
Cell-Forum:
Collaborative multi-user virtual world applications

Author: S.M. Wolff
Project: Cell-Forum Project
Student ID: 0333816

Supervisor: F.J. Verbeek
Group: Imaging & BioInformatics

- 2 -

Table of Contents

Abstract.. - 3 -
Chapter 1 – Introduction .. - 4 -

1.1 What is Croquet?.. - 4 -
1.2 Cyttron Database ... - 6 -
1.3 Cell-Forum Project ... - 6 -

Chapter 2 - Material & Methods ... - 7 -
2.1 Squeak / Smalltalk.. - 7 -
2.2 Croquet Architectural Overview.. - 8 -

2.2.1 Islands ... - 8 -
2.2.2 Messages .. - 10 -
2.2.3 Croquet Time and synchronization .. - 12 -
2.2.4 Controller ... - 14 -
2.2.5 Router / Sequencer.. - 15 -
2.2.6 The user... - 16 -
2.2.7 Overview TeaTime... - 17 -

2.3 Tutorial ... - 18 -
Chapter 3 – Implementation / Results.. - 19 -

3.1 Cell Forum construction toes.. - 19 -
3.1.1 2D Interface inside of 3D World ... - 19 -
3.1.2 Dynamical creation and linking of spaces - 19 -
3.1.3 Remote server communication .. - 20 -
3.1.4 Virtual Network Computing .. - 20 -

Chapter 4 – Conclusions / Discussion ... - 21 -
References .. - 23 -

- 3 -

Abstract

Cell-Forum is a project for the creation of a 3D environment in which users can easily
share and discuss 3D models and images. In particular, a 3D environment representing
the Cyttron database (Cf. §1.3), developed at Leiden University, was considered.
Collaborative virtual environments are used for collaboration and interaction of possibly
many participants that may be spread over large distances. OpenCroquet, or just Croquet,
is an open-source project that implements such a virtual environment. Croquet makes it
possible for programmers to create and deploy such collaborative multi-user
environments using the Croquet SDK (Software Development Kit), without having to
know a lot about how the synchronization and consistency of data between the (large
amount of) users is accomplished. This report provides a closer look into Croquet to see
if this could be a good environment for projects such as Cell-Forum.

- 4 -

Chapter 1 – Introduction

In this section Croquet is introduced in the subsection “What is Croquet?”. The Cyttron
Database is introduced in the subsection “Cyttron Database”, followed by a detailed
description of the Cell-Forum Project and the connection with Croquet in the subsection
“Cell-Forum Project”.

1.1 What is Croquet?

Croquet is a computer software architecture which was built with a focus on 3-
dimensional collaborative environments for a large amount of users. It compares to the
current incarnation of the World Wide Web in several ways, where users have the
possibility to create and manage websites of their own to share text and images with other
users and create hyperlinks to other websites. In Croquet users can create a 3D
environment comparable to a website, so not a ‘homepage’, but a ‘home world’. Also it’s
possible to create some sort of hyperlinks to other places of your ‘home world’ or even to
other existing worlds. However, in addition, those worlds are fully dynamic and
everything in it is an object that can be part of collaboration. The worlds are fully
modifiable at all times, in collaboration with other users inside the same world. One way
to think of the Croquet environment is as a high bandwidth conference call. Once a
connection is made, users don’t only have text/voice communication, but can also easily
exchange documents, images and other multimedia files, collaboratively perform
complex simulations, design project plans etc.

Croquet is open-source and written in the Squeak programming environment (Cf. §2.1),
which makes it highly portable between the different Operating Systems. Croquet is a
development and delivery platform in one, making no distinction between the user
environment and the development environment.

The focus of Croquet is on interactions inside a 3D shared space which is used for
context based collaboration. Each user can see all of the other participants and also see
what they are doing and what their current focus is. A new collaboration protocol called
TeaTime has been developed to enable this functionality. The rendering engine is built on
top of OpenGL.

- 5 -

Figure 1. A Croquet Space containing several objects.

