Appendix:

How to program in Croquet

Author: S.M. Wolff
Project: Cell-Forum Project

Table of Contents

Table of CONtENES....c.oviieiiiiiiiiiiiiiiiiiiiiiiiieei e 2
Graphical INterfaCeccoooovevviiiiiiiiiiiiiiiiiiiiiiiiiiiie e 6
CoNtrol StrUCKUIESooiiviiiiiiiiiiiiiiiiiiii e 9
Testing variableS........oooocevviiiiiiiiiiiiiiiiiiiiiiiiieii e 9
If then €IS€....ccuviiiieeiiiiiiiiiiiiiii e 10
SWITCN . et 10
WINIIE. e i 10
B O i 11
Data StruCtUreS........ocovevieueiiiiiiiiiiiiiiiiiiiiiiiiieeeee e 12
Ordered ColleCtioN.......c.ueieiiiiiiiiiiiiiiiiciieiicieeeiceee e 12
Classes, Methods and Shared VariableS............coooeeevviieeiiiiiiiiiiiiieiiiiieiieiinnnn 13
PaCKAQES. ..oviiiiiiiiiiiiiiiiicii e 15
Classes, Methods and Shared Variables.......... Error: Reference source not found
PackagesS....oooouveeeoiiiieeiiiiieeeeeeeeean Error: Reference source not found

Bringing it all together, a simple Croquet World Error: Reference source not found

Introduction

This is a tutorial for programming in the Croquet environment. This tutorial will
not go into details, but cover some basics which are needed to give beginning
Croquet developers a kick start. First an “hello world!” application will be shown
and described, then the topics ‘variables’, ‘graphical interface’, ‘control
structures’, ‘data structures’ and ‘methods and classes’ will be covered. This
tutorial will be concluded by an example of how to create your first working
collaborative Croquet virtual world.

The tutorial was written for those that already have some experience in any other
programming language(s).

Hello World

Like always with introductions to new languages, let us start with a simple ‘Hello
World"” program. Although we will be using the Croquet SDK, the first few
tutorials will not be inside a working Croquet World, instead the output will be
displayed within a ‘transcript’ window, comparable to a console window.

To start with Squeak, first we are going use the workspace to write some simple
functions and let those functions print something in the transcript.

|a|

a := String new.
a := ‘Hello World"'.
Transcript show: a.

|a|

The first line of code in the example contains the declaration of variables. You do
not specify the type of the variable yet here, only the name. In this case we have
created a variable called ‘a’. The system doesn’t know if it is going to be an
integer, double, string or any other object yet.

a := String new.

At the next line of code we declare that the variable with name ‘a’ is an object of
the kind String. At this example | have explicitly declared ‘a’ as a String, however,
for the basic variables this isn’t really necessary. In the next examples the type of
the variable will be made clear at the moment of assigning a value to it. You see
that the command is followed by a point, as in most other languages the

semicolon ‘;’ is used, in Smalltalk the point is used for this. Also note that the
symbol for assigning is ;=" instead of ‘=’.

a = ‘Hello World’’.

Next we assign a value to the variable ‘a’. It now contains the string of
characters: ‘Hello World"'.

Next we are going to print the contents of the variable ‘a’ to the screen, or better
said, the Transcript window.

So now, when you have typed this in the workspace (or copy/pasted it there),
select this piece of code by using your mouse and right-click somewhere in the
Workspace to bring up a menu and select ‘Do it’ [Fig 1].

Croguet! (C:\Documents and Settings\Me\Desktopicobalt-base-current-build-20080703\cobalt. 1.image)

X Workspace
lal

a := 5tring new.
a := 'Hello World!". aefind...(f)
Transcript show: a. Gz find again (g)
__set search string (h)
@ do again (j)
Hundo (2)
lcopy (c)
Xcut (x)
_[paste (v)
X Transcri
Helln World! Zaprint it (p)
&, inspect it (i)
G, explore it ()
debug it
¢ accept (s)
@cancel ()
_ show bytecodes
more...

Fig 1. Execute a piece of code

This action will either execute, point out syntax errors or bring up a debug
window of the selected piece of code. In this case the contents of the variable ‘@’
will be displayed in the Transcript.

