
Appendix:

How to program in Croquet

Author: S.M. Wolff
Project: Cell-Forum Project

Table of Contents
Table of Contents .. 2
Graphical Interface ... 6
Control structures .. 9
Testing variables ... 9
If then else .. 10

Switch .. 10
While .. 10
For .. 11
Data structures .. 12
Ordered Collection .. 12

Classes, Methods and Shared Variables .. 13
Packages .. 15

Classes, Methods and Shared Variables Error: Reference source not found
Packages ... Error: Reference source not found
Bringing it all together, a simple Croquet World Error: Reference source not found

Introduction

This is a tutorial for programming in the Croquet environment. This tutorial will
not go into details, but cover some basics which are needed to give beginning
Croquet developers a kick start. First an “hello world!” application will be shown
and described, then the topics ‘variables’, ‘graphical interface’, ‘control
structures’, ‘data structures’ and ‘methods and classes’ will be covered. This
tutorial will be concluded by an example of how to create your first working
collaborative Croquet virtual world.

The tutorial was written for those that already have some experience in any other
programming language(s).

Hello World

Like always with introductions to new languages, let us start with a simple ‘Hello
World!’ program. Although we will be using the Croquet SDK, the first few
tutorials will not be inside a working Croquet World, instead the output will be
displayed within a ‘transcript’ window, comparable to a console window.

To start with Squeak, first we are going use the workspace to write some simple
functions and let those functions print something in the transcript.

| a |

a := String new.
a := ‘Hello World!’.
Transcript show: a.

| a |

The first line of code in the example contains the declaration of variables. You do
not specify the type of the variable yet here, only the name. In this case we have
created a variable called ‘a’. The system doesn’t know if it is going to be an
integer, double, string or any other object yet.

a := String new.

At the next line of code we declare that the variable with name ‘a’ is an object of
the kind String. At this example I have explicitly declared ‘a’ as a String, however,
for the basic variables this isn’t really necessary. In the next examples the type of
the variable will be made clear at the moment of assigning a value to it. You see
that the command is followed by a point, as in most other languages the
semicolon ‘;’ is used, in Smalltalk the point is used for this. Also note that the
symbol for assigning is ‘:=’ instead of ‘=’.

a := ‘Hello World!’.

Next we assign a value to the variable ‘a’. It now contains the string of
characters: ‘Hello World!’.

Next we are going to print the contents of the variable ‘a’ to the screen, or better
said, the Transcript window.

So now, when you have typed this in the workspace (or copy/pasted it there),
select this piece of code by using your mouse and right-click somewhere in the
Workspace to bring up a menu and select ‘Do it’ [Fig 1].

Fig 1. Execute a piece of code

This action will either execute, point out syntax errors or bring up a debug
window of the selected piece of code. In this case the contents of the variable ‘a’
will be displayed in the Transcript.

The next section will cover the most frequently used graphical interfaces of the
programming environment.

Graphical Interface

To start programming in Croquet, we will use Cobalt. Cobalt is a free and open
source multi-platform metaverse browser and toolkit application built on top of the
Croquet SDKCobalt comes with a graphical programming environment which will
be introduced in this chapter by using screenshots of the several most frequently
used parts.

When you downloaded and extracted the archive containing Cobalt and executed
the ‘Croquet.bat’ file, a start screen similar to the following screenshot will be
visible.

Fig 2. The ‘tools’ tab dragged out

 The ‘Tools tab’ can be dragged from the right side of the screen to view the
available tools to assist you in your Croquet programming sessions.

The most of the time you will be working inside the ‘Package Browser’, here you
can browse all the available packages, class-categories within those packages,
classes, method-categories and methods.

Fig 3. The package browser

Declarations and operators

Declaring variables, or object-references, instances, pointers, will be done at the
top part of a Squeak scripts.

| var1 var2 var3 |

These variables will be local for the script that they’re declared in. How to declare
more global variables will be explained at the ‘Class’ section of this tutorial.

At the declaration of the variables, no types are specified yet. The most primitive
variables will even never have to be specified, think of integer, string etc.
Although in my opinion it will definitely improve the readability of most of your
scripts.