In Fig.1 a typical Croquet space is shown. These spaces may contain all kinds of objects,
including ‘links’ to other spaces. Such thing is realized by creating a ‘Portal’ which
connects to spaces to each other. These portals can be compared to URL’s in a website.
They redirect users to other parts of the website or even to other websites. These portals
behave exactly the same. In Croquet however, there is a big difference in how linking to
another part of the ‘website’ and linking to another ‘website’ is being handled, more
about this later on in this report.

- 6 -

1.2 Cyttron Database

The Cyttron Database is an image database of microscopic images built to support
scientific research in the field of molecular cell biology. The images in the database,
which are acquired through a range of different modalities, can be retrieved at different
detail levels ranging from the detail level of cells to the detail level of viruses and atoms.
The goal of the Cyttron consortium is to deliver a virtualized microscope covering the
entire resolution range, where users can actually zoom in on the image through the
different resolutions. To certain extend comparable with the zooming function in “Google
Earth”.

Beside of offering the images in more than one resolution, Cyttron saves metadata along
with the image, making it possible to retrieve related images to a given query.

1.3 Cell-Forum Project

The Cell-Forum project deals with the following problem; how can users collaboratively
discuss and annotate images within the Cyttron database? This report should answer the
question if the Croquet environment provides a suitable solution to the Cell-Forum
Project.

The Cell-Forum Project deals with creating a 3D environment for the Cyttron database, a
scientific image database created at LIACS. The project however will not only aim for
2D image displaying, but will also include 3D model viewing, annotation of items and
collaborative modification and discussing of all in-world data. The result aimed for is a
Croquet World which communicates with external resources for the images and objects
to be viewed inside the world. Simple forms will be used to insert queries and the images
and models will be located in dynamically created spaces within the World. These spaces
will also be interconnected to related search results which may be interesting for the
user(s). This way, search in the database by a user should result in several newly created
spaces, connected in a way that represents the relation of the contents of these spaces to
each other.

This way we hope to create a collaborative experience within a 3D virtual world to really
give users the ability to ‘walk through’ the database and discuss and change/annotate the
items they visit.

- 7 -

Chapter 2 - Material & Methods

In this section the programming language and environment of the Croquet project is
described in the subsection “Squeak/Smalltalk”. In the subsection “Croquet Architectural
overview”, the architecture and inner workings of the several components of Croquet are
described.

2.1 Squeak / Smalltalk

Smalltalk was the product of research by a group of researchers at Xerox Palo Alto
Research Center (PARC). The first version was Smalltalk-71 and the following versions
were only used for research purposes inside of PARC. Until the release of Smalltalk-80
which was the first language variant that was made available outside of PARC. First as
Smalltalk-80 Version 1, given to a small number of companies and universities and later
(1983, Smalltalk-80 Version 2) a general availability implementation was released.

The Squeak programming language is a Smalltalk implementation, derived directly form
Smalltalk-80 Version 1 by a group at Apple Computer. The group which implemented
Squeak included some of the original Smalltalk-80 developers. It is object-oriented,
class-based and reflective. Programs produced with Squeak run bit-identical on all other
platforms. The Squeak system includes code for generating a new version of the virtual
machine (VM) on which it runs. It also includes a VM simulator written in Squeak as
well. For this reason, it is easy to port to other systems.

Development Environment Interface

The Croquet/Squeak environment, comes with some graphical tools which will be
explained later on in this report, in the ‘How to program in Croquet’ section. (Cf. §2.3)

- 8 -

2.2 Croquet Architectural Overview

2.2.1 Islands

The Croquet architecture has been build upon the concept of replicated computation,
rather than replicated data. Thus Croquet sends requests for computation to the data,
rather than the other way around. Though it is necessary to transfer the current state of a
world to a newly joined user, the rest of the synchronization is done by a message passing
model where the messages themselves take care of the synchronization and consistency
between the set of participating machines. More about the messages further in this
chapter, first we’ll take a look at the main objects of replication, the data where the
computation is actually being sent to.

The main objects of replication are the so-called Croquet Islands. A Croquet Island is a
secure container of other objects. Croquet Islands are simple save to disk and exchange
with other users to initiate a collaborative session with its contents. Every user
participating in a collaborative session has a replica of the Island on their machine, so an
Island can be thought of as a collection of item containers all in identical states but
operating on different machines all connected by a network.