The next section will cover the most frequently used graphical interfaces of the
programming environment.

Graphical Interface

To start programming in Croquet, we will use Cobalt. Cobalt is a free and open
source multi-platform metaverse browser and toolkit application built on top of the
Croquet SDK Cobalt comes with a graphical programming environment which will
be introduced in this chapter by using screenshots of the several most frequently
used parts.

When you downloaded and extracted the archive containing Cobalt and executed
the ‘Croquet.bat’ file, a start screen similar to the following screenshot will be
visible.

Croguet! (C:\Documents and Settings\Me\Desktopicobalt-base-current-build-20080703\cobalt. 1.image) [:”E]

Workspace Recent

File List Processes
Change Sorter Transcript

A quick way toget
browsers, change sorters,
fila lists, etc,

=T

Test R.u nner
B ruwselr
Scamper

Cha uge Set

Package Loader

Fig 2. The tools’ tab dragged out

The ‘Tools tab’ can be dragged from the right side of the screen to view the
available tools to assist you in your Croquet programming sessions.

The most of the time you will be working inside the ‘Package Browser’, here you
can browse all the available packages, class-categories within those packages,
classes, method-categories and methods.

Croguet! (C:\Documents and Settings\Me\Desktopicobalt-base-current-build-20080703\cobalt. 1.image)

X Package Browser
Kernel #l Kernel-Chronology — # 5
KernelTests 4| Kernel-Classes Al =
Collections | Kernel-Contexts N
CollectionsTests | Kernel-Magnitudes
Exceptions Kernel-Methods

Files Kernel-Numbers

Balloon Kernel-Objects

FFI Kernel-Processes
Graphics KernelTests-Chronalo:
GraphicsTests KernelTests-Numbers
Marphic Kerne|Tests-Ohjects |
E!i:rnhicTests . L(ar:nelTests_-Methodil"i instance | ? | class

Fig 3. The package browser

Declarations and operators

Declaring variables, or object-references, instances, pointers, will be done at the
top part of a Squeak scripts.

| var1 var2 var3 |

These variables will be local for the script that they're declared in. How to declare
more global variables will be explained at the ‘Class’ section of this tutorial.

At the declaration of the variables, no types are specified yet. The most primitive
variables will even never have to be specified, think of integer, string etc.
Although in my opinion it will definitely improve the readability of most of your
scripts.

The symbol “:=" is the operator for assignment in Squeak. All statements finish by
a “point”. So for example, to declare a string variable, and assign a value to it, the
following lines of code will get you what you want.

| var1 |

var1 := String new.

var1 := ‘This is the contents of the variable var1’.

Here an object of the class ‘String’ is defined. For other Classes it works exactly
the same.

var1 := someClass new.

Control structures

The control structures known from every other programming language exist in
squeak as well. The syntax however, is little different again. The syntaxes of the
standard control structures (if-then-else, while, for-loop) will be explained in this
section, if necessary by means of some example pseudo codes and their squeak
representations.

The workings of the control statements will not be explained as it is considered
you already know how they what they do, it are just the syntaxes that will be
covered.

Testing variables

To be able to write conditional statements for the control structures, you first
have to know how to test variables/objects for certain conditions. For comparison
of variables or objects in Squeak, the following symbols are used:

greater than

>
< less than

= equal to in value

~= not equal in value

>= greater than or equal to

<= less than or equal to

== check if two objects are of the same type, rather than equal
in value

And the signals for AND and OR are:

(@>0) & (b<0) | Returns true if a is positive and b is negative, otherwise false.

(@>0)|(b<0) |[Returns true if either a is positive or b is negative.

If then else

The Squeak if-then-else structure syntax is the following.

| xy |

1.
2.

X:
y:
(x>y)

ifTrue: [
"do something".

]

ifFalse: [
"do something".

I

Switch

The switch control structure has exactly the same functionality as the if-then-else
structure. Only the switch control structure offers significantly better readability
compared to the if-then-else structure when a large number of conditions and
associated actions are being listed.

aValue switch
case: [matchCode1] then: [actionCode1];
case: [matchCode?2] then: [actionCode2];

.ciéfault: [otherCode].