The symbol “:=” is the operator for assignment in Squeak. All statements finish by
a “point”. So for example, to declare a string variable, and assign a value to it, the
following lines of code will get you what you want.

| var1 |

var1 := String new.

var1 := ‘This is the contents of the variable var1’.

Here an object of the class ‘String’ is defined. For other Classes it works exactly
the same.

var1 := someClass new.

Control structures

The control structures known from every other programming language exist in
squeak as well. The syntax however, is little different again. The syntaxes of the
standard control structures (if-then-else, while, for-loop) will be explained in this
section, if necessary by means of some example pseudo codes and their squeak
representations.

The workings of the control statements will not be explained as it is considered
you already know how they what they do, it are just the syntaxes that will be
covered.

Testing variables

To be able to write conditional statements for the control structures, you first
have to know how to test variables/objects for certain conditions. For comparison
of variables or objects in Squeak, the following symbols are used:

> greater than

< less than

= equal to in value

~= not equal in value

>= greater than or equal to

<= less than or equal to

== check if two objects are of the same type, rather than equal
in value

And the signals for AND and OR are:

(a > 0) & (b < 0) Returns true if a is positive and b is negative, otherwise false.

(a > 0) | (b < 0) Returns true if either a is positive or b is negative.

If then else

The Squeak if-then-else structure syntax is the following.

| x y |

x := 1.
y := 2.

(x > y)
 ifTrue: [
 "do something".
]
 ifFalse: [
 "do something".
].

Switch

The switch control structure has exactly the same functionality as the if-then-else
structure. Only the switch control structure offers significantly better readability
compared to the if-then-else structure when a large number of conditions and
associated actions are being listed.

aValue switch
 case: [matchCode1] then: [actionCode1];
 case: [matchCode2] then: [actionCode2];
 ...
 default: [otherCode].

While

The Squeak while loop control structure syntax is the following:

 x := 5.
 y := 0.

 [y <= x] whileTrue: [

 "do something".
 y := y + 1

].

For

The usual for loop is declared in Squeak like this:

1 to: last do: [
:i | i+1.

"do something"

]

This can be a little confusing for C(++) or Java programmers at first. Below is an
example of how the for loop is used.

The for loop that you know would be:

for (i = 1; I <= 4; i++) {
 x = i * 5;
}

In Squeak you will have:

1 to:4 do: [
 : i | i+1.
 x := i*5.
]

Data structures

With the term “Data Structures” we mean the different manners of organizing and
accessing your data used for your computations. Here you can think of structures
like Arrays, Lists and Heaps.

Ordered Collection

The ordered collection is best described as a composite of an array and a linked
list. The data inside the ordered collection can be accessed by simply providing
the location of the element inside the collection in which you are interested, much
like you are used to with arrays. It is also possible to insert items in a certain
position or just “at the end/beginning” of the collection. Below some of the basic
actions on ordered collections are listed.

add: 'x' To add the string x after the last
element of the collection.

addFirst: 'x' To add the string x at the first position
of the collection.

size Returns the quantity of elements of the
collection.

asString Convert an element of the collection to
String.

at:n Returns the string in the position n.

removeAt, RemoveFirst,
RemoveLast

used to remove elements from the
collection.

Classes, Methods and Shared Variables

Now the ‘how’ about programming in squeak has been covered, the ‘where’
about programming in squeak will be covered in this section. Squeak is a pure
Object Oriented language and therefore everything you code will be in the form
of Classes and Methods. This tutorial will not describe everything about Object
Oriented programming here as there are numerous books about this subject. If
you have programmed before you probably already have some experience with
this in a language like C++ or Java.

To state it simply, a Class is a group of methods/functions and variables. A
programmer can create, or instantiate, an object of such a class and execute the
associated functions.