Objects inside of an Island can send messages directly to each other or even to
themselves. The spaces (Fig.1) we have seen earlier contain all kinds of objects which do
or do not communicate with each other. These spaces however are actually also objects
themselves, thus an island can contain several spaces, containing objects
intercommunicating through the set of spaces.

Figure 2. A Croquet Space containing several objects communicating.

- 9 -

Figure 3. A Croquet Island containing several objects, including two spaces

However, it is not possible for objects inside of the Island, to send messages to objects
outside of the Island’s scope – nor can objects outside directly send messages to objects
inside of the Island. Whenever a link to another Island is established, the Islands will be
linked to each other, but the objects in the several spaces of the current Island will need a
special ‘TFarRef’ object (Cf. §2.2.2) to communicate with objects in the additional
Island.

As stated, Islands are the units of replication in the system. For Islands to function
properly, they must be deterministically equivalent. Meaning they must retain an
identical state given an initial state and exactly the same inputs, while not peeking or
communication with each other. The idea behind this is that whenever objects inside of
the scope of an Island communicate with each other, these messages won’t have to be
distributed between the several machines; they all have to be able to generate the exact
same behavior. Whenever an external event occurs, for example a user changes the size
of a window; the message will have to be passed throughout the participating machines.
A further detailed explanation is covered in the sections (Cf. §2.2.2 - §2.2.3).

- 10 -

2.2.2 Messages

Objects within Croquet can only perform actions (rotate, increase in size, etc.) if they
receive a message that contains the information about the action to be performed. Objects
can send messages to themselves or to other objects within Croquet. The messages that
are sent to objects outside of the scope of the Croquet Island are treated a little different
than those that are sent to objects inside of the scope of the Croquet Island. From the
point of view of the Object they are the same, but they are treated differently by Croquet.
This will be described in more detail in section (Cf. §2.2.3).

Croquet messages consist of four components.

- Target: The object that will receive and execute the message.

- Actual message: The actual message, for example; “Move ‘X’ units in ‘Y’
direction”.

- Arguments: The arguments to the message, as in the example above this
would be the ‘X’ and ‘Y’.

- Execution time: The time at which the message is to be executed, is always
in the form of Now + Time offset. This time part of the message is also used
to sort the Islands Message Queue.

Message Queue

There are two types of messages for the queue, external and internal generated messages.
As the names already suggest, the internal messages are generated in the island itself and
the external messages are generated outside of the Island-scope, most of the time through
a user performing a particular action or task.

The Island does not distinguish between internally and externally generated messages,
where external messages are usually generated by user inputs. The externally generated
messages however, do play a major role in the synchronization part of the Croquet
Architecture, which make them a little bit different from the viewpoint of Croquet. The
external messages are used by the queue to indicate the upper bound to which the Island
can compute its messages, without the danger of computing beyond any pending
messages. This will be discussed in more detail in the next section (Cf. §2.2.3).

- 11 -

TFarRef

Sending messages to objects outside of the scope of the Croquet Island cannot be done
directly, but are sent using a so-called ‘TFarRef’. A TFarRef is an object that exists
outside of the scope of the Croquet Island, but acts as a proxy for the object that is inside
of the Croquet Island’s scope. The TFarRef then forwards the message to the object
intended.

The TFarRefs are generated by having the Croquet Island register a particular object as
being externally accessible. An external name is then generated and a TFarRef for that
object is created by the Croquet Island. The Croquet Island holds some dictionary that
maps the TFarRef to the actual object.

- 12 -

2.2.3 Croquet Time and synchronization

The synchronization of the running copies of a Croquet world running on several
machines is crucial for Croquet to function properly. It is of major importance, that
whenever a user performs an action, for example increase the size of or moving an object,
all the other participants can see this happen in their copy of the world as well. All of the
participants must have their worlds fully synchronized at all time, or else collaboration
between the users and discussing/annotating of on-screen objects would not be possible.