While

The Squeak while loop control structure syntax is the following:

X :=5.
y:=0.

[y <= x] whileTrue: [

"do something".
y=y+1

For

The usual for loop is declared in Squeak like this:

1 to: last do: [
A i+,

"do something”

]

This can be a little confusing for C(++) or Java programmers at first. Below is an
example of how the for loop is used.

The for loop that you know would be:

for(i=1;1<=4;i++){
X=i*5;
}

In Squeak you will have:

1 to:4 do: [
S I
X = i*5.

]

Data structures

With the term “Data Structures” we mean the different manners of organizing and
accessing your data used for your computations. Here you can think of structures
like Arrays, Lists and Heaps.

Ordered Collection

The ordered collection is best described as a composite of an array and a linked
list. The data inside the ordered collection can be accessed by simply providing
the location of the element inside the collection in which you are interested, much
like you are used to with arrays. It is also possible to insert items in a certain
position or just “at the end/beginning” of the collection. Below some of the basic
actions on ordered collections are listed.

add: 'x' To add the string x after the last
element of the collection.

addFirst: 'x' To add the string x at the first position
of the collection.

size Returns the quantity of elements of the
collection.

asString Convert an element of the collection to
String.

at:n Returns the string in the position n.

removeAt, RemoveFirst, used to remove elements from the

Removelast collection.

Classes, Methods and Shared Variables

Now the ‘how’ about programming in squeak has been covered, the ‘where’
about programming in squeak will be covered in this section. Squeak is a pure
Object Oriented language and therefore everything you code will be in the form
of Classes and Methods. This tutorial will not describe everything about Object
Oriented programming here as there are numerous books about this subject. If
you have programmed before you probably already have some experience with
this in a language like C++ or Java.

To state it simply, a Class is a group of methods/functions and variables. A
programmer can create, or instantiate, an object of such a class and execute the
associated functions.

Everything inside of Croquet is a class and therefore it is very easy to use
existing objects and adjust them to your own needs, this makes it possible to
create functional collaborative worlds in a very shot period of time. One thing that
you should keep in mind when programming in Croquet, is that you can have
variables local to a method within a class, variables local to a object of a certain
class and variables local to all instantiated objects of a class together [Fig 4, 5]. If
you want a function to make use of parameters, you have to specify it in the
function declaration, like in the following example code:

The declaration of the method, at the top of the method code, states the method

‘linkspaces’ with 4 parameters ‘a’, ‘b’, ‘ap’ and ‘bp’.
linkSpaces:a and: b p1: ap p2: bp

| p1 p2 win1 win2 |

"portal from a to b"

p1 := TPortal new.
p1 postcardLink: bp.

This is how an instance of the class, called ‘cube’, is executing this method with
the required parameters:

cube linkSpace:spaceA to: spaceB p2: postcardB.

x B Package Browser: TPortalMakerCube @g
OpenAL 1 Warlds # TinfoGetterCube - all - ﬁ'addNewSpace: L]
HedgeHacks Al Harness All TPortalMakerCube All eyents Al gyentMask A
Chat Objects accessing initialize
Menull initialize linkSpaces:and:pl:p2:
Vehicles linkSpace:to:p2:
TerrainBuilder makeLight:
SailingMarph makePictureWindow:
SimpleDemaMarph PostcardList
MationCapture PostcardListAdd:
RFBE PostcardListGive:
ThumbtackAnnotatiomJ PostcardListReset
Wisconsin v pointerDown:
UserObjects - . pointerEnter:
[P o .| instance I 7] class | Bicneeai i
sm 8/17/2008 16:05 - events - only in change set CurrentWork -
EddNewSpace: space ij
space2 pl p2 winl win2 | Variables local to method
"de N E——f o e n
space2 := TSpace new.
space? register.
“aan de lijst toevoegen"
self SpaceListAdd: space2.
self PostcardListAdd: space2 postcard.
“lichtje aanzetten"”
self makeLight: space2. i
Fig 4. Variables local to method
__Sg: Pééka_ga Browser: TPortalMakerCube 30
OpenAL Al warlds Al TinfoGetterCube Al - all - A addNewSpace: A
HedgeHacks Harness Al TPortalMakerCube Al events Al eventMask r
Chat Objects accessing initialize
Menuul initialize linkSpaces:and:pl:p2:
Vehicles linkSpace:to:p2:
TerrainBuilder makeLight:
SailingMorph makePictureWindow:
SimpleDemaMorph PostcardList
MationCapture PostcardListAdd: i
RFE PostcardListGive:
ThumbtackAnnotation'.J PostcardListReset
Wiscansin — pointerDown:
UserObjects - z pointerEnter:
[e !J—J = instance I ? I class ol bointerieave:

