crime
movies. As we discussed in earlier sections, the MD method picks the movies
close to either one or the other. Let us now look at the AD method results
for a comparison.

1. “L.A. Confidential”: 360

2. “The Silence of the Lambs”: 360.4
3. “Goodfellas”: 364.3

4. “Red Dragon”: 367.9

5. “Basic Instinct”: 368.6

6. “Casino”: 369.7

7. “The Godfather”: 369.9

8. “Man on Fire”: 373.4

9. “Taking Lives”: 377.5

10. “Betty Fisher et Autres Histoires”: 378.7

We see that “Man on Fire” replaces “Panic Room”. We also see some
movies move up the chart like “L.A. Confidential”. We don’t see any big
changes in positions or movies, though. Let us look at the LMD method for
further comparison of out methods.

1. “Goodfellas”: 369.7
2. “L.A. Confidential”: 376.1

3. “Red Dragon”: 379.3
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4. “Man on Fire”: 381.9

5. “The Godfather”: 383.4

6. “The Da Vinci Code”: 387

7. “The Bourne Supremacy”: 387.1
8. “Mystic River”: 387.6

9. “Casino”: 387.9
10. “A Simple Plan”: 388.4

These results do look quite different from the other methods. It is hard
to decide which method returns the best result in this case. This is purely
up to the user. Though we notice that the LDM method does bring some
interesting choices to consider like “Mystic River” or “A Simple Plan” which
intuitively seem like good choices. Let us further look at the 2 dimensional
graph for “Se7en” and “Catch Me If You Can”, see Figure 3.4}

Figure 3.4: Distance graph of distances to movies “Se7en” (bottom right) and
“Catch Me If You Can”(top left)
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Looking at Figure we see that a lot of movies are pretty much equally
apart from both movies and that the dominating vectors are less frequent
and less dominating than in the James Bond example. We see that a lot
of movies cluster in the center. The movies in the database are already of
a certain theme, namely detectives and thrillers, which could explain the
clustering. If we had a more diverse selection of movies, like love stories or
science fiction, we would probably see a more chaotic graph.

We want to conclude the experiments section with a different formula
configuration and movie selections. An interesting example would probably
be the most distant movies to a certain given movie. We will look at a single
movie comparison with Formula 2 configured as ¢ = 0,¢2 = 0,93 = —1,
which will cause negative distances, and Formula 1 in the initial configura-
tion. We choose the movie to compare to as “The Pelican Brief”.

1. “Der Hund von Baskerville” (1914): —501.4
2. “The Mystery of a Hansom Cab” (1911): —495
“The Mystery of Edwin Drood” (1909): —494

-~ W

“The Magician” (1926): —490.6

ot

“The Great Hansom Cab Mystery” (1917): —487
“The Hound of the Baskersvilles” (1920): —486.6
“Trent’s Last Case” (1920): —486
“The Yellow Claw” (1920): —486

R

“Love Insurance” (1919): —485
10. “The Hound of the Baskervilles” (1932): —484.2

We’ve added the years of release to avoid some confusion as some movies
appear twice but are different productions. We notice that these are rather
old movies and probably not as easy to watch as the films of today. If we
want to watch some movies that are totally unlike “The Pelican Brief” but
still are modern we could try the following: if we change the configuration of
Formula 1 to wy = 15, we = 0, wg = 10, wy = 3, ws = 7, wg = 3, wy = 4,
wg = 0.1, wg = 2, wyp = 5, that is, where year of release is not important we
get the following movies.

33



1. “The Chisholms”: —469.3

2. “A Perfect Spy”: —437.7

3. “Levkas Man”: —429.5

4. “The Narrowing Circle”: —428.9

5. “Futurama”: —428.1

6. “S.A.S. a Salvador”: —427.8

7. “Rebus, Resurrection Man”: —427.3
8. “Secret Army”: —427.1

9. “Kessler”: —426.9

10. “Gaudy Night”: —426.5

For those who didn’t like “The Pelican Brief”, this seems like a decent
recommendation.
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Chapter 4

Conclusion

Our experiments show some good results from our recommender. Even though
the movie selection in the database is limited to thrillers and detectives our
recommender can identify similar flavored movies. For example, we have
shown that Bond movies compare favorably to other Bond movies accord-
ing to our formula. But also other genres like maffia movies and serial killer
movies gave good results. We have seen some instances of odd movie recom-
mendations but we have also seen that playing around with the configuration
can lead to better results and (to a degree) eliminate the odd choices. This
shows that the recommender is highly customizable. We've seen that our
multiple movie selection recommendations also show good results depending
on the method used. The user could customize such a program to his/her
own needs. What we missed is a more broad database with movies from a
broader selection of genres. We have no idea how our recommender would
work in a broad database like the IMDDb itself. The results shown here are
promising, though.

We could probably change the initial configuration a bit so that it does
not give as much weight to keywords. As it is, it seems keywords dominate all
other attributes. This was to be expected because there are a lot of keywords
defined for every movie, much more so than cast or genres. The rest of the
attributes seem to be pretty accurate for this database of movies.
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