Everything inside of Croquet is a class and therefore it is very easy to use
existing objects and adjust them to your own needs, this makes it possible to
create functional collaborative worlds in a very shot period of time. One thing that
you should keep in mind when programming in Croquet, is that you can have
variables local to a method within a class, variables local to a object of a certain
class and variables local to all instantiated objects of a class together [Fig 4, 5]. If
you want a function to make use of parameters, you have to specify it in the
function declaration, like in the following example code:

The declaration of the method, at the top of the method code, states the method
‘linkspaces’ with 4 parameters ‘a’, ‘b’, ‘ap’ and ‘bp’.

linkSpaces:a and: b p1: ap p2: bp

| p1 p2 win1 win2 |

"portal from a to b"

p1 := TPortal new.
p1 postcardLink: bp.

…

This is how an instance of the class, called ‘cube’, is executing this method with
the required parameters:

cube linkSpace:spaceA to: spaceB p2: postcardB.

Fig 4. Variables local to method

Fig 5. Variables global to single object / all objects of a certain class

Packages

Packages are a collection of classes that belong to a certain
group/application/subject. However it is still possible to use a class somewhere
which is not in the same package. It is just a handy method of grouping classes
together.

Bringing it all together, a simple Croquet World

Let’s start at the beginning, start up Cobalt and open a package browser window
by clicking the ‘Tools’ tab from the starting screen and drag out a package
browser to you workspace.

Now you are going to create a new package for your Croquet World. Left click
your mouse on the square icon above the scrollbar and choose “add item”, as
shown on [Fig 6, 7, 8]

Fig 6. Click the square

Fig 7. Choose “add item”

Fig 8. Type new package-category

The name on the left side of the dash (“-“) symbol is the package name and the
name on the right side of the dash symbol is the class category name. Add a
package containing the class categories “Worlds” and “Harness” [Fig 9].

Fig 9. Resulting in your first own package

Now we are going to use one of the demo worlds to create a world of our own.
Locate the package “SimpleDemoMorph” in the package browser. Click on it and
select the class category “Worlds”. Right-click on the class “SimpleDemoWorld”
and choose the option ‘copy’ [Fig 10].

Fig 10. Choose option ‘copy class’

Copy the classes “SimpleDemoWorld” and “SimpleDemoHarness” of the
“SimpleDemoMorph” package, give them a unique name and move them to your
newly created package. How to move a class from one package to another is
shown in [Fig 11, 12, 13].

Fig 11. Give the copy of the class a unique name

Fig 12. Change package location of the copied class

Fig 13. Don’t forget to ‘accept’ the code, else nothing happens

Now you are going to set the Island ID for your Croquet World. Select the
“MySimpleDemoWorld” class from the “Worlds” class category in your newly
created package en press the “class” button [fig 14].

Fig 14. The ‘class’ button

Here you have to change to code from:

islandID
^TobjectID new

to:

IslandID
^TobjectID for: ‘MySimpleDemoWorld’

Where “MySimpleDemoWorld” is the same as the classname. Do not forget to
right-click and ‘accept the code!

You are actually done now! But to make it easy to launch your Croquet World,
you are going to make it appear in the “object” window. In the
“MySimpleDemoMaster” class from the Harness class category, click on the
descriptionForPartsBin’ method [fig 15].

Fig 15. ‘class’ methods of ‘MySimpleDemoMaster’

Now change to code to the following:

descriptionForPartsBin
^ self partName: ‘My Croquet World (Master)’
categories: #(‘Croquet’)
documentation: ‘My first Croquet World’
sampleImageForm: self defaultForm.

Now select and ‘accept’ the code.

Now save your work by clicking on an open area on your workspace to bring up
the menu. Click ‘save as’ and save your work as a new image. If you want other
people to be able to run/join your Croquet World, you have to copy the
[name].image and [name].changes files to computer where you want to run it.

Now let’s open your World. Open up the Objects pane and drag your world to the
workspace, your first Croquet world is born, congratulations!

Fig 16. Opening the ‘objects’ panel and dragging your Croquet World to the

workspace

Fig 17. Your first Croquet World is born!

	Table of Contents
	Graphical Interface	
	Control structures
	Testing variables
	If then else
	Switch
	While
	For

	Data structures
	Ordered Collection

	Classes, Methods and Shared Variables
	Packages