Class definition for TPortalMakerCube

[FCube subclass: #TPortalMakerCube L
instanceVariableNames: 'norm selectedPoint baseColor' ‘— Variables global to class instance
classVariableNames: 'PostcardList SkyColor SpaceList'
poolDictionaries: '
category: 'SimpleDemoMorph-Objects'

Variables global to all instances of class

{1

THIS CLASS HAS NO COMMENT!

Fig 5. Variables global to single object / all objects of a certain class

Packages

Packages are a collection of classes that belong to a certain
group/application/subject. However it is still possible to use a class somewhere
which is not in the same package. It is just a handy method of grouping classes

together.

Bringing it all together, a simple Croquet World

Let’s start at the beginning, start up Cobalt and open a package browser window
by clicking the ‘Tools’ tab from the starting screen and drag out a package
browser to you workspace.

Now you are going to create a new package for your Croquet World. Left click
your mouse on the square icon above the scrollbar and choose “add item”, as
shown on [Fig 6, 7, 8]

x Package Browser
kernel 8l Kernel-Chronolfigy o2 L
KernelTests | Kernel-Classesf 4 A
Collections | Kernel|-Context

CollectionsTe | Kernel-Magnituce:

Exceptions Kernel-Methods

Files Feirmne-MNumoers

Balloon Kernel-Ohjects

FFI kernel-Processes

Graphics kKernelTests-Chror v
ﬁrapl:'li_cETemIi ﬁerne!Iean-ﬁymt:ﬁ T e I 2 I Sias
T~ [T 3] ’

Fig 6. Click the square

X Package Browser
] N ey
KernelTests &l Kernel-Classes 4 8find class... (f)
Collections | Kernel-Contexts recent classes... (r)
Exceptions | KernelMameds | Drowseall
Files Kenel-Mumbers browse
Balloon Kernel-Objects printOut
FFI Kernel-Processes fileOut
Graphics Kerne|Tests-Chror
f.‘:_raphi_chemﬂ ﬁerne!Iesfcﬁ—Hymh: reorganize
Sl N IsSss . alphabetize
update
il add item...
rename...
*|remove

Fig 7. Choose “add item”

4 Package Browser

Kernel Bl Kernel-Chronology & L L
KernelTests & Kernel-Classes & & E
Collections il Kernel-Contexts

CollectionsTe | Kernel-Magnitude:

Exceptions Kernel-Methods

Files Kernel-Mumbers

Balloon Kernel-Objects

FFI Kernel-Processes

Graphics kernelTestr

GraphicsTesl | KernelTest: Please type new category name
LE .k MyFirstCroquetWorld-Worlds o 5

<packagename=>-<class category= b

Accept(s) Cancel(l}

Fig 8. Type new package-category

The name on the left side of the dash (“-“) symbol is the package name and the
name on the right side of the dash symbol is the class category name. Add a
package containing the class categories “Worlds” and “Harness” [Fig 9].

X &

UserObjects = Warlds
SkeletalAnimation & Harness
CobaltMarph
Cobaltll

Cobalt

SoxXML

SOAP

Rbt

LIPnP

FreeCAD
MyFirstCrogquetWorld

[|

] -
|

LIE] | =

Fig 9. Resulting in your first own package

Now we are going to use one of the demo worlds to create a world of our own.
Locate the package “SimpleDemoMorph” in the package browser. Click on it and
select the class category “Worlds”. Right-click on the class “SimpleDemoWorld”
and choose the option ‘copy’ [Fig 10].