The definition of time plays a central role in the synchronization methods in the Croquet
Architecture. Islands are deterministically equivalent (Cf. §2.2.1), meaning that the
internal messages generated within the Islands are to be executed in exactly the same
order and time, so the states will be exactly the same at all times. Externally generated
messages have to be properly interleaved in the queue with the internal messages at
exactly the right time and order.

The order of messages in the internal message queue is the only view of time an Island
has. These messages literally define the Island clock. Although Islands have internally
generated time based messages that can be queued up to a certain future point, these
cannot be released for computation until an externally generated time based message has
been received and inserted in the queue to indicate the outer temporal bound to which the
Island can compute the messages to. This is a key point in the architecture to ensure the
synchronization between the set of Islands participating in a collaborative session. So
whenever a huge number of internally generated messages are eagerly waiting to be
executed, they remain pending until an externally generated message comes in setting the
messages free to be computed, up to and including the newly received message.

During the execution of a message from the queue, the time does not advance during the
execution, it remains atomic. Whenever future messages are generated during the
execution of a message, it’s time of execution will always be defined in terms of “now”
plus an offset value, where the offset-part has to be bigger than zero. Meaning that all the
messages in the Island queue are “future” messages (to prevent Croquet from getting in a
loop where to whole world appears to “freeze”). The generated messages are obviously
sorted in the queue by the time they’re meant to be executed.

Internally generated messages are implicitly replicated, meaning that whenever two
copies of an island are running on different machines and are in fully synchronized state,
the messages generated by objects that are inside of this island are automatically
generated exactly the same on each running copy of the island. Internal messages involve
messages generated and processed within each Island replica separately, so no network
traffic is involved for this.

- 13 -

Externally generated messages are explicitly replicated, meaning that these messages will
not be automatically generated on each running copy of the Croquet world and have to be
send to all of the participating machines to ensure all the running copies of the world will
all remain synchronized at all times. The name already indicates that these messages are
generated outside of the scope of an Island, typically by one of the users participating in
the Island. The replication of external messages is handled by an object which will be
explained in the next section and is called a Router. The Router replicates the externally
generated messages and determines when the message will be executed.

As time is atomic and the external messages are the actual Island clock, network latency
has no impact on the synchronization. It does mean however, that users have a degraded
feedback experience.

- 14 -

2.2.4 Controller

The role of the Croquet Controller is to act as the data-interface between the Island and
the Router and between the user (Cf. §2.2.6). The main job of the controller is to ship
messages around between all the parts of the system.

The Controller also manages the Islands message queue, by sorting the incoming
messages based on their timestamp and by determining when messages will get executed.

Interestingly, a Croquet Controller can exist without an Island, acting as a proto-Island
until the real island is either created or duplicated. In this case it is used to maintain the
message queue until either a new Island is created or until an existing Island is replicated.

Figure 4. Croquet Controller inserting a new message

- 15 -

2.2.5 Router / Sequencer

The Croquet Router plays two major roles. First, it acts as the conductor for the replicated
Islands in that it determines when an external event will be executed. These external
events are the only information that an Island has about the actual progression of time, so
the Island simply cannot execute any pending messages in its message queue until it
receives one of these time-stamped external messages. The second critical role played by
the Router is to forward any messages it receives from a particular Croquet Controller to
all of the currently registered Islands.

Given that Islands cannot execute beyond these external messages, it is usually necessary
to manufacture new messages simply for the sake of moving time forward. These
messages are created by the Router and are called heartbeat messages. They are basically
message-free and only contain a time-stamp that generates an end-point of the message
queue allow the island to execute any pending messages, to prevent the time from
standing still when no ‘normal’ external messages are being generated.

Routers can be located almost anywhere on the network and need not be collocated with
a particular Island. Typically, the creator of the Island will own the Router by default.

Figure 5. Croquet Router forwarding a message to all the Controllers

- 16 -

2.2.6 The user

Every user that is participating within a Croquet Island is represented by an avatar within
the 3D virtual world. This makes it possible for other users to see where and what a
collaboration partner within the Croquet Island is focusing on. A user is actually an
external object to the Croquet Island, meaning that every action performed by the users
(walking around, manipulating items, etc) has to be explicitly replicated on all the
running copies of the Croquet Island. The HUD (Head-up Display) / UI, is a property of
the object representing the user and therefore can easily be changed as well.