® Package Browser: SimpleDemoWorld

HedgeHacks :I Warlds :. SimpleDemoWarld Al — all =

Elr;?wtuUI Sl Harness browse full (b) lize

Vehicles browse hierarchy (h)

TerrainBuilder browse protocol (p)

SailingMaorph)

SimpleDemaMaorph E'r'n U

MotionCapture fileOut

RFE ,

ThumbtackAnnotations show h'E,ra_rF h:""r

Wisconsin show definition

I'%JI_E:’:_FQbJ_?Ct_S — ' instar show comment

— = inst var refs... —_—

Class definition for SimpleDemoWorld inst var defs...

BaseWorld subclass: #5impleDemoWorld class var refs...
instanceVariableNames: " class vars
classVariableMames: " class refs (N)

poolDictionaries: "

category: 'SimpleDemoMorph-Worlds' rename class ...

copy class
*|remove class (x)
Fig 10. Choose option ‘copy class’

Copy the classes “SimpleDemoWorld” and “SimpleDemoHarness” of the
“SimpleDemoMorph” package, give them a unique name and move them to your
newly created package. How to move a class from one package to another is
shown in [Fig 11, 12, 13].

x B Package Browser: SimpleDemoWorld

HedgeHacks Eil Waorlds 5} SimpleDemoWorld = - all -
Chat 4l Harness A Al initialize
Menull | |
Vehicles
TerrainBuilder
SailingMorph
SimpleDemaMaorph
MotionCapture
RFB [Please type new class name

ThumbtackAnnotations | -
Wiscansin MySimpleDemoWorld 2

UserObjects v

wa B L

Class definition for SimpleDemoWorld -

BaseWorld subclass: #5impleDemoWorld Accept(s) Cancell(l)
instanceVariableMames: " :

R e L T e o P N [|

Fig 11. Give the copy of the class a unique name

x Package Browser: MySimpleDemo\

HedgeHacks Bl Warlds a MySimpleDemoWarld & — al
Chat Al Harness & SimpleDemoWaorld A initi;

e null

Yehicles

TerrainBuilder
SailingMarph
SimpleDemaoMarph
MotionCapture

RFE [
ThumbtackAnnotations. |
Wisconsin

v

UserObjects o

Sde e s b

& — instance I ? I class

Class definition for MySimpleDemoWorld

BaseWorld subclass: #MySimpleDemoWorld
instanceVariableMames: "
classVariableNames: "

poolDictionaries: "
category: 'MyFirstCrogquetWorld-Worlds'

Fig 12. Change package location of the copied class

TOE PR R E R A DL B PR LA R Bt

Wisconsin |
UserObjects v J‘
LSS | L

instance I ? I class

Class definition for MySimpleDemoWorld

BaseWorld subclass: #MySimpleDemoWorld
instanceVariableNames: "
classVariableMames: "
poolDictionaries:
category: 'MyFirstCroguetWorld-Worlds'

THIS CLASS HAS NO COMMENT!

2o find... ()
e find again (g)
set search string (h)
i do again (j)
spundo (2)
|_]copy (c)
*]ecut (x) —
_Ipaste (v)
__Ipaste...
£Zdo it (d)
2 print it (p)
Q, inspect it (i)
&, explore it (1)
debug it

v accept (s)
AR __ 1 ok

Fig 13. Don't forget to ‘accept’ the code, else nothing happens

Now you are going to set the Island ID for your Croquet World. Select the
“MySimpleDemoWorld” class from the “Worlds” class category in your newly
created package en press the “class” button [fig 14].

X Package Browser: MySimpleDemoWorld rullle]

UserOhjects 8l Worlds 5 MySimpleDemoWorld sl - all - islandiD L]
SkeletalAnimatior®| Harness Al identity 4 A
CobaltMarph
CaobaltUl
Caobalt
SoxXML
SOAP

Rhbt

UPnP

|
| =

FreeCAD

MyFirstCroquetiv: _
- — +| instance I 7 @ | |
sm 3/19/2009 17:13 - identity - only in change set CgeaftWork -

islandID .
“TObjectlD new

Fig 14. The ‘class’ button
Here you have to change to code from:

islandID
ATobjectID new

to:

IslandID
ATobjectID for: ‘MySimpleDemoWorld’

Where “MySimpleDemoWorld” is the same as the classname. Do not forget to
right-click and ‘accept the code!