- 17 -

2.2.7 Overview TeaTime

Croquet is designed to operate as a peer-to-peer architecture, this to ensure the greatest
level of flexibility in the design of the system and its ultimate usability. The key part of
the architecture making up Croquet to enable this peer-to-peer interaction is TeaTime,
which is the basis for component object-object communication and world/object
synchronization between the set of Croquet worlds, including the initial content
synchronization when a user is joining an existing world.

It is important to notice that everything inside Croquet is an object. Even the user
interface is more a property of the object that represents a user in the space and
consequently it can easily be modified.

Some items that will be used a lot while working with Croquet are TObject and TFrame:

TObject
A Tea object acts with the property that messages sent to it are redirected to replicate
copies of itself on other users participating machines in the peer-to-peer network. All of
the interesting objects inside of Croquet are constructed out of subclasses of TObject.

TFrame
The component base class, also a subclass of the TObject class, is called TFrame. The
subclasses of TFrame act as frames in an OpenGL rendering hierarchy, as event handles,
and as time based simulation objects as described above as part of TeaTime.

- 18 -

2.3 Tutorial

The first few steps of programming in croquet were very hard for me, as there was some
serious lacking of decent documentation and tutorials. With some trial-and-error and
some practice however, the basic idea of how to create some simpler Croquet Worlds and
applications within those worlds became clear. Once you get to know the Squeak
environment and the Croquet architecture, creating objects and giving them certain
functionalities was actually quite straightforward.

Hopefully starting Croquet application developers will find the (novice) tutorial located
in the appendix of this report useful.

- 19 -

Chapter 3 – Implementation / Results

In this section the construction toes for the Cell-Forum Project are stated and described.

3.1 Cell Forum construction toes

Due to time constraints, the development/implementation of a complete ‘skeleton’ for the
Cell-Forum environment was not possible. Therefore, only some of the required
construction toes were selected and their functionality implemented within a Croquet
World.

Without doubt not at all a complete code, but it provides a good start. The following
functionality is implemented in a test World:

- Dynamic creation and linking of spaces and their contents
- Remote server communication
- Virtual Network Computing (VNC)

3.1.1 2D Interface inside of 3D World

While in the 3D World, you will still need some text-based interfaces which will
eventually be in 2D. Squeak provides some tools to create such 2D interfaces with the
ability to load them in a window inside the 3D World. How these 2D interfaces can be
created will not be described inside this report, but links to online tutorials will be
provided for further details on this subject.

3.1.2 Dynamical creation and linking of spaces

The idea was to create a new ‘room’ for every item that has been searched and requested
to load. The new ‘room’ will then be added to the Island, linked to with a portal and the
requested image / model will be loaded from a remote server and placed inside this newly
created 3D space.

For the input of important parameters for the creation of these rooms, 2D windows with
text fields and buttons were created. Just for testing reasons you can decide on the color
of the room and you can decide on the item that is to be loaded inside of it. The pressing
of the execute button results in the appearance of a portal to the new space.

Pointers, or the addresses to the data structures, to the dynamically created spaces are
stored in an Ordered Collection (similar to an array, but then named differently), so the
content of the spaces can still be altered after some time has passed. For testing reasons

- 20 -

some starting code is written to link several created spaces together, to create some
“graph-like” structures.

The most crucial parts of the code for this are included inside the appendixes section.

3.1.3 Remote server communication

To load the requested data into the Croquet World, external server communication will be
required. In this case I have only tested the simplest case of visiting a web server running
a PHP script, giving this PHP script some input and returning the outputs of this script to
variables within the Croquet application for further usage. The reason I chose to test it
with a PHP script was that I am familiar with it, but it could have been anything else as
well.

3.1.4 Virtual Network Computing

A very useful feature that enables users to set up a connection to a remote PC and
actually see its desktop and be able to use it as if you would actually sit behind the PC
itself. This isn’t something new, but creating such a connection to a desktop inside of the
collaborative croquet world does open some new possibilities. As now some programs
that were not originally created for collaborative use, are now all of a sudden viewable
and accessible for a group of users simultaneously inside of the Croquet World.