You are actually done now! But to make it easy to launch your Croquet World,
you are going to make it appear in the “object” window. In the
“‘MySimpleDemoMaster” class from the Harness class category, click on the
descriptionForPartsBin’ method [fig 15].

x Package Browser: MySimpleDemoMaster pulli e}

UserObjects 8l Worlds 5| MySimpleDemoMaster Ml — all —- il descriptionForPartsBin
SkeletalAnimatior®| Harness = 41l parts bin Al
CobaltMorph
CobaltUl
Caobalt
SoXML
SOAP

Rbt

LPnP
FreeCAD
MyFirstCroquetiv v

instance | ? I class - v

| (W

v
IR |

sm 3/19/2009 17:19 - parts bin - only in change set CurrentWork -

descriptionForPartsBin =
~ self partName: 'SimpleDemo (Master)'
categories: #('Croguet')
documentation: ‘A Jumping Off place’
samplelmageForm: self defaultForm.

Al

Fig 15. ‘class’ methods of ‘MySimpleDemoMaster’
Now change to code to the following:

descriptionForPartsBin
A self partName: ‘My Croquet World (Master)’
categories: #(‘Croquet’)
documentation: ‘My first Croquet World’
samplelmageForm: self defaultForm.

Now select and ‘accept’ the code.

Now save your work by clicking on an open area on your workspace to bring up
the menu. Click ‘save as’ and save your work as a new image. If you want other
people to be able to run/join your Croquet World, you have to copy the
[name].image and [name].changes files to computer where you want to run it.

Now let’s open your World. Open up the Objects pane and drag your world to the
workspace, your first Croquet world is born, congratulations!

X Waorld &P
{Ziprevious project
3jump to project...
| save project on file...
load project from file...
can't undo
restore display (r)
[open...
T Jwindows...
changes...

@ help...

A tool for finding and

& =
\jappearanc obtaining many kinds of

do... /[\ objects

%% objects (o)

»@new morph...
authoring tools...
playfield options...
flaps...
projects...

2 print PS to file...

~ debug...

|osave

[save as...

[save as new version

@ save and quit

@ quit

%X alphabetic find categories ‘

[Basic] [Collaborative] (Croquet] [Demo]
[Games] [Graphics] [Multimedia]

[Navig ation] [Presentation] [Sc ripting]

HE =

Cobalt Croguet{Master)

Croguet(Participant) Demo (Master)

Demo (Participant) Embedd App (Master)

KAT Demo KayefFreeCAD (Master)

MPEG Demeo (Magt=—"" rirst Croquet World

My First Croguet World (Master)

Sailing (Master) SimpleDemo (Master)

SkeletalAnimationDemeo (Master)

Fig 16. Opening the ‘objects’ panel and dragging your Croquet World to the

workspace

Croquet! {C:\Documents and Settings\Swok\Deskiopibach projicobali-base-current-build-20080703\cobalt_tut.1.image) |ZJ rﬁ| E|

X alphabetic find categories .

[Collaborative] [Croquet] [Demo]

[Games] [Graphic 5] [Mu Itimedia]

[N avig ation] [Presentation] [Sr: ri pting]

. . ~ Cobalt People Place Th ihg’s View Tools Help

Cobalt Croguet{Master)

Croquet|Participant) Demo (Master)

Demeo (Participant) Embedd App (Mas

KAT Demo KayefFreeCAD (Master)

MPEG Demeo (Master)

My First Croquet World (Master)

Sailing (Master) SimpleDemo (Master

Skeletal AnimationDemeo (Master)

Fig 17. Your first Croquet World is born!

	Table of Contents
	Graphical Interface	
	Control structures
	Testing variables
	If then else
	Switch
	While
	For

	Data structures
	Ordered Collection

	Classes, Methods and Shared Variables
	Packages