A link to a step by step tutorial for setting up such a VNC server and opening it inside of
the croquet world is included inside of the appendix section.

- 21 -

Chapter 4 – Discussion / Conclusions

Similar/Related projects
Croquet is not the only environment that offers developers to create collaborative 3D
virtual worlds. The Wonderland Project (ref. 10), formerly know as the Looking Glass
project, is another one of the several projects that aim for the same kind of functionality
as Croquet does. At first glance the Wonderland Project looks a little further in the
development phase than Croquet, but for now I cannot give my opinion on which one is
the better. Another project that is somewhat related is the Win3D project (ref. 12).
Although Win3D does not really aim for the collaborative aspect, it does focus on 3D
GUIs in general, which can be very important to Croquet, or more to Croquet application
developers as well.

Own experience
The status of development which Croquet retains in while I am completing this report, is
that it is just not finished yet. Although the software package has already been updated
several times and has improved significantly in terms of stability and functionality within
the past several months, it is currently still lacking some promised functionality and/or
some functionality is not really functioning properly yet. It is expected however that
Croquet will continue to improve rapidly for the time coming, as the Croquet community
is growing and very active at the moment.

Within the time I spent working with Croquet, I learned a lot about how Croquet is
designed and how to effectively create applications with it. Unfortunately it took me little
too much time to really feel accustomed with it and therefore have not been able to
actually create a working application for the Cell-Forum project. I have been able
however, to look into and develop some of the construction toes required for the Cell-
Forum application.

For me it was the first time that I jumped in the middle of such a large open-source
program to try and understand it, so my approach would be a little different next time. A
better approach would be to first read some papers about the architecture of a project and
why certain implementation choices were made. Especially when the programming
environment is really lacking good tutorials, knowing what and why you are doing is
incredibly much faster than the classical ‘trial and error’ approach.

Future Development
A ‘road map’ for future development goals for the Croquet project is defined at (ref. 1)
and contains some key improvements that will undoubtedly take Croquet to a higher
level. Some points that I would like to highlight are; (1) the text/menu’s inside of the 3D
world. They really need some improvements to present an attractive GUI to the end-user
and to reflect the quality of its underlying technologies. (2) Movement of your avatar
inside the 3D world. At the moment this is done by positioning the mouse on certain
positions on the screen and clicking it to move in a certain direction. Although it works

- 22 -

fine, a more general method which is also widely used in all modern 3D gaming software
would definitely fit more and improve the usability of Croquet.

Conclusions
Croquet gives designers a fairly straightforward development environment to create and
publish powerful collaborative applications. The developers do not need to know a lot
about how the collaboration works. Furthermore the system is designed in such a way
that it is easy to take an existing object and modify it by making a subclass for it to fit
your own needs. This way it is possible to create functional applications in a reasonable
time period.

Whether Croquet will eventually be widely used or not is hard to say at this point. The
project is clearly still in the development phase and therefore it is difficult to foresee. The
future plans however are really promising and as the community is very active at the
moment, we might just see more of this project in the near future.

- 23 -

References

1. http://www.OpenCroquet.org
2. http://www.duke.edu/~julian/Cobalt/Home.html
3. http://www.dmu.com/croquet/
4. http://xaverse.blogspot.com/
5. Smith D.A, Kay A, Raab A, Reed D.P (jaartal)

Croquet – A collaboration System Architecture
6. Smith D.A, Kay A, Raab A, Reed D.P (jaartal)

Croquet Programming, SDK guide
7. http://www.smalltalk.org
8. http://www.squeak.org
9. http://www.scribd.com/doc/2913988/-technische-uiteenzetting-Edusim-3D

Technische uiteenzetting Edusim-3D
10. https://lg3d-wonderland.dev.java.net/
11. Kallergi, A., Bei, Y. Kok, P., Abrahams, J.P. ,Dijkstra, J., Verbeek, F. (2009)

Cyttron – A virtualized microscope supporting image integration and
knowledge discovery.